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Abstract. We address one of the main open issues about the use of
diversity in multiple classifier systems: the effectiveness of the explicit
use of diversity measures for creation of classifier ensembles. So far, diver-
sity measures have been mostly used for ensemble pruning, namely, for
selecting a subset of classifiers out of an original, larger ensemble. Here
we focus on pruning techniques based on forward/backward selection,
since they allow a direct comparison with the simple estimation of accu-
racy of classifier ensemble. We empirically carry out this comparison for
several diversity measures and benchmark data sets, using bagging as
the ensemble construction technique, and majority voting as the fusion
rule. Our results provide further and more direct evidence to previous
observations against the effectiveness of the use of diversity measures for
ensemble pruning, but also show that, combined with ensemble accuracy
estimated on a validation set, diversity can have a regularization effect
when the validation set size is small.

Keywords: Diversity · Ensemble pruning · Forward/backward selec-
tion · Ensemble construction

1 Introduction

After about twenty years of active research in the classifier ensemble field, under-
standing the notion of diversity remains one of the main open problems [11,25].
On the one hand, there is a general agreement on the qualitative definition of
diversity and on its role, e.g.: “it is desired that the individual learners should
be accurate and diverse” [25]; “Common sense suggests that the classifiers in
the ensemble should be as accurate as possible and should not make coincident
errors” [11] (Chap. 8). On the other hand, measuring diversity and explicitly
using it for ensemble construction exhibits several open issues.

A number of diversitymeasures have been proposed over the years [9,11,25].
Most measures have been derived intuitively, as attempts to formally characterize
the pattern of individual classifiers’ errors (e.g., the Double-Fault and Disagree-
ment measures [11]). In particular, it has been clearly pointed out that diversity
measures alone can not be monotonically related to ensemble accuracy, since the
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 206–219, 2015.
DOI: 10.1007/978-3-319-20248-8 18



An Empirical Investigation on the Use of Diversity 207

latter depends instead on a trade-off between diversity and individual classifiers’
performance [11,19]; quoting from [11] (Chap. 8), looking for a diversity measure
strongly related to ensemble performance runs the risk of “replacing a simple cal-
culation of the ensemble error by a clumsy proxy which we call diversity.” A few
other measures have been inspired by exact error decompositions derived in the
regression field, despite the lack of a direct analogy with regression problems was
pointed out in [2]: the Kohavi-Wolpert Variance [9] (and our attempt in [6]) was
inspired by the bias-variance-covariance error decomposition [21], and the mea-
sure derived in [3] (which we extended in [6]) by the ambiguity decomposition [8].
The rationale of such measures is to look for exact, additive decompositions of
the ensemble error into terms accounting for individual classifiers’ performance,
and terms hopefully interpretable as diversity; the results of [3] provided useful
insights, leading to the concept of “good” and “bad” diversity. Several authors
also analyzed, empirically or analytically, the connection between ensemble per-
formance on one side, and the pattern of individual classifiers’ performance and
existing diversity measures on the other side (e.g., [10,19]). Such a relationship
turned out to be far from clear-cut, and no “right” diversity measure has emerged
so far.

Almost all the existing methods that explicitly use diversity for ensem-
ble construction follow the overproduce and choose approach (except for [24],
where a diversity measure is used in an ensemble learning algorithm). It con-
sists of first generating a large ensemble (e.g., using bagging) and then selecting
the most accurate subset of classifiers (usually with a predefined size). This is
known as ensemble pruning, selection or thinning. Since this problem has expo-
nential complexity in the size of the original ensemble, several heuristics have
been proposed. In this context, diversity measures have been used in the objec-
tive function of pruning methods, to look for a trade-off between individual
classifiers’ performance and diversity. The effectiveness of such an approach has
however been questioned by several authors, based also on empirical evidences
[11,19] (Chap. 8.3). In particular, its actual advantage over directly evaluating
ensemble performance (estimated, e.g., from validation data) is not clear yet. On
the other hand, it is well known that popular and effective ensemble construction
techniques like bagging and boosting do not use any explicit diversity measure.

