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Abstract. The paper serves as a review on the basic results showing
how functional analytic tools have been applied in numerical analysis.
It deals with abstract Cauchy problems and present how their solutions
are approximated by using space and time discretisations. To this end
we introduce and apply the basic notions of operator semigroup theory.
The convergence is analysed through the famous theorems of Trotter
and Kato, Lax, and Chernoff. We also list some of their most important
applications.
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1 Introduction

In the present paper we will give an overview on how functional analytic tools
have been applied in numerical analysis. In particular, we will consider well-posed
partial differential equations and analyse how to ensure the convergence of their
numerical solution to the exact one. To this end, we will treat the problem in a
functional analytic framework and apply results from operator semigroup theory,
for which our main reference is the monograph by Engel-Nagel [5].

We start with an example to motivate what kind of problems are to solved
when seeking a numerical solution. In Sect. 3 the corresponding abstract problem
and its solution, the operator semigroup, will be introduced. The convergence
of the space and time discretisation methods are analysed in Sect. 4.1 and 4.2,
respectively, based on the results of Trotter [15], Kato [9], Ito and Kappel [8],
Lax and Richtmeyr [11], and Chernoff [4]. In Sect. 5 we show how the previous
results can be combined and present the convergence result of Bátkai et al. [1]
based on the work of Pazy [14]. Section 6 deals as an outlook on other topics in
numerical analysis where operator semigroups play an important role.
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2 Motivation

As a motivating example we consider the one-dimensional heat equation on the
interval [0, π] with homogeneous Dirichlet boundary condition

⎧
⎪⎨

⎪⎩

∂
∂tw(t, x) = ∂2

∂x2 w(t, x), t > 0, x ∈ (0, π),
w(0, x) = w0(x), x ∈ (0, π),
w(t, 0) = w(t, π) = 0

(1)

with the given initial function w0 ∈ L2(0, π). Its solution is obtained by separat-
ing the variables and has the form

w(t, x) =
∞∑

j=1

cje−j2t sin(jx) with cj = 2
π

π∫

0

w0(x) sin(jx)dx, j ∈ N. (2)

2.1 Numerical Solution

We show now two ways how to obtain an approximation to w, that is, the
numerical solution to problem (1).

Example 1 (Finite differences). We approximate the partial derivatives in prob-
lem (1) by the usual finite difference schemes on equidistant spatial and temporal
meshes with grid size h = π

m−1 > 0, for some fixed m ∈ N \ {1}, and time step
τ > 0:

∂
∂tw(t, x) ≈ 1

τ

(
w(t + τ, x) − w(t, x)

)
,

∂2

∂x2 w(t, x) ≈ 1
h2

(
w(t, x − h) − 2w(t, x) + w(t, x + h)

)
.

This leads to the following discrete problem for w
(�)
j ≈ w(�τ, (j − 1)h) for j =

1, ...,m and � ∈ N:

1
τ (w(�)

j − w
(�−1)
j ) = 1

h2

(
w

(�−1)
j+1 − 2w

(�−1)
j + w

(�−1)
j−1

)
. (3)

Due to the initial and boundary conditions w
(0)
j = w0((j − 1)h), j = 1, ...,m,

and w
(�)
1 = w

(�)
m = 0, � ∈ N, the solution

w
(�)
j = w

(�−1)
j + τ

h2

(
w

(�−1)
j+1 − 2w

(�−1)
j + w

(�−1)
j−1

)
(4)

can be computed step by step for all indices � ∈ N and j = 2, ...,m−1. Then the
approximation of w is obtained by certain interpolation schemes in space and
time.

Example 2 (Spectral method). Let ŵj ∈ R denote the jth Fourier coefficient
of w(·, x) and 〈·, ·〉 the inner product in L2(0, π). We define further the function
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ϕj(x) =
√

2
π sin(jx), j = 1, ...,m, satisfying the boundary condition in prob-

lem (1). By taking the discrete Fourier transform of both sides of problem (1), one
obtains the following initial value problem for the first m Fourier coefficients of w:

{
d
dt ŵj(t) = −j2ŵj(t), t ∈ R, j = 1, ...,m,

ŵj(0) = 〈w0, ϕj〉, j = 1, ...,m
(5)

with the solution ŵj(t) = e−j2tŵj(0) = e−j2t〈w0, ϕj〉. Then the approximation
of w is obtained with the help of the inverse discrete Fourier transform, that is,

w(t, x) ≈
m∑

j=1

ŵj(t)ϕj(x) =
m∑

j=1

e−j2t〈w0, ϕj〉
√

2
π sin(jx). (6)

We remark that the formula above really seems to approximate w, since it cor-

responds to cj =
√

2
π 〈w0, ϕj〉 for j = 1, ...,m and cj = 0 for j > m in (2). This

means that in this case the inifinite sum is approximated by a finite one.

