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Abstract. In this work we consider the coupled linear system of equa-
tions for temperature and displacements which describes the thermoelas-
tic behaviour of the body. For numerical solution we approximate our
system using finite element method. As model problem for simulation
we consider the thermomechanical state of the ceramic substrates with
metallization, which are used for the manufacturing of light-emitting
diode modules. The results of numerical simulation of the 3D problem
in the complex geometric area are presented.

1 Introduction

Many applied problems of mathematical modeling are connected with the cal-
culation of the stress-strain state of solids. In many cases, the deformation is
caused by thermal expansion. The thermoelasticity models are used for their
research.

Basic mathematical models include heat conduction equation and Lame ther-
moelasticity equation for displacements [1–4]. The fundamental point is that the
system is tied up, the equation for displacement comprises volumetric force pro-
portional to the temperature gradient and the temperature equation includes a
term that describes the compressibility of the medium.

In this work we consider the coupled linear system of equations for temperature
and displacements which describes the thermoelastic behavior of the body. For
numerical solution we approximate our system using finite element method [5–10].

As model problem we consider simulation of the thermomechanical state of
the ceramic substrates with metallization, which are used for the manufacturing
of light-emitting diode (LED) modules. The results of numerical simulation of
the 3D problem in the complex geometric area are presented. Calculations are
performed using the North-Eastern Federal University computational cluster
Arian Kuzmin.

2 Problem Statement

Under mechanical and thermal effects in an elastic body displacement u, strain ε
and stress σ occur in an elastic body. Let T be the constant absolute temperature
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at which body is in initial state of equilibrium, and θ be temperature increment.
External forces that impact the body are treated as mechanical effects, whereas
for the thermal influences one realizes heat exchange processes between the body
surface and environment, and release or absorption of heat by the sources inside
the body.

Mathematical model of thermoelastic state is defined by coupled system of
equations for displacement u and temperature increment θ in domain Ω [1–4]:

−div (k grad θ) = f. (1)

−μΔu − (λ + μ) grad divu + α grad θ = 0, (2)

Here μ, λ are Lame constants, k is heat conduction coefficient, c is strain-free
volumetric heat capacity, α = αT (3λ+2μ), where αT is linear thermal expansion
coefficient, ε is strain tensor:

ε =
1
2
(∇u + (∇u)T ),

and σ is stress tensor:
σ = λ∇uI + 2με.

Here I defines unit tensor.
Also Eqs. (1) and (2) are supplemented with appropriate boundary condi-

tions:

σn = 0, x ∈ Γu
N , u = u0, x ∈ Γu

D,

−k
∂θ

∂n
= 0, x ∈ ΓT

N , θ = θ0, x ∈ ΓT
D ,

where ∂Ω = Γu
D + Γu

N = Γ θ
D + Γ θ

R.

3 Approximation by Space

For numerical solution, we rewrite Eqs. (1) and (2) in weak form, using integra-
tion by parts to eliminate second derivatives [5–10].

Let H = L2 (Ω) be the Hilbert space for temperature increment with follow-
ing scalar product and norm:

(u, v) =
∫

Ω

u(x) v(x) dx, ||u|| = (u, u)1/2,

and H = (L2 (Ω))d be space for displacement, where Ω ∈ R
d, d = 2, 3.

Then letting test functions q and v vanish on the appropriate Dirichlet bound-
aries Γ θ

D and Γu
D , respectively, where solutions are known, we receive following

variational problem: find θ ∈ Vθ and u ∈ Vu such that
∫

Ω
(k grad θ, grad q)dx +

∫
Ω

f q dx ∀q ∈ V̂θ = 0, (3)
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∫
Ω

σ(u) ε(v)dx +
∫

Ω
α( grad θ,v)dx = 0 ∀v ∈ V̂u, (4)

where test spaces V̂θ and V̂u are defined by

V̂θ = {q ∈ H1(Ω) : q(x) = 0, x ∈ Γ θ
D},

V̂u = {v ∈ Hd(Ω) : v(x) = 0, x ∈ Γu
D},

and the trial spaces Vθ and Vu are shifted from test spaces by the Dirichlet
boundary conditions:

V̂θ = {q ∈ H1(Ω) : q(x) = θ0, x ∈ Γ θ
D},

V̂u = {v ∈ Hd(Ω) : v(x) = u0, x ∈ Γu
D}.

Further, we define the following bilinear and linear forms on the defined
spaces

b(θ, q) =
∫

Ω

(k grad θ, grad q)dx, l(q) = (f, q) =
∫

Ω

f q dx,

a(u,v) =
∫

Ω

σ(u) ε(v)dx, g(θ,v) =
∫

Ω

α( grad θ,v)dx.