In [6] we discussed the above issues, focusing on the derivation of exact
decompositions of the ensemble error, and outlined several research directions.
One of them, which we start addressing in this work, consists of comparing the
effectiveness of explicitly using diversity measures in ensemble pruning, with the
simple estimation of ensemble performance. Although many pruning methods
have been proposed so far, the above comparison has been carried out by only a
few authors, and with a limited scope. In this work we focus on pruning methods
based on forward/backward selection (FS/BS) algorithms, which are the easiest
ones on which such a comparison can be made, and carry out an empirical inves-
tigation on 23 benchmark data sets, using the popular bagging as the ensemble
construction technique, and majority voting as the fusion rule. We evaluate ten
well known diversity measures analyzed in [9], and five measures specifically
defined for ensemble pruning. We also evaluate the effect of the validation set
size on ensemble pruning effectiveness.
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Algorithm 1. Forward Selection algorithm for ensemble pruning
Input: an ensemble E of N classifiers; a desired ensemble size L < N ; a validation set
V ; an objective function m (to be computed on V )
Output: a subset of L classifiers from E

C ← the most accurate individual classifier from E
S ← {C}
for k = 2, . . . , L do

C∗ ← arg maxC∈E\S m(S
⋃{C})

S ← S
⋃{C∗}

end for
return S

2 Ensemble Pruning with Forward/Backward Selection

Ensemble pruning methods can be categorized as follows [20]:

– Ranking-based: individual classifiers are first ranked according to some cri-
terion, and then the top-L are selected to form the final ensemble.

– Clustering-based: individual classifiers are first clustered based on the sim-
ilarity of their predictions; each cluster is then pruned to remove redundant
classifiers, and the remaining ones in each cluster are finally combined.

– Optimization-based methods search for a subset of the original ensemble
that optimizes a given objective function, which can include a diversity mea-
sure. To avoid exhaustive search, three main heuristic search strategies have
been proposed: hill climbing (often implemented as FS or BS), genetic algo-
rithms, and semi-definite programming.

We focus on optimization-based methods in which FS/BS is used, since they
allow a direct comparison between the simple estimation of ensemble accuracy
and objective functions involving diversity. Several pruning methods based on
FS/BS, together with specific objective functions, have been proposed so far,
including [1,4,13–17]. Given an initial ensemble E of size N , FS constructs a
pruned ensemble S of size L < N by starting from the best individual classifier
from E, and iteratively adding a classifier to S by maximizing a given objec-
tive function (see Algorithm 1).1 The BS algorithm works similarly, iteratively
removing from E one classifier at a time. More refined versions of FS/BS have
also been proposed, which include a back-fitting step [13].

Three kinds of objective functions have been proposed so far:

– The ensemble performance, [13] (reduce-error pruning technique), [4,12].
– Diversity measures alone, disregarding the performance of individual classifiers

and of the ensemble, [13] (Kullback-Leibler Divergence pruning), [17] and [1]
(kappa-thinning).

1 If no predefined size is given, FS stops when all the classifiers from E have been
added, and returns the best ensemble among the N ones obtained at every iteration.
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– Measures specifically defined for ensemble pruning. They combine into a single
scalar the individual classifiers’ performance and the complementarity between
their errors [14–16] and [1] (AID thinning and Concurrency thinning). We will
refer to them as pruning measures.

Among the existing pruning measures, we focus on the following ones. Let (x, y)
denote a sample with its class label, V the validation set, E and S the original
and the current pruned ensemble, C∗ the candidate classifier to be added to (or
removed from) S, and S(x) the label assigned to x by S.

– A measure aimed at minimizing the number of coincident errors between
ensemble members, when majority voting is used, to be used in the FS
algorithm [16] (Sect. 5.2). It selects the classifier C∗ that correctly labels the
highest number of validation samples, among the ones misclassified by the
majority of classifiers in the current ensemble S:

C∗ = arg minC∈E\S
∑

(x,y)∈V I [C(x) �= y ∧ S(x) �= y]
− I [C(x) = y ∧ S(x) �= y] ,

(1)

where I[A] = 1 if A =True, and I[A] = 0 otherwise.
– Two measures proposed in [14] to be used in the FS algorithm, with the major-

ity voting rule: Complementariness (the sum of validation samples which are
wrongly classified by the current ensemble, but not by the candidate classifier)
and Margin Distance. The former is a variant of Eq. (1). They are respectively
defined as:

C∗ = arg max
C∈E\S

∑

(x,y)∈V

I [C(x) = y ∧ S(x) �= y] , (2)

C∗ = arg min
C∈E\S

∥
∥
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, (3)

where cC′ is a |V |-dimensional vector whose i-th element is defined as:

2I[C ′(xi) = yi] − 1 ∈ {−1,+1},

and o is defined as a constant vector whose components are all identical to
some value p, with 0 < p < 1.

