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Preface

This book presents the proceedings of the 12th IAPR Workshop on Multiple Classifier
Systems (MCS 2015) held at Reisensburg Castle, the research center of Ulm Univer-
sity, Germany, during June 29 – July 1, 2015. The series of MCS workshops has acted
as a major forum for international researchers and practitioners from the community of
multiple classifier systems in pattern recognition and machine learning.

The Program Committee of MCS 2015 selected 19 papers for the scientific program.
Two IAPR Invited Sessions given by Dr. George Cybenko, Darmouth College, USA,
and Dr. Marcello Pelillo, University of Venice, Italy, enriched the workshop.

MCS 2015 would not have been possible without the help and support of many
people and organizations. First of all, we are grateful to all authors who submitted their
work to MCS. We thank the members of the Program Committee and the additional
reviewers for performing the difficult task of selecting the best papers for presentation,
and we hope that readers of this volume will enjoy it and be inspired from its
contributions.

MCS 2015 was supported by the International Association for Pattern Recognition
(IAPR), by the University of Cagliari, Italy, by the University of Surrey, UK, and by
Ulm University, Germany, which hosted this event. Special thanks to the people of the
local organization, Miriam Schmidt, Martin Schels, Michael Glodek, Markus Kächele,
Sascha Meudt, and Patrick Thiam. Finally, we wish to express our gratitude to Springer
for publishing our proceedings in their LNCS series and for their constant support.

July 2015 Friedhelm Schwenker
Fabio Roli

Josef Kittler
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Deep Learning of Behaviors

George Cybenko

Thayer School of Engineering
Dartmouth College

Hanover NH 03755, USA
gvc@dartmouth.edu

Abstract. Deep learning has generated much research and commercialization
interest recently. In a way, it is the third incarnation of neural networks as
pattern classifiers, using insightful algorithms and architectures that act as
unsupervised auto-encoders, learning hierarchies of features in a dataset.

After a short review of that work, we will discuss the challenges associated
with the analysis of behaviors observed as time series of categorical data. Novel
computational approaches for deep learning of behaviors as opposed to just
static patterns will be presented. Our approach is based on structured non-
negative matrix factorizations of matrices that encode observation frequencies of
behaviors.

These techniques can be used to robustly characterize and exploit diverse
behaviors in security applications such as covert channel detection and coding.
Examples of such applications will be presented.

Related results about the role of diversity in computer security applications
will also be introduced wherein adversarial dynamics dictates that attackers and
defenders coevolve. As a result, the use of multiple diverse detection and
mitigation techniques makes the attackers’ effective workfactor much higher.



Similarity-Based Pattern Recognition:

A Game-Theoretic Perspective

Marcello Pelillo

Ca’ Foscari University of Venice
30172 Venezia Mestre, Italy
pelillo@dsi.unive.it

Abstract. Similarity-based methods are emerging as a powerful tool in pattern
recognition and machine learning because of their ability to overcome the
intrinsic limitations of traditional feature-vector approaches. By departing from
vectorspace representations, however, one is confronted with the challenging
problem of dealing with (dis)similarities that do not necessarily possess the
Euclidean behavior or not even obey the requirements of a metric. In this talk,
I will maintain that game theory offers an elegant and powerful conceptual
framework which serves well this purpose, and I will describe recent attempts
aimed at formulating various similarity-based pattern recognition problems from
a game-theoretic perspective. Particular emphasis will be given to evolutionary-
based models which, in contrast to the classical theory, offer an intriguing
dynamical system perspective. Finally, I will descrive some applications of this
approach within the context of multiple classifier systems.
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A Novel Bagging Ensemble Approach
for Variable Ranking and Selection for Linear

Regression Models

Chun-Xia Zhang1(B), Jiang-She Zhang1, and Guan-Wei Wang2

1 School of Mathematics and Statistics, Xi’an Jiaotong University,
Xi’an 710049, Shaanxi, China

{cxzhang,jszhang}@mail.xjtu.edu.cn
2 School of Mechatronic Engineering, Xi’an Technological University,

Xi’an 710021, Shaanxi, China
waldowgw@163.com

Abstract. With respect to variable selection for linear regression mod-
els, a novel bagging ensemble method is developed in this paper based
on a ranked list of variables. Specifically, a mixed importance measure
is assigned to each variable according to the order that it is selected by
stepwise search algorithm into the final model as well as the improve-
ment resulted from its inclusion. Considering that small permutations
in training data may lead to some changes in the order that the vari-
ables enter the final model, the above process is repeated for multiple
times with each executed on a bootstrap sample. Finally, the importance
measure of each variable is averaged across the bootstrapping trials.
The experiments conducted with some simulated data demonstrate that
the novel method compares favorably with some other variable selection
techniques.

Keywords: Variable selection · Variable ranking · Bagging · Stepwise
search algorithm · Parallel genetic algorithm · Ensemble learning

1 Introduction

Given some observations of (y,X), linear regression model is a basic model to
explore how the covariates X1,X2, · · · ,Xp influence the response variable Y
due to its simplicity and effectiveness. In statistical learning field, there are
two fundamental goals: ensuring high prediction accuracy and discovering truly
informative variables. Because variable selection can result in better prediction
accuracy as well as a concise model for interpretation purpose, it has always
been an important topic in linear regression analysis. Nowadays, with the vast
availability of high-dimensional data in various real applications, variable selec-
tion has gained more interest of researchers to cope with related problems [1–4].
Here, it is noteworthy that predictive modelling and interpretation modelling are
quite different as indicated by many researchers [2,5,6], and we will deal with
the second goal in the current work.
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-20248-8 1



4 C.-X. Zhang et al.

At present, there exist a large variety of variable selection techniques in the
literature, such as subset selection [7,8], coefficient shrinkage [3,9–13] and so on.
However, variable selection has one disadvantage that different sizes of model
require different tuning parameters in the analysis, which is hard to specify even
for statisticians. In view of this point, some researchers [6] advocated variable
ranking instead of variable selection since the selection can be performed by
adopting a thresholding rule once the variables are ranked properly. In this
paper, we will discuss some methods to achieve variable ranking and selection
for linear regression models. The selection will be implemented on the basis of
a ranked list of variables.

In recent years, ensemble methods have become popular in the variable selec-
tion context, for example, parallel genetic algorithm (PGA) [14], stability selec-
tion [10,11], random lasso [15] and stochastic stepwise ensembles (ST2E) [6].
Ensemble learning [16], a relatively new paradigm in machine learning field,
generally utilizes many learning machines to solve a problem so that these
machines can complement each other. Up to now, ensemble learning techniques
have make great success in various domains, particularly for the prediction prob-
lems (i.e., classification and regression) that are often encountered in practice
[17–20]. Here, we must differentiate the term “prediction ensemble (PE)” from
“variable-selection ensemble (VSE)” since they are used for quite different pur-
poses. Specifically, PEs aims to maximize prediction accuracy so that future data
can be well predicted. As far as VSEs are concerned, the purpose is to maxi-
mize selection accuracy in order that the underlying important variables can be
identified as accurate as possible.

To achieve high selection accuracy, we propose in this paper a novel ensem-
ble approach to build VSEs. For ease of presentation, the novel method will be
abbreviated as BSSW throughout this paper since it is motivated by applying
bagging technique to stepwise search algorithm. The main idea of BSSW is sum-
marized as follows. In order to produce multiple slightly different measures of
importance for each variable, we draw some bootstrap samples and apply step-
wise search algorithm to each sample. Based on the order that one variable is
selected into the final model as well as the improvement of model fitting resulted
from its inclusion, a weight is assigned to it with the purpose to reflect its impor-
tance to the response variable. Finally, the importance measure of each variable
is averaged across the bootstrapping trials. All the variables are then ranked in
the light of this averaged importance measure. If the final goal is to select signifi-
cant variables, we can search for the largest gap between any consecutive entries
and choose the variables that are located above the gap. Based on the experi-
ments conducted with some simulated data, the newly proposed method BSSW
is shown to compare favorably with some other variable selection techniques.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction of VSEs. In Sect. 3, the novel ensemble approach BSSW is described in
detail to implement variable ranking and selection for linear regression models.
This is followed by conducting some experiments to examine and compare the
performance of BSSW with some other procedures in Sect. 4. Finally, Sect. 5
offers the conclusions of the paper.
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2 Brief Introduction of VSEs

Suppose that there are p variables, a VSE (of size B) can be represented by a
B×p matrix, say, E, whose jth column contains B repeated but slightly different
measures of how important the jth variable is. On the basis of E, one can obtain
the average importance of each variable using a majority voting rule, that is,

R(j) =
1
B

B∑

b=1

E(b, j), j = 1, 2, · · · , p, (1)

where E(b, j) stands for the (b, j)th entry of E. Subsequently, the p variables
can be ordered and those variables ranked “considerably higher” than the rest
are then selected. To make selection decision, one can select variable j if it is
ranked above average, that is, if R(j) > (1/p)

∑p
k=1 R(k). In addition, one can

also look for an elbow from the so-called scree plot, which is a very common
practice in cluster analysis. Specifically, it can be done as follows: sort the values
R(1), R(2), · · · , R(p) in a descending order; search for the biggest gap between
any consecutive entries; and select the variables that are located above the gap.
In all the experiments reported later, the latter strategy will be adopted.

The key to construct a good VSE lies in producing multiple measures of
importance for each candidate variable. In contrast, traditional variable selection
methods such as subset selection and lasso only produce one measure, that is,
B = 1. Generally speaking, averaging over a number of independent measures
is often beneficial. The great success of prediction ensembles in many areas has
provided a vivid example of this issue. The situation is similar for VSEs. This
is also the main reason why VSEs are attractive and more powerful than many
traditional procedures.

Analogous to the techniques for creating PEs, there can be many ways to
construct VSEs. But currently, the commonly used method is to implement a
stochastic mechanism so that we can repeatedly perform traditional variable
selection and obtain slightly different answers each time. One way is to use a
stochastic rather than deterministic search algorithm to perform variable selec-
tion, for example, PGA [14], RandGA [21] and ST2E [6]. Another way to build a
VSE is to perform the selection on bootstrap samples. Stability selection [10,11],
random lasso [15] and bagged stepwise search (BSS) [22] belong to this type of
methods. Due to space constraint of this paper, the details of these methods will
be omitted here.

3 Novel Ensemble Approach BSSW for Variable Ranking
and Selection

As for the traditional variable selection methods like subset selection and step-
wise search algorithm, they usually produce one importance measure for each
variable. Under some circumstances, a small permutation in the data may lead
them to select quite different variables. Put in another way, the variation of data
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makes these methods easily exclude some truly important variables or falsely
pick some unimportant variables. Evidently, this largely prevents the use of
these methods in real-world applications. Take stepwise selection as an example,
it may suffer from high variability as pointed out in [13]. Meanwhile, it ignores
the stochastic errors or uncertainty in the variable selection stage. With the
aim to exploit stepwise search to accurately detect the variables that are truly
influential to the response, we have to first overcome its above shortcomings.

Due to the existence of noise in data, some spurious variables may be falsely
considered as important ones by chance. However, the truly important ones will
be often included into the final model. More specifically, if the selection process
is conducted using slightly different data for a number of trials b = 1, 2, · · · , B,
the measure E(b, j) for an actually influential variable j will be high for all or
most of b. Nevertheless, E(b, j) will be high only for some b if a variable j is
spurious. Therefore, when averaged over B trails, the importance measure R(j)
will be high for the variables that are truly important. This explains to a large
extent why VSEs gain significant interest in the variable selection context.

Note that the output of some traditional variable selection methods also
includes the order that each variable is selected into the model besides the cho-
sen variables. As far as we know, however, this information has not been utilized
in the existing techniques for generating VSEs. On the other hand, the char-
acteristics of stepwise selection (i.e., high variability, often trapped into a local
solution and etc.) make it appropriate to behave as the base learner to build a
VSE. To make full use of the information included in its output, we propose a
novel bagging ensemble approach to implement variable ranking and selection
via defining a mixed importance measure for each variable.

To produce a series of slightly different importance measures for each can-
didate variable, we first draw some bootstrap samples from the given data set.
Subsequently, stepwise search algorithm is applied to each sample. On the basis
of the results acquired from a bootstrap sample, we can find out whether one
variable is selected or not. If a variable occurs in the final model, the order that
it enters the model can also be obtained. According to this information and the
improvement of model fitting resulted from its inclusion, we assign a weight to
each variable in order to reflect its importance to the response variable. In the
meantime, the weights associated with all the variables are normalized so that
their sum is equal to 1. Finally, the importance measure of each variable is aver-
aged across the bootstrap trials. The variables can then be ranked in the light of
this averaged importance measure. If the purpose is just to analyze the relative
importance of the exploratory variables on the response, the ranked results can
meet the requirements and the algorithm can stop here. Otherwise, a threshold-
ing rule or some other technique (such as making a scree plot and looking for an
elbow) needs to be adopted so that important variables for interpretation can
be identified. The main steps of utilizing BSSW to achieve variable ranking and
selection are listed in Fig. 1.

In step (c) in the proposed algorithm, the main reason why we allocate a weight
as defined in (2) to each variable is explained as follows. Notice that after executing
stepwise search on a bootstrap sample according to a certain criterion, its output
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Fig. 1. The novel ensemble approach BSSW for variable ranking and selection.

also embodies the order that each variable is selected into the model except for the
chosen variables and their coefficient estimation. The earlier one variable is chosen,
the bigger influence it has on the response. On the other hand, the inclusion of each
variable will lead to some improvement of the fitted model. Generally speaking,
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the larger the improvement of one variable is, the more important it is. Thus, we
combine these two terms to assign a mixed importance measure as defined in (2)
to each variable. In the formula (2), the earlier a variable j is selected, the larger
the value of rank(j) is. When computing this term in one experiment, we let the
first selected variable receive value p, the second one receive value p − 1, · · · and
the last one have value 1. As for improve(j), it can be calculated as the decrement
of AIC (or BIC) value after adding a new variable into the model.

4 Experimental Study

In this section, we will carry out experiments with some simulated data to
investigate the performance of the proposed method BSSW. Meanwhile, BSSW
will be also compared with some other variable selection techniques includ-
ing single-path genetic algorithm (SGA) [14], parallel genetic algorithm (PGA)
[14], traditional stepwise search algorithm (Stepwise) [8], bagged stepwise search
(BSS) [22].

4.1 Simulation 1

Similar to the simulated data used in [14], in this experiment we randomly
generated a data set consisting of n = 40 observations and p = 20 variables. The
variables are generated from normal distributions and the model is

y = x5 + 2x10 + 3x15 + ε, ε ∼ N(0, σ2I), (5)

where ε is an error term. Obviously, only variables 5, 10 and 15 have actual
influence on the response y. Regarding the mean and covariance for the variables,
we considered the following 5 variations:

Variation 0: x1,x2, · · · ,x20 ∼ N(0, I);
Variation 1: x1,x2, · · · ,x19 ∼ N(0, I), x20 = x5 + 0.25z, z ∼ N(0, I);
Variation 2: x1,x2, · · · ,x19 ∼ N(0, I), x20 = x10 + 0.25z, z ∼ N(0, I);
Variation 3: x1,x2, · · · ,x19 ∼ N(0, I), x20 = x15 + 0.25z, z ∼ N(0, I);
Variation 4: xj = z + εj , j = 1, 2, · · · , 20, εj ∼ N(0, I), z ∼ N(0, I).

Table 1 lists the value of σ and the correlation structure used for the above
5 variations. Notice that variation 0 is the easiest problem since all the vari-
ables are independent. In variations 1–3, x20 is highly correlated with one of
the three useful variables. Through these three variations, we can investigate
the behavior of BSSW when the problem is highly collinear. In variation 4, high
pairwise correlations are introduced among all the variables. For each variation,
we repeated the simulation for 100 times. For a method M, both the “soft” and
“hard” metrics utilized in [14] were adopted to assess its performance. Interested
readers can consult [14] for the detailed explanation and calculation of these two
metrics. In current context, the “hard” metric assesses how well M performs to
select significant variables whereas the “soft” metric evaluates its performance
to rank the variables according to their importance.
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Table 1. The σ value and correlation structure for the 5 variations.

Scenario σ Correlation stucture

Variation 0 1 ρ(xj ,xk) = 0, ∀j �= k

Variation 1 1 ρ(xj ,xk) ≈ 0.97 for j = 5 and k = 20

Variation 2 1 ρ(xj ,xk) ≈ 0.97 for j = 10 and k = 20

Variation 3 1 ρ(xj ,xk) ≈ 0.97 for j = 15 and k = 20

Variation 4 2 ρ(xj ,xk) ≈ 0.50, for all j �= k

In this experiment, the ensemble size B was taken to be 25. With regard to
PGA, another parameter N , that is, the number of generations for each SGA to
evolve, need to be specified beforehand. In our experiment, the strategy proposed
in [14] was used. In particular, we first ran SGA for 10 times using different
initial populations and found that SGA reaches convergence by evolving about
20 generations on average. Hence, the parameter N in PGA was set to be 10.
To make the comparison fair, the number of generations for SGA was taken to
be 250 so that its total amount of computation and that of PGA is almost the
same. The stepwise selection was realized with the “Stats” package of Matlab.
Moreover, AIC and BIC criteria were both utilized to perform variable selection
for all the studied methods. Because there is little difference between the results
obtained with them, only those calculated with BIC are reported. Table 2 lists
the hard and soft metric values of various methods for each variation.

The results in Table 2 leads to the following conclusions. First, SGA is hope-
less to identify the correct set of variables no matter whether hard or soft metric is
considered. Second, the ensemble approaches greatly enhance the performance of
traditional selection methods. For instance, stepwise selection method performs
badly to identify the right model. However, BSS and BSSW behaves quite well to
select the truly important variables. The situation is similar when comparing SGA
with PGA. In addition, the advantage of BSSW over BSS indicates that assigning

Table 2. The performance of various methods measured with hard and soft metrics
for 5 variations.

Type of metric Method Variation 0 Variation 1 Variation 2 Variation 3 Variation 4

Hard SGA 0.27 0.14 0.23 0.29 0.20

PGA 0.86 0.06 0.66 0.91 0.37

BSSW 0.93 0.37 0.68 0.82 0.28

BSS 0.76 0.32 0.54 0.78 0.44

Stepwise 0.00 0.00 0.00 0.00 0.00

Soft SGA 0.59 0.35 0.63 0.67 0.60

PGA 1.00 0.53 0.90 0.99 0.71

BSSW 0.99 0.67 0.89 0.98 0.68

BSS 0.98 0.57 0.84 0.96 0.65

Stepwise 0.99 0.71 0.90 0.97 0.73
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a mixed importance measure to each variable works better than only considering
whether they occur in the final model. Thirdly, BSSW is observed to behave best
for variations 0–2. For the other two variations, it is competitive with the best
method. Here, it’s noteworthy that variation 1 is the hardest case for all meth-
ods. In that situation, x20 is made to be highly correlated with x5 which has the
smallest nonzero coefficient relative to the noise σ in the true model. However,
BSSW performs significantly better to detect the variables that actually affect the
response y. Therefore, BSSW can be a highly competitive variable selection tool
and it is relatively easy to use since it has only one parameter (namely, ensemble
size B) for users to specify. In contrast, PGA has another parameter N need to
be determined except for B.

It is worthwhile mentioning that another phenomenon emerges in Table 2.
One may find that the performance of Stepwise is worst among the considered
algorithms in terms of hard metric. However, it works satisfactorily in compar-
ison with that of VSEs when evaluating each algorithm with soft metric. This
shows that Stepwise can generally sort the variables in the order that is consistent
with their true importance. However, it cannot choose all the variables which has
actual effect on the response. Put in another way, stepwise selection often misses
some actually influential variables or falsely includes some spurious variables even
though it can accurately rank the variables in line with their relative importance
to the response variable. As for BSSW, it can not only rank the variables in the
correct order but also identify the right model. Finally, we would like to state that
the conclusion of Stepwise drawn here is obtained just on the currently consid-
ered data sets. With regard to its performance on the other regression problems,
it needs to be investigated further on a broad class of data sets.

4.2 Simulation 2

Here, we considered a widely used benchmark simulation [6,9,12,15,21]. There
are p = 8 variables and each one is generated from the standard normal
distribution. Furthermore, the pairwise correlation between two variables is
ρ(xi,xj) = 0.5|i−j| for all i �= j. The response y is generated by

y = 3x1 + 1.5x2 + 2x5 + σε, ε ∼ N(0, I). (6)

In this situation, only three variables (i.e., variables 1, 2 and 5) are truly impor-
tant and the rest five ones are unimportant. This benchmark was first used in
[12], but ever since it has been employed by many researchers to test the behavior
of a variable selection technique.

First, we considered the case n = 40 and σ = 3. Then, we reduced σ to 1
and increased the sample size to 60. Under each situation, the experiment was
repeated for 100 times for each method. As for the parametric setup, it was
similar to that used in Simulation 1. The number of evolving generations for
SGA was taken to be 250. For the procedures to construct a VSE, the ensemble
size B was set to be 25. In PGA, each SGA was evolved for only 10 generations so
that it has not reach convergence. In this way, the diversity among the ensemble
members can be ensured.
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Table 3. The performance of each method for the widely used benchmark simulation.

Method Average number of zero coefficients Average
model size

Average
PE ratio

Average
AUC

xj ∈ IM group
(j = 1, 2, 5)

xj ∈ UIM group
(j = 3, 4, 6, 7, 8)

Oracle 0.00 5.00 3.00 1.00 1.00

n = 40, σ = 3

SGA 2.06 3.42 2.52 2.3894 0.4987

PGA 0.90 4.91 2.19 1.3582 0.8400

BSSW 1.04 4.98 1.98 1.4132 0.8548

BSS 0.72 4.89 2.39 1.3123 0.8019

n = 60, σ = 1

SGA 2.27 3.42 2.31 14.4233 0.4623

PGA 0.50 4.97 2.53 1.9885 0.8625

BSSW 0.00 5.00 3.00 1.0769 0.9993

BSS 0.00 4.87 3.13 1.0907 0.9157

In order to evaluate the performance of each method, we recorded the aver-
age number of zero coefficients respectively for the important group (IM group,
j = 1, 2, 5) and unimportant variable group (UIM group, j = 3, 4, 6, 7, 8).
Notice that the first term (number of incorrect zeros) actually characterizes
the method’s under-fitting effect while the second one (number of incorrect
zeros) characterizes the method’s capability in producing sparse models. We
also reported the average model size, namely, the mean size of the selected model
over 100 runs of experiments. The corresponding results for all the methods are
summarized in Table 3. The method “Oracle” refers to fitting the model while
pretending that we knew in advance the true model contains only the variables
x1, x2 and x5. In the meantime, we utilized the variables selected by each method
to build a linear regression model. Then, the corresponding predictor error was
computed using a test set whose size is identical to that of the training set. Here,
the average ratio of the prediction error of each method to that of the true model
is also displayed (see the penultimate column of Table 3). Furthermore, the AUC
measure utilized in [2] was also taken into account. Here, it should be cautious
to understand the results of the average model size. Although the close relation-
ship between its value and the oracle value indicates the good performance of an
algorithm, the variables having nonzero coefficients do not necessarily coincide
with the underlying important ones.

From the results reported in Table 3, the following conclusions can be yielded.
When the noisy level of the training data is low, BSSW performs best in terms
of each evaluation measure. In particular, the average AUC value for BSSW is
much higher than the other methods in each case. Among the compared methods,
the performance of SGA is the worst since it more often omits some important
variables or selects some additional unimportant variables. Although PGA and
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Table 4. Variable selection frequencies of different methods for the widely used bench-
mark simulation.

Method xj ∈ IM group (j = 1, 2, 5) xj ∈ UIM group (j = 3, 4, 6, 7, 8)

Minimum Median Maximum Minimum Median Maximum

Oracle 100 100 100 0 0 0

n = 50, σ = 1

SGA 28 33 38 24 27 39

PGA 58 98 100 0 0 0

BSSW 100 100 100 0 0 0

BSS 100 100 100 1 2 4

n = 50, σ = 3

SGA 26 32 32 25 30 41

PGA 40 82 96 0 0 1

BSSW 43 70 96 0 0 1

BSS 63 90 100 0 2 4

n = 50, σ = 6

SGA 23 26 36 27 31 35

PGA 34 37 76 1 4 6

BSSW 30 43 76 1 4 8

BSS 43 45 80 3 5 9

BSSW perform comparably to exclude unimportant variables, PGA may falsely
categorize some truly influential variables into uninfluential ones since the aver-
age number of zero coefficients for the variables x1, x2 and x5 is large than zero.
In comparison with BSS, BSSW works better to identify the variables which
in fact have no impact on the response. When the sample size changes to be
smaller and the training data contain more noise, the behavior of each method
decreases to some degree. Under this situation, BSSW is observed to have the
competitive performance with PGA while both of them work better than SGA
and BSS. From the results of the average ratios of prediction error, it can be
seen that the performance of PGA, BSSW and BSS is comparable, whereas SGA
performs very badly.

As a second part of this experiment, we recorded the variable selection
frequencies of different methods for several cases. The detailed results are
reported in Table 4. Here, we list the minimum, median and maximum number
of times out of 100 simulations among all important or unimportant variables
are selected, respectively. To facilitate the understanding of these statistics, we
will briefly describe how these frequencies are computed. It should be noticed
that we repeated the experiment for 100 times for each combination of n and σ.
In each replication, the frequency associated with a variable is increased by 1 if
this variable is considered to be important by an algorithm. Evidently, the fre-
quency for a variable which is more often selected will approximate 100. Because
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the experimental data are artificially generated, we know in advance that the
indices of truly important and unimportant variables. For important variable
group (i.e., j = 1, 2, 5), we can thus compute the minimal, median and maxi-
mum number of times that these variables are identified to be important. For
unimportant variable group (i.e., j = 3, 4, 6, 7, 8), the similar calculation can be
executed. Ideally, the frequencies for important variables should have high val-
ues close to 100 whereas the frequencies for unimportant ones should have low
values close to 0.

From Table 4, we can draw some conclusions analogous to those previously
obtained. Specifically, BSSW and PGA are comparative to accurately select the
actually influential variable while the ability of PGA to exclude unimportant
variables is a little weaker. SGA is indeed not a good technique to perform vari-
able selection since the frequencies that it selects the important and unimportant
variables are far away from those corresponding to Oracle. As for BSS, it seems
that it performs comparatively with BSSW and PGA to identify the important
variables. However, it may falsely consider some unimportant variables as impor-
tant ones. Hence, this simulation study provides strong empirical evidence that
the proposed method BSSW can be a highly competitive variable selection tool,
especially when the noisy level of the training data is low.

5 Conclusions

In this paper, we developed a novel method called BSSW to construct a VSE to
obtain higher selection accuracy. The main idea of BSSW is to draw some boot-
strap samples and apply stepwise selection algorithm to each of them. Based on
the order that one variable is selected into the final model as well as its contri-
bution to model fitting, we assign a weight to every variable to reflect its relative
importance to the response variable. Eventually, the average importance measure
for each variable is obtained by averaging the results over bootstrapping trials
and the variables are then ordered. If the goal is to detect significant variables for
interpretation, a further step such as thresholding or some other technique can
be performed. The conducted experiments demonstrate that BSSW performs
better than some other variable selection techniques, especially in excluding
unimportant variables. Additionally, it is easy to use because users only need to
specify one parameter (namely, ensemble size B) in advance. Thus, BSSW can
behave as an effective tool to implement variable ranking and selection in linear
regression models. In the future, it is interesting to extend BSSW to generalized
linear models and other more complex models.
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Milan, Italy
{valentini,frasca,re}@di.unimi.it

3 Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
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Abstract. Structured taxonomies characterize several real world prob-
lems, ranging from text categorization, to video annotation and protein
function prediction. In this context “flat” learning methods may intro-
duce inconsistent predictions, while structured output-aware learning
methods can improve the accuracy of the predictions by exploiting the
hierarchical relationships between classes. We propose a novel hierarchi-
cal ensemble method able to provide theoretically guaranteed consistent
predictions for any Directed Acyclic Graph (DAG)-structured taxonomy,
and consequently also for any taxonomy structured according to a tree.
Results with a complex real-world DAG-structured taxonomy involving
about one thousand classes and twenty thousand of examples show that
the proposed hierarchical ensemble approach significantly improves flat
methods, especially in terms of precision/recall curves.

Keywords: Hierarchical ensemble classification methods · DAG-
structured prediction · Multi-label classification

1 Introduction

Structured output classification consists in the prediction of multiple labels that
are hierarchically correlated according to a pre-defined data structure, e.g. a tree
or a directed acyclic graph (DAG). In this context “flat” classification methods,
that predict labels independently of each other, can in principle be applied,
but may introduce significant inconsistencies in the classification, due to the
violation of the true path rule (also known as the annotation propagation rule)
that governs the hierarchical relationships between classes [1,2]. According to
this rule, a positive prediction for a class and a negative prediction for its parent
c© Springer International Publishing Switzerland 2015
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classes are not allowed, since this violates the inclusion relationship between
them. Therefore, a positive prediction for a class implies positive predictions
for all of the ancestors of the class, and a negative prediction implies negative
predictions for all of the class’s descendants to avoid violating the true path rule.
Moreover, flat methods do not take into account the hierarchical relationships
between classes, thus loosing important a priori knowledge about the constraints
of the hierarchical labeling.

To properly handle these problems, several structured output-aware learning
methods have been proposed to exploit the a priori known relationships between
labels. A first general approach is based on the kernelization of both the input
and the output space, through the introduction of a joint kernel that computes
the “compatibility” of a given input-output pair [4], or through other related
techniques based on large margin methods for structured and interdependent
output variables [3,5]. A recent work showed also that structured output meth-
ods can be enhanced by combining them through relatively simple ensemble
techniques [6].

A second general approach is based on ensemble methods able to exploit the
hierarchical relationships between classes [7]. More precisely, hierarchical ensem-
ble methods, in their more general form, adopt a two-step learning strategy. In
the first step each base learner separately or interacting with connected base
learners learns a specific class. In most cases this yields a set of independent clas-
sification problems, where each base learning machine is trained to learn a specific
class, independently of the other base learners. In the second step the predictions
provided by the trained classifiers are combined by considering the hierarchical
relationships between the base classifiers modeled according to the hierarchy of
the classes.

Most of the proposed hierarchical ensemble methods focused on tree-
structured taxonomies [7–10] and the ones specific for DAGs [1,11] showed that
it is difficult to improve upon flat predictions.

We propose a novel ensemble learning strategy that exploits the DAG struc-
ture of the taxonomy through a double flow of information between the base
learners associated to each class/node of the hierarchy: after separately learning
each class with a specific classifier, predictions are first combined from bottom
to top to enhance sensitivity, and successively from top to bottom to improve
the precision of the predictions.

We provide theoretical guarantees that the proposed True Path Rule (TPR-
DAG) hierarchical ensembles obey the true path rule in DAGs. Moreover we
experimentally show that our approach can consistently improve flat predictions
in a complex task involving human gene - phenotype associations, where classes
are DAG-structured according to the Human Phenotype Ontology (HPO) [12].

2 True Path Rule (TPR-DAG) Hierarchical Ensembles
for DAG Structured Taxonomies

TPR-DAG requires a first phase in which any class is learned by a dedicated
base learner: in principle any base learner can be used to score each example.
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After this learning phase, the second phase modifies these “flat” predictions to
provide the TPR ensemble predictions. This second phase is divided into two
steps:

1. Bottom-up step. For each example the DAG is visited from bottom to top to
propagate “positive” predictions across the hierarchy. The aim of this step is
to enhance the sensitivity of the predictions.

2. Top-down step. Starting from the root, and traversing the DAG toward the
bottom, “negative predictions” are propagated toward the children. The aim
of this step is to enhance the precision of the predictions.

This method builds on the previously proposed TPR ensemble method that can
be safely applied only to tree-structured taxonomies [9,13]. The main difference
with respect to the original tree-version consists in the fact that the per-level
traversal is now performed through two completely distinct steps: a bottom-up
per level visit of the graph followed by a top-down visit, while in the original tree-
version the per-level traversal is performed in an “interleaved” fashion (that is
the bottom-up and top-down traversal are alternated at each level [9]). Moreover
the level of a class is defined in terms of its maximum distance from the root,
since in a DAG we may have multiple paths from each node to the root. These
two items (bottom-up and top-down separation and levels defined in terms of
the maximum distance from the root) assure the true path rule consistency of
the predictions, i.e. the requirement that the score of a parent or an ancestor
node must be larger or equal than that of its children or descendants.

In the next subsections, after introducing some basic notations and defini-
tions, we describe in detail the bottom-up and top-down steps of the TPR-DAG
algorithm, as well its consistency properties.

2.1 Basic Notation and Definitions

Let G =< V,E > denote a Directed Acyclic Graph (DAG) with vertices V =
{1, 2, . . . , |V |} and edges e = (i, j) ∈ E, i, j ∈ V , where nodes i ∈ V represent
classes of the taxonomy and a direct edge (i, j) ∈ E the hierarchical relationship
between i and j: i is the parent class and j is the child class. The set of children of
a node i is denoted child(i), the set of its parents par(i), the set of its ancestors
anc(i) and the set of its descendants desc(i).

A “flat continuous” classifier fi : X → [0, 1] associated with each node i ∈ V
provides scores ŷi ∈ [0, 1] that can be interpreted as the likelihood or probability
for a given example x ∈ X of belonging to a given class i. The set of |V | flat
classifiers provides a multi-label score ŷ ∈ [0, 1]|V |:

ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > (1)

We say that a multi-label scoring y is consistent if it obeys the true path rule:

y is consistent ⇐⇒ ∀i ∈ V, j ∈ par(i) ⇒ yj ≥ yi (2)



18 P.N. Robinson et al.

2.2 Bottom-Up Step

The basic TPR-DAG adopts a per-level bottom-up traversal of the DAG, starting
from the nodes most distant (in the sense of the maximum distance) from the
root. More precisely, if p(r, i) represents a path from the root node r and a node
i ∈ V , l (p(r, i)) the length of a path p, L = {0, 1, . . . , ξ} the set of observed
levels, with ξ the maximum node level, then ψ : V −→ L is a level function
which assigns each node i ∈ V to its level ψ(i):

ψ(i) = max
p

l (p(r, i)) (3)

At each level the flat predictions ŷi are changed to ỹi taking into account the
“positive” predictions of its children:

ỹi :=
1

1 + |φi| (ŷi +
∑

j∈φi

ỹj) (4)

where φi are the “positive” children of i. The main goal of the bottom-up step
consists in improving the sensitivity (recall) of the predictions. This is accom-
plished by allowing only the “positive” children (that is the nodes for which a
relatively large score has been achieved) to transmit their scores to their par-
ents. In this context a key issue is the selection of the positive children φi, and
different strategies to select them can be applied:
1. Threshold Free (TPR-TF) strategy. A simple solution consists in choosing

those children that can increment the score of the node i (that is positive
nodes are those that achieve a higher score than that of their parent):

φi := {j ∈ child(i)|ỹj > ŷi} (5)

2. Thresholded (TPR-T) strategy.
In this case we set a threshold to select the positive children. We can a priori
select a given threshold t̄ ∀i ∈ V , or we can select the threshold to maximize
some performance metric estimated on the available data, e.g. the F-score or
the AUC. The corresponding set of positives ∀i ∈ V is:

φi := {j ∈ child(i)|ỹj > t̄} (6)

For instance t̄ can be selected from a set of t ∈ (0, 1) through cross-validation
techniques.

Moreover we can also balance the weight w ∈ [0, 1] between the prediction of
the classifier associated with the node i and that of its “positive” children φi,
through their convex combination. In this way, analogously to the “tree” version
of the weighted TPR ensemble method [14] we can obtain the “weighted” version
TPR-W of the TPR-DAG algorithm:

ỹi := wŷi +
(1 − w)

|φi|
∑

j∈φi

ỹj (7)

Independently of the variants of the basic TPR-DAG ensemble method, pre-
dictions are bottom-up propagated, thus moving positive predictions towards
the parents and recursively towards the ancestors of each node.
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2.3 Top-Down Step

The successive top-down step modifies the “bottom-up” scores computed in the
previous bottom-up step (Sect. 2.2) by running in the opposite direction from
the top to the bottom of the DAG. The main goal of this step consists in prop-
agating “negative” predictions towards the children and recursively toward the
descendants of each node, in order to provide consistent and more precise pre-
dictions. It adopts this simple rule by per-level visiting the nodes from top to
bottom:

ȳi :=

⎧
⎨

⎩

ỹi if i ∈ root(G)
minj∈par(i) ȳj if ỹi > minj∈par(i) ȳj

ỹi otherwise
(8)

The ỹi scores are those computed in the bottom-up step, while ȳi are the final
scores computer by the TPR ensemble.

The top-down step assures the hierarchical consistency of the predictions of
the TPR, as stated by the following theorem:

Theorem 1. Given a DAG G =< V,E >, a level function ψ that assigns to
each node its maximum path length from the root, a set of predictions ỹ =<
ỹ1, ỹ2, . . . , ỹ|V | > generated by the bottom-up step of the TPR algorithm for each
class associated with its corresponding node i ∈ {1, . . . , |V |}, the top-down step
of the TPR algorithm assures that for the set of ensemble predictions ȳ =<
ȳ1, ȳ2, . . . , ȳ|V | > the following property holds:

∀i ∈ V, j ∈ par(i) ⇒ ȳj ≥ ȳi

The proof can be obtained by applying (8) to each node according to a per-level
visit of the DAG, where levels are defined in terms of the maximum path length
from the root (3), and by observing that each node is visited only once by the
top-down step of the algorithm (details are omitted for lack of space).

From Theorem 1 it is easy to prove that the consistency of the predictions
holds for all the ancestors of a given node i ∈ V :

Corollary 1. Given a DAG G =< V,E >, the level function ψ, a set of flat
predictions ŷ =< ŷ1, ŷ2, . . . , ŷ|V | > for each class associated with each node i ∈
{1, . . . , |V |}, the TPR algorithm assures that for the set of ensemble predictions
ȳ =< ȳ1, ȳ2, . . . , ȳ|V | > the following property holds:

∀i ∈ V, j ∈ anc(i) ⇒ ȳj ≥ ȳi

The proof can be easily obtained from Theorem 1 by “reductio ad absurdum”.
The function ψ that computes the maximum distance of each node from

the root (Eq. 3) can be implemented through a straightforward variant of the
classical Bellman-Ford algorithm [15]: by recalling that it finds the shortest paths
from a source node to all the other nodes of a weighted digraph, it is sufficient
to invert the sign of each edge weight to obtain the maximum distance (longest
path) from the root. The complexity of the Bellman-Ford algorithm is cubic
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with respect the number of vertices, but recalling that the function ψ must
be computed only once for a given hierarchical task, this complexity could be
acceptable for most low and medium-sized DAGs. For big DAGs a variant of
the classical topological sort algorithm for graphs can be applied instead: by
exploiting the topological ordering of the nodes, the maximum distance from
the root can be easily computed with time complexity O(|V | + |E|), that is in
quadratic time for dense graph and in linear time for sparse DAGs with respect
to the number of vertices.

2.4 The Overall TPR-DAG Algorithm

Figure 1 shows the high-level pseudo-code of the TPR-DAG algorithm. The first
four rows compute the maximum distance of each node from the root, using
the Bellman-Ford algorithm. Note that the with a certain abuse of notation
E′ := {e′|e ∈ E, e′ = −e} indicates a new set E′ of edges having weights
with opposite sign with respect to the original set of edges E. The block B
(rows 5–12) performs a bottom-up visit of the graph and updates the predictions
ỹi of the TPR ensemble according to Eq. 4 and one of the positive selection
strategies described in Sect. 2.2. Note that this step propagates the “positive”
predictions from bottom to top of the DAG, but does not assure their true
path rule consistency. This is accomplished by the third block (rows 13–24)
that simply executes a hierarchical top-down step, according to the procedures
described in Sect. 2.3.

It is easy to verify that complexity of the TPR algorithm is O(|V |) for both
the B and C blocks when the DAG is sparse, while the complexity of block
A depends on the selected algorithm: by choosing the variant of the Bellman-
Ford algorithm the complexity is O(|V |3), while by applying the variant of the
topological sort algorithm the complexity is O(|V |+|E|). Note that block A must
be executed only once for all the examples, while blocks B and C must be iterated
for each example whose DAG-structured multi-label should be predicted.

3 Experimental Set-Up

We applied the proposed hierarchical ensemble methods to the prediction of
Human Phenotype Ontology (HPO) terms associated with Mendelian disease
genes [16]. The HPO aims at providing a standardized categorization of the
abnormalities associated with human diseases and the semantic relationships
between them. More precisely, HPO classes (terms) describe human phenotypic
abnormalities and are structured according to a DAG, where children terms
can be interpreted as subclasses of their parents. The experiments presented in
this manuscript are based on the September 2013 HPO release (10, 099 terms
and 13, 382 between-term relationships). We downloaded from the same HPO
release all the available annotations (gene-term associations), resulting in set of
2759 genes having at least 1 annotation. In our experiments we included a set of
20257 human genes, and hence more than 17000 genes had no HPO annotations.
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Fig. 1. Hierarchical true path rule algorithm for DAGs (TPR-DAG)

After pruning HPO terms having less than 50 annotations we obtained a final
set of 911 HPO terms and 1, 095 between-term relationships that were used in
our experiments.

A collection of feature vectors containing functional and biomolecular signa-
tures describing the products of 20, 257 human genes was constructed starting
from different publicly available biological databases (Table 1). Then the binary
feature vectors were used to construct n = 8 gene networks (one for each data
source listed in Table 1) by computing the Jaccard similarity between each pos-
sible pair of feature vectors associated to the genes.
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Table 1. Data sources used in the experiments

Database Content Web site

InterPro functional family, domains, functional

sites

www.ebi.ac.uk/interpro

Pfam functional family, domains pfam.xfam.org

PRINTS protein fingerprints, conserved motifs www.bioinf.manchester.ac.uk

PROSITE domains, families, functional sites prosite.expasy.org

SMART modular architectures smart.embl-heidelberg.de

SUPFAM structural and functional annotation supfam.cs.bris.ac.uk

Gene Ontology biological processes, cellular components

and molecular functions

geneontology.org

OMIM genetic diseases www.omim.org

FI net (Wu et al.) integrated network with expert-curated

and non-curated sources of

information

HumanNet (Lee et al.) integrated network with multi-species

data

We then combined the n gene networks by simply averaging the edge weights
wd

ij of each network d ∈ {1, n} [17]:

w̄ij =
1
n

n∑

d=1

wd
ij (9)

In order to construct a more informative gene network we performed the inte-
gration by adding two more functional gene networks (FI and HumanNet) taken
from the literature [18,19], thus obtaining a final integration of 10 biomolecular
networks (Table 1).

To process and provide flat scores for the considered 911 HPO terms using
the above networked data we applied two semi-supervised methods: (a) the clas-
sical semi-supervised label propagation method (LP) based on Gaussian Fields
and Harmonic Functions [20]; (b) the kernelized score functions (RANKS) semi-
supervised network-based learning method recently successfully applied to both
gene disease prioritization [17], and drug repositioning [21]. RANKS implements
both local and global learning strategies by embedding in a “local” score func-
tion a graph kernel that takes into account the “global” topology of the network.
In our experiments we applied RANKS with the average score function and the
1-step random walk kernel [22].

4 Results

We compared the generalization performance of Flat and TPR ensemble methods
by using 5-fold cross-validation techniques, and considering separately the two
different base learners (RANKS and LP, Sect. 3). We also compared the results
of TPR ensemble methods with three heuristic hierarchical ensemble methods

www.ebi.ac.uk/interpro
www.bioinf.manchester.ac.uk
www.omim.org
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(i.e. And, Or and Max), originally proposed for the hierarchical prediction of
Gene Ontology terms [1]. It is worth noting that in the same work [1] isotonic
regression-based hierarchical methods achieved better results than the heuristic
ensemble algorithms used in our experiments, but we did non use them due
to their computational complexity, considering the relatively large size of the
taxonomy and of the input data considered here.

4.1 Experimental Results Using Kernelized Score Functions
(RANKS) as Base Learner

By looking at the single 911 HPO terms (classes), in terms of AUC the TPR-
TF ensemble achieves better results than Flat for 830 terms and worse results
for 81 HPO terms. Table 2 shows that the average AUC across classes is only
slightly larger for TPR-TF ensembles with respect to Flat, but the difference
is statistically significant according to the Wilcoxon rank sum test. Also with
respect to three heuristic hierarchical ensemble methods (And, Or, Max) TPR-
TF achieve equal or significantly better results. More precisely the difference is
statistically significant with respect to Or and Max, while no significant difference
is registered with the And method.

Better results are obtained by the TPR-TF method in terms of the precision
at fixed recall rates. Indeed the difference is statistically significant with respect
to Flat and the three heuristic hierarchical ensemble methods, both at 10, 20
and 40 % recall (Table 2). These results are confirmed also by the precision-recall
curves (Fig. 2): the TPR-TF solid line marked with circles is consistently above
all the other curves, showing that TPR-TF achieves on the average better results
than all the other methods compared.

Table 2. Average AUC, and precision at 10, 20 and 40 % recall (P10R, P20R and
P40R), using kernelized score functions as base learner. Flat stands for flat ensemble
method, TPR-TF for True Path Rule Threshold-Free, Max for Hierarchical Maximum,
And for Hierarchical And and Or for Hierarchical Or ensemble methods. Methods that
are significantly better than all the others according to the Wilcoxon rank sum test
(α = 10−5) are highlighted in bold.

Flat TPR-TF Max And Or

AUC 0.8213 0.8269 0.8241 0.8274 0.8241

P10R 0.2969 0.3427 0.2908 0.2815 0.2994

P20R 0.2043 0.2333 0.2025 0.1903 0.2081

P40R 0.1054 0.1225 0.1071 0.0993 0.1095

On the contrary, by comparing the different variants of the proposed TPR
hierarchical ensemble methods, no statistically significant differences between
them were identified (data not shown).
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Fig. 2. Precision at different levels of recall, averaged across HPO terms (base learner:
kernelized score functions)

4.2 Experimental Results Using Label Propagation (LP) as Base
Learner

We repeated the same experiments using this time the label propagation (LP)
method to implement the flat base learners. Also with this base learner we
achieved significantly better results with TPR ensemble methods with respect
to the Flat approach, both in terms of the average AUC and average precision at
fixed recall rates. Especially considering precision at fixed recall rates the TPR
ensemble achieved significantly better results than those obtained with Flat and
the three heuristic hierarchical ensemble methods, according to the Wilcoxon
rank sum test (Table 3).

It is worth noting that the absolute average AUC and precision values
obtained with the LP base learner (Table 3) are significantly lower than those
achieved with RANKS (Table 2), showing that TPR results, as well as those
obtained by the other heuristic ensemble methods depend on the choice of the
flat base learner. Nevertheless, TPR ensemble methods with LP base learners
are able to achieve a relative precision improvement with respect to the Flat
approach in the range between 15 and 40%, at least for recall rates between 0.1
and 0.4 (Table 3). Note that this is not the case for the three heuristic hierarchi-
cal ensemble methods (And, Or, Max), confirming previous results obtained in
the context of gene function prediction problems [1].
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Table 3. Average AUC, and precision at 10, 20 and 40 % recall (P10R, P20R and
P40R), using label propagation as base learner. TPR-T stands for True Path Rule
ensembles with Threshold. Methods that are significantly better than all the others
according to the Wilcoxon rank sum test (α = 10−5) are highlighted in bold.

Flat TPR-T Max And Or

AUC 0.7883 0.7967 0.7869 0.7974 0.7923

P10R 0.0673 0.0936 0.0653 0.0704 0.0730

P20R 0.0568 0.0709 0.0549 0.0564 0.0606

P40R 0.0439 0.0503 0.0426 0.0444 0.0462

5 Conclusions

Several real-world problems ranging from text classification to protein function
prediction are characterized by hierarchical multi-label classification tasks. In
this context flat methods may provide inconsistent predictions and more in gen-
eral are not able to exploit the hierarchical constraints between classes.

We theoretically guarantee that TPR-DAG ensembles provide predictions
that obey the true path rule in DAG-structured taxonomies, and we show in
a large experiment involving the DAG-structured Human Phenotype Ontology
that our proposed hierarchical ensembles consistently outperform flat methods,
independently of the base learner used.

We outline that the proposed hierarchical method is independent of the base
learner used, even if learners providing scores or probabilities of belonging to
a given class are better suited for the TPR-DAG ensembles. From this stand-
point TPR methods can be conceived as a flexible tool that can be applied to
any off-the-shelf flat method to improve its predictions for DAG-structured tax-
onomies. TPR-DAG can be also applied also to tree-structured taxonomies, since
obviously trees are DAGs.

This reseach could be extended by exploring other base learners, including
also supervised learners, and by comparing TPR with other hierarchical meth-
ods, including also structured output kernel methods. To test the effectiveness
of TPR-DAG ensembles in different application domains, the hierarchical clas-
sification of web documents and the protein function prediction problem could
be two significant real-world test-beds for future experiments.
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Abstract. Ensemble learning is a strong tool to strengthen weak clas-
sifiers. A large amount of diversity among those weak classifiers is a key
to accelerate the effectiveness. Therefore, many diversity measures on a
given training sample set have been proposed so far. However, they are
almost all based on the oracle output that is one if the class predicted by
the classifier is correct, zero otherwise. We point out such an oracle out-
put scheme is not appropriate for the problems of more than two classes,
and extend one of the most popular diversity measures, disagreement
measure, to multi-class cases. On the other hand, the concept of margin
has been recognized as an analytic tool to measure the generalization
performance of a given classifier. Therefore, we analyze when some crite-
ria for maximizing margins of an ensemble classifier over training samples
are maximized under the assumption that the average accuracy of the
base classifiers is constant. We also reveal the relationship between those
criteria and the extended disagreement measure. As a result, it turns out
that diversity is necessary not only over samples but also over predicted
classes, if we want to extract the highest potential of ensemble.

1 Introduction

In the classifier design, estimating the generalization error of a classifier from
training data is important. We consider in this paper the generalization error
in ensemble classifiers that are made by combining many base classifiers. The
beauty of ensemble by majority voting is that we can decrease the generaliza-
tion error as we like by adding independent classifiers of error less than 1/2.
However, it is difficult to obtain independent classifiers in practice. In particu-
lar, there must be a correlation between classifiers trained by the same train-
ing data. Therefore, increasing the number of base classifiers does not always
guarantee a better performance of the ensemble classifier. As an alternative of
independence, many studies have been trying to increase the diversity of base
classifiers, where the degree is measured by how differently these classifiers out-
put different answers on training data. However, these diversity measures have
been studied in the oracle output scheme [3] where the output of each base clas-
sifier is “correct” (1) or “wrong” (0). Unfortunately, as will be shown, such a
scheme is not appropriate in multi-class (the number of classes is three or more)
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 27–37, 2015.
DOI: 10.1007/978-3-319-20248-8 3
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problems. Therefore, we reconsider how to measure the diversity in multi-class
problems and investigate the relationship between a diversity measure and the
generalization error through “margin” defined also in multi-class setting.

2 Definition

Let a training sample set be {(x1, y1), . . . , (xN , yN )}, where xi is a sample point
in Rq and yi is the class label taking one value in K = {1, 2, . . . ,K}. Given L
base classifiers h1, . . . hL, let the output of jth classifier on sample xi be cji =
hj(xi) ∈ K. That is, if yi = cji then xi is correctly classified by hj .

In addition, let the ratio of the number of classifiers voting to class k on
sample xi be qik as

qi = (qik), qik � 1
L

L∑

j=1

�(cji = k),

where �(·) is the indicator function that takes one if the statement in the
parenthesis is true and zero otherwise. In histogram qi, by ti let us denote the
class other than yi taking the largest value, as

ti = max
k �=yi

qik. (1)

Then, as will be defined, the (training) margin mi is defined as mi = qiyi
− qiti .

Last, the ensemble hypothesis h is produced by majority voting of the L
classifiers and outputs yi (if qiyi

≥ qiti) or ti (if qiyi
< qiti). Thus, if qiyi

> qiti ,
equivalently, mi > 0, the ensemble classifier h correctly classifies xi because of
yi = h(xi).

Each base classifier hj has the (training) accuracy

pj =
1
N

N∑

i=1

�(hj(xi) = yi),

and the ensemble h has the average accuracy p = 1
L

∑
pj . It is easy to confirm

that p is also written as

p =
1
N

N∑

i=1

qiyi

⎛

⎝=
1
L

L∑

j=1

pj

⎞

⎠. (2)

On the other hand, h has its own (training) accuracy ph defined as

ph =
1
N

N∑

i=1

�(qiyi
> qiti).



Diversity Measures and Margin Criteria 29

In two-class cases, since the relation qiyi
> qiti means qiyi

> 1/2, we have

ph =
1
N

N∑

i=1

�(qiyi
>

1
2
). (3)

In the oracle output scheme, we have the same formula (3) by replacing qiyi

with the ratio of the number of correct outputs to the number L of the total out-
puts. As a rough explanation for the secret of ensemble, comparing (2) and (3), we
can say, if p > 1/2, implying almost all qiyi

> 1/2, then ph is close to one in (3).

3 Analysis of Advantage of Majority Votes

Here, we make a simple analysis for when the combined classifier of L base
classifiers works well. We consider a sample (x, y).

Let r = (r1, r2, . . . , rK) be the probabilities of a multinomial distribution
related to x and q = (q1, q2, . . . , qK) be the estimate from L independent sam-
ples, supposing the outputs of L independent base classifiers, generated according
to the multinominal distribution. Then, it is obvious that q converges to r in
probability by the law of large numbers, as L increases.

