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Abstract. We present an 1D numerical model of heat, steam, and water
transfer across a wall consisting of several layers of different materials.
The model is the system of coupled diffusion equations for wall temper-
ature; vapor pressure, and water concentration in material pores, with
account of vapor condensation and water evaporation. The system of
nonlinear PDEs is solved numerically using the finite difference method.
The main objective of modeling is simulation of long-term behavior of
building wall moisture distribution under influence of seasonal variations
in atmospheric air temperature and humidity.

1 Introduction

Simultaneous heat, steam, and moisture transfer with condensation and evap-
oration in porous materials is of practical importance in applications in civil
engineering. The transport of water vapor across building walls and its possible
condensation increases the thermal conductivity of the porous materials and may
cause structural damage. Complexity of the phenomenon and the large variety
of conditions under which it can proceed cause the development of new models
and approaches to the problem in a lot of research works. In particular, we can
refer the works [1–9].

The main goal of this paper is not the development of original model of the
phenomenon, but the presentation of a sufficiently precious and stable numerical
algorithm for solution of the model of coupled heat, steam, and moisture diffu-
sion, invented by Fokin K.F. in his book [10]. The Fokin model is widely used in
civil engineering practice in Russia for estimation of long term thermal and mois-
ture behavior in building envelopes [11]. The model is phenomenological model
based on simple, intuitive physical principles. The diffusion flux of each compo-
nent is proportional to gradient of corresponding variable: temperature, partial
pressure of steam, and water concentration. All parameters of the model can be
measured experimentally. Evolution equation for each component is the diffusion
equation. Mutual coupling between equations is performed by the dependence
of diffusion coefficients on moisture, and trough the source terms related to the
phase transitions. Main difficult in numerical solution of the model is connected
with variability in time of regions of vapor condensation.
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2 Mathematical Formulation of the Model

Model parameters. For definiteness, in this paper we will consider three-ply
wall. The thickness of wall layers is denoted as d1, d2, and d3 [m] respectively.
Let the first layer is the external (outward building) and the third layer is the
internal (inward building) layer of the wall. We will consider the fluxes of heat
and moisture in the direction traversal to wall only, – the direction along x axis.
The point L0 = 0 is the outer edge of external layer, the points L1 = d1 and
L2 = L1 +d2 are the interface points between layers, and the point L3 = L2 +d3
is the outer edge of internal layer.

The material of each layer is characterized by following parameters: density –
ρ [kg/m3]; heat capacity – c [kJ/(kg·K)]; coefficients of thermal – λ [kJ/(h·m·K)];
vapor – μ [g/(h·m·Pa)]; and hydraulic – β [g/(h·m·%)], conductivity. The para-
meters ρ, c, and μ are supposed to be constant in considered range of temperature
T [K] and moisture volumetric concentration ω [%], while other parameters can
depend on ω. For given material the dependencies λ(ω) and β(ω) used in calcula-
tions are polynomial interpolations of experimental measurements. Under equi-
librium conditions at constant temperature the relation between air humidity ϕ
and moisture ω is determined from experimentally measured sorption isotherm
ω = o(ϕ).

The external layer of the wall contacts with atmospheric air, and the inter-
nal layer contacts with building interior air. The air temperature Tex(t), Tin(t),
and humidity ϕex(t), ϕin(t) are given function of time t [h]. Heat exchange
between wall and air is determined by coefficients αex and αin [kJ/(h·m2·K)].
Steam exchange at the wall borders is determined by coefficients γex and γin
[g/(h·m2·Pa)].

Heat conductivity. The transversely heat transfer in each wall layer is described
by the heat conduction equation for the material temperature T (t, x):

cρ
∂T (t, x)

∂t
=

∂

∂x

(
λ(ω)

∂T (t, x)
∂x

)
+ Q(T, ω). (1)

The source term Q takes into consideration the latent heat of vapor conden-
sation and water evaporation (the water-ice transitions are not included in the
model).

