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Abstract. An open geothermal system consisting of injection and pro-
ductive wells is considered. Hot water from production well is used and
became cooler, and injection well returns the cold water into the aquifer.
To simulate this open geothermal system a three–dimensional nonsta-
tionar mathematical model of the geothermal system is developed tak-
ing into account the most important physical and technical parameters
of the wells to describe processes of heat transfer and thermal water
filtration in a aquifer. Results of numerical calculations, which, in par-
ticular, are used to determine an optimal parameters for a geothermal
system in North Caucasus, are presented. For example, a distance in the
productive layer between the point of hot water inflow and of cold water
injection point is considered.

1 Introduction

A geothermal system is a system used for heating that utilizes the earth as a
heat source. Geothermal systems simply take advantage of the relatively con-
stant temperature within the earth. For example, in North Caucasus the earth’s
temperature ranges 90–102◦C at a depth of 900 m throughout the year.

Geothermal systems have the potential for significant savings in energy costs
and for reducing of oil and natural gas consumption. However, some of these
systems also have the potential for adverse environmental effects if installed or
operated improperly or if they use inappropriate materials. It is also important to
ensure a long-term service and appropriate heat efficiency of these installations.

Let consider an open geothermal system consisting of injection and produc-
tive wells. Hot water from production well is used and became cooler, and injec-
tion well returns the cold water into the aquifer. This cold water is filtered in
porous soil towards the inflow of hot water of the production well. It is required
to describe propagation of the cold front in the productive layer of water, depend-
ing on the different thermal soil parameters and initial data defined filtration
rate in the productive layer, and to answer the question about the time of the
system effective operation (operation of a geothermal system is stopped when
the front of the cold water will reach the inflow of the production well).
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In simulations of underground flow, Darcy’s law and law of mass conservation
(continuity equation) are used [1]. A convection-diffusion equation with domi-
nant diffusion is considered. A system of equations for temperature in aquifer
is solved using a finite difference method based on an approach of works of
A.A.Samarskii and P.N.Vabishevich [2].

Let note that the model and the numerical algorithms are convenient (with
some adaptations) to simulate different problems of heat and mass transfer, for
example, to find thermal fields of underground pipelines [3,4] and the problems
related to phase transitions in the soil around engineering constructions [5–7] in
permafrost.

2 Mathematical Model and a Method of Solving
the Problem

Let consider a mathematical model of a Underground Water Source (Geothermal
Open Loop) Heat Pump System. A geothermal open loop (GOL) consists of two
wells: an injection well and a production well (Fig. 1), which are inserted into
as aquifer Ω as the heat source and sink. Water is taken from the aquifer by a
productive well (Ω1), circulated to the individual pump, cooled, and returned
via an injection well (Ω2). Let injection well has a cold water with temperature
T1(t), production well has a hot water with temperature T2(t).

Fig. 1. A model of Geothermal Open Loop.

Let T (t, x, y, z) be temperature in the aquifer, p = p(t, x, y, z) — pressure
field. Thermal exchange is described by equation
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here b =
σρcf

ρ0c0(1 − σ) + ρcfσ
, λ0 =

κ0

ρ0c0(1 − σ) + ρcfσ
, ρ0 and ρf are density of

aquifer soil and of water, c0 and cf are specific heats of aquifer soil and of water,
κ0 is thermal conductivity coefficient of soil, σ is porosity, (u, v, w) is vector of
velocity of water filtration in the soil.

This equation is necessary to be considered with the following system,
describing the water filtration:
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(2)

In simulations described by Eq. (1) and (2) it is necessary to estimate a
distance a between the injection and productive wells due to the temperature in
the productive well be appropriate for the considered system.
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Fig. 2. (a) — density, (b) — velocity.

After transformation of system (2) we get Laplace equation for pressure

∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
= 0 (3)

with corresponding boundary conditions. Pressure may be computed by method
Fig. 2 shows pressure distribution in an aquifer.

Let consider an exact solutions, which satisfy equations of water filtration in
the aquifer. For the surfaces Ω1 and Ω2 let conside the given pressure

P (t, x, y, z)
∣∣∣
Ω1

= P1 − ρgz, (4)
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and
P (t, x, y, z)

∣∣∣
Ω2

= P2 − ρgz. (5)

Let find the solution in the form

p = b1(t)x − ρgz + b0(t), (6)

where b1(t) and b2(t) are unkown functions. Taking into consideration (4) and
(5) this function has the form

p = −P2 − P1

a
x − ρgz + P1. (7)

Then, for the velocity u we get an ordinary differential equation

du

dt
= −1

ρ

P1 − P2

a
− gσu

k
, (8)

with the zero boundary condition u(0) = 0. Then the solution of Eq. (8) has the
form

u =
k(P1 − P2)

ρgσa

(
1 − e− gσt

k

)
. (9)

Thus, a partial solution of system (2) has a solution (9) and v = w = 0.
We have to note, that when the time tends to infinity, the solution tends to the
stationary

u∗ =
k(P1 − P2)

ρgσa
, (10)

Naturally, the resulting partial solution does not satisfy all the boundary and
initial conditions of the problem, but suggests that over time the problem under
consideration is a stationary regime. So in the model we can use a steady-state
flow to describe convective transport terms in Eq. (1).

After finding the pressure field, a vector of velocity of filtered water is deter-
mined in the aquifer.

On the base of ideas in [2] a finite difference method is used with splitting by
the spatial variables in three-dimensional domain to solve the problem (1)–(5).
We construct an orthogonal grid, uniform, or condensing near the ground surface
or to the surfaces of Ω1 and Ω2. The original equation for each spatial direction
is approximated by an implicit central-difference scheme and a three-point sweep
method to solve a system of linear differential algebraic equations is used.

3 Numerical Results

Let a computational domain be a parallelepiped 6000 m·6000 m·50 m size (Fig. 1).
The choice of such large computational domain is related with decreasing the
influence of boundary conditions. Mesh size is 201·201·51 = 2060451 nodes. Injec-
tion well is in point (2600 m, 3000 m), productive — in (3400 m, 3000 m). The dis-
tance between the wells is 800 m. Soil thermal parameters correspond to Hankal
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geothermal fields in the North Caucasus. The initial temperature of water in
the aquifer at a depth of 950–1000 m is 95◦C, temperature of the injected water
is 55◦C.

Computations are carried out with 1 day time step for 50 years and for
various pressures difference.

We present the results of calculations for the differential pressure between
production and injection wells 420000Pa. Figure 2 shows a typical pressure
(a) and velocity (b) distribution in the aquifer.
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Fig. 3. Temperature in aquifer for years of exploitation, ◦C.

The transition of filtered water allow to compute temperature in the aquifer
and to determine how the a cold injection well influences to the productive well.
Figure 3 shows a temperature distribution in (x, y)-plane after 5, 15, 30, and 50
years of exploitation of the system.

Figure 4 is an average temperature in productive well during the time.
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Fig. 4. Temperature in productive well during the time of exploitation, ◦C.

4 Conclusion

Computations alows to choose an optimal parameters of an open geothermal
systems, in particular to determine an appropriate distance between injection
and production wells depending on the operating conditions of the geothermal
system. Taking into consideration a geothermal gradient allows to increase time
of the system operation. Note that many researchers do not consider this fac-
tor in the simulation, although the results obtained, for example, in [8] are in
qualitative agreement with our results.
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