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Abstract. A singularly perturbed initial-boundary value problem for a
parabolic equation known in applications as the reaction-diffusion equa-
tion is considered. An asymptotic expansion of the solution with moving
front is constructed. Using the asymptotic method of differential inequal-
ities we prove the existence and estimate the asymptotic expansion for
such solutions. The method is based on well-known comparison theorems
and formal asymptotics for the construction of upper and lower solutions
in singularly perturbed problems with internal and boundary layers.
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1 Statement of the Problem

The purpose of the presented paper is to develop an effective numerical-
asymptotic approach to study solutions with internal transition layers – moving
fronts – in a mathematical model of reaction-diffusion type in the case of two
spatial dimensions. We demonstrate our method for the following problem.

Consider the equation

ε2Δu − ε
∂u

∂t
= f (u, x, y, ε) , y ∈ (0, a), x ∈ (−∞,+∞), t > 0 (1)

with the boundary and initial conditions

∂u

∂y

∣
∣
∣
∣
y=0;a

= 0, u(x, y, t, ε) = u(x+L, y, t, ε), u(x, y, t, ε)|t=0 = u0(x, y). (2)

In the Eq. (1), ε > 0 is small parameter, which is usually a consequence of the
parameters of the physical problem. It should be noted that the appearance of
the small parameter before the spatial derivatives is determined by the character-
istics of the physical system, while the small parameter before the time derivative
determines only the scale of the time, convenient for the further consideration.
Functions u0(x, y) and f(u, x, y, ε) are assumed to be sufficiently smooth and
L- periodic in the variable x.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 408–416, 2015.
DOI: 10.1007/978-3-319-20239-6 46



On Asymptotic-Numerical Method for Moving Fronts 409

Stationary solutions of problem (1)–(2) with internal and boundary layers
have been thoroughly investigated (see [1] and the references therein). The gen-
eration of an internal layer from smooth initial functions has also been studied
(see [2,3]). Main purpose of this paper is to study the solution of moving front
type and to obtain equations for effective description of its dynamics. We also
prove the existence of a solution of such type and construct its asymptotics. The
results below extend [4], where the case of one spatial dimension was considered,
and the ideas in [5] are used for the proof of the existence of front type solutions.

Suppose the following conditions are satisfied.

(A1). (a) The function f(u, x, y, ε) is such that the reduced equation
f(u, x, y, 0) = 0 has exactly three roots u = ϕ(±)(x, y), u = ϕ(0)(x, y).
(b) Assume that ϕ(−)(x, y) < ϕ(0)(x, y) < ϕ(+)(x, y) for all (x, y) ∈ D̄ =
(−∞,+∞) × [0, a] and fu(ϕ(±)(x, y), x, y, 0) > 0, fu(ϕ(0)(x, y), x, y, 0) < 0.

It is known from [2,3] that under condition (A1) and some quite general con-
ditions for the initial function u0(x, y) at time of order tB (ε) = Bε |ln ε| the
solution of problem (1)–(2) quickly generates a thin internal transition layer
between the two levels ϕ(−)(x, y) and ϕ(+)(x, y) located in the neighborhood of
some curve C0

0 : y = h0 (x).

(A2). Assume that the initial function u0(x, y) has the form of a transition layer:
u0(x, y) = ϕ(−)(x, y) + O(ε) for (x, y) ∈ D

(−)
0 , u0(x, y) = ϕ(+)(x, y) + O(ε) for

(x, y) ∈ D
(+)
0 excluding a small neighborhood of the curve C0

0 : y = h0(x).

Our further purpose is to study the front type solution of (1)–(2) and describe
its dynamics.

Let us consider the following problem, where f(u, x, y, ε) satisfies the condi-
tion (A1) and x, y are parameters:

∂2p

∂ξ2
+ W

∂p

∂ξ
= f(p, x, y, 0); p(x, 0) = ϕ(0)(x, y), p(x,±∞) = ϕ(±)(x, y) (3)

This problem is well known (see, for example, [6]), and for every x, y there exists
a unique pair (W (x, y), p(ξ;x, y)) that satisfies problem (3) and the following
estimates are valid (C and σ are positive constants)

∣
∣
∣p (x, ξ) − ϕ(±) (x, y)

∣
∣
∣ ≤ Ceσ|ξ| for ξ → ±∞.

(A3). There exists a solution h(x, t) of the Cauchy problem

ht√
1 + h2

x

= W (x, h(x, t)), h(x, 0) = h0(x), h(x, t) = h(x + L, t), x ∈ (−∞; +∞).