– A measure proposed in the context of the Concurrency thinning technique in
[1], based on BS. It chooses the classifier to be removed from S with the aim
of penalizing the agreement on correctly classified samples (this is a variant
of Eq. (1) as well):

C∗ = arg minC∈S

∑
(x,y)∈V I [C(x) = y ∧ S(x) = y]

+ 2I [C(x) = y ∧ S(x) �= y]
− 2I [C(x) �= y ∧ S(x) �= y] .

(4)
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– The Uncertainty Weighted Accuracy (UWA), to be used in the FS algorithm;
it was proposed in [15] as a variant of the Concurrency measure of Eq. (4):

C∗ = arg maxC∈E\S
∑

(x,y)∈V NF (x) × I [C(x) = y ∧ S(x) = y]
+ NT (x) × I [C(x) = y ∧ S(x) �= y]
− NF (x) × I [C(x) �= y ∧ S(x) = y]
− NT (x) × I [C(x) �= y ∧ S(x) �= y] ,

(5)

where NT (x) and NF (x) are the number of classifiers in S that classify x
respectively correctly and wrongly.

3 Aim of This Work

A comparison between the effectiveness of directly using ensemble performance as
the objective function, and using measures involving diversity, has been carried
out by a few authors [1,12–15], often limited to the specific evaluation measure
they were proposing, and using different and incomparable experimental setups
(different data sets, base classifiers, ensemble construction methods, etc.). We also
point out that only in [12,15] the use of pruning measures provided a statistically
significant improvement over the use of ensemble performance.

Our aim is thus to carry out an extensive experimental investigation of
FS/BS-based ensemble pruning methods, focused on the comparison between
the use of ensemble performance as the objective function, and the use of mea-
sures involving diversity. To this aim, we focus on the basic FS/BS algorithm
without back-fitting, and consider three kinds of objective functions:

1. Ensemble accuracy.
2. A generic diversity measure, focusing on the ones analyzed in [9]. Although

diversity alone is deemed to be not effective for ensemble pruning [11,19], we
consider also this option to provide a more direct evidence to these findings.

3. Pruning measures, which combine individual classifiers’ performance and
complementarity: we consider the ones described in Sect. 2, Eqs. (1)–(5).

We also consider another way to combine ensemble performance and diversity.
Since diversity measures are not homogeneous to classification accuracy, to avoid
combining them with individual classifiers’ accuracy in an arbitrary way (e.g., by
a linear combination), we use a two-stage FS/BS: first we select M < N classifiers
using either ensemble accuracy or diversity; then we further select L < M clas-
sifiers using the other measure. Algorithm 2 shows the version in which ensemble
accuracy is used at the first stage. In our experiments we considered both versions.

4 Experimental Setting

We chose 23 benchmark data sets from the UCI Machine Learning Repository
Database,2 with at least 350 samples, only numerical attributes, and without
2 http://www.ics.uci.edu/∼mlearn/MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Algorithm 2. Two-stage Forward Selection algorithm for ensemble pruning
Input: a classifier ensemble E of size N ; a desired ensemble size L < N ; an intermediate
ensemble size M , with L < M < N ; a validation set V ; a diversity measure d
Output: a subset of L classifiers from E

step 1 (accuracy-based pruning): select from E an ensemble E′ of size M using
Algorithm 1, and using classification accuracy as the objective function m
step 2 (diversity-based pruning): select from E′ an ensemble S of size L using
Algorithm 1, and using d as the objective function m
return S

missing values (see Table 1). We used bagging to construct the original ensemble,
majority voting as the combining rule, and two different base classifiers: multi-
layer perceptron neural networks (MLP-NN) with one hidden layer containing
ten units, and decision trees (DT). For MLP-NN we used the standard Matlab
implementation3, learning rate η = 0.05, and maximum number of training
epochs equal to 300. For DTs we used the code of [11] (par. 2.A.2.1), with
the Gini impurity criterion, χ2 stopping criterion, and the default threshold
equal to 1 for the pre-pruning stopping criterion. We set the size of the original
ensemble to N = 100, and considered four different sizes of the pruned ensembles:
L = 5, 15, 25 and 35.