At the wall borders and layer interfaces there are imposed boundary and
conjugation conditions:
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= αin (T (t, x) − Tin(t))
∣∣∣∣
x=L3

. (4)

Vapor and liquid water conductivity. It is supposed that the water in wall mate-
rial can be in three forms: water vapor (steam), and mobile liquid water in
material pores, and immobile absorbed water rigidly connected with material
skeleton. The concentration of absorbed water ω depends upon local air humid-
ity in pores ϕ(t, x) and assumed to be equal to equilibrium concentration o(ϕ).
If ϕ < 1, the material contains only steam and absorbed water, the mass of
absorbed water in unit volume of material is equal to 0.01ωρ.

The air humidity ϕ is defined as ratio ϕ = e/E(T ), where e [Pa] is partial
pressure of water vapor, and E(T ) is pressure of saturated vapor at air temper-
ature T . For calculation of E we use the approximation formula:

E(T ) =

{
4.688(1.486 + T/100)12.3, T < 0,

288.58(1.098 + T/100)8.02, T ≥ 0.
(5)

The function ϕ(t, x) is supposed to be continuous function of both variables.
So, at every t one can define the subset Vt ⊆ (L0, L3), Vt = {x : ϕ(t, x) < 1},
and the complementary subset Wt = (L0, L1) \ Vt.

In subset Vt the moisture moves in the form of steam only, and its motion is
governed by the vapor conduction equation

ξ(ω)ρ
∂e(t, x)

∂t
= μ

∂2e(t, x)
∂x2

. (6)

(Thermo-diffusion of steam, that is the diffusion induced by temperature gradi-
ent, does not included in the model.) Here the parameter ξ defines the ‘vapor
capacity’ of material and can be estimated by the equation

ξ(ω) =
do(ϕ)
dϕ

. (7)

As noted above, Eq. (6) is defined in the subset Vt. If the point L0 and/or
L3 are the boundary points of Vt, then the boundary conditions of convective
exchange of steam between air in material pores and surrounding air are imposed
similar to (2), (4) with replaced T by e, λ by μ, and α by γ. If any of interface
points L1, L2 belongs to Vt, then the conjugation condition assuming continuity
of vapor pressure and flux is imposed similar to (3).

In subset Wt the material pores contain liquid water together with water
vapor, and it is supposed that between water and vapor there keeps up the
dynamic equilibrium. That is the partial pressure of vapor in Wt equals to pres-
sure of saturated vapor, e(t, x) ≡ E(T (t, x)) for all x ∈ Wt. To estimate the
volumetric concentration of liquid water w [%] we propose the following formula

w(t, x) = ω(t, x) − o(1), (8)

where o(1) is maximal concentration of absorbed water, corresponding to ϕ = 1.
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Diffusive motion of liquid water is described by equation

10ρ
∂w(t, x)

∂t
=

∂

∂x

(
β(ω)

∂w(t, x)
∂x

)
+ μ

∂2E(T )
∂x2

. (9)

Here numerical coefficient ‘10’ appears due to different dimensions of parameters
(kg in ρ, g in μ and β, and % in w). Second term in the right hand side cor-
responds to vapor condensation or water evaporation depending on its sign. To
avoid extra model complication the condition of water impermeability at border
points of Wt is accepted

∂w

∂x

∣∣∣∣
∂Wt

= 0. (10)

If any of points L1, L2 is inner point of Wt, then there is imposed the condition
of continuity of water concentration and water flux, similar to (3). In the points,
separating subsets Vt and Wt, we suppose continuity of pressure e(t, x).