Using this solution for fixed t we define the curve C(t) ÷ {y = h(x, t)} ∈ D̄ if
t ∈ [0;T ].
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2 Description of the Moving Front

We define the location of the internal layer at fixed t by curve Cλ(t) ÷
{y = h∗(x, t, ε)}, which is the intersection of the solution u(x, y, t, ε) and root
u = ϕ(0)(x, y). An asymptotic approximation of Cλ(t) will be constructed below.
We denote by D(+) and D(−) the domains located at two sides of curve Cλ(t).

2a. Formal asymptotic procedure.
To construct the formal asymptotics of the solution (1)–(2) we consider:

ε2Δu − ε
∂u

∂t
− f (u, x, y, ε) = 0, (x, y) ∈ D(±), t > 0,

u(x, y, t, ε) = u(x + L, y, t, ε), u(x, y, 0, ε) = u0(x, y, ε), (x, y) ∈ D(±)

u(x, h∗(x, t, ε), t, ε) = ϕ(0)(x, h∗(x, t, ε)),
∂u

∂y

∣
∣
∣
∣
y=0

= 0 (4)

and

u(x, h∗(x, t, ε), t, ε) = ϕ(0)(x, h∗(x, t, ε)),
∂u

∂y

∣
∣
∣
∣
y=a

= 0 (5)

To find the location of the internal transition layer Cλ (t) we introduce local
coordinates (r, l) in a neighborhood of some curve C0 (t) : {x = l, y = h(l, t)},
where r is the distance from C0 (t) along the normal to this curve, with the sign
“+” in the domain D(+) and with “–” in D(−), l is the coordinate of the point
on the curve C0(t) from which this normal is going. We have

x = l + r · n1 (l, t) , y = h (l, t) + r · n2 (l, t) , (6)

where n1(l, t) = −hl√
1+h2

l

, n2(l, t) = 1√
1+h2

l

are the components of the unit

normal vector to C0(t) at the point (l, h(l, t)). Note, that in these coordinates
the curve C0(t) is determined by r = 0. Further we will show, how to find C0(t).

Using these local coordinates we define the unknown curve Cλ(t) in the form
of a power series in ε:

r = λ∗ (l, t, ε) = ε · λ1 (l, t) + ε2 · λ2 (l, t) + ..., (7)

The asymptotics of (4), (5) can be constructed in the form including regular and
boundary functions

U (±)(x, y, t, ε) = ū(±)(x, y, ε) + P (±)(ρ(±), x, ε) + Q(±)(ξ, l, ε), (8)

where ξ = r−λ∗(l,t,ε)
ε , ρ(+) = a−y

ε , ρ(−) = y
ε , and the functions ū(±)(x, y, ε),

P (±)(ρ(±), x, ε), Q(±)(ξ, l, ε) are power series in ε, which can be find by the
standard method of boundary functions [1]. The functions Q(±) (ξ, l, ε) describe
the internal transition layer (moving front) near the curve Cλ (t), therefore they
depend on the variable t by means of ξ. The functions P (±)(ρ(±), x, ε) describe
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the solution near the boundaries y = 0, y = a. The regular series ū(±)(x, y)
in the domains D(−) and D(+), and also the boundary series P (±)

(

ρ(±), x, ε
)

near the boundaries of D are determined by the standard scheme [1]. Note that
the boundary series P (±)

(

ρ(±), x, ε
)

are significant only in a small area near
y = 0 and y = a, and rapidly exponentially decrease and do not influence the
behavior of the internal transition layer. By this reason we concentrate only on
the describing of the internal layer Q(±) (ξ, l, ε).

To define the terms of (7) and (8) we must write the asymptotic expansions
for the solutions of each problems (4) and (5) according standard scheme [1].
Terms of series (7), (8) will be defined in this process from the conditions of con-
tinuous matching for the functions U (−) (x, y, t, ε), U (+) (x, y, t, ε) - asymptotic
expansions in domains D(±) - and their normal derivatives on the curve Cλ(t)
(C1 - matching conditions):

(a) U (−) = U (+), (b) ε
∂U (−)

∂n
= ε

∂U (+)

∂n
on Cλ(t) (9)

Conditions (9) must be carried out consistently for zero and all higher degrees
of ε.