We used only FS-based pruning. In the two-stage Algorithm 2 we set the size
M of the first-stage pruned ensemble to M = L + �(N − L)/2�. Since FS-based
pruning starts from the best individual classifier, to better appreciate its effective-
ness we chose the training set size of each data set in preliminary experiments, by
maximizing the difference between the accuracy of an ensemble of 100 classifiers
(constructed by bagging) and of the best individual classifier (see the right-most
column of Table 1). We then set the size of the validation as one third of the train-
ing set, and used the remaining samples as a testing set. We also used only half of
the validation set (one sixth of the training set) to evaluate the effect of validation
set size on the performance of ensemble pruning. We considered the ten diversity
measures analyzed in [9] (the ones in the top rows of Table 2), as well as measures
in Eqs. (1)–(5), which combine into a single scalar the individual classifiers’ per-
formance and the complementarity between their errors (the ones in the bottom
five rows of Table 2).

We carried out 20 runs of the experiments. At each run we selected the
training, validation and testing sets by stratified random sampling (no data
set was originally subdivided into a training and a testing set). We applied
bagging to the training set, to construct the original ensemble of N = 100
classifiers. We then run Algorithm 1 separately using as the objective function
the ensemble accuracy, each diversity measure, and the pruning measures in
Eqs. (1)–(5). We also run the two-stage Algorithm 2 in both versions (using
accuracy either at the first or at the second stage), for each diversity measure. We
finally computed, separately for each data set, pruning method, base classifier,

3 http://it.mathworks.com/help/nnet/ref/patternnet.html.

http://it.mathworks.com/help/nnet/ref/patternnet.html
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Table 1. Characteristics of the data sets. The two rightmost columns report the size
of the training set for the two base classifiers, as a fraction of the whole data set.

Tr. set size

Dataset Samples Classes Features MLP-NN DT

Australian 690 2 14 0.42 0.42

Balance scale 625 3 4 0.18 0.42

Blood transfusion 748 2 4 0.48 0.60

Breast cancer 699 2 9 0.30 0.12

Bupa 345 2 6 0.54 0.06

Checker board 1000 2 2 0.36 0.30

Coil 2000 9822 2 85 0.06 0.18

Cone tours 2000 3 2 0.06 0.24

Contraceptive 1473 3 9 0.36 0.60

ILPD 583 2 9 0.50 0.06

Laryngeal 2 692 2 16 0.06 0.48

Monk2 432 2 6 0.48 0.06

Page blocks 5473 5 10 0.06 0.42

Phoneme 5404 2 5 0.36 0.30

Pima Indians 768 2 8 0.54 0.30

Pop failures 540 2 20 0.42 0.30

Ring 7400 2 20 0.42 0.30

SaHeart 462 2 4 0.54 0.18

Sata log image seg 2310 7 19 0.44 0.30

Landsat Satellite 6435 7 36 0.60 0.48

Spam base 4601 2 57 0.42 0.30

Townorm 7400 2 20 0.12 0.30

Wine quality 4898 7 11 0.18 0.30

ensemble size L and validation set size, the average accuracy and its standard
deviation on testing samples, over the 20 runs. Due to space limits, we make
these results available only from our web site,4 and only report the results of
the statistical significance test. We compared the accuracy of pruned ensembles
attained by Algorithm 1 using ensemble accuracy as the objective function, and
using each of the other measures (both by Algorithms 1 and 2). To this aim we
used the Wilcoxon signed-rank test, which is recommended in [5] for comparing
two algorithms over multiple data sets. Our goal was to assess whether the
difference was significant, and, if so, whether using ensemble accuracy as the
objective function was the best or the worst option. Accordingly, we made two

4 http://pralab.diee.unica.it/en/MCS2015Appendix1.

http://pralab.diee.unica.it/en/MCS2015Appendix1
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Table 2. Diversity measures (top ten rows, from [9]) and pruning measures (in the
other rows, defined in Eqs. (1)–(5)) used in the experiments.