Latent heat of phase transition. The term ν = μ(∂2E(T )/∂x2) [g/(h·m3)] in
Eq. (9) represents the rate of change of water concentration due to water evap-
oration or vapor condensation, that is in result of phase transition. The phase
transitions are accompanied by release or absorption of latent heat, depending
on the sign of ν. The latent heat of phase transition is accounted in Eq. (1) via
the source term Q, numerical value of which is calculated with the formula

Q =

{
qLν, x ∈ Wt,

0, x ∈ Vt,
(11)

where qL is the specific heat of water vaporization (= 2.26 kJ/g).

3 Numerical Scheme

The system of Eqs. (1), (6), and (9), with all additional conditions listed above
is solved numerically with the help of the finite differences method. To approx-
imate the space derivatives with finite differences we define the uniform grid of
N nodes xk on the interval (L0, L3): xk = L0 + (k − 0.5)h, k = 1, 2, . . . , N ,
h = (L3 − L0)/N . The time derivative is approximated on the time grid
t0 = 0, t1, t2, . . . , tn, . . . , with variable time step τn = tn+1 − tn, n ≥ 0. Each
function f(t, x) is replaced its grid approximation fn

k = f(tn, xk). Below, for
brevity, we will drop the upper index denoting fn

k as fk, and fn+1
k as f̂k.

Finite difference equations. To derive the finite difference equations we use
implicit scheme and heat and mass balance method. The finite-difference coun-
terparts of Eqs. (1), (6), and (9) are the following

hckρk
T̂k − Tk

τ
= Λ̂−

k (T̂k−1 − T̂k) − Λ̂+
k (T̂k − T̂k+1) + Q̂k, k = 1, . . . , N. (12)
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hξ̂kρk
êk − ek

τ
= M−

k (êk−1 − êk) − M+
k (êk − êk+1), xk ∈ Vn. (13)

10hρk
ŵk − wk

τ
= B̂−

k (ŵk−1 − ŵk) − B̂+
k (ŵk − ŵk+1) + ν̂k, xk ∈ Wn. (14)

The coefficients Λ are calculated as follows

Λ−
1 =

2αexλ1

αexh + 2λ1
, Λ−

k =
2λk−1λk

h(λk−1 + λk)
, k = 2, . . . , N ;

Λ+
k =

2λkλk+1

h(λk + λk+1)
, k = 1, . . . , N − 1, Λ+

N =
2λNαin

2λN + αinh
. (15)

The coefficients M and B are calculated similar to Λ. The term ν is approximated
by second difference

νk = M−
k (Ek−1 − Ek) − M+

k (Ek − Ek+1), (16)

where Ek = E(Tk), if x ∈ Wn; Ek = ek, if x ∈ Vn; E0 = eex(tn), EN+1 = ein(tn).
Assuming that T0 = Tex(tn), TN+1 = Tin(tn); e0 = eex(tn), eN+1 = ein(tn),

one obtains the closed system of 2N algebraic equations with 2N unknowns.
First N unknowns are the values of temperature T̂k at grid nodes xk in time
moment tn+1. Other N unknowns are the values of steam partial pressure êk at
nodes xk ∈ Vn or the values of water concentration ŵk at nodes xk ∈ Wn.

Iterative solution. The system of finite-difference Eqs. (12), (13), (14) is the
non-linear system because of the scheme is implicit and the coefficients λ and β
depend on the system solution. To solve the non-linear system we use an iterative
procedure.

Using known solution at time tn we calculate the coefficients Λ and B (coef-
ficients M are constant) and substitute them in system (12), (13), (14). Solving
the resulting linear system we obtain first approximation to solution at moment
tn+1, {T

(1)
k , e

(1)
k , w

(1)
k }. Then the first approximation is used in the same way

to obtain second approximation {T
(2)
k , e

(2)
k , w

(2)
k }, and so on. The iterations

are ended when the relative difference between two successive approximations
becomes sufficiently small.