Now let us assume that the correct class is y = 1 without loss of gen-
erality. Then, the decision on the basis of this estimate q is correct if q1 =
max(q1, q2, . . . , qK). Our question is the condition, especially on r1, under which
this decision is also really correct , for a sufficiently large number of L.

In K = 2, it is clear that the answer is when r1 = max(r1, r2 = r1 − 1),
thus, the necessary and sufficient condition is r1 > 1/2. However, the necessary
condition becomes a little complex for K > 2. In principle, it is simple because
the necessary and sufficient condition is r1 = max(r1, r2, . . . , rK). As we can see
in Fig. 1 for K = 3, the region satisfying this condition occupies one-third of
the possible nonnegativite region (the shaded area). If r falls in the area, we can
expect the convergence to the correct decision with increasing base classifiers in
the sense that the probability P (q1 �= max(q1, q2, q3)) approaches to zero. Note
that if r1 > 1/2, then any r falls in this area regardless of the values of the other
probabilities. However, the actual necessary condition on r1 is r1 > 1/K. Then,
the next question is the probability of r falling in this area in the case of 1/K <
r1 < 1/2 (see line L in Fig. 1). The answer is illustrated in Fig. 2, assuming the
uniform distribution of (r2, r3, . . . , rK) conditioned r2 + r3 + · · · rK = 1 − r1.
When K = 3, it is easy to show that the probability is given by

P (r1 = max(r1, r2, r3)) =
3r1 − 1
1 − r1

(1/3 < r1 < 1/2).

It is noted that this probability becomes one for r1 = 1/2 and zero for r1 =
1/3. In another deterministic viewpoint, we can say that the range of r1 as the
necessary condition becomes larger as the remaining r2 and r3 approaches to a
same value: for example, r1 > 1/3 becomes the necessary and sufficient condition
if r2 = r3 = (1 − r1)/2.
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Fig. 1. Necessary condition for conver-
gence to the Bayes classifier in case of
multi-class cases (K = 3)

Fig. 2. Probability that r1 dominates
the others

As a result, this simple analysis says that the possibility of convergence to
the correct decision of a sample is strengthened by a higher value of r1 > 1/K
and by a higher level of the closeness of the remaining probabilities.

4 Related Works

Diversity of base classifiers is a practical measure of the effectiveness of ensemble.
For evaluating the diversity of the base classifiers, several measures have been
proposed so far [2,3]. In addition, some comparative studies [3] report that many
measures behave similarly in many experiments. The problem is that almost
all diversity measures are calculated in the oracle output scheme, that is, 0–1
outputs even for multi-class cases.

Recently, one of promising tools to measure the generalization performance
of a classifier is the margin. In addition, the margin of ensemble classifiers have
been studied [1,4]. They derived an upper bound of the generalization error in
terms of the margins.

As a meeting point of the two streams of studies, a study has been made on
the relationship between the margin and the measures of diversity in the context
of ensemble learning [5]. Unfortunately, there was not a sufficient amount of
correlation between them, but such a trial is still interesting. In this study, we
follow this study and extend the discussion made in the oracle output setting to
that in multi-class setting.

5 The Margin Analysis

5.1 Margin

As stated already, it is difficult to estimate the generalization error of a classifier
accurately from a finite set of training data. Nevertheless, some theoretical stud-
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ies have revealed the connection between the training error and the generaliza-
tion error, mostly by showing an upper bound of the generalizing error in terms
of the training error with some complexity measure (e.g. Vapnik-Chervonenkis
dimension [4]) of the family to which the classifier belongs.

Such anupper bound is also shown in terms ofmargin on training samples [1,4].
For example, Schapire et al. [4] showed that

Theorem 1 ([4], Theorem 6). Let D be a distribution over X × Y, and let S be
a sample of N examples chosen independently at random according to D. Assume
that the base-classifier space H is finite, and let δ > 0. Then with probability at
least 1 − δ over the random choice of the training set S, every function f ∈ C
satisfies the following bound for all θ > 0:

PD[margin(f, x, y) ≤ 0]
≤ PS [margin(f, x, y) ≤ θ]

+ O
(

1√
N

(
log(NK)log|H|

θ2
+ log(1/δ)

)1/2
)

, (4)

where margin(f, x, y) is given by f(x, y) − max
y′ �=y

f(x, y′) (see [4] for the detail).

Here PD and PS are the probabilities over distribution D and the empirical sam-
ple distribution, respectively. In addition C is the convex hull of base classifiers.
This theorem says that the larger the margins are in the training data, the less
the generalized error is.

According to Breiman [1] and notation (1), let us define the margin mi
1 of

sample xi with class label yi by

mi = qiyi
− qiti .

That is, the margin is the difference between the conditional probability of
the correct class and that of most likely but wrongly predicted class, given xi.
If mi > 0, then the prediction is correct.

In K = 2, that is, in two-class cases, mi = qiyi
− qiti = 2qiyi

− 1. Thus,
from (2),

p =
1
N

N∑

i=1

qiyi
=

1
N

N∑

i=1

mi + 1
2

=
1

2N

N∑

i=1

mi +
1
2
.

Hence, we have

N∑

i=1

mi = (2p − 1)N.

This means that the sum of margins is constant under a constant average
accuracy assumption of p and becomes positive only when p > 1/2. However,
this implication does not hold for K > 2, that is, constant p does not mean
constant sum of margins.
1 The margin in (4) is connected to this mi by margin(f, xi, yi) = qiyi − qiti = mi.
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5.2 Diversity and Margin

Some studies have shown that increasing of margins guarantees decreasing of the
generalization error such as (4). A study [5], furthermore, analyzed the relation-
ship between several diversity measures and the minimum margin m = min

i
mi,

expecting that increasing m derives decreasing the generalization error. If we
maximize the minimum margin m over training samples under the condition
of p = const and K = 2 in the oracle output scheme, that is, if we solve the
following problem

max
{mi}

min
j

mj , subject to
N∑

i=1

mi = const,

then the solution is given by mi = 2p − 1,∀i ∈ {1, 2, . . . , N}. In the other
words, the minimum margin is maximized if and only if every base classifier hj

classifies the training samples evenly. Note that this solution is obtained in the
oracle output scheme or two-class cases only.

5.3 Extension to Multi-class Cases

Let us extend this discussion to the problems of three or more classes. The
natural assumption is still a constant average accuracy p because p is the average
of individual performance pi’s. In the multi-class setting, this assumption does
not directly mean a constant sum of margins anymore, because

∑N
i=1 mi =∑N

i=1(qiyi
− qiti) =

∑
qiyi

− ∑
qiti = Np − ∑

qiti . That is, margin mi is related
to not only qiyi

but also qiti . Note that, even so, the benefit of larger margins
still holds.

Under p = const, or equivalently,
∑

qiyi
= const (from (2)), we examine the

best strategy to assign {qik}, or component-wisely {cji}, for a fixed N and L.
We consider three criteria of maximizing margins on the training data:

(1) m = min
i

mi → max,

(2)
∑N

i=1 mi → max, and

(3)
∑N

i=1 �(mi ≥ θ) → max, for some θ > 0.

First, we note that margin mi is independent from other mi′ (i′ �= i), cji′(i′ �= i)
and qi′k(i′ �= i). Therefore, it suffices to consider only cji’s to increase the value
of mi for fixed i.

It is important to notice that, for fixed qiyi
, we can maximize the value of

mi = qiyi
−qiti by minimizing the (first or second largest) value of hiti , regardless

of the value of qiyi
. This is achieved by making all the values of hik(k �= yi) be

equal. Thus, in every criteria (1)–(3), the best local strategy is to have

qik =
1 − qiyi

K − 1
, k = 1, 2, . . . ,K, k �= yi. (5)
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This also means qiti = (1 − qiyi
)/(K − 1), and thus,

mi =
Kqiyi

− 1
K − 1

. (6)

If we adopt this local strategy, p = const means
∑

mi = const again. We assume
hereafter that the sum of margins is constant with this local optimal strategy.

Returning to margin maximization, in Criterion (2), there is nothing to do
other than (5), because the value is constant under (5) and for a fixed p. We
may equalize mi to be mi =

∑
mi/N . Criterion (1) is maximized by the same

value of mi’s, that is,

mi =
Kp − 1
K − 1

, ∀ i. (7)

That is, the solution is the same as that shown in [5] for which the minimum
margin (1) is maximized in the oracle output scheme without condition (5).

The assignment maximizing Criterion (3) is quite different from the other
two. It is directly connected to the performance of h.

From (6), we have

mi ≥ θ ⇐⇒ qiyi
≥ 1 + (K − 1)θ

K
,

equivalently,

�(mi ≥ θ) =
{

1 (qiyi
≥ 1+(K−1)θ

K )
0 (otherwise) .

(8)

Therefore, if
∑

qiyi
= Np < N(1 + (K − 1)θ)/K, Criteria (3) cannot be

maximized by making all mi be equal unlike other two criteria. It is maximized
by having as many i’s satisfying qiyi

= (1 + (K − 1)θ)/K as possible and make
qiyi

= 0 for the remaining i’s. Note that the last criterion is directly related to
Theorem 1. Criteria (3) is the number of samples whose margin is greater than θ,
and thus it corresponds to the term PS [margin(f, x, y) ≤ θ] in Theorem 1.

Theorem 2 (Maximization of Several Margin Criteria). In K-class
(K > 2) problems and in the majority-voting ensemble of independent classi-
fiers with a constant average accuracy p, (1) the minimum margin (mini mi) is
maximized (a) when these classifiers vote evenly for every class other than the
correct class in a training sample and (b) when the ratio of correct votes is the
same over all the training samples, and (2) the average margin

(
1
N

∑N
i=1 mi

)
is

maximized by (a) only. On the contrary, (3) the number of margins larger than
a threshold θ > 0 is maximized

(∑N
i=1 �(mi ≥ θ)

)
(c) when some samples are

discarded in such a way that for these samples no vote is casted to their cor-
rect classes and instead the number of samples satisfying the condition with the
equality is increased.
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6 Diversity Measure and Margin

6.1 The Disagreement Measure

The disagreement measure is one of the measures of diversity [2]. According
to the way as Tang et al. [5] did, we extend the definition of disagreement
measure from two-class to multi-class cases. Here, we extend only “disagreement
measure,” but the other diversity measures [5] are easily extended in a similar
way.

First, we assume K = 2. In this two-class case, the disagreement measure of
two classifiers, hj and hl, is defined as

disj,l =
1
N

N∑

i=1

�(cji �= cli),

and the diversity of the whole set of classifiers is represented as the mean of
disj,l over all possible pairs, that is,

dis =
2

L(L − 1)

∑

j<l

disj,l. (9)

Since qiti = 1 − qiyi
in K = 2, (9) can be written as

dis =
2L

N(L − 1)

N∑

i=1

qiyi
(1 − qiyi

). (10)

We extend the disagreement measure from two-class case to multi-class case.
As shown in (10), the disagreement measure represents the number of pairs of
classifiers outputting different class labels, so it is naturally extended as

dis =
L

N(L − 1)

N∑

i=1

K∑

k=1

qik(1 − qik). (11)

It is easy to show that, under the condition of
∑N

i=1 qiyi
= Np, this extended

disagreement measure (11) is maximized by

qiyi
= p, qik =

1 − p

K − 1
(∀k �= yi), i = 1, 2, . . . , N.

In other words, it is maximized when qi is equal over all samples and the fre-
quencies qik of classes other than the correct class are all equal. It is obvious in
this case that mi = (Kp − 1)/(K − 1) for all i. This is the same as (7).

We note that such an equal distribution of probabilities maximizes the
entropy too. Therefore, as a new diversity measure, it is natural to consider
a generalized entropy, Rényi entropy, defined for r = (r1, r2, . . . , rK) by

Hα(r) =
1

1 − α
log

K∑

i=1

rα
i α ≥ 0, α �= 1. (12)
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The Rényi entropy is maximized to log K by the equal distribution of ri = 1/K, ∀i.
In addition, for Shannon entropy (α → 1), we can show

H(r1, r2, . . . , rK) = (1 − r1)H
(

r2
1 − r1

,
r3

1 − r1
, . . . ,

rK

1 − r1

)
+ H(r1, 1 − r1).

That is, given qiyi
= p, entropy H(qi1, qi2, . . . , qiK) is maximized by the equal

distribution of ∀k �= yi, qik = (1 − p)/(K − 1). Thus, taking the sum of the
entropy H(qi) over i = 1, 2, . . . , N , we can have a diversity measure. Moreover,
since x(1 − x) � −x log x, the Shannon entropy measure behaves almost the
same as the extended disagreement measure.

As another extreme case of Rényi entropy (α = ∞), if qiyi
= max

(qi1, qi2, . . . , qiK),

H∞(qi1, qi2, . . . , qiK) = − log max qi = − log qiyi
.

Thus, if the correct class always wins the majority voting, we see

N∑

i=1

qiyi
=

N∑

i=1

exp (−H∞(qi1, qi2, . . . , qiK)).

This measure is insensitive to the vote distribution, but sensitive to which gained
the largest number of votes in yi and ti, in other words, if mi is positive or not.
That is, this measure is most related to the accuracy of the ensemble classifier h.

Theorem 3 (Margin Maxmization and Disagreement Measure). In K-
class (K > 2) problems and in the majority-voting ensemble of independent
classifiers with a constant average accuracy p, the maximization of the (extended)
disagreement measure over the classifiers and Shannon entropy measure over
votes of the classifiers, are coincident with the maximization of (1) the minimum
margin (mini mi) and (2) the average margin

(
1
N

∑N
i=1 mi

)
.

7 Experiment

7.1 Relationship Between Margins, the Disagreement Measure
and Entropy

First, we investigated the correlation between several diversity measures and
three maximum margin criteria presented so far.

For given values of p, N, L, we made a result table for N samples and L
base classifiers as follows. We first generated the values of yi (i = 1, 2, . . . , N)
at random according to the uniform distribution over K = {1, 2, . . . ,K}, and
then assigned the value of cji at random and uniformity in such a way that
cji is identified with yi with probability p. We made T = 1000 tables of size
L × N and measured above statistics. In the first 500 tables, classes other than
the correct class were chosen at random with probability of (1 − p)/(K − 1),
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Fig. 3. Scatterplot matrix over four diversity measures in K = 5, p = 0.26, N =
1000, L = 100. From top, the disagreement measure in the oracle output, the dis-
agreement measure in multi-class, Shannon entropy, Rényi entropy (α = 10), three
maximum margin criteria (from 5th row, min

i
mi,
∑

mi and
∑
�(mi > 0)).

and in the second 500 tables, only K − 2 classes were chosen with probability
(1 − p)/(K − 2). In this setting, the value of Criterion (3) with θ = 0 can be
regarded as the accuracy of the ensemble classifier h.

From Fig. 3, we can see

1. As explained, even if the average accuracy p is less than 1/2, as long as
p > 1/K, the ensemble classifier h can have a higher accuracy ph (in this
example, ph � 0.53 for p = 0.26).

2. The extended multi-class disagreement measure has a larger positive corre-
lation with ph than the original oracle-based disagreement measure (0.38 vs.
0.12).

3. As explained, the extended disagreement measure is almost the same as the
Shannon entropy with correlation coefficient of 0.99.
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4. Rényi entropy with α = 10 is comparable to Shannon entropy.
5. The minimum margin is almost independent of ph.
6. Unfortunately, any diversity measure does not have a sufficient level of cor-

relation with ph.

8 Conclusion

We have investigated the relationship between a diversity measure and the mar-
gin in multi-class problems. Diversity measures are a popular tool to measure the
degree to which independent base classifiers of accuracy slightly larger than 1/2
are combined into a stronger ensemble classifier. However, they have been mainly
defined in the oracle output scheme where the output of a base classifier is cor-
rect or wrong. We showed that this is not appropriate for the problems of more
than two classes. In fact, a necessary condition to be satisfied by weak classifiers
to produce a stronger ensemble classifier is weaken to 1/K (K is the number
of classes) from 1/2, and the meaning of positive margins changes. Therefore,
we have extended the disagreement measure among base classifiers so as to be
applicable to multi-class cases.

It is well known that maximizing the margin is reducing the generalization
error of a classifier. However, only a few studies have been made on the relation-
ship between the margin and several diversity measures, and they are all made
in the oracle output scheme. Therefore, we studied the relationship in multi-class
setting and revealed that in two of three criteria considered in this paper the
margin is maximized when the conditional probabilities of classes other than the
correct class are all the same, implying a possibility to use the entropy as another
diversity measure. Using a generalized Rényi entropy and the extended disagree-
ment measure, we confirmed theoretically and experimentally the effectiveness
of these measures in the context of maximizing the margin.
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Abstract. In order to increase the classification performance obtain-
ed using Error-Correcting Output Codes designs (ECOC), introducing
weights in the decoding phase of the ECOC has attracted a lot of interest.
In this work, we present a method for ECOC designs that focuses on
increasing hypothesis margin on the data samples given a base classifier.
While achieving this, we implicitly reward the base classifiers with high
performance, whereas punish those with low performance. The resulting
objective function is of the fractional programming type and we deal with
this problem through the Dinkelbach’s Algorithm. The conducted tests
over well known UCI datasets show that the presented method is superior
to the unweighted decoding and that it outperforms the results of the
state-of-the-art weighted decoding methods in most of the performed
experiments.

1 Introduction

Reducing a multiclass classification problem to a series of binary classification
problems has attracted an increasing attention in the machine learning com-
munity [1,2]. This allows one to use binary classification algorithms also for
multiclass problems without a need for extending them. Besides, thanks to the
reduction, one can take the merits of the ensemble learning methods, e.g. provid-
ing a better generalization ability [1]. The procedure of the reduction is governed
by a decomposition schema. It determines the number of binary problems to be
generated, thus the number of base classifiers to be learned, and together with
how to group the original classes in two sets for each binary problem. The state-
of-the-art decomposition schemas include One-vs-All, One-vs-One (pairwise cou-
pling) and Error Correcting Output Codes (ECOC) [3]. Of these, ECOC has
attracted the most attention primarily since one can correct the errors commit-
ted in the induced binary problems with ECOC. In addition, ECOC can reduce
both bias and variance of the learning algorithm [4].
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 38–50, 2015.
DOI: 10.1007/978-3-319-20248-8 4
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As in the traditional ensemble learning methods, e.g. AdaBoost [6], com-
bining the base hypotheses by crediting different weights to them is also of
importance to ECOC. For ECOC, however, this should be considered from the
perspective of metric learning, since it results in learning a task-specific distance
function. Based on the task, different weighting methods have been proposed.
Firstly, performance of the base classifiers vary, since the resulting binary clas-
sification problems are not equally solvable. Thus, in turn, we should not treat
the outcome of the binary learners in the same way. The paper by Escalera
et al. is built on this phenomenon [7]. As a second example, Smith et al. pro-
posed to weight each base classifier for any class based on the way this classifier
separates that class from the rest. They showed that the class-separability prop-
erty improves the generalization performance of the final ensemble [8].

In contrast to the previous work we argue that weighting the base classifiers
increases the hypothesis margin of query instances, meaning that instances will
become closer to their true classes while increasing the distance to the rest.
This indeed leads to an increase in the ensemble accuracy. In this paper, we
address the issue of maximizing the hypothesis-margin of instances by means of
classifier weighting using the Dinkelbach algorithm, which is a central algorithm
in fractional programming [11].

The organization of the paper is as follows. In Sect. 2, we provide an insight
about ECOC framework together with the prominent weighted decoding strate-
gies. Section 3 details the proposed algorithm and its resemblance with the
conventional weighted nearest neighbor algorithms. Section 4 presents the exper-
iments conducted over several UCI datasets and the empirical comparison of the
alike algorithms. Finally, with the Sect. 5, we conclude the work and give several
avenues for future work.

2 Error-Correcting Output Codes with Weighted
Decoding

In a multiclass classification problem, we are given a training set of pairs
D = {(xi, yi)}N

i=1 ⊂ X × Y ⊂ R
d × {1, 2, ...,K} where X is some instance space,

and Y is a label space with K > 2. D is iid derived according to some unknown
probability distribution p over X × Y . The goal is to learn a multiclass classifier
(polychotomizer) F̂ : X → {1, 2, ..,K}. One can directly learn F̂ by a mul-
ticlass classification algorithm or extend a binary classification algorithm such
that it also handles the multiclass case. Alternatively, we can make use of well-
established decomposition strategy. That is, for a code matrix M ∈ {−1, 1}K×B ,
B number of replicas of the instance space are generated. The instance in each
replica is then re-labeled with the aid of a column that is associated with that
replica. At the end, we end up with B binary sets Db = {xi,Mb(yi)}N

i=1, where
Mb : Y → {−1, 1} s.t. Mb(y) = M(y, b),∀b ∈ {1, ..., B}. This phase is also known
as (en)coding.

For each binary set Db, we learn a binary classifier fb : X → {−1, 1}.
When assigning a query instance xq to one of the classes, the binary learners
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all run simultaneously, thus the outputs of the learners constructs a vec-
tor f(xq) = (f1(xq), ..., fB(xq))T . In the decoding phase, a decoder function
g : RB × M(r, ·) → {1, ...,K} is used to obtain F̂ (xq) = g(f(xq)), where M(r, ·)
is a row of M which is so-called a class codeword. Class codewords are unique
to each class. Here, g can be cast as a nearest neighbor classifier, since it com-
putes the distance between f(xq) and each codeword, then assigns xq to the
class whose codeword is nearest to f(xq).

Based on the output of the binary classification algorithm being employed,
the decoder g is allowed to use different distance measure, which leads to differ-
ent decoding types. If the base classifiers output crisp labels, i.e. -1 or 1 only,
then the Hamming distance is usually concerned, which is basically the total
number of elements that mismatch in the vector f(xq) and in the row of M
under consideration [3]. Or, the base classifier is probabilistic and outputs the
posterior probability of being positive class, then in this case, Euclidean metric
is plugged into g. The decoding here is called Euclidean decoding. Note that in
this case M ∈ {0, 1}K×B . When one is interested in confidence-valued binary
classifiers fb : X → R, loss-based decoding can be considered [2]. In this case, the
distance function used by g is defined as:

d(f(x),M(k, ·)) =
B∑

b=1

L(fb(x) · M(k, b)), (1)

where L is a loss function. The common loss functions are linear: L(θ) = −θ,
and exponential: L(θ) = e−θ. We, however, use the exponential one in our work.

2.1 Weighted Decoding Background

We now extend our discussion of decoding to weighted decoding, where the
weighted distance measure comes into play in the decoding process. Here, we
define two forms of weighted distance between a class codeword and the vector
of binary classifiers outputs, depending on Euclidean WE or loss-based distance
WL respectively:

dWE (f(x),M(k, ·)) =

√√√√
B∑

b=1

Wkb(fb(x) − M(k, b))2, (2)

dWL(f(x),M(k, ·)) =
B∑

b=1

WkbL(fb(x) · M(k, b)), (3)

with W ∈ [0, 1]K×B . Note that we learn a weight vector per class which will
later be a row of the weight matrix and that when the entries of W are all 1,
dW reduces to the conventional (unweighted) distance. Moreover, we are not
concerned with weighted Hamming distance, since in this case, a weight for a
binary learner applies only when that learner makes a deterministic (0–1) error.
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Weighted decoding methods differ in determining the W matrix. Escalera
et al. [7,10] utilize the following fact to determine W : The binary problems that
emerge during the decomposition of the multiclass problem have different char-
acteristics, thus they are not equally hard to solve with the same classification
algorithm. It follows naturally that the performance of the binary classification
algorithm over the resulting binary problems vary in a great range. Therefore, it
is wise not to trust the output of the binary learners equally. Additionally, since
a binary learner is originally trained to separate positive and negative super (at
the same time artificial) classes, its performance over the real classes is expected
to be non-uniform. As a result, Escalera et al. propose that Wkb signifies the
performance of the bth classifier on class k. This can be readily estimated as:

Hkb =
1

|Sk|
∑

x∈Sk

�fb(x) = M(k, b)�, (4)

where |Sk| is the cardinality of class Sk. Having calculated Hkb entries, they
compute weight matrix W normalizing H such that each row sums to 1, Wkb

therefore becomes:

Wkb =
Hkb∑B

b=1 H(k, b)
. (5)

The rationale behind normalizing the rows is to make the prior probability of
considering each class for the final classification the same. Otherwise, the final
classifier, i.e. g, would be biased towards the dominant class in the dataset. In
our work, we also follow this approach.

Rather than assigning the weight matrix empirically, Zhang et al. [12] pro-
pose to optimize the weight matrix ensuring that the weighted distance between
each instance in the training set and its true codeword is small compared to
those obtained from the remaining codewords. Here, the emerging optimization
problem is a convex linear programming problem, hence it can be solved globally.

According to Smith et al. [8], Wkb should stand for how well the classifier b
separates the members of the kth class is; and to them, if such information is
captured during the final step in ECOC, the ensemble accuracy will be higher.
To this end, they estimate Wkb through the training set as follows:

Wkb = max{0,
1

Kk
[
∑

p∈Sk

q/∈Sk

Cb(p)Cb(q) −
∑

p∈Sk

q/∈Sk

Cb(p)Cb(q)]}, (6)

where Cb is a correction function which takes the value 1, if the bth classifier
correctly classifies the instance; 0 otherwise. Conversely, Cb is just the comple-
ment of Cb defined as: Cb(x) = 1 − Cb(x); and Kk is a normalization constant
that has the same task as in Escalera et al. [7,10]. We remark that this method
is again an empirical estimation of the weight matrix, thus lacks of a theoretical
optimization.
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3 Fractional Programming Weighted Decoding for ECOC

Recall that in the previous section, we have emphasized that the decoder g
acts as a nearest neighbor (NN) classifier. From this point of view, the idea
of weighted decoding can be tied to that of weighted nearest neighbor; so the
methods originally devised for weighted nearest neighbor can be adapted to
weighted decoding case.

Parades and Vidal [13], in their weighted nearest neighbor (NN) work, pro-
pose a class-dependent weighted dissimilarity measure. They consider that NN
accuracy improves, if the employed dissimilarity measure in the NN yields small
values for the distances between points coming from the same class, while it
returns high values for inter-class distances. With this in mind, the objective
function that they aim at minimizing is:

J(W ) =
∑

x∈D dW (x, x=
nn)

∑
x∈D dW (x, x�=

nn)
, (7)

where x=
nn is the nearest neighbor of x in its own class and x�=

nn is again nearest
neighbor of x but in a different class. Also note that x=

nn and x�=
nn are nothing

but nearest hit and nearest miss in the RELIEF algorithm respectively.
Following to Parades and Vidal, we can adapt (7) to the weighted decoding

problem. Our objective function then turns out to be:

J(W ) =

∑
xi∈D dW (f(xi),M(yi, ·))

∑
xi∈D dW (f(xi),M(y �=

i , ·)) , (8)

subject to the constraints
∑

b wkb = 1 ∀k, where y �=
i is the most confused class

for the generic instance xi. By the term most confused class, we mean that it is
not the true class of xi, but its associated codeword is nearest to f(xi) considering
the other class codewords. Besides, in our case dW can be instantiated with both
dWE and dWL. Here, minimizing (8) can be also interpreted as maximizing the
hypothesis-margin of the instances, since in the case of nearest neighbor it is
generally defined as:

ρ(xi) = dW (f(xi),M(y �=
i , ·)) − dW (f(xi),M(yi, ·)). (9)

The reader is referred to [9,14] for more information. Note that f(x) in (8)
and (9), is a transformation of the instance x to the space where the decod-
ing takes place. One normally performs this transformation only for the test
instances running the binary classifiers over them. However, in order to com-
pute the weight matrix, we also need to transform the training instances to this
(decoding) space. To do so, after learning the binary classifiers either from a
bootstrap or from the entire training set, we let them run over the full train-
ing set. As a result, each training instance, xi, is represented by a vector:
f(xi) = (f1(xi), f2(xi), ..., fB(xi))T . That is, xi becomes f(xi).
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The objective function (8) is of the fractional programming type, which is
generally defined as:

min
z∈Z

r(z), where r(z) =
s(z)
t(z)

, (10)

with s and t which are real-valued functions on some feasible set Z, and t(z) > 0,
∀z ∈ Z. Among the methods to tackle (10), the most common is the parametric
method which reduces (10) to the following parametric problem:

min
z∈Z

rλ(z), where rλ(z) = s(z) − λt(z), λ ∈ R. (11)

Assuming (11) has at least one optimal solution for each λ ∈ R, it is proved that
every optimal solution to (11) is also optimal for (10) [15]. To determine λ ∈ R,
we use the Dinkelbach’s algorithm shown in Algorithm 1.

Algorithm 1. The Dinkelbach’s Algorithm
Step 0: Let z0 ∈ Z, λ1 = s(z0)/t(z0), and l = 1
Step 1: Find an optimal solution zl ∈ Z of min{s(z) − λlt(z)}.
Step 2: Let λl+1 = s(zl)/t(zl). If λl+1 = λl then zl is an optimal solution for r(z),
λl is the optimal value, and STOP, else set l = l + 1 and go to Step 1.

When solving the cost function (8) via the Dinkelbach’s Algorithm as such,
we generate a sequence of auxiliary problems of the form as in (11). The sequence
of solutions of the auxiliary problems converges to a solution of the fractional
program in question. Considering our problem, handling such subproblems differs
in the weighted distance measure, as defined in (2) or (3). A general framework
on how to tackle the fractional program in the weighted ECOC scenario is given
in Sect. 3.1.

3.1 The FP Weighted Decoding Algorithm

Denoting our cost function (8) J(W ) = s(W )/t(W ) subject to the same con-
straints, the auxiliary problems encountered in the Dinkelbach’s Algorithm are
of the following type:

min
W∈W

{s(W ) − λlt(W )}, (12)

where W is the feasible set, λl ∈ R is the (fixed) parameter at the iteration step
l, s(W ) =

∑
xi∈D dW (f(xi),M(yi, ·)), and t(W ) =

∑
xi∈D dW (f(xi),M(y �=

i , ·)).
With this current form of the objective function, the solution to (12), W ∗, will
be quite sparse. In other words, only a very few binary learners will be associated
with non-zero weights for per class. Therefore, outputs of the vast majority of
the binary learners will be ignored, which in fact will lead to a shrinkage for
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the code matrix, so the error-correcting property of ECOC will disappear. In
order to avoid this, we add the negative entropy regularization term to (12).
The modified subproblem is defined as:

min
W∈W

{s(W ) − λlt(W ) + h
K∑

k=1

B∑

b=1

wkb log wkb}, s.t.
∑

b

wkb = 1 ∀k. (13)

The coefficient h ≥ 0 governs the relative importance of the regularization term
compared with the original subproblem. The larger this coefficient is, the more
equal the weights become, as the negative entropy function gets its minimum
value for equal weights. We also point out that adding a regularization term
to the auxiliary problems in the Dinkelbach’s Algorithm does not disturb the
convergence of the solutions, provided that the added term is convex [16]. Finally,
to convert the above constrained optimization problem to an unconstrained one,
we introduce the Lagrange multipliers λk, which yields the following:

min
W∈W

{s(W ) − λlt(W ) + h

K∑

k=1

B∑

b=1

wkb log wkb +
K∑

k=1

λk

(
1 −

B∑

b=1

wkb

)
}. (14)

We now define Xkb, based on which distance function is considered, as follows:

Xkb =

⎧
⎨

⎩

∑
x∈Sk

(fb(x)− M(k, b))2 − λl
∑

x/∈Sk∧y
�=
i =k

(fb(x)− M(k, b))2, if dWE
∑

x∈Sk
L(fb(x) · M(k, b))− λl

∑

x/∈Sk∧y
�=
i =k

L(fb(x) · M(k, b)), if dWL.
(15)

Note that in either case Xkb is not a function of wkb. Plugging (15) into (14)
yields:

min
W∈W

{
K∑

k=1

B∑

b=1

(wkbXkb + hwkb log wkb) +
K∑

k=1

λk

(
1 −

B∑

b=1

wkb

)
}. (16)

Interestingly, the resulting unconstrained problem (16), is of the same form as
the one encountered in [17], in which the authors are concerned with obtaining
a weight vector per cluster so that the weighted distance between each instance
and its cluster center will be minimum compared to those obtained from the
remaining cluster centers. Naturally, the proposed solution to (16) is similar
to the one in [17]. We shall briefly derive the optimal solution to the above
unconstrained problem; whereas a more detailed derivation can be found in [17].

Observe a negative correlation between Xkb and wkb in (16). Regardless of
the distance measure considered, Xkb consists of two competing terms. The first
term can be read as an estimate of the total amount of error that the bth classifier
has made over the members of the kth class, while the second term quantifies
how the bth classifier discriminates the kth class from the others. Thus, the larger
the first term is, the more we punish the bth classifier reducing the corresponding
entry wkb, and in the cases where the second term is large, we reward the bth
classifier increasing wkb.
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To solve (16), we take the partial derivative of it with respect to wkb and
λk; then set these derivations equal to zero. This yields following equations
respectively:

Xkb + h log wkb + h − λk = 0, (17)

1 −
B∑

b=1

wkb = 0. (18)

From Eq. (17), we obtain wkb = exp(−Xkb/h)
exp(1−λk/h) . Substituting this equation in

(18); then solving the resulting equation w.r.t. λk, leads: λk = −h log
∑B

b=1

exp((−Xkb/h) − 1). Finally, plugging this expression into the solution of (17)
takes us to the optimal wkb :

w∗
kb =

exp(−Xkb/h)
∑B

b=1 exp(−Xkb/h)
. (19)

Embedding the above update rule into the Dinkelbach’s Algorithm, we define
Algorithm 2.

Algorithm 2. FP Weighted Decoding
Require: Training set D ⊂ R

d × {1, 2, ..., K}, code matrix M ∈ {0, 1}K×B or M ∈
{−1, 1}K×B , binary classification algorithm A, stopping threshold ξ, regularization
param. h.
Output:W ∈ [0, 1]K×B s.t.

∑
b wkb = 1 ∀k.

Step 1: ∀b relabel D considering M(·, b), and learn a binary classifier fb with A.
Step 2: ∀b run fb over each xi ∈ D, so that xi → f(xi) = (f1(xi), ..., fB(xi)

T .
Step 3: Let W 0 ∈ W, λ1 = s(W 0)/W (z0), and l = 1.

Step 4: ∀k and ∀b, w∗
kb =

exp(−Xkb/h)∑B
b=1 exp(−Xkb/h)

with Xkb as in (15).
Step 5: Let λl+1 = s(W l)/t(W l). If |λl+1 − λl| ≤ ξ, then output W l and STOP,
else set l = l + 1 and go to Step 4.

4 Experiments

We have tested our proposed method on a number of UCI datasets summarized
in Table 1. For these datasets, we have compared our method against the classical
(unweighed) decoding and against two previously proposed weighted decoding
methods: the one proposed by Escalera et al. [7], and the one by Smith et al.
[8]. For brevity, we name the former Perf Weighted (for performance weighted),
and the latter Sep Weighted (for separability weighted). For each induced binary
problem, we have first learned the base classifiers using the entire training set,
and then estimated Wkb using again the training set. A separate validation set
could be used to provide a robust estimate for Wkb in some cases though; in our
experiments we have observed that for more than half of the datasets the ECOC
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Table 1. The characteristics of the used UCI datasets.

Dataset # Train # Test # Attribute # Class

Balance 625 - 4 3

Iris 150 - 4 3

Thyroid 215 - 5 3

Car 1728 - 6 4

Vehicle 846 - 18 4

Dermatology 366 - 34 6

Glass 214 - 9 7

Segmentation 2310 - 19 7

Zoo 101 - 16 7

Ecoli 336 - 8 8

Mfeat 2000 - 6 10

Optdigits 3823 1797 64 10

Pendigits 7494 3498 16 10

accuracy is higher considering the training set for this purpose. This holds true
for all the weighting methods. Here, we only give the results obtained using the
training set. Additionally, to facilitate a fair comparison among the weighting
methods, we have applied different weighting methods, having learned the base
classifiers from the training set. Thus we ensure that the difference in ECOC
accuracy arises only from using different weights in the decoding process.

In our experiments,we have opted for the standard code matrix, i.e. the
exhaustive code matrix [3], for the datasets with less than 10 classes. In this
setting, the number of induced binary problems is equal to 2K−1 − 1, where K
is the number of unique classes in the dataset. For the datasets with 10 classes,
we have used a code matrix which takes into account all balanced binary class
partitions. That is, each column of the matrix coincides with a balanced binary
class partition. By balanced binary class partition, we mean that the number
of positive classes and the number of negative classes is equal after partitioning
classes into two. In total, K!

2(K
2 !)2

class partitions are obtained in this way, which
is in fact the total column number in the matrix used. The related discussion can
be found in [18]. The reason to choose such a code matrix is that these matrices
hold the property of having equidistant rows. The proposed method works best
with the code matrix with this property, because determining the most confused
class, otherwise, would not only depend on the base classifiers performances.

Tables 2 and 3 show the results obtained considering the (weighted) euclidean
distance and the (weighted) loss-based distance respectively. Excluding the two
datasets Pendigits and Optdigits, where the training set and the test set are
given separately, the results shown in the these tables are based on the average
of the 10-fold cross validation runs, ensuring that each method uses the same
folds for training and uses the same fold for testing in each run. For Pendigits
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Table 2. (Un)weighted Euclidean decoding results with the base classifier logistic
regression.

Dataset Unweighted FP Weighted Perf Weighted Sep Weighted

Balance 86.66 87.23 91.32 91.44

Thyroid 95.8 95.8 95.8 95.8

Iris 96.66 98 97.33 97.33

Car 81.13 80.09 82.86 82.63

Vehicle 79.29 80.28 79.25 79.49

Glass 60.87 62.92 58.99 58.92

Dermatology 95.49 96.15 96.15 96.15

Segment 83.02 84.04 83.9 83.72

Ecoli 82.15 81.86 82.45 82.45

Zoo 88.11 88.11 88.11 88.11

Mfeat 63.61 71.12 70.61 72.27

Pendigits 83.3 86.96 84.27 84.24

Optdigits 92.59 93.65 93.09 93.21

and Optdigits, the corresponding figures on the tables are obtained from their
test set.

As binary classification algorithm, we have employed logistic regression and
SVM with RBF kernel provided in LIBSVM [19], for the cases of weighted
Euclidean and weighted loss-based decodings respectively. Also, the considered
loss function is the exponential loss function which is defined as L(θ) = e−θ. We
note that the linear loss can not be used with our method, since the denominator
in the objective function (8) could be negative in that case.

4.1 Evaluation of the Results

In Table 2 (resp. Table 3), the average ranks are 3.39, 2, 2.38 and 2.23 (resp.
3.58, 1.92, 2.37 and 2.13) for the unweighted, FP Weighted, Perf Weighted and
Sep Weighted decodings respectively. For both tables, the observed difference
between the average ranks is significant according to the Freidman Test [20].
This implies that using different decoding strategies leads to different ECOC
accuracies. Proceeding with the two-tailed Nemenyi test for pairwise compar-
isons, only the difference between the average rank of the proposed method and
that of unweighted decoding is significant at p = 0.05. At p = 0.1 significance
level, however, the weighted decodings are all superior to the unweighted decod-
ing, taking the average rank differences into account. We also report that the
conducted tests are not sufficient to make a pairwise comparison between the
weighted decoding methods. These statements hold true for both Euclidean and
loss-based decodings.
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Table 3. (Un)weighted loss-based decoding with the base classifier SVM (with RBF).

Dataset Unweighted FP Weighted Perf Weighted Sep Weighted

Balance 90.5 94.46 90.61 90.73

Thyroid 93.6 93.99 93.99 93.99

Iris 72 92.66 93.33 93.33

Car 79.17 79.88 84.05 84.33

Glass 47.14 47.63 46.64 46.72

Dermatology 93.47 94.85 93.85 93.85

Segment 78.71 83.93 86.85 87.06

Ecoli 40.39 50.54 68.23 65.9

Zoo 53.44 72.62 78.87 79.06

Mfeat 42.56 42.77 42.38 42.38

Pendigits 74.49 76.44 75.9 75.02

Optdigits 94.6 95.9 94.6 94.6

Taking magnitude of the differences into account per dataset, we reach the
following conclusions. Table 2 suggests that introducing weights for the decoding
process does not substantially improve the ECOC accuracy when the Euclidean
distance is of interest. In fact, the improvement on the accuracy is at most
2%, excluding mfeat dataset where there is an improvement of 8% with the
proposed method and that of 9% with Sep Weighted decoding. Nevertheless,

Table 4. The optimal regularization parameters for the proposed FP Weighted algo-
rithm.

Dataset Euclidean decoding Loss-based decoding

Balance 1 10

Iris 1 25

Thyroid 1 10

Car 100 100

Vehicle 10 -

Dermatology less than 100 10

Glass 10 100

Segmentation 10 70

Zoo less than 100 30

Ecoli less than 100 70

Mfeat 30 50

Optdigits 30 10

Pendigits 120 30
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weights come in more handy in loss-based decoding. For Iris, Segment, Ecoli
and Zoo datasets the increase in the accuracy lies in the range of 9% to 25%
comparing to unweighed decoding. Our proposed method, however, does sig-
nificantly worse than the other two weighting methods for the aforementioned
datasets.

Finally, it should be also reported that the proposed method is keenly sensi-
tive to the regularization parameter h being used. Recalling that as h grows, the
distribution of the weight values converges to the uniform distribution, which
is basically the unweighed decoding. Table 4 shows the optimal h values for the
different datasets found via cross-validation.

5 Conclusion

We presented an algorithm which outputs an optimal weight matrix to be used
in the decoding phase of ECOC. The presented method takes its root in weighted
nearest neighbor algorithms and guarantees that the distance between a coded
instance and its target codeword will be small, while the distance between that
instance and its most confused codeword will be large. This approach boosts the
hypothesis-margin of the instances, thus indeed leads to a significant increase
in the accuracy obtained from the ECOC. The performance of the proposed
method maximizes when the used code matrix has equidistant rows and the
base classifiers are scoring classifiers.

In the case of euclidean decoding, our proposed method achieves the best
accuracy on 7 out of 11 datasets comparing with unweighted decoding as well as
the other two state-of-the-art weighted decoding algorithms. Also, in the case of
loss-based decoding, it exhibits a better performance than the unweighted case,
but is inferior to the these weighted decoding methods. Finally, the future work
will focus on applying different regularization terms to the objective function
and on applying the proposed algorithm over a higher diversity of ECOC coding
designs and different application domains.
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Abstract. This paper proposes instance decomposition schemes (IDSs)
for mapping multi-class classification tasks into a series of binary clas-
sification tasks. It demonstrates theoretically that IDSs can handle two
main problems of the class decomposition schemes: the problem of dif-
ficult binary classification tasks and the problem of positive error cor-
relation of the binary classifiers. The experiments show that IDSs can
outperform standard ECOC class decompositions.

1 Introduction

A class decomposition scheme allows mapping a multi-class classification task
into a set of binary classification tasks [5]. In this way the multi-class classifica-
tion task can be solved by a set of binary classifiers that correspond to the set
of binary classification tasks identified. In general, a class decomposition scheme
consists of several class partitions. Any class receives a code word that indicates
the class set including that class for each partition. The scheme is applied in
two stages [5,10]: encoding and decoding. During the encoding stage we first
generate binary classification tasks according to the decomposition scheme and
then train a binary classifier for each problem. During the decoding stage we
first apply the binary classifiers for a test instance to generate the instance code
word and then assign a class to that instance with the closest code word.

The most successful family of class decomposition schemes is that of error-
correcting output codes (ECOC) [5]. Due to redundancy of the binary partitions,
ECOC schemes can significantly improve generalization performance on multi-
class classification tasks. However, two problems may occur:

(P1) the problem of difficult binary classification tasks; and
(P2) the problem of positive error correlation of the binary classifiers.

Problem P1 means that some binary classification tasks are difficult for the
binary classifiers. As a result the code words of the test instances can contain
binary classification errors. ECOC class decomposition schemes can correct these
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 51–63, 2015.
DOI: 10.1007/978-3-319-20248-8 5
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errors if their number is smaller than �Hmin−1
2 � where Hmin is the minimal

Hamming distance between class code words. Otherwise, the correction fails
which results in instance misclassification.

Problem P2 implies that the binary classifiers can err simultaneously when
the code words of test instances are being formed. This increases the number of
errors in the instance code words that can exceed the limit of �Hmin−1

2 �. If this
happens, the instances may be misclassified. We note that instance misclassifi-
cation can occur even if we have good binary classifiers as long as they positively
error correlated.

Several approaches to handle the problem of difficult binary classifica-
tion tasks were proposed for class decomposition schemes. We separate these
approaches into several categories: (a) approaches that simply remove the par-
titions of the difficult binary problems [15]; (b) approaches that assign weights
to partitions to maximize the Hamming distance between the classes in a class
decomposition scheme [1]; (c) approaches that alter the partitions in order to
simplify the binary classification tasks encoded [13,16]; and (d) approaches that
finely tune the mappings of the classes and data into class decomposition schemes
[4,14]. We note that none of these approaches employs information about the
binary-classifier error correlation. Thus, if the error correlation is reduced, this
is primarily due to improving the binary classifiers.

This paper proposes a new type of decomposition schemes, namely instance
decomposition schemes (IDSs). They aim at handling the problem of difficult
binary classification tasks and the problem of positive error correlation of the
binary classifiers. An IDS scheme consists of several instance partitions. Any
instance has a code word that indicates the instance set including that instance
for each partition. Instance classification assumes two IDSs: encoding and decod-
ing. During the encoding stage we first generate binary classification tasks using
the encoding IDS, then train a binary classifier for each task, and, finally, we
learn the decoding IDS through the binary classifiers. During the decoding stage
we first apply the binary classifiers for a test instance to generate the instance
code word and then we assign the class equal to the class of the instance with
the closest code word in the decoding IDS.

In this paper we show that the problem of difficult binary classification tasks
does not exist for IDSs. This is due to decoding IDSs that are learned w.r.t.
the binary classifiers. In addition, we show that when the binary instances err
in a similar way over the instances of different classes, IDSs have always error
correcting capabilities in contrast with the ECOC class decomposition schemes.
Thus, in this case IDSs represent error-correcting output codes.

The paper is organized as follows. Section 2 formalizes the classification task.
IDSs are introduced and discussed in Sects. 3 and 4, respectively. Experiments
are given in Sect. 5. Section 6 concludes the paper.

2 Classification Task

Let X be an instance space, Y be a class set of size K, and p be an unknown
probability distribution over X × Y . Training data T is a multi-set of L labeled
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instances (xl, yl) ∈ X×Y (l ∈ 1..L) iid drawn from p. Given training data T and
test instance x ∈ X, the classification task CT is to provide an estimate ŷ ∈ Y
of the class of x according to p. We note that if K = 2, the classification task is
a binary classification task BCT. If K > 2, the classification task is a multi-class
classification task MCT.

3 Instance-Based Decomposition Schemes

This section introduces instance-base decomposition schemes for mapping any
multi-class classification task into a set of binary classification tasks. Section 3.1
formalizes instance decomposition schemes and coding matrices. Section 3.2 pro-
vides a detailed explanation of the encoding and decoding stages.

3.1 Instance Decomposition Schemes

Consider a multi-class classification task MCT with a class set Y of size K > 2.
To decompose MCT into M binary classification tasks BCTm (m ∈ 1..M) we
introduce the notion of a binary instance partition in Definition 1.

Definition 1 (Binary Instance Partition). Given data T , the set P (T ) is
said to be a binary instance partition of T iff P (T ) consists of two non-empty
sets T− and T+ such that T− ∪ T+ = T and T− ∩ T+ = ∅.
The sets T− and T+ of a binary instance partition P (T ) are called the negative
set and the positive set of P (T ), respectively.

Definition 2. The label set YP (T ) of a binary instance partition P (T ) is defined
equal to {−1,+1}, where −1 is the label of the negative set T− of P (T ) and +1
is the label of the positive set T+ of P (T ).

Definition 1 allows us to introduce instance decomposition schemes. An instance
decomposition scheme describes how to decompose a multi-class classification
task MCT into M binary classification tasks BCTm (m ∈ 1..M), as given in
Definition 3.

Definition 3 (Instance Decomposition Scheme). Given a multi-class clas-
sification task MCT and a positive integer M , an instance decomposition scheme
of MCT is a set SP (T ) of M different binary instance partitions Pm(T ) for
m ∈ 1..M .

Any instance decomposition scheme has a coding matrix (see Fig. 1).

Definition 4. The coding matrix of an instance decomposition scheme SP (T )
is a binary L × M matrix W iff for any l ∈ 1..L and m ∈ 1..M :

Wl,m =

{
−1 ∈ YPm(T ) if (xl, yl) ∈ T−

m ;
+1 ∈ YPm(T ) if (xl, yl) ∈ T+

m .
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A row Wl,∗ in the coding matrix W corresponds to a particular labeled
instance (xl, yl) ∈ T for any l ∈ 1..L and it forms the code word of that instance.
We note that the meaning of any two bits Wl,m1 and Wl,m2 in an instance
code word is different for m1 �= m2, since they correspond to different instance
partitions. In addition it is worth mentioning that the instance code words
are not restricted: the code words Wl1,∗ and Wl2,∗ of two different instances
(xl1 , yl1), (xl2 , yl2) ∈ T can be either the same or different. In this context we
introduce the notion of the row distance set.

Definition 5. Given an coding matrix W , the row distance set DW (l1, l2) for
any two l1, l2 ∈ 1..L is the set of indices m ∈ 1..M such that Wl1,m �= Wl2,m.

The Hamming distance between any two instances (xl1 , yl1), (xl2 , yl2) ∈ T in the
coding matrix W is the size of the row distance set DW (l1, l2).

A column W∗,m in the coding matrix W corresponds to a particular binary
data partition Pm(T ) for any m ∈ 1..M and it forms the code word of that
partition. By Definition 3 any two partition code words W∗,m1 and W∗,m2 are
different if m1 �= m2. In this context we introduce the notion of the column
distance set.

Definition 6. Given an coding matrix W , the column distance set DW (m1,m2)
for any two m1,m2 ∈ 1..M is the set of the indices l ∈ 1..L such that Wl,m1 �=
Wl,m2 .

The Hamming distance between any two binary instance partitions
Pm1(T ), Pm2(T ) ∈ SP (T ) in the coding matrix W is the size of the column
distance set DW (m1,m2).

3.2 Encoding and Decoding

To solve a multi-class classification task MCT by employing instance decompo-
sition schemes we need to pass two stages, encoding and decoding, that employ
two instance decomposition schemes SP e(T ) and SP d(T ), respectively. Dur-
ing the encoding stage we use the coding matrix W e of the encoding instance
decomposition scheme SP e(T ) (see Fig. 1). The matrix W e is employed: (1) for
representing the multi-class classification task MCT via a set of binary clas-
sification tasks BCTm (m ∈ 1..M), and (2) for training binary classifiers for
those problems. During the decoding stage we use the coding matrix W d of the
decoding instance decomposition scheme SP d(T ). The matrix W d is employed
to decode the predictions provided by the binary classifiers to estimate the true
class of an instance to be classified (see Fig. 1).

During the encoding stage we first generate for any m ∈ 1..M a binary classi-
fication task BCTm using the encoding matrix W e. Any BCTm is determined by
code word W e

∗,m of partition P e
m(T ) ∈ SP e(T ). The data Tm of BCTm is formed

in X ×YP e
m(T ). More precisely, any instance (xl, yl) ∈ T is transformed to a new

instance (xl,W
e
l,m) ∈ Tm. Once the binary classification tasks BCTm have been
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W e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 +1
−1 −1 −1 −1 +1 +1 +1
−1 −1 −1 −1 +1 +1 +1
−1 −1 −1 −1 +1 +1 +1
−1 −1 +1 +1 −1 −1 +1
−1 +1 −1 +1 −1 +1 −1
−1 +1 −1 +1 −1 +1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 +1 +1 −1 −1 −1 +1
−1 −1 −1 +1 +1 +1 +1
−1 −1 +1 +1 −1 +1 −1
+1 +1 +1 −1 +1 +1 +1
−1 −1 −1 +1 +1 +1 +1
+1 −1 +1 +1 −1 −1 +1
−1 +1 −1 −1 +1 +1 −1
−1 −1 −1 +1 +1 +1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Left: Coding matrix W e of an encoding instance decomposition scheme SP e(T )
for 4 classes. W e is initialized according to the Exhaustive ECOC class decomposition.
The first two rows correspond to the two instances of class y1; The next three rows
correspond to the three instances of class y2; and so on. Right: Coding matrix W d of
the decoding instance decomposition scheme SP d(T ) learned from W e.

set, we train a binary classifier hm : X → YP e
m(T ) for each BCTm. The binary

classifiers hm form an ensemble classifier h : X → Y equal to {hm}m∈1..M .
During the decoding stage, given a test instance x ∈ X and an ensemble

classifier h, we decode the predictions of the binary classifiers hm ∈ h to form a
class estimate of the class for x. For that purpose we employ the coding matrix
W d of the decoding instance decomposition scheme SP d(T ). We first estimate
the code word w of instance x. The m-th element wm of the code word w equals
the label hm(x) estimated by the binary classifier hm ∈ h for x. Once the code
word w of instance x has been formed, we temporarily add w to matrix W d with
index L + 1 (i.e., W d

L+1,∗ equals w). Then we employ Hamming class decoding
by computing the index neighbor set N(x) for x. The set N(x) consists of the
indices l ∈ 1..L of the instances (xl, yl) ∈ T which code words W d

l,∗ have minimal
Hamming distance to the code word w of instance x:

N(x) = argmin
l∈1..L

(|DWd(l, L + 1)|).

