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Abstract. This paper deals with the calculation of linear and quadratic
functionals of approximate solutions obtained by the finite element
method. It is shown that under certain conditions the output functionals
of an approximate solution are computed with higher order of accuracy
than that of the solution itself. These abstract results are illustrated by
two numerical examples for the Poisson equation.
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1 Introduction

Traditional methods for solving equations of mathematical physics, such as the
finite element method, are to find a solution in the entire domain. Meanwhile,
in a number of applications, researchers are interested not in the solution as a
whole, but only in its goal-oriented output functionals. For example, in air flow
around the body, engineers are interested in lift and drag rather than in the
solution at every point in the space [1,2]. In such cases, one would be interested
in the precision of these output functionals rather than of the entire solution.
Moreover, with appropriate triangulation in the finite element method one can
achieve a significant increase in the accuracy of the required functionals without
increasing the computational time for the problem as a whole [2,3].

It has long been noted that the finite elements of higher degrees provide
a higher order of convergence for an approximate solutions (under sufficient
smoothness of the exact solution) [4–6]. And the weaker the norm in which the
error between the exact and approximate solutions u − uh is estimated, the
higher the rate of convergence. For example, in the norms of the Sobolev spaces
Hm(Ω), the less m, the higher the attainable convergence rate

∥
∥u − uh

∥
∥

Hm(Ω)
≤ chk+1−m ‖u‖Hk+1(Ω) , 0 ≤ m ≤ k + 1,

where k is the full degree of the polynomials involved in the approximation
of the solution. When solving second-order elliptic equations, the use of linear
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or polylinear polynomials corresponding to k = 1 quite simply leads to this
estimate for m = 1. The Aubin-Nitsche approach (independently discovered and
described in [7–9]) leads to this estimate for m = 0.

In this paper first we prove some abstract results and then consider a two-
dimensional model problem solved by the finite element method with cubic
Hermite elements. Unexpectedly the ultrahigh order of convergence was achieved
for some output linear and quadratic functionals of an approximate solution
which does not directly followed from the accuracy order of an approximate
solution. Thus, the paper is devoted to the theoretical justification of this
beneficial effect with the help of dual problems.

2 An Abstract Results

Let V and W be the Banach spaces with norms ‖·‖V and ‖·‖W respectively and
Vh and Wh be the families of their finite-dimensional subspaces (trial and test
subspaces of the finite element method) with a discrete set of h approaching 0.

Let a(v, w) : V × W → R be a bounded bilinear form

|a(v, w)| ≤ c1 ‖v‖V ‖w‖W ∀ v ∈ V, w ∈ W (1)

with a constant c1 independent of v and u. And let f(w) : W → R be a linear
functional.

Suppose that we solve the problem:
find u ∈ V such that

a(u, ϕ) = f(ϕ) ∀ϕ ∈ W. (2)

But as it mentioned above, let the main purpose consist in the computation of
the value J(u) of an (output) linear functional J(v) : V → R.

Instead of problem (2) we solve the following one (for example, by the finite
element method):
find uh ∈ Vh such that

a(uh, ϕ) = f(ϕ) ∀ϕ ∈ Wh. (3)

Thereafter we compute the approximate value J(uh).
For a moment, suppose that the functional J(v) is bounded:

|J(v)| ≤ c2 ‖v‖V ∀ v ∈ V (4)

with a constant c2 independent of v. Then we get the estimate
∣
∣J(u) − J(uh)

∣
∣ ≤ c2

∥
∥u − uh

∥
∥

V
. (5)

We see that this estimate gives a rather modest result.
To improve this situation, consider the auxiliary dual problem:

find w ∈ W such that
a(ψ,w) = J(ψ) ∀ψ ∈ V. (6)

This problem is indeed auxiliary: we need not solve it either analytically or
numerically.
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Theorem 1. Let the problems (2), (3), and (6) with the condition (1) have
unique solutions u, uh, and w, respectively. Besides, the approximation properties
of the subspaces Vh and Wh provide the following estimate:

∥
∥u − uh

∥
∥

V
≤ c3h

r (7)

and there exists an element wh ∈ Wh such that
∥
∥w − wh

∥
∥

W
≤ c4h

s (8)

with constants c3, c4, r > 0, s > 0 independent of h. Then
∣
∣J(u) − J(uh)

∣
∣ ≤ c1c3c4h

r+s. (9)

Proof. Due to linearity
∣
∣J(u) − J(uh)

∣
∣ =

∣
∣J(u − uh)

∣
∣ . (10)

From (6) we have
J(u − uh) = a(u − uh, w). (11)

From the problems (2) and (3) it follows that a(u − uh, wh) = 0. Subtract this
from (11):

J(u − uh) = a(u − uh, w − wh). (12)

Then due to (1), (7), (8) we get
∣
∣J(u − uh)

∣
∣ ≤ c1

∥
∥u − uh

∥
∥

V

∥
∥w − wh

∥
∥

W
≤ c1c3c4h

r+s. � (13)

Thus, the estimate (9) demonstrates a higher order of accuracy which is improved
by the order of approximation in the dual problem.