2.2 Abstract Setting

Problem (1) can also be handled in an abstract way. To this end we define the
Banach space X = L2(0, π), the linear operator A : X → X as Af = f ′′ for
all f ∈ {η ∈ L2(0, π) : η(0) = η(π) = 0}, and the function u : [0,∞) → X as
(u(t))(x) = w(t, x) for all t ≥ 0 and x ∈ [0, π]. Then problem (1) corresponds to
the following initial value problem on X:

{
d
dtu(t) = Au(t), t > 0,

u(0) = u0

(7)

with u0 = w0. In order to solve problem (7) numerically, for m ∈ N one defines
Banach spaces Xm, some suitable (for the sake of simplicity linear) operators
Pm : X → Xm, Jm : Xm → X, and a linear operator Am : Xm → Xm. Then
the numerical solution um : [0,∞) → Xm is obtained from the following initial
value problem in Xm for all m ∈ N:

{
d
dtum(t) = Amum(t), t > 0,

um(0) = Pmu0

(8)

with u0 = w0. Problem (8) corresponds to the spatially discretised version of
problem (7). The solution of the original problem (1) is obtained as w(t, x) =
(u(t))(x) where it is to analysed whether u(t) = lim

m→∞ Jmum(t) holds uniformly

for t in compact intervals. In some cases um(t) is further approximated by um,k

by using certain time discretisation methods (see the examples below). Then

u(t) = lim
m→∞ Jm lim

k→∞
um,k (9)
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should hold uniformly for t in compact intervals. In Sect. 5 we will study under
which conditions the limit (9) holds. The corresponding choices of the spaces
and operators in Examples 1 and 2 are the following.

(a) Example 1. We choose Xm = R
m, (Pmw0)j = w0((j − 1)h) for j = 1, ...,m,

and

Am =
1
h2

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0

0 Dm−2

...
... 0
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
m×m

with Dm−2 = tridiag(1,−2, 1) ∈ R
(m−2)×(m−2). Then for all t ≥ 0 and

j = 1, ...,m, (um(t))j ∈ R correspond to the approximate values at the grid
points (j − 1)h, and um(t) ∈ R

m is their vector. The solution to problem (8)
in this case reads as um(t) = etAmPmw0. Since

etAm = lim
k→∞

(
Im + t

kAm

)k
,

where Im ∈ R
m×m denotes the identity matrix, one approximates the expo-

nential matrix and obtaines the numerical solution

um,k =
(
Im + t

kAm

)k
Pmw0 for some k ∈ N.

If k ∈ N and τ = t
k > 0 are fixed, we have

u
(�)
m,k = (Im + τAm)�Pmw0 = (Im + τAm)u(�−1)

m,k for all � ∈ N,

and this corresponds to formula (4), that is,
(
u
(�)
m,k

)

j
= w

(�)
j . The operator

Jm describes an interpolation, such as the Lagrangian polynom, etc.

(b) Example 2. We choose Xm = R
m, (Pmw0)j = 〈w0, ϕj〉 for j = 1, ...,m, and

Am ∈ R
m×m with diagonal elements (Am)jj = −j2, j = 1, ...,m, and zero

otherwise. Then for all t ≥ 0, (um(t))j = cj is the jth Fourier coefficient of
w, and um(t) ∈ R

m is their vector. The solution to problem (8) reads then as

um(t) = etAmPmw0 =
m∑

j=1

e−j2t〈w0, ϕj〉.

The operator Jm corresponds now to the inverse discrete Fourier transform,
that is,

(
Jmum(t)

)
(x) =

m∑

j=1

(
um(t)

)

j
ϕj(x) for all t ≥ 0, x ∈ [0, π],

which really gives back formula (6).

In the examples above, problem (8) could be easily solved because the spaces
Xm were finite dimensional in both cases. However, problems like (7) and (8) can
be treated even if X and Xm are infinite dimensional. Then the corresponding
solutions are studied in an abstract way presented in the next section.
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3 The Continuous Problem

This section is devoted to introduce the basic notions of operator semigroup
theory needed later on. In order to study the convergence of space and time
discretisations, the given partial differential equation should be formulated as
an abstract Cauchy problem of the form (7) on an appropriate Banach space X
with the linear operator A : D(A) → X, where the connection to the unknown
function w of a partial differential equation is given by (u(t))(x) = w(t, x) for
all t ≥ 0 and x from the corresponding interval/domain (e.g. for all x ∈ [0, π] for
problem (1)). If A were a matrix or any bounded operator on X (A ∈ L (X,X)
in notation), the solution to problem (7) would be simply the exponential etA

applied to the initial value u0. Since A is unbounded in general, its exponential
cannot be defined as the infinite power series. One suspects, however, that the
solutions properties should somehow reflect the properties of the exponential
function.