The set Ŷ of estimates of the true class for the instance x is chosen to be the
set of classes y ∈ Y that have the maximal number of indices in N(x); i.e., it
is equal to argmax

y∈Y
(|{l ∈ N(x)|yl = y}|)|. The final class estimate ŷ of instance

x is chosen randomly among the classes in Ŷ . Note that this rule comprises the
two possible cases: |Ŷ | = 1 and |Ŷ | > 1.

4 Initialization and Properties

The generalization performance of the ensemble h is sensitive to the initializa-
tion of instance decomposition schemes SP e(T ) and SP d(T ). Below we propose
a simple procedure for initializing the coding matrices W e and W d of these
schemes.
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Definition 7. (Initialization Matrix Procedure)

(1) The encoding matrix W e of SP e(T ) is initialized such that:

(∀l1, l2 ∈ 1..L)(W e
l1,∗ = W e

l2,∗ ↔ yl1 = yl2).

(2) The decoding matrix W d of SP d(T ) is initialized such that:

(∀l ∈ 1..L,m ∈ 1..M)(W d
l,m = hm(xl)).

By Definition 7 the encoding matrix W e is initialized such that the code
words W e

l1,∗ and W e
l2,∗ of any two instances (xl1 , yl1), (xl2 , yl2) ∈ T are equal

iff the classes yl1 and yl2 are equal. This means that the instances of a class
have the same code word and this word differs the code words of the instances
of the remaining classes. Thus, the encoding matrix W e is initialized according
to the coding matrix W 0 of some class decomposition scheme (e.g., exhaus-
tive/minimal/random ECOC etc. [6]).

By Definition 7 the coding matrix W d of the decoding instance decomposition
scheme SP d(T ) is initialized using the predictions of binary classifiers hm ∈ h.
Thus, the key feature of the initialization procedure is that we learn SP d(T ). We
note that this is done by first training binary classifiers hm ∈ h using the encoding
instance decomposition scheme SP e(T ) and then by applying these classifiers.
Hence, the coding matrix W d of SP d(T ) consists of only those instance code
words that are achievable through binary classifiers hm ∈ h. This implies that
the problem of difficult binary classification tasks does not exist (if the binary
classifiers are not random).

The decoding matrix W d has to be well row-separated in terms of the Ham-
ming distance [5]. This is due to the fact that W d is used to decode binary pre-
dictions to form the final class estimate. The encoding matrix W e however has to
be both: row-separated and column-separated. The row-separation requirement
comes from the fact that W e is used to form W d through the binary classifiers.
The column-separation requirement comes from the fact that the binary classi-
fiers need to be negatively error-correlated. We note that the usual assumption
is that very different binary class labeling of two binary classification tasks may
decrease such negative error correlation [5].

The minimal row Hamming distance in the coding matrix W e of the encod-
ing instance decomposition scheme SP e(T ) is equal to the size of the minimal
row-distance set DW e(l1, l2) over any two instances (xl1 , yl1), (xl2 , yl2) ∈ T . By
Definition 7 it follows that this distance is equal to the minimal row Hamming
distance of coding matrix W 0 of the class decomposition scheme used for initial-
izing the encoding matrix W e.

To characterize the minimal row Hamming distance in the matrix W d of
the decoding instance decomposition scheme SP d(T ) we note that the binary
classifiers may err differently for any two instances. Hence, we introduce the
error set for an instance.
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Definition 8. The error set CW e(l) for an instance (xl, yl) ∈ T is the set of
indices m ∈ 1..M of the binary classifiers hm ∈ h, trained through the encoding
matrix W e, that err for that instance.

Using error sets we compute the row distance set between any two instances
in W d.

Theorem 9. The row distance set DWd(l1, l2) for any two instances
(xl1 , yl1), (xl2 , yl2) ∈ T w.r.t. the decoding matrix W d, if yl1 �= yl2 , equals:

[
DW e(l1, l2) \ [

[CW e(l1) \ CW e(l2)] ∪ [CW e(l2) \ CW e(l1)]
]] ∪

[
D′

W e(l1, l2) ∩ [
[CW e(l1) \ CW e(l2)] ∪ [CW e(l2) \ CW e(l1)]

]]
.

Proof. The proof is by construction of the decoding matrix W d in Definition 7.

Example 10. Take row 1 (class y1) and row 3 (class y2) in W e and W d in Fig. 1.
Then DW e(1, 3) = {1, 2, 3, 4}, D′

W e(1, 3) = {5, 6, 7}, CW e(1) = {4, 5, 6}, and
CW e(3) = {3, 4, 5, 7}. Thus, DWd(1, 3) = {1, 2, 4, 6, 7}.

The minimal row Hamming distance in the decoding matrix W d is equal to the
size of the minimal set DWd(l1, l2) over any two instances (xl1 , yl1), (xl2 , yl2) ∈ T .
Due to non-uniform generalization performance of the binary classifiers there is
no analytical way to express this distance in general. However, below we provide
three particular cases when minimal row Hamming distance in the decoding
matrix W d can be derived.

Corollary 11. For any two instances (xl1 , yl1), (xl2 , yl2) ∈ T , such that yl1 �=
yl2 , the row distance set DWd(l1, l2) in the decoding matrix W d equals the row
distance set DW e(l1, l2) of the encoding matrix W e, if CW e(l1) \ CW e(l2) = ∅
and CW e(l2) \ CW e(l1) = ∅.
Corollary 11 states that row distance sets DW e(l1, l2) and DWd(l1, l2) for
instances (xl1 , yl1), (xl2 , yl2) ∈ T stay equal if the two sets of the binary classifiers
that err for those instances coincide. Thus, if this condition holds for any two
instances, the minimal row Hamming distance in W e equals that of the coding
matrix W d. By Definition 7 the minimal row Hamming distances in the encoding
matrix W e and the coding matrix W 0 of the class decomposition scheme used
for initializing W e coincide. Thus, the minimal row Hamming distance in W d

equals that of the coding matrix W 0.

Example 12. Take row 2 (class y1) and row 4 (class y2) in W e and W d in
Fig. 1. Then CW e(2) = {1, 2, 3}, and CW e(4) = {1, 2, 3}. Thus, DW e(2, 4) =
DWd(2, 4) = {1, 2, 3, 4}.

Corollary 13. For any two instances (xl1 , yl1), (xl2 , yl2) ∈ T , such that yl1 �=
yl2 , the row distance set DWd(l1, l2) in the decoding matrix W d equals {m ∈
1..M}, if CW e(l1) ∩ CW e(l2) = ∅ and CW e(l1) ∪ CW e(l2) = D′

W e(l1, l2).
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Corollary 13 states that the row distance set DWd(l1, l2) for instances (xl1 , yl1),
(xl2 , yl2) ∈ T is maximal (i.e., equal to {m ∈ 1..M}), if the two sets of the binary
classifiers are disjointed and their union equals the compliment of DW e(l1, l2).
Thus, if this condition holds for any two instances, the minimal row Hamming
distance in the decoding matrix W d equals M .

Example 14. Take row 6 (class y3) and row 7 (class y4) in W e and W d in
Fig. 1. Then D′

W e(6, 7) = {1, 4, 5}, CW e(6) = {1}, and CW e(7) = {4, 5}. Thus,
DWd(6, 7) = {1, 2, 3, 4, 5, 6, 7}.

Corollary 15. For any two instances (xl1 , yl1), (xl2 , yl2) ∈ T , such that yl1 �=
yl2 , the row distance set DWd(l1, l2) in the decoding matrix W d equals the empty
set, if CW e(l1) ∩ CW e(l2) = ∅ and CW e(l1) ∪ CW e(l2) = DW e(l1, l2).

Corollary 15 states that the row distance set DWd(l1, l2) for instances (xl1 , yl1),
(xl2 , yl2) ∈ T is minimal (i.e., equal to ∅), if the two sets of the binary classifiers
are disjointed and their union equals DW e(l1, l2). Thus, if this condition holds for
any two instances, the minimal row Hamming distance in the decoding matrix
W d equals 0.

Example 16. Take row 5 (class y2) and row 8 (class y4) in W e and W d in Fig. 1.
Then DW e(5, 8) = {2, 4, 5, 7}, CW e(5) = {4}, and CW e(8) = {2, 5, 7}. Thus,
DWd(5, 8) = ∅.

From Theorem 9 and Corollaries 11, 13, 15 given above we may conclude that
for any two instances (xl1 , yl1), (xl2 , yl2) ∈ T , if yl1 �= yl2 , we have that:

– the row distance set DWd(l1, l2) (and the Hamming distance |DWd(l1, l2)|)
does not depend directly on the size of the error sets CW e(l1) and CW e(l2) of
the binary classifiers that err on these instances;

– the row distance set DWd(l1, l2) (and the Hamming distance |DWd(l1, l2)|)
depends on the sizes of the error-set differences CW e(l1) \ CW e(l2) and
CW e(l2) \ CW e(l1);

– the row distance set DWd(l1, l2) (and the Hamming distance |DWd(l1, l2)|)
grows, when the error-set differences CW e(l1)\CW e(l2) and CW e(l2)\CW e(l1)
get smaller for the set DW e(l1, l2) and bigger for the set D′

W e(l1, l2) (Exam-
ple 10).

To make a bigger picture: assume that the errors represented by the error
sets CW e(l1) and CW e(l2) are more systematic; i.e., the binary classifiers
hm ∈ CW e(l1) are positively error correlated as well as the binary classifiers
hm ∈ CW e(l2). Then:

– the Hamming row distances in the decoding matrix W d do not depend directly
on the error correlation of the binary classifiers hm ∈ h;

– the Hamming row distances in the decoding matrix W d depend on the extent
of overlap of sets of error-correlated binary classifiers hm ∈ h;
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– the Hamming row distances in the decoding matrix W d grow, when the overlap
of sets of error-correlated binary classifiers hm ∈ h increases.

Thus, our main conclusion is that the encoding matrix W d of the decoding
instance decomposition scheme SP d(T ) can handle the error-correlated binary
classifiers if they err in a similar way on instances of different classes. In this case,
the instance decomposition schemes have error correcting capabilities and thus
can be considered instance decomposition schemes of error-correcting output
codes.

5 Experiments

To assess the generalization performance of the ensembles based on the instance-
based decomposition schemes (IDS) we performed two sets of experiments. The
first set of experiments in Sect. 5.1 studies how the error correlation of the binary
classifiers influences the generalization performance of ensembles based on ECOC
and ensembles based on IDS. The second set of experiments in Sect. 5.2 compares
the generalization performance of the same ensembles for data with large number
of classes.

Both sets of experiments have the following settings. The class decompo-
sitions schemes employed were exhaustive ECOC (eECOC) [5] and random
ECOC (rECOC) [8]. The instance decomposition schemes (IDSs) employed were
those that initialize instance encoding matrix based on either eECOC or rECOC
(i.e., the instances for each class received initially the same code coming from
eECOC/rECOC). eECOC were used for up to 9 classes and rECOC were used
for more than 9 classes. Two types of classifiers were employed as binary base
classifiers: the Ripper rule classifier1 [3] and Logistic Regression [9]. The ensem-
ble evaluation method was 10-fold cross validation averaged over 10 runs. The
classification accuracy of the classifiers was compared using the paired t-test [12]
at the 5% significance level.

5.1 Error Correlation of Binary Classifiers vs. Ensemble
Generalization Performance

The purpose of the set of experiments in this section is to study how the error
correlation of the binary classifiers influences the generalization performance
of the ensembles based on eECOC and IDSs. For the experiments IDSs were
initialized using eECOC.

Our first experiment was on the Glass data from UCI [2]. The binary clas-
sifiers employed in the eECOC and IDS ensembles were Ripper classifiers. We
recorded the accuracy of the ensembles while decreasing complexity of the Rip-
per binary classifiers. The complexity was controlled with the Ripper parameter
minNumObj in the range [0, 100]2. We note that decreasing complexities of the
1 Ripper was originally proposed as a binary classifier in [3].
2 minNumObj is the minimal number of training instances to create a Ripper rule.

Increasing the value of minNumObj decreases the Ripper complexity.
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Fig. 2. The accuracy rate vs. the cumulative probability of p(#errors > 15) of the
eECOC and IDS ensembles. The curve of the eECOC ensemble is denoted by �. The
curve of the IDS ensemble is denoted by �.

binary classifiers increases positive error-correlation levels between the classi-
fiers. However, estimating the error correlation for more than two classifiers is
difficult. Therefore, we employed instead the probability of the joint error of
the binary classifiers, since it grows with that correlation. Thus, for each run of
ensembles we recorded the empirical distribution of the joint-error probability
of the binary Ripper classifiers.

To present the results, we note that the Glass data has 7 classes (K = 7).
This implies that the eECOC ensemble can correct strictly at most 15 num-
ber of errors of the binary classifiers per test instance (2K−3 − 1 = 27−3 − 1).
That is why we plotted in Fig. 2 the accuracy of eECOC and IDS ensembles
against the cumulative probability of p(#errors > 15). The figure shows that
the accuracy of the IDS ensemble gets bigger than that of the eECOC ensemble
for p(#errors > 15) greater than 0.1723. The IDS ensemble outperforms maxi-
mally the eECOC ensemble for p(#errors > 15) equal to 0.36 (the accuracy-rate
difference was 0.13). Then the accuracy rates of the ensembles gradually con-
verge and for p(#errors > 15) equal to 0.58 become equal. After this point the
binary classifiers become majority-vote classifiers and the accuracy rates of the
eECOC and IDS ensembles stay equal.

We observed similar behavior of the eECOC and IDS ensembles in our next
experiments with 9 other data sets from UCI [2]. The results are in Tables 1
and 2.

Table 1 shows the accuracy rate of the ensembles in function of complexity of
Ripper binary classifiers controlled by parameter minNumObj. The IDS ensem-
bles won in 38 cases (18 times significantly) and lost in 6 cases. The number of
draws was 16.

Table 2 shows the accuracy rate of the ensembles in function of complexity
of Logistic-Regression binary classifiers controlled by the ridge parameter r in
[1, 50]. The IDS ensembles won in 50 cases (14 times significantly) and lost in 7
cases. The number of draws was 3.
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Table 1. The accuracy rate of the eECOC and IDS ensembles vs. complexity of Ripper
binary classifiers controlled by parameter minNumObj. Bold numbers indicate statis-
tically better results in group for a value of minNumObj.

minNum minNum minNum minNum minNum minNum

Obj=0 Obj=10 Obj=30 Obj=50 Obj=75 Obj=100

Data IDS eECOC IDS eECOC IDS eECOC IDS eECOC IDS eECOC IDS eECOC

Anneal (7) 0,99 0,99 0,97 0,96 0,95 0,95 0,92 0,91 0,85 0,84 0,85 0,84

Autos (7) 0,84 0,84 0,79 0,76 0,69 0,56 0,54 0,48 0,46 0,38 0,33 0,33

Car (4) 0,91 0,9 0,87 0,83 0,81 0,78 0,78 0,77 0,79 0,77 0,76 0,74

Derm (6) 0,96 0,96 0,95 0,94 0,94 0,92 0,94 0,93 0,94 0,92 0,95 0,9

Ecoli (8) 0,84 0,84 0,81 0,84 0,81 0,81 0,79 0,75 0,79 0,69 0,71 0,65

Glass (7) 0,76 0,76 0,74 0,74 0,67 0,6 0,61 0,52 0,4 0,34 0,35 0,35

Iris (3) 0,91 0,91 0,94 0,94 0,92 0,92 0,33 0,33 0,33 0,33 0,33 0,33

Jap.Vow (9) 0,77 0,78 0,74 0,72 0,69 0,63 0,67 0,54 0,58 0,33 0,34 0,16

Lymph(4) 0,79 0,8 0,78 0,78 0,73 0,68 0,55 0,55 0,55 0,55 0,55 0,55

Zoo (7) 0,94 0,94 0,96 0,89 0,88 0,76 0,41 0,41 0,41 0,41 0,41 0,41

Analyzing the results we observe that the IDS ensembles outperform the
eECOC ensembles especially when the complexity of the binary classifiers
decreases. Decreasing the binary-classifier complexity increases the positive error
correlation of the binary classifiers. Thus, the IDS ensembles can handle the
error-correlated binary classifiers better than the eECOC ensembles in our exper-
iments.

5.2 Ensemble Generalization Performance for Large Number
of Classes

This section provides a set of experiments with ensembles based on ECOC and
IDS for data with large number of classes. Due to the number of classes we
employed random ECOC (rECOC) [8]. Hence, the initialization of the encoding

Table 2. The accuracy rate of the eECOC and IDS ensembles vs. complexity of
Logistic-Regression binary classifiers controlled by the ridge parameter r in [1, 50].
Bold numbers indicate statistically better results in group for a r-value.

r=1 r=10 r=20 r=30 r=40 r=50

Data IDS eECOC IDS eECOC IDS eECOC IDS eECOC IDS eECOC IDS eECOC

Anneal (7) 0,99 0,99 0,97 0,97 0,96 0,95 0,95 0,93 0,94 0,92 0,93 0,9

Autos (7) 0,73 0,71 0,69 0,65 0,69 0,63 0,66 0,62 0,65 0,61 0,64 0,6

Car (4) 0,94 0,89 0,92 0,85 0,9 0,84 0,88 0,84 0,88 0,83 0,87 0,83

Derm (6) 0,98 0,975 0,98 0,98 0,98 0,98 0,98 0,98 0,97 0,98 0,9 0,97

Ecoli (8) 0,83 0,87 0,82 0,8 0,79 0,77 0,78 0,75 0,78 0,73 0,78 0,71

Glass (7) 0,59 0,62 0,58 0,58 0,58 0,57 0,58 0,57 0,6 0,56 0,61 0,56

Iris (3) 0,95 0,91 0,9 0,87 0,9 0,84 0,89 0,84 0,86 0,84 0,83 0,84

Jap.Vow (9) 0,83 0,8 0,79 0,75 0,75 0,72 0,74 0,69 0,73 0,67 0,72 0,65

Lymph(4) 0,84 0,86 0,84 0,84 0,84 0,84 0,84 0,83 0,84 0,82 0,83 0,82

Zoo (7) 0,9 0,9 0,9 0,88 0,9 0,88 0,91 0,84 0,89 0,82 0,89 0,8
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Table 3. The accuracy rate of the eECOC and IDS ensembles vs. complexity of
Logistic-Regression binary classifiers controlled by the ridge parameter r in [1, 50].
Bold numbers indicate statistically better results in group for a r-value.

Ripper minNumObj=0 Logistic regression minNumObj=0

Data IDS eECOC Data IDS eECOC

Abalone (28) 0.227 0.261 Abalone (28) 0,249 0,229

Letter (17) 0.62 0.559 Letter (17) 0.61 0,429

Patents (62) 0.235 0.226 Patents (62) 0.246 0,222

Pendigits (10) 0.86 0.81 Pendigits (10) 0.83 0,785

matrix of IDS was realized with rECOC. The binary classifiers Logistic Regres-
sion and Ripper were used with their default parameter settings: for Logistic
Regression the ridge parameter r was set to 10 and for Ripper reduce-error
pruning with 3 folds was set.

The results are given in Table 3 for 4 data sets with 10 to 62 classes. Among
the 8 experiments the IDS ensembles won in 7 cases (3 times significantly). These
results are expected, since for large number of classes the probability of having
difficult binary classification tasks increases. Thus, the experiments confirm that
the IDS ensembles can handle better difficult binary classification problems.

6 Conclusion

In this paper we proposed instance decomposition schemes (IDSs) for mapping
multi-class classification tasks into a series of binary classification tasks. We
showed theoretically and experimentally that IDSs are capable of handling the
two main problems of the class decomposition schemes: the problem of difficult
binary classification tasks and the problem of positive error correlation of the
binary classifiers.

Future research will focus on computational efficiency of IDS. We note
that IDS employs nearest neighbor classification (based on Hamming distance).
Therefore, two research directions are foreseen: (1) to reduce the number of
rows and (2) to reduce the number of columns in the decoding matrices. Sev-
eral techniques are readily available from edited nearest neighbor rules [11] and
multi-variate feature selection [7].
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14. Rätsch, G., Smola, A.J., Mika, S.: Adapting codes and embeddings for poly-
chotomies. Adv. Neural Inf. Process. Syst. 15, 513–520 (2002)

15. Zhou, J., Peng, H., Suen, C.Y.: Data-driven decomposition for multi-class classifi-
cation. Pattern Recogn. 41(1), 67–76 (2008)

16. Zor, C., Yanikoglu, B.A., Windeatt, T., Alpaydin, E.: FLIP-ECOC: a greedy opti-
mization of the ECOC matrix. In: Proceedings of the 25th International Sympo-
sium on Computer and Information Sciences, London, UK, 22–24 September 2010,
pp. 149–154 (2010)



Pruning Bagging Ensembles with Metalearning
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Abstract. Ensemble learning algorithms often benefit from pruning
strategies that allow to reduce the number of individuals models and
improve performance. In this paper, we propose a Metalearning method
for pruning bagging ensembles. Our proposal differs from other pruning
strategies in the sense that allows to prune the ensemble before actually
generating the individual models. The method consists in generating a
set characteristics from the bootstrap samples and relate them with the
impact of the predictive models in multiple tested combinations. We exe-
cuted experiments with bagged ensembles of 20 and 100 decision trees for
53 UCI classification datasets. Results show that our method is compet-
itive with a state-of-the-art pruning technique and bagging, while using
only 25 % of the models.

Keywords: Ensemble learning · Metalearning · Classification · Pruning

1 Introduction

Ensemble learning (EL) refers to methods that combine several models to make
a final prediction, typically in a classification or regression scenario. The EL
literature can be split into three main topics: ensemble generation, ensemble
pruning and ensemble integration. This paper proposes a Metalearning (MtL)
method to prune bagging ensembles of classifiers. Our approach differs from the
other ensemble pruning methods in the sense that allows to prune the ensemble
by just analyzing the characteristics of a bootstrap sample and before actually
generating the individual models.

Combining complementary classifiers can improve the accuracy over individ-
ual models. One can say that two classifiers are complementary if they make
errors in different regions of the input space [1]. For complementarity between
classifiers there is a need for diversity. Several measures have been proposed in
the literature to quantify the concept of diversity [2]. Research on this topic has
inspired the development of methods for ensemble pruning. The aim of these
methods is to find a subset of models that improves or at least has the same
generalization ability of the full set of models. Several techniques have been
proposed in this scope [3,4], particularly for bagging [5].

Bagging is an EL technique that allows to generate multiple predictive mod-
els and aggregate their output to provide a final prediction [6]. Typically, the
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 64–75, 2015.
DOI: 10.1007/978-3-319-20248-8 6
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aggregation function is the mean (if the outcome is a quantitative variable) or the
mode (if the outcome is a qualitative variable). The models are built by apply-
ing a learning algorithm to bootstrap replicates of the learning set. Diversity is
achieved through the use of different bootstrap samples.

We developed a MtL method that predicts if a given bootstrap sample of
a dataset is going to originate an useful classifier. By useful, in the scope of
this paper, should be understood as a classifier that is accurate in a specific
region of the input space. For that, we compute a set of bootstrap characteristics
together with a variable that represents the usefulness of those bootstraps. This
variable is computed by carrying exhaustive experiments in which we test several
combinations of bagged ensembles of decision trees with 20 and 100 models.
We used 53 UCI [7] classification datasets for our experiments. The method is
evaluated on the same 53 datasets using a leave-one-out methodology.

The main contributions of this paper are: (1) a MtL method for pruning
bagging ensembles (2) metafeatures specifically developed for MtL in the context
of ensemble problems (3) comparison of different methods for ensemble pruning
in 53 classification datasets.

The paper is organized as follows. In Sect. 2 we present an overview of the
literature both on ensemble pruning and MtL. In Sect. 3 we describe the MtL
method for pruning bagging ensembles. Section 4 presents our methodology. In
Sect. 5 we show the experimental results and discussion. Finally, in Sect. 6, we
conclude the paper and define future work.

2 Related Work

For classification, ensemble pruning methods are often inspired by the ensemble
learning diversity literature. That is, the methods focus on searching for comple-
mentary classifiers. Margineantu and Dietterich [8] showed firstly that there is no
need for all the classifiers in a boosting ensemble. The development of ensemble
pruning methods are often biased towards bagging since it is noted that these
kind of methods are more effective with bagging than with boosting [9].

In terms of the nature of the methods, we can see two different research
directions: one focused on optimization based methods and another on ordering
based methods. In the former, the methods use an optimization technique to
select a subset of models. Zhang et al. [4] approached ensemble pruning as a
quadratic integer programming problem that is solved by applying semi-definite
programming to a convex relaxation of the original problem. Chao et al. [10]
proposed a method inspired by a multi-objective evolutionary algorithm. In the
latter, the methods start with an empty and gradually add models in order to
minimize/maximize a certain objective. This iterative process allows to gener-
ate an order of the individual models. Martinez-Muñoz [5] published a detailed
analysis of these kind of methods for bagging ensembles. We use one of the meth-
ods (the one with the best overall results in [5] - MDSQ) proposed by them for
comparison with our method. Li et al. [11] present a theoretical study of diver-
sity for ensembles of classifiers and proposed a greedy forward pruning method
that exploits their discoveries.
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Another important question regarding ensemble pruning that is relevant for
most of the methods is the size of the pruned ensemble. Hernández-Lobato
et al. [12] empirically showed that the optimal ensemble size is very sensitive
to the particular classification problem considered. However, for a wide range of
classification problems, a pruning of 60–80% seems appropriate [5].

Although the use of ensembles has been becoming more popular due to their
superior performance, it is still possible to improve the generalization ability of
an ensemble by pruning or use a specific integration strategy [13]. One of the
fields that can assist this process is MtL. As the study of principled methods
that exploit metaknowledge to obtain efficient models and solutions by adapting
machine learning and data mining processes [14], MtL can help in developing
useful methods for ensemble learning while still providing interesting and useful
knowledge about the ensemble and the problem domain.

The most widely known application of MtL to ensemble learning are the
Meta-Decision Trees (MDT), proposed by Todorovski and Džeroski [15]. They
presented an algorithm for learning a decision tree based on C4.5 that instead
of making a prediction, the leaves of the tree specify which classifier should be
used to obtain a prediction. Their study comprised 21 classification datasets
and 5 base-level classifiers. Results show that MDT are better than voting and
stacking in combining classifiers, while still providing comprehensible knowledge
about the ensemble and the predictive problem.

The main issue in MtL is defining the metafeatures. The most used ones
are the simple, statistical and information-theoretic metafeatures [14]. This set
includes the number of attributes of the dataset, mutual information between
symbolic attributes or class entropy, to name a few. This kind of metafeatures
has the advantage of providing interpretable knowledge about the problems.
Another kind of metafeatures are the model-based ones [16]. These capture some
characteristic of a model generated by applying a learning algorithm to a dataset,
i.e., the number of leaf nodes of a decision tree. Finally, a metafeature can also be
a landmarker [17]. These are generated by making a quick performance estimate
of a learning algorithm in a particular dataset. In this paper we introduce new
metafeatures that are specific to our problem.

3 A Metalearning Method for Ensemble Pruning

Formally, an ensemble F gathers a set of predictors of a function f denoted as
f̂i. Therefore,

F = {f̂i, i = 1, ..., k}
where the ensemble predictor is defined as f̂f .

In [18], we propose a methodology to empirically analyze the behavior of bag-
ging. Given a set of k bootstrap samples (also referred to in this paper as boot-
straps, for simplicity), we estimate the empirical distribution of performance of
the bagging ensembles that can be generated from all elements of its power set. In
other words, we estimate the empirical distribution of performance of all possible
ensembles of size 2, 3, ..., k that can be generated from those k bootstraps.
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This distribution can be used to study the role of a given bootstrap (and respec-
tive predictive model f̂i) in the performance of 2k − 1 possible ensembles, as done
in this paper. Additionally, the distribution can be used to analyze the joint rela-
tionship between the bootstrap samples in each ensemble and its performance.

We sampled (stratified) all the 53 UCI datasets with more than 10000 instances
for computational reasons. The error estimation methodology was hold-out1: 60 %
for training set, 20 % for validation set and 20 % for the test set. Each ensemble
is evaluated in the test set using accuracy as error measure. We executed experi-
ments in which we tested all possible combinations of ensembles with k= 20 and
sampled the k= 100 case. It is easy to understand that is impossible to execute
the complete set of experiments for ensembles with a realistically large size, such
as k= 100, given that the number of combinations to test is 2k −1. Therefore, the
only possibility is to estimate the distribution of the performance of all ensembles
that can be generated with the set of k bootstraps by sampling from its power set.
We provide a study of the effectiveness of this sampling procedure in [18]. In this
paper, we execute experiments for both cases (k= 20 and k= 100) and we compare
results.

3.1 Metatarget

The experiments that we carried with the UCI datasets allowed to collect the dis-
tribution of the performance of the bagging algorithm in very distinct learning
problems. Our goal is to quantify the importance of each model (and respec-
tive bootstrap) in the ensemble space. Then, we need to aggregate the results
obtained for each one of them and compute an estimate of importance.

We adapted the measure NDCG [19] (Normalized Discounted Cumulative
Gain) to form our metatarget. We consider the performance of the ensembles
(in decreasing order) to which the bootstrap k belongs, for each dataset, as acc1,d,
acc1,d, ..., accn,d where n represents an ensemble and d a dataset. Therefore, for
each bootstrap k of the dataset d, we calculate the respective DCG

DCGk,d =
100∑

n=1

accn,d +
n∑

101

accn,d
log100n

and we normalize it by an ideal ranking (IDCGd) in which the best ensembles
for each dataset are selected. Then,

NDCGk,d =
DCGk,d

IDCGd
.

3.2 Metafeatures

For this work, we relied on simple, statistical, information-theoretic and land-
marker metafeatures. For the first group, we selected several metafeatures

1 For computational reasons, it was possible to apply a cross-validation methodology.
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already present in the literature which were first used for MtL in the METAL
and Statlog projects [14]. We also introduce a new metafeature based on the
Jensen-Shannon distance [20] between a bootstrap and the training set. This
metafeature aims to measure how different is the bootstrap from the original
dataset. This metric has proved to be useful while measuring stability in multi-
source data [21]. It can also be seen as a diversity measure of low order that
focuses directly on the bootstrap sample and not on the predictions made by
the generated model.

However, we also used other types of metafeatures. Two landmarkers: a
decision stump and a Naive Bayes classifier. Given the different bias of the
algorithms, it is expected that the metafeatures can help capture different pat-
terns [22]. We also used two diversity measures proposed in the ensemble learning
literature: the Q-Statistic [2] and Classifier Output Difference [23] (COD) mea-
sures. Kuncheva et al. [2] state that the Q-Statistic is the diversity measure
with greater potential for providing useful information about ensemble perfor-
mance. However, in the same paper, the authors claim that the usefulness of
diversity measures in building classifier ensembles for real-life pattern recogni-
tion problems is questionable. We adapted the Q-Statistic to the specificities of
our problem. Kuncheva et al. present it as a metric to measure the diversity of
an ensemble. We use it to measure the diversity between the predictions of two
landmarker models (Naive Bayes): one generated by applying a learning algo-
rithm to a bootstrap and the other to the original dataset. Using such measure in
this study gives a different perspective on its usefulness. Formally, our adapted
version of the Q-Statistic is defined as

Qb,d =
N bbNdd − NdbN bd

N bbNdd + NdbN bd

where each element is formed as in Table 1.

Table 1. Relationship between a pair of classifiers.

fbcorrect fdcorrect

fbcorrect Nbb Nbd

fdcorrect Ndb Ndd

The COD metric has been proposed as a measure to estimate the potential
of combining classifiers:

ˆCODT (f̂b, f̂d) =

∑
x∈Ts

{
1, if f̂b(x) = f̂d(x)
0, otherwise

|Ts|
Lee and Giraud-Carrier [24] published a paper on unsupervised MtL in which

they study the application of several diversity measures for ensemble learning as
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a distance function for clustering learning algorithms. In their experiments, only
one measure, COD, presents results that indicate that it can be a good measure
for this kind of task. This is indicative that the metric can also be useful in our
problem.

Therefore, the set of metafeatures used for this work is:

– number of examples
– number of attributes
– proportion of symbolic attributes
– proportion of missing values
– proportion of numeric attributes with outliers
– class entropy
– average entropy between symbolic attributes
– average mutual information between symbolic attributes and the class
– average mutual information between pairs of symbolic attributes
– average absolute correlation between numeric attributes
– average absolute skewness between numeric attributes
– average kurtosis between numeric attributes
– canonical correlation of the most discriminating single linear combination of

numeric attributes and the class distribution
– Jensen-Shannon distance between the dataset and bootstrap
– Decision Stump landmarker
– Naive Bayes landmarker
– Q-Statistic diversity
– COD diversity

4 Methodology

This Section specifies the methodology used to evaluate our pruning method. The
problem is addressed as a regression task at the meta-level and as a classification
task at the base-level.

4.1 Error Estimation

The system was evaluated with leave-one-out cross-validation. However, in each
fold, instead of leaving a single instance for testing, all the instances associated
with the same dataset are used for testing. This procedure allows to train the
meta-model in meta-data from 52 datasets and test the approach in another
dataset, iteratively. The final error estimation is computed by averaging the
results on the 53 datasets.

At the meta-level, since the target is a numeric variable, the error measure
is the Root Mean Squared Error (RMSE), defined as

√∑m
j=1(yj − ŷj)2

m
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where yj is the true value, ŷj is the predicted value and m the number of testing
meta-instances.

At the base-level, the error measure is accuracy, defined as

accuracy =
TP + TN

TP + FP + TN + FN

where TP are the true positives, TN the true negatives, FP the false positives
and FN the false negatives. Both evaluation procedures (meta-level and base-
level) are going to be carried with the assistance of the methodology proposed
by Demšar [25].

4.2 Meta-Learners

We used three learning algorithms to generate the meta-models: M5’ [26]
(Meta.M5’), Support Vector Machines with radial basis kernel function [27]
(Meta.SVM) and Random Forests [28] (Meta.RF). The performance of the meta-
learners is going to be compared with a baseline: the average of the metatarget
in the (meta) training data.

4.3 Benchmark Pruning Methods

We compare our method with 4 alternatives:

– Metatarget. In this approach we use the groundtruth of our metatarget to
execute the pruning at the basel-level. This allows to benchmark how good
our method could be if we were able to generate an idealistic meta-model.

– Bagging. The same algorithm proposed by Breiman [6], without any sort of
pruning.

– Margin Distance Minimization (MDSQ) [5]. This algorithm belongs to the
family of pruning methods base on modifying the order in which classifiers are
aggregated in a bagging ensemble. The main feature of these kind of methods
is to exploit the complementariness of the individual classifiers and find a
subset with good performance. Results presented by the authors show that
MDSQ can greatly reduce the size of the ensemble without significant loss of
generalization ability (for some datasets an improvement of the results over
bagging was verified).

– Random Pruning. A baseline approach in which the selection of models to be
pruned is random. This is repeated 30 times for robust results.

4.4 Ensemble Size

As mentioned previously, determining the optimal ensemble size is not a triv-
ial task. Hernández-Lobato et al. [12] show that the optimal size of a bagging
ensemble for a dataset is very specific to the particular classification problem
considered. However, taking into account their results in 25 datasets, we con-
cluded that a pruning percentage of 75 % of the ensemble should allow a good
performance of all the methods in the majority of the classification problems.
So, all the pruning methods tested in this paper follow this rule.
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5 Experiments

All the experiments were carried in the R software [29], using the package party
for generating the decision trees. We used RReliefF [30] to assist the selection
of metafeatures both for k= 20 and k= 100.

5.1 Meta-Level Results

As mentioned previously, we compared the performance of the meta-model
with a baseline using RMSE as error measure. To assess if the meta-model is
significantly better than the baseline, we used the methodology proposed by
Demšar [25] with α = 0.05.

Figure 1 shows the Critical Difference (CD) diagrams of the results obtained
at the meta-level. For k= 20, we can see that both M5’ and RF present a better
performance that SVM and the baseline. The difference in terms of performance
between M5’ and RF is not statistically significant. The same can be stated for
SVM and the baseline. For k= 100, the same result can be verified, although
in this case RF shows a slightly better performance than M5’. Again, yet, this
difference is not statistically significant.

4 3 2 1

Metalevel with k=20

CD

M5'

RFSVM

Baseline

4 3 2 1

Metalevel with k=100

CD

RF

M5'SVM

Baseline

Fig. 1. Critical Difference diagrams of the performance of the meta-models in compar-
ison with the baseline, at the meta-level.

This result shows that the metafeatures that we generated for this problem
are informative and can possibly be used to predict the usefulness of a model
generated from a bootstrap sample.

5.2 Base-Level Results

The base-level evaluation of the method was, again, carried with the methodol-
ogy proposed by Demšar [25] with α = 0.05.
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4 3 2 1

Base level with k=20

CD

Random

567

Metatarget
Bagging
MDSQ
Meta.M5'Meta.RF

Meta.SVM

4 3 2 1

Base level with k=100

CD

Random

567

Metatarget
MDSQ
Bagging
Meta.RFMeta.M5'

Meta.SVM

Fig. 2. Critical Difference diagrams of the performance of the metamodels in compar-
ison with the benchmark pruning methods, at the base-level.

Figure 2 shows the CD diagrams for the base-level results. For k= 20, our
method achieves the best performance with the M5’ learning algorithm (this is
in agreement with the results obtained at the meta-level for k= 20). The perfor-
mance of Meta.M5’ is worst than Metatarget, Bagging and MDSQ, although this
difference is not statistically significant. Comparing with the Random bench-
mark, Meta.M5’ shows better performance. However, the difference between the
generalization ability of the method is not statistically significant.

For k= 100, our method shows better performance while pairing with the RF
learning algorithm (again, this is in agreement with the results obtained at the
meta-level for k= 20). The results are very similar with the ones obtained in the
k= 20 scenario. The performance of Meta.RF is worst than Metatarget, MDSQ
and Bagging, although this difference is not statistically significant. Regarding
the comparison with the Random baseline, Meta.RF presents better performance
but the difference is not statistically significant.

The performance of Bagging and MDSQ is very similar both for k= 20 and
k= 100. MDSQ shows a better performance in the k= 100 scenario. This result
is expected because the method needs a reasonable number of models in order
to achieve good performance [5]. This fact also increases the computational cost
of the method.

The pruning executed with the Metatarget shows the best performance for
both cases, k= 20 and k= 100. This is indicative that our method, with adequate
metafeatures, can become a very useful and innovative pruning technique.

5.3 Discussion

Our work is the first approach using MtL that attempts to understand the
behavior of ensemble learning algorithms and improve them.
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The results presented state that our method already has the ability to prune
bagged ensembles of decision trees with a performance competitive with the
state-of-the-art algorithms. However, there is room for improvement since its
performance is not far superior from a naive baseline such as Random. Further-
more, since the Metatarget benchmark surpasses all the methods tested, it is our
goal to further improve the performance of our method in that direction.

We believe that one of the key aspects that affect the most our results is the
fact that we are trying to predict the usefulness of one model instead of a subset.
In the latter scenario, we could use diversity measures already proposed in the
ensemble learning literature as metafeatures and take into account the comple-
mentarity between more than two classifiers. The diversity metafeatures that we
use in this paper such as COD or Q-Statistic only relate the landmarker models
generated from the bootstrap samples with the landmarker models generated
from the original training data. We plan to investigate an approach in which our
method predicts the accuracy of subsets of models instead of the usefulness of
individual ones as we present here.

6 Conclusions

This paper proposes a MtL method for pruning bagging ensembles of decision
trees. Our proposal differs from the other methods proposed in the literature
in the sense that allows to prune the ensemble before actually generating the
predictive models. This feature can be particularly important in contexts with
limited computational resources, such as online applications [31].

We tested our method against bagging and a state-of-the-art pruning tech-
nique, MDSQ. Results show that our method is competitive with bagging (using
only 25 % of the bagged models) and MDSQ (with less computational cost since
it does not require to generate all the models of the bagged ensemble). Further-
more, as a topline approach, we tested the performance of the method using the
groundtruth of the metatarget. The evaluation of all the methods showed that
if we can generate more informative metafeatures for this problem, the MtL
method can surpass MDSQ while still being computationally less demanding.
This is our main future work.

As mentioned before, we plan to adapt the method so that instead of it
predicting the usefulness of individuals models, it predicts the accuracy of subsets
of models. We believe that this can enhance our results since it can greatly benefit
from ensemble learning literature regarding diversity measures.

We also plan to extend and adapt the methodology proposed in this paper to
other ensemble learning algorithms like boosting or random forests. This would
bring challenges in the development of the metafeatures in order to deal with
probabilistic processes like the ones that occur in boosting.

Finally, the methodology presented in this paper could be adapted for
dynamic integration of ensembles. The metaknowledge extracted from an ensem-
ble could be used for a more effective predictive performance while providing
interpretability information about the domain.
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Abstract. Multi-label selective ensemble deals with the problem of
reducing the size of multi-label ensembles whilst keeping or improving
the performance. In practice, it is of important value, since the gener-
ated ensembles are usually unnecessarily large, which leads to extra high
computational and storage cost. However, it is more challenging than tra-
ditional selective ensemble, because real-world applications often employ
different performance measures to evaluate the quality of multi-label pre-
dictions, depending on user requirements. In this paper, we propose the
MUSE approach to tackle this problem. Specifically, by directly consid-
ering the concerned performance measure, we develop a convex optimiza-
tion formulation and provide an efficient stochastic optimization solution
for a large variety of multi-label performance measures. Experiments show
that MUSE is able to obtain smaller multi-label ensembles, whilst achiev-
ing better or at least comparable performance in terms of the concerned
performance measure.

Keywords: Multi-label classification · Ensemble pruning · Selective
ensemble

1 Introduction

Multi-label learning deals with the problem where each instance is associated
with multiple labels simultaneously, and it has wide applications in different
domains, for example, document categorization where a document may belong
to multiple topics [16,27], multi-media annotation where an image or a music
can be annotated with more than one tags [1,26]. During the past few years,
it has become an active research topic [2,7,8,10,11,19,20,28,31], and a recent
comprehensive survey can be found in [32].

In multi-label learning, label correlations have been widely accepted to be
important [3,30], and many approaches have been proposed to exploit label
correlations. Amongst them, multi-label ensemble methods which construct a
group of multi-label classifiers and combine them for prediction have drawn
much attention. For examples, random k-labelsets (RAKEL) is an ensemble of
classifiers, each taking a small random subset of labels and learning on the power
set of this subset [25]; ensemble of pruned sets (EPS) combines a set of pruned
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 76–88, 2015.
DOI: 10.1007/978-3-319-20248-8 7
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Component Classifiers
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Fig. 1. Comparison of the selected classifiers when considering different multi-label
performance measures (i.e., Hamming loss and one-error), where the component clas-
sifiers are classifier chains with random label ordering trained on the cal500 dataset,
the selective ensemble chooses 9 out of 20 component classifiers via exhaustive search,
and ‘�’/‘�’ indicates it is selected/unselected.

sets classifiers, each mapping sets of labels to single labels while pruning infre-
quent ones [18]; ensemble of classifier chains (ECC) combines multiple classifier
chain classifiers, each learning an extended binary relevance classifier based on
a random label ordering [19], and EPCC is a probabilistic extension of ECC [3].
From the perspective of ensemble learning, these multi-label ensemble methods
try to construct diverse multi-label classifiers [22], mostly by smart heuristic
randomization strategies.

In general, by combining more diverse multi-label classifiers, the ensemble
performance tends to improve and converge. However, one issue is that the con-
structed ensembles tend to be unnecessarily large, requiring large amount of
memory and also decreasing the response time of prediction. In traditional sin-
gle label learning, selective ensemble (a.k.a. ensemble pruning or ensemble selec-
tion) addresses this issue by choosing a subset of component classifiers to form
a subensemble, this has achieved success and became an active research topic in
ensemble learning (see [34, chapter 6]). In this paper, we study the selective ensem-
ble problem in the multi-label learning setting, that is, we try to reduce the size of a
multi-label ensemble, such that compared with the original ensemble, the memory
requirement and the response time can be reduced while similar or better predic-
tion performance can be achieved.

In contrast to traditional supervised learning which usually takes accuracy
as the performance measure, multi-label learning systems often employ different
performance measures to evaluate the quality of multi-label predictions, depend-
ing on the application and user requirements [20]. These measures are designed
from different aspects, and a classifier performing well in terms of one measure
does not necessarily achieve good performance in terms of other measures, and it
has been shown that a multi-label classifier tailored for one specific performance
measure can perform poorly in terms of other measures [4]. This will make multi-
label selective ensemble quite different from traditional selective ensemble, that
is, we need to take the concerned performance measure fully into account when
generating multi-label selective ensemble. As an example, we can see in Fig. 1
that the classifiers selected for Hamming loss are quite different from those for
one-error. Essentially, this makes the task of multi-label selective ensemble more
challenging, because most multi-label performance measures are quite compli-
cated and difficult to optimize, for example, most of them are non-decomposable
over labels, non-convex, and non-smooth. To deal with this issue, we propose the
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MUSE approach to optimize the concerned performance measure. Specifically,
by focusing on two groups of multi-label performance measures, we formulate
the problem into a convex optimization problem with �1-norm regularization,
and then present an efficient stochastic optimization solution. Experiments on
real-world datasets show the effectiveness of the proposed MUSE approach.

The remainder of the paper is organized as follows. Section 2 presents our
proposed MUSE approach. Section 3 reports the experiment results. Section 4
makes some brief discussion with related work, which is followed by the conclu-
sion in Sect. 5.

2 The MUSE Approach

Let X be the instance space and L be a set of l labels. In multi-label learning,
each instance xi ∈ X is associated with multiple labels in L, which is represented
as an l-dimensional binary vector yi with the k-th element 1 indicating xi is
associated with the k-th label and −1 otherwise. Given a set of training examples
S = {(xi,yi)}m

i=1, the task is to learn a multi-label classifier

h : X �→ Y,

where Y ⊆ {−1, 1}l is the set of feasible label vectors, such that it can predict
labels for unseen instances. In practice, instead of learning h directly, it is often
to learn a vector-valued function f : X �→ R

l which determines the label of x as

ŷ = argmax
y′∈Y

y′�f(x). (1)

We can see that how the argmax can be computed depends on Y; for example,
if Y = {−1, 1}l, then ŷ can be obtained as sign[f(x)].

In multi-label learning, a large variety of multi-label performance measures
are example-based performance measures, which first quantify the performance
on each example and then average them over all the examples as the final result.
Generally speaking, these performance measures are in the following two groups:

– Set based performance measures which evaluate the performance based
on the label set prediction of each example, and its representative examples
include Hamming loss, F1-score, etc.;

– Ranking based performance measures which are based on the ranking
of each label for each example, for example, ranking loss and coverage fall in
this group.

Without loss of generality, we denote the concerned performance measure as
the risk function Δ(y, f(x)), which is the smaller the better. For performance
measure which is the larger the better, like F1-score, Δ is simply set to one
minus it. Obviously, it will be ideal if the classifier f can minimize the expected
risk E(x,y)[Δ(y, f(x))].
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2.1 The Problem

In general, multi-label ensemble methods construct a set of multi-label classifiers
{h(t) : X �→ Y}k

t=1, and combine them to produce the vector-valued function
f : X �→ R

l as

f(x;w) =
k∑

t=1

wth
(t)(x), (2)

where w = [w1, . . . , wk]� is the weighting vector, for example, they are simply
set to 1/k for voting. It can be found that in (2) the classifier h(t) will be excluded
from the ensemble if wt is zero, and the size of the ensemble is simply ‖w‖0. Then,
the task of multi-label selective ensemble becomes to find a weighting vector
w, such that the expected performance in terms of the concerned performance
measure is optimized, while the ensemble size ‖w‖0 is small.

Since the expectation is infeasible, empirical risk is often used, and the prob-
lem of multi-label selective ensemble can be written as

min
w∈W

1
m

m∑

i=1

Δ(yi, f(xi;w)) s.t. ‖w‖0 ≤ b, (3)

where W is the feasible space of w, and 0 < b ≤ k is the budget of ensemble size.
However, this problem is challenging to solve, mainly because the risk function
Δ is among various multi-label performance measures which are generally non-
decomposable over labels, non-convex and non-smooth.

2.2 A Convex Formulation

Inspired by the works on structured prediction [23], instead of directly optimizing
the empirical risk, in MUSE, we consider to optimize one of its convex upper
bounds. Before giving the upper bound, we first make a definition.

Definition 1. A rank vector r is a permutation of the integer vector [1, 2, . . . , l],
and the rank vector r is said to be consistent with the label vector y, if and only
if there does not exist an index pair 〈i, j〉 satisfying yi = 1, yj = −1, and ri < rj.

In practice, given a multi-label prediction p = f(x), the corresponding rank
vector can be obtained by sorting p in ascending order, i.e., if pt is the smallest
in p then rt is 1, and the largest corresponds to l. A rank vector r is consistent
with the label vector y, if all the relevant labels indicated by y have larger rank
value than non-relevant ones.

Proposition 1. Given a multi-label classifier f : X �→ R
l and a multi-label

performance measure Δ,

(a) if Δ is a set based performance measure, define the loss function

�(y, f(x)) = max
y′∈Y

[
(y′ − y)�f(x) + Δ(y,y′)

]
, (4)

where Y is the set of feasible label vectors,
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(b) if Δ is a ranking based performance measure, define the loss function

�(y, f(x)) = max
r′∈Ω

[
(r′ − r)�f(x) + Δ(y, r′)

]
, (5)

where r is a rank vector consistent with y and Ω is the set of possible rank
vectors, then the loss function �(y, f(x)) provides a convex upper bound over
Δ(y, f(x)).

Proof. It is obvious that the function �(y, f(x)) is convex in f , because it is
pointwise maximum of a set of linear functions. For set based performance mea-
sure, let ŷ = sign[f(x)] which is the maximizer of y�f(x) in Y, we can get

�(y, f(x)) ≥ ŷ�f(x) − y�f(x) + Δ(y, ŷ) ≥ Δ(y, ŷ).

For set based performance measures, it holds Δ(y, ŷ) = Δ(y, f(x)), thus it is
an upper bound.

With respect to ranking based performance measure, let r̂ be the rank vector
determined by f(x), it is easy to find that r̂ is the maximizer of r�f(x), and then

�(y, f(x)) ≥ r̂�f(x) − r�f(x) + Δ(y, r̂) ≥ Δ(y, r̂).

Based on above, we can get the conclusion. �

For the optimization problem in (3), by replacing Δ with its upper bound �, and
‖w‖0 with its continuous relaxation ‖w‖1, we obtain the optimization problem
of multi-label selective ensemble as

min
w

m∑

i=1

�(yi,Hiw) + λ‖w‖1, (6)

where
Hi = [h(1)(xi), · · · , h(k)(xi)] ∈ R

l×k (7)

is the matrix collecting the predictions of {h(t)}k
t=1 on instance xi, and λ is the

regularization parameter trading off the empirical risk and the sparsity of w.
Obviously, this is an �1-regularized convex optimization problem, and we solve
it via stochastic optimization subsequently.

2.3 Stochastic Optimization

To solve the �1-regularized convex problem (6), we employ the state-of-the-art
stochastic optimization algorithm presented in [21], and the key is how to com-
pute the subgradient of the loss function �(yi,Hiw).

Proposition 2. Given an example (xi,yi), a set of multi-label classifiers
{h(t)}k

t=1, a weighing vector w0 ∈ R
k and a multi-label performance measure

Δ, denote
pi = Hiw0

be the ensemble’s prediction on example (xi,yi) with Hi defined in (7)
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Algorithm 1. Stochastic optimization algorithm for MUSE
Input: training data S = {(xi,yi)}m

i=1

component classifiers {h(t)}k
t=1

performance measure Δ(·, ·)
regularization parameter λ, step size η

Procedure:
1: let w = 0, � = 0 and p = 2 ln k
2: repeat
3: select (xi,yi) uniformly at random from S
4: let Hi = [h(1)(xi), · · · , h(k)(xi)] and pi = Hiw
5: solve the argmax problem, i.e.,

ỹ ← solve (8) for set based performance measure Δ, or
r̃ ← solve (9) for ranking based performance measure Δ

6: compute the sub-gradient, i.e.,
g = (ỹ − yi)

�Hi for set based performance measure Δ, or
g = (r̃ − ri)

�Hi for ranking based performance measure Δ
7: let �̃ = � − ηg
8: let ∀t, �t = sign(�̃t) max(0, |�̃t| − ηλ)
9: let ∀t, wt = sign(�t)|�t|p−1/‖�‖p−2

p

10: until convergence
Output: weighting vector w

(a) if Δ is a set based performance measure, let g = (ỹ − yi)�Hi, where

ỹ = argmax
y′∈Y

[
y′�pi + Δ(yi,y′)

]
, (8)

(b) if Δ is a ranking based performance measure, let g = (r̃ − ri)�Hi, where r
is a rank vector consistent with yi and

r̃ = argmax
r′∈Ω

[
r′�pi + Δ(y, r′)

]
, (9)

then the vector g is a subgradient of �(yi,Hiw) at w0.

