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Abstract. Pattern classifiers have been widely used in adversarial set-
tings like spam and malware detection, although they have not been orig-
inally designed to cope with intelligent attackers that manipulate data at
test time to evade detection. While a number of adversary-aware learn-
ing algorithms have been proposed, they are computationally demanding
and aim to counter specific kinds of adversarial data manipulation. In
this work, we overcome these limitations by proposing a multiple clas-
sifier system capable of improving security against evasion attacks at
test time by learning a decision function that more tightly encloses the
legitimate samples in feature space, without significantly compromising
accuracy in the absence of attack. Since we combine a set of one-class and
two-class classifiers to this end, we name our approach one-and-a-half-
class (1.5C) classification. Our proposal is general and it can be used to
improve the security of any classifier against evasion attacks at test time,
as shown by the reported experiments on spam and malware detection.

1 Introduction

Pattern recognition systems have been largely employed in security-sensitive
settings like biometric identity recognition, intrusion and malware detection,
spam filtering, web-page ranking and network protocol verification, to discrim-
inate between legitimate and malicious samples. However, these applications
are characterized by the presence of intelligent adversaries who can deliberately
attack the classifier by carefully manipulating malicious data at test time to
evade detection. From the learning perspective, this means that the underlying
class-conditional probability distribution of the malicious data may change from
training to test time, i.e., it is subject to an adversarial drift [1–8].

Accordingly, pattern classifiers are often characterized by an unsatisfying
trade-off between accuracy and security against evasion at test time, especially
in high-dimensional feature spaces. While two-class classifiers may achieve high
accuracy in the absence of attack, they can be evaded by malicious samples
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that are sufficiently different from the training data. This is due to the fact that
these classifiers minimize the classification risk (or error) over the training data,
assuming a stationary distribution. Therefore, it does not make any significant
difference in terms of risk if regions of the feature space which are not densely
populated by training data are classified as legitimate or malicious [9–11]. On the
other hand, one-class classifiers (trained on legitimate data) have been exploited
in security applications exactly to detect these outlying, anomalous attacks.
However, one-class classifiers may exhibit a significantly lower accuracy in the
absence of attack (in particular, in high-dimensional feature spaces), as they do
not exploit any information on the (available) malicious training data [10].

Motivated by the complementarity of the aforementioned approaches, in this
work we propose a Multiple Classifier System (MCS) that combines two-class and
one-class classifiers to achieve a better trade-off between accuracy and security
against evasion. For this reason, we name it one-and-a-half-class (1.5C) MCS
(Sect. 3). Our MCS is able to learn a more secure decision function by providing
a tighter enclosing of the legitimate data in feature space, while also exploiting
information from the available malicious data to retain high accuracy in the
absence of attack. Compared to other secure learning techniques [12–14], we do
not make any specific assumption on the kind of adversarial drift that may occur
at test time, but rather only agnostically assume that malicious data may appear
everywhere in feature space at test time with a non-null probability. This also
allow us to reduce the computational complexity during the training phase.

To better motivate our proposal, we provide a simplified analysis of how the
classification risk changes in the presence of evasion attacks (Sect. 2). Then, we
evaluate the security of our approach in a fair, well-principled way, exploiting
a recently-proposed framework to design well-crafted evasion attacks against
each given classifier, including the proposed MCS, assuming perfect and limited
knowledge of the targeted system [6–8] (Sect. 4). We finally evaluate the sound-
ness of our approach on two real-world application examples involving spam and
malware detection (Sect. 5), and conclude the paper by discussing related work
(Sect. 6) and future research directions (Sect. 7).

2 A Simplified Risk Analysis Under Evasion Attacks

In this section, we provide an analysis of the evasion setting under the risk min-
imization framework [15]. In the classical setting, it is assumed that an under-
lying probability distribution p(x, y) generates data samples x ∈ X along with
their class labels y ∈ Y, and risk minimization amounts to finding an hypothe-
sis f : X �→ Y that minimizes the expected risk (or loss) � (y, f(x)) over p, i.e.,
f = arg minf ′R(f ′) = Ex,y∼p{� (y, f ′(x))}. For instance, if � is the 0–1 loss, R(f)
corresponds to the minimum classification error, being f the optimal hypothesis
that would be obtained if p were known.1