Diversity/pruning measure Abbreviation

Entropy E

Kohavi-Wolpert KW

Coincidence failure diversity CFD

Generalized diversity GD

Interrater agreement Kappa

Difficulty Theta

Q Statistic Q

Correlation Rho

Disagreement D

Double fault DF

Uncertainty weighted accuracy UWA

Partridge and yates’ measure PYM

Complementariness Cs

Margin distance MD

Concurrency Cy

one-sided tests (at the α = 0.05 level), evaluating the null hypotheses that
FS-based pruning using ensemble accuracy (or a measure involving diversity) is
not better than using a given measure involving diversity (or ensemble accuracy).
Only if both null hypotheses are rejected, it can be concluded that there is no
statistically significant difference between the two options.

5 Experimental Results

For each pruned ensemble size L, base classifier, and validation set size, Tables
3, 4, 5, 6, 7 and 8 report the comparison between FS-based pruning (Algorithm 1)
using ensemble accuracy, and FS-based pruning implemented by Algorithm 1
using either a diversity or a pruning measure, and by Algorithm 2 combining
ensemble accuracy and diversity.

Tables 3 and 4 clearly show that using ensemble accuracy often provides a bet-
ter or comparable pruned ensemble than using any diversity measure alone, or a
pruning measure. The only exceptions are GD (with L = 15) and UWA (with
L = 35), using DT as the base classifier and a small validation set (see Table 3).

Interestingly, most of the cases when using diversity attained comparable
results occur for three only measures: Entropy, Generalized Diversity and Kappa.

Tables 5, 6, 7 and 8, which refer to the two-stage FS algorithm combining
ensemble performance and diversity, show a different pattern, instead. When a
larger validation set is used, ensemble accuracy still produces often a better or



214 M.A.O. Ahmed et al.

Table 3. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs.
using each diversity or pruning measure, for different ensemble sizes L and validation
set sizes. Base classifier: DT. ‘A’: using accuracy is statistically significantly better than
using the corresponding diversity/other measures, over the 23 data sets; ‘D’: using the
corresponding diversity/other measures is better than ensemble accuracy; ‘-’: there is
no statistically significant difference between the two measures.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E - - - - - - - -

KW A A A A A A A A

CFD A A A A A A A A

GD - - - - - D - -

Kappa - - - - - - - -

Theta - A - A A - - -

Q - A - A A - - -

Rho A A A A - A A A

D A A A A A A - -

DF A A A A A A A A

UWA A A A A - - - D

PYM - - - - - - - -

Cs A A A A A A A A

MD - - - - - - - -

Cy - - - - - - - -

comparable pruned ensemble; however, for ensembles of DTs it never outper-
forms the combination of ensemble performance and diversity; moreover, it almost
always performs worse with respect to the Double Fault (DF) measure. When
a smaller validation set is used, together with DT classifiers, instead, combining
ensemble accuracy and diversity is often better, or at least not worse, than using
only ensemble accuracy (four right-most columns of Tables 5 and 7, vs the same
columns of Table 3). Remarkably, this happens for most diversity measures.

These results seem to suggest that estimating the ensemble performance is
the best option for FS-based pruning, provided that a sufficiently large validation
set is available. Otherwise, a combination of ensemble performance and diversity
can be advantageous, at least for some types of base classifiers. One possible
explanation is that diversity measures have a regularization effect capable of
preventing over-fitting, to some extent, as already argued in [12]. This is an
interesting and non-straightforward property, which is worth investigating more
throughly.
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Table 4. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs.
using each diversity or pruning measure, for a validation set size equal to 1/3 and 1/6
of the training set size. Base classifier: MLP-NN. See caption of Table 3 for the meaning
of table entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E - - - - A - - -