We briefly describe some details of this asymptotic procedure. Using the local
coordinates (6) and introducing the stretched variable ξ = r−λ∗(l,t,ε)

ε , we have
for the parabolic operator L̂u ≡ ε2Δu − ε∂u

∂t in the form

L̂u =
∂2u

∂ξ2
+ Vn

∂u

∂ξ
− ε

[

k
∂u

∂ξ
+

∂u

∂t

]

+ O
(

ε2
)

, (10)

where Vn = V0 + λ∗
t is the normal speed of the point on the curve Cλ(t) and

V0 ≡ ht√
1+h2

l

; k = k(l) is the local curvature of Cλ (t), λ∗(l, t, ε) is defined in (7).

We represent f(u, x, y, ε) in the form f(u, x, y, ε) = f̄ (±)(x, y, ε) +
Q(±)f(ξ, l, ε), where the functions f̄ (±)(x, y, ε) = f(ū(±)(x, y), x, y, ε) and

Q(±)f(ξ, l, ε) = f(ū(±)(x, y) + Q(±)(ξ, l, ε), x, y, ε) − f̄ (±)(x, y, ε)

are power series in ε, and the indices (±) correspond to the domains D(±). Sub-
stituting these functions and the operator ε2Δu − ε∂u

∂t in the form (10) into (4),
(5) and equating the terms depending on (x, y) and (ξ, l) separately, we obtain
the relations to determine the coefficients of the asymptotic expansions:

ε2Δū(±) − f̄ (±) (u, x, y, ε) = 0, (11)
(

∂2

∂ξ2
+ Vn

∂

∂ξ
− ε

(
∂

∂t
+ k

∂

∂ξ

)

+ O
(

ε2
)
)

Q(±) = Q(±)f (ξ, l, t, ε) . (12)

2b. Zero order functions (moving front).
At zero order we have for regular part f(u(±), x, y, 0) = 0. Thus according to

condition (A1) we can take u(±) (x, y) = ϕ(±) (x, y).
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The functions Q
(±)
0 (ξ, l) satisfy the following problem:

(
∂2

∂ξ2
+ V0

∂

∂ξ

)

Q
(±)
0 (ξ, l) = f

(

ϕ(±)(x, y) + Q
(±)
0 (ξ, l), x, y, 0

)

, (13)

Q
(±)
0 (0, l) = ϕ(0)(x, y) − ϕ(±)(x, y) for (x, y) ∈ Cλ(t); Q

(±)
0 (±∞, l) = 0.

We define the continuous function ũ(ξ) = ϕ(±)(x, y)+Q
(±)
0 (ξ, l) for (x, y) ∈ Cλt),

and rewrite (13) as

∂2ũ

∂ξ2
+ V0

∂ũ

∂ξ
= f (ũ, x, y, 0) ; ũ (±∞) = ϕ(±) (x, y) , ũ (0) = ϕ(0) (x, y) (14)

If the function f(u, x, y, ε) satisfies the condition (A1), thus problem (14)
has the unique solution ũ (ξ), and the estimate

∣
∣ũ (ξ) − ϕ(±) (x, y)

∣
∣ ≤ Meσ|ξ|

for ξ → ±∞ is valid, where M and σ are positive constants [6]. Note, that
condition (9a) is fulfilled by the definition of ũ (ξ). If we suppose V0 = W (x, y)
(see condition (A3)) and define the curve C0(t) according to condition (A3),
then the C(1) - matching conditions (9b) in zero order will be fulfilled also. So,
the location of the moving front in zero order approximation is the curve C0(t),
which satisfies the following Cauchy problem:

ht
√

1 + h2
x

= W (x, h) , h (x, 0) = h0 (x) , h (x, t) = h (x + L, t) (15)

According to condition (A3), there exists such T > 0, that the solution h(x, t)
of (15) defines the curve C0(t) ÷ {y = h(x, t)} ∈ D̄ for t ∈ [0, T ].

2c. First order asymptotics.
Separating terms with ε1 in (11), we obtain for the regular functions ū

(±)
1

the equation fu(ϕ(±)(x, y), x, y, 0) · ū(±) + fε(ϕ(±)(x, y), x, y, 0) = 0, which has a
unique solution (see condition (A1)).