1 Typically, the underlying process p is not known, and we are only given a finite set
of samples ideally drawn from it. Then, the task of learning amounts to minimizing
a trade-off between the empirical risk computed on such set and a regularization
term (or a restricted class of functions) to avoid overfitting [15].
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Fig. 1. Classification risk under evasion, in a one-dimensional feature space. The opti-
mal hypothesis f learned on p(x, y) classifies a sample as malicious if x ≥ 0. Its decision
boundary, achieving perfect separation between the two classes, is shown as a dashed
black line. Under attack, the malicious distribution changes as p(a(x), y = +1), and
this causes an increase of the evasion rate given by the light and dark red areas. The
decision boundary of the optimal function h trained after attack is depicted as a solid
black line. It trades a much smaller evasion rate (dark red area) for a slightly higher
false positive rate (blue area) (Color figure online).

In the evasion setting, the malicious data may change at test time, while the
legitimate samples can be considered stationary, i.e., not affected by adversarial
drift. This behavior can be modeled with a function a : X �→ X that represents
how the attacker modifies the malicious samples drawn from p at test time. The
additional risk incurred by f at test time can be thus written as:

Rts(f) − Rtr(f) = Ex,y{�(y, f(a(x))) − �(y, f(x))}, (1)

where Rtr(f) and Rts(f) respectively represent the risk incurred by f before and
after the attack. As the legitimate data is not affected by the function a(x), the
above difference is not null only for the malicious class. Thus, if � is the 0–1 loss,
it corresponds to the increase in the evasion rate at test time (see Fig. 1).

Now, assume that f� = arg minf ′∈FRts(f ′) is the optimal hypothesis on the
test data, including the manipulated attacks. Then, the difference of the risk
incurred at test time by using f instead of f� is:

Rts(f) − Rts(f�) = Ex,y{�(y, f(a(x))) − �(y, f�(a(x)))}. (2)

If � is the 0–1 loss, this amounts to the variation of the classification error between
f and f�, computed on the manipulated test data.

As shown in Fig. 1, one may thus decide to trade a slightly higher number
of misclassified legitimate samples for a significantly reduced evasion rate (i.e.,
fraction of misclassified malicious samples after attack), improving security at
the expense of slightly worsening accuracy in the absence of attack. To this
end, decision boundaries that more tightly enclose the legitimate class should
be designed by classifying regions for which p(x) ≈ 0 as malicious. This should
allow for improving security under attack by reducing the feasible attack space
(i.e., regions of the feature space classified as legitimate), without significantly
increasing the rate of misclassified legitimate samples. Notably, this can be a
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Fig. 2. 1.5C classification on two-dimensional toy data. Legitimate (malicious) training
samples are shown as blue (red) points, and decision boundaries as solid black lines.
Left : Two-class classification yields high accuracy in the absence of attack, but it can
be evaded by evasion samples that are sufficiently different from the training data
(e.g., in the top-left corner). Middle: One-class classification (on the legitimate class)
may worsen accuracy in the absence of attack, but improves security by enclosing the
legitimate class. Right : 1.5C classification retains the advantages of both approaches:
security is improved by enclosing the legitimate data, without significantly affecting
accuracy in the absence of attack (Color figure online).

relevant problem especially in high-dimensional feature spaces, where regions
that are classified as legitimate despite p(x) ≈ 0 may be significantly wider.

3 Secure 1.5C Classification with MCSs

The analysis reported in the previous section suggests that two-class and one-
class classifiers can be considered as complementary techniques, usually charac-
terized by different challenges, especially in high-dimensional feature spaces, and
a different trade-off between accuracy and security against evasion at test time.
Towards enhancing this trade-off, we propose an MCS architecture where a two-
class classifier is combined with two one-class classifiers, learned respectively on
legitimate and malicious data: the two-class classifier should allow for high accu-
racy in the absence of attack, while the two one-class classifiers should enable the
detection of evasion attacks that are (expected to be) significantly different from
the training samples of either class. To combine the given classifiers in a secure
way, i.e., learning a decision function that encloses the legitimate data, we use
a further one-class classifier trained on the outputs of the three base classifiers
using only legitimate data. The trade-off between accuracy and security exhib-
ited by one-class and two-class classification is exemplified in Fig. 2, along with
an example of 1.5C classification overcoming the limitations of both approaches.
The architecture of the proposed MCSs is depicted in Fig. 3.