KW A A A A - - - -

CFD A A A A - - - -

GD - - - - - - - -

Kappa - - - - - - - -

Theta A A A A - - - -

Q A A A A - - - -

Rho A A A A - - - -

D A A A A - - - -

DF A A A A - - - -

UWA - - - - - - - -

PYM - - - - - - - -

Cs A A A A A A A A

MD - - - - - - - -

Cy - - - - - - - -

Table 5. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using ensemble accuracy at the first stage and each diversity measure at
the second stage. Base classifier: DT. See caption of Table 3 for the meaning of table
entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E - - - - D D D D

KW - - - - D D D D

CFD - - - D D D D D

GD - - - D D D D -

Kappa - - - - D D D -

Theta - - - - D D D -

Q - - - - - D D -

Rho - - - - D D D -

D - - - - D D D -

DF - D D D D D D D
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Table 6. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using ensemble accuracy at the first step and each diversity measure at
the second stage, for a validation set size equal to 1/3 and 1/6 of the training set size.
Base classifier: MLP-NN. See caption of Table 3 for the meaning of table entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E A A A A A A A A

KW A A A A A A A A

CFD - - - - A - D -

GD - - - - A - - -

Kappa A A - - A A A A

Theta A - - - A - - -

Q A - - A A A A A

Rho A A A - A A A A

D A A A A A A A A

DF D D D D - - - -

Table 7. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using each diversity measure at the first stage and ensemble accuracy at
the second stage. Base classifier: DT. See caption of Table 3 for the meaning of table
entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

easure 5 15 25 35 5 15 25 35

E - - - - D D D -

KW - - - - D D - -

CFD - - - - D D - D

GD - - D D - D D D

Kappa - - - - - D D -

Theta - - - - - D D -

Q - - - - - D - -

Rho - - - - D D D -

D - - - - D D - -

DF - - D D - D D D
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Table 8. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using each diversity measure at the first stage and ensemble accuracy at
the second stage, for a validation set size equal to 1/3 and 1/6 of the training set size.
Base classifier: MLP-NN. See caption of Table 3 for the meaning of table entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

Measure 5 15 25 35 5 15 25 35

E - A A A - - - -

KW - A A A A A - A

CFD - - - - A D D -

GD - D - - - D D -

Kappa - A A - A A - -

Theta - A A - A A - -

Q A A A A A - A A

Rho - A A A A A - A

D A A A A A - - A

DF - - - - - - - -

6 Discussion

We empirically investigated the effectiveness of explicitly using diversity mea-
sures for FS-based ensemble pruning, vs the simple estimation of ensemble accu-
racy. On the one hand, our results provide a more direct evidence in support of
previous findings that using diversity measures alone is not effective for ensem-
ble pruning [11,19], and in particular are in agreement with the well-established
fact that diversity is not monotonically related to ensemble accuracy [11]. On
the other hand, they suggest that, combined with the performance of individual
classifiers, diversity can be useful to FS-based pruning when a small validation
set is available. It seems therefore that diversity has a regularization effect. This
possible effect has already been argued through the derivation of generaliza-
tion bounds in [22], in the context of constructing ensembles of support vector
machines, as well as in [12], in the context of FS-based ensemble pruning. How-
ever, in [12] the effect of different validation set sizes was not assessed, and
only one diversity and two pruning measures were considered for comparison
(Table 6).

To sum up, what our results provide is not a sharp conclusion either in favor
or against the effectiveness of explicitly using diversity measures for ensemble
pruning. Instead, and perhaps more interestingly, they provide some hints on the
conditions under which diversity can be useful, and clearly suggest as a future
research direction a more thorough investigation of the effect of validation set
size. Our analysis can also be extended to other pruning methods categorized
in [20] as optimization-based, which use genetic algorithms [7,23] or a kind of
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best-first search [18], where ensemble accuracy can also be used as the objective
function. Finally, this investigation can be extended to regression problems, in
which the exact Ambiguity decomposition includes a diversity term which does
not depend on ground truth, contrary to most diversity measures for classifica-
tion problems, including all the ones in [9] considered in this work, and the one
in [3] derived from an exact Ambiguity-like decomposition; this allows it to be
computed also on a set of unlabeled samples, thus potentially reducing the effect
of over-fitting when a small set of (labelled) validation samples is available.
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