Now consider the case where we need to find a quadratic functional of an
approximate solution. For this purpose we introduce a symmetric bilinear form
b(v, w) : V × V → R and try to find the value I(u) = b(u, u). Solving the
problem (3) we get an the approximate solution uh ∈ Vh for which we can
compute I(uh) = b(uh, uh). Show that under some simple conditions we again
get a higher order of accuracy like for the linear functional.

For this purpose consider the auxiliary dual problem:
find w ∈ W such that

a(ψ,w) = b(u + uh, ψ) ∀ψ ∈ V. (14)

Again this problem is indeed auxiliary and we need not solve it either analytically
or numerically.

Theorem 2. Let the problems (2), (3), and (14) with the condition (1) have
unique solutions u, uh, and w, respectively. And let the approximation properties
of subspaces Vh and Wh provide the estimates (7) and (8). Then

∣
∣I(u) − I(uh)

∣
∣ ≤ c1c3c4h

r+s. (15)
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Proof. Due to linearity in each arguments and symmetry between them we get
∣
∣I(u) − I(uh)

∣
∣ =

∣
∣b(u, u) − b(uh, uh)

∣
∣ =

∣
∣b(u + uh, u − uh)

∣
∣ . (16)

From (14) we have

b(u + uh, u − uh) = a(u − uh, w). (17)

From the problems (2) and (3) it follows that a(u − uh, wh) = 0. Subtract this
from (17):

b(u + uh, u − uh) = a(u − uh, w − wh).

Then due to (1), (7), (8) we get
∣
∣b(u + uh, u − uh)

∣
∣ ≤ c1

∥
∥u − uh

∥
∥

V

∥
∥w − wh

∥
∥

W
≤ c1c3c4h

r+s. �

Note that we did not use in the direct way the boundedness of the bilinear form

|b(v, w)| ≤ c5 ‖v‖V ‖w‖V ∀ v, w ∈ V.

From here on, constants ci are independent of functions in the right-hand side
and of h. The usage of the above inequality gives a much weaker order of accu-
racy:

∣
∣I(u) − I(uh)

∣
∣ =

∣
∣b(u + uh, u − uh)

∣
∣ ≤ c5

∥
∥u + uh

∥
∥

V

∥
∥u − uh

∥
∥

V
≤

≤ c3c5h
r
∥
∥u + uh

∥
∥

V
.

3 Formulations of Test Problems

Let Ω be the square [0, 1] × [0, 1] with the boundary Γ. For our further consid-
eration we use the usual notations for Sobolev spaces [10]. Let H0(Ω) = L2(Ω)
be the Hilbert space of functions Lebesgue measurable on Ω and equipped with
the inner product

(u, v)Ω =
∫

Ω

u v dΩ, u, v ∈ H0(Ω),

and the finite norm

‖u‖0,Ω = (u, u)1/2
Ω , u ∈ H0(Ω).

For integer positive k, Hk(Ω) is the Hilbert space of functions u ∈ H0(Ω) whose
weak derivatives up to order k inclusive belong to H0(Ω). The norm in this space
is defined by the formula

‖u‖k,Ω =

⎛

⎝
∑

0≤s+r≤k

∣
∣
∣
∣

∂s+ru

∂xs ∂yr

∣
∣
∣
∣

2

0,Ω

⎞

⎠

1/2

.
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Introduce also the functional space H1
0 (Ω) as the closure in the norm ‖·‖1,Ω of

all infinitely differentiable functions with support in Ω.
Consider the following model problem: find u(x, y) ∈ H2(Ω) such that

− Δu = f(x, y) in Ω, (18)

u = 0 on Γ. (19)

Let the solution u be smooth enough: u ∈ H4(Ω). Then f ∈ H2(Ω).
First take the output functional

J(u) :=
∫

Ω

ug dΩ (20)

with some function g ∈ H0(Ω) and show that this functional is computed by
bicubic finite elements with higher order of accuracy than a solution as a whole.