4 Classifier Evasion

In this section, we consider a simplified version of the evasion attack algorithm
proposed in [8], described in terms of the attack framework originally defined
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Fig. 3. 1.5C MCS: (i) features are extracted from raw data; (ii) the two-class and one-
class classifiers assign scores gi(x) ∈ R, i = 1, 2, 3, to the feature vector x (assuming
that higher scores are given to the malicious class); (iii) these scores are combined by
the one-class combiner, providing an aggregated score g(x); (iv) g(x) is then compared
against a decision threshold t to make the final decision (Color figure online).

in [6], i.e., by clearly stating the attacker’s goal, knowledge of the system, and
capability of manipulating the input data.

Attacker’s Goal. In an evasion attack, the attacker’s goal is to have malicious
samples misclassified as legitimate at test time.

Attacker’s Knowledge. The attacker may have different levels of knowledge
about (i) the training data, (ii) the feature representation, and (iii) the learn-
ing model (including knowledge of the classifier’s parameters after training, and
feedback on its decisions on input samples). As in previous work [6,8], we con-
sider here perfect knowledge (PK) and limited knowledge (LK) attacks. In the
PK case, the attacker is assumed to know all the system details, including the
trained classifier’s parameters (e.g., the weights assigned by a linear classifier
to each feature). Although this may not be very realistic in practice, perform-
ing a security evaluation of the system under this setting allows one to assess
the worst performance degradation that may be incurred by the system under
attack. In the LK case, the attacker does not have access to the training data,
but can collect surrogate data ideally sampled from the same distribution, and
use feedback on the classifier’s decisions to re-label such samples. The feature
representation and the learning model (but not the trained classifier’s parame-
ters) are known. Under this setting, the attacker can learn a surrogate classifier
ĝ(x) on the re-labeled surrogate data, to approximate the discriminant function
g(x) of the targeted classifier.

Attacker’s Capability. In an evasion attack, the attacker is assumed to be
able to modify malicious data at test time, according to application-specific
constraints, while she can neither access nor modify the classifier’s training data.

Attack Strategy. Similarly to [8], and according to the previously-described
attack scenario, an optimal evasion strategy can be thus formulated as:

x∗ = arg min
x

ĝ(x),

s.t. d(x,xa) ≤ dmax, (3)
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where the attacker’s goal is to find a set of feasible manipulations to the ini-
tial malicious sample xa to obtain a camouflaged sample x∗ that minimizes the
(surrogate) classifier’s discriminant function ĝ(x). Note that, without loss of gen-
erality, we are assuming here that the classification function is f(x) = (g(x))+,
where (a)+ = +1 if a ≥ 0, and −1 otherwise, and malicious samples should be
assigned higher (positive) values of g(x) to be correctly classified.

The feasible domain for x is defined in terms of constraints on the manipula-
tion of the feature values of the malicious samples. For some classes of features,
a simple distance metric can be adopted. For instance, if one considers the pres-
ence or absence of a given word in an email as a feature, then the �1-norm
between two feature vectors amounts to counting how many words are different
between the two emails. Therefore, as also done in previous work [1,2,5,6,8,16],
we express this constraint as d(x,xa) ≤ dmax, highlighting that only a maximum
number of modifications dmax to each sample are allowed. Varying the parame-
ter dmax is fundamental to properly understand system security under attack.
In fact, as we will show in our experiments, more secure classifiers will exhibit a
lower decrease in the detection rate of malicious samples as dmax increases (i.e.,
as a larger amount of manipulations are performed to the malicious samples).
Additional constraints to Problem (3) may be also considered, depending on the
specific feature representation; e.g., if features are real-valued and normalized in
[0, 1]d, one may consider an additional box constraint given as x ∈ [0, 1]d.

The solution of Problem (3) clearly depends on the kind of discriminant func-
tion and on the given set of constraints. In [8], a general solution for nonlinear,
differentiable discriminant functions was proposed, based on a simple gradient-
descent algorithm. It is worth remarking that an additional component to the
objective function was also considered in that work, to drive the attack point
during the descent towards regions of the feature space more densely populated
by legitimate samples, with the goal of increasing the probability of evading
detection (especially when attacking the surrogate classifier). In this work, we
disregard this component, as it is possible to substantially obtain the same effect
by running the evasion attack algorithm (given as Algorithm 1) from distinct
initialization points, eventually retaining the attack sample that achieves the
minimum value of the objective.