Then problem becomes: find θ ∈ Vθ and u ∈ Vu that satisfy the following
relations

b(θ, q) + l(q) = 0 ∀q ∈ V̂θ, (5)

a(u,v) + g(θ,v) = 0 ∀v ∈ V̂u. (6)

Note that these parts of problem are solved successively. First, we find dis-
tribution of temperature field from (5). And then we use it for calculation of
displacement in (6).

4 Numerical Results

The object of research is ceramic substrates with metallization, which are used
for the manufacturing of LED modules. During the creation process these sub-
strates are subjected to significant heating, thereby an elastically-stressed state
occurs, which leads to cracking of the substrate in some cases.

One of the ways of improvement is the minimization of the elastic stresses
in the ceramic substrate with metallization. To find solution of this problem we
need calculate elastic stress state of ceramic substrates under the influence of
thermal stress raises.

The substrate has the length of 130 mm, the width of 72 mm and the thickness
of 0.635 mm and 0.03 mm for ceramic and metal layers, respectively. On both
sides it has technological holes of 1 mm and 1.5 mm diameter. Also the ceramic
side has deepening of 0.2 mm with width of 0.1 mm. The full geometry of the
object is shown in Fig. 1.
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Fig. 1. Ceramic substrate geometry

To verify the model with the experimental data we use the temperature
distribution along the middle line of the substrate. The boundary conditions for
heating and cooling the substrate are modeled by appropriate Robin boundary
conditions corresponding to convection with ambient air and metal rails. In this
case the heat flux is modeled as convection with strongly heated air. These
boundary conditions can be represented as following equations:

k
∂θ

∂n
= βi(θ − θi), x ∈ Γi, i = 1, 2, 3, 4, (7)

where k is coefficient of thermal conductivity, βi is heat transfer coefficient
with air when i = 1, 4 and with metal when i = 2, 3, θi is difference between

Γ1

Γ4

Γ4Γ4

Γ2 Γ3

Ω1

Ω2

Fig. 2. Boundaries and domains in a slice
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temperature of i-th boundary and initial temperature of substrate. Respective
boundaries of heat flux Γ1, convection with rails Γ2, Γ3 and air Γ4, also ceramic
layer Ω1 and metal layer Ω2 domains represented in Fig. 2.

For the following values: k = 20W/(m·K) for ceramic and k = 400W/(m·K)
for metallization, β1,4 = 5W/(m2·K), β2,3 = 400W/(m2·K), θ1 = 270C0, θ2 =
90C0, θ3 = 75C0 and θ4 = 95C0, temperature distribution along the midline
was obtained, which agrees with field experiments. In Fig. 3 a comparison of the
temperature along the midline for the model and experiment is shown.

Fig. 3. Temperature distribution along the middle line (experiment, model)

Fig. 4. Computational domain
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In this work the simulation is performed using the first-degree polynomial
approximation for temperature and first-degree for displacement. To solve the aris-
ing system of linear equations a standard direct method of ILU-factorization is
used. A collection of free software FEniCS [11] is used for the numerical solution,
and open-source application Paraview is used for visualization of the results.

For numerical modeling of thermoelasticity problem for ceramic substrate
with metallization three grids containing about 250 000, 450 000 and 1 000 000
cells are used. These grids were made in Netgen mesh generator program. As for
example, the finest grid with more than million cells is shown in Fig. 4. As results
of numerical computation temperature distribution across the substrate (Fig. 5)
and von Mizes stress distribution in technological hole (Fig. 6) are presented.

Fig. 5. Temperature distribution

Fig. 6. Mizes stress distribution in technological hole
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Table 1. Dependence of computation time (in seconds) from number of processes for
different grids

Grid size Number of processes

1 2 4 8 16 32

250 000 119 87 53 44 49 53

450 000 199 133 87 70 78 86

1 000 000 433 347 206 181 161 160

To illustrate the effectiveness of parallelization on a cluster, a series of compu-
tational experiments on three grids with different amounts of running processes
are made. The results of gained dependence of computation time from number
of processes are given in Table 1.

Table 1 shows the effectiveness of parallelization on different amount of run-
ning processes. Note that the effectiveness is evident for all presented grids. More-
over, for each grid we have optimal number of running processes. For instance,
the first and second grids have the fastest computation when 8 processes are
used. And for the third grid it is optimal to use 16 processes, as further growth
of the computational resources does not gain any acceleration.
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