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Abstract. The article describes the rare mesh scheme based on finite
element method, describes the methods of constructing such schemes are
described arrangements of nodes, describes methods of calculation tasks
based on rare mesh schemes, the problem of static, Numerical solutions of
different tasks based on rare mesh scheme circuit compares the results
with the known systems.

1 Introduction

Principles of construction and use of openwork patterns FEM presented in [1,2].
The basis of such schemes is an rare mesh of finite elements. At the same time
for an rare mesh hexagonal cell is broken down into five tetrahedra (Fig. 1), left
central tetrahedron remaining tetrahedra removed. The resulting rare mesh com-
pared with the traditional grid consisting of tetrahedra solid way to fill the entire
volume is five times smaller elements and almost half the nodes (Figs. 2, 3 and 4).

Fig. 1. Rare mesh element

2 Solving Static Problems Based Rare Scheme

Numerical implementation of solutions of static problems in elastic formulation is
based on the finite element approximation of the variational equation (principle
of virtual displacements)∫

V

σijδεij dV =
∫
V

ρFiδuidV +
∫
Sp

PiδuidS, (1)
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Fig. 2. Rare pattern grid

Fig. 3. Elements rare mesh filling pattern

where V – the amount of elastic isotropic body, on some part of the boundary
surface is configured for load; - components of the stress tensor; σij – components
of the linear strain tensor; ui – components of the displacement vector; Fi and
Pi - components, respectively, mass and surface loads ρ – density. Displacement,
rotation angles are considered small deformation

εij =
1
2

(ui,j + uj,i), (2)

deformation associated with the stresses by Hooke’s law

σij = λδijεkk + 2μεij , (3)

where λ and μ – Lame parameters.
Discusses the implementation options rare FEM scheme based on linear quad-

rangular element. Distribution of displacements in the elements taken linear
strain and stress are considered permanent. Bulk and surface forces acting on
the tetrahedra removed and their surfaces are distributed among nodes of ele-
ments involved in the calculation. On uniform grids this delicate scheme has
second-order approximation.
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Fig. 4. The regular grid nodes involved in the calculations

As is customary in the FEM, will not use the tensor, and matrix- vector form
of the relations. Vector finite element nodal displacements denote
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component vectors of linear strain and stress tensor (by symmetry we consider
only six components), respectively

(εεε)T = (ε11, ε22, ε33, γ12, γ23, γ31), (5)

(σσσ)T = (σ11, σ22, σ33, σ12, σ23, σ31), (6)

matrix of the elastic constants of an isotropic material

(C) =
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(7)

matrix differential operator
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where
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βm
4 = −βm

1 + βm
2 − βm

3 , m = 1, 2, 3, s = 1, 2, 3, index sequence mnk and spq
form a cyclic permutation of the sequence numbers 123,

D =
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3
1) – coordinates of the i node of the final (i = 1, 2, 3, 4).

In matrix form the Cauchy (2), Hooke’s law (3) and the total potential energy
of a single element can be written as

(εεε) = (B)(u), (9)

(σσσ) = (C)(εεε) = (C)(B)(u), (10)

Π =
1
2
(u)T (K)(u) − (u)T (q), (11)

where (K) – stiffness matrix element

(K) =
∫
Vi

(B)T (C)(B)dV,

(q) – vector of nodal forces statically equivalent to the current element of the
distributed mass and surface forces.

Stationarity condition (1) energy functional leads to a system of linear alge-
braic equations of equilibrium of the body, which is modified by the boundary
conditions on the movement. Solving the resulting system with respect to dis-
placement or direct iterative method defined nodal displacements whole compu-
tational domain and the formulas (9) and (10) components are calculated strain
and stress tensors.

3 Solution of the Model Problem

We consider the problem of determining the elastic contact condition of a thick-
walled tube of finite length, compressing absolutely rigid plates parallel to the axis
of the tube. Inner radius of the tube - 5 cm, external radius of the tube - 10 cm,
length of the pipe - 60 cm, the offset of each rigid plate is squeezed at - 0.5 mm,
the modulus of elasticity of the material - 200 GPa, Poisson’s ratio - 0.3. Because
of the symmetry of the problem the design scheme is one-eighth of the pipe with
symmetry conditions on the respective planes (Fig. 5).

Contact problem solution implemented by planting nodes finite element mesh
beyond the plane of the junction, on the plane and iterative refinement to the
equilibrium conditions.

Figure 6 shows the convergence of the solution to the radial displacement
along the generator inside of the tube beneath the contact zone, with nested
grids. Opening 10 contains a grid of elements through the thickness of the pipe
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Fig. 5. Calculation scheme

elements 16 in the circumferential direction of elements 60 and along the pipe.
In two subsequent calculations the number of elements in each direction, respec-
tively, increased in two and four -fold compared to the initial mesh.

The solution obtained using the openwork scheme compared with the solu-
tion of a similar formulation obtained in the system ANSYS. The comparison
results in the radial displacement along the generatrix of the inner surface of
the tube, beneath the contact zone, for one embodiment, the calculations are
shown in Fig. 7. As can be seen, solutions give a good qualitative and quanti-
tative agreement with the exception of a small (1 item) zone of the edge effect
near the free end of the tube.

Fig. 6. Convergence solutions

The obtained results of model problems demonstrate the feasibility and effec-
tiveness of the use of openwork schemes for static elasticity problems.
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Fig. 7. Comparison of solutions

Conclusion

From the examples and descriptions of the method of construction and cal-
culations based on rare mesh scheme based on finite element method can be
concluded that the using of this scheme provides significant gains over time, and
the use of super rare mesh scheme winning time increases even almost doubled.
At the same time a significant loss of accuracy compared to other schemes not
observed. Thus the using of rare mesh circuit on models with a very large number
of constituent elements leads to a significant gain in time.
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