4.1 Gradient Computation

The gradients required to evaluate classifier security using Algorithm1 are given
below, for the classifiers considered in this work: linear and nonlinear Support
Vector Machines (SVMs), and the proposed 1.5C MCS. Note that this approach
can be easily applied to any classifier, provided that its discriminant function
g(x) is at least subdifferentiable; otherwise, one may use a different optimization
strategy to solve Problem (3), or approximate the non-differentiable g(x) with a
surrogate classifier having a differentiable discriminant function [8].

Linear Classifiers. For linear discriminant functions g(x) = 〈w,x〉 + b, with
feature weights w ∈ R

d and bias b ∈ R, the gradient is simply ∇g(x) = w.
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Algorithm 1. Evasion Attack
Input: xa: the malicious sample; x(0): the initial location of the attack sample; t: the

gradient step size; ε: a small positive constant.
Output: x′: the evasion attack sample.
1: i ← 0
2: repeat
3: i ← i + 1
4: x(i) ← x(i−1) − t∇g(x(i−1))
5: if d(x(i), xa) > dmax or other constraints are violated then
6: Project x(i) onto the feasible domain
7: end if
8: until |g(x(i)) − g(x(i−1))| < ε
9: return x′ = x(i)

Nonlinear SVMs. For kernelized (and one-class) SVMs, the discriminant func-
tion is g(x) =

∑n
i=1 αiyik(x,xi) + b, where α and b are the SVM parameters

learned during training, k(x,xi) is the kernel function, and {xi, yi}n
i=1 are the

training samples and their labels [15]. The gradient is ∇g(x) =
∑

i αiyi∇k(x,xi)
and, thus, the feasibility of our approach depends on the kernel gradient ∇k(x,xi),
which is computable for many numeric kernels; e.g., for the RBF kernel k(x,xi) =
exp

(−γ‖x − xi‖2
)
, it is ∇k(x,xi) = −2γ exp

(−γ‖x − xi‖2
)
(x − xi).

1.5C MCS. In this case, the gradient will depend on the particular choice
of each of the component classifiers g1, g2, g3 and on the one-class combiner
g(x). To provide an example, we assume here that a one-class SVM with the
RBF kernel is used to combine g1, g2, g3. In this case, the discriminant function
can be written as g(x) =

∑
i αi exp

(−γ‖z(x) − z(xi)‖2
)

+ b, where z(x) =
[g1(x), g2(x), g3(x)]

�
. The corresponding gradient is thus given as:

∇g(x) = −2γ
∑

i

αie
−γ‖z(x)−z(xi)‖2

(z(x) − z(xi))
� ∂z

∂x
, (4)

where ∂z
∂x = [∇g1(x),∇g2(x),∇g3(x)]

� ∈ R
3×d, and d is the feature set size.

Descent in Discrete Spaces. In discrete spaces, it is not possible to follow the
gradient-descent direction precisely, as it may map the given sample to a set of
non-admissible feature values. The gradient-descent direction can be nevertheless
used as a search heuristic, as follows. Starting from the current sample x, one
may generate a set of candidate neighboring points by perturbing only those
features of the current sample which correspond to the maximum absolute values
of the gradient, one at a time, in the correct direction. Eventually, one should
update the current sample to the neighbor that attained the minimum value of
the objective function, and iterate until convergence.

5 Experiments

In this section, we report an experimental evaluation of our proposal on two
distinct security applications, i.e., spam filtering and PDF malware detection.
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Our goal is to investigate whether, and to what extent, the proposed 1.5C MCS
is able to combine the advantages of two-class and one-class classification to
yield a better trade-off between accuracy and security. To this end, we adopt a
common experimental setup, involving the following classifiers: (i) a two-class
SVM, with the linear kernel for the spam data, and the RBF kernel for the PDF
data; (ii-iii) two one-class SVMs with the RBF kernel, trained respectively on
legitimate and malicious samples; and (iv) a one-class SVM with the RBF kernel
to combine the former three classifiers in our 1.5C MCS (see Sect. 3).

We simulate attackers that have perfect (PK) and limited (LK) knowledge
of the targeted system (see Sect. 4). In the LK case, we assume that the attacker
collects a surrogate training set whose size is only 20 % of the size of the data
used to learn the targeted classifier. The reason is that, in practice, attackers
may only perform a limited number of queries to the targeted classifier to recover
the classification labels of such samples, and train the surrogate classifier.