Proof. Since �(yi,Hiw) is a pointwise maximum of linear functions in w, it is
straightforward to obtain its subgradient if the maximizer of (4) or (5) at w0 can
be obtained. Obviously, the argmax (8) and (9) solve the maximizers for set and
ranking based performance measures respectively, which completes the proof. �

This proposition provides a method to compute the subgradient of �(yi,Hiw).
Based on this, we can present the stochastic optimization method for solving
the optimization problem (6), which is summarized in Algorithm 1. At each
iteration, this algorithm first samples an example (xi,yi) uniformly at random
from data S, and then compute the subgradient of �(yi,Hiw) (lines 4–6). Since
the example (xi,yi) is chosen at random, the vector g is an unbiased estimate
of the gradient of the empirical risk

∑m
i=1 �(yi,Hiw). Next, the dual vector � is

updated with step size η (line 7) so that the empirical risk is decreased; and also
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Algorithm 2. Solve the argmax in (9) for coverage
Input: true label vector y, current prediction p
Procedure:
1: let max val = − inf
2: for t ∈ {t | yt = 1} do
3: let v = p − et

4: r ← obtain rank vector by sorting v ascendingly
5: if r�v > max val then
6: let r̃ = r and max val = r�v
7: end if
8: end for
Output: rank vector r̃

it is truncated to decrease the regularizer λ‖w‖1 (line 8). Finally, the updates
of � is translated to the variable w via a link function in line 9. This procedure
iterates until convergence.

Solving the Argmax. In order to make Algorithm 1 practical, the argmax in
(8) and (9) need to be solved for the concerned performance measure. Fortu-
nately, there have been proposed efficient procedures for many commonly used
performance measures.

For examples, Joachims [12] solved the argmax problem in O(l2) time for
a large class of set based measures including Hamming loss and F1-score, in
O(l log l) time for ranking loss; Yue et al. [29] solved it for average precision in
O(l log l) time; Le et al. [13] solved (9) by a linear assignment problem for a
group of ranking based performance measures including precision@k. Of course,
if our concerned performance measure is among them, these procedures can be
directly employed by Algorithm 1. Here, we omit the detailed procedures, which
can be found in [12,13,29].

To our best knowledge, there is still no proposal to solve the argmax (9) for
coverage, which is ranking based performance measure evaluating how far one
needs to go along the list of labels to cover all the true labels. Formally, given a
true label vector y and a rank vector r, it is defined as

Δc(y, r) = max
{t|yt=1}

(l − rt) = max
t∈{t|yt=1}

(l − r�et), (10)

where et is a vector with t-th element as 1 and others 0. Substituting (10) into
the argmax problem (9), we can get an equivalent problem as

r̃ = argmax
r′∈Ω

max
t∈{t|yt=1}

r′�(pi − et). (11)

It is not difficult to see that for one single t, the problem

argmax
r′∈Ω

r′�(pi − et) (12)
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can be efficiently solved by sorting the vector (pi−et) ascendingly, and obtaining
the corresponding rank vector. As a consequence, by enumerating all t’s and
solving the corresponding problems as (12), the solution to (11) can be obtained.
The pseudocode of this procedure is given in Algorithm2. We can find that in
each iteration, the complexity is dominated by the sorting in line 4, thus the total
complexity of Algorithm2 is O(sl log l), where s is the number of true labels of
current example.

Convergence and Computational Complexity. Based on Theorem 3
in [21], we can find that the number of iterations of Algorithm1 to achieve
ε-accuracy is bounded by O(log k/ε2) with k as the number of component classi-
fiers. It can be found that this number is independent of the data size. Moreover,
in each iteration, all the operations are performed on one single example, and
the complexity is dominated by the argmax which as shown above can be solved
in polynomial time for various performance measures, also independent of data
size. This constitutes one of the appealing properties of MUSE, i.e., at each iter-
ation of Algorithm 1, we neither need to compute the predictions on all examples
nor need to solve the argmax on all examples.

3 Experiments

In this section, we perform a set of experiments to evaluate the effectiveness of
our proposed MUSE approach.

3.1 Configuration

The experiments are performed on image and music annotation tasks. Specif-
ically, two image annotation tasks are used, including corel5k which has 5000
images and 374 possible labels, and scene which has 2407 images and 6 possi-
ble labels; two music annotation tasks are used, including cal500 which has 502
songs and 174 possible labels, and emotion which has 593 songs and 6 possi-
ble labels. Five representative multi-label performance measures are considered
for each task, including Hamming loss, precision@k, F1-score, coverage, ranking
loss. The formal definition of these performance measures can be found in [20],
and the k of precision@k is set to the average number of relevant labels. In total,
there are 20 tasks.

In experiments, MUSE is implemented based on ECC [19], that is, by using
ECC, we first obtain 100 classifier chains, then use MUSE to obtain the selective
ensemble out of them. We compare MUSE with BSVM [1] which trains one
SVM for each label, and state-of-the-art methods including the lazy method
ML-kNN [31], label ranking method CLR [6] and the full ECC combining all
classifiers. It is also compared with the random strategy which selects classifiers
randomly. Specifically, LibLinear [5] is used to implement the base classifier in
BSVM and ECC; the default implementation of ML-kNN and CLR in Mulan [24]
are used; the random strategy generates ensembles of the same size of MUSE.
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For each task, these comparative methods are evaluated by using 30 times
random holdout test, i.e., 2/3 for training and 1/3 for testing in each time;
finally, averaged performance and standard derivation are reported; the sizes of
the generated selective ensembles are reported. For MUSE, the regularization
parameter λ is chosen by 5-fold cross validation on training set.

3.2 Results

Optimizing the Upper Bound. Instead of optimizing the concerned per-
formance measures directly, the proposed MUSE approach tries to optimize its
convex upper bound. Thus, a natural question is whether this is effective, or in
other words, whether optimizing the upper bound will improve the performance.
To answer this question, we record the training and test performance on cal500,
and the results are shown in Fig. 2. It can be found that both the training and
test performance improve when the optimization procedure goes on, which give
a positive answer to above question, that is, optimizing the upper bound is effec-
tive in improving the performance. Moreover, we can see from Fig. 2 that the
performance converges after some iterations. For example, they converge after
about 600 iterations for coverage. Noting there are 502 examples in total, and
in each iteration, MUSE operates on only one example, this means that we need
to scan the data set for only once.
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Fig. 2. Both the training and test performance improve during the optimization pro-
cedure, where coverage is evaluated on the cal500 data set.

Performance Comparison. The performance of all the comparative methods
are shown in Table 1. For better comparison, we perform paired t-tests at 95 %
significance level to compare MUSE with other methods, and the results are also
shown in Table 1.

It can be seen that the performance of MUSE is quite promising. Compared
with the full ensemble ECC100, it achieves 3 wins and 16 ties and loses only 1 time
out of all 20 tasks, while the ensemble size is reduced. For example, on cal500 the
F1-score is improved from 0.323 to 0.384, but the ensemble size reduced from 100
to less than 20. Also, when compared with the random strategy, MUSE achieves
9 wins but 0 loss, which shows its effectiveness. Comparing MUSE with other
methods, we can see that it achieves significantly better performance (15 wins
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Table 1. Experimental results (mean±std.), where •(◦) indicates that MUSE is signif-
icantly better (worse) than the corresponding method based on paired t-tests at 95 %
significance level, the sizes of selective ensembles generated by MUSE are reported
(after ‘/’), and the win/tie/loss counts based on paired t-tests are summarized in the
last row. Note that the ensemble size of ECC100 is 100, and the random strategy gen-
erates ensembles of the same size of MUSE.

Data BSVM ML-kNN CLR ECC100 Random MUSE

Hamming loss (the smaller, the better)

corel5k .014±.001• .009±.001 .498±.003• .010±.001 .010±.002 .010±.001/43.9±12.2

scene .120±.003• .089±.004◦ .174±.004• .102±.003 .180±.007• .101±.003/66.2±18.4

cal500 .212±.012• .139±.002 .378±.002• .141±.002 .145±.005• .137±.002/62.9± 7.4

emotion .305±.011 .201±.012◦ .190±.012◦ .302±.012 .312±.012• .297±.012/36.3±15.9

Precision@k (the larger, the better)

corel5k .177±.005• .213±.005• .232±.005 .234±.006 .227±.009 .231±.006/63.3±12.6

scene .451±.006• .472±.006 .453±.007• .465±.005 .460±.013• .469±.001/83.0±7.8

cal500 .315±.025• .447±.006 .453±.006 .452±.007 .438±.010 .446±.007/74.3± 7.2

emotion .605±.017 .618±.020 .582±.016• .609±.022 .603±.022 .607±.021/53.2±20.1

F1-score (the larger, the better)

corel5k .135±.005• .016±.003• .034±.001• .134±.006• .127±.008• .149±.006/15.3± 5.6

scene .595±.014• .675±.018 .629±.009• .668±.012 .567±.014• .672±.002/22.0±10.8

cal500 .314±.029• .322±.011• .405±.003◦ .323±.010• .333±.023• .384±.013/19.6± 4.7

emotion .614±.014 .602±.029• .622±.016 .618±.015 .612±.016 .619±.017/63.7±21.2

Coverage (the smaller, the better)

corel5k .560±.008• .309±.004◦ .285±.005◦ .362±.007 .367±.011 .363±.011/74.1±13.7

scene .102±.004 .090±.004 .102±.006 .096±.004 .097±.008 .097±.005/76.3±13.2

cal500 .913±.015• .750±.010◦ .756±.008◦ .768±.013◦ .796±.002• .790±.002/41.8± 9.7

emotion .322±.015 .319±.013 .323±.014 .328±.015 .334±.019 .326±.017/73.6±12.5

Ranking loss (the smaller, the better)

corel5k .270±.005• .135±.002• .119±.002• .042±.001• .039±.005• .032±.003/71.3±11.7

scene .106±.005• .082±.005 .079±.005 .087±.004 .087±.007 .086±.004/52.4± 9.7

cal500 .309±.019• .184±.003 .182±.003 .184±.005 .179±.005 .188±.006/54.9±12.4

emotion .194±.012• .169±.015◦ .146±.013◦ .187±.013 .187±.016 .188±.011/74.1±11.7

Win/Tie/Loss counts (MUSE vs alternatives)

counts 15/5/0 5/11/4 8/9/3 3/16/1 9/11/0 –

and 0 loss) against BSVM, also comparable performance against the state-of-
the-art methods ML-kNN and CLR.

4 Related Work

In ensemble learning, selective ensemble (a.k.a. ensemble pruning or ensemble
selection) is an active research topic [34, chapter6]. In traditional supervised
learning, a number of methods have been developed based on different tech-
niques, such as genetic algorithm [35], semi-definite programming [33], cluster-
ing [9], �1-norm regularized sparse optimization [14]. In [15], in order to reduce
the size of ECC, Li and Zhou proposed SECC (i.e., selective ensemble of classi-
fier chains), which to our best knowledge is the first work on selective ensemble
in the multi-label setting.
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In this paper, we address the problem of multi-label selective ensemble by
proposing that it is needed to take the concerned performance measure fully into
account, and propose the MUSE approach to build the selective ensemble via
sparse convex optimization. This is encouraged and inspired by recent works on
optimizing complicated performance measures [12,15,17]. Moreover, compared
with previous work [15], the MUSE approach is more general, for instance, it
can optimize a large variety of performance measures while SECC considers only
F1-score. In other words, SECC is a special case of MUSE when it considers only
F1-score.

5 Conclusion

In this paper, we study the problem of multi-label selective ensemble, which tries
to select a subset of component classifiers whilst keeping or improving the perfor-
mance. The main motivation is that we need to take the concerned performance
measure into account during the selection process, and the MUSE approach is
proposed to handle this problem. Specifically, by taking an upper bound over
empirical risk, MUSE tries to optimize the concerned performance measure via
an �1-norm regularized convex optimization problem. And this problem can be
efficiently solved by stochastic subgradient descend for a large variety of perfor-
mance measures. Experiments on image and music annotation tasks show the
effectiveness of the proposed MUSE approach.

In current work, we consider the component classifier in multi-label ensem-
ble as a general multi-label classifier. Often, the component classifier itself is a
group of single-label classifiers, like classifier chain in ECC. Therefore, it will be
interesting to consider the multi-label selective ensemble problem at the level of
such single-label classifiers.
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Abstract. We consider the problem of multi-modal regression estimation under
the assumption that a kernel-based approach is applicable within each particular
modality. The Cartesian product of the linear spaces into which the respective
kernels embed the output scales of single sensors is employed as an appropriate
joint scale corresponding to the idea of combining modalities at the sensor level.
This contrasts with the commonly adopted method of combining classifiers
inferred from each specific modality. However, a significant risk in combining
linear spaces is that of overfitting. To address this, we set out a stochastic
method for encompassing modal-selectivity that is intrinsic to (that is to say,
theoretically contiguous with) the selected kernel-based approach.

Keywords: Kernel-based regression � Combining modalities � Kernel fusion �
Classifier fusion

1 Introduction

Problems of estimating dependencies from empirical data belong to the most glowing
challenges of modern informatics. Let x 2 X be a set of real-world objects naturally
associated with a hidden characteristic y 2 Y. The function yðxÞ : X ! Y is known to
the observer only within the bounds of a finite training set

X� ) xj; y xj
� �� �

; j ¼ 1; . . .;N
� �

: ð1Þ

It is required to continue the function onto the entire set ŷðxÞ : X ! Y, so that it
would be possible to estimate the values of the goal characteristic for other objects
x 2 XnX� [1]. This scenario of precedent-based dependence estimation is said to be
the problem of pattern recognition if the hidden function takes values from a finite set
ŷðxÞ : X ! fyð1Þ; . . .; yðmÞg, and is referred to as that of regression estimation in the
case of the real-valued function ŷðxÞ : X ! R. It is just the latter kind of dependence
recovery problems, which is addressed in this paper.

A computer is incapable of immediate perceiving any physical entity, therefore, a
formal variable must ever act as the mediator of the real world to it. Practically all
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principles of object representation in designing dependence-estimation techniques boil
down into the categories of feature-based and similarity/dissimilarity-based ones.

The feature-based principle associates objects with a variable xðxÞ : X ! X

called their computer-perceptible feature. The unknown regression dependence
ŷð xðxÞ Þ : X ! R is to be estimated from a more specific training set than (1):

X� ) xðxjÞ; yðxjÞ
� �

; j ¼ 1; . . .;N
� �

: ð2Þ

The simplest assumption which has given rise to the most popular feature-based
methods is that the objects are represented by real vectors xðxÞ ¼ x1ðxÞ; . . .;ð
xnðxÞÞ 2 R

n. Then, the regression model ŷð x xð Þ Þ : R
n ! R is particularly simple in

both formulation and estimation of parameters ĉ 2 R
n and b̂ 2 R from the training

set (2):

ŷð x xð Þ Þ ¼ ĉTxðxÞ þ b̂ ¼
Xn

i¼1
ĉixiðxÞ þ b̂; ð3Þ

It is to be noticed that single features xiðxÞ in (3) are, actually, simplest object-
representation modalities to be fused by way of their linear combination.

In this paper, we address the alternative and more general similarity/dissimilarity-
based principle of object representation, which implies that the only way to perceive
real-world objects is pair-wise comparison of them ðx0;x00Þ by a real two-argument
function Kðx0;x00Þ : X � X ! R. In the majority of practical situations, similarities
or distinctions between pairs of objects are to be measured from the viewpoints of
several different properties, i.e., object-comparison modalities, each expressed by a
modality-specific function Kiðx0;x00Þ, i ¼ 1; . . .; n. In a training set for similarity/
dissimilarity-based estimation of the regression dependence, objects must be repre-
sented, instead of individual features (2), by n matrices of pair-wise object comparison:

X� ) Kiðxj;xlÞ; i ¼ 1; . . .; n; yðxjÞ; j; l ¼ 1; . . .;N
� �

: ð4Þ

More specifically, we consider here the kernel-based principle of object represen-
tation, which assumes that the comparison functions Kiðx0;x00Þ : X � X ! R are
kernels in the set of objects [2]. This means that each of them is symmetric
Kiðx0;x00Þ ¼ Kiðx00;x0Þ, and the respective matrix in the training set (4) is always
positive-semidefinite. One of the main advantages of the kernel-based approach is its
ability to facilitate easily fusing several seemingly incomparable physical properties of
objects in an entire model of the dependence of interest yðxÞ [3].

We show that the result of kernel-based regression estimation has, under some
natural assumptions, the closed form

ŷðx X�j Þ ¼
XN

j¼1

Xn

i¼1
âijKiðxj;xÞ þ b̂; ð5Þ

where real-valued parameters ðâij; i ¼ 1; . . .; n; j ¼ 1; . . .;NÞ and b̂ are to be inferred
from the training set (4).
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The greater the variety of different modalities, the broader the diversity of object
properties which underlie the regression model (5). But if the number of kernels n is too
large for the size N of the available training set, the overcomplicated model loses its
generalization performance. The problem of selection among real-valued regressors (3)
has been broadly considered in the literature [4], but the existing methodology does not
cover the kernel-based regression model (5). This paper is endeavoured to partially fill
in this gap.

For selective combination of several object-representation kernels when estimating
the regression model from the observed training set (4), we adopt the principle of
Relevance Kernel Machine (RKM) originally developed for the purpose of pattern
recognition [5]. The resulting training technique will be regressor selective in the sense
that it is able to find redundant features and assign to them small regression coefficients
ðâij; j ¼ 1; . . .;NÞ.

The desired selectivity is achieved through a meta-parameter that controls the
model complexity, i.e., the degree of elimination of redundant kernels. The appropriate
level of selectivity is determined via cross-validation procedure.

2 A Kernel-Based Parametric Family of Regression
Dependencies Over Objects of Arbitrary Kind

We shall assume throughout this paper that n kernel functions Kiðx0;x00Þ :ð
X� X ! R; i ¼ 1; . . .; nÞ are defined in the set of real-world objects of interest
x 2 X, which express alternative ways of quantitative comparison between all the pairs
of objects. A kernel is a symmetric two argument function that forms a positive semi
definite matrix Kiðxj;xlÞ; j; l ¼ 1; . . .;m

� �
for any finite collection of objects

xj; j ¼ 1; . . .;m
� �

[6]. Each of the kernels Kiðx0;x00Þ embeds the same set of objects X

into a specific into hypothetical linear space X � ~Xi, in which the null element and
linear operations are defined in a particular way [7]:

/i 2 ~Xi; x
0 þ x00 : ~Xi � ~Xi ! ~Xi; ax : R� ~Xi ! ~Xi ð6Þ

The role of inner product is played by the symmetric kernel function itself which is
inevitably bilinear Kiða0x0 þ a00x00; xÞ ¼ a0Kiðx0;xÞ þ a00Kiðx00;xÞ.

The major convenience factor of the kernel-based approach to data analysis is its
ability to provide the constructor of a data-analysis system with the possibility of
working with objects of arbitrary nature in unified terms of linear real-valued functions
fiðxÞ : X ! R. More strictly, the carrier of kernel-specific linear functions is not the set
of objects itself X, but rather its respective linear closure X � ~Xi ! R. To determine a
scalar linear function fiðxÞ : ~Xi ! R, it is enough to specify a direction element
(vector, in linear-space terms) ci 2 ~Xi, then the function will be expressed as inner
product fiðx j ciÞ ¼ Kiðci;xÞ.

Let us consider now the Cartesian product ~X1 � . . .� ~Xn � X� . . .� X ¼ Xn of
the linear spaces ~Xi � X defined by the respective kernels, and then assign an
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appropriate combined kernel (inner product) in it ð~X1 � . . .� ~XnÞ � ð~X1 � . . .�
~XnÞ ! R. We shall apply this inner product only to n-fold repetitions of the same real-
world object ðx; . . .;xÞ 2 X� . . .� X ¼ Xn and conventionally use the symbol
Kðx0;x00Þ for inner products of such constructions. In particular, the sum of the initial
kernels Kðx0;x00Þ ¼Pn

i¼1 Kiðx0;x00Þ will be a kernel in ~X1 � . . .� ~Xn. This idea is
following our previous works [8–11].

From this point of view, any choice of a parameters c ¼ ðci 2 ~Xi; i ¼ 1; . . .; nÞ 2
~X1 � . . .� ~Xn and real number b 2 R yields a linear regression dependence in the set
of objects

ŷðxÞ ¼ Kðc;xÞ þ b ¼
Xn

i¼1
Kiðci;xÞ þ b; ð7Þ

and produces, thereby, a kernel fusion technique.
However, the kernel-based family of regression dependences (7) contains coeffi-

cients ci 2 ~Xi meant to take values from hypothetical kernel-specific linear spaces
deriving from the kernel trick, in contrast to the initial set of real-world objects, which
is their common subset X � ~Xi. Thus, immediate estimation of these coefficients from
the given training set (4) is computationally impossible.

Nevertheless, in the next Sect. 3, we outline quite lenient assumptions on the origin
of the observed data set (4), under which its hidden regression model (7) can be
estimated in the closed form (5) without any loss of generality.

3 A Linear Normal-Gamma Model of the Hidden
Kernel-Based Regression Dependence and Its
Bayesian Estimation from the Training Set

3.1 Linear Normal Observation Model

In general, we imply the view of the set of pairs x; yðxÞð Þ 2 X� R as a probability
space. This means that any observed object and its real-valued goal characteristic are to
be treated as a random pair of variables in X� R. But our approach to regression
estimation will fully rest on estimating the unknown conditional density u�ðy jxÞ in R

and abstract away from the still more unknown marginal distribution of x in X.
Let the observer assume the linear regression model Eðy jx ; c1; . . .; cn; bÞ with

unknown parameters ci 2 ~Xi (7) instead of the unknown genuine density /�ðy jxÞ and
consider the respective conditional parametric family of distribution densities to be
normal with unknown observation noise variance n[ 0:

/ðy jx ; c1; . . .; cn; nÞ ¼ 1=n1=2ð2pÞ1=2
� �

exp � 1=2nð Þ y�Pn
i¼1

��
Kiðci;xÞ � bÞ2Þ:

If, in addition, the random observed values of the goal variable yj ¼ yðxjÞ in the
training set (4) are considered as depending each only on its object, so, the joint
distribution density will be the product
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Uðy1; . . .; yN jx1; . . .;xN ; c1; . . .; cn; nÞ ¼
YN

j¼1
uðyj jxj; c1; . . .; cn; nÞ

¼ 1=nN=2ð2pÞN=2
� �

exp �ð1=2nÞ
XN

j¼1
yj �

Xn

i¼1
Kiðci;xjÞ � b

� �2� 	
:

ð8Þ

3.2 Bayesian Estimation with Fixed a Priori Variances of Kernel-Specific
Regression Coefficients

In its turn, the unknown regression coefficients ðc1; . . .; cnÞ are a priori considered as
independent hidden random variables distributed in respective kernel-specific linear
spaces ci 2 ~Xi in accordance with zero-mean normal-like circular laws EðciÞ ¼
/i 2 ~Xi. Let the circular variances rin be proportional to the observation noise vari-
ance n in (8) and individual for each modality due to individual proportionality

coefficients ðr1 [ 0; . . .; rn [ 0Þ, so that wiðci jri; nÞ / 1=ðrinÞ1=2
� �

exp �ð1=2rinÞð
Kiðci; ciÞÞ.1 As to the random regression constant b 2 R, no a priori information is
assumed to be available on its distribution. So, the joint a priori density will be
expressed in the improper form as the product

Wðc1; . . .; cn; b j r; . . .; rn; nÞ /
Yn

i¼1
rin

� ��1=2
exp �ð1=2Þ

Xn
i¼1

ð1=rinÞKðci; ciÞ
 !

:

ð9Þ

Let us assume first that the variances of regression coefficients ðr1n; . . .; rnnÞ in the
a priori distribution (9) are fixed. Then, the maximum point of the joint a posteriori
density Pðc1; . . .; cn; b jX�; r1; . . .; rn; nÞ will be the object of Bayesian training from the
given training set (4):

ðĉ1; . . .; ĉn; b̂Þ ¼ argmaxPðc1 2 ~X1; . . .; cn 2 ~Xn; b jX�; r1; . . .; rn; nÞ
¼ argmax½lnUðy1; . . .; yN jx1; . . .;xN ; c1; . . .; cn; nÞ
þ lnWðc1; . . .; cn; b jr; . . .; rn; nÞ�:

ð10Þ

It is immediately seen from (8) and (9) that the estimate will not depend on the
assumed observation noise variance n. The following Theorem 1 shows that the result
of training can be expressed in the explicit form (5) omitting the necessity of solving
the optimization problem (10) in terms of hypothetical linear spaces ci 2 ~Xi � X.

Theorem 1. The regression model (7) inferred from the training set X� under the a
priori assumption of fixed regression coefficient in accordance with the Bayesian

1 It is incorrect to speak about strictly normal densities since the dimensionality of each linear space ~Xi
depends on the respective kernel function. As a result, the normalization coefficient of any density
wiðaiÞ; ai 2 ~Xi
� �

cannot be specified before the kernel is completely defined.
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condition (10) has the closed form (5) with parameters ðâij; b̂Þ, which are the minimum
point of the quadratic optimization criterion

Jðaij; i ¼ 1; . . .; n; b; j ¼ 1; . . .;N j ri; i ¼ 1; . . .; nÞ
¼
Xn

i¼1
ð1=riÞ

XN

j¼1

XN

l¼1
Kiðxj;xlÞaijail

þ
XN
j¼1

yj �
Xn

i¼1

XN

l¼1
Kiðxj;xlÞail � b

� �2
! min :

ð11Þ

In its turn, the minimum point ðâij ¼ rid̂j; b̂Þ is completely defined by the solution

ðd̂1; . . .; d̂N ; b̂Þ of the system of N þ 1 linear equations

Xn

i¼1
riKiðxj;xjÞ þ 1

� �
dj þ

XN

l¼1;l 6¼j

Xn

i¼1
riKiðxj;x lÞ

� �
dl þ b ¼ yj; j ¼ 1; . . .;N;XN

j¼1
dj ¼ 0;

8><
>: ð12Þ

and results in the Bayesian estimate of the regression model (5)

ŷðx jX�; r1; . . .; rnÞ ¼
XN

j¼1
d̂j
Xn

i¼1
riKiðxj;xÞ þ b̂: ð13Þ

It is well seen from (13) that the assumed positive coefficients ðr1; . . .; rnÞ occur in
the estimated regression model as weights at the object-representation kernels. If all the
coefficients equal unity r1 ¼ . . . ¼ rn ¼ 1, all the kernels equally participate in
the model, but when it is required to suppress some of them, it is enough to take the
respective coefficients ri close to zero, then so will be also the a priori variances rin of
hypothetical regression coefficients ai in (9).

Further maximization of the Bayesian criterion (10) also with respect to ðr1; . . .; rnÞ
is senseless, because it will ever prefer greater values of all coefficients. The coefficients
ðr1; . . .; rnÞ play the role of a vector structural parameter of the class of regression
models, and their appropriate values are to be chosen from the requirement of maxi-
mum generalization performance of training from a single sample set X�.

In the next Sect. 3.3, we consider the unknown reciprocal variance coefficients 1=ri,
in their turn, as independent random variables a priori distributed in accordance with

identical gamma densities c ð1=riÞ j lð Þ / ð1=riÞ ð1þlÞ2=2lð Þ � 1 exp �ð1=2lÞ ð1=riÞð Þ.
We show that the choice of the parameter l [ 0 in this additional a priori assumption
endows the Bayesian estimate of the regression dependence (13) with a certain level of
selectivity in fusing the object-representation kernels. As a result, it will be enough to
apply the Akaike Information Criterion only to the single selectivity parameter.
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3.3 Estimation with Free Kernel-Related Variances and the Fixed
Selectivity Level

Let the reciprocated positive variance coefficients 1=r1; . . .; 1=rnð Þ be unknown and a
priori considered as independently gamma distributed. In the standard definition, the
family of gamma distributions c ð1=riÞ j a; bð Þ ¼ ba=C að Þð Þð1=riÞa � 1 exp �b ð1=riÞð Þ
contains two parameters a [ 1 and b [ 0 jointly determining the mathematical
expectation Eð1=riÞ ¼ a=b and variance Varð1=riÞ ¼ a



b2. We set a ¼ ð1=2Þ

ð1=nÞð1 þ 1=lÞ þ 1½ �, b ¼ 1=2nl, and have now a parametric family of distributions
defined only by l 	 0, such that Eð1=riÞ ¼ ð1 þ nÞl þ 1 and Varð1=riÞ ¼
2nl ð1 þ nÞl þ 1½ �. If l ! 0, a priori random values 1=ri approach identity
1=ri ffi . . . ffi 1=rn ffi 1, however, if l grows, the independent nonnegative values 1=ri
may differ arbitrarily, because Varð1=riÞ increases much faster than Eð1=riÞ.

The joint a priori distribution of independent inverse variances is proportional to the
product

Gð1=r1; . . .; 1=rn j l; nÞ /
Qn

i¼1 1=ri
� �ð1=2Þ ð1=nÞð1þ 1=lÞ� 1½ �

exp �ð1=2nlÞPn
i¼1 ð1=riÞ

� �
;

so, the Bayesian training criterion (10) with additional respect to the a priori distri-
bution of variances will have the form

ðĉ1; . . .; ĉn; b̂; r̂1; . . .; r̂nÞ ¼ argmaxPðc1 2 ~X1; . . .; cn 2 ~Xn; b; r1 	 e; . . .; rn 	 e jX�; l; nÞ
¼ argmax lnUðy1; . . .; yN jx1; . . .;xN ; a1; . . .; an; nÞ þ lnWðc1; . . .; cn; b jr; . . .; rn; nÞ½
þ lnGð1=r1; . . .; 1=rn j l; nÞ�:

ð14Þ

where e[ 0 is a small real number close to zero. Just as in (10), the Bayesian estimate
does not depend on n.

Theorem 2. The regression model (7) inferred from the training set X� under the a
priori assumption of fixed regression coefficient in accordance with the Bayesian
condition (14) has the closed form (5) with parameters ðâij; b̂Þ, which are the minimum
point of the quadratic optimization criterion

Jðaij; ri; i ¼ 1; . . .; n; b; dj; j ¼ 1; . . .;NjlÞ
¼
Xn

i¼1
ð1=riÞ

XN

j¼1

XN

l¼1
Kiðxj;xlÞaijail þ 1=l

� �
þ 1þ 1=lð Þ ln ri

� �

þ
XN
j¼1

yj �
Xn

i¼1

XN

l¼1
Kiðxj;xlÞail � b

� �2
! min :

ð15Þ

The minimization of this criterion is provided by the Gauss-Seidel iterations
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ðriÞ0 ¼ 1; i ¼ 1; . . .; n
� �

; k ¼ 0;

ðriÞk; i ¼ 1; . . .; n
� �

) ðdjÞk; bk; i ¼ 1; . . .; n; j ¼ 1; . . .;N
� �

; ðaijÞk ¼ ðriÞkðdjÞk;
ðaijÞk ¼ ðriÞkðdjÞk; i ¼ 1; . . .; n; j ¼ 1; . . .;N
� �

) ðriÞkþ1; i ¼ 1; . . .; n
� �

;

implemented by, in turn, solving the system of linear equations

Xn

i¼1
ðriÞkKiðxj;xjÞ þ 1

� �
dj þ

XN

l¼1;l 6¼j

Xn

i¼1
ðriÞkKiðxj;x lÞ

� �
dl þ b ¼ yj; j ¼ 1; . . .;N;XN

j¼1
dj ¼ 0;

8><
>: ð16Þ

and computing by independent formulas

ðriÞkþ1 ¼
PN

j¼1

PN
l¼1 Kiðxj;xlÞðdjÞkðdlÞk þ 1=l

1þ 1=l
; i ¼ 1; . . .; n ð17Þ

The stopping rule of the iterative process of learning can be defined, for example,

on the condition of convergence of sequences ri; i ¼ 1; . . .; n : 1n
Pn
i¼1

rkþ1
i � rki

�� ��
\e; e[ 0: Stopping at a step results in an approximation to the Bayesian estimate of
the regression model (5)

ŷðx jX�; lÞ ¼
XN

j¼1
d̂j
Xn

i¼1
r̂iKiðxj;xÞ þ b̂: ð18Þ

Convergence of the procedure occurs in 10�15 steps for typical problems, sup-
pressing redundant kernels through the allocating of very small (but always non-zero
weights) r̂i in the regression model (18).

The level of kernel selectivity is parametrically determined by l : 0\ l\1. As

l ! 0, variances tend toward unity ðriÞkþ1 ¼ 1; i ¼ 1; . . .; n
� �

(17), and the training

rule (16)–(17) degenerates to the non-selective regression estimation (12). Contrarily,
when l ! 1, iteration of the kernel weights ðriÞkþ1 ¼ ðriÞk

PN
j¼1

PN
l¼1 Kiðxj;xlÞ

ðdjÞkðdlÞk (17) is extremely selective.
Given a training set X�, each value of the selectivity parameter 0\ l\1 pro-

duces a collection of kernel weights r̂1ðlÞ; . . .; r̂nðlÞð Þ, i.e., a version of the model
density W c1; . . .; cn; b j r̂1ðlÞ; . . .; r̂nðlÞ; nð Þ (9) of the hidden regression coefficients in
the observation density Uðy1; . . .; yN jx1; . . .;xN ; c1; . . .; cn; nÞ (8).

4 Experimental Results

4.1 Simulation Studies

The data are simulated from the following linear model y ¼ Xcþ n; n : N 0; qð Þ:
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First of all we illustrate the modalities selection ability of proposed algorithm by
simple ground-truth example. We considered the regression problem model with 49
features, 100 objects, and the target variable computed as y ¼ x2 þ 3x6 þ 2x22 þ n
where xi : N xi 0; 1jð Þ; n : N n 0; 0:5jð Þ:

We received r̂2 ¼ 1:00008, r̂6 ¼ 9:01475, r̂22 ¼ 3:958091, r̂i\0:001524, 8i 62
2; 6; 22f g and ĉ2 ¼ 1:00006, ĉ6 ¼ 3:00379, ĉ22 ¼ 3:958091, ĉi ffi 0; 8i 62 2; 6; 22f g.

You can see that coefficients were close to the true values.
The purpose of next simulation is to show that the Supervised Selectivity Approach

not only dominates the lasso and elastic net in terms of prediction accuracy, but also is
a better variable selection procedure.

We simulate 100 data sets each of which has 1000 objects: 20 observations for the
training set and 980 for the testing set. In simulations we set the number of features
n ¼ 20; 100; 500. The noise variance in simulated data is 10 % of the variance of
observed variable. In Simulation 1 we set ci ¼ 1; 1; 0; . . .; 0ð Þ, The design matrix X is
generated from the multivariate normal distribution with mean 0, variance 1. In Sim-
ulation 2 we set c1;2 ¼ 1; c2;...;15 ¼ 0:7ð Þi�1; c16;...;n ¼ 0 and leave other setups the same
as in Simulation 1. In Simulation 3 we set c1;2 ¼ 1; c3;...;n ¼ 0:75ð Þi�1 for n ¼ 20,
c1;2 ¼ 1; c3;...;n ¼ 0:95ð Þi�1 for n ¼ 100 and c1;2 ¼ 1; c3;...;n ¼ 0:99ð Þi�1 for n ¼ 100.
The structural parameters of all methods are chosen by cross-validation, leave-one-out
procedure.

We compare the prediction accuracy of the three methods using the average of the
prediction mean-squared errors MSE for observed variable and coefficients. The results
are summarized in Tables 1, 2 and 3.

4.2 Real Data Examples

The real data was received from the well-known UCI repository (http://archive.ics.uci.
edu/ml). All datasets are parted into training and test set as 80:20. In Fig. 1 we show
number of selected features on real data. The dark part of each column indicates the
number of selected features. Average mean-squared errors over 100 experiments are
summarized in Table 4.

Table 1. Comparison of the three methods (Lasso, EN and Supervised Selectivity) on prediction
and variable selection accuracy for Simulation 1

n Lasso Elastic Net SS

Prediction MSE
20 0.2359 0.2316 0.0887
100 0.2560 0.2528 0.1990
500 0.3115 0.3114 0.4150
Variable selection accuracy
20 0.1225 0.1164 0.0287
100 0.2314 0.1332 0.0562
500 0.2778 0.2176 0.0476
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Fig. 1. Modalities selection on real data

Table 3. Comparison of the three methods (Lasso, EN and Supervised Selectivity) on
prediction and variable selection accuracy for Simulation 3

n Lasso Elastic Net SS

Prediction MSE
20 0.3887 0.3919 0.1777
100 0.9937 0.9730 0.9128
500 1.0243 1.0448 1.0814
Variable selection accuracy
20 0.1598 0.1123 0.0331
100 0.1914 0.1594 0.0564
500 0.3117 0.2892 0.0679

Table 2. Comparison of the three methods (Lasso, EN and Supervised Selectivity) on
prediction and variable selection accuracy for Simulation 2

n Lasso Elastic Net SS

Prediction MSE
20 0.3474 0.3535 0.1512
100 0.6578 0.6226 0.5639
500 0.8813 0.8878 0.9575
Variable selection accuracy
20 0.1397 0.1298 0.0319
100 0.1861 0.1642 0.0483
500 0.3045 0.2567 0.0611

Table 4. The root mean square deviation (mean ± SD) for different algorithms on real data

Data Lasso Elastic Net SCS

Auto-mpg 3.47 ± 0.14 3.47 ± 0.14 3.46 ± 0.13
Boston 5.06 ± 0.23 5.07 ± 0.24 5.05 ± 0.23
Diabetes 55.31 ± 0.33 55.36 ± 0.32 55.17 ± 0.29
Prostate 0.81 ± 0.11 0.82 ± 0.11 0.80 ± 0.09
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5 Conclusions

We propose a new Bayesian approach to variable selection for dependency estimation.
Real data examples and simulation studies show that Supervised Selectivity Shrinkage
performs significantly better than EN and Lasso in prediction accuracy. Simulation
studies suggest that SCS outperforms EN and Lasso in variable selection.
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Abstract. Relying on an ordinal relationship among class labels, ordinal
classifiers incorporate semantic knowledge about the classes into a purely
data-driven multi-class classification task. Under the assumption that
this relationship is reflected in feature space, these classifiers organize
their internals according to this information. One essential step required
is the identification of the true inter-class dependencies.

In this work, we now focus on the ability of cascaded ensemble clas-
sifiers to detect the relationships among ordinal classes. The minimal
class sensitivity proves to be suitable to quantify this ability. This is
an important problem, as for instance in medical applications often the
true ordering of the classes is unknown or only partly known. We show
that we can detect the ordinal class structure or its absence and that this
ability depends on both the chosen base classifiers and the corresponding
training schemes.

Keywords: Ordinal classification · Multi-class classification

1 Introduction

Classification is often considered as a purely data-driven approach in which clas-
sification models are adapted to a set of observations. This definition may be
limiting if semantic knowledge about the class labels exist. In ordinal classifi-
cation, an intrinsic ordering of the classes is assumed (e.g., small < medium
< large) to be reflected in feature space. Even though conventional multi-class
classification algorithms can be applied to such problems, ordinal classification
algorithms can take advantage of the semantic knowledge on the ordering [8].
Incorrect class orderings should decrease their performance.

Many ordinal classification methods utilize ensemble techniques. These algo-
rithms decompose an ordinal classification task into a system of binary ones
and mainly differ in the employed fusion architecture. Frank and Hall propose
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an ordered linear sequence of binary logistic regression classifiers for estimating
conditional class probabilities [7]. Cardoso and Pinto da Costa devise a cascaded
ensemble classifier [5]. Hühn et al. utilize ordered binary trees for constructing
ordinal ensemble classifiers [8]. Platt et al. represent the relations of base classi-
fiers as a directed acyclic graph [11].

In this work, we assess whether ordinal ensemble classifiers can be utilized
to identify the true ordering of a set of ordinal class labels. We investigate the
influence of incorrect class orders on the classification performance of several
ordinal cascaded ensemble classifiers in terms of the classifiers’ minimal class
sensitivities. Our experiments indicate that the tested models are able to reject
incorrect class orders. Their performance depends both on the choice of the base
classifiers and on the corresponding training scheme.

2 Methods

We will use the following notation throughout: a data object is represented by
a vector x = (x(1), ..., x(n)) ∈ X with X being the space of features. Each
data object x i is associated with a class label yi ∈ Y, with Y being a finite
space of labels. A dataset of m data objects is defined as S = {(x i , yi)}mi=1.
Classification denotes the prediction of a label yi ∈ Y for a data object x i ∈ X .
A suitable prediction model (the classifier) is determined from a training set
T = {(x i , yi)}mi=1 of samples for which the assignment of labels to data objects
is known. This is done in an initial learning phase

l : T × C �→ cT . (1)

The model is selected from a concept class c ∈ C that characterizes the essential
structural properties of a model type. After the learning phase, the model can
be used to predict the label for an unseen data object by a mapping

cT : X −→ Y. (2)

2.1 Multi-class Classification

Many classification algorithms (e.g. linear classifiers) are designed for binary clas-
sification tasks (|Y| = 2). They are restricted to the classification of dichotomies
and cannot be applied directly if there are more than two possible outcomes [3].
Various approaches have been proposed to extend binary classifiers to multi-class
classifiers [9]. A common strategy is to decompose a multi-class classification task
into a system of dichotomies that is handled by an ensemble of binary classifiers
E = {ci : X �→ Yi}|E|

i=1[9,14]. Each of these classifiers is trained on a relabeled
and possibly resampled version of the original dataset:

l : T(y+,Y+) ∪ T(y−,Y−) × C �→ ci, (3)

where y± denotes the two new class labels and Y± ⊂ Y, Y+ ∩ Y− = ∅ denotes
the two collections of classes that are merged into the new training sets
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T(y±,Y±) = {(x , y±)|(x, y) ∈ T , y ∈ Y±} . (4)

The final prediction is based on information returned by all binary classifiers.
In the following, we restrict ourselves to late fusion schemes, which rely on
the predictions made by the base classifiers [13]. The corresponding ensemble
classifier can be seen as a mapping

hE : Y1 × ... × Y|E| �→ Y with hE(c1(x ), ..., c|E|(x)) = y. (5)

A common example for a multi-class ensemble is the one-against-one (OAO)
fusion scheme [9]. It divides a k-class classification task into |E| = k(k−1)

2 two-
class tasks that are addressed independently by individual classifiers

c(y,y′) : X �→ {y, y′} for all y, y′ ∈ Y, y ≺ y′. (6)

Here y ≺ y′ denotes an arbitrary total order among the class labels in Y. The
training of a single classifier is based on all samples of the corresponding classes

l : T(y,{y}) ∪ T(y′,{y′}) × C �→ c(y,y′). (7)

The OAO ensemble predicts the class label of an object according to a (fixed)
majority vote

hE(c1(x ), ..., c|E|(x )) = argmax
y∈Y

(
∑

c∈E
I[c(x)=y]). (8)

Classical multi-class ensembles are designed as purely data-driven algorithms.
Knowledge on the semantics of classes and their interactions is neither taken into
account for the design of a fusion architecture nor for the corresponding training
algorithms.

2.2 Ordinal Classification

Ordinal classification is a special case of multi-class classification that relies on
semantic knowledge on the class ordering [8]. Here, a total order of the class labels
(e.g., small < medium < large) is known. We utilize class labels Y = {1, . . . , k}
in the following. It is assumed that the ordered structure of the label space is
reflected in the topology (of a subspace) of the feature space. An example for
such ordinal data is shown in Fig. 1. Here, a greater label is reflected by higher
values of the shown features.

In this work we address the question whether the correct order of ordinal
class labels can be identified via ordinal ensemble classifiers. More precisely, we
analyze the performance of a cascaded fusion architecture [5,12] (Fig. 2). The
cascaded classifier hE uses an ensemble of k − 1 base classifiers

E =
{
c(i,i+1) : X �→ {i, i + 1}}k−1

i=1
(9)

for solving the classification task. It evaluates the base classifiers iteratively. If
the ith base classifier c(i,i+1)(x) predicts class i, the procedure stops, and the
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Fig. 1. Example of an ordinal classification task: Greater values for both features cor-
respond to a greater class label. For complete description of the dataset, see Sect. 3.

ensemble classifier predicts class i. Otherwise the current sample is passed to the
next base classifier. The ensemble classifier acts as a decision list and performs
the mapping

hE(x) = min

(
|E|, arg min

i∈1,...,|E|−1

[ci(x) = i]

)
. (10)

The cascaded fusion architecture itself can be seen as an untrainable late fusion
architecture which is fixed for a given label order. Its performance only depends
on the chosen type of base classifiers and their training. We utilize three different
training schemes for base classifiers in our experiments:

Current vs. rest (CR): The ith classifier is trained to separate the ith class from
those ≥ i + 1

lCR : T(i,{i}) ∪ T(i+1,{i+1,...,k}) × C �→ c(i,i+1) (11)

Lower vs. higher (LH): The ith classifier is trained to separate all classes ≤ i
from those ≥ i + 1

lLH : T(i,{1,...,i}) ∪ T(i+1,{i+1,...,k}) × C �→ c(i,i+1). (12)

Pairwise (PW): The ith classifier is trained to separate the ith class from the
i + 1th class

lPW : T(i,{i}) ∪ T(i+1,{i+1}) × C �→ c(i,i+1). (13)

3 Experiments

In these training schemes, all base classifiers are trained one by one. Each base
classifier is adapted separately and it is not influenced by the training of the
remaining ensemble. The base classifiers are especially not enforced to be parallel
as e.g. in [5]. To answer the question whether cascaded classifiers can recover a
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Fig. 2. Classification scheme of a cascaded classifier hE(x). The base classifiers
c(i,i+1)(x) are applied iteratively to a data object x. If the ith classifier predicts class
i, the procedure stops and hE(x) = i. Otherwise, the next classifier in the cascade is
applied to the data object.

potential ordinal structure of a dataset or not, we evaluate them on all possible k!
class orders of a k-class classification task. The cascaded classifiers are analyzed
in R×F cross-validation experiments [3]. For a single F -fold cross-validation, the
training dataset is split into F disjoint sets P1, ...,PF of approximately equal size.
The training of a model is performed on Tf =

⋃
i∈{1,...,F}\{f} Pi. This training

set is decomposed for the training of the base classifiers of the cascaded classifier.
The remaining set Pf is used to validate the model. The F -fold cross-validation
is performed on R independent permutations of T . All classifiers and training
schemes are evaluated in 10 × 10 cross-validation experiments with identical
splits.

The performance of a cascaded classifier is analyzed in terms of its class-
wise sensitivities. In a R × F cross-validation, the sensitivity Si of class i is
estimated by

Si =
1

R ∗ F

R∑

r=1

F∑

f=1

1
|{(x , y) ∈ Pr,f , y = i}|

∑

(x ,i)∈Pr,f

I[cTr,f
(x)=i]. (14)

We use the minimal class sensitivity

Sm = min
i∈Y

Si (15)

as a performance measure. A classifier that is not capable of capturing all classes
appropriately will yield low values here.

Our analyses cover two permutation experiments: In the first experiment,
we compare the minimal sensitivity of a cascaded classifier Sm to the minimal
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sensitivity S′
m of an OAO ensemble. The performance of a cascaded classifier is

considered as comparable to that of an OAO ensemble if the corresponding Sm >
0.9 · S′

m. In the second experiment, we address the question whether an ordinal
cascaded classifier is able to recover the undirected ordinal structure of an ordinal
classification problem. That is, we assess whether the minimal class sensitivity of
the true class order (e.g. 1 < 2 < . . . < k− 1 < k) and the corresponding reverse
order (e.g. k < k− 1 < . . . < 2 < 1) can be distinguished from the minimal class
sensitivities of any other pair of class order and corresponding reverse order.
A pair of class orders is defined as detected if both orders achieve Sm > 0.5.

In our experiments, we utilize three different training schemes (CR, LH, PW)
and three different types of base classifiers for the cascaded classifiers. As base
classifiers, a linear support vector machine [15] (SVM), a 3-nearest neighbor
classifier [6] (3NN) and a classification tree [4] (CART) are chosen. Reference
experiments with non-ordinal multi-class classifiers are conducted either with
an OAO ensemble or with a standard multi-class version of the base classifiers
(MC) in case of 3NN and CART. All experiments were performed with the help
of the TunePareto software [10].

An overview of the analyzed datasets is shown in Table 1. These datasets
have been referred to as being truly ordinal (see references). Additionally, we
employed an artificial dataset to examine basic properties of the cascaded clas-
sifier. This dataset comprises two features whose values increase with the class
labels. Both features were exposed to random normally distributed noise. The
dataset comprises five classes and is shown in Fig. 1.

Table 1. List of utilized datasets. The samples per class are provided in the order of
the corresponding label space.

No. Dataset Features Classes Samples (per class)

Total Class 1 Class 2 Class 3 Class 4 Class 5

AD Artificial data 2 5 250 50 50 50 50 50

d1 Balance scale [1] 4 3 625 288 49 288 - -

d2 cars [1] 6 4 1728 1210 384 69 65 -

d3 CPU [8] 6 4 209 50 53 53 53 -

d4 ESL [2] 4 5 488 52 100 116 135 85

d5 journal [8] 5 3 172 91 53 28 - -

d6 LEV [2] 4 4 1000 93 280 403 224

d7 SWD [2] 10 3 1000 384 399 217 - -

4 Results

The results on the artificial dataset AD are illustrated in Fig. 3. Here, all available
samples (Fig. 1) are utilized for training the classifier ensembles. Panel Fig. 3(a)
shows the decision regions of classifier ensembles that were supplied with the
correct order of classes (1 < 2 < 3 < 4 < 5). In these experiments, the decision
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Fig. 3. Effects of changing the class order on the training of ordinal cascaded classifiers
on the artificial dataset (Fig. 1). The decision regions for the correct order (1 < 2 <
3 < 4 < 5) are shown in Panel (a). The decision regions of a perturbed order (1 < 2 <
4 < 5 < 3) are shown in Panel (b). For the perturbed order, several cascades split the
feature space only into four classes.

regions of 3NN ensembles and SVM ensembles are more similar to each other
than to the decision regions of the CART ensembles. Among the SVM ensembles
and the 3NN ensembles, the OAO training scheme and the CR training scheme
generate more parallel decision boundaries than the CR training scheme and
the PW training scheme. For the CART ensembles, the four training schemes
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Table 2. Cross-validation errors of the standard multi-class versions (MC) and the
OAO ensembles as compared to the cascaded classifier ensembles of the applied base
classifiers. The MC version of the SVM is already implemented as OAO.

No. 3NN SVM CART

MC OAO CR LH PW OAO CR LH PW MC OAO CR LH PW

AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.04 0.04 0.04

d1 0.13 0.13 0.12 0.15 0.38 0.08 0.13 0.12 0.50 0.22 0.21 0.25 0.24 0.56

d2 0.04 0.04 0.04 0.04 0.07 0.15 0.15 0.18 0.15 0.03 0.03 0.02 0.03 0.04

d3 0.13 0.13 0.12 0.14 0.14 0.08 0.07 0.08 0.09 0.15 0.15 0.15 0.14 0.15

d4 0.25 0.26 0.26 0.25 0.26 0.23 0.23 0.22 0.23 0.31 0.31 0.32 0.32 0.36

d5 0.30 0.29 0.28 0.28 0.30 0.25 0.24 0.25 0.25 0.32 0.34 0.34 0.39 0.39

d6 0.35 0.35 0.35 0.35 0.36 0.38 0.39 0.39 0.38 0.37 0.38 0.38 0.37 0.46

d7 0.40 0.40 0.39 0.38 0.41 0.39 0.40 0.39 0.39 0.44 0.43 0.43 0.43 0.44

Table 3. Number of class orders for which the minimal class sensitivity Sm of the
cascaded classifier is comparable to the minimal sensitivity S′

m of the corresponding
OAO ensemble (Sm ≥ 0.9 · S′

m). A ‘*’ indicates that OAO ensemble does not address
the classification task properly (S′

m < 0.5). Experiments where only the true class
order and the reverse order were found are highlighted.

No. Total orders 3NN SVM CART

CR LH PW CR LH PW CR LH PW

AD 120 120 120 2 24 2 2 120 120 2

d1 6 * * * 4 2 2 * * *

d2 24 24 19 0 6 0 1 19 11 0

d3 24 24 24 2 8 2 2 23 9 2

d4 120 120 120 2 16 2 2 117 37 2

d5 6 6 6 3 4 2 2 6 4 1

d6 24 24 24 2 2 0 3 24 20 0

d7 6 2 0 2 2 0 2 2 1 0

result in four different partitions of the feature space. The corresponding results
of the 10 × 10 cross-validation error experiments are shown in Table 2. The
3NN ensembles as well as the SVM ensembles classify AD perfectly (0.00 CV
error). The CART ensembles yield a maximal CV error of 0.05. Panel Fig. 3(b)
shows the effects of providing an incorrect class order to the ensemble classifiers
(1 < 2 < 4 < 5 < 3). The OAO architecture is mainly unaffected by this wrong
information. Only the corresponding CART ensemble shows small differences to
the ensemble trained on the correct class order. For the PW training scheme, all
tested base classifiers divide the feature space into four instead of five classes. The
CR training scheme and the LH training scheme show this behavior only for SVM
ensembles. The corresponding 3NN ensembles produce a similar partitioning as
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Fig. 4. Minimal class sensitivities of the cascaded classifiers for different label permuta-
tions. Sensitivities are sorted increasingly. The horizontal line indicates the performance
of the OAO ensemble. The true order of the label space and the true reverse order are
indicated by filled points.

for the correct class order. The decision regions of the CART cascades show
different partitions for the correct and the incorrect class order.