To get the weak form of this problem, multiply the equation (18) by an arbi-
trary function ϕ ∈ H1

0 (Ω) and integrate by parts with the help of the boundary
conditions (19). As a result we get the equality

∫

Ω

(
∂u

∂x

∂ϕ

∂x
+

∂u

∂y

∂ϕ

∂y

)

dΩ =
∫

Ω

fϕ dΩ. (21)

In the weak form [5,6,11] this problem is reformulated as follows:
find u ∈ H1

0 (Ω) such that

a(u, ϕ) = (f, ϕ)Ω ∀ϕ ∈ H1
0 (Ω) (22)

with the bilinear form

a(u, ϕ) =
∫

Ω

(
∂u

∂x

∂ϕ

∂x
+

∂u

∂y

∂ϕ

∂y

)

dΩ.

We construct a uniform triangulation �h by subdividing Ω into N2 closed
“rectangles” by the lines

xi = ih, i = 0, ..., N ; yj = jh, j = 0, ..., N ; where h = 1/N.

Here we shall describe a finite element by the triple (e, Pe, Σe) [6] where e is
a “reference” cell (in this paper we put e = [0, 1]2); Pe is a space of polynomials
on e; and Σe is the set of linear functionals called degrees of freedom (DoF).

Denote by Pk with positive integer k the space of all polynomials in two
variables of full degree k:

∑

0≤i+j≤k

ai,jx
iyj .

And denote by Qk the space of all polynomials of degree k for each variable:
∑

0≤i,j≤k

ai,jx
iyj .
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First consider the possible implementation of the bilinear finite elements for
solving the problem (22) by the Bubnov-Galerkin finite element method. Due to
the approximation properties of these elements we can get only

∥
∥u − uh

∥
∥
1,Ω

≤ c3h and
∥
∥w − wh

∥
∥
1,Ω

≤ c4h

with an interpolant wh. Then from Theorem 1 we obtain
∣
∣J(u) − J(uh)

∣
∣ ≤ c1c3c4h

2.

But this estimate does not provide us an improvement in comparison with
the direct analysis by Aubin-Nitsche trick.

The situation is different for finite elements of higher order. First consider
Lagrange elements on square e = [0, 1]2 (Fig. 1). Introduce the corresponding
grid of nodes

S(2) = S(1) × S(1) where S(1) = {ai : ai = i/3, i = 0, ..., 3} .

a) full element b) serendipity element

Fig. 1. Nodes of the full and incomplete “serendipity” Lagrange cubic elements.

Then the bicubic element is described by the triple (e, Q3, Σ3) where

Σ3 = {ψi,j : ψi,j(p) = p(ai, aj) ∀ i, j = 0, ..., 3 ∀ p ∈ Q3} . (23)

It has 16 degrees of freedom on one elementary cell.
The usual mapping of the two-dimensional “reference” element into an ele-

mentary cell [xi, xi+1] × [yj , yj+1] of the triangulation �h has the form
{

x′ = xi + hx,
y′ = yj + hy.

(24)

Generally speaking, the numbers of DoF are excessive to obtain the corre-
sponding approximation order. Indeed, to achieve the same order of approxima-
tion it is sufficient to take polynomials P3 on e [6] with the number of DoF equal
to 10. Therefore the incomplete Lagrange “serendipity” element is often used.
In this case, the DoF are omitted which lie strictly inside the cell e and have no
influence on interelement continuity (Fig. 1b) [5,6]. The number of DoF for the
serendipity element decreases and becomes equal 12. Since the polynomial spaces
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satisfy the condition Q3′ ⊃ P3, the serendipity element provides the same order
of approximation as the full Lagrange element and is more effective because of
less number of DoF.

Now consider a simple Hermite bicubic element [12] (Fig. 2a). The number of
DoF and the space of polynomials of this element coincide with those of the cubic
serendipity element. Therefore, it may seem that they have identical properties.
In fact, this is not the case! The Hermite element appears to be more efficient.
To show this, we compare the global number of DoF for the interpolation of a
smooth function u by these elements on the triangulation �h of the rectangle Ω.

a) the simple bicubic element b) the Bogner-Fox-Shmit element

Fig. 2. The cubic Hermite elements. A circle means that DoF involve both first-order
derivatives; a double arrow means that DoF involve the second-order mixed derivative.