We evaluate classifier performance by averaging the true positive (TP) rate,
i.e., the fraction of correctly-classified malicious samples, achieved when the
false positive (FP) rate, i.e., fraction of misclassified legitimate samples, is below
1%, which corresponds to the so-called Area Under the ROC Curve (AUC) at
1 % FP rate. The reason is that, in these applications, false positives are more
harmful than false negatives, and thus, they should be kept very low [6,18]. Our
results are averaged over five repetitions, in which different training-test splits
are considered. In particular, in each repetition, 50 % of the data is randomly
chosen for training (TR), while the rest is used for testing (TS).

5.1 Spam Filtering

Spam filtering is one of the most popular application examples considered in
adversarial learning [1,2,6,17,18]. As in previous work, we consider the widely-
used bag-of-words feature representation, in which an email is described as a set
of binary features, indicating the presence (1) or absence (0) of a given word. Due
to the high dimensionality of the corresponding feature space, linear classifiers
have been often considered [17–19] and implemented in real anti-spam filters,
including e.g. SpamAssassin and SpamBayes.2 Therefore, in this investigation
we implement the two-class classifier as a linear SVM. Popular attacks in spam
filtering include modifications to the email’s content. Attackers may obfuscate
bad words (which typically appear in spam but not in legitimate emails) through
misspelling (e.g., changing “cheap” as “che4p”), and add good words (which
typically appear in legitimate emails but not in spam). The corresponding effect
is to change features from 1 to 0, or viceversa.

Experimental Setup. We use the benchmark TREC 2007 email corpus [20],
which consists of 25,220 ham and 50,199 spam emails. The first 5,000 emails
are adopted in this experiment. Each email is represented by a feature vector
using a tokenization method of SpamAssassin. We use a feature selection method
2 http://spamassassin.apache.org/, http://spambayes.sourceforge.net/.

http://spamassassin.apache.org/
http://spambayes.sourceforge.net/
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Fig. 4. Average AUC1% values (with standard deviation) for spam filtering (top row)
and PDF malware detection (bottom row), attained by two-class (2C) SVMs, one-
class (1C) SVMs trained on legitimate (L) and malicious (M) data, and the 1.5C MCS,
against PK (first column) and LK (second column) attacks. In each plot, the AUC1%

under attack is evaluated against an increasing maximum number of modifications to
the malicious data, i.e., number of modified words in each spam, and number of added
keywords to each malicious PDFs.

based on information gain [21], reducing the number of features from more than
20,000 to 500, to reduce computational complexity. All the malicious samples
in TS are manipulated according to PK and LK evasion attacks. In the latter
case, only 500 samples have been used as the surrogate training data available
to the attacker. To evaluate classifier security against an increasing maximum
number of modifiable words in each spam, we set d(x,xa) = ‖x − xa‖1 ≤ dmax

as the constraint in Problem (3). In this case, dmax is exactly the maximum
number of modifiable words (i.e., feature values) in each spam. The parameters
C, γ ∈ {2−10, 2−9, . . . , 210} of each SVM are optimized through a 5-fold cross-
validation on TR to minimize the classification error.

Results. The average AUC1% values, along with their standard deviations, are
shown in Fig. 4 (top row), against an increasing maximum number of modified
words in each spam. In the absence of attack, the accuracy of the 1.5C MCS
and the two-class (2C) SVM is similar, and very high, while for one-class (1C)
SVMs it is very low. The reason is that we are not only working at extremely low
FP rates, but also in high-dimensional spaces; thus, detecting a high number of
attacks for these techniques becomes extremely challenging. Under attack, i.e.,
where the number of modified words is greater than zero, the AUC1% of the
2C SVMs drops significantly, in both the PK and the LK settings. Conversely,
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the performance of our 1.5C MCS decreases more gracefully, retaining a higher
detection rate against evasion attempts, and thus, a higher security.