All cross-validation errors are listed in Table 2. In general, the cascaded clas-
sifiers achieve cross-validation errors comparable to the corresponding MC and
OAO architectures (all p ≥ 0.05, two-sided Wilcoxon rank-sum tests and Holm
correction). The CART ensembles show higher median cross-validation errors
than the 3NN ensembles and SVM ensembles on 4 of 7 datasets (d1,d3, d4,
d7). The SVM ensembles achieve a higher median cross-validation error on d2.
Among the cascaded classifiers, the lowest cross-validation errors are achieved
either by the CR training scheme or by the LH training scheme. In combination
with CART, the PW training scheme achieves the highest cross-validation error
rates on six datasets (d1, d3, d4, d5, d6, d7). The PW training scheme also leads
to a decreased performance on dataset d2.
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Table 4. Assessment of the ability of ordinal cascaded classifiers to recover the undi-
rected class order based on the values of Sm for all possible order permutations. The
undirected order is considered as recovered if Sm > 0.5 only for the true order and the
true reverse order and for no other pair of order and reverse order. A ‘+’ indicates that
the true order could be recovered, a ‘−’ indicates that this is not possible.

No. 3NN SVM CART

CR LH PW CR LH PW CR LH PW

AD − − + + + + − − +

d1 − − − − + + − − −
d2 − − − − + − − − +

d3 − − + + + + − − +

d4 − − + − + + − − +

d5 − − − − + + − + +

d6 − − + − − − − − −
d7 − − + − − + − − −

The effects of providing an incorrect class order to the cascaded classifier are
analyzed in terms of Sm. The cross-validation experiments were repeated for all
possible permutations of class orders. Figure 4 shows the results for the CPU
dataset (d3). For the true order (1 < 2 < 3 < 4) and its reverse order (4 > 3 >
2 > 1) all cascaded classifiers show high Sm values regardless of the chosen base
classifier or training scheme. For all experiments with the PW training scheme,
all other (incorrect) class orders exhibit considerably lower Sm. For both the
CR and the LH training scheme, 3NN ensembles and CART ensembles achieve
Sm > 0.6 for all incorrect class orders. This does not hold for SVM ensembles:
Here, there is an obvious dichotomy between orders that achieve high values of
Sm and orders that achieve very low values of Sm.

A summary of the first permutation experiment for all datasets can be found
in Table 3. Here, the number of class orders for which the minimal class sen-
sitivity Sm of a cascaded classifier is comparable to the minimal class sensi-
tivity S′

m of the corresponding OAO ensemble (Sm ≥ 0.9 · S′
m) is shown. The

response to a permuted class order strongly depends on both the training scheme
of the cascaded classifier and the employed base classifier. Among the tested
training schemes, the PW algorithm shows the highest susceptibility to changes
of the class order. The susceptibility of both the LH training scheme and the
CR training scheme depends on the base classifier that is used. For the SVM
ensembles, these training schemes show high susceptibility to varying order. This
effect cannot be observed for 3NN ensembles and CART ensembles. Among the
base classifiers, the SVM algorithm generally shows the highest susceptibility to
varying order, whereas the CART and the 3NN algorithm are less susceptible.
Interestingly, in the experiments where only two class orders were considered
as comparable to the OAO ensemble, the true class order and its reverse were
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selected in most cases. This means that the true class order (without considering
the direction) was recovered. These cases are highlighted in Table 3.

Table 4 shows the results of the second permutation experiment. Here, a
pair of true class order and reverse class order is considered as recovered if
Sm > 0.5 for both orders and for no other perturbed pair of a class order and
the corresponding reverse. The PW training scheme shows the highest power
of recovering the true order. In combination with the SVM base classifier, it
correctly identifies the true undirected class order for 6 of 8 datasets. For the
3NN ensembles and CART ensembles, it recovers the true undirected class order
for 5 of 8 datasets. For the LH training scheme, the true order is returned in
6 of 8 cases when using SVMs with a linear kernel for the base classifiers. The
CR training scheme did not identify the correct undirected class order in any
experiment.

5 Conclusion

Our experiments address the question whether ordinal classification algorithms
can be used for detecting the true order of ordinal classes. These learning algo-
rithms rely the a priori information on the class order and assume this semantic
knowledge to be reflected in the feature space. Our experiments with cascaded
ensemble architectures indicate that ordinal classifiers exist whose performance
is strongly influenced by the provided class orders. The strength of this influence
depends on the chosen training scheme and the chosen type of base classifier. In
our experiments, the best results were achieved for a pairwise training scheme in
which each base classifier is trained on the samples of two neighbouring classes.
When training each base classifier on all samples, only linear support vector
machines can detect the correct class order. Training a classifier to separate the
current class from all higher classes was least susceptible to an incorrect class
order. Out of the tested base classifiers, linear support vector machines are most
susceptible to the true class order.

All in all, cascaded classifiers based on linear support vector machines and
a pairwise training scheme could eliminate the highest amount of perturbed
class orders. Interestingly, the true class order and its reverse could not be dis-
tinguished in most of the experiments. Both these orders achieved comparable
minimal class sensitivities. This might be a hint that the correctness of the
neighbour relationship is more important than the direction of the global class
order.
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Abstract. Asymmetric classification problems are characterized by class
imbalance or unequal costs for different types of misclassifications. One of
the main cited weaknesses of AdaBoost is its perceived inability to handle
asymmetric problems. As a result, a multitude of asymmetric versions of
AdaBoost have been proposed, mainly as heuristic modifications to the
original algorithm. In this paper we challenge this approach and propose
instead handling asymmetric tasks by properly calibrating the scores of
the original AdaBoost so that they correspond to probability estimates.
We then account for the asymmetry using classic decision theoretic
approaches. Empirical comparisons of this approach against the most rep-
resentative asymmetric Adaboost variants show that it compares favor-
ably. Moreover, it retains the theoretical guarantees of the original
AdaBoost and it can easily be adjusted to account for changes in class
imbalance or costs without need for retraining.

Keywords: Boosting · Cost-sensitive · Class imbalance · Classifier
calibration

1 Introduction

Most real world classification problems are asymmetric. This asymmetry means
that either the classes have different prior probabilities or the costs of different
types of misclassifications are unequal, or both. A doctor testing a patient for a
life-threatening disease, is faced with a cost-sensitive decision: a false positive will
lead to further tests which will eventually reveal the misdiagnosis, while a false
negative can be lethal. An astrophysicist predicting whether a telescope image
contains a supernova or not faces an imbalanced class problem, as supernovae
are rare.

AdaBoost [4] is a powerful, popular and recognized meta-learning technique.
However it is often regarded as skew-insensitive [15,17], meaning it is unable to
handle asymmetric tasks. There exist many skew-sensitive AdaBoost variants,
including AdaCost [2,17], CSB0, CSB1, CSB2 [17], Asymmetric-Adaboost [18],
RareBoost [6], AdaC1, AdaC2, AdaC3 [16], CS-AdaBoost [9,10]. However, most
of them are heuristic and as a result they lack the theoretical guarantees of the
original AdaBoost [7].
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It is also unclear if we really need to modify AdaBoost, or if asymmetric
problems are better tackled by calibrating the scores of the original AdaBoost.
Calibrated scores can be treated as probability estimates and can thus be used to
handle the asymmetric nature of the task following decision theoretic approaches,
similar to the classical work by Elkan [1]. For one, this approach can easily be
adjusted to different class and cost imbalance setups, without the need to retrain
the ensemble. Another benefit is that all favorable theoretical properties of the
original AdaBoost will be preserved. The goal of this work is thus to investigate
whether we can achieve comparable results to the asymmetric AdaBoost variants
by calibrating the scores produced by the original AdaBoost and then choosing
an appropriate classification threshold.

2 Background

2.1 Asymmetric Learning

In this paper we will be examining binary classification asymmetric problems,
where an example can be either positive, denoted by a label y = 1 or negative,
denoted by y = −1. The class imbalance can be captured by the different priors,
p(y = −1) and p(y = 1), while the cost imbalance can be modeled with a cost
matrix of the form

C =
[
0 c
1 0

]
, (1)

where 1 is the cost of a false positive and c the cost of a false negative1. The
above matrix assigns a zero cost to all correct classifications, as is commonly the
case [1].

Although skewed class and skewed cost problems are different [8], they can
be formulated and treated in a similar way, by using a skew ratio c, that captures
the relative importance of positives w.r.t. negatives to adjust for either [3]. We
commonly assume w.l.o.g. that the important class (the ‘rare’ one in an imbal-
anced class scenario, or the ‘expensive to misclassify’ in a cost-sensitive scenario)
is the positive one, y = 1. One difference is the evaluation measures used in each
type of asymmetric problem. When facing a skewed cost task, the main goal is
to minimize the total cost. When faced with a skewed class problem, the goal
could instead be to achieve good performance on all classes.

Our analysis will focus on cost-sensitive tasks under a cost matrix of the form
C, with skew ratio c = cFN/cFP ≥ 1. This means that the cost of misclassifying
the i-th example is

c(yi) =

{
c, if yi = 1
1, if yi = −1

,

1 A more intuitive equivalent form is

[
0 cFN

cFP 0

]

. Scaling the cost matrix has no effect

on the decision problem, so we can divide its entries with cFP , thus assigning a cost
of 1 to false positives and a cost of c = cFN/cFP to false negatives.
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where yi is the label of the instance. The primary evaluation measure we will
use in this paper is the average cost incurred on the test set

LAvg(x′
i, yi;H, c) =

1
Ntest

Ntest∑

i=1

I[H(x′
i) �= yi]c(yi),

where H(x′
i) is the prediction of the ensemble on the test example x′

i and I[·] is
the indicator function which outputs ‘1’ iff its argument is true. We will also use
precision, i.e. the fraction of positive predictions that are correct and recall, the
fraction of positives correctly classified, to shed light on the different behaviors
of the methods we examine. Precision and recall are given by

Prec =
TP

TP + FP
, Rec =

TP

TP + FN
,

where TP , FP and FN are the numbers of true positives, false positives and
false negatives on the test set, respectively. Both quantities need to be high for
prediction to be reliable. The harmonic mean of precision and recall,

F − measure =
2 · Rec · Prec

Rec + Prec
,

can be used to capture both precision and recall at once. A high F-measure is
desirable, as it implies that the values of both precision and recall are high.

2.2 AdaBoost

AdaBoost [4] is an ensemble learning technique which constructs a strong classifier
H sequentially by combining multiple weak classifiers ht, t = 1, . . . , M . A weak
classifier is one that is marginally more accurate than random guessing and a
strong classifier is one that achieves arbitrarily high accuracy. AdaBoost achieves
this by training each subsequent model ht on a new dataset in which the examples
misclassified by the previous model are assigned more weight and the ones that
were correctly classified are assigned less weight. This can be achieved either
by reweighing or by resampling the dataset on each round. This work uses the
reweighing approach and focuses on AdaBoost with confidence rated predictions
[14], where each base learner ht is assigned a confidence score αt.

The algorithm is given as input a set of training examples of the form (xi, yi),
i = 1, . . . , N where xi is the feature vector of the i-th example and yi is its
class label. On the first round of AdaBoost, all training examples are assigned
equal weights D1

i = 1
N . On each round t = 1, . . . , M , the weak learner ht that

minimizes the misclassification error εt =
∑

i:ht(xi) �=yi
Dt

i , where ht(xi) is the
predicted class of the i-th example by the t-th weak learner, is added to the
ensemble. The confidence of weak learner ht is computed as

αt =
1
2

log
(1 − εt

εt

)
. (2)
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The weight of each example i = 1, . . . , N is then updated to

Dt+1
i = e−yiht(xi)αtDt

i (3)

and renormalized by Dt+1
i ← Dt+1

i∑N
i=1 Dt+1

i

so that
∑N

i=1 Dt+1
i = 1. These will be

the weights of each example on the next round. The algorithm terminates when
the maximum number M of weak learners have been added to the ensemble or
when a base learner ht with εt < 1/2 cannot be found2. The final prediction on
a test datapoint x′ is given by the sign of the weighted sum of the weak learner
predictions ht(x′) weighted by their corresponding confidence scores

H(x′) = sign

[
M∑

t=1

αtht(x′)

]
. (4)

2.3 Classifier Calibration

Many classifiers can have their output normalized to return a score s(x′) ∈ [0, 1]
for each test example x′ indicating ‘how positive’ it is. In the case of AdaBoost,

this score is the quantity s(x′) =
∑M

t=1 αt
ht(x

′)+1
2∑M

t=1 αt
. However, when a cost-sensitive

decision needs to be made on the instance x′, the score s(x′) is of little use.
Instead, we need to estimate the probability of x′ belonging to the positive
class p̂(y = 1|x′). This will allow us to assign x′ to the class that minimizes
the expected cost. In other words, in binary classification, x′ is assigned to the
positive class only if

p̂(y = 1|x′)c > p̂(y = −1|x′) ⇐⇒ p̂(y = 1|x′) >
1

1 + c
,

under the cost matrix of Eq. (1), making use of p̂(y = −1|x′) = 1 − p̂(y = 1|x′).
Otherwise, x′ is assigned to the negative class.

The procedure of converting classifier scores to actual probability estimates
is called calibration. A classifier is calibrated if p̂(y = 1|x′) → s(x′), as N → ∞,
for any x′ [21]. However, it has been previously noted [11] that as the number
of boosting rounds increases, the scores s(x′) get more pushed away from 0 or
1, exhibiting an increasing “sigmoid distortion”. In other words, the scores pro-
duced by AdaBoost are a sigmoid transformation of actual probability estimates.
A theoretical justification for this effect is based on the statistical interpretation
of AdaBoost by Friedman et al. [5], under which AdaBoost is a stagewise proce-
dure of constructing an additive logistic regression model which finds the weak
learners ht and their corresponding confidence scores αt that minimize the aver-
age exponential loss across all training examples.

The results of Niculescu-Mizil and Caruana [11] showed empirically that once
properly calibrated, AdaBoost produced better probability estimates than any
other model examined. The authors corrected for the “sigmoid distortion” of
2 Note that in the binary classification case, a hypothesis ht with error εt > 1/2 can

be turned into one with εt < 1/2 simply by flipping its predictions.
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the AdaBoost scores using three different approaches. The first approach was to
directly apply a logistic correction implied by the framework of Friedman et al.
[5]. The second calibration method was Platt scaling [12], originally used to map
SVM outputs3 to posterior probabilities. Platt scaling consists of finding the
parameters A and B for a sigmoid mapping p̂(y = 1|x′) = 1

1+eAs(x′)+B , such that
the likelihood of the data is maximized. Fitting the parameters A and B requires
the use of a separate validation set. Finally, they also performed calibration using
isotonic regression [13]. The latter is non-parametric and more general as it can
be used to calibrate scores which exhibit any form of monotonic distortion [20].
Platt scaling produced the most reliable probability estimates on small sample
sizes among the three methods, closely followed by isotonic regression. In this
paper we will therefore be calibrating the scores of AdaBoost using Platt scaling.
The Calibrated AdaBoost algorithm is given in Fig. 1.

3 Asymmetric Boosting Algorithms

Fig. 1. Calibrated AdaBoost

In the introduction we mentioned a
number of AdaBoost variants proposed
to handle asymmetric learning tasks.
Most of these methods are proposed
heuristically, i.e. by introducing ad-hoc
changes to steps of the AdaBoost algo-
rithm, rather than by starting from
a cost-sensitive problem formulation,
e.g. by defining a different loss func-
tion in place of AdaBoost’s exponential
loss. Asymmetric boosting methods can
broadly be classified into two groups:
those that modify the prediction rule
Eq. (4) of AdaBoost and those that
introduce modifications in the training
phase, either by modifying the weight
update rule of Eq. (3), or the calcula-
tion of the αt coefficients of Eq. (2).

3.1 Methods that Modify the Prediction Rule

A straightforward way to make AdaBoost skew-sensitive is to substitute the
weighted majority vote prediction rule of Eq. (4) with the minimum expected
cost (MEC) prediction rule

HM (x′) = sign

⎡

⎣
∑

y∈{−1,1}
c(y)

M∑

t=1

αtht(x′)

⎤

⎦ , (5)

3 The mapping of outputs of SVMs to posterior probability estimates exhibits a similar
sigmoid distortion to that observed in AdaBoost.
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which reduces to Eq. (4) for c = 1, i.e. when the costs of false positives and
false negatives are equal. This method trains a standard AdaBoost ensemble
and only changes the decision rule used for the final prediction. The idea is to
assign x′ to the class that minimizes the expected cost. This approach has been
mentioned in [17] without being given a specific name. In this paper we refer to
it as AdaMEC.

3.2 Methods that Modify the Training Algorithm

CSB2 [17], changes the weight update rule of the original AdaBoost, given in
Eq. (3), to

Dt+1
i = e−yiht(xi)αtCδ(i)D

t
i , where Cδ(i) =

{
1, if ht(xi) = yi

c(yi), if ht(xi) �= yi.
(6)

The form of the update rule of CSB2 is the same as that of the original AdaBoost
only for correctly classified examples, hence true positives and true negatives
are not treated differently. On the other hand, misclassified examples have their
weight updates adjusted by an multiplicative cost factor c(yi), thus false positives
and false negatives are treated differently. CSB2 reduces to AdaBoost for c = 1.

AdaC2 [16] substitutes the weight update rule of the original AdaBoost, given
in Eq. (3), by

Dt+1
i = e−yiht(xi)αtc(yi)Dt

i , (7)

which also treats true positives and true negatives differently, unlike Eq. (6).
The method also modifies the calculation of the αt coefficients of Eq. (2) to

αt =
1
2

log

∑
i:ht(xi)=yi

Dt
ic(yi)∑

i:ht(xi) �=yi
Dt

ic(yi)
. (8)

It is worth noting that AdaC2 can be justified theoretically [15] as a stage-
wise minimization of a cost-weighted version of the exponential loss, which for a
classifier ht, on an example (xi, yi) has the form L(ht(xi), yi) = c(yi)e−yiht(xi).
Under this definition, the αt calculated by Eq. (8) is optimal. Like the other two
variants we described, when c = 1, AdaC2 reduces to AdaBoost.

4 Empirical Evaluation

4.1 Experimental Setup

In our experiments we compare the performance of AdaMEC, CSB2 and AdaC2
to that of the original AdaBoost calibrated with Platt scaling under various
degrees of cost skew, namely c ∈ {1, 1.5, 2, 2.5, 5, 10}. As a primary measure
of performance we use the average cost attained on the test set. We also pro-
vide precision, recall and F-measure results to better demonstrate the different
behavior of each method. As a base learner, we used univariate logistic regression
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trained with batch gradient descent. The maximum number of base learners M
was set to 100.

We used 7 datasets from the UCI repository. Any entries with missing val-
ues were discarded. Our goal is to investigate the performance of each approach
under various degrees of cost skew c. The datasets are originally imbalanced, so
we selected an equal number of positive and negative examples, to suppress the
additional effects of class imbalance. This was achieved by uniformly undersam-
pling the majority class rather than by oversampling the minority class, as it
avoids overfitting due to occurrences of identical examples in training, testing
and validation sets. A summary of the datasets is given in Table 1.

We use a random 25 % of the data for testing. The remaining 75 % was used
for training. In the case of calibration using Platt scaling, we needed to also
reserve a separate validation set to fit the parameters of the sigmoid without
overfitting. A third of the training data was used to this end. After training the
models and –where applicable– calibrating on the validation set, we evaluated
them on the test set. The entire procedure is repeated 30 times. For each method
and evaluation measure, we report average values across all 30 runs as well as
95 % confidence intervals.

Table 1. Characteristics of the datasets used in this study. The table indicates the
number of instances used, the number of features, and the class we chose to be ‘positive’
according to the naming convention in the original file. For example, in semeion, class
‘1’ was chosen as ‘positive’ and the rest grouped under the ‘negative’ label.

Dataset # Instances Positive class Negative class # Features

survival 162 2 1 3

liver 290 1 2 6

pima 576 1 0 8

heart 240 1 0 13

wdbc 424 1 0 31

sonar 194 0 2 60

semeion 322 1 {2, ..., 10} 256

4.2 Analysis of Experimental Results

AverageCost: In terms of average cost, we observe different trends on the lower-
dimensional datasets survival, liver and pima and on the higher-dimensional
datasets, wdbc, heart, semeion and sonar. Results for liver, pima and sonar are
omitted due to lack of space. When the problem is cost-insensitive (c = 1), all
methods exhibit more or less the same performance. The performance of most
methods also tends to be equivalent when the cost ratio is very high (c = 10),
since for such high degrees of imbalance all examples tend to be assigned to the
positive class. Our results are summarized in Fig. 2.



Calibrating AdaBoost for Asymmetric Learning 119

Fig. 2. Average cost results under various degrees of cost imbalance c. The cost attained
by calibrated AdaBoost is lower than that of AdaMEC, CSB2 and AdaC2 on higher
dimensional datasets like heart, wdbc and semeion and comparable on lower dimen-
sional datasets like survival.

On low-dimensional datasets, the performance of calibrated AdaBoost is on
par with that of CSB2 and AdaC2 and all three methods clearly outperform
AdaMEC, which exhibits a high variance as c increases. This can partly be
explained by the fact that AdaMEC used on average a much smaller number of
weak learners than CSB2 and AdaC2. On the other hand, calibrated AdaBoost
tended to slightly fewer weak learners than AdaMEC. So its improved perfor-
mance over AdaMEC can only be attributed to the calculation of more reliable
probability estimates.

On higher-dimensional datasets, the performance of calibrated AdaBoost is
even more impressive, as it clearly outperforms all other methods. AdaMEC
exhibits the second-best performance at low degrees of skew c. CSB2 and AdaC2
produce the highest average cost with the former producing marginally lower
average cost than the latter for low values of c.

Precision and Recall: The precision and recall curves reveal more details
about the different behaviour of each method. Calibrated AdaBoost has the
overall highest precision scores, even for high degrees of cost skew c. AdaMEC
achieves the second-best overall precision. CSB2 typically gives poor precision
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Fig. 3. F-measure results under various degrees of cost imbalance c. Calibrated
AdaBoost produces higher F-measure scores than its competitors on the higher dimen-
sional datasets heart, wdbc and semeion and comparable on the lower dimensional
datasets like survival. It also shows a remarkable robustness to changes in c.

values, but on semeion, heart and marginally on wdbc, it still outperforms AdaC2
for low values of c. We can again notice the two different trends regarding the cal-
ibrated AdaBoost. It does not outperform its competitors on the low-dimensional
datasets survival, pima and liver, but its performance is comparable to theirs.

In terms of recall, all methods exhibit very high scores, close to the maximal
value of 1. This is indicative of the cost-sensitive methods’ eagerness to assign test
instances to the positive class. AdaC2 and CSB2 have the overall highest recall,
reaching the value of 1 even for small values of c. AdaMEC has the second-highest
overall scores and calibrated AdaBoost exhibits the lowest recall values among
the compared methods. This does not mean that calibrated AdaBoost behaves
poorly in terms of recall, just that it is less aggressive than its competitors.

These results indicate that AdaC2 is the most aggressive among the com-
pared methods, as it tends to assign all test examples to the positive class even
for relatively low values of c. This leads to zero false negatives, hence maxi-
mal recall, but also to many false positives, hence low precision. This behaviour
of AdaC2 is largely mimicked by CSB2. The next most aggressive method is
AdaMEC and the least aggressive is calibrated AdaBoost. The results are sum-
marized in (Fig. 4).
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Fig. 4. Precision and recall results under various degrees of cost imbalance c. Calibrated
AdaBoost achieves higher precision and lower recall than its competitors, especially on
the higher dimensional datasets heart, wdbc and semeion.
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F-Measure: On the F-measure curves of Fig. 3, we can again observe that
on the low-dimensional datasets survival, pima and liver all methods exhibit
comparable performance. This is not surprising, as problems with small numbers
of features are generally easier than high-dimensional ones. Where the calibrated
AdaBoost shines is on the higher dimensional datasets wdbc, heart, semeion
and sonar. On these datasets it attains F-measure values far higher than the
asymmetric AdaBoost variants, exhibiting an admirably small sensitivity to the
cost ratio c. The F-measure values of AdaMEC are the second highest overall,
with CSB2 and AdaC2 having low scores. Of these two, CSB2 has a slightly
higher F-measure overall.

5 Discussion and Conclusion

Calibration, the act of adjusting the scores of classifiers so that they correspond
to reliable probability estimates, is an often overlooked aspect of classification.
We can use it to improve classification performance, especially in asymmetric
situations. In the case of boosting, the results we obtained clearly show that
calibrated AdaBoost can be used as a viable alternative to asymmetric versions
of AdaBoost. In our experiments, we found that calibrated AdaBoost outperforms
the asymmetric AdaBoost variants on datasets with large numbers of features
while it performs comparably on datasets with few features. Furthermore, the
theoretical properties of the original AdaBoost are preserved. Finally, we can
also easily adjust our predictions without the need to retrain the model. This is
also true for AdaBoost variants that modify only the prediction rule (AdaMEC ),
but not for those that modify the training phase (CSB2, AdaC2 ).

This study was limited to comparing AdaMEC, CSB2 and AdaC2 to cali-
brated AdaBoost, by virtue of being the most successful representatives of their
families. As for the other variants, they are all methods that modify the training
algorithm. CSB0 and CSB1 [17] do not use confidence rated predictions and
based on the results of comparative studies [9,10,15], the two variants are typ-
ically dominated by CSB2. Asymmetric-Adaboost [18] was excluded from said
studies as being similar to CSB2. AdaCost [2,17] is also outperformed by AdaC2
and CSB2 and so is AdaC3 [16]. CS-AdaBoost [9,10], despite being the only
method other than AdaC2 with a solid theoretical basis, has been characterized
as ‘time-consuming and imprecise’ [19], as it lacks a closed form solution for αt

and the optimization of its parameters is therefore computationally intensive.
To our knowledge, the only previous attempt at directly comparing asym-

metric AdaBoost variants to calibrated AdaBoost was by Masnadi-Shirazi and
Vasconselos [10]. The comparison was performed on imbalanced data, it included
AdaC2 and CSB2 and the performance of calibrated AdaBoost was found to be
slightly inferior to theirs. However the authors were solving a quite different
problem from the one we do in the present paper. They fixed the desired preci-
sion of their ensembles and based on that they chose the appropriate cost setup
for each method (i.e. the cost ratio c differed from one method to the other) so
as to minimize the total number of errors on the test set.
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On the other hand, we solve a cost-sensitive problem. We therefore use a
fixed cost ratio c, taken directly from the cost matrix of the problem and our
goal is to minimize the average cost of misclassifications. Our findings and those
of Masnadi-Shirazi and Vasconselos are complementary, not contradictory. We
observed that AdaC2 and CSB2 favor more aggressively the positive class com-
pared to calibrated AdaBoost. Masnadi-Shirazi and Vasconselos, by fixing the
precision to a high value, allow the ensemble to commit only a small number of
false positives. AdaC2 and CSB2 are thus forced to select c values that limit
their aggressiveness. Under this light, asymmetric AdaBoost variants can out-
perform calibrated AdaBoost on imbalanced data, if costs are allowed to vary,
but with fixed costs, calibrated AdaBoost produces lower average costs.
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Abstract. Classifier ensembles aim at more accurate classifications than
single classifiers. In the present paper we introduce a general approach
to building structural classifier ensembles, i.e. classifiers that make use of
graphs as representation formalism. The proposed methodology is based
on a recent graph edit distance approximation. The major observation
that motivates the use of this particular approximation is that the result-
ing distances crucially depend on the order of the nodes of the underlying
graphs. Our novel methodology randomly permutes the node order N
times such that the procedure leads to N different distance approxima-
tions. Next, a distance based classifier is trained for each approximation
and the results of the individual classifiers are combined in an appropri-
ate way. In several experimental evaluations we make investigations on
the classification accuracy of the resulting classifier ensemble and com-
pare it with two single classifier systems.

1 Introduction

Classification is a common task in the area of pattern recognition and related
fields. In order to compensate errors of a single classifier, the use of classifier
ensembles, also referred to as multiple classifier systems, turns out to be a reward-
ing avenue to be pursued in many applications [1]. In particular, if the sets of
misclassified patterns by the different classifiers of an ensemble do not heav-
ily overlap, the classification accuracy of a classifier ensemble is nearly always
beneficial in terms of the resulting classification accuracy.

Due to the mathematical wealth of operations available in a vector space,
a huge amount of algorithms for classification of patterns formally represented
by feature vectors have been developed in recent years [2,3]. Moreover, a large
number of methods for the creation and combination of vector based classi-
fiers have been developed (such as bagging [4], boosting [5,6], or feature subset
selection [7]).

The use of feature vectors for pattern representation, however, implicates two
severe limitations. First, vectors always represent a predefined set of features,
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 125–134, 2015.
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and thus, all vectors in a particular application have to preserve the same length
regardless of the size or complexity of the corresponding pattern. Second, there
is no direct possibility to describe relationships among different parts of a pat-
tern. Both constraints can be overcome by graph based representations. That
is, graphs are able to explicitly describe binary relationships, and the number of
nodes and edges of a graph can be adapted to each individual pattern. Due to
the high representational power and the flexibility of graphs a growing interest
in this representation formalism can be observed [8,9].

Graphs have been also used in the context of multiple classifier systems.
A pioneering paper is [10] where it is shown that using vectors and graphs in an
ensemble significantly improves the accuracy of a fingerprint recognition system.
In [11] several graph representations of the same pattern are derived and merged
into a single representation format. In [12], random node selection on graphs is
used in order to derive classifier ensembles. Finally, in [13] graph embedding
in real vector spaces by means of randomized prototype selection is used for
building a general multiple classifier system for graphs.

The availability of a distance measure is a basic requirement for many (mul-
tiple) classifier systems. A large number of procedures for the computation of
graph dissimilarity, commonly referred to as graph matching, have been pro-
posed (see [14,15] for exhaustive surveys). Graph edit distance [16,17], intro-
duced about 30 years ago, is still one of the most flexible and versatile graph
matching models available. In particular, graph edit distance is able to cope
with directed and undirected, as well as with labeled and unlabeled graphs.
Additionally, if there are labels on nodes, edges, or both, no constraints on the
respective label alphabets have to be considered.

Yet, a major drawback of graph edit distance is its computational complex-
ity which is exponential in the number of nodes. In a recent publication [18]
the authors of the present paper introduced an algorithmic framework for the
approximation of graph edit distance in quadratic time. The basic idea of this
approach is to reduce the difficult problem of graph edit distance computation
to an assignment problem of local graph structures. A major characteristic of
this novel framework is that the resulting approximation depends on the order
in which the nodes of both graphs are processed. In other words, the resulting
distance can be varied by permuting the node order of the graphs. The novel
methodology of the present paper exploits this characteristic. In particular we
aim at using the novel approximation framework in conjunction with random
node permutations in order to produce diverse distance approximations and
eventually combine these distances in a classifier ensemble.

The remainder of this paper is organized as follows. Next, in Sect. 2 the
concept of graph edit distance as well as the recent framework for graph edit
distance approximation [18] are summarized. In Sect. 3 the building of the classi-
fier ensemble is described. An experimental evaluation on three real world data
sets is carried out in Sects. 4 and 5 we draw conclusions and discuss several
options for future work.
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2 Graph Edit Distance

2.1 Basic Definitions

A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function. The labels for both nodes and edges
can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = R

n,
a set of symbolic labels L = {α, β, γ, . . .}, or a combination of various label
alphabets from different domains. Unlabeled graphs are obtained as a special
case by assigning the same (empty) label ∅ to all nodes and edges, i.e. LV =
LE = {∅}.

Given two graphs, the source graph g1 = (V1, E1, μ1, ν1) and the target graph
g2 = (V2, E2, μ2, ν2), the basic idea of graph edit distance [16,17] is to transform
g1 into g2 using some edit operations. A standard set of edit operations is given
by insertions, deletions, and substitutions of both nodes and edges. We denote
the substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v), the deletion of
node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by (ε → v), where ε
refers to the empty node. For edge edit operations we use a similar notation.

A sequence (e1, . . . , ek) of k edit operations ei that transform g1 completely
into g2 is called edit path λ(g1, g2) between g1 and g2. Let Υ (g1, g2) denote the
set of all admissible edit paths between two graphs g1 and g2. To find the most
suitable edit path out of Υ (g1, g2), one commonly introduces a cost c(e) for
every edit operation e, measuring the strength of the corresponding operation.
The idea of such a cost is to define whether or not an edit operation e represents
a strong modification of the graph.

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low cost operations, while for dissimilar graphs an edit path
with high cost is needed. Consequently, the edit distance dλmin(g1, g2), or dλmin

for short, of two graphs g1 and g2 is defined as

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑

ei∈λ

c(ei). (1)

2.2 Graph Edit Distance as Assignment Problem

Considering m nodes in g1 and n nodes in g2, Υ (g1, g2) contains O(mn) edit
paths to be explored, and thus the computational complexity of exact graph
edit distance is exponential. This means that for large graphs the computation
of edit distance is intractable. The graph edit distance approximation framework
originally introduced in [19] and extended in [18] reduces the difficult problem
of graph edit distance computation to an instance of a Linear Sum Assignment
Problem (LSAP) for which a large number of efficient algorithms exist [20]. The
LSAP is defined as follows.

Definition 1. Given two disjoint sets S = {s1, . . . , sn} and Q = {q1, . . . , qn}
and an n×n cost matrix C = (cij), where cij measures the cost of assigning the
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i-th element of the first set to the j-th element of the second set, the Linear Sum
Assignment Problem (LSAP) consists in finding the minimum cost permutation

(ϕ1, . . . , ϕn) = arg min
(ϕ1,...,ϕn)∈Sn

n∑

i=1

ciϕi
,

where Sn refers to the set of all n! possible permutations of n integers, and
permutation (ϕ1, . . . , ϕn) refers to the assignment where the first entity s1 ∈ S
is mapped to entity qϕ1 ∈ Q, the second entity s2 ∈ S is assigned to entity
qϕ2 ∈ Q, and so on.

By reformulating the graph edit distance problem to an instance of an LSAP,
three major issues have to be resolved. First, LSAPs are generally stated on inde-
pendent sets with equal cardinality. Yet, in our case the elements to be assigned
to each other are given by the sets of nodes (and edges) with unequal cardinality
in general. Second, solutions to LSAPs refer to assignments of elements in which
every element of the first set is assigned to exactly one element of the second
set and vice versa (i.e. a solution to an LSAP corresponds to a bijection). Yet,
graph edit distance is a more general assignment problem as it explicitly allows
both deletions and insertions to occur on the basic entities (rather than only
substitutions). Third, graphs do not only consist of independent sets of entities
(i.e. nodes) but also of structural relationships between these entities (i.e. edges
that connect pairs of nodes). LSAPs are not able to consider these relationships
in a global and consistent way. The first two issues are perfectly – and the third
issue partially – resolvable by means of the following definition of a square cost
matrix whereon the LSAP is eventually solved.

Definition 2. Based on the node sets V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
of g1 and g2, respectively, a cost matrix C is established as follows.

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2

. . .
.
.
. 0 0

. . .
.
.
.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε denotes
the cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj).

Note that matrix C = (cij) is by definition quadratic. Hence, the first issue (sets
of unequal size) is instantly eliminated. Obviously, the left upper corner of the
cost matrix C = (cij) represents the costs of all possible node substitutions, the
diagonal of the right upper corner the costs of all possible node deletions, and
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the diagonal of the bottom left corner the costs of all possible node insertions.
Note that every node can be deleted or inserted at most once. Therefore any
non-diagonal element of the right-upper and left-lower part is set to ∞. The
bottom right corner of the cost matrix is set to zero since substitutions of the
form (ε → ε) should not cause any cost.

Given the cost matrix C = (cij), the assignment problem consists in finding
a permutation (ϕ1, . . . , ϕn+m) of the integers (1, 2, . . . , (n + m)) that minimizes
the overall assignment cost

∑(n+m)
i=1 ciϕi

. This permutation corresponds to the
assignment

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n
))

of the nodes of g1 to the nodes of g2. Note that assignment ψ includes node
assignments of the form (ui → vj), (ui → ε), (ε → vj), and (ε → ε) (the latter
can be dismissed, of course). Hence, the definition of the cost matrix in Eq. 2 also
resolves the second issue stated above and allows insertions and/or deletions to
occur in an optimal assignment.

The third issue is about considering the edge structure of both graphs, and
it can only partially be resolved. So far the the cost matrix C = (cij) consid-
ers the nodes of both graphs only, and thus assignment ψ does not take any
structural constraints into account. In order to integrate knowledge about the
graph structure, to each entry cij ∈ C the minimum sum of edge edit operation
costs, implied by the corresponding node operation, is added. That is, we encode
the minimum cost arising from the local edge structure in the individual entries
cij ∈ C, which enables the consideration of information about the local, yet not
global, edge structure of a graph.

Given the node assignment ψ a distance value approximating the exact graph
edit distance dλmin can be directly inferred. Note that edit operations on edges are
always defined by the edit operations on their adjacent nodes. That is, whether
an edge (u, v) is substituted, deleted, or inserted, depends on the edit operations
actually performed on both adjacent nodes u and v. Hence, the edge operations
can be completely inferred from ψ (which contains a complete and consistent
set of node edit operations). Hence, we finally get an admissible edit path from
Υ (g1, g2) and a corresponding approximate edit distance dψ(g1, g2), or dψ for
short.

Note that the edit path corresponding to dψ(g1, g2) considers the edge struc-
ture of g1 and g2 in a global and consistent way while the optimal node assign-
ment ψ is able to consider the structural information in an isolated way only
(single nodes and their adjacent edges). Therefore, the distance dψ found by this
specific framework is – in the best case – equal to, or – in general – larger than
the exact graph edit distance dλmin .

2.3 Greedy Graph Edit Distance (Greedy-GED)

The computation of a permutation (ϕ1, . . . , ϕn+m) and the corresponding assign-
ment ψ is the core process of the complete approximation procedure. This task
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corresponds to an instance of an LSAP and thus a large number of optimal algo-
rithms exist (see [20] for an exhaustive survey). The time complexity of the best
performing optimal algorithms for LSAPs is cubic in the size of the problem,
which corresponds to O((n + m)3) in our case. In the original framework [19]
the LSAP stated on C is optimally solved by means of Munkres’ algorithm [21].
In a recent extension [18] a suboptimal algorithm is used to find an assignment
ψ on the basis of C.

The idea of this suboptimal assignment is formalized in Algorithm1. This
algorithm iterates through cost matrix C from top to bottom through all rows
and assigns every element to the minimum unused element in a greedy manner.
More formally, for each row i in the cost matrix C = (cij) the minimum cost
entry ϕi = arg min

∀j
cij is determined and the corresponding node edit operation

(ui → vϕi
) is added to ψ. By removing column ϕi in C it is ensured that every

column of the cost matrix is considered exactly once (i.e. ∀j refers to available
columns in C). In the first row we have to consider (n+m) elements in order to
find the minimum. In the second row we have to consider (n + m − 1) elements,
a.s.o. In the last row only one element remains. Hence, the complexity of this
approximate assignment algorithm is O((n + m)2).

Algorithm 1. Greedy-Assignment(C = (cij))
1: ψ = {}
2: for i = 1, . . . , (m + n) do
3: ϕi = argmin

∀j
cij

4: Remove column ϕi from C
5: ψ = ψ ∪ {(ui → vϕi

)}
6: end for

7: return ψ

In contrast with an optimal permutation (ϕ1, ϕ2, . . . , ϕ(n+m)) returned by
the original framework [19], the permutation (ϕ′

1, ϕ
′
2, . . . , ϕ

′
(n+m)) returned by

Algorithm 1 is suboptimal. That is, the sum of assignments costs of our greedy
approach is greater than, or equal to, the minimal assignment cost provided
by optimal LSAP solving algorithms:

(n+m)∑

i=1

ciϕ′
i
≥

(n+m)∑

i=1

ciϕi

Yet, note that for the corresponding distance values dψ and dψ′ no globally valid
order relation exists (ψ and ψ′ correspond to the optimal and greedy permu-
tation, respectively). That is, the approximate graph edit distance dψ′ derived
from ψ′ can be greater than, equal to, or smaller than dψ.

For the remainder of this paper we denote this algorithmic procedure with
Greedy-GED.
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3 Classifier Ensemble Based on Greedy-GED

Note that the nodes of a graph are generally unordered and thus, the first n
rows (and m columns) in C are arbitrarily ordered. Note, however, that the
assignment method described in Algorithm1 operates in a greedy manner, i.e. it
is not able to undo a certain node assignment once it has been added to ψ.
Hence, this method and in particular the resulting distance approximation dψ

crucially depends on the order in which the nodes are processed.
In [22] this clear drawback is partially resolved by some refinements in the

greedy assignment process.The present paper, however, exploits the drawback of
the original procedure as an advantage in order to build a classifier ensemble. In
particular, before the greedy assignment of Algorithm1 is actually carried out,
we randomly permute the order of the rows in C. Clearly, this procedure can
be used to produce N potentially different assignments ψ1, ψ2, . . . , ψN from the
same cost matrix C. These assignments in turn might lead to N different graph
edit distance approximations dψ1 , dψ2 , . . . , dψN .

The N distances obtained by this randomized procedure are used in conjunc-
tion with a nearest neighbor classifier. Note that there are other approaches to
graph classification available that make use of graph edit distance in some form,
including vector space embedding classifiers [23] and graph kernels [24]. Yet, the
nearest neighbor paradigm is particularly interesting for the present evaluation
because it directly uses the distances without any additional classifier training.

For the final classification based on the N decisions a plurality voting is
carried out. That is, the class label of the nearest neighbor output by the classifier
that makes use of the i-th randomized graph edit distance approximation is
regarded as one vote for this particular class (i = 1, . . . , N). The class that
receives the plurality of the votes is choosen by the combiner. Of course, The
proposed procedure is basically applicable with more restrictive voting methods
(e.g. majority voting [1]) as well as more elaborated combining methods (see
Sect. 5 for a more detailed discussion on possible extensions).

4 Experimental Evaluation

For our empirical investigations we use two data sets from the IAM graph data-
base repository [25] and one data set from GREYC’s data set repository1. All
data sets involve graphs that represent molecular compounds and all sets con-
sists of two classes. In Table 1 the main characteristics of the three data sets are
summarized2. For more details on the graph extraction methods and the graph
characteristics we refer to [25].

The purpose of the experiments described in this section is to compare the
classification accuracy of the ensemble obtained by the proposed method with
1 https://brunl01.users.greyc.fr/CHEMISTRY/index.html.
2 For the MAO data only a small training set is available and thus we conduct a
leave-one out experiment on this data set.

https://brunl01.users.greyc.fr/CHEMISTRY/index.html
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Table 1. The size of the training and test set |tr| and |te|, respectively, and the mean
and max number of nodes and edges |V | and |E|, respectively.

Data |tr| |te| �|V | �|E| max |V | max |E|
AIDS 250 1500 15.7 16.2 95 103
MUTA 1000 1000 30.3 30.8 417 112
MAO 70 – 18.4 19.6 27 29

Table 2. Recognition accuracy in percentage of the proposed ensemble and the two
reference systems.

Reference system Ensemble
Data μ ± σ max Voting

AIDS 98.85 ± 0.11 99.00 99.00
MUTA 66.14 ± 0.96 67.70 68.70
MAO 67.64 ± 4.53 73.53 76.47

the mean and maximum accuracy of all individual ensemble members (referred
to as μ and max, respectively). We set N = 9 for our evaluation.

In Table 2 the recognition accuracies of our novel ensemble and the reference
systems are shown (note that we additionally indicate the standard deviation
σ of the ensemble accuracies). We observe that the ensemble outperforms the
mean accuracy of the individual members on all data sets. Moreover, in two out
of three cases the ensemble outperforms the second reference system (the best
performing individual classifier per ensemble). That is, we can conclude that our
novel approach for building graph based classifier ensembles is clearly beneficial.

The standard deviation σ of the accuracy on the MUTA and MAO data set
indicate quite a large variation of the individual classifications. Moreover, on
the MAO data set at least one classifier from the ensemble returns a correct
classification in more than 98 % of all cases. The gap between this result and the
accuracy of our ensemble (76.47 %) confirms the great variety of classification
results among all ensemble members. Similar results are observable on the MUTA
data sets, while the results from the set of misclassified patterns do not heavily
overlap on the AIDS data set (at least one ensemble member correctly classifies
the graphs in 99.20 % and 93.10 % of all cases on the AIDS and MUTA data
sets, respectively).

5 Conclusions and Future Work

The present paper introduces a novel ensemble generation method applicable to
structural pattern representation (in particular to graphs). The basic idea is to
use a greedy graph edit distance approximation which returns different distance
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approximations depending on the node order of the underlying graphs. Hence,
by randomly permuting the nodes of the first graph one can instantly derive
different distance approximations for the same graph pair. Any distance based
classifier can eventually be used to build a multiple classifier system based on
these diverse distances. In the present paper an ensemble of nearest neighbor
classifiers is generated and tested on three real world data sets.

The experimental evaluation is only a very first step towards a better under-
standing of the advantages and limitations of our novel system. However, the
results are convincing and clearly indicate that this line of research is worth
to be pursued in future work. Among others we identify three possible exten-
sions of our basic system. First, we plan to substantially increase the number
of individual classifiers to some hundreds and then apply search strategies (such
as a floating search or similar) in order to find an optimal subset of classifiers
to be used as ensemble (known as overproduce-and-select). Second, we aim at
investigating whether elaborated variants of the greedy assignment might help
in building better individual classifiers. The third extension consists in using
other combination strategies to obtain the final classification results (such as
Borda count or Bayes’ combination using a plausibility function derived from
the distance approximations).
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Abstract. Ensemble methods are often used to decide on a good selec-
tion of features for later processing by a classifier. Examples of this are
in the determination of Random Forest variable importance proposed by
Breiman, and in the concept of feature selection ensembles, where the
outputs of multiple feature selectors are combined to yield more robust
results. All of these methods rely critically on the concept of feature
selection stability - similar but distinct to the concept of diversity in
classifier ensembles. We conduct a systematic study of the literature,
identifying desirable/undesirable properties, and identify a weakness in
existing measures. A simple correction is proposed, and empirical studies
are conducted to illustrate its utility.

Keywords: Stability · Feature selection · Ensembles

1 Introduction

The stability of feature selection can be seen as its sensitivity to small changes in
the input dataset. In many applications, stability of feature selection is crucial
as the user might need to identify an interpretable feature subset, e.g. when
identifying genes responsible for a disease [1]. Stable feature selection frameworks
provide more reliable feature subsets and gain in interpretability. As the output
of a feature selection algorithm (FSA) can either be a set of features, a ranking
on the features or a score on the features, there exist stability measures that
apply to each one of these cases. In this paper, we focus on the first case where
an FSA returns a feature set.

Why is measuring stability of feature selection an issue? In regression
or classification predictors, the sensitivity to changes in data is quantified exactly
in a bias-variance decomposition of the error measure (though in the classifica-
tion case this is not entirely straightforward). There is no such decomposition
that applies to feature selection. First of all, the true relevant set of features is
unknown (and strongly depends on the classifier that will be used afterwards)
which does not allow us to define the concept of bias. In the case of regression
predictors, such decomposition relies on the convexity of the squared-loss func-
tion. A stability measure will allow us to quantify the variability in the feature
sets selected by an FSA for a given dataset.
c© Springer International Publishing Switzerland 2015
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Why do we need a new measure? Kuncheva [8] demonstrated the impor-
tance of the property of correction for chance and derived a new measure satisfy-
ing this property. Nevertheless, the measure proposed can only be calculated for
FSAs selecting a fixed amount of features on a given dataset. Even though several
variants of Kuncheva’s measure satisfying the property of correction for chance
have been proposed to deal with feature sets of varying cardinality [9,12,14],
we will show that they are flawed in the sense that they do not satisfy other
critical properties (e.g. they do not always return their maximal value when the
FSA always returns the same feature set or they are not bounded by constants).
Hence, we derived a generalization of Kuncheva’s stability measure that can be
used with feature sets of varying cardinality while retaining a set of desirable
properties. Examples that illustrate of the utility of these measures are feature
selection techniques using hypothesis testing, random forests or LASSO. Indeed,
when applying LASSO to different samples of the same data, there is no guar-
antee that the same coefficients will be equal to 0 and hence, that a constant
number of features will be selected when different samples of the data are taken.

Applications to Ensemble-Based Feature Selection. Stability of ensemble-
based feature selection has recently become area of interest [1,3,5,10]. In
ensemble-based feature selection, we use a set of diverse feature selection meth-
ods to build a more robust one. A stability analysis could then be carried out to
observe the diversity (corresponding to low stability) of the different feature selec-
tion methods within an ensemble as well as to observe the robustness (correspond-
ing to high stability) of the feature selection made by the ensemble.

The remainder of the paper is structured as follows. Section 2 presents some
of the properties of the existing measures. Section 3 focuses on the measures
having the property of correction for chance for feature sets of different cardi-
nalities and highlights their weaknesses on toy examples. Section 4 proposes a
new measure having a set of identified properties and Sect. 5 illustrates its utility
in the context of an ensemble-based feature selection procedure.

2 Stability Measures

2.1 Existing Measures

To observe the robustness of an FSA to changes in the data, the FSA is applied
to K samples of the same dataset to obtain a sequence A of K feature sets.
The more similar these K feature sets will be, the more the procedure will be
said to be stable. To define stability, one common approach consists of defining
a similarity measure sim between two feature sets s1 and s2 and then to define
the stability as the average similarity over all pairs of feature sets in A. In that
case, the stability will be denoted by sim and we can express it as follows:

sim(A) =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

sim(si, sj), (1)
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where si is the ith feature set in A. Several similarity measures have been pro-
posed in the literature. Some of the older works propose using the Jaccard index
simJ [6] (also referred as the Tanimoto distance) or the relative Hamming dis-
tance to define a similarity measure simH [4]. Let us assume that we have n
features in total. The output of an FSA can then be seen as a binary string of
length n with a 1 at the ith position if the ith feature has been selected and with
a 0 otherwise. Let’s assume that an FSA returns the following sequence A of
K = 3 feature sets:

s1 : 1 0 0 1 0 1 s2 : 1 1 0 0 0 1 s3 : 1 0 1 1 1 1 (2)

The similarity measure simH between two feature sets is defined as the number
of bits they have in common divided by the length n of the string. Therefore,
using Eq. 1, the resulting stability of these feature sets will be equal to:

simH(A) =
2

3(3 − 1)

2∑

i=1

3∑

j=i+1

simH(si, sj) =
2

3(3 − 1)

(
4
6

+
4
6

+
2
6

)
=

5
9
.

(3)
Nevertheless, both these measures are subset-size-biased [8] meaning that their
values are biased by the number of features selected and hence cannot be used
consistently to compare the stability of FSAs in different settings. Indeed, imag-
ine that a procedure selects two identical feature sets of 8 features out of a total
of 10 features and that another procedure selects two identical feature sets of 8
features out of a total of 100 features. Intuitively, the second procedure is more
stable, as it is less likely to have selected the exact same 8 features by chance.
For this reason, Kuncheva [8] proposed a similarity measure having the prop-
erty of correction for chance. The similarity between two feature sets of size k
can be seen as the number of features r they have in common (i.e. the size of
their intersection). As we want this measure to reflect on the true ability of the
procedure to select identical features, Kuncheva [8] proposes correcting r by the
expected size of the intersection between two feature sets of k features drawn
at random (denoted hereafter by E[r]). The size of the intersection between two
sets containing k objects each individually randomly drawn without replacement
amongst a total of n objects follows a hypergeometric distribution, and there-
fore we have that E[r] = k2

n . In order to make this value comparable for different
values of k and n, Kuncheva rescales r − E[r] in [−1, 1] by dividing it by its
maximal value max(r − E[r]):

simK(s1, s2) =
r − E[r]

max(r − E[r])
=

r − E[r]
max(r) − E[r]

=
r − E[r]
k − E[r]

=
r − k2

n

k − k2

n

, (4)

where s1 and s2 are two feature sets of cardinality k and where max(r) is the
maximal possible value of r for a given k. The measure simK will hence reach
its maximal value of 1 when r = k, i.e. when the two feature sets s1 and s2 are
identical.
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2.2 Properties

By leading a thorough study of the literature, we have identified the following
set of desirable properties for a stability measure:

1. Limits. The measure should be bounded by values that do not depend on
the number of features and the cardinality of the feature sets should reach its
maximal value when the feature sets are identical.

2. Monotonicity. The measure should be an increasing function of the simi-
larity of the feature sets.

3. Correction for chance. This property allows to compare stability of FSAs
selecting a different amount of features. Positive values will be interpreted as
being more stable than an FSA selecting features at random.

4. Unconstrained on cardinality. We would like a stability measure to be
able to deal with feature sets of different cardinalities.

5. Symmetry. We would like the stability measure to be symmetrical, so that
its value does not depend on the order on which the feature sets are taken.

6. Redundancy awareness. As features can be redundant, we would like a
stability measure to reflect on the true amount of redundant information
between the feature sets.

Properties 1 to 3 were the ones identified by Kuncheva [8] and Properties 4 to 6
are the ones that we have identified by looking at the measures proposed later
on. Table 1 gives us the properties of the most commonly used existing stability
measures for FSAs returning a feature set.

Table 1. Properties of stability measures for FSAs outputting a feature set.