The global number of DoF of the interpolant uh
I on the triangulation �h

is not proportional to the number of DoF on an element. A part of DoF for
different elements coincides along interelement boundaries. Therefore, as the
local characteristics of the global number of DoF we take the number Mof DoF
for the element on the half-closed set [0, 1)2 (Fig. 3). When mapping the element
on the cells of �h, these DoF are not repeated and exhaust all nodes inside Ω.
Their total number is MN2.

a) the full element b) the serendipity element

Fig. 3. Nodes of the Lagrange elements on the half-closed set [0, 1)2.

An open question remains on the number of nodes on the boundary Γ. In
the Dirichlet problem, these DoF are excessive, but they are necessary for the
Neumann problem. In both cases their number is of O(N). Thus, MN2 is the
principal term of the asymptotic number of unknowns and equations in the finite
element method, e.g., for a second-order elliptic equation.
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The index M for the full Lagrange, serendipity, and Hermite bicubic elements
is 9, 5, and 3 (Fig. 4a), respectively. Thus, the number of unknowns and equations
in the finite element method for the Hermite element is approximately 3 times
less than that for the full Lagrange element and 5/3 times less than that for the
serendipity element. Such is the case despite the fact that they have the same
order of approximation.

a) simple bicubic element b) Bogner-Fox- Shmit element

Fig. 4. Nodes of the Hermite elements on the half-closed set [0, 1)2.

The Bogner-Fox-Schmit element [12–14] is a more complicated Hermite bicu-
bic finite element. It is defined by the triple (Fig. 2b)

(e, Q3, Σ3′) where Σ3′ = {ψs,i,j (s = 0, 1, 2, 3) : ψ0,i,j(p) = p(ai, aj),

ψ1,i,j(p) = ∂p/∂x(ai, aj), ψ2,i,j(p) = ∂p/∂y(ai, aj), (25)

ψ3,i,j(p) = ∂2p/∂x∂y(ai, aj) ∀ i, j = 0, 3
}

.

For the triangulation �h, it provides continuity of an approximation uh as well
as of its first-order derivatives [12–14]. Thus, this element belongs to H2(Ω) [11].
At the same time, it has the index M = 4 (Fig. 4b) which is less than the indices
M of the Lagrange full and serendipity elements.

Now consider the implementation of any cubic finite elements for solving
the problem (22) by the Bubnov-Galerkin finite element method. Due to the
approximation properties of these elements (under sufficient smoothness) we
can get

∥
∥u − uh

∥
∥
1,Ω

≤ c3h
3 and

∥
∥w − wh

∥
∥
1,Ω

≤ c4h
3

for an interpolant wh. Then from Theorem 1 we obtain
∣
∣J(u) − J(uh)

∣
∣ ≤ c1c3c4h

6. (26)

4 Numerical Results

Now consider the concrete problem (18)–(19) with the right-hand side

f(x, y) = 16(1 − x)(1 − y)(x2 + y2) sin(4xy) + 8(x − x2 + y − y2) cos(4xy). (27)
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This problem has the exact solution

u(x, y) = sin(4xy)(1 − x)(1 − y).

And assume that we need to compute the output functional

J(u) :=
∫

Ω

u dΩ. (28)

We solve the problem (22) by the finite element method with the help of the
Bogner-Fox-Schmit finite element. And then calculate (28) for an approximate
solution uh :

J(uh) :=
∫

Ω

uh dΩ. (29)

We perform these computations for h = 1/8, 1/16, 1/32 and determine the
error εh

1 =
∣
∣J(u) − J(uh)

∣
∣ . We demonstrate this error in Table 1 together with

its decreasing exponent dh
1 = ln2

∣
∣ε2h

1 /εh
1

∣
∣ .

Table 1. The approximation errors and their decreasing exponent.

i h εh1 =
∣
∣J(u) − J(uh)

∣
∣ dh

1 εh2 =
∣
∣I(u) − I(uh)

∣
∣ dh

2

1 1/8 5.81 × 10−9 − 3.92 × 10−9 −
2 1/16 9.64 × 10−11 5.91 6.94 × 10−11 5.81

3 1/32 1.53 × 10−12 5.97 1.15 × 10−12 5.91

From this Table we can see that εh
1 =

∣
∣J(u) − J(uh)

∣
∣ tends to zero asymptotically

as O(h6). But this does not follow from Theorem 1 in the direct way. Indeed, in
this case the problem (6) has the form

−Δw = 1 in Ω,
w = 0 on Γ.