For the transition layer functions Q
(±)
1 we get the linear differential equations

(
∂2

∂ξ2
+ V0

∂

∂ξ
− fu (ũ(ξ), x, y, 0)

)

Q
(±)

1 = q1(ξ, l, t) ≡ ∂Q
(±)

0 (ξ, l)
∂t

+ (16)

+ (k − (λ1)t)
∂Q

(±)

0 (ξ, l)
∂ξ

+ f̃ε +
[

f̃r + f̃u · ∂ϕ(±)

∂r

]

(λ1 + ξ) +
(

f̃u − f̄u

)

ū
(±)
1

with the boundary conditions Q
(±)

1 (±∞, l) = 0,

Q
(±)
1 (0, l) =

[

−u
(±)
1 (x, y) + λ1(l, t)

(
∂ϕ(0)

∂n
− ∂ϕ(±)

∂n

)]∣
∣
∣
∣
(x,y)∈C0(t)

. (17)

In (16), (17) λ1(l, t) is the unknown first term of (7), k = k(l) is the local curva-
ture of C0(t); g̃ means the function depending on (ũ(ξ), (x, y) ∈ C0(t), t) and ḡ -
the function depending on

(

ϕ(±), (x, y) ∈ C0(t), t
)

.
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If we mark Φ(ξ, t) = ∂ũ
∂ξ , the solution of (16) with boundary conditions from

(17) can be written explicitly (function q1(ξ, l, t) defined in (16)):

Q
(±)
1 (ξ, l) =

Φ(ξ, t)
Φ(0, t)

Q
(±)
1 (0, l) − Φ(ξ, t)

ξ∫

0

e−V0η

Φ2(η, t)

±∞∫

η

Φ(τ, t)eV0τq1(τ, l, t)dτdη

(18)
Using the C(1) - matching condition (9) for Q

(±)

1 (ξ, l) we get

∂Q
(+)
1 (ξ, l)
∂ξ

− ∂Q
(−)
1 (ξ, l)
∂ξ

∣
∣
∣
∣
∣
ξ=0

=
∂ϕ(−)(x, y)

∂n
− ∂ϕ(+)(x, y)

∂n

∣
∣
∣
∣
(x,y)∈C0(t)

(19)

Substituting the derivatives ∂Q
(±)
1 (ξ,l)
∂ξ

∣
∣
∣
∣
ξ=0

, calculated from (18) into (19), we

obtain the linear Cauchy problem for λ1(l, t):

dλ1(l, t)
dt

− k(l) = B(l, t) · λ1(l, t) + R(l, t), λ1(l, 0) = 0, (20)

where B(l, t) and R(l, t) are known function, which do not depend of λ1(l, t) and
of its derivatives, k(l) is the local curvature of the curve C0(t).

Continuing this procedure for higher orders terms in ε and we get linear
problems for all Q

(±)
i (ξ, l), i = 2, 3, ... and also linear Cauchy problems of

type (20) for λi(l, t), i = 2, 3, ...
As a result, we obtain a nonlinear equation, which determines the location

of the moving front at zero order approximation, and linear equations for higher
order terms. Note that now we can estimate the location of the moving front
and adequately describe the front dynamics not from the original system (1)–(2),
but from problem (15) in zero order approximation in ε and from the problems
of type (20) at higher order approximations in ε. We present a comparison of
asymptotic and numerical results in Sect. 5.

3 Existence of Solution and the Main Theorem

The proof for the existence of a solution to (1)–(2) is based on the asymptotic
method of differential inequalities similarly to the case of one spatial dimension
(see [4]) with slight changes. Let define D

(+)
n and D

(−)
n the domains located at

two sides of curve Cn(t), where

Λn (l, t) =
n+1∑

i=1

εiλi(l, t), ξn =
r − Λn(l, t)

ε
, Cn(t) : r = Λn(l, t) (21)

Un(x, y, t, ε) =

⎧

⎪⎪⎨

⎪⎪⎩

n∑

i=0

εi
(

ū
(+)
n (x, y) + Q

(+)
n (ξn, l, t)

)

, (x, y) ∈ D
(+)
n

n∑

i=0

εi
(

ū
(−)
n (x, y) + Q

(−)
n (ξn, l, t)

)

, (x, y) ∈ D
(−)
n

(22)
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We define upper and lower solution α(x, y, t, ε), β(x, y, t, ε) as follows:
(1) α(x, y, t, ε) ≤ β(x, y, t, ε), α, β(x, y, t, ε) = α, β(x + L, y, t, ε)

(2α) ε2Δα − ε
∂α

∂t
− f(α, x, y, ε) ≥ 0, (x, y) ∈ D̄, t ∈ (0, T ], ε ∈ (0, ε0]

(2β) ε2Δβ − ε
∂β

∂t
− f(β, x, y, ε) ≤ 0, (x, y) ∈ D̄, t ∈ (0, T ], ε ∈ (0, ε0]

(3) ∂α
∂y

∣
∣
∣
y=0

≥ 0, ∂α
∂y

∣
∣
∣
y=a

≤ 0; ∂β
∂y

∣
∣
∣
y=0

≤ 0, ∂β
∂y

∣
∣
∣
y=a

≥ 0. Suppose also

that initial function satisfies α (x, y, 0, ε) ≤ u0 (x, y, ε) ≤ β (x, y, 0, ε).
Now we can formulate the main result in the following theorem.