1 2 3 4 5 6

simJ (Dunne et al. [4]) � � � �
simH (Kalousis et al. [6]) � � � �
simM (Yu et al. [13]) � � � � �
simK (Kuncheva [8]) � � � �
simL (Lustgarten et al. [9]) � � � �
simW (Wald et al. [12]) � � � �
Average nPOG (Zhang et al. [14]) � � �
Average nPOGR (Zhang et al. [14]) � � � �
CWrel (Somol and Novovičová [11]) � � � �
γk (Kŕızek et al. [7]) � � �

The focus of this paper is on the stability measures having the important
property of correction for chance. Even though the stability measure CWrel

(introduced Somol and Novovičová [11]) does not explicitly yield the property
of correction for chance, using Theorem 1, we can point out that CWrel asymp-
totically holds this property when a constant number of features is selected.
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Theorem 1. For a sequence A containing feature sets of constant cardinality,
the stability measure CWrel(A) is asymptotically equivalent to simK(A) as the
number of feature sets approaches infinity.1

All the five stability measures having the property of correction for chance (cf
Table 1) are either taken as the average pairwise similarities between the feature
sets (as in simK , simL, simW ) or as the average similarity between disjoint fea-
ture sets pairs (for stability measures using nPOG and nPOGR). The nPOGR
similarity measure is a generalization of the nPOG measure that attempts to
take into account linear feature redundancies (which is not in the scope of this
paper). The similarity measures simL, simW and nPOG are all variants of
Kuncheva’s similarity measure simK for feature sets of varying cardinalities.

3 Extensions of Kuncheva’s Similarity Measure

3.1 Definitions

There are three similarity measures extending Kuncheva’s similarity measure
simK for feature sets s1 and s2 of different cardinalities (respectively k1 and k2).
In this situation, the value of the expected size of the intersection for randomly
drawn feature sets becomes E[r] = k1k2

n [9]. The three measures are of the same
general form as Kuncheva’s measure simK , as they keep the numerator equal
to r − E[r]. In order to make these values comparable in different settings (i.e.
for different values of k1, k2 and n), the value of r − E[r] needs to be rescaled.
The three similarity measure extending simK are three variants of this and they
only differ in the way the numerator r − E[r] is rescaled. Note that in all these
expressions, the only variable is the size of the intersection r and that all other
terms are constants only depending on k1, k2 and n. Lustgarten et al. [9] proposes
dividing the value of the numerator by r −E[r] by its range (i.e. by its maximal
value minus its minimal value for a given k1, k2 and n):

simL(s1, s2) =
r − E[r]

max(r − E[r]) − min(r − E[r])
. (5)

As E[r] is a constant only depending on k1, k2 and n, r−E[r] is a linear function
of r and hence the above equation becomes:

simL(s1, s2) =
r − E[r]

(max(r) − E[r]) − (min(r) − E[r])
=

r − E[r]
max(r) − min(r)

, (6)

where max(r) and min(r) are respectively the maximal and the minimal possible
values of the size of the intersection r given k1, k2 and n. Intuitively, we can see
that the minimal size of the intersection between two feature sets is not 0. Indeed,
imagine we have a set containing k1 = 2 features, another set containing k2 = 3
features and that we have n = 4 features to select from in total. In this setting,
1 Proofs of the theorems available at http://www.cs.man.ac.uk/∼nogueirs.

http://www.cs.man.ac.uk/~nogueirs
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these two sets cannot be disjoint. It can be shown that the minimal possible
value of r is equal to min(r) = max(0, k1 + k2 − n). Similarly the maximal
value of r is reached when one set is a proper subset of the other. Therefore,
the maximal value or r is equal to max(r) = min(k1, k2). Lustgarten’s measure
simL can therefore be rewritten as follows:

simL(s1, s2) =
r − E[r]

max(0, k1 + k2 − n) − min(k1, k2)
. (7)

It can be shown that this rescaling procedure ensures a value of simL in the
interval [−1, 1]. Nevertheless, we will see through a set of examples that this
procedure does not satisfy all the desirable properties in this context.

In a similar way, Wald et al. [12] proposes rescaling the numerator by dividing
it by its maximal value:

simW (s1, s2) =
r − E[r]

max(r − E[r])
=

r − E[r]
max(r) − E[r]

=
r − k1k2

n

min(k1, k2) − k1k2
n

. (8)

By dividing the numerator by its maximal value, we are ensured that simW

will always be less than or equal to 1. Nevertheless, as the numerator can take
negative values, dividing it by the maximal value will not guarantee lower bounds
that do not depend on the constants k1, k2 and n. In fact, it can be shown that
for a given n, the minimum of simW is 1 − n (and is reached when k1 = n − 1
and k2 = 1 or vice versa). We will illustrate the importance of this with an
example in the next Section. In the measure nPOG, Zhang et al. [14] divide
the numerator either by k1 − E[r] if s1 is given as the first argument or by
k2 − E[r] otherwise; making the resulting similarity measure non-symmetrical
(i.e. nPOG(s1, s2) �= nPOG(s2, s1)):

nPOG(s1, s2) =
r − E[r]
k1 − E[r]

=
r − k1k2

n

k1 − k1k2
n

. (9)

The non-symmetry of this measure can be problematic, as we will illustrate it in
the next Section. Also, one can notice that when the set of smaller cardinality
is given as the first argument, nPOG is equal to the simW measure, hence
inheriting its weaknesses.

3.2 Toy Examples Illustrating the Weaknesses of the Measures

To illustrate some of the missing properties of the similarity measures, we provide
four toy examples.

Example 1: Accounting for Systematic Bias in Chosen Set Size. Imag-
ine that there are 10 features to choose from. Procedure F1 chooses 7 features
deterministically, i.e. no matter what the variation in data is, the same 7 fea-
tures are returned. Intuitively, the “stability” of this procedure is maximal. It has
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zero variation in its choice of feature set. Lustgarten’s measure returns a value
of simL = 0.7, whilst all other measures return 1. This is somewhat strange, and
undesirable, as we have no way to know if F1 is deterministic from the value of
simL. Furthermore, imagine procedure F2, which picks 4 features, again deter-
ministically. Lustgarten’s measure now returns 0.6, which makes procedures F1

and F2 not comparable in terms of stability. This example highlights the need
for a similarity measure that returns its maximal value as long as the feature
sets are identical, as stated in Property 1 of Sect. 2.

Example 2: Accounting for the Set Size Variations. Imagine our same
set of 10 features as above. Half of the time, procedure F returns features 1 to
8, and the other half of the time it returns features 1 and 2, i.e. a proper subset.
In this situation, Wald’s stability measure returns a maximal 1, whilst clearly
there is variation in the choice of the subset size. In fact, using Wald’s measure,
the similarity between two feature sets will always have its maximal value of
1 as long as one of the two sets is a proper subset of the other. For the other
two similarity measures, this is not the case, even though the similarities do not
decrease proportionally to the distance between the feature sets cardinalities.

Example 3: Invariance to Feature Set Permutations. This example is the
same as the previous one where the order of the feature sets has been permuted.
Because of the non-symmetry of nPOG, the stability value returned by this
measure might not be the same as the one calculated in the previous example.
This example showcases the need for a symmetrical similarity measure as stated
in Property 5 of Sect. 2.

Example 4: Bounded by Constants. Having minimal values that increase
linearly with n can lead to negative values of much larger amplitude than
the maximum value which is equal to 1. If we have n = 100 features in total, the
minimal value of nPOG and of simW is equal to −99 while its maximal value
is 1. When calculating the average of the similarities, such large negative values
can strongly bias the resulting stability. We can illustrate this with a simple
example. Imagine that a feature selection procedure selects 9 times features 1 to
8 in feature sets s1, s2, ...s9 and that features 9 and 10 are selected in a set s10.
When averaging over all possible pairs of similarities, the stability value of simW

is 0 which corresponds to the stability value of an FSA drawing 10 feature sets
at random, even though 9 out of the 10 feature sets considered were identical.
Another issue with minimal values depending on n is that the minimal values
will be different for two different values of n. In practice, this does not allow us
to compare the stability of an FSA on two different datasets for instance. This
shows the need for a stability measure to be bounded by constants as stated in
Property 1 of Sect. 2.
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4 A New Similarity Measure

In the light of the previous observations, we propose a new similarity measure
simN of the same general form that will rescale the numerator r − E[r] so that
its value belongs to [−1, 1]. As the numerator r − E[r] can take both negative
and positive values, one way to do so is to divide it by its maximal absolute
value as follows:

simN (s1, s2) =
r − E[r]

max (|r − E[r]|) . (10)

Both Kuncheva’s and Wald’s similarity measures simK and simW rescale the
numerator by dividing it by its maximal value. Then, we can wonder why
Kuncheva’s similarity measure simK (defined only for k1 = k2) belongs to [−1, 1]
whereas Wald’s measure (defined for distinct values of k1 and k2) does not. In
fact, it can be shown that when k1 = k2, the maximal absolute value of the
numerator is equal to its maximal value, so that Kuncheva’s measure can be
rewritten as in Theorem 2. This also proves that our proposed measure simN is a
true generalization of Kuncheva’s index as they have the same formal expression.

Theorem 2. Kuncheva’s similarity between two feature sets s1 and s2 of same
cardinality can be rewritten as follows:

simK(s1, s2) =
r − E[r]

max(|r − E[r]|) . (11)

The maximal absolute value of a term is equal to the maximum between the
opposite of its minimum and its maximum. Therefore, simN can be rewritten
as follows:

simN (s1, s2) =
r − E[r]

max [−min(r − E[r]);max(r − E[r])]
. (12)

The only variable in simN is the size of the intersection r and all other terms
only depend on k1, k2 and n. Therefore, min(r − E[r]) = min(r) − E[r] and
max(r − E[r]) = max(r) − E[r], which gives us the following expression for
simN :

simN (s1, s2) =
r − E[r]

max [−min(r) + E[r];max(r) − E[r]]
. (13)

As explained in Sect. 3.1, the minimal value of r is min(r) = max(0, k1 +k2 −n)
and its maximal value is max(r) = min(k1, k2). Therefore, we have that:

simN (s1, s2) =
r − E[r]

max [−max(0, k1 + k2 − n) + E[r];min(k1, k2) − E[r]]

=
r − k1k2

n

max
[−max(0, k1 + k2 − n) + k1k2

n ;min(k1, k2) − k1k2
n

] .
(14)

The resulting stability measure simN is then taken as the average pairwise sim-
ilarities as in Eq. 1. Let us now look at the properties of the new measure simN .
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As explained previously, this measure is a proper generalization of Kuncheva’s
measure simK as it matches its value for k1 = k2 = k. By construction, this
measure will be bounded by the constants −1 and 1 and reach its maximal value
of 1 when the two feature sets are identical. Hence it has the Property 1 of
Table 1. As outlined in the toy examples of Sect. 3.2, this allows the compari-
son of stability values for algorithms returning different number of features and
for different values of n. It also has the Property 2 of monotonicity (as it is an
increasing function of the size of the intersection r between two feature sets) and
the Property 3 of correction for chance. It is invariant to feature set permuta-
tions (as it is symmetric). Figure 1 shows the maximum and minimal values of the
measure in different settings. As we can see, even though this measure accounts
for some of the set size variations, the maximum value is not proportional to
the distance between the two subset sizes k1 and k2. Finally, this measure is the
only one having Properties 1 to 5. As Kuncheva’s similarity measure simK (as
well as the measures simL, simW and nPOG), the expression of this similarity
measure only holds for values of k1 and k2 in {1, ..., n − 1}. For completeness,
we will also set the values of simN to 0 when k1 or k2 is equal to 0 or n.

Fig. 1. Maximum and minimum of simN against k1 for k2 = 6 (LEFT) and k2 = 8
(RIGHT) when n = 10.

5 Application to Feature Selection by Random Forests

To illustrate the utility of the proposed measure, we used random forests [2]
as a feature selection procedure where a feature is selected when it is used in
at least a percentage p of the trees. We built random forests of 100 decision
trees using the mutual information as a splitting criterion. Each decision tree is
built on a bootstrap sample of the given dataset. At each splitting point, the
decision tree was given the choice between �√n� features selected at random.
As p is effectively a regularization parameter on the number of features selected,
we tuned p for the different datasets so that only a certain proportion of the
features is selected. In order to model the data perturbations, either bootstrap
samples or random sub-samples can be taken [5].
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Table 2. Parameters of 4 datasets, where p is the regularization parameter and where
the average number of features selected using parameter p is given along with its
standard deviation.

Num. ex. Num. classes p Num. feat. Av. num. feat. selected

Wine 178 3 0.5 13 9.8 ± 0.93

Parkinsons 195 2 0.5 22 11 ± 1.7

Breast 569 2 0.5 30 15 ± 1.3

Sonar 208 2 0.25 60 42 ± 2.4

(a) wine (b) parkinsons

(c) breast (d) sonar

Fig. 2. Stability values on 4 datasets using the different similarity values.

Here we used K = 100 random sub-samples without replacement of the
datasets containing 90% of the total amount of examples [8]. So we built K
random forests on each one of these samples and calculated the stability of
the sequence of the K feature sets obtained. We used 4 datasets of the UCI
repository, for which the properties, the values chosen for p and the average
number of features selected are given in Table 2. Figure 2 gives us the stability
values when using the different similarity measures. We observed that on all the
datasets, the lowest stability value is obtained when using Lustgarten’s similarity
measure simL. This probably comes from the fact that simL does not always
reach its maximal value when two feature sets are identical and its maximal value
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depends on the size of the feature sets selected (as observed in Toy Example 1
of Sect. 3.2). The stability value when using nPOG seems closer to the value of
the ones using simN and simW on the parkinsons and on the breast datasets
than in the other two datasets. As we have seen in Toy Example 3, the value
of nPOG changes when we permute the feature sets, which makes it difficult
to interpret. On the four datasets, the stability values obtained using simW

and simN are close to each other. This can be explained by the fact that in
some situations (i.e. for certain values of k1, k2 and n), the value simN will
be equal to the one of simW . Indeed, when we take a pair of feature sets s1
and s2, if we have k1, k2 and n such that −min(r) + E[r] ≤ max(r) − E[r],
the denominator of the two similarity measures becomes the same and in that
case simW (s1, s2) = simN (s1, s2). In other words, in the feature sets returned
by this procedure, only a small proportion of pairs of feature sets do not satisfy
this. We have seen in Toy Example 4 that the minimal value of simW decreases
with n and this could strongly bias the resulting stability value in some cases.
This situation happens when the feature sets are very dissimilar in both terms
of cardinality and of features selected. In the four datasets, we can observe that
this is not the case as the standard deviations of the number of features selected
by the random forests are much smaller than the total number of features.

6 Conclusion

Through a thorough study of the literature, we identified a set of desirable
properties for stability measures dealing with feature selection procedures that
return feature sets. After leading a comparative study on the measures that
have the property of correction for chance, a generalization of Kuncheva’s index
is proposed for feature selection algorithms that do not return feature sets of
constant cardinality. This new measure has all the desired properties except that
it does not take into account possible redundancy between features, which could
be the focus of future work. We illustrate a possible application of this measure
in the context of ensemble-based feature selection and exhibit the differences
obtained in the stability values using the different measures.
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Abstract. Graph based pattern representation offers a number of useful
properties. In particular, graphs can adapt their size and complexity to
the actual pattern, and moreover, graphs are able to describe structural
relations that might exist within a pattern. Yet, the high representational
power and flexibility of graphs is accompanied by a significant increase
of the complexity of many algorithms. For instance, exact computation
of pairwise graph distance can be accomplished in exponential time com-
plexity only. A previously introduced approximation framework reduces
the problem of graph distance computation to an instance of a linear sum
assignment problem. This allows suboptimal graph distance computation
in cubic time. The present paper introduces a novel procedure, which is
conceptually related to this previous approach, but offers O(n2 log(n2))
(rather than cubic) run time. We empirically verify the speed up of our
novel approximation and show that the faster approximation is able to
keep up with the existing framework with respect to distance accuracy.

1 Introduction

In pattern recognition applications where the underlying data is characterized
by complex structural relationships (e.g. [1–3]), graphs are often used as basic
formalism for pattern representation. The process of evaluating the dissimilarity
of graphs is referred to as graph matching [4,5]. Among a vast number of graph
matching methods available [6–8], the concept of graph edit distance [9,10] is in
particular interesting because it is able to cope with directed and undirected, as
well as with labeled and unlabeled graphs. If there are labels on nodes, edges,
or both, no constraints on the respective label alphabets have to be considered.
In fact, graph edit distance is a widely accepted concept for general graph dis-
similarity computation and has been used in various applications [11–13].

A well known drawback of graph edit distance is its computational complexity
which is exponential in the number of nodes of the involved graphs. This means
that for large graphs the exact computation of graph edit distance is intractable.
In recent years, a number of methods addressing the high complexity of graph
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 147–156, 2015.
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edit distance computation have been proposed [14,15]. In [16] the authors of the
present paper introduced an algorithmic framework that reduces the problem of
graph edit distance computation to a linear sum assignment problem (LSAP).
The basic idea is to subdivide the graphs into individual nodes including local
structural information. Next, an LSAP solving algorithm is employed in order
to find an optimal assignment of the nodes (plus local structures) of both graphs
in cubic time. Finally, an approximate graph edit distance, which is globally
consistent with the underlying edge structures of both graphs, is derived from
the assignment of local substructures.

The major goal of the present paper is to speed up the approximation frame-
work presented in [16]. In particular, we aim at substantially speeding up the
assignment of local substructures. To this end we replace the optimal assignment
algorithm with cubic time complexity with a suboptimal algorithm which runs
in linearithmic time. The basic idea of our novel approach is to sort all possible
assignments with respect to their individual local costs in a list in ascending
order. Next, the nodes of both graphs are unambiguously assigned to each other
in a greedy manner according to the assignments that occur first in the list of
costs from head to tail.

The remainder of the present paper is organized as follows. Next, in Sect. 2 the
concept of graph edit distance and the original framework for graph edit distance
approximation [16] is summarized. In Sect. 3 the novel assignment algorithm is
introduced. An experimental evaluation on diverse data sets is carried out in
Sect. 4, and in Sect. 5 we draw conclusions and point out possible directions for
future work.

2 Bipartite Graph Edit Distance Approximation

2.1 Graph Edit Distance

A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function. The labels for both nodes and edges
can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = R

n,
a set of symbolic labels L = {α, β, γ, . . .}, or a combination of various label
alphabets from different domains. Unlabeled graphs are obtained as a special
case by assigning the same (empty) label ∅ to all nodes and edges.

Given two graphs, the source graph g1 = (V1, E1, μ1, ν1) and the target graph
g2 = (V2, E2, μ2, ν2), the basic idea of graph edit distance [9,10] is to transform
g1 into g2 using some edit operations. A standard set of edit operations is given
by insertions, deletions, and substitutions of both nodes and edges. We denote
the substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v), the deletion of
node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by (ε → v), where ε
refers to the empty node. For edge edit operations we use a similar notation.

A sequence (e1, . . . , ek) of k edit operations ei that transform g1 completely
into g2 is called edit path λ(g1, g2) between g1 and g2. Let Υ (g1, g2) denote the
set of all admissible and complete edit paths between two graphs g1 and g2.
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To find the most suitable edit path out of Υ (g1, g2), one introduces a cost c(e)
for every edit operation e, measuring the strength of the corresponding oper-
ation. The idea of such a cost is to define whether or not an edit operation
represents a strong modification of the graph. By means of cost functions for
elementary edit operations, graph edit distance allows the integration of domain
specific knowledge about object similarity. Furthermore, if in a particular case
prior knowledge about the labels and their meaning is not available, automatic
procedures for learning the edit costs from a set of sample graphs are available
as well [17].

Clearly, between two similar graphs, there should exist an inexpensive edit
path, representing low cost operations, while for dissimilar graphs an edit path
with high cost is needed. Consequently, the exact edit distance dλmin(g1, g2) of
two graphs g1 and g2 is defined as the sum of cost of the minimal cost edit path
found in Υ (g1, g2).

2.2 Approximation of Graph Edit Distance

Algorithms for computing the exact edit distance dλmin are typically based
on combinatorial search procedures. The search space for those procedures is
Υ (g1, g2), which contains O(mn) edit paths to be explored (assuming m nodes
in g1 and n nodes in g2). Hence, the computational complexity of exact graph
edit distance is exponential in the number of nodes of the involved graphs. This
means that for large graphs the computation of edit distance is intractable.

The graph edit distance approximation framework introduced in [16] reduces
the difficult problem of graph edit distance computation to an instance of a
Linear Sum Assignment Problem (LSAP) for which a large number of efficient
algorithms exist [18].

By reformulating graph edit distance as an instance of an LSAP (denoted
with BP-GED1), three major steps have to be carried out.

First Step: A square cost matrix C = (cij) based on the node sets V1 =
{u1, . . . , un} and V2 = {v1, . . . , vm} of g1 and g2, respectively, is established
as follows.

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

1 Bipartite Graph Edit Distance (LSAPs can be formulated by means of bipartite
graphs).
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Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε

denotes the cost of a node deletion (ui → ε), and cεj denotes the cost of a node
insertion (ε → vj). That is, the left upper corner of C = (cij) represents the
costs of all possible node substitutions, while the diagonals of the right upper and
left lower corner represent the costs of all possible node deletions and insertions,
respectively (every node can be deleted or inserted at most once and thus any
non-diagonal element can be set to ∞ in these parts). Substitutions of the form
(ε → ε) should not cause any cost and therefore, any element in the right lower
part is set to zero.

Second Step: Next, an LSAP is stated on cost matrix C = (cij) and eventually
solved. The LSAP optimization consists in finding a permutation (ϕ1, . . . , ϕn+m)
of the integers (1, 2, . . . , (n + m)) that minimizes the overall assignment cost∑(n+m)

i=1 ciϕi
. This permutation corresponds to the assignment

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n
))

of the nodes of g1 to the nodes of g2. Note that assignment ψ includes node
assignments of the form (ui → vj), (ui → ε), (ε → vj), and (ε → ε) (the latter
can be dismissed, of course). Hence, the definition of C = (cij) in Eq. 1 explicitly
allows insertions and/or deletions to occur in an optimal assignment.

The optimal assignment ψ does not take any structural constraints on the
graphs into account as long as the individual entries in C = (cij) consider the
nodes of both graphs only. In order to integrate knowledge about the graph
structure, to each entry cij , i.e. to each cost of a node edit operation (ui → vj),
the minimum sum of edge edit operation costs, implied by the corresponding
node operation, is added. This enables the LSAP to consider information about
the local, yet not global, edge structure of a graph for optimizing the node
assignment.

Third Step: The LSAP optimization finds an assignment ψ in which every node
of g1 and g2 is either assigned to a unique node of the other graph, deleted or
inserted. Note that edit operations on edges are always defined by the edit oper-
ations on their adjacent nodes. That is, whether an edge (u, v) is substituted,
deleted, or inserted, depends on the edit operations actually performed on both
adjacent nodes u and v. Since ψ refers to a consistent and complete node assign-
ment, the edge operations can be completely and consistently inferred from ψ.
Hence, we get a valid edit path λψ ∈ Υ (g1, g2) between the graphs under con-
sideration.

Yet, λψ considers the edge structure of g1 and g2 in a global and consistent
way, while the underlying optimal node assignment ψ is able to consider the
structural information in an isolated way only (single nodes and their adjacent
edges). Hence, the edit path λψ found by this specific framework is not necessarily
optimal and thus the corresponding distance dψ is – in the best case – equal to,
or – in general – larger than the exact graph edit distance dλmin .
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3 Sort Match for Graph Edit Distance Approximation

The prime reason for building a square cost matrix C = (cij) in [16] is to
formulate a standard LSAP that takes the peculiarities of graph edit distance
into account. This particular LSAP (defined on C = (cij)) is eventually solved
in an optimal manner. The novel method of the present paper is similar to [16]
in the sense of first regarding the individual node sets V1 = {u1, . . . , un} and
V2 = {v1, . . . , vm} of the involved graphs only. Yet, in contrast with [16] where
a square cost matrix is built upon V1 and V2, our novel procedure is based on a
list of costs established as follows.

l = {c11, c12, . . . cij , . . . , cnm︸ ︷︷ ︸
substitutions

, c1ε, c2ε, . . . , cnε︸ ︷︷ ︸
deletions

, cε1, cε2, . . . , cεm︸ ︷︷ ︸
insertions

} (2)

Obviously, list l buffers the n × m elements that represent the costs of all
possible node substitutions (left upper corner of C), as well as n and m elements
that represent the costs of all possible node deletions and insertions, respectively
(diagonals of the right upper and left lower corner of C). Although list l contains
less entries than C, it essentially contains the same information as C as the
omitted elements are ∞- and 0-elements only. Yet, major benefit of our novel
procedure is not the downsized number of elements to be considered, but a
suboptimal – rather than an optimal – assignment algorithm based on local
assignment costs.

The complete approximation framework is outlined in Algorithm 1. First, the
basic list l is built and eventually sorted in ascending order using an optimized
merge sort in O(n log n) time [19] (line 1 and 2). On line 3 and 4, ψ is initialized
as empty set of assignments, counter k is set to 1 and all nodes of both graphs are
marked as available. Next, as long as not all nodes of g1 and g2 are processed, the
individual cost entries cij are visited from head to tail (line 5 and 6). On line 7 it
is verified whether the pair of indices (i, j) (corresponding to the currently visited
entry cij) is admissible. Remember that every element cij uniquely corresponds
to a certain node edit operation (ui → vj). A pair of indices (i, j) is admissible
if one of the following three cases is true:

1. both nodes ui ∈ V1, vj ∈ V 2 are available (substitution of unprocessed nodes
ui, vj)

2. i == ε and vj ∈ V2 is available (insertion of unprocessed node vj)
3. j == ε and ui ∈ V1 is available (deletion of unprocessed node ui)

If (i, j) is admissible, the node edit operation (ui → vj) is added to the set of
assignments ψ in the basic version of the algorithm (line 13). Eventually, the
corresponding nodes ui and vj are marked as unavailable2 (line 14).

In a refined version of our procedure, the subroutine Look-Ahead (Algo-
rithm 2) with user defined parameter δ is called, if (i, j) is admissible (line 8).

2 The i-th node ui ∈ V1 is marked as unavailable only, if the corresponding index i is
not equal to ε, of course. The same accounts for index j and node vj ∈ V2.
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Algorithm 1. Sort-Match(g1, g2, δ)
1: Build list l = {c11, . . . , cεm} according to Eq. 2 and input graphs g1, g2

2: Sort elements cij ∈ l in ascending order: l = (c(1), . . . , c(nm+n+m))
3: ψ = {}
4: k = 1; mark all nodes in g1 and g2 as available
5: while nodes in g1 are available or nodes in g2 are available do

6: Let cij be the k-th element c(k) in list l
7: if (i, j) is admissible then
8: τ = Look-Ahead(δ)
9: if |τ | > 0 then

10: ψ = ψ ∪ τ
11: Mark ui, ui′ , vj and vj′ as unavailable

12: else
13: ψ = ψ ∪ {(ui → vj)}
14: Mark ui and vj as unavailable
15: end if
16: end if
17: k = k + 1
18: end while

19: Complete edit path according to ψ and return dψ(g1, g2)

Algorithm 2. Look-Ahead(δ)
1: δ = min(δ, (nm + n + m − k))

2: Assignments A = {(u(1) → v(1)), . . . , (u(δ) → v(δ))} correspond to {c(k+1), . . . , c(k+δ)}
3: if ∃ {(ui → vj′ ), (ui′ → vj)} ⊆ A with admissible pairs (i, j′), (i′, j) then

4: return {(ui → vj′ ), (ui′ → vj)} else return {}
5: end if

This subroutine browses through the subsequent δ elements {c(k+1), . . . , c(k+δ)}
of the currently processed element (note that line 1 of Algorithm 2 ensures that
the search area remains in list l even if the number of unvisited elements in l is
smaller than δ). Overall aim of the subroutine is to find two alternative admis-
sible assignments (ui → vj′) and (ui′ → vj) for both nodes ui ∈ V1 and vj ∈ V2

within the next δ elements in l. If we find such a pair, we return it to the calling
algorithm and save it in τ on line 8 (otherwise an empty set is returned and
saved in τ). If τ is not empty, the assignments in τ are added to ψ and the
corresponding nodes are marked as unavailable (line 10 and 11). Otherwise the
initial admissible edit operation is added to ψ (line 13 and 14).

The intuition behind this refinement is as follows. The basic assignment
process works in a greedy manner. That is, once an admissible edit operation
(ui → vj) has been found in l, it is irrevocably added to ψ. However, this
particular edit operation might prevent two assignments that involve indices i
and j which would have been processed in the next δ steps. Clearly, as list l is
in ascending order, the individual entries cij′ and ci′j have to be greater than
or equal to cij . Yet, in contrast with (ui → vj), which includes at most two
nodes, the combination of the two alternative assignments include four nodes
in the best case. Hence, though the individual cost entries are greater than
(or equal to) the current admissible assignment, it might be reasonable to add
{(ui → vj′), (ui′ → vj)} to ψ rather than only (ui → vj).
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Similar to BP-GED, the proposed algorithmic procedure finds an assignment
ψ in which every node of g1 and g2 is either assigned to a unique node of the
other graph, deleted or inserted. Hence, on line 19 we are able to infer all nec-
essary edge edit operations to get a complete edit path λψ ∈ Υ (g1, g2) and the
corresponding approximate edit distance dψ. For the remainder of this paper
we denote this adapted algorithmic procedure with Sort-Match-Look-Ahead(δ)-
GED (or SMLA(δ)-GED for short).

In contrast with the optimal assignment ψ, the node assignment ψ′ of our
novel procedure is suboptimal. That is, the sum of assignments costs of our novel
approach is greater than, or equal to, the minimal assignment cost provided by
optimal LSAP solving algorithms. However, note that for the corresponding
distance values dψ and dψ′ no globally valid order relation exists. That is, the
approximate graph edit distance dψ′ derived from ψ′ can be greater than, equal
to, or smaller than dψ.

The time critical part of both algorithms BP-GED and SMLA(δ)-GED is
the process of finding the assignment of local structures. BP-GED defines the
assignment by solving the LSAP on C = (cij) in an optimal way which takes
O((n+m)3) time. Clearly, the bottleneck of the assignment process in SMLA(δ)-
GED is the sorting of list l which can be accomplished in linearithmic time with
respect to the number of elements in l. Assuming n ≈ m, we have approximately
n2 + 2n elements in l and thus the overall complexity of graph edit distance
computation amounts to O(n2 log(n2)).

4 Experimental Evaluation

The goal of the experimental evaluation, carried out on three different data sets
from the IAM graph repository [20], is twofold. First, we aim at empirically
confirming the faster matching time of SMLA(δ)-GED compared to BP-GED.
Second, we aim at answering the question whether or not the SMLA graph edit
distances remain sufficiently accurate for graph based pattern classification.

In our experimental evaluation we use four different values for δ, viz. {0, 5,
10, 15}. For every graph pair we incrementally increase the size of the look ahead
area from 0 to δ with step size 5. Eventually, we return the minimum edit distance
found by all approximation variants. Hence, for a specific graph pair (g1, g2) and
a certain value of δ ∈ {0, 5, 10, 15}, we have

SMLA(δ)-GED(g1, g2) = min
i=0,5,...,δ

{SMLA(i)-GED(g1, g2)}

Clearly by means of this specific experimental set up, the distances between
all pairs of graphs monotonically decrease when parameter δ is increased. This
can actually be observed in Table 1 on the lines that show the results for �e.
Characteristic number �e measures the mean relative over- and underestima-
tion of SMLA graph edit distances compared with BP-GED3. We observe that
3 Note that both means are computed on the sets of distances where an SMLA app-

roach actually over- or underestimates the original approximation.
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Table 1. The mean relative deviation of SMLA-GED algorithm variants compared
with BP-GED in percentage (�e), the accuracy of a 1NN classifier in percentage, and
the mean run time for one matching in ms (�t).

(a) AIDS (b) FP (c) MUTA

Fig. 1. Distances of BP-GED (x-axis) vs. distances of SMLA(0)-GED (y-axis).

increased values of δ reduce the mean overestimation on all data sets while the
mean underestimation is further increased. On the AIDS and MUTA data sets
the means of over- and underestimations are quite balanced. Yet, on the FP data
set the overestimation is accompanied with a heavy underestimation. The over-
and underestimation of SMLA based edit distance approximation compared with
BP-GED (and in particular the heavy underestimation of several distances on
the FP data) can also be observed in the scatter plots in Fig. 1.

Next, Table 1 shows the recognition rate of a 1-nearest-neighbor classifier
(1NN). The nearest neighbor paradigm is particularly interesting for the present
evaluation because it directly uses the distances without any additional classifier
training. In comparison with BP-GED we observe that SMLA-GED deteriorates
the recognition rates on the FP data set (all deteriorations are statistically sig-
nificant (α = 0.05)). That is, the heavy underestimation observed above on this
data set, crucially disturbs the nearest neighbor classification. However, on the
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other two data sets SMLA(δ)-GED outperforms BP-GED wit any value of δ (the
first three improvements on the MUTA data set are statistically significant).

Finally we focus on the mean run time for one matching in ms (�t). On the
relatively small graphs of the FP data set, the speed-up by our novel approxima-
tion compared to BP-GED is rather small. Yet, on the other two data sets with
larger graphs substantial speed ups can be observed. That is, using SMLA(0)-
GED rather than BP-GED on the AIDS data set leads to a decrease of the
mean matching time from 3.61 ms to 1.24 ms. On the MUTA data SMLA(0)-
GED is more than seven times faster than the original approximation. We also
observe that increasing the size of the look ahead window δ from 0 to 15 mod-
erately increases the run time on all data sets (as expected). Yet, the run time
of SMLA(δ)-GED remains below run time of BP-GED for any tested value of δ.

5 Conclusions and Future Work

The present paper proposes a novel graph edit distance approximation algorithm.
The main idea is to build a list which comprehends the individual costs for
all possible substitutions, deletions, and insertions of local graph structures.
Next, we sort the list, iterate trough it from head to tail, and incrementally add
admissible edit operations to the edit path (until all nodes of both graphs are
processed). We additionally implement a look ahead procedure which verifies
whether the current operation possibly prevents other beneficial edit operations
that occur in the next steps of the list search. The novel algorithm allows graph
edit distance approximation in O(n2 log(n2)) time.

The speed up of our novel approximation compared to a previous approxima-
tion algorithm is empirically verified on three different graph data sets. Moreover,
we observe that in two out of three cases the proposed approximation algorithms
are able to keep up with, or even surpass, the existing framework with respect
to recognition accuracy using a 1NN classifier. In future work we aim at testing
our novel approach on additional graph data sets and especially larger graphs.
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Abstract. The aim of this paper is to categorize movies into genres using the
previews. Our study attempts to combine audio, visual and text features to classify
a collection of movie previews into action, biography, comedy, and horror. For
each of the collected previews, the audio and visual features are extracted and the
text features are drawn from social tags via social websites. The probabilistic
latent semantic analysis (PLSA) is used to incorporate the features from these
three different aspects of information. The standard PLSA processes one type of
information only. Therefore double-model and triple-model PLSAs are extended
in order to combine two or three different types of information. We compare these
various variants of PLSA approaches with unimodal PLSAs, which use either
audio, visual or text features only. The experimental results show not only that
one of the triple-model PLSAs achieves the highest accuracy, but also that social
tags (text features) play an important role for classifying movies genres.

Keywords: Probabilistic latent semantic analysis · Movie genres · Social tags ·
Audio features · Visual features

1 Introduction

Both advanced multimedia technology and communications have led the significant
increase in the popularity of the digital video. The widespread use of the digital video
has given people access to various digital data such as homemade videos, micro films,
and movies. A great proportion of the mainstream media and the entertainment industry
consists of movies. Moreover, watching movies is always a favorite form of entrainment
for most people. With the high technology of multimedia and the inexpensive charge of
internet access, it is much easier to watch movies online. This leads to the necessity of
classifying movies into different genres to help people search for a movie of their interest.

Automatic genre classification of movies has become important with the dramatically
increasing number of movies. For the purpose of movie genre classification, features are
drawn from three data types: audio, visual, and text. Brezeale and Cook [1] used closed
captions as text features and performed text and visual features separately in order to
classify movie genres. Moncrieff et al. [2] used audio-based cinematic principles to iden‐
tify with both horror and non-horror movies. Most of the approaches to movie genre clas‐
sification relied on audio and visual features [3–8]. Some of the approaches incorporated
cinematic principles or concepts from film theory. For example, Rasheed and Shah [9]
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used a combination of audio features, visual features and cinematic principles for genre
categorization.

Automatic genre classification of movies is a challenging task. In this paper we
attempt to combine audio, visual and text features for movie genre classification. With
the rise of social networking sites, tags are keywords or terms supplied by online
communities and provide useful information to users. This study has collected 140
movie previews from IMDB [10] and drawn their corresponding social tags from [11].
The social tags are represented as text features, while the audio and visual features are
extracted from movie previews directly. To overcome the difficulty of combing three
aspects of information, the standard probabilistic latent semantic analysis (PLSA) [12]
is extended to fuse various types of information. Levy et al. [13] has extended the
standard PLSA to integrate social tags with audio features for music information
retrieval. Lienhart et al. [14] has also extended the PLSA to combine text and visual
features for image retrieval. As both extensions, which have had satisfactory results,
have inspired us to develop triple-model PLSAs that combine audio, visual and text
features for movie genre classification.

The remainder of this paper is structured as follows. In the next section, we introduce
the standard PLSA. Section 3 describes various variants of PLSAs for integrating
different types of information. Section 4 displays experimental results. Finally, we
provide conclusions in Sect. 5.

2 Standard PLSA

In 2001, Hofman [12] proposed the PLSA, which is a topic model based on probabilistic
and statistics and is mainly used to discover the distribution of hidden topics in a text
document. The term-document matrix of the PLSA is shown in Fig. 1, where the vertical
axis represents M documents, the horizontal axis represents N words, and n(di, vj) repre‐
sents the count of the j-th word appeared in the i-th document. As users are usually able
to observe document and word data and therefore their relation may form a term-docu‐
ment matrix. The PLSA observes the relationship between the document (d) and the
word (v) by means of hidden topics (z). This generates the PLSA model expressed by
the following equation:

(1)

where  denotes the hidden topics, P(d) denotes the probability
of document d, P(z|d) denotes the probability of a hidden topic z given a document d,
and P(v|z) denotes the probability of a word v given a hidden topic z. The objective
function of the PLSA is to find the maximum likelihood (L):

(2)

where , and .
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Maximizing the natural logarithm of the likelihood function can be expressed as
follows:

(3)

The expectation-maximization (EM) algorithm is used to learn P(z|d) and P(v|z) in
the PLSA model [12].

E-Step:

(4)

M-Step:

(5)

(6)

The EM algorithm is reiterated between E-step and M-step repeatedly until a stop
condition is met. Note that the EM algorithm would compute the training P(v|z) and yet
never update it during inference. In other words, only Eqs. (4) and (6) will be iterated
during inference.

3 Methodology

As mentioned earlier, our goal is to develop movie genre classifiers using the concept
of PLSA to combine text, audio, and visual features. However, the standard PLSA is
usually used to explain the relationship between documents and words, and cannot be

Fig. 1. Term-document matrix, modified from [14]
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applied to either audio data type or visual data type directly. Therefore, Sect. 3.1 first
illustrates how the standard PLSA is implemented to unimodal PLSAs, which use either
text, audio, or visual features only. Next, double-model PLSAs are extended to combine
two types of information in Sect. 3.2. Finally triple-model PLSAs are developed to
handle three different aspects of information.

3.1 Unimodal PLSAs

A unimodal PLSA uses one data type of information only and can be depicted in Fig. 2.
There are three different unimodal PLSAs, namely, tag_based, audio_based, and
visual_based. We describe each unimodal PLSA in detail as follows.

Fig. 2. Three different unimodal PLSAs. (a) Tag_based, (b) audio_based, and (c) visual_based

Tag_based PLSA. The first unimodal we implemented is the tag_based PLSA. We have
downloaded 140 movie previews from IMDB [10], and have also collected their corre‐
sponding social tags from [11]. The number of collected social tags was 218. Thus, the
dimensions of the term-document matrix (see Fig. 1) is 140 × 218 for the tag_based
PLSA. Figure 2(a) illustrates the unimodal of the tag_based PLSA, dt represents docu‐
ments of movie previews, Zt represents the hidden topics, and Vt represents the vocabu‐
lary of social tags. Superscript or subscript “t” denotes the symbol is related to the text
data.

Audio_based PLSA. We constructed a term-document matrix (see Fig. 1) for the audio-
based PLSA. We have chosen 10,000 frames at random for each preview, and extracted
the audio features of volume, pitch, ZCR (Zero Crossing Rate), and 13 MFCC (Mel-
frequency cepstral coefficient) dimensions for each frame. For more detail of visual
feature extractions, simply refer to any audio textbooks or see [6, 15, 16]. Thus, the
audio features for a document of preview, da, may be expressed as follows:

(7)
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where fi represents the i-th frame, and each frame contains the audio features of pitch,
volume, ZCR, and 13D of MFCC. A frame may be considered as an audio word and
therefore a document of preview represented by 10,000 audio words. Thus, the total
number of audio words is 14 * 105 for the collected set of 140 previews. To reduce the
great number of audio words, we have applied a data clustering algorithm to group
similar audio words. Thus, all the audio words in a same group are considered the same.
The data clustering algorithm we chose is the self-organizing map (SOM). A 2D SOM
with a size of 30 × 30 was used in our experiment. In other words, there are altogether
900 (30 × 30) groups. Each frame (audio word) was then mapped onto one of 900 groups
according to SOM. Because the number of audio words is reduced to 900, the size of
the term-document matrix (see Fig. 1) would be 140 × 900 for the audio_based PLSA.
The unimodal for the audio signal is shown in Fig. 2(b). In this unimodal PLSA, da

represents the movie preview documents, Za represents the hidden topics, and Va repre‐
sents the vocabulary of the clustering audio words. Superscript or subscript “a” denotes
that the symbol is related to the audio signal.

Visual_based PLSA. A video can be considered a collection of frames. The visual
features of each frame we extracted are motion, colors (RGB), and lighting. Each
frame is considered a visual word. Because lengths of the collected previews are
quite different, the number of frames for different previews will not be the same.
This is very similar to documents, in which they also have different lengths.
However, we can consider that all the words of the various documents come from the
same collection of vocabulary words. To obtain the vocabulary of the visual words,
a clustering algorithm is used. Similar to the procedure of audio_based PLSA, a 2D
SOM with a size of 30 × 30 was used to find the clustering visual words. Thus, the
size of the term-document matrix (see Fig. 1) is also 140 × 900 for the visual_based
PLSA. The unimodal for the video signal is shown in Fig. 2(c). In this unimodal
PLSA, dv represents documents of movie previews, Zv represents the hidden topics,
and Vv represents the vocabulary of the clustering visual words. Either the super‐
script or the subscript “v” denotes that the symbol is related to the video data.

3.2 Double-Model PLSA

A double-model PLSA is used to incorporate any two different data types. For example,
Fig. 3 depicts a double-model PLSA whose features are drawn from two types of infor‐
mation: text and audio. Firstly, we perform a tag_based PLSA and an audio_based PLSA
separately and then combine the resulting P(zt|dt) and P(za|da) to generate a new joint
vocabulary Vt+a. Both of the values, P(zt|dt) and P(za|da), represent the probability of a
hidden topic z given a document d. The only difference between them are their data
types, tags and audio data. Therefore, we think this is a reasonable approach to fuse two
different types of information. We perform the standard (unimodal) PLSA again and use
the joint vocabulary Vt+a as a set of words and still use the set of the collected previews
as documents. Similarly, we have a double-model for incorporating text and visual data
types, and a double-model for incorporating audio and visual data types.
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Fig. 3. A double-model PLSA illustrated by combining tag and audio data types

3.3 Triple-Model PLSA

A triple-model PLSA is used to incorporate three different aspects of information: text,
audio, and visual features. We propose two categories of triple-model PLSAs. The first
category of the triple-model PLSA is shown in Fig. 4(a). This is what we call
tag_audio_visual PLSA. Firstly, this triple-model PLSA performs tag_based, audio-
based, and visual-based PLSA separately and then combines the resulting P(zt|dt), P(za|
da), and P(zv|dv) to generate a new joint vocabulary Vt+a+v. Lastly, the standard (unim‐
odal) PLSA is performed using both the joint vocabulary Vt+a+v as a set of words and
the set of the collected previews as documents.

The second category contains three variants of triple-model PLSA. The model shown
in Fig. 4(b) is what we call tag_merged_last triple-model. This model performs a double-
model PLSA for combining audio and visual features, and then merges the tag features.
Thus, the first double-model PLSA combines audio and visual data types, then the
second double-model PLSA combines the data type of social tag and the resultant
audio_visual features from the first double-model. The other two triple-model PLSAs
in the second category are audio_merged_last and visual_merged_last.

4 Experimental Results

We have collected 140 movie previews from [10] and their corresponding social tags
from [11]. The collected previews are divided into four movie genres: action, biography,
comedy, and horror. We consider that a movie preview constitutes three different
modalities: text, audio, and visual. In the experiments, we perform three unimodal
PLSAs, three double-model PLSAs, and four triple-model PLSAs. The PLSA variants
are used to extract topic features from one, two, or three modalities, and the naive Bayes
classifier is used for classification. Figure 5 shows the classifying accuracies of movie
genres using different models of PLSA.

In Fig. 5, the first three experiments denote the performance of three unimodal
PLSAs: tag_based, audio_based, and visual_based. Each unimodal PLSA uses a single
data type only. It is very obvious that the result of tag_based is superior to that of both
audio_based and visual_based.
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Fig. 4. Two categories of triple-model PLSAs. (a) tag_audio_visual PLSA: the only model in
the first category, and (b) tag_merged_last triple-model: one of three variants model in the second
category; the other two variants are audio_merged_last and visual_merged_last

Fig. 5. Comparisons of various PLSA models
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The next three experiments are for the double-model PLSAs that combine two
different data types. There are three cases: combining tag and audio data types
(Tag + Audio), combining tag and visual data types (Tag + Video), and combining audio
and visual data types (Audio + Visual). The accuracies of case 1 and case 2 are both
66 %, which is much higher than that of case 3 (43 %). Moreover, we have observed that
these two cases of double-model PLSAs contains the data type of social tags.

The last four experiments are for triple-model PLSAs from two different categories.
There are four cases altogether and they are described as follows.

Case 1: tag_audio_visual PLSA (see Fig. 4(a)), (Tag + Audio + Video).
Case 2: visual_merged_last model, ((Tag + Audio) + visual).
Case 3: audio_merged_last model, ((Tag + visual) + Audio).
Case 4: tag_merged_last model (see Fig. 4(b)), ((Audio + visual) + Tag).

It can be seen that case 4 outperforms the other cases of triple-model PLSAs.
For the performance of all the variants of PLSAs, we also observed that the perform‐

ance was poor if the PLSA model not containing the tag data type. More precisely, the
results of two unimodal PLSAs (audio_based, and visual_based) and the double-model
for audio_visual data types are unsatisfactory. This indicates that social tags play an
important role for classifying movies genres. Finally, we found that the tag_merged_last
model PLSA achieved the highest degree of accuracy.

5 Conclusions

In this paper, our aim is to combine text, audio and visual data types for classifying
movie previews into different genres (action, biography, comedy, and horror). The
PLSA is used to combine different types of information and to extract hidden topics.
We have introduced and compared various PLSA approaches on the set of 140 collected
movie previews and their social tags. The experimental results indicate that the triple-
model PLSAs perform well in movie genre classification. In particular, the
tag_merged_last model PLSA that first combines audio and visual features and then
merges the tag feature has achieved the highest accuracy level. This result demonstrates
that the PLSA can combine different data types for information retrieval. From the results
of all the variants of PLSAs, we have also found that social tags play an important role
for classifying movies genres.

In the future, we will focus on the study of the feature extractions for audio and video
data types and the parameter settings of triple-model PLSAs to improve the performance
of the movie genre classifications.
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Abstract. Pattern classifiers have been widely used in adversarial set-
tings like spam and malware detection, although they have not been orig-
inally designed to cope with intelligent attackers that manipulate data at
test time to evade detection. While a number of adversary-aware learn-
ing algorithms have been proposed, they are computationally demanding
and aim to counter specific kinds of adversarial data manipulation. In
this work, we overcome these limitations by proposing a multiple clas-
sifier system capable of improving security against evasion attacks at
test time by learning a decision function that more tightly encloses the
legitimate samples in feature space, without significantly compromising
accuracy in the absence of attack. Since we combine a set of one-class and
two-class classifiers to this end, we name our approach one-and-a-half-
class (1.5C) classification. Our proposal is general and it can be used to
improve the security of any classifier against evasion attacks at test time,
as shown by the reported experiments on spam and malware detection.

1 Introduction

Pattern recognition systems have been largely employed in security-sensitive
settings like biometric identity recognition, intrusion and malware detection,
spam filtering, web-page ranking and network protocol verification, to discrim-
inate between legitimate and malicious samples. However, these applications
are characterized by the presence of intelligent adversaries who can deliberately
attack the classifier by carefully manipulating malicious data at test time to
evade detection. From the learning perspective, this means that the underlying
class-conditional probability distribution of the malicious data may change from
training to test time, i.e., it is subject to an adversarial drift [1–8].

Accordingly, pattern classifiers are often characterized by an unsatisfying
trade-off between accuracy and security against evasion at test time, especially
in high-dimensional feature spaces. While two-class classifiers may achieve high
accuracy in the absence of attack, they can be evaded by malicious samples
c© Springer International Publishing Switzerland 2015
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that are sufficiently different from the training data. This is due to the fact that
these classifiers minimize the classification risk (or error) over the training data,
assuming a stationary distribution. Therefore, it does not make any significant
difference in terms of risk if regions of the feature space which are not densely
populated by training data are classified as legitimate or malicious [9–11]. On the
other hand, one-class classifiers (trained on legitimate data) have been exploited
in security applications exactly to detect these outlying, anomalous attacks.
However, one-class classifiers may exhibit a significantly lower accuracy in the
absence of attack (in particular, in high-dimensional feature spaces), as they do
not exploit any information on the (available) malicious training data [10].

Motivated by the complementarity of the aforementioned approaches, in this
work we propose a Multiple Classifier System (MCS) that combines two-class and
one-class classifiers to achieve a better trade-off between accuracy and security
against evasion. For this reason, we name it one-and-a-half-class (1.5C) MCS
(Sect. 3). Our MCS is able to learn a more secure decision function by providing
a tighter enclosing of the legitimate data in feature space, while also exploiting
information from the available malicious data to retain high accuracy in the
absence of attack. Compared to other secure learning techniques [12–14], we do
not make any specific assumption on the kind of adversarial drift that may occur
at test time, but rather only agnostically assume that malicious data may appear
everywhere in feature space at test time with a non-null probability. This also
allow us to reduce the computational complexity during the training phase.

To better motivate our proposal, we provide a simplified analysis of how the
classification risk changes in the presence of evasion attacks (Sect. 2). Then, we
evaluate the security of our approach in a fair, well-principled way, exploiting
a recently-proposed framework to design well-crafted evasion attacks against
each given classifier, including the proposed MCS, assuming perfect and limited
knowledge of the targeted system [6–8] (Sect. 4). We finally evaluate the sound-
ness of our approach on two real-world application examples involving spam and
malware detection (Sect. 5), and conclude the paper by discussing related work
(Sect. 6) and future research directions (Sect. 7).

2 A Simplified Risk Analysis Under Evasion Attacks

In this section, we provide an analysis of the evasion setting under the risk min-
imization framework [15]. In the classical setting, it is assumed that an under-
lying probability distribution p(x, y) generates data samples x ∈ X along with
their class labels y ∈ Y, and risk minimization amounts to finding an hypothe-
sis f : X �→ Y that minimizes the expected risk (or loss) � (y, f(x)) over p, i.e.,
f = arg minf ′R(f ′) = Ex,y∼p{� (y, f ′(x))}. For instance, if � is the 0–1 loss, R(f)
corresponds to the minimum classification error, being f the optimal hypothesis
that would be obtained if p were known.1

1 Typically, the underlying process p is not known, and we are only given a finite set
of samples ideally drawn from it. Then, the task of learning amounts to minimizing
a trade-off between the empirical risk computed on such set and a regularization
term (or a restricted class of functions) to avoid overfitting [15].



170 B. Biggio et al.

Fig. 1. Classification risk under evasion, in a one-dimensional feature space. The opti-
mal hypothesis f learned on p(x, y) classifies a sample as malicious if x ≥ 0. Its decision
boundary, achieving perfect separation between the two classes, is shown as a dashed
black line. Under attack, the malicious distribution changes as p(a(x), y = +1), and
this causes an increase of the evasion rate given by the light and dark red areas. The
decision boundary of the optimal function h trained after attack is depicted as a solid
black line. It trades a much smaller evasion rate (dark red area) for a slightly higher
false positive rate (blue area) (Color figure online).

In the evasion setting, the malicious data may change at test time, while the
legitimate samples can be considered stationary, i.e., not affected by adversarial
drift. This behavior can be modeled with a function a : X �→ X that represents
how the attacker modifies the malicious samples drawn from p at test time. The
additional risk incurred by f at test time can be thus written as:

Rts(f) − Rtr(f) = Ex,y{�(y, f(a(x))) − �(y, f(x))}, (1)

where Rtr(f) and Rts(f) respectively represent the risk incurred by f before and
after the attack. As the legitimate data is not affected by the function a(x), the
above difference is not null only for the malicious class. Thus, if � is the 0–1 loss,
it corresponds to the increase in the evasion rate at test time (see Fig. 1).