(30)

Despite the smoothness of the right-hand side the solution w does not belong to
space H3(Ω) because of singularities in four angles of the rectangle [15].

There are two ways to avoid these singularities. One of them is in special
condensation of mesh in the vicinity of singularities. This is a really productive
way in some cases [3]. But in our situation we got the sixth order without any
condensation of mesh. This means that the justification must be finer. It may
be transformed in different ways. One of them consists in the introduction of
weighted norms in spaces ‖·‖V and ‖·‖W . The reasoning is very tedious. We
simplify it by some transformation of the theorem proof. Take the right-hand
side of equality (12) and transform it in following way:

a(u − uh, w − wh) =
∫

Ω

−Δ(w − wh)(u − uh) dΩ. (31)
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Introduce the weight function

ρ(x, y) = x(1 − x)y(1 − y)

and use it in the following way:
∣
∣
∣
∣

∫

Ω

−ρΔ(w − wh)ρ−1(u − uh) dΩ

∣
∣
∣
∣
≤ ∥

∥ρΔ(w − wh)
∥
∥
0,Ω

∥
∥ρ−1(u − uh)

∥
∥
0,Ω

.

The first norm becomes small enough because of weight degenerating in the
vicinity of each angle:

∥
∥ρΔ(w − wh)

∥
∥
0,Ω

≤ ch2.

And the second norm becomes small enough because of the Aubin-Nitsche trick
and degenerating both functions in the vicinity of the boundary:

∥
∥ρ−1(u − uh)

∥
∥
0,Ω

≤ ch4.

Therefore
∣
∣J(u − uh)

∣
∣ =

∣
∣a(u − uh, w − wh)

∣
∣ ≤ ch6.

This estimate indeed is consistent with numerical results.
For the quadratic functional the situation with Theorem2 is simpler. Let we

need to compute the output functional

I(u) :=
∫

Ω

u2 dΩ = b(u, u) where b(v, w) =
∫

Ω

vw dΩ. (32)

Let we solved the problem (22) by the finite element method with the help of the
Bogner-Fox-Schmit finite element again. And then calculate the required value
(32) for an approximate solution uh :

I(uh) :=
∫

Ω

(uh)2 dΩ. (33)

We perform there computations for h = 1/8, 1/16, 1/32 and determine the
error εh

2 =
∣
∣I(u) − I(uh)

∣
∣ . This error is demonstrated in Table 1 together with

its decreasing exponent dh
2 = ln2

∣
∣ε2h

2 /εh
2

∣
∣ . From this Table we can see that

εh
2 =

∣
∣I(u) − I(uh)

∣
∣ tends to zero asymptotically as O(h6). Moreover, this follows

directly from Theorem 2. Indeed, the function w is a solution of the problem

−Δw = u + uh in Ω,
w = 0 on Γ.

(34)

First, this time the right-hand side of the problem belongs to H2(Ω) due to the
application of the Bogner-Fox-Schmit element. Second, it equals zero in each
angle of the rectangle Ω. These properties ensure that w ∈ H4(Ω) [15] and

∥
∥w − wh

∥
∥
1,Ω

≤ c4h
3.

Function u also belongs to H4(Ω) and provides the estimate [6]
∥
∥u − uh

∥
∥
1,Ω

≤ c4h
3.

Thus, Theorem 2 indeed guarantees the sixth order of accuracy.
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5 Resume

By virtue of the dual problems, for some linear and quadratic functionals we
prove convergence of higher order than follows from the standard theory of the
finite element method. Note that this effect becomes possible for more compli-
cated (for example, cubic) finite elements than linear ones. For linear elements
on triangles and for bilinear ones on quadrangles this approach does not give
higher order of accuracy than it follows from the usual implementation of the
Aubin-Nitsche trick.

Moreover, once again we remind that Hermite finite elements are more
effective in comparison with the Lagrange ones of the same degrees of poly-
nomials due to a smaller number of unknowns and of discrete equations in the
finite element method. Besides, the Bogner-Fox-Schmit finite element is more
effective than the Lagrange cubic elements and belongs to H2(Ω) which simpli-
fies the justification of higher order convergence and gives some useful possibil-
ities like direct computation of a residual for an approximate solution uh. This
provides necessary and visual information for condensation of a triangulation.
Usually, their use is limited to domains consisting of rectangles. But the com-
plementing of these elements by suitable triangular elements near the boundary
[16] extends the possible range of their application.

This work is supported by Project 14-11-00147 of Russian Scientific
Foundation.
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