5.2 PDF Malware Detection

Another well-known application investigated in adversarial learning is PDF mal-
ware detection. PDF files are characterized by a hierarchy of interconnected
objects including keywords and data streams; e.g., the keyword “PageLayout”
characterizes an object describing the format of the corresponding page. Their
flexible structure allows for embedding different kinds of content, including
JavaScript and binary programs. This makes PDF files suitable vectors to spread
malware infections, as malware can be easily embedded into them. In this exper-
iment, we use the feature representation adopted in [8,22], in which each feature
represents the number of occurrences of a given keyword in a PDF file. In this
case, evasion attacks consist of manipulating the set of keywords present in the
PDF file at test time. However, since embedded objects can be easily added
to, but not removed from PDF files without corrupting their structure, as in
[8,22] we assume that the number of occurrences of each keyword can be only
increased. This can be implemented by adding the constraint xa ≤ x (where
inequality has to be fulfilled by each feature value) to Problem (3).

Experimental Setup. We use 2,000 samples from the PDF malware dataset in
[8,22], represented by 114 distinct keywords (i.e., features). Each feature value
(i.e., the number of occurrences of the corresponding keyword) is normalized
in [0, 1] by dividing its value by 100 (which is also set as the maximum value
of the occurrences of each keyword). The SVMs’ parameters are set as in the
previous experiments on spam filtering. Classifier security is evaluated against an
increasing maximum number of added keywords. To this end, we set d(x,xa) =
100‖x−xa‖1 ≤ dmax as the constraint in Problem (3), similarly to the experiment
on spam filtering. Together with the constraint on feature addition xa ≤ x, this
let dmax correspond to the maximum number of keywords that can be added to
each malicious PDF file.

Results. As for the spam filtering case, results are reported in terms of AUC1%

values in Fig. 4 (bottom row). Similar conclusions can be drawn with respect
to the results obtained for the spam filtering case, except that here, 1C SVMs
perform slightly better in the absence of attack, and exhibit higher detection
rates under attack than those exhibited by the 2C SVMs (for both PK and LK
attacks). This means that, for a sufficiently high number of added keywords, 1C
SVMs are more secure than 2C SVMs. Nevertheless, the proposed 1.5C MCS
significantly outperforms the competing approaches under attack, while only
performing slightly worse than the 2C SVM in the absence of attack. Worth
noting, the detection rate of the 1.5C MCS decreases more gracefully in this
case with the increase of the maximum number of added keywords, since the
feature values of malicious samples can only be incremented.
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6 Related Work

While many methods have been proposed to counter evasion attacks [1,12,14,25],
they are computationally demanding and make specific assumptions on how
attackers should manipulate data at test time to evade detection (see also [3–6]
and references therein, for a more detailed review). Inspired by the seminal work
in [1], recent work has shown that game theory can be used to model interactions
between the classification system and the attacker in non-zero-sum games, yield-
ing more secure classifiers [14]. However, satisfying conditions for the uniqueness
of the equilibrium not only require the classifier’s and the attacker’s objectives
to fulfill specific conditions, but also computationally demanding algorithms to
find suitable solutions. A slightly different line of work [12,13,25] aims to learn
secure classifiers (and SVMs, in particular), by minimizing a modified version
of the loss function which accounts for worst-case manipulations to data at test
time, including feature deletion, insertion, and rescaling. This also results in a
computationally intensive training phase.

Other work has proposed countermeasures to evasion based on well-motivated
heuristics, e.g., that feature weights assigned by a linear classifier should be more
evenly spread among the features, to require modifying more feature values to
evade detection [18,23]. Linear classifiers exhibiting the aforementioned behavior
have been implemented efficiently using MCSs, by averaging an ensemble of
linear classifiers [18,23,26,27]. In the present work, we have shown that MCSs
can also be used to learn secure, nonlinear classifiers, in an efficient manner.

7 Conclusions and Future Work

While pattern classifiers have been widely used in adversarial applications, they
are often characterized by an unsatisfying trade-off between accuracy and secu-
rity against evasion, especially in high-dimensional spaces: two-class classifiers
may yield high accuracy but they are potentially insecure, while one-class classi-
fication may improve security at the expense of a lower accuracy in the absence
of attack. Motivated by the complementarity of these approaches, we proposed
a 1.5C MCS that achieves a better trade-off between accuracy and security. Our
proposal is general, it is agnostic to the kind of adversarial drift that may occur
at test time, and can be used to improve the security of any classifier against
evasion attacks, as shown by the reported experiments on spam and malware
detection. Interesting future research directions include providing a formal, well-
principled characterization of the trade-off between accuracy and security, as
well as its relationship with the dimensionality of the feature space, and inves-
tigating whether the proposed 1.5C MCS can also be capable to deal with the
presence of poisoning attacks in the training data [3–7].
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