Now, assume that f� = arg minf ′∈FRts(f ′) is the optimal hypothesis on the
test data, including the manipulated attacks. Then, the difference of the risk
incurred at test time by using f instead of f� is:

Rts(f) − Rts(f�) = Ex,y{�(y, f(a(x))) − �(y, f�(a(x)))}. (2)

If � is the 0–1 loss, this amounts to the variation of the classification error between
f and f�, computed on the manipulated test data.

As shown in Fig. 1, one may thus decide to trade a slightly higher number
of misclassified legitimate samples for a significantly reduced evasion rate (i.e.,
fraction of misclassified malicious samples after attack), improving security at
the expense of slightly worsening accuracy in the absence of attack. To this
end, decision boundaries that more tightly enclose the legitimate class should
be designed by classifying regions for which p(x) ≈ 0 as malicious. This should
allow for improving security under attack by reducing the feasible attack space
(i.e., regions of the feature space classified as legitimate), without significantly
increasing the rate of misclassified legitimate samples. Notably, this can be a
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Fig. 2. 1.5C classification on two-dimensional toy data. Legitimate (malicious) training
samples are shown as blue (red) points, and decision boundaries as solid black lines.
Left : Two-class classification yields high accuracy in the absence of attack, but it can
be evaded by evasion samples that are sufficiently different from the training data
(e.g., in the top-left corner). Middle: One-class classification (on the legitimate class)
may worsen accuracy in the absence of attack, but improves security by enclosing the
legitimate class. Right : 1.5C classification retains the advantages of both approaches:
security is improved by enclosing the legitimate data, without significantly affecting
accuracy in the absence of attack (Color figure online).

relevant problem especially in high-dimensional feature spaces, where regions
that are classified as legitimate despite p(x) ≈ 0 may be significantly wider.

3 Secure 1.5C Classification with MCSs

The analysis reported in the previous section suggests that two-class and one-
class classifiers can be considered as complementary techniques, usually charac-
terized by different challenges, especially in high-dimensional feature spaces, and
a different trade-off between accuracy and security against evasion at test time.
Towards enhancing this trade-off, we propose an MCS architecture where a two-
class classifier is combined with two one-class classifiers, learned respectively on
legitimate and malicious data: the two-class classifier should allow for high accu-
racy in the absence of attack, while the two one-class classifiers should enable the
detection of evasion attacks that are (expected to be) significantly different from
the training samples of either class. To combine the given classifiers in a secure
way, i.e., learning a decision function that encloses the legitimate data, we use
a further one-class classifier trained on the outputs of the three base classifiers
using only legitimate data. The trade-off between accuracy and security exhib-
ited by one-class and two-class classification is exemplified in Fig. 2, along with
an example of 1.5C classification overcoming the limitations of both approaches.
The architecture of the proposed MCSs is depicted in Fig. 3.

4 Classifier Evasion

In this section, we consider a simplified version of the evasion attack algorithm
proposed in [8], described in terms of the attack framework originally defined
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Fig. 3. 1.5C MCS: (i) features are extracted from raw data; (ii) the two-class and one-
class classifiers assign scores gi(x) ∈ R, i = 1, 2, 3, to the feature vector x (assuming
that higher scores are given to the malicious class); (iii) these scores are combined by
the one-class combiner, providing an aggregated score g(x); (iv) g(x) is then compared
against a decision threshold t to make the final decision (Color figure online).

in [6], i.e., by clearly stating the attacker’s goal, knowledge of the system, and
capability of manipulating the input data.

Attacker’s Goal. In an evasion attack, the attacker’s goal is to have malicious
samples misclassified as legitimate at test time.

Attacker’s Knowledge. The attacker may have different levels of knowledge
about (i) the training data, (ii) the feature representation, and (iii) the learn-
ing model (including knowledge of the classifier’s parameters after training, and
feedback on its decisions on input samples). As in previous work [6,8], we con-
sider here perfect knowledge (PK) and limited knowledge (LK) attacks. In the
PK case, the attacker is assumed to know all the system details, including the
trained classifier’s parameters (e.g., the weights assigned by a linear classifier
to each feature). Although this may not be very realistic in practice, perform-
ing a security evaluation of the system under this setting allows one to assess
the worst performance degradation that may be incurred by the system under
attack. In the LK case, the attacker does not have access to the training data,
but can collect surrogate data ideally sampled from the same distribution, and
use feedback on the classifier’s decisions to re-label such samples. The feature
representation and the learning model (but not the trained classifier’s parame-
ters) are known. Under this setting, the attacker can learn a surrogate classifier
ĝ(x) on the re-labeled surrogate data, to approximate the discriminant function
g(x) of the targeted classifier.

Attacker’s Capability. In an evasion attack, the attacker is assumed to be
able to modify malicious data at test time, according to application-specific
constraints, while she can neither access nor modify the classifier’s training data.

Attack Strategy. Similarly to [8], and according to the previously-described
attack scenario, an optimal evasion strategy can be thus formulated as:

x∗ = arg min
x

ĝ(x),

s.t. d(x,xa) ≤ dmax, (3)



One-and-a-Half-Class Multiple Classifier Systems for Secure Learning 173

where the attacker’s goal is to find a set of feasible manipulations to the ini-
tial malicious sample xa to obtain a camouflaged sample x∗ that minimizes the
(surrogate) classifier’s discriminant function ĝ(x). Note that, without loss of gen-
erality, we are assuming here that the classification function is f(x) = (g(x))+,
where (a)+ = +1 if a ≥ 0, and −1 otherwise, and malicious samples should be
assigned higher (positive) values of g(x) to be correctly classified.

The feasible domain for x is defined in terms of constraints on the manipula-
tion of the feature values of the malicious samples. For some classes of features,
a simple distance metric can be adopted. For instance, if one considers the pres-
ence or absence of a given word in an email as a feature, then the �1-norm
between two feature vectors amounts to counting how many words are different
between the two emails. Therefore, as also done in previous work [1,2,5,6,8,16],
we express this constraint as d(x,xa) ≤ dmax, highlighting that only a maximum
number of modifications dmax to each sample are allowed. Varying the parame-
ter dmax is fundamental to properly understand system security under attack.
In fact, as we will show in our experiments, more secure classifiers will exhibit a
lower decrease in the detection rate of malicious samples as dmax increases (i.e.,
as a larger amount of manipulations are performed to the malicious samples).
Additional constraints to Problem (3) may be also considered, depending on the
specific feature representation; e.g., if features are real-valued and normalized in
[0, 1]d, one may consider an additional box constraint given as x ∈ [0, 1]d.

The solution of Problem (3) clearly depends on the kind of discriminant func-
tion and on the given set of constraints. In [8], a general solution for nonlinear,
differentiable discriminant functions was proposed, based on a simple gradient-
descent algorithm. It is worth remarking that an additional component to the
objective function was also considered in that work, to drive the attack point
during the descent towards regions of the feature space more densely populated
by legitimate samples, with the goal of increasing the probability of evading
detection (especially when attacking the surrogate classifier). In this work, we
disregard this component, as it is possible to substantially obtain the same effect
by running the evasion attack algorithm (given as Algorithm 1) from distinct
initialization points, eventually retaining the attack sample that achieves the
minimum value of the objective.

4.1 Gradient Computation

The gradients required to evaluate classifier security using Algorithm1 are given
below, for the classifiers considered in this work: linear and nonlinear Support
Vector Machines (SVMs), and the proposed 1.5C MCS. Note that this approach
can be easily applied to any classifier, provided that its discriminant function
g(x) is at least subdifferentiable; otherwise, one may use a different optimization
strategy to solve Problem (3), or approximate the non-differentiable g(x) with a
surrogate classifier having a differentiable discriminant function [8].

Linear Classifiers. For linear discriminant functions g(x) = 〈w,x〉 + b, with
feature weights w ∈ R

d and bias b ∈ R, the gradient is simply ∇g(x) = w.
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Algorithm 1. Evasion Attack
Input: xa: the malicious sample; x(0): the initial location of the attack sample; t: the

gradient step size; ε: a small positive constant.
Output: x′: the evasion attack sample.
1: i ← 0
2: repeat
3: i ← i + 1
4: x(i) ← x(i−1) − t∇g(x(i−1))
5: if d(x(i), xa) > dmax or other constraints are violated then
6: Project x(i) onto the feasible domain
7: end if
8: until |g(x(i)) − g(x(i−1))| < ε
9: return x′ = x(i)

Nonlinear SVMs. For kernelized (and one-class) SVMs, the discriminant func-
tion is g(x) =

∑n
i=1 αiyik(x,xi) + b, where α and b are the SVM parameters

learned during training, k(x,xi) is the kernel function, and {xi, yi}n
i=1 are the

training samples and their labels [15]. The gradient is ∇g(x) =
∑

i αiyi∇k(x,xi)
and, thus, the feasibility of our approach depends on the kernel gradient ∇k(x,xi),
which is computable for many numeric kernels; e.g., for the RBF kernel k(x,xi) =
exp

(−γ‖x − xi‖2
)
, it is ∇k(x,xi) = −2γ exp

(−γ‖x − xi‖2
)
(x − xi).

1.5C MCS. In this case, the gradient will depend on the particular choice
of each of the component classifiers g1, g2, g3 and on the one-class combiner
g(x). To provide an example, we assume here that a one-class SVM with the
RBF kernel is used to combine g1, g2, g3. In this case, the discriminant function
can be written as g(x) =

∑
i αi exp

(−γ‖z(x) − z(xi)‖2
)

+ b, where z(x) =
[g1(x), g2(x), g3(x)]

�
. The corresponding gradient is thus given as:

∇g(x) = −2γ
∑

i

αie
−γ‖z(x)−z(xi)‖2

(z(x) − z(xi))
� ∂z

∂x
, (4)

where ∂z
∂x = [∇g1(x),∇g2(x),∇g3(x)]

� ∈ R
3×d, and d is the feature set size.

Descent in Discrete Spaces. In discrete spaces, it is not possible to follow the
gradient-descent direction precisely, as it may map the given sample to a set of
non-admissible feature values. The gradient-descent direction can be nevertheless
used as a search heuristic, as follows. Starting from the current sample x, one
may generate a set of candidate neighboring points by perturbing only those
features of the current sample which correspond to the maximum absolute values
of the gradient, one at a time, in the correct direction. Eventually, one should
update the current sample to the neighbor that attained the minimum value of
the objective function, and iterate until convergence.

5 Experiments

In this section, we report an experimental evaluation of our proposal on two
distinct security applications, i.e., spam filtering and PDF malware detection.
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Our goal is to investigate whether, and to what extent, the proposed 1.5C MCS
is able to combine the advantages of two-class and one-class classification to
yield a better trade-off between accuracy and security. To this end, we adopt a
common experimental setup, involving the following classifiers: (i) a two-class
SVM, with the linear kernel for the spam data, and the RBF kernel for the PDF
data; (ii-iii) two one-class SVMs with the RBF kernel, trained respectively on
legitimate and malicious samples; and (iv) a one-class SVM with the RBF kernel
to combine the former three classifiers in our 1.5C MCS (see Sect. 3).

We simulate attackers that have perfect (PK) and limited (LK) knowledge
of the targeted system (see Sect. 4). In the LK case, we assume that the attacker
collects a surrogate training set whose size is only 20 % of the size of the data
used to learn the targeted classifier. The reason is that, in practice, attackers
may only perform a limited number of queries to the targeted classifier to recover
the classification labels of such samples, and train the surrogate classifier.

We evaluate classifier performance by averaging the true positive (TP) rate,
i.e., the fraction of correctly-classified malicious samples, achieved when the
false positive (FP) rate, i.e., fraction of misclassified legitimate samples, is below
1%, which corresponds to the so-called Area Under the ROC Curve (AUC) at
1 % FP rate. The reason is that, in these applications, false positives are more
harmful than false negatives, and thus, they should be kept very low [6,18]. Our
results are averaged over five repetitions, in which different training-test splits
are considered. In particular, in each repetition, 50 % of the data is randomly
chosen for training (TR), while the rest is used for testing (TS).

5.1 Spam Filtering

Spam filtering is one of the most popular application examples considered in
adversarial learning [1,2,6,17,18]. As in previous work, we consider the widely-
used bag-of-words feature representation, in which an email is described as a set
of binary features, indicating the presence (1) or absence (0) of a given word. Due
to the high dimensionality of the corresponding feature space, linear classifiers
have been often considered [17–19] and implemented in real anti-spam filters,
including e.g. SpamAssassin and SpamBayes.2 Therefore, in this investigation
we implement the two-class classifier as a linear SVM. Popular attacks in spam
filtering include modifications to the email’s content. Attackers may obfuscate
bad words (which typically appear in spam but not in legitimate emails) through
misspelling (e.g., changing “cheap” as “che4p”), and add good words (which
typically appear in legitimate emails but not in spam). The corresponding effect
is to change features from 1 to 0, or viceversa.

Experimental Setup. We use the benchmark TREC 2007 email corpus [20],
which consists of 25,220 ham and 50,199 spam emails. The first 5,000 emails
are adopted in this experiment. Each email is represented by a feature vector
using a tokenization method of SpamAssassin. We use a feature selection method
2 http://spamassassin.apache.org/, http://spambayes.sourceforge.net/.

http://spamassassin.apache.org/
http://spambayes.sourceforge.net/
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Fig. 4. Average AUC1% values (with standard deviation) for spam filtering (top row)
and PDF malware detection (bottom row), attained by two-class (2C) SVMs, one-
class (1C) SVMs trained on legitimate (L) and malicious (M) data, and the 1.5C MCS,
against PK (first column) and LK (second column) attacks. In each plot, the AUC1%

under attack is evaluated against an increasing maximum number of modifications to
the malicious data, i.e., number of modified words in each spam, and number of added
keywords to each malicious PDFs.

based on information gain [21], reducing the number of features from more than
20,000 to 500, to reduce computational complexity. All the malicious samples
in TS are manipulated according to PK and LK evasion attacks. In the latter
case, only 500 samples have been used as the surrogate training data available
to the attacker. To evaluate classifier security against an increasing maximum
number of modifiable words in each spam, we set d(x,xa) = ‖x − xa‖1 ≤ dmax

as the constraint in Problem (3). In this case, dmax is exactly the maximum
number of modifiable words (i.e., feature values) in each spam. The parameters
C, γ ∈ {2−10, 2−9, . . . , 210} of each SVM are optimized through a 5-fold cross-
validation on TR to minimize the classification error.

Results. The average AUC1% values, along with their standard deviations, are
shown in Fig. 4 (top row), against an increasing maximum number of modified
words in each spam. In the absence of attack, the accuracy of the 1.5C MCS
and the two-class (2C) SVM is similar, and very high, while for one-class (1C)
SVMs it is very low. The reason is that we are not only working at extremely low
FP rates, but also in high-dimensional spaces; thus, detecting a high number of
attacks for these techniques becomes extremely challenging. Under attack, i.e.,
where the number of modified words is greater than zero, the AUC1% of the
2C SVMs drops significantly, in both the PK and the LK settings. Conversely,
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the performance of our 1.5C MCS decreases more gracefully, retaining a higher
detection rate against evasion attempts, and thus, a higher security.

5.2 PDF Malware Detection

Another well-known application investigated in adversarial learning is PDF mal-
ware detection. PDF files are characterized by a hierarchy of interconnected
objects including keywords and data streams; e.g., the keyword “PageLayout”
characterizes an object describing the format of the corresponding page. Their
flexible structure allows for embedding different kinds of content, including
JavaScript and binary programs. This makes PDF files suitable vectors to spread
malware infections, as malware can be easily embedded into them. In this exper-
iment, we use the feature representation adopted in [8,22], in which each feature
represents the number of occurrences of a given keyword in a PDF file. In this
case, evasion attacks consist of manipulating the set of keywords present in the
PDF file at test time. However, since embedded objects can be easily added
to, but not removed from PDF files without corrupting their structure, as in
[8,22] we assume that the number of occurrences of each keyword can be only
increased. This can be implemented by adding the constraint xa ≤ x (where
inequality has to be fulfilled by each feature value) to Problem (3).

Experimental Setup. We use 2,000 samples from the PDF malware dataset in
[8,22], represented by 114 distinct keywords (i.e., features). Each feature value
(i.e., the number of occurrences of the corresponding keyword) is normalized
in [0, 1] by dividing its value by 100 (which is also set as the maximum value
of the occurrences of each keyword). The SVMs’ parameters are set as in the
previous experiments on spam filtering. Classifier security is evaluated against an
increasing maximum number of added keywords. To this end, we set d(x,xa) =
100‖x−xa‖1 ≤ dmax as the constraint in Problem (3), similarly to the experiment
on spam filtering. Together with the constraint on feature addition xa ≤ x, this
let dmax correspond to the maximum number of keywords that can be added to
each malicious PDF file.

Results. As for the spam filtering case, results are reported in terms of AUC1%

values in Fig. 4 (bottom row). Similar conclusions can be drawn with respect
to the results obtained for the spam filtering case, except that here, 1C SVMs
perform slightly better in the absence of attack, and exhibit higher detection
rates under attack than those exhibited by the 2C SVMs (for both PK and LK
attacks). This means that, for a sufficiently high number of added keywords, 1C
SVMs are more secure than 2C SVMs. Nevertheless, the proposed 1.5C MCS
significantly outperforms the competing approaches under attack, while only
performing slightly worse than the 2C SVM in the absence of attack. Worth
noting, the detection rate of the 1.5C MCS decreases more gracefully in this
case with the increase of the maximum number of added keywords, since the
feature values of malicious samples can only be incremented.
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6 Related Work

While many methods have been proposed to counter evasion attacks [1,12,14,25],
they are computationally demanding and make specific assumptions on how
attackers should manipulate data at test time to evade detection (see also [3–6]
and references therein, for a more detailed review). Inspired by the seminal work
in [1], recent work has shown that game theory can be used to model interactions
between the classification system and the attacker in non-zero-sum games, yield-
ing more secure classifiers [14]. However, satisfying conditions for the uniqueness
of the equilibrium not only require the classifier’s and the attacker’s objectives
to fulfill specific conditions, but also computationally demanding algorithms to
find suitable solutions. A slightly different line of work [12,13,25] aims to learn
secure classifiers (and SVMs, in particular), by minimizing a modified version
of the loss function which accounts for worst-case manipulations to data at test
time, including feature deletion, insertion, and rescaling. This also results in a
computationally intensive training phase.

Other work has proposed countermeasures to evasion based on well-motivated
heuristics, e.g., that feature weights assigned by a linear classifier should be more
evenly spread among the features, to require modifying more feature values to
evade detection [18,23]. Linear classifiers exhibiting the aforementioned behavior
have been implemented efficiently using MCSs, by averaging an ensemble of
linear classifiers [18,23,26,27]. In the present work, we have shown that MCSs
can also be used to learn secure, nonlinear classifiers, in an efficient manner.

7 Conclusions and Future Work

While pattern classifiers have been widely used in adversarial applications, they
are often characterized by an unsatisfying trade-off between accuracy and secu-
rity against evasion, especially in high-dimensional spaces: two-class classifiers
may yield high accuracy but they are potentially insecure, while one-class classi-
fication may improve security at the expense of a lower accuracy in the absence
of attack. Motivated by the complementarity of these approaches, we proposed
a 1.5C MCS that achieves a better trade-off between accuracy and security. Our
proposal is general, it is agnostic to the kind of adversarial drift that may occur
at test time, and can be used to improve the security of any classifier against
evasion attacks, as shown by the reported experiments on spam and malware
detection. Interesting future research directions include providing a formal, well-
principled characterization of the trade-off between accuracy and security, as
well as its relationship with the dimensionality of the feature space, and inves-
tigating whether the proposed 1.5C MCS can also be capable to deal with the
presence of poisoning attacks in the training data [3–7].
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Abstract. Binarization techniques deal with multiclass classification
problem combining several binary classifiers. They were originally intro-
duced for dealing with multiclass problems with methods that were only
able to deal with two classes (e.g., SVM). Nevertheless, it has been shown
that they can also be useful with classification methods able to deal
directly with multiclass problems (e.g., decision trees), because they can
improve the results. This work studies if this improvement is also possible
when using ensembles of decision trees (e.g., Random Forest, Boosting)
over 67 multiclass datasets. It was found that some combinations of a
binarization technique and an ensemble method improve the results of
the ensemble method without binarization.

Keywords: Multiclass · Binarization · One vs. one · one vs. all ·
Ensembles · Bagging · Boosting · Random Forest

1 Introduction

Some methods for constructing classifiers, such as support vector machines, are
intrinsically for binary problems. Others, such as decision rules, were originally
conceived for binary classes, but were latter easily extended to the multiclass
case. One obvious way to tackle a multiclass data set using a method for binary
data sets is to decompose the problem in several subproblems and combine in
some ways the predictions given by the binary classifiers. These binarization
techniques could be considered as multiclassifiers or ensemble methods because
the final classification is obtained combining the predictions of several classifiers,
although it can be argued that they are not ensembles in a strict sense [3,29].
A framework for unifying binarization and ensembles is presented in [3].

Although binarization techniques were designed for dealing with one limi-
tation, it has been observed that it can be sensible to use them with classifiers
without this limitation, because the resulting classifiers can improve the results of
the classifier. This work studies if this is also possible when the classifiers that
are used with binarization are ensembles of decision trees, such as Random
Forest [5] or Boosting [14]. Decision trees are usually used as base classifiers
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 181–193, 2015.
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within ensemble methods because they are fast and unstable, these are desirable
in ensembles.

The two most common approaches for binarization are “one vs. all” and “one
vs. one” [17]. In the first case, sometimes named more properly “one vs. the rest”,
there are as many classifiers as classes, each classifier predicts if the instance is
of the corresponding class or of one of the other classes. In one vs. one, also
named round-robin or pairwise classification [16] there are as many classifiers
as pairs of classes. Once that the binary classifiers have been constructed, there
is the issue of how to combine their predictions. In one vs. one several of the
classifiers can predict the corresponding class, or all the classifiers could predict
that the instance is in the rest of classes. In one vs. one, many classifiers will
be wrong, because they will predict one of two classes for instances of any class.
There are several approaches for combining this predictions [17], usually based
on the probabilities assigned by the binary classifiers to each class.

When combining binarization techniques and ensemble method, one issue is
in what order the methods are applied. For instance, with decision trees we can
have Bagging of trees and one vs. one of trees. But if the two are used, there are
two options: “Bagging of one vs. one of trees” and “one vs. one of Bagging and
trees”. For some ensemble methods, such as Bagging or Random Subspaces, it
can seem that this order will not be important, but for others such as Boosting
the order can have more importance. Hence this paper considers both orderings.

The rest of the paper is organised as follows. Section 2 presents the exper-
imental setup. The results are analysed in Sect. 3. Finally, Sect. 4 presents the
conclusions and some open research lines.

2 Experimental Setup

2.1 Data Sets

Table 1 shows the 67 data sets used in the experiments. They are all the multiclass
data sets1 used in [12]. Many of them are from the UCI Machine Learning Repos-
itory [2]. The number of examples ranges in [24, 58000], the number of features in
[3, 262] and the number of classes in [3, 100]. The table also shows the percentage
of examples of the classes with more and less examples. For the majority class, the
percentages range in [1, 92.58], for the minority in [0.02, 33.33].

2.2 Settings

Table 2 shows the abbreviations using in the methods configurations. Two bina-
rization techniques were used: one vs. all and one vs. one. They were used with
decision trees but also with ensembles of decision trees. The used ensemble meth-
ods were Bagging [4], Random Subspaces [21], Random Forest [5], AdaBoost.M1
[13], MultiBoost [27], LogitBoost [15] and Rotation Forest [24]. Table 2 shows
the used abbreviations.
1 Available from http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/.

http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
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Table 1. Characteristics of the data sets.

Data set Examples Features Classes %Majority %Minority

Abalone 4177 8 3 34.64 31.67

Annealing 898 31 5 76.17 0.89

Arrhythmia 452 262 13 54.20 0.44

Audiology-std 196 59 18 23.98 1.02

Balance-scale 625 4 3 46.08 7.84

Breast-tissue 106 9 6 20.75 13.21

Car 1728 6 4 70.02 3.76

Cardiotocography-10classes 2126 21 10 27.23 2.49

Cardiotocography-3classes 2126 21 3 77.85 8.28

Chess-krvk 28056 6 18 16.23 0.10

Conn-bench-vowel-deterding 990 11 11 9.09 9.09

Contrac 1473 9 3 42.70 22.61

Dermatology 366 34 6 30.60 5.46

Ecoli 336 7 8 42.56 0.60

Energy-y1 768 8 3 46.88 17.84

Energy-y2 768 8 3 49.87 24.61

Flags 194 28 8 30.93 2.06

Glass 214 9 6 35.51 4.21

Hayes-roth 160 3 3 40.63 19.38

Heart-cleveland 303 13 5 54.13 4.29

Heart-switzerland 123 12 5 39.02 4.07

Heart-va 200 12 5 28.00 5.00

Image-segmentation 2310 18 7 14.29 14.29

Iris 150 4 3 33.33 33.33

Led-display 1000 7 10 11.10 8.40

Lenses 24 4 3 62.50 16.67

Letter 20000 16 26 4.07 3.67

Libras 360 90 15 6.67 6.67

Low-res-spect 531 100 9 51.98 0.38

Lung-cancer 32 56 3 40.63 28.13

Lymphography 148 18 4 54.73 1.35

Molec-biol-splice 3190 60 3 51.88 24.04

Nursery 12960 8 5 33.33 0.02

Oocytes-merluccius-2f 1022 25 3 68.69 5.97

Oocytes-trisopterus-5b 912 32 3 57.57 1.54

Optical 5620 62 10 10.18 9.86

(Continued)



184 J.J. Rodŕıguez et al.

Table 1. (Continued)

Data set Examples Features Classes %Majority %Minority

Page-blocks 5473 10 5 89.77 0.51

Pendigits 10992 16 10 10.41 9.60

Pittsburg-bridges-MATERIAL 106 7 3 74.53 10.38

Pittsburg-bridges-REL-L 103 7 3 51.46 14.56

Pittsburg-bridges-SPAN 92 7 3 52.17 23.91

Pittsburg-bridges-TYPE 105 7 6 41.90 9.52

Plant-margin 1600 64 100 1.00 1.00

Plant-shape 1600 64 100 1.00 1.00

Plant-texture 1599 64 100 1.00 0.94

Post-operative 90 8 3 71.11 2.22

Primary-tumor 330 17 15 25.45 1.82

Seeds 210 7 3 33.33 33.33

Semeion 1593 256 10 10.17 9.73

Soybean 683 35 18 13.47 1.17

Statlog-image 2310 18 7 14.29 14.29

Statlog-landsat 6435 36 6 23.82 9.73

Statlog-shuttle 58000 9 7 78.60 0.02

Statlog-vehicle 846 18 4 25.77 23.52

Steel-plates 1941 27 7 34.67 2.83

Synthetic-control 600 60 6 16.67 16.67

Teaching 151 5 3 34.44 32.45

Thyroid 7200 21 3 92.58 2.31

Vertebral-column-3clases 310 6 3 48.39 19.35

Wall-following 5456 24 4 40.41 6.01

Waveform 5000 21 3 33.92 32.94

Waveform-noise 5000 40 3 33.84 33.06

Wine 178 13 3 39.89 26.97

Wine-quality-red 1599 11 6 42.59 0.63

Wine-quality-white 4898 11 7 44.88 0.10

Yeast 1484 8 10 31.20 0.34

Zoo 101 16 7 40.59 3.96

The ensemble methods can be used without binarization, this is denoted by
E. In the combination, the binarizer can be the base classifier of the ensemble
and these cases are denoted by E-OVA and E-OVO. The configurations where
the ensemble is the base classifier of the binarizers are denoted by OVA-E and
OVO-E.



Combining Binarization Techniques and Ensemble Methods 185

Table 2. Abbreviations used in the methods configurations.

Abbrev Method

OVA One vs. all
OVO One vs. one
OV? One of the binarization techniques: OVO or OVA

Tree A singe decision tree
P Trees with pruning
U Trees without pruning

Bagg Bagging
RndSub Random Subspaces
RndFor Random Forest
AdaBo AdaBoost.M1
MulBo MultiBoost
LogBo LogitBoost
RW A boosting method with reweighting
RS A boosting method with resampling
RotFor Rotation Forest
E One of the ensemble methods (Bagg, RndSub. . . )

The experiments were performed in Weka [20], version 3.7.12. The combina-
tion of the predictions of the binary classifiers in OVA and OVO is done adding
the support assigned to each class by each classifier.

Ensemble size was 100. As base classifiers J48 trees, a re-implementation of
C4.5 [22], were used. There is one exception, for LogitBoost the method REPTree
[9] was used. The reason is that in LogitBoost the base models are regressors,
not classifiers. Trees were used with pruning or without pruning.

For the boosting variants (i.e., AdaBo, MulBo and LogBo), the experiments
were done with reweighting (the default option in Weka) and resampling [14].
In the first case, the base method receives weighted training instances, in the
second case the weighted instances are used to draw a sample of unweighted
instances and the base classifier is constructed with the sample.

For MultiBoost, the sub-committee size was set to 10. The rest of parameters
of all the used methods had the default values in Weka.

5× 2-fold cross validation was used [7]. As performance measures, accuracy
and kappa [17] were used; kappa is less sensitive to the class distributions. For
comparing the methods with several data sets, average ranks [6] were computed.
For each data set, all the compared method are sorted from best to worst, the
best method is assigned a rank of 1, the second method a rank of 2, and so on.
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In the case of ties, the methods are given average ranks. For instance, if four
methods have the best results, they are assigned a rank of 2.5. The ranks of the
different data sets are averaged for each method.

3 Results

Table 3 shows, for the considered combinations of binarization and ensemble
techniques the average accuracies across all the data sets. These averages only
provide a rough idea because the results of different data sets can be not com-
mensurable and averages can be too sensitive to outliers [6,27]. Table 4 shows
the averages when using kappa as the performance measure. According to these
averages, the best rows (in the rotated tables) are for the ensemble methods Rnd-
For and RotFor. In general, the best column is E, that is, not using binarization
techniques.

Table 3. Average accuracies across all the data sets for the considered combina-
tions of binarization and ensemble techniques. Higher values have darker backgrounds.
Empty cells indicate that the corresponding combination was not considered, for rea-
sons explained in the text.
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Table 4. Average values for kappa across all the data sets for the considered combi-
nations of binarization and ensemble techniques.

Table 5 shows for how many data sets a combination of binarization with
ensemble has better, equal or worse accuracy than the corresponding ensemble
without binarization. Table 6 shows this information for kappa. In general, the
advantage is for the ensemble without binarization, but there are some cases
where the results clearly favour some combinations.

Table 7 shows, for each ensemble method, the average ranks from accuracy
of the configurations that include that ensemble method (the ensemble with-
out binarization and the combination with up to four binarization techniques).
Table 8 shows the average ranks according to kappa. The best ranks are usually
obtained without binarization techniques (E) or with OVA.

Now, the results for each ensemble method are considered. Although single
decision trees are not ensembles, but their combination with binarization tech-
niques is also included in the comparison. The configurations E-OV? are not
possible with decision trees. According to the averages across all the data sets,
the number of wins and losses and the average ranks the configurations from
best to worst are OVO-E, E and OVA-E. The advantages of OVO-E over E are
greater for accuracy than for kappa.
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Table 5. Comparison of the combination of a binarization and ensemble technique
with the corresponding ensemble without binarization, according to the accuracy, in
terms of the number of wins (W), ties (T) and losses (L). Each cell shows W/T/L. The
background color for cells is obtained from W-L.

For Bagging the best configurations is OVA-E followed by E-OVA. The con-
figurations with OVO are worse than not using binarization techniques. Inter-
estingly, the situation for Bagging is the opposite than the situation for single
decision trees: OVO is the best for decision trees but the worst for Bagging, OVA
is the best for Bagging but the worst for single decision trees. This means that
the knowledge about the performance of binarization techniques obtained from
combining single classifiers is not valid when using ensembles.

For Random Subspaces (RndSub) the best results are obtained without bina-
rization (E). Configurations with OVA have better results than configurations
with OVO.

For Random Forest the best configurations are OVA-E and E-OVA. Configu-
rations with OVO are worse than not using binarization.

For AdaBoost (AdaBo) the results are generally better without binariza-
tion techniques. From the combinations with binarization techniques, the most
favourable one is E-OVA. In this case the order in the combination is important.
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Table 6. Comparison of the combination of a binarization and ensemble technique
with the corresponding ensemble without binarization, according to kappa, in terms
of the number of wins (W), ties (T) and losses (L). Each cell shows W/T/L. The
background color for cells is obtained from W-L.

For instance, for AdaBo-RW the configuration with the worst ranks is OVA-E,
while E-OVA was the best.

The behaviour of MultiBoost (MulBo) is similar to AdaBoost. The config-
urations with best results do not use binarization (E). The best configuration
with binarization is E-OVA.

For LogitBoost (LogBo) there are not configurations with E-OV?. The reason
is that the base method in LogitBoost is not a classifier, but a regression method.
In each iteration, for each class, a regression model is constructed. In fact, LogBo
could be considered as a type of OVA, because for each iteration there are as
many models as classes. The two considered versions, LogBo-RW and LogBo-RS
have different behaviours. In the former, the best option is not to use binarization
E, in the latter the best option is OVA-E. Comparing the two versions, the best
one is LogBo-RS and in this case the binarization technique is beneficial.

For Rotation Forest the configuration OVO-E is not included. The reason is
that the memory requirements were excessive for the problems with 100 classes.
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Table 7. Average ranks for accuracy.

The number of necessary rotation matrices, using ensembles of 100 classifiers, in
OVO-E is 495000, while E-OVO only uses 100. Although these matrices are very
sparse, they are too many for OVO-E with the current implementation. From
the considered options, the worst one is E-OVO. The best option is not clear:
according to the average performances (Tables 3 and 4) the best option is E but
for RotFor-U the configuration OVA-E is better according to Tables 5, 6, 7 and 8.

4 Conclusion and Future Work

The performance of the combinations of binarization techniques and ensemble
methods, using decision trees as base classifiers, over 67 data sets have been
studied. As binarization techniques, the two most well-known were used: one
vs. all and one vs. one. The used ensemble methods were Bagging, Random
Subspaces, Random Forest, AdaBoost.M1, MultiBoost, LogitBoost and Rotation
Forest.

One conclusion is that although binarization techniques can also improve
the performance of ensemble methods, this improvement is not so clear as when
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Table 8. Average ranks for kappa.

using classifiers that are not ensembles. This could be expected, is more difficult
to improve better classifiers and ensembles are usually better than more sim-
ple classifiers. Besides, binarization techniques and ensembles can be considered
similar, both combine several classifiers, and hence the improvements that can
be obtained with one of them are already obtained with the other when they are
combined.

Another conclusion is that although in previously reported comparisons usu-
ally OVO has better results than OVA, the situation is reversed with ensembles.
This agrees with the idea that OVA is competitive when combining good clas-
sifiers. According to [23], OVA is as accurate as other binarization methods if
the classifiers are “well-tuned”. One way of improving classifiers is tuning its
parameters, another is using ensembles.

When combining binarization techniques with ensembles, one question is the
order of the techniques. In general, it is better to have ensembles of binarizers
(OV?-E ) than binarizers of ensembles (E -OV?), but for boosting variants the
situation is the opposite.

This work has only considered the most basic binarization techniques. Other
techniques could have better behaviour for ensembles. For instance, OVO can
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be used with ternary classifiers [1], OVO and OVA can be combined [19], the
classifiers in OVO can be combined using a distance-based combination strat-
egy [18], the classifiers in OVA can be combined with complementary classi-
fiers [25]. . . Another family of binarization strategies than can be combined with
ensemble methods are Error Correcting Output Codes (ECOC) [8,10,28].

An issue that has not been considered in this paper is the possible imbalance
in the data sets. The methods considered in this paper could be evaluated on
these data sets, using performance measures appropriate for this kind of data.
The application of binarization techniques and other approaches for imbalanced
problems have been studied in [11], these approaches could be also combined
with ensemble methods. Moreover, there are ensemble methods for imbalanced
data, some of them for multiclass [26]. These ensembles could be included in the
study.
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Abstract. Combining a hardware approach with a multiple classifier
method can deeply improve system performance, since the multiple clas-
sifier system can successfully enhance the classification accuracy with
respect to a single classifier, and a hardware implementation would lead
to systems able to classify samples with high throughput and with a short
latency. To the best of our knowledge, no paper in the literature takes
into account the multiple classifier scheme as additional design parame-
ter, mainly because of lack of efficient hardware combiner architecture.

In order to fill this gap, in this paper we will first propose a novel
approach for an efficient hardware implementation of the majority vot-
ing combining rule. Then, we will illustrate a design methodology to
suitably embed in a digital device a multiple classifier system having
Decision Trees as base classifiers and a majority voting rule as combiner.
Bagging, Boosting and Random Forests will be taken into account. We
will prove the effectiveness of the proposed approach on two real case
studies related to Big Data issues.

Keywords: Multiple classifier systems · Decision Tree · Bagging ·
Boosting · Random Forest · Field Programmable Gate Array

1 Introduction

Modern applications based on data analysis have been bringing new architectural
design challenges. They define in the literature a new class of problems, addressed
as Big Data, whose characteristics are grouped in the 5 'V's (Volume, Velocity,
Variety, Veracity and Value), in order to indicate the inadequacy of the current
computer technologies and design techniques when, at some point in time, these
'V's are increased to an unprecedented level. In particular, in the case of data
classification, machine learning and pattern recognition algorithms have to deal
with large data sets and with a very high number of samples per time unit
(throughput) that have to be classified. Typical examples of problems with these
characteristics are in the fields of intrusion detection [12], spam detection [10]
and network traffic classification [4].
c© Springer International Publishing Switzerland 2015
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The research community has made a big effort in devising not only new
learning algorithms to enhance classification accuracy but also new design tech-
niques, whose aim is to improve the classification speed, mainly exploiting hard-
ware implementations. In the latter context, reconfigurable hardware technology,
such as the Field Programmable Gate Array (FPGA), is able to realize high par-
allel, high speed and large digital designs, and, as it provides a programming flow
that is somewhat similar to the software deploying, it allows easy and feasible
hardware updates. These technological features are a promising solution for data
classification tasks when a very high throughput value is required.

Among the multitude of different classification approaches proposed so far,
Decision Trees (DTs) are one of the most suited for a hardware implementation,
since they do not require arithmetic calculations, which are expensive to be real-
ized, but only comparisons. The authors of [13] illustrated a high throughput DT
classifier hardware accelerator design, mainly based on the pipeline technique,
which reaches up to 114 times speed-up, compared with a software approach.
With the aim of comparing power consumption of DT hardware and software
approaches, authors of [7] introduced a methodology flow and, as result, they
showed that the hardware version need only 0.03% of the energy used by the
software. In [1] a hardware accelerator for the DT detailed implementation is
given, accomplished by exploiting a speculative approach on the node evalua-
tion, reaching a very high throughput value, while in [2] same authors introduced
a methodological flow to automatically obtain such hardware.

On the other hand, in many pattern recognition applications achieving an
acceptable accuracy is conditioned by the large pattern variability, whose distri-
bution cannot be simply modelled. This affects the results of the classification
system so that, once this has been designed, its performance cannot be improved
beyond a certain bound, despite efforts at refining either the classification or the
description method [9]. A possible solution is the use of a multiple classifier sys-
tem: the consensus of a set of classifiers may compensate for the weakness of a
single classifier.

Combining hardware accelerators with multiple classifier techniques can dra-
matically improve the system performance, as the multiple classifier systems
are able to successfully enhance the classification accuracy and designs realized
in hardware perform classification of samples with really high throughput and
short latency. To the best of our knowledge, no paper in the literature takes into
account the multiple classifier scheme as an additional design parameter, mainly
because of lack of efficient hardware combiner architectures.

For those reasons and starting from the previous considerations, in this paper
we try to fill the gap by presenting an efficient hardware implementation of the
majority voting rule. Moreover, we illustrate a design methodology to suitably
embed in a digital device a multiple classifier system, having a DT as base clas-
sifier and a majority voting rule as combiner. In particular, Bagging, Boosting
and Random Forests [11] have been considered as multiple classifier systems.
By taking into account the constraints given by the specific problem, the pro-
posed methodology is able to select the best possible hardware multiple classifier
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system by considering classification accuracy, throughput and hardware latency.
In order to avoid the generation of unfeasible ensembles (i.e., they cannot be
synthesized in hardware), we also present an early prediction approach to do a
preliminary estimate of the required hardware resources, empirically exploiting
measurements and adopting as base classifier the hardware version of the DT
introduced in [1] and as hardware a Xilinx Virtex 5 FPGA device.

The paper is structured as follows: in Sect. 2 we briefly introduce the hardware
DT classifier and the combiner that we exploit to implement a hardware multiple
classifier system. Section 3 contains a detailed description of the proposed design
methodology. Thus, in Sect. 4, we demonstrate the effectiveness of the proposed
approach through two real case studies, namely spam detection and IP traffic
classification, discussing the main performance aspects. At the end, the Sect. 5
concludes the paper.

2 From Classification Model to Hardware Accelerator

In order to gather useful data about the performance of hardware classifiers
and analyse them by varying the classification parameters, it is mandatory to
have what is closest to a physical realization of the hardware components under
test, such as the description at the Place and Route (PAR) level. Essentially,
a PAR description has a fine grain level of physical details as it describes a digital
circuit in terms of what will be realized on the technological target. For instance,
a PAR description for a Xilinx FPGA contains configuration and allocation of
the Look-up Tables (LUTs), Registers, Slices and routing resources involved into
the design.

Towards this aim, experiments need for designs described as HDL projects,
which implement the hardware accelerator for a specific classification module.

2.1 Decision Tree Implemented on FPGA

Basically, the hardware implementation for a multiple classifier scheme is directly
inherited from the model structure. As the multiple classifier model combines
classification techniques, which are not dependent one another during the eval-
uation phase, and makes their predictions with a combining rule, the hardware
structure is designed with parallel classification entities that execute high speed
classification in parallel and with a hardware combiner which quickly organizes
all the classifiers’ outputs. In this paper we consider the DT as base classifier
model, since it can be successfully implemented in hardware and it is suitable
in a wide range of applications and domains. In particular, for the proposed
multiple classifier architecture, we exploit the hardware accelerator presented
in [1] because it is specifically designed for a FPGA technology, as it deeply
exploits the FPGAs’ parallel structure. Moreover, the authors have deployed a
tool whereby hardware models can be automatically generated from formal mod-
els described in Predictor Mark-up Model Language (PMML), which represents
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a standard exploitable as output artefact by a wide range of analytic frameworks
(e.g. KNIME1 or WEKA2) [2].

The DT model mapping is accomplished by implementing each tree node as
a binary comparator, which, once received the feature value, returns a boolean
value. In order to exploit intrinsic hardware parallelism, all the tree nodes work
in parallel and their decision values feed the boolean network that computes
which tree leaf has been reached. In particular, the boolean network needs as
much input as the DT nodes and gives outputs equal to the number of classes,
such that only one output is high each time. This approach turns out to be
speculative, since the DT model does not consider all the decisions at the same
time, but only the ones that belong to a single path, since the visiting algorithm
traverses the decision nodes one by one accordance with the comparison results.
The speculation implies very fast computation since there are no dependencies
between the decisions that can be simultaneously evaluated.

In order to support a multiple DT hardware accelerator, in the next subsec-
tion we present the majority voting rule as a hardware combiner. Furthermore,
for extending the automatic hardware description generation illustrated in [2],
we have successfully integrated the automatic generation of such a combiner in
the previously developed tool PMML2VHDL.

2.2 Hardware Combiner

In hardware, the combiner of a multiple classifier system is one of the most
influential elements both for latency and area occupation.

Fig. 1. Majority voter implemented as a pipelined odd-even sorter, which also embeds
a rejection module.

According to its implementation, the combiner could be a bottleneck, so
it is necessary to find a balanced design which can be a good trade-off between
resource occupation and maximum throughput. Among possible design solutions,
1 http://www.knime.org.
2 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.knime.org
http://www.cs.waikato.ac.nz/ml/weka/


198 M. Barbareschi et al.

in this paper we adopt the one based on the winning threshold and on the sorting
network. First of all, the idea is to exploit a combiner that does not care about
which class is voted by which tree, but only how many votes a class gets. Each
DT expresses its own decision as a decoded output, hence only one bit is high,
and each class gets a certain amount of votes, which corresponds to the number
of high bits received by each DT. Rather than use a binary adder to count high
bits, it is simpler to collect the votes in a vector by shifting all the high bits at
the beginning of it and verifying if they are enough to declare someone as the
winner.

As depicted in Fig. 1, we design the combiner as an odd-even sorter for each
class, which is a component that implements a simple sorting algorithm closely
related to bubble-sort, but in a parallel version. Indeed, the architecture com-
pares all the couples of adjacent elements, whose first member occupies an odd
position in the vector, swapping them if they are in the wrong order. Then, it
repeats the operation for even-indexed couples. The whole process is iterated
until the vector is totally ordered. In hardware, the algorithm is implemented as
a pipelined sorting network, such that the groups of 2-selectors work in parallel
reaching very high speed. The ordered vector is the input of another component,
which verifies whether a threshold of votes is reached according to the product of
the first X values in the vector, where X is the threshold value. The outputs of
all these components are compared in the rejection module, i.e. another sorting
network, in order to declare a winner or a draw situation.

2.3 Automatic Generator of Classification Models

Since our goal is to control the classification models’ characteristics, such as
number of nodes, maximum tree depth, number of classes, number of trees and
so on, in order to evaluate their influence on hardware classifier performance, we
develop PMMLGen, namely a Java tool which builds PMML models with desired
parameters. This application allows us to avoid learning for actual training sets
to obtain classification models (i.e., DTs) with the desired characteristics, as
it can automatically build working PMML models being able to control some
tree-based classifiers parameters, while the others are randomly and coherently
picked.

Exploiting PMMLGen, we have collected some models whose characteristics
are needed for defining trends of the hardware-related parameters according to
their features, and hence for estimate an early prediction function, as detailed in
the next Section. This is useful to reduce test cases, since it avoids generation of
unfeasible ensembles, i.e. models that cannot be synthesized in a specific targeted
hardware.

3 Methodology for Performance Evaluation: Early
Prediction Function

As the space of possible classification system solutions is very large, in this
Section we introduce an area-occupation Early Prediction (EP ) function that
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is useful to early discard models which likely lead to designs that are not fea-
sible to be implemented in the target device, which in this paper is an FPGA.
To this aim, we have obtained such a function through a step-wise regression
applied on the results of a test-suite made up of artificial ensembles generated
by PMMLGen. We have focused on the effect of each parameter, varying them
one per time and keeping the others fixed at a specific value. In particular, we
have considered: number of nodes for each tree and, consequently, the overall
number of nodes in the ensemble (#Nodes); number of trees (#Trees); number
of classes (#Classes) and number of features (#Features). Therefore, we can
give a general form for the EP :

EP = f(#Classes,#Features,#Trees,#Nodes). (1)

The actual expression of EP strictly depends on the device considered, since
it refers to its technological characteristics.

Even if the EP should be used to predict, from the parameters of the obtained
model, whether the multiple classifier system requires an amount of resources
suitable for the targeted device, it might be useful even without having trained
models. The first three parameters are clearly defined by the problem at hand,
but the last one is tightly coupled with the dataset and with the learning algo-
rithm. To preliminarily have a suitable estimation about the number of nodes
which will likely characterize the trained models, it could be enough to get only
one complete training for a significant ensemble model case, e.g. on a small
ensemble with 5 trees. In this way, the #Nodes parameter of the EP func-
tion can be estimated as the averaged number of trees nodes, since the relation
between the number of nodes and number of trees is quite linear in most cases.
Therefore we claim that this preliminary estimation of the nodes is an overesti-
mation since, with the growing of the involved trees, the number of nodes might
linearly grow or be constant.

Performance Function. Once the number of possible design solutions have
been reduced, selected classifier systems have to be implemented in order to
get information about their accuracy, latency and throughput values. As stated
before, this step involves hardware synthesis tools which translate designs from
a PAR description.

As for the accuracy, we adopt a k-fold cross validation technique for each
classification model under test. Having the performance values for each feasible
design, it is possible to assign a performance value to each involved model and,
in the end, select the best one according to the requirements of the application.
Towards this aim, we define a suitable performance function (P ) assuming a
linear dependence on accuracy, latency and throughput, hence its expression is
given by:

P = α · AccuracyNorm + β · 1
Latency

Norm

+ γ · ThroughputNorm. (2)

As one can notice, since accuracy, latency and throughput have different
ranges and measurement units, there is the need for the value normalization.
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An effective solution could be the evaluation of the performance improvement
when a multiple classifier system is used, with respect to the use of its base
classifier, i.e. the single DT. Hence, in Eq. 2, the notation < v >Norm stands for
adopting the following normalization rule:

< v >Norm⇒ < v > − < v >DT

< v >DT
(3)

where < v >DT represents the value from a single DT built on all the data.
In conclusion, we can also observe that, in most cases, latency and throughput

are not both critical, so that one of the weights of Eq. 2 can be considered null
and the remaining two can be fixed to α and (1-α), respectively. In this specific
case, given α, the design which maximizes P can be implemented in hardware.

4 Experimental Results

The goal of this section is twofold: first of all we test the proposed methodology,
showing how the early prediction function can estimate the maximum number
of trees according to the chosen ensemble strategy; then, exploiting the perfor-
mance function P , we show the best classification system to be implemented in
hardware.

For the latter aim, we prove the effectiveness of the previously introduced
methodology with two case studies: the first one refers to spam detection, char-
acterized by a huge amount of data that must be typically processed in a fixed
time. The second one is related to the classification of IP traffic traces: in this
case the main constraint to be satisfied is real-time classification [5,6]. Moreover,
while in the former case we have a binary problem with dozens of features, in
the second we consider a multi-class problem with few features.

For all the tests, we considered as target reference the hardware platform
Xilinx Virtex 5 XC5VLX110T, whose characteristics are illustrated in Table 1.

Table 1. Xilinx Virtex 5 XC5VLX110T characteristics

Array (Row x Col) Slices Slice registers Slice LUTs Total I/O banks Max user I/OBs

160× 54 17280 69120 69120 20 640

4.1 Early Prediction

For defining the EP function for the hardware device we are considering, we gen-
erated several artificial ensembles by using PMMLGen with model parameters
whose values were in the ranges detailed in Table 2.

We trained a single DT classifier, as well as the Bagging, AdaBoost and Ran-
dom Forest multiple classifier systems, by using the KNIME Analytic framework.
Once obtained the artificially generated ensembles, were saved as PMML files
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Table 2. Value ranges of the parameters.

Parameter Lower Bound Upper Bound

#Trees 5 50

#Classes 4 32

#Features 4 32

#Nodes 55 3375

and later translated in VHDL by using the PMML2VHDL framework in order
to synthesize them in hardware and retrieve their performance characteristics.
For the Xilinx Virtex-5 we found the following expression of the EP function:

EP = 13 ∗ #Classes + 33 ∗ #Features − 74 ∗ #Trees + 9 ∗ #Nodes∗.

where #Nodes∗ is an estimation of the actual number of nodes in the ensemble,
made as described in the previous Section.

In Fig. 2 we report the obtained EP function. The estimation quality is
globally good as the real required hardware resources are really close to the
predicted ones; hence, EP can be used to evaluate the maximum feasible number
of trees for each ensemble strategy.

Fig. 2. Predicted vs Observed plot of Early Prediction function; the red line represents
the hardware limit for the Xilinx Virtex 5 XC5VLX110T board.

In the following subsections we use the early prediction function and, for each
classification system, we consider the accuracy evaluated by means of a 10-fold
cross validation strategy.
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Table 3. SPAM e-mail detection - VHDL Classifiers. Best solutions in terms of P are
reported in bold.

4.2 Spam Detection

For this case study we used the Spambase dataset, publicly available on the UCI
repository3. This dataset contains 4601 instances (1813 Spam cases) character-
ized by 57 continuous features. Note that, even if the number of training samples
is not so significant, it is likely that a spam detection system should process a
huge amount of data when operating in the field.

In order to select the best solution for this particular problem, we used the
performance function P introduced in the previous Section. Since, in general,
spam detection does not need to be performed in real-time, we are not partic-
ularly interested in minimizing latency, while we need to maximize throughput,
since it is important to classify as many email as possible in a given time unit.
So we can set β = 0 and γ = 1−α, thus re-writing the performance function as:

P = α · AccuracyNorm + (1 − α) · ThroughputNorm.

We considered four possible values for α, i.e., α = {0.25; 0.50; 0.75; 1.00} in
order to differently weight accuracy and throughput. Note that the last value
3 https://archive.ics.uci.edu/ml/datasets/Spambase.

https://archive.ics.uci.edu/ml/datasets/Spambase
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Table 4. Internet Traffic Classification - VHDL Classifiers. Best solutions in terms of
P are reported in bold.

corresponds to the case in which only accuracy is considered, i.e. we are searching
for the system with the best accuracy that can be implemented in hardware.

Using the EP function to estimate the required resources in terms of area on
the FPGA board, we obtained the maximum feasible number of trees for each
ensemble strategy, i.e. Bagging (158), Random Forest (24) and Boosting (30).

The results reported in Table 3 show that if we want to take care of the
throughput (α = 0.25) or prefer to equally weight accuracy and throughput (α =
0.5), we have to choose the Bagging algorithm with 25 trees. On the other hand, if
we believe that accuracy is more important (α ≥ 0.75), Random Forests with 24
base classifiers should be chosen. In all cases, we have several multiple classifier
systems whose overall performance (according to our definition) is better than
the one obtained by the single DT.