Theorem 1. Under the conditions (A1) − (A3) for sufficiently smooth initial
function and sufficiently small ε there exists the solution u(x, y, t, ε) of the prob-
lem (1)–(2) and satisfies
1. α(x, y, t, ε) ≤ u(x, y, t, ε) ≤ β(x, y, t, ε),
2. u(x, y, t, ε) = Un(x, y, t, ε) + O(εn+1) for (x, y) ∈ D̄, t ∈ (0, T ], ε ∈ (0, ε0].

Main ideas, how to prove this theorem you can see in [4]. We construct upper and
lower solutions by modification of (22)–(21), verify inequalities (1)–(3) from the
definitions of α (x, y, t, ε), β (x, y, t, ε) and control proper sign of the jump of first
normal derivative at the curve C̄(t) = Cn(t) − εn+1δ(t). Required calculations
can be done in the same way as in [4].

4 Examples

In this section we present an example, for which we can calculate some para-
meters of the front in zero order (e.g., normal speed) explicitly. Consider the
problem

ε2Δu − ε
∂u

∂t
=

(

u − ϕ0(x, y)
) · (

u2 − 1
)

, y ∈ (0, 1), x ∈ (−∞,+∞), t > 0

uy|y=0,y=1 = 0, u(x, y, t, ε) = u(x + 1, y, t, ε), u(x, y, t, ε)|t=0 = u0(x, y, ε),

where −1 < ϕ0(x, y) < 1 and u0(x, y, ε) satisfies condition (A2). Note, that in
this case ϕ(−)(x, y) = −1 and ϕ(+)(x, y) = 1, and if we mark ũ′

ξ = z, we can

write the problem (15) for the zero order function ũ(ξ) = ϕ(±)(x, y) + Q
(±)
0 (ξ, l)

in the form

z
dz

dũ
+ V0z = (ũ − ϕ0(x, y)) · (ũ2 − 1), ũ(±∞) = ±1. (23)

Solution of (23) exists, if there exists a separatrix going from the saddle point
(0;−1) to the saddle point (0;+1). If we find this separatrix in the form z =
A·(ũ2−1), A < 0, we obtain A = −1√

2
and A·V0 = −ϕ0(x, y) so V0 = ϕ0(x, y)·√2,

and Eq. (15) for the moving front at zero order of ε takes the form

ht
√

1 + h2
x

= ϕ0(x, h) ·
√

2, h(x, 0) = h0(x), h(x, t) = h(x + 1, t).
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5 Numerical Experiment

The asymptotic approximation will be compared with the results of numeri-
cal solution of the problem (1)–(2). For this purpose we use a finite-difference
scheme for problem (1)–(2) and for the Eq. (15). Calculations are done in D,
representing a rectangle with the sides L = 1, a = 1, for ε = 0.01 and the
function f (u, x, y, ε) =

(

u2 − 1
) · (

u − ϕ0(x, y)
)

for some cases of ϕ0(x, y) and
the initial curve y = h0(x). Results are represented in Figs. 1, 2. Figure 1
shows sequent positions of the front (zero order asymptotics and the numerical
solution of full problem (1)–(2)) at different times for ϕ0(x, y) = 0.15 cos 4πx,
h0(x) = 0.5 − 0.15 sin 2πx. Figure 2 shows sequent positions of the front at dif-
ferent times for ϕ0(x, y) = 0.15 cos 4πx, h0(x) = 0.5 − 0.15 sin 2πx.

The analysis of the numerical calculations showed a good correspondence
between the above asymptotic descriptions of the front behavior by (15) and
numerical calculations for problem (1)–(2). Thus, the asymptotic approach allows
fully to describe the dynamics and the shape of the moving front, its width and
the time process of its formation, which is important for the effective estimate
of various parameters of the physical system. In addition, the combination of
asymptotic and numerical methods gives the possibility to speed up the process
of constructing approximate solutions with a suitable accuracy. As a result, we
have more efficient numerical calculations.

Fig. 1. Fig. 2.
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