Designation of subset Wt. At initial time moment t0 all nodes xk, where initial
moisture concentration ωk is not less than maximal adsorption concentration,
ωk ≥ o(1), are included in subset W0. Further, the domain W is re-designated
after each successful time step. The nodes xk from Vn, where the vapor pressure
ek ≥ Ek pass from Vn in Wn+1, while the nodes xk from Wn, where wk < 0,
pass from Wn in Vn+1. There are no restrictions on shape and size of subset V
(and, therefore, of W ).

Choice the value of time step τ . To avoid possible numerical instability time
step τ is limited by some empirical maximal value τmax. Initial time step is
assigned less than τmax in several orders of magnitude. Time step with assigned
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value of τ is considered as successful, if (i) the number of iterations in solution
of system (12), (13), (14) is not exceed assigned maximal number of iterations,
and (ii) relative difference between solution at current time step and solution at
previous time step is sufficiently small. If current time step is not successful, the
value of τ is diminished by definite factor, and step is repeated until the time
step becomes successful. If the number of successive successful steps exceeds
assigned number, the value of τ increases by definite factor.

4 Numerical Example

As an example we consider a three-ply wall. The external layer of wall is a thin
stucco, and other two layers of equal thickness are concrete and mineral wool as
heat insulator. The main goal of our example is to demonstrate the difference
(well-known in construction practice) in heat and moisture behavior in two walls
consisting of these layers. First wall is ‘correct’ wall with layers order: stucco -
heat insulator - concrete; and second wall is ‘incorrect’ with layers order: stucco -
concrete - heat insulator.

In this paper we use some ‘typical’ values of material parameters, which can
be found in numerous literature. The accepted values of constant material para-
meters are presented in Table 1 (dimensions were specified in text above). Two
additional parameters k and λ0 are used for calculation of material coefficient of
thermal conductivity λ, λ = λ0 + kω.

Table 1. Material parameters.

Material d ρ c μ k λ0 o(1)

Concrete 0.2 2500 0.84 3 × 10−5 0.1 1.45 3.997

Mineral wool 0.2 125 0.84 3 × 10−4 0.001 0.06 1.875

Stucco 0.02 1800 0.84 9 × 10−5 0.07 0.7 1.184

Fig. 1. (a) – sorption isotherm o(ϕ), (b) – coefficient of water conductivity β(ω).
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Fig. 2. Space-time plot of temperature in ‘correct’ (a), and ‘incorrect’ (b) wall.

Fig. 3. Space-time plot of water concentration in ‘correct’ (a), and ‘incorrect’ (b) wall.

The graphs of the sorption isotherms and the coefficient β in dependence
on ω are shown in Fig. 1, where the experimental measurements, depicted by
markers, are connected via polynomial interpolations. In the building interior
the constant air temperature and humidity are supposed, Tin = 20 ◦C, ϕin = 0.6.
The temperature and humidity of external air simulate their seasonal variations
for Moscow region. The heat exchange coefficients αin = 31.4, αex = 85.8, and
the vapor exchange coefficients γin = 0.075, γex = 0.750.
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The initial time moment corresponds to the middle of July with average daily
air temperature of 19.3 ◦C. The initial temperature distribution in wall is linear
between 19.3 ◦C at outer and 20 ◦C at inner wall surface. The initial moisture
concentration is assigned for every wall layer. In our example it was 0.9×o(1) =
3.597 for stucco, 1.5 × o(1) = 1.775 for concrete, and 1.5 × o(1) = 2.813 for
mineral wool. That is, the wall is waterlogged and have to dry.

Figure 2 shows, that (as it should be expected) the fall of temperature in
winter time occurs mostly in the heat insulator layer. Hence, during winter the
concrete temperature is high in ‘correct’ wall, and low in ‘incorrect’ wall. The
vapor condensation proceeds in that regions, where the vapor pressure e becomes
higher than the pressure of saturated vapor E. Such a condition is mainly created
at low temperatures. Therefore, there are much more possibilities for condensa-
tion in ‘incorrect’ wall than in ‘correct’ wall. This is confirmed by Fig. 3.
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