4.3 Traffic Classification

In this case we used a dataset provided by the Lawrence Berkeley National
Laboratory (LBNL)4, already used in [3,8]. The dataset is composed by 134246
samples, characterized by 7 continuous features and 6 different classes: POP3,
FTP, SMTP, HTTP, BIT-TORRENT, MSN. Again, we followed the above pre-
sented methodology in order to select the best possible hardware solution for this
4 http://ee.lbl.gov/anonymized-traces.html.

http://ee.lbl.gov/anonymized-traces.html
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problem. Since, unlike spam detection, traffic classification would need to be per-
formed in real-time, we surely need to minimize latency, while we would not be
particularly interested in maximizing throughput. So we can simplify the expres-
sion of the performance function, by setting γ = 0 and β = 1 − α as in the
following: P = α · AccuracyNorm + (1 − α) · 1

Latency

Norm
.

By using the EP function we obtained the maximum feasible number of
trees for each ensemble algorithm, i.e. Bagging (95), Random Forest (37) and
Boosting (77).

Then, according to these results, we are able to select the best solutions for
the problem at hand. As in the previous case, we considered four possible values
for α, i.e., α = {0.25; 0.50; 0.75; 1.00}. In this case it is interesting to note that,
since the DT has a very small latency time, the single classifier solution should be
chosen according to our performance function, when we want to use the latency
parameter. On the other hand, if we are only interested in maximizing accuracy,
a bagging ensemble with 5 trees should be implemented in hardware (Table 4).

5 Conclusion

In this paper we presented a novel approach for an efficient hardware implemen-
tation of the majority voting combining rule and illustrated a design methodol-
ogy to suitably embed in a digital device a multiple classifier system, having a
DT as base classifier and a majority voting rule as combiner. Bagging, boosting
and random forests have been considered as multiple classifier systems. Tak-
ing into account the constraints given by the specific problem, in the proposed
methodology we introduced a performance function P that was able to select the
best possible hardware classifier system by considering classification accuracy,
throughput and hardware latency. We also presented an early prediction EP
function to preliminary estimate the number of trees usable within the ensem-
bles approaches according to the hardware constraints.

We presented the results of the proposed approach by considering two dif-
ferent problems: spam detection, a binary classification problem where both
throughput and accuracy need to be maximized and the classification of IP
traffic traces, a multi-class problem where latency need to be minimized, while
preserving an high accuracy. In both cases, we considered different scenarios,
by weighting in different ways the contribution of throughput (or latency) and
accuracy to the overall system performance, by varying a suitably defined
parameter.

In case of spam detection, we found that there was always a multiple classifier
system that outperforms the single DT classifier, as could be expected. On the
other hand, when the traffic classification problem was addressed, it happened
that a single classifier solution is the most suitable one for several scenarios.
The multiple classifier approach in this case should be preferred for an hardware
implementation if we are only interested in maximizing accuracy.

As future work we are planning to investigate the possibility of extending
our methodology to other multiple classifier systems.
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Abstract. We address one of the main open issues about the use of
diversity in multiple classifier systems: the effectiveness of the explicit
use of diversity measures for creation of classifier ensembles. So far, diver-
sity measures have been mostly used for ensemble pruning, namely, for
selecting a subset of classifiers out of an original, larger ensemble. Here
we focus on pruning techniques based on forward/backward selection,
since they allow a direct comparison with the simple estimation of accu-
racy of classifier ensemble. We empirically carry out this comparison for
several diversity measures and benchmark data sets, using bagging as
the ensemble construction technique, and majority voting as the fusion
rule. Our results provide further and more direct evidence to previous
observations against the effectiveness of the use of diversity measures for
ensemble pruning, but also show that, combined with ensemble accuracy
estimated on a validation set, diversity can have a regularization effect
when the validation set size is small.

Keywords: Diversity · Ensemble pruning · Forward/backward selec-
tion · Ensemble construction

1 Introduction

After about twenty years of active research in the classifier ensemble field, under-
standing the notion of diversity remains one of the main open problems [11,25].
On the one hand, there is a general agreement on the qualitative definition of
diversity and on its role, e.g.: “it is desired that the individual learners should
be accurate and diverse” [25]; “Common sense suggests that the classifiers in
the ensemble should be as accurate as possible and should not make coincident
errors” [11] (Chap. 8). On the other hand, measuring diversity and explicitly
using it for ensemble construction exhibits several open issues.

A number of diversitymeasures have been proposed over the years [9,11,25].
Most measures have been derived intuitively, as attempts to formally characterize
the pattern of individual classifiers’ errors (e.g., the Double-Fault and Disagree-
ment measures [11]). In particular, it has been clearly pointed out that diversity
measures alone can not be monotonically related to ensemble accuracy, since the
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 206–219, 2015.
DOI: 10.1007/978-3-319-20248-8 18
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latter depends instead on a trade-off between diversity and individual classifiers’
performance [11,19]; quoting from [11] (Chap. 8), looking for a diversity measure
strongly related to ensemble performance runs the risk of “replacing a simple cal-
culation of the ensemble error by a clumsy proxy which we call diversity.” A few
other measures have been inspired by exact error decompositions derived in the
regression field, despite the lack of a direct analogy with regression problems was
pointed out in [2]: the Kohavi-Wolpert Variance [9] (and our attempt in [6]) was
inspired by the bias-variance-covariance error decomposition [21], and the mea-
sure derived in [3] (which we extended in [6]) by the ambiguity decomposition [8].
The rationale of such measures is to look for exact, additive decompositions of
the ensemble error into terms accounting for individual classifiers’ performance,
and terms hopefully interpretable as diversity; the results of [3] provided useful
insights, leading to the concept of “good” and “bad” diversity. Several authors
also analyzed, empirically or analytically, the connection between ensemble per-
formance on one side, and the pattern of individual classifiers’ performance and
existing diversity measures on the other side (e.g., [10,19]). Such a relationship
turned out to be far from clear-cut, and no “right” diversity measure has emerged
so far.

Almost all the existing methods that explicitly use diversity for ensem-
ble construction follow the overproduce and choose approach (except for [24],
where a diversity measure is used in an ensemble learning algorithm). It con-
sists of first generating a large ensemble (e.g., using bagging) and then selecting
the most accurate subset of classifiers (usually with a predefined size). This is
known as ensemble pruning, selection or thinning. Since this problem has expo-
nential complexity in the size of the original ensemble, several heuristics have
been proposed. In this context, diversity measures have been used in the objec-
tive function of pruning methods, to look for a trade-off between individual
classifiers’ performance and diversity. The effectiveness of such an approach has
however been questioned by several authors, based also on empirical evidences
[11,19] (Chap. 8.3). In particular, its actual advantage over directly evaluating
ensemble performance (estimated, e.g., from validation data) is not clear yet. On
the other hand, it is well known that popular and effective ensemble construction
techniques like bagging and boosting do not use any explicit diversity measure.

In [6] we discussed the above issues, focusing on the derivation of exact
decompositions of the ensemble error, and outlined several research directions.
One of them, which we start addressing in this work, consists of comparing the
effectiveness of explicitly using diversity measures in ensemble pruning, with the
simple estimation of ensemble performance. Although many pruning methods
have been proposed so far, the above comparison has been carried out by only a
few authors, and with a limited scope. In this work we focus on pruning methods
based on forward/backward selection (FS/BS) algorithms, which are the easiest
ones on which such a comparison can be made, and carry out an empirical inves-
tigation on 23 benchmark data sets, using the popular bagging as the ensemble
construction technique, and majority voting as the fusion rule. We evaluate ten
well known diversity measures analyzed in [9], and five measures specifically
defined for ensemble pruning. We also evaluate the effect of the validation set
size on ensemble pruning effectiveness.
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Algorithm 1. Forward Selection algorithm for ensemble pruning
Input: an ensemble E of N classifiers; a desired ensemble size L < N ; a validation set
V ; an objective function m (to be computed on V )
Output: a subset of L classifiers from E

C ← the most accurate individual classifier from E
S ← {C}
for k = 2, . . . , L do

C∗ ← arg maxC∈E\S m(S
⋃{C})

S ← S
⋃{C∗}

end for
return S

2 Ensemble Pruning with Forward/Backward Selection

Ensemble pruning methods can be categorized as follows [20]:

– Ranking-based: individual classifiers are first ranked according to some cri-
terion, and then the top-L are selected to form the final ensemble.

– Clustering-based: individual classifiers are first clustered based on the sim-
ilarity of their predictions; each cluster is then pruned to remove redundant
classifiers, and the remaining ones in each cluster are finally combined.

– Optimization-based methods search for a subset of the original ensemble
that optimizes a given objective function, which can include a diversity mea-
sure. To avoid exhaustive search, three main heuristic search strategies have
been proposed: hill climbing (often implemented as FS or BS), genetic algo-
rithms, and semi-definite programming.

We focus on optimization-based methods in which FS/BS is used, since they
allow a direct comparison between the simple estimation of ensemble accuracy
and objective functions involving diversity. Several pruning methods based on
FS/BS, together with specific objective functions, have been proposed so far,
including [1,4,13–17]. Given an initial ensemble E of size N , FS constructs a
pruned ensemble S of size L < N by starting from the best individual classifier
from E, and iteratively adding a classifier to S by maximizing a given objec-
tive function (see Algorithm 1).1 The BS algorithm works similarly, iteratively
removing from E one classifier at a time. More refined versions of FS/BS have
also been proposed, which include a back-fitting step [13].

Three kinds of objective functions have been proposed so far:

– The ensemble performance, [13] (reduce-error pruning technique), [4,12].
– Diversity measures alone, disregarding the performance of individual classifiers

and of the ensemble, [13] (Kullback-Leibler Divergence pruning), [17] and [1]
(kappa-thinning).

1 If no predefined size is given, FS stops when all the classifiers from E have been
added, and returns the best ensemble among the N ones obtained at every iteration.
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– Measures specifically defined for ensemble pruning. They combine into a single
scalar the individual classifiers’ performance and the complementarity between
their errors [14–16] and [1] (AID thinning and Concurrency thinning). We will
refer to them as pruning measures.

Among the existing pruning measures, we focus on the following ones. Let (x, y)
denote a sample with its class label, V the validation set, E and S the original
and the current pruned ensemble, C∗ the candidate classifier to be added to (or
removed from) S, and S(x) the label assigned to x by S.

– A measure aimed at minimizing the number of coincident errors between
ensemble members, when majority voting is used, to be used in the FS
algorithm [16] (Sect. 5.2). It selects the classifier C∗ that correctly labels the
highest number of validation samples, among the ones misclassified by the
majority of classifiers in the current ensemble S:

C∗ = arg minC∈E\S
∑

(x,y)∈V I [C(x) �= y ∧ S(x) �= y]
− I [C(x) = y ∧ S(x) �= y] ,

(1)

where I[A] = 1 if A =True, and I[A] = 0 otherwise.
– Two measures proposed in [14] to be used in the FS algorithm, with the major-

ity voting rule: Complementariness (the sum of validation samples which are
wrongly classified by the current ensemble, but not by the candidate classifier)
and Margin Distance. The former is a variant of Eq. (1). They are respectively
defined as:

C∗ = arg max
C∈E\S

∑

(x,y)∈V

I [C(x) = y ∧ S(x) �= y] , (2)

C∗ = arg min
C∈E\S

∥∥∥∥∥o − 1
|E|

(
cC +

∑

C′∈S

cC′

)∥∥∥∥∥

2

2

, (3)

where cC′ is a |V |-dimensional vector whose i-th element is defined as:

2I[C ′(xi) = yi] − 1 ∈ {−1,+1},

and o is defined as a constant vector whose components are all identical to
some value p, with 0 < p < 1.

– A measure proposed in the context of the Concurrency thinning technique in
[1], based on BS. It chooses the classifier to be removed from S with the aim
of penalizing the agreement on correctly classified samples (this is a variant
of Eq. (1) as well):

C∗ = arg minC∈S

∑
(x,y)∈V I [C(x) = y ∧ S(x) = y]

+ 2I [C(x) = y ∧ S(x) �= y]
− 2I [C(x) �= y ∧ S(x) �= y] .

(4)
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– The Uncertainty Weighted Accuracy (UWA), to be used in the FS algorithm;
it was proposed in [15] as a variant of the Concurrency measure of Eq. (4):

C∗ = arg maxC∈E\S
∑

(x,y)∈V NF (x) × I [C(x) = y ∧ S(x) = y]
+ NT (x) × I [C(x) = y ∧ S(x) �= y]
− NF (x) × I [C(x) �= y ∧ S(x) = y]
− NT (x) × I [C(x) �= y ∧ S(x) �= y] ,

(5)

where NT (x) and NF (x) are the number of classifiers in S that classify x
respectively correctly and wrongly.

3 Aim of This Work

A comparison between the effectiveness of directly using ensemble performance as
the objective function, and using measures involving diversity, has been carried
out by a few authors [1,12–15], often limited to the specific evaluation measure
they were proposing, and using different and incomparable experimental setups
(different data sets, base classifiers, ensemble construction methods, etc.). We also
point out that only in [12,15] the use of pruning measures provided a statistically
significant improvement over the use of ensemble performance.

Our aim is thus to carry out an extensive experimental investigation of
FS/BS-based ensemble pruning methods, focused on the comparison between
the use of ensemble performance as the objective function, and the use of mea-
sures involving diversity. To this aim, we focus on the basic FS/BS algorithm
without back-fitting, and consider three kinds of objective functions:

1. Ensemble accuracy.
2. A generic diversity measure, focusing on the ones analyzed in [9]. Although

diversity alone is deemed to be not effective for ensemble pruning [11,19], we
consider also this option to provide a more direct evidence to these findings.

3. Pruning measures, which combine individual classifiers’ performance and
complementarity: we consider the ones described in Sect. 2, Eqs. (1)–(5).

We also consider another way to combine ensemble performance and diversity.
Since diversity measures are not homogeneous to classification accuracy, to avoid
combining them with individual classifiers’ accuracy in an arbitrary way (e.g., by
a linear combination), we use a two-stage FS/BS: first we select M < N classifiers
using either ensemble accuracy or diversity; then we further select L < M clas-
sifiers using the other measure. Algorithm 2 shows the version in which ensemble
accuracy is used at the first stage. In our experiments we considered both versions.

4 Experimental Setting

We chose 23 benchmark data sets from the UCI Machine Learning Repository
Database,2 with at least 350 samples, only numerical attributes, and without
2 http://www.ics.uci.edu/∼mlearn/MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Algorithm 2. Two-stage Forward Selection algorithm for ensemble pruning
Input: a classifier ensemble E of size N ; a desired ensemble size L < N ; an intermediate
ensemble size M , with L < M < N ; a validation set V ; a diversity measure d
Output: a subset of L classifiers from E

step 1 (accuracy-based pruning): select from E an ensemble E′ of size M using
Algorithm 1, and using classification accuracy as the objective function m
step 2 (diversity-based pruning): select from E′ an ensemble S of size L using
Algorithm 1, and using d as the objective function m
return S

missing values (see Table 1). We used bagging to construct the original ensemble,
majority voting as the combining rule, and two different base classifiers: multi-
layer perceptron neural networks (MLP-NN) with one hidden layer containing
ten units, and decision trees (DT). For MLP-NN we used the standard Matlab
implementation3, learning rate η = 0.05, and maximum number of training
epochs equal to 300. For DTs we used the code of [11] (par. 2.A.2.1), with
the Gini impurity criterion, χ2 stopping criterion, and the default threshold
equal to 1 for the pre-pruning stopping criterion. We set the size of the original
ensemble to N = 100, and considered four different sizes of the pruned ensembles:
L = 5, 15, 25 and 35.

We used only FS-based pruning. In the two-stage Algorithm 2 we set the size
M of the first-stage pruned ensemble to M = L + �(N − L)/2�. Since FS-based
pruning starts from the best individual classifier, to better appreciate its effective-
ness we chose the training set size of each data set in preliminary experiments, by
maximizing the difference between the accuracy of an ensemble of 100 classifiers
(constructed by bagging) and of the best individual classifier (see the right-most
column of Table 1). We then set the size of the validation as one third of the train-
ing set, and used the remaining samples as a testing set. We also used only half of
the validation set (one sixth of the training set) to evaluate the effect of validation
set size on the performance of ensemble pruning. We considered the ten diversity
measures analyzed in [9] (the ones in the top rows of Table 2), as well as measures
in Eqs. (1)–(5), which combine into a single scalar the individual classifiers’ per-
formance and the complementarity between their errors (the ones in the bottom
five rows of Table 2).

We carried out 20 runs of the experiments. At each run we selected the
training, validation and testing sets by stratified random sampling (no data
set was originally subdivided into a training and a testing set). We applied
bagging to the training set, to construct the original ensemble of N = 100
classifiers. We then run Algorithm 1 separately using as the objective function
the ensemble accuracy, each diversity measure, and the pruning measures in
Eqs. (1)–(5). We also run the two-stage Algorithm 2 in both versions (using
accuracy either at the first or at the second stage), for each diversity measure. We
finally computed, separately for each data set, pruning method, base classifier,

3 http://it.mathworks.com/help/nnet/ref/patternnet.html.

http://it.mathworks.com/help/nnet/ref/patternnet.html
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Table 1. Characteristics of the data sets. The two rightmost columns report the size
of the training set for the two base classifiers, as a fraction of the whole data set.

Tr. set size

Dataset Samples Classes Features MLP-NN DT

Australian 690 2 14 0.42 0.42

Balance scale 625 3 4 0.18 0.42

Blood transfusion 748 2 4 0.48 0.60

Breast cancer 699 2 9 0.30 0.12

Bupa 345 2 6 0.54 0.06

Checker board 1000 2 2 0.36 0.30

Coil 2000 9822 2 85 0.06 0.18

Cone tours 2000 3 2 0.06 0.24

Contraceptive 1473 3 9 0.36 0.60

ILPD 583 2 9 0.50 0.06

Laryngeal 2 692 2 16 0.06 0.48

Monk2 432 2 6 0.48 0.06

Page blocks 5473 5 10 0.06 0.42

Phoneme 5404 2 5 0.36 0.30

Pima Indians 768 2 8 0.54 0.30

Pop failures 540 2 20 0.42 0.30

Ring 7400 2 20 0.42 0.30

SaHeart 462 2 4 0.54 0.18

Sata log image seg 2310 7 19 0.44 0.30

Landsat Satellite 6435 7 36 0.60 0.48

Spam base 4601 2 57 0.42 0.30

Townorm 7400 2 20 0.12 0.30

Wine quality 4898 7 11 0.18 0.30

ensemble size L and validation set size, the average accuracy and its standard
deviation on testing samples, over the 20 runs. Due to space limits, we make
these results available only from our web site,4 and only report the results of
the statistical significance test. We compared the accuracy of pruned ensembles
attained by Algorithm 1 using ensemble accuracy as the objective function, and
using each of the other measures (both by Algorithms 1 and 2). To this aim we
used the Wilcoxon signed-rank test, which is recommended in [5] for comparing
two algorithms over multiple data sets. Our goal was to assess whether the
difference was significant, and, if so, whether using ensemble accuracy as the
objective function was the best or the worst option. Accordingly, we made two

4 http://pralab.diee.unica.it/en/MCS2015Appendix1.

http://pralab.diee.unica.it/en/MCS2015Appendix1
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Table 2. Diversity measures (top ten rows, from [9]) and pruning measures (in the
other rows, defined in Eqs. (1)–(5)) used in the experiments.

Diversity/pruning measure Abbreviation

Entropy E

Kohavi-Wolpert KW

Coincidence failure diversity CFD

Generalized diversity GD

Interrater agreement Kappa

Difficulty Theta

Q Statistic Q

Correlation Rho

Disagreement D

Double fault DF

Uncertainty weighted accuracy UWA

Partridge and yates’ measure PYM

Complementariness Cs

Margin distance MD

Concurrency Cy

one-sided tests (at the α = 0.05 level), evaluating the null hypotheses that
FS-based pruning using ensemble accuracy (or a measure involving diversity) is
not better than using a given measure involving diversity (or ensemble accuracy).
Only if both null hypotheses are rejected, it can be concluded that there is no
statistically significant difference between the two options.

5 Experimental Results

For each pruned ensemble size L, base classifier, and validation set size, Tables
3, 4, 5, 6, 7 and 8 report the comparison between FS-based pruning (Algorithm 1)
using ensemble accuracy, and FS-based pruning implemented by Algorithm 1
using either a diversity or a pruning measure, and by Algorithm 2 combining
ensemble accuracy and diversity.

Tables 3 and 4 clearly show that using ensemble accuracy often provides a bet-
ter or comparable pruned ensemble than using any diversity measure alone, or a
pruning measure. The only exceptions are GD (with L = 15) and UWA (with
L = 35), using DT as the base classifier and a small validation set (see Table 3).

Interestingly, most of the cases when using diversity attained comparable
results occur for three only measures: Entropy, Generalized Diversity and Kappa.

Tables 5, 6, 7 and 8, which refer to the two-stage FS algorithm combining
ensemble performance and diversity, show a different pattern, instead. When a
larger validation set is used, ensemble accuracy still produces often a better or
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Table 3. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs.
using each diversity or pruning measure, for different ensemble sizes L and validation
set sizes. Base classifier: DT. ‘A’: using accuracy is statistically significantly better than
using the corresponding diversity/other measures, over the 23 data sets; ‘D’: using the
corresponding diversity/other measures is better than ensemble accuracy; ‘-’: there is
no statistically significant difference between the two measures.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E - - - - - - - -

KW A A A A A A A A

CFD A A A A A A A A

GD - - - - - D - -

Kappa - - - - - - - -

Theta - A - A A - - -

Q - A - A A - - -

Rho A A A A - A A A

D A A A A A A - -

DF A A A A A A A A

UWA A A A A - - - D

PYM - - - - - - - -

Cs A A A A A A A A

MD - - - - - - - -

Cy - - - - - - - -

comparable pruned ensemble; however, for ensembles of DTs it never outper-
forms the combination of ensemble performance and diversity; moreover, it almost
always performs worse with respect to the Double Fault (DF) measure. When
a smaller validation set is used, together with DT classifiers, instead, combining
ensemble accuracy and diversity is often better, or at least not worse, than using
only ensemble accuracy (four right-most columns of Tables 5 and 7, vs the same
columns of Table 3). Remarkably, this happens for most diversity measures.

These results seem to suggest that estimating the ensemble performance is
the best option for FS-based pruning, provided that a sufficiently large validation
set is available. Otherwise, a combination of ensemble performance and diversity
can be advantageous, at least for some types of base classifiers. One possible
explanation is that diversity measures have a regularization effect capable of
preventing over-fitting, to some extent, as already argued in [12]. This is an
interesting and non-straightforward property, which is worth investigating more
throughly.
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Table 4. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs.
using each diversity or pruning measure, for a validation set size equal to 1/3 and 1/6
of the training set size. Base classifier: MLP-NN. See caption of Table 3 for the meaning
of table entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E - - - - A - - -

KW A A A A - - - -

CFD A A A A - - - -

GD - - - - - - - -

Kappa - - - - - - - -

Theta A A A A - - - -

Q A A A A - - - -

Rho A A A A - - - -

D A A A A - - - -

DF A A A A - - - -

UWA - - - - - - - -

PYM - - - - - - - -

Cs A A A A A A A A

MD - - - - - - - -

Cy - - - - - - - -

Table 5. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using ensemble accuracy at the first stage and each diversity measure at
the second stage. Base classifier: DT. See caption of Table 3 for the meaning of table
entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E - - - - D D D D

KW - - - - D D D D

CFD - - - D D D D D

GD - - - D D D D -

Kappa - - - - D D D -

Theta - - - - D D D -

Q - - - - - D D -

Rho - - - - D D D -

D - - - - D D D -

DF - D D D D D D D
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Table 6. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using ensemble accuracy at the first step and each diversity measure at
the second stage, for a validation set size equal to 1/3 and 1/6 of the training set size.
Base classifier: MLP-NN. See caption of Table 3 for the meaning of table entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

measure 5 15 25 35 5 15 25 35

E A A A A A A A A

KW A A A A A A A A

CFD - - - - A - D -

GD - - - - A - - -

Kappa A A - - A A A A

Theta A - - - A - - -

Q A - - A A A A A

Rho A A A - A A A A

D A A A A A A A A

DF D D D D - - - -

Table 7. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using each diversity measure at the first stage and ensemble accuracy at
the second stage. Base classifier: DT. See caption of Table 3 for the meaning of table
entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

easure 5 15 25 35 5 15 25 35

E - - - - D D D -

KW - - - - D D - -

CFD - - - - D D - D

GD - - D D - D D D

Kappa - - - - - D D -

Theta - - - - - D D -

Q - - - - - D - -

Rho - - - - D D D -

D - - - - D D - -

DF - - D D - D D D
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Table 8. Comparison of FS-based pruning (Algorithm 1) using ensemble accuracy vs
Algorithm 2 using each diversity measure at the first stage and ensemble accuracy at
the second stage, for a validation set size equal to 1/3 and 1/6 of the training set size.
Base classifier: MLP-NN. See caption of Table 3 for the meaning of table entries.

Ensemble size L

Diversity Val. size: 1/3 Tr. size Val. size: 1/6 Tr. size

Measure 5 15 25 35 5 15 25 35

E - A A A - - - -

KW - A A A A A - A

CFD - - - - A D D -

GD - D - - - D D -

Kappa - A A - A A - -

Theta - A A - A A - -

Q A A A A A - A A

Rho - A A A A A - A

D A A A A A - - A

DF - - - - - - - -

6 Discussion

We empirically investigated the effectiveness of explicitly using diversity mea-
sures for FS-based ensemble pruning, vs the simple estimation of ensemble accu-
racy. On the one hand, our results provide a more direct evidence in support of
previous findings that using diversity measures alone is not effective for ensem-
ble pruning [11,19], and in particular are in agreement with the well-established
fact that diversity is not monotonically related to ensemble accuracy [11]. On
the other hand, they suggest that, combined with the performance of individual
classifiers, diversity can be useful to FS-based pruning when a small validation
set is available. It seems therefore that diversity has a regularization effect. This
possible effect has already been argued through the derivation of generaliza-
tion bounds in [22], in the context of constructing ensembles of support vector
machines, as well as in [12], in the context of FS-based ensemble pruning. How-
ever, in [12] the effect of different validation set sizes was not assessed, and
only one diversity and two pruning measures were considered for comparison
(Table 6).

To sum up, what our results provide is not a sharp conclusion either in favor
or against the effectiveness of explicitly using diversity measures for ensemble
pruning. Instead, and perhaps more interestingly, they provide some hints on the
conditions under which diversity can be useful, and clearly suggest as a future
research direction a more thorough investigation of the effect of validation set
size. Our analysis can also be extended to other pruning methods categorized
in [20] as optimization-based, which use genetic algorithms [7,23] or a kind of
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best-first search [18], where ensemble accuracy can also be used as the objective
function. Finally, this investigation can be extended to regression problems, in
which the exact Ambiguity decomposition includes a diversity term which does
not depend on ground truth, contrary to most diversity measures for classifica-
tion problems, including all the ones in [9] considered in this work, and the one
in [3] derived from an exact Ambiguity-like decomposition; this allows it to be
computed also on a set of unlabeled samples, thus potentially reducing the effect
of over-fitting when a small set of (labelled) validation samples is available.

Acknowledgments. This work has been partly supported by the project CRP-59872
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Abstract. In this work, multi-modal fusion of video and biopotential
signals is used to recognize pain in a person-independent scenario. For
this purpose, participants were subjected to painful heat stimuli under
controlled conditions. Subsequently, a multitude of features have been
extracted from the available modalities. Experimental validation suggests
that the cues that allow the successful recognition of pain are highly simi-
lar across different people and complementary in the analysed modalities
to an extent that fusion methods are able to achieve an improvement over
single modalities. Different fusion approaches (early, late, trainable) are
compared on a large set of state-of-the art features for the biopotentials
and video channels in multiple classification experiments.

1 Introduction

The nature of pain as a feedback mechanism to prevent harmful behaviour and
to support self-preservation can be regarded a useful trait from an evolutionary
point of view. However if the feedback characteristics miss their effect because a
person is not able to act accordingly (e.g. somnolent patients, patients suffering
from dementia), pain can be a heavy burden. Under certain circumstances, there
is little correlation between subjectively experienced pain and tissue lesions or
other pathological changes, the pain may even be completely unrelated. There-
fore, the somatic pathology does not allow any conclusions to be drawn on subjec-
tively experienced pain. In recent years, the focus of machine learning of human
centered signals has witnessed a shift from the recognition of facial expressions
and emotions to clinical fields of research such as depression [6], post-traumatic
stress disorder [16] or pain. Research interest in automatic pain recognition has
focused largely on recognition of facial expressions in painful situations for exam-
ple using the UNBC-McMaster shoulder pain expression archive database [4,9]
and only recently the in-depth investigation of biopotentials has led to encour-
aging findings [17] for automated pain recognition. Predictions based on both
c© Springer International Publishing Switzerland 2015
F. Schwenker et al. (Eds.): MCS 2015, LNCS 9132, pp. 220–230, 2015.
DOI: 10.1007/978-3-319-20248-8 19
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modalities combined as is it already very common in other sub-disciplines of
machine learning is still an unexplored area and only very few works exist that
leverage information fusion and multi expert systems [22]. This work aims to
investigate fusion of biopotential and video data to improve the recognition of
pain intensity in person-independent scenarios.

2 Dataset and Feature Extraction

In these experiments the BioVid Heat Pain database [19] is analysed. It comprises
90 participants ((1) 18-35 years (n = 30 years; 15 men, 15 women), (2) 36-50
years (n = 30; 15 men, 15 women), and (3) 51-65 years (n = 30; 15 men, 15
women)). The experimental setup consisted of a thermode that was used for the
pain elicitation. The intensity was calibrated for each participant such that it
divided the range between two reference levels (pain starts and pain is barely
bearable) into 3 equally spaced intervals. Each of the 4 different stimulation
strengths was applied 20 times to give rise to a total of 80 responses. During the
experiments, high resolution video (from 3 different cameras), sensor data of a
Kinect, and a biophysiological amplifier were recorded. The physiological chan-
nels included electromyography (EMG) (zygomaticus, corrugator and trapezius
muscles), skin conductance level (SCL) and an electrocardiogram (ECG). The
study was conducted in accordance with the ethical guidelines set out in the
WMA Declaration of Helsinki (ethical committee approval was granted: 196/10-
UBB/bal). The experiment was carried out twice. In the first round (part A),
no facial EMG was attached to prevent deterioration of the video signal. In the
second round (part B) a full set of EMG electrodes was attached (see Fig. 1).

2.1 Biophysiological Feature Extraction

Feature extraction for the biopotentials was performed after channel dependent
pre-processing. The EMG and ECG channels were filtered using a Butterworth
bandpass filter with the frequency ranges of [20, 250] Hz and [0.1, 250] Hz, respec-
tively. This step was necessary to reduce noise and minimize the effects of trends
in the signals. For the EMG signal an additional noise reduction procedure based
on Empirical Mode Decomposition was applied [1]. For the EMG and SCL chan-
nel, a number of features based on signal amplitude and frequency such as peak
height, peak difference, mean absolute difference, Fourier coefficients, bandwidth
were computed as well as additional features based on entropy (approximate and
sample entropy [14]), stationarity [3] and statistical moments. In the ECG signal,
first the QRS complexes were detected then based on the differences between
consecutive heart beats (RR intervals), the mean difference, the root mean sum
of squared differences (RMSSD) as well as the slope of the regression line com-
puted on the RR intervals, were calculated. All of the biopotential features were
computed on a window of 5.5 s and the total number of features was 131.
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Fig. 1. Left: Experimental setting. The workflow of the experimental procedure and
setup are depicted in the upper row. In the lower row, the different stimuli are depicted
as well as a close up of the thermode. Right: Video Feature extraction: The depicted
landmarks (yellow) are automatically detected and serve as input for the feature com-
putation. Because of the attached EMG sensors, only the left part of the face is used
(Color figure online).

2.2 Video Feature Extraction

From the video modality we extract facial expression and head pose features.
The head pose is estimated from depth maps by fitting a generic head model to
the measured point cloud [21]. This yields 3 rotation angles and 3 position para-
meters per frame. For facial expression features, we automatically detect facial
landmarks on the mouth, right eye and right eyebrow with IntraFace [23]. Several
distances between these landmarks measure facial deformation. These distances
are measured in 3D [21] and include eye to brow distance, eye closure and mouth
height, among others. Deepening of the nasolabial fold are measured through the
mean gradient magnitude in the corresponding image region. Over time, each of
these facial expression and head pose parameters yields a signal. For each signal
we apply a low-pass filter and calculate the first and second temporal derivative
of the resulting signal. Next, we extract statistical parameters of the low-pass
filtered signal and its derivatives, namely the mean, median, standard deviation,
range, inter-quartile range, inter-decile range and median absolute deviation. The
extracted statistical parameters are used as facial expression and head pose fea-
tures for the following analysis. The overall feature extraction method is detailed
in [21,22]. For part B, only a subset of the features of [21,22] was used, as the
EMG electrodes interfere with the landmark detection in the left part of the face.

3 Classification and Fusion Approaches

For the classification of the pain intensity levels, a number of classification and
fusion techniques have been applied to the extracted features. The focus of
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this work is set on the applicability of early and decision fusion approaches for
person-independent recognition of pain stimuli. Early fusion denotes the process
of directly combining (i.e. concatenating) features before a classifier is trained.
Late or decision fusion is applied after the individual classifiers have been trained
by combining their predictions for unseen samples. Fixed mappings such as tak-
ing the mean or product of the individual predictions are common as well as
trainable mappings such as the pseudo-inverse. Additionally the combination of
early and decision fusion has been investigated by combining specific channels
on feature level with subsequent fusion with other channels on decision level. In
the literature (e.g. [8]) a variety of possible fusion mappings exist (grouped into
fixed and trainable). As a fixed mapping we chose the sum rule and as a train-
able mapping we decided for a pseudo-inverse trained on each of the classifiers’
probability outputs per class. The classifiers of choice were an SVM with linear
kernel (with softmax outputs) and a Random Forest. Since the dimensionality of
the input data (especially when concatenated) reached several hundred, a feature
selection algorithm has also been applied to reduce the set to the most discrim-
inative ones. In the following, the individual components of the classification
architecture are briefly introduced.

3.1 Support Vector Machine

A Support Vector Machine [18] is a classifier that maximizes the margin between
the positive and negative classes. The optimal hyperplane w is achieved by
optimizing

min
w,ξ

1
2
wTw + C

∑

i

ξi (1)

under the constraints yi(wTxi + b) ≥ 1 − ξi,∀i and ξi ≥ 0,∀i, where yi is the
label of sample xi. C is a parameter that controls the penalty of samples that
lie inside the margin region (or on the wrong side of the hyperplane) for linearly
non-separable problems. Optimization is commonly done by deriving the dual
form of the optimization function and then using quadratic programming or the
sequential minimal optimization (SMO) algorithm [12].

3.2 Random Forest

Random Forests [2] are ensembles of bagged decision trees that are trained on
randomly drawn subsets of features. For each tree in each node, a split is com-
puted based on an impurity measure such as the Gini index. A new sample
is classified by querying each tree and a subsequent majority voting. Random
Forests are very robust against changes in the input space and insensitive against
parameter choices.

3.3 Pseudo-Inverse

A least-squares optimal linear mapping is obtained by computing the pseudo-
inverse of the classifier outputs Ci for each classifier i and multiplying it with
the desired values Y .
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M i = Y lim
α→0+

CT
i (CiC

T
i + αI)−1 (2)

This is commonly done using a hold out set. The mapping is then applied to the
predicted outputs to obtain the final class memberships. For details, the reader
is referred to [15].

3.4 Hybrid Sequential Floating Forward Selection

The sequential floating forward selection (SFFS) algorithm [13] is a so called
wrapper method. An arbitrary classifier is used to evaluate the selected features
while an enclosing routine optimizes which features to choose. The algorithm
starts with the empty set and alternates the addition of a new (beneficial) feature
and the subsequent removal of one or more features as long as the classification
rate increases. Because all the features have to be added and tested individually,
the process takes a long time if a huge number of features exist. Therefore a
greedy pre-selection based on the minimum redundancy maximum relevance
(mRMR) criterion [11] has been applied to filter promising feature candidates.

4 Experimental Validation

Different experiments have been carried out in order to investigate the discrim-
inative power of each modality individually and also combined using different
fusion techniques. Each of the following experiments has been carried out using
a leave-one-subject-out cross validation to evaluate the generalization ability of
the learning algorithms given unseen test subjects.

The first experiment was conducted with the setting of no pain (level 0)
against the upper pain threshold (level 4) to test the feasibility of the task. As can
be observed in Table 1, the recognition rate is notably higher than chance level,
especially when considering the person-independent scenario. The best individ-
ual channel in this case is EMG (corrugator). Late fusion is able to improve the
final accuracy by almost 4%.

Table 1. Multimodal SVM classification. The results for part B underline the strong
effect the late fusion has on the recognition rate. An improvement of almost 4 % over
the best single modality can be observed.

Stimulus EMG (zyg) EMG (corr) EMG (trap) ECG SCL Video Late (mean) Early

0 vs. 4 0.678 0.728 0.613 0.635 0.670 0.719 0.766 0.682

To reduce the number of dimensions of the input features, additional feature
selection has been applied. The effect of feature selection can be observed in
Fig. 2. Applying the sequential floating forward selection (SFFS) [13] to each
modality individually improves the results in some cases, however not in every
case. Late fusion, on the other hand, benefits from the feature selection in both
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Fig. 2. Effect of feature selection. It can be seen that feature selection (red) improves
the results in a few cases. However, late fusion consistently benefits from feature selec-
tion and is able to improve the already improved results even more. Early fusion on the
other hand cannot benefit from the reduced feature set. Significance (indicated with
asterisk) is computed using a Wilcoxon signed rank test with a significance level of 5 %
(Color figure online).

depicted cases, improving the results over the fusion results without feature selec-
tion. Additionally, besides an improvement in accuracy, the amount of features
is reduced by more than 90% from 425 to only 41. It can be observed that early
fusion becomes worse in this case, as the features were (greedily) selected for
each channel individually.

Instead of using only late or early fusion, a combination of those schemes can
be used on selected channels. For the next experiment, all the biopotentials are
concatenated to a single channel and tested against the video channel. Classifying
using a Random Forest yields some interesting results. While normally early
fusion works better for the Random Forest, here the best result is obtained by
late-fusing the two channels. For the comparison experiment where the channels
are treated individually, early fusion works best with rates almost the same as
the early rates in Fig. 3. For results on part B, the reader is referred to Fig. 4.

For this setting a variable importance estimate is generated by a permutation
test on out-of-bag (OOB) samples of the Random Forest. This means that for
each variable, the values are permuted across each sample that was not used for
the training of a specific tree. If a variable is not important for the classification,
the accuracy will not deteriorate. For important variables a drop in classification
rate will be visible.

For each iteration in the cross validation (i.e. each person) the importance is
computed for the case of early fusion of biophysiology and video. To obtain an
estimate of features which are important for the whole classification process (i.e.
not only for the person-specific setting), the individual importance estimates
are ranked and the mean rank of each feature is calculated. The results show
that the standard deviation of the stationarity for the skin conductivity is the
most important feature, scoring an average rank of 1.0, which indicates that it
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Fig. 3. Random Forest classification on part A. By early fusing the biopotentials, the
decision fusion is able to improve over early fusion (which is normally superior when
using RF) by 1 %–2 %. Significance (indicated with asterisk) is again computed using
a Wilcoxon signed rank test with a significance level of 5 %. Note that significance is
only indicated between fusion and the best single modality, other significant differences
are omitted for clarity.
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Fig. 4. Random Forest classification on part B. Decision fusion outperforms early fusion
also on part B of the experiment when combining the biopotentials to a single channel.
Significance (asterisk) by Wilcoxon signed rank test with a sign. level of 5 %. Again
only indicated between fusion and the best single modality (see Fig. 3).
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Fig. 5. Average rank in OOB importance estimation. As can be seen the top ranking
feature (standard deviation of stationarity for SCL channel) was the most important
one for each subject in the experiment. The different channels are indicated by the
color as well as the prefix of the feature description. For details on the features, the
reader is referred to [20]. For illustration purposes only the 40 best features are shown.

Table 2. Comparison of fusion approaches. In the setting without EMG it can again
be observed that fusion outperforms the best individual channel. The fusion gains are
about 4 % for both classifiers. For the SVM the pseudoinverse works best, while early
fusion achieves the best results for the Random Forest.

Stimulus ECG SCL Video Late (mean) Late (max) Late (pinv) Early

0 vs. 4 (SVM) 0.624 0.735 0.716 0.768 0.760 0.772 0.658

0 vs. 4 (RF) 0.581 0.744 0.727 0.774 0.778 0.771 0.789

is the most important feature for each subject in the experiment. The subse-
quent features are computed on the EMG channel and their ranks are also fairly
consistent with 2.6471, 2.6824 and 4.0235, respectively (Fig. 5).

To further investigate the effect of fusion, an experiment was conducted using
only the ECG and SCL signals together with video. Different late fusion tech-
niques are tested with both classifiers on part A of the data collection. Table 2
summarizes the results. It can be seen that fusion improves over the best single
modality in both cases.

Analysis of the other class pairings of the different pain levels indicates that
it becomes more challenging the closer the intensity of the different pain stimuli
(compare Figs. 3 and 4).

In summary it looks like the Random Forest has a slightly better perfor-
mance on this data set. This can be attributed (in part) to its more robust
nature and parameter insensitivity. Tuning of an SVM on the other hand involves
the choice of a suitable kernel (with parameter) and regularization parameter.
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A grid search has been conducted but the selection of different parameters might
yield an improvement over the presented results (especially in the setting with
feature selection).

While the late fusion mappings perform similarly, the trainable combiner in
the form of a pseudoinverse seems to slightly outperform the other mappings. It
should however be noted that early fusion normally works better in combination
with a Random Forest.

5 Conclusion

In this work, fusion mechanisms for the person-independent recognition of levels
of pain have been investigated. The experimental validation showed that both,
the video channel and the biopotentials allow discrimination of pain from unseen
persons. However in combination, the two modalities have the highest discrim-
ination rate, which suggests that the two channels capture different cues and
complement each other.

Avenues for future work include the investigation of heterogeneous time win-
dows as each channel individually has another resolution of interest. Other pos-
sibilities include the systematic analysis of which channels to combine at what
level, as it has been shown in related fields of work (affective computing: [5,7]),
that it can be beneficial to explore the space of possible fusion architectures. For
future recordings, the addition of an audio channel can be beneficial because reac-
tions to a pain stimulus can also invoke paralinguistic expressions. The recordings
can then be analysed as an additional modality using techniques from the field
of affective computing [10].
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230 M. Kächele et al.

20. Walter, S., Gruss, S., Limbrecht-Ecklundt, K., Traue, H.C., Werner, P., Al-Hamadi,
A., Diniz, N., da Silva, G.M., Andrade, A.O.: Automatic pain quantification using
autonomic parameters. Psychol. Neurosci. 7, 363–380 (2014)

21. Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Towards
pain monitoring: facial expression, head pose, a new database, an automatic system
and remaining challenges. In: Proceedings of the British Machine Vision Confer-
ence, pp. 119.1–119.13. BMVA Press (2013)

22. Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Automatic
pain recognition from video and biomedical signals. In: International Conference
on Pattern Recognition, pp. 4582–4587 (2014)

23. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face
alignment. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 532–539 (2013)



Author Index

Ahmed, Muhammad A.O. 206
Al-Hamadi, Ayoub 220
Arnaiz-González, Álvar 181

Barbareschi, Mario 194
Biggio, Battista 168
Brown, Gavin 112, 135
Bunke, Horst 147

Chan, Patrick P.K. 168
Corona, Igino 168

Del Prete, Salvatore 194
Didaci, Luca 206
Díez-Pastor, José F. 181

Escalera, Sergio 38

Ferrer, Miquel 125, 147
Fischer, Andreas 125
Frasca, Marco 15
Fumera, Giorgio 206

García-Osorio, César 181
Gargiulo, Francesco 194
Giacinto, Giorgio 168

He, Zhi-Min 168
Hong, Hao-Zhi 159
Hwang, Jen-Ing G. 159

Ismailoglu, Firat 38, 51

Jiang, Yuan 76

Kächele, Markus 220
Kestler, Hans A. 100
Köhler, Sebastian 15
Krasotkina, Olga 89
Kudo, Mineichi 27

Lattke, Raphael 100
Lausser, Ludwig 100
Li, Nan 76

Mazzeo, Antonino 194
Mendes-Moreira, João 64
Mikami, Ayako 27
Mottl, Vadim 89
Müssel, Christoph 100

Nakamura, Atsuyoshi 27
Nikolaev, Nikolay 51
Nikolaou, Nikolaos 112
Nogueira, Sarah 135
Notaro, Marco 15

Palm, Günther 220
Peeters, Ralf 38, 51
Pinto, Fábio 64

Re, Matteo 15
Riesen, Kaspar 125, 147
Robinson, Peter N. 15
Rodríguez, Juan J. 181
Roli, Fabio 168, 206

Sansone, Carlo 194
Schwenker, Friedhelm 220
Seredin, Oleg 89
Smirnov, Evgueni 38, 51
Soares, Carlos 64
Sprinkhuizen-Kuyper, I.G. 38

Valentini, Giorgio 15

Walter, Steffen 220
Wang, Guan-Wei 3
Werner, Philipp 220

Yeung, Daniel S. 168

Zhang, Chun-Xia 3
Zhang, Jiang-She 3
Zhou, Zhi-Hua 76


	Preface
	Organization
	Deep Learning of Behaviors
	Similarity-Based Pattern Recognition:
	A Game-Theoretic Perspective

	Contents
	Theory and Algorithms
	A Novel Bagging Ensemble Approach for Variable Ranking and Selection for Linear Regression Models
	1 Introduction
	2 Brief Introduction of VSEs
	3 Novel Ensemble Approach BSSW for Variable Ranking and Selection
	4 Experimental Study
	4.1 Simulation 1
	4.2 Simulation 2

	5 Conclusions
	References

	A Hierarchical Ensemble Method for DAG-Structured Taxonomies
	1 Introduction
	2 True Path Rule (TPR-DAG) Hierarchical Ensembles for DAG Structured Taxonomies
	2.1 Basic Notation and Definitions
	2.2 Bottom-Up Step
	2.3 Top-Down Step
	2.4 The Overall TPR-DAG Algorithm

	3 Experimental Set-Up
	4 Results
	4.1 Experimental Results Using Kernelized Score Functions (RANKS) as Base Learner
	4.2 Experimental Results Using Label Propagation (LP) as Base Learner

	5 Conclusions
	References

	Diversity Measures and Margin Criteria in Multi-class Majority Vote Ensemble
	1 Introduction
	2 Definition
	3 Analysis of Advantage of Majority Votes
	4 Related Works
	5 The Margin Analysis
	5.1 Margin
	5.2 Diversity and Margin
	5.3 Extension to Multi-class Cases

	6 Diversity Measure and Margin
	6.1 The Disagreement Measure

	7 Experiment
	7.1 Relationship Between Margins, the Disagreement Measure and Entropy

	8 Conclusion
	References

	Fractional Programming Weighted Decoding for Error-Correcting Output Codes
	1 Introduction
	2 Error-Correcting Output Codes with Weighted Decoding
	2.1 Weighted Decoding Background

	3 Fractional Programming Weighted Decoding for ECOC
	3.1 The FP_Weighted Decoding Algorithm

	4 Experiments
	4.1 Evaluation of the Results

	5 Conclusion
	References

	Instance-Based Decompositions of Error Correcting Output Codes
	1 Introduction
	2 Classification Task
	3 Instance-Based Decomposition Schemes
	3.1 Instance Decomposition Schemes
	3.2 Encoding and Decoding

	4 Initialization and Properties
	5 Experiments
	5.1 Error Correlation of Binary Classifiers vs. Ensemble Generalization Performance
	5.2 Ensemble Generalization Performance for Large Number of Classes

	6 Conclusion
	References

	Pruning Bagging Ensembles with Metalearning
	1 Introduction
	2 Related Work
	3 A Metalearning Method for Ensemble Pruning
	3.1 Metatarget
	3.2 Metafeatures

	4 Methodology
	4.1 Error Estimation
	4.2 Meta-Learners
	4.3 Benchmark Pruning Methods
	4.4 Ensemble Size

	5 Experiments
	5.1 Meta-Level Results
	5.2 Base-Level Results
	5.3 Discussion

	6 Conclusions
	References

	Multi-label Selective Ensemble
	1 Introduction
	2 The MUSE Approach
	2.1 The Problem
	2.2 A Convex Formulation
	2.3 Stochastic Optimization

	3 Experiments
	3.1 Configuration
	3.2 Results

	4 Related Work
	5 Conclusion
	References

	Supervised Selective Combination of Diverse Object-Representation Modalities for Regression Estimation
	Abstract
	1 Introduction
	2 A Kernel-Based Parametric Family of Regression Dependencies Over Objects of Arbitrary Kind
	3 A Linear Normal-Gamma Model of the Hidden Kernel-Based Regression Dependence and Its Bayesian Estimation from the Training Set
	3.1 Linear Normal Observation Model
	3.2 Bayesian Estimation with Fixed a Priori Variances of Kernel-Specific Regression Coefficients
	3.3 Estimation with Free Kernel-Related Variances and the Fixed Selectivity Level

	4 Experimental Results
	4.1 Simulation Studies
	4.2 Real Data Examples

	5 Conclusions
	Acknowledgements
	References

	Detecting Ordinal Class Structures
	1 Introduction
	2 Methods
	2.1 Multi-class Classification
	2.2 Ordinal Classification

	3 Experiments
	4 Results
	5 Conclusion
	References

	Calibrating AdaBoost for Asymmetric Learning
	1 Introduction
	2 Background
	2.1 Asymmetric Learning
	2.2 AdaBoost
	2.3 Classifier Calibration

	3 Asymmetric Boosting Algorithms
	3.1 Methods that Modify the Prediction Rule
	3.2 Methods that Modify the Training Algorithm

	4 Empirical Evaluation
	4.1 Experimental Setup
	4.2 Analysis of Experimental Results

	5 Discussion and Conclusion
	References

	Building Classifier Ensembles Using Greedy Graph Edit Distance
	1 Introduction
	2 Graph Edit Distance
	2.1 Basic Definitions
	2.2 Graph Edit Distance as Assignment Problem
	2.3 Greedy Graph Edit Distance (Greedy-GED)

	3 Classifier Ensemble Based on Greedy-GED
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Measuring the Stability of Feature Selection with Applications to Ensemble Methods
	1 Introduction
	2 Stability Measures
	2.1 Existing Measures
	2.2 Properties

	3 Extensions of Kuncheva's Similarity Measure
	3.1 Definitions
	3.2 Toy Examples Illustrating the Weaknesses of the Measures

	4 A New Similarity Measure
	5 Application to Feature Selection by Random Forests
	6 Conclusion
	References

	Suboptimal Graph Edit Distance Based on Sorted Local Assignments
	1 Introduction
	2 Bipartite Graph Edit Distance Approximation
	2.1 Graph Edit Distance
	2.2 Approximation of Graph Edit Distance

	3 Sort Match for Graph Edit Distance Approximation
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Application and Evaluation
	Multimodal PLSA for Movie Genre Classification
	Abstract
	1 Introduction
	2 Standard PLSA
	3 Methodology
	3.1 Unimodal PLSAs
	3.2 Double-Model PLSA
	3.3 Triple-Model PLSA

	4 Experimental Results
	5 Conclusions
	References

	One-and-a-Half-Class Multiple Classifier Systems for Secure Learning Against Evasion Attacks at Test Time
	1 Introduction
	2 A Simplified Risk Analysis Under Evasion Attacks
	3 Secure 1.5C Classification with MCSs
	4 Classifier Evasion
	4.1 Gradient Computation

	5 Experiments
	5.1 Spam Filtering
	5.2 PDF Malware Detection

	6 Related Work
	7 Conclusions and Future Work
	References

	An Experimental Study on Combining Binarization Techniques and Ensemble Methods of Decision Trees
	1 Introduction
	2 Experimental Setup
	2.1 Data Sets
	2.2 Settings

	3 Results
	4 Conclusion and Future Work
	References

	Decision Tree-Based Multiple Classifier Systems: An FPGA Perspective
	1 Introduction
	2 From Classification Model to Hardware Accelerator
	2.1 Decision Tree Implemented on FPGA
	2.2 Hardware Combiner
	2.3 Automatic Generator of Classification Models

	3 Methodology for Performance Evaluation: Early Prediction Function
	4 Experimental Results
	4.1 Early Prediction
	4.2 Spam Detection
	4.3 Traffic Classification

	5 Conclusion
	References

	An Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles
	1 Introduction
	2 Ensemble Pruning with Forward/Backward Selection
	3 Aim of This Work
	4 Experimental Setting
	5 Experimental Results
	6 Discussion
	References

	Bio-Visual Fusion for Person-Independent Recognition of Pain Intensity
	1 Introduction
	2 Dataset and Feature Extraction
	2.1 Biophysiological Feature Extraction
	2.2 Video Feature Extraction

	3 Classification and Fusion Approaches
	3.1 Support Vector Machine
	3.2 Random Forest
	3.3 Pseudo-Inverse
	3.4 Hybrid Sequential Floating Forward Selection

	4 Experimental Validation
	5 Conclusion
	References

	Author Index