Definition 1 (Definition I.5.1 in [5]). Let S : [0,∞) → L (X,X) be a map-
ping with the following properties.

(i) The identity S(t+s) = S(t)S(s) holds for all t, s ≥ 0, and one has S(0) = I,
the identity operator on X (semigroup property).

(ii) The mapping t → S(t)f ∈ X is continuous for all f ∈ X (strong continuity).

Then S is called a strongly continuous one-parameter semigroup of bounded lin-
ear operators on the Banach space X.

We note that there always exist constants M ≥ 1 and ω ∈ R such that the
estimate ‖S(t)‖ ≤ Meωt holds for all t ≥ 0 (cf. Proposition I.5.5 in [5]). Consider
the map u(t) = S(t)f for f ∈ X and note that if u is differentiable, then one
has d

dtu(t) = S(t)( d
dtu(t))|t=0 (cf. Lemma II.1.1 in [5]). Hence, the derivative of

the map u at t = 0 determines the derivative at each point t ≥ 0. This suggests
us to give this object a name.

Definition 2 (Definition II.1.2 and Lemma II.1.1 in [5]). The generator
A : D(A) → X of a strongly continuous semigroup S on the Banach space X is
the operator

Af := lim
τ↘0

1
τ

(
S(τ)f − f

)

defined for every f in its domain

D(A) :=
{

f ∈ X : lim
τ↘0

1
τ

(
S(τ)f − f

)
exists

}
.

The next result shows that the semigroup indeed yields the solution to the
corresponding abstract Cauchy problem.

Theorem 1 (Theorem II.1.4 and Proposition II.6.2 in [5]). The gen-
erator A : D(A) → X of a strongly continuous semigroup S has the following
properties.
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(a) Operator A is linear, closed, and densely defined, and it determines the semi-
group uniquely.

(b) For every u0 ∈ D(A), the solution to the abstract Cauchy problem (7) has
the form u(t) = S(t)u0.

This means that the solution of a partial differential equation, reformulated as an
abstract Cauchy problem (7), is determined through the semigroup S generated
by the operator A appearing in (7).

Example 3. Let X = L2(0, π) and (Af)(x) = f ′′(x) for all

f ∈ D(A) = {f ∈ L2(0, π) : f(0) = f(π) = 0}

as for the heat equation (1). Furthermore, let ϕj(x) =
√

2
π sin(jx) for j ∈ N.

One can show that then A generates the semigroup S of the form

S(t)f =
∞∑

j=1

e−j2t〈f, ϕj〉ϕj ,

where 〈·, ·〉 denotes the inner product in L2(0, π). We note that the spectral
method introduced in Example 2 follows this idea to approximate the solution
to the heat Eq. (1).

4 Space and Time Discretisations

In Sect. 3 we saw that well-posed partial differential equations can be formulated
as abstract Cauchy problems, and their solution is given by a strongly contin-
uous semigroup. In Examples 1 and 2 we introduced two usual ways how the
numerical solution to partial differential equations are usually obtained, that is,
by using certain spatial and temporal discretisation schemes. We saw then that
spatial discretisations mean the approximation of the generator A in problem
(7). Discretisation in time is the approximation of the resulting semigroup.

4.1 Generator Approximations as Space Discretisations

Let Xm, m ∈ N, be Banach spaces, and define some kind of projection and
embedding operators as follows, see e.g. in Sect. 4.1 in [8].

Property 1. Let X and Xm, m ∈ N be Banach spaces. Consider the bounded linear
operators Pm ∈ L (X,Xm) and Jm ∈ L (Xm,X) for m ∈ N with the properties

(i) PmJm = Im, the identity on Xm, and
(ii) lim

m→∞ ‖JmPmf − f‖ = 0 for all f ∈ X.

One can show that operators Pm, Jm in Examples 1 and 2 possess Property 1.
The famous result of Trotter [15] and Kato [9] states that, under suitable

conditions, if the generator A is approximated by a sequence of another genera-
tors Am, then the corresponding semigroups Sm will approximate the semigroup
S generated by A, as well.
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Theorem 2 (First Trotter–Kato Approximation Theorem, Theorem
4.2 and Proposition 4.3 in [8], cf. Theorem III.4.8 in [5]). For all m ∈ N

let X and Xm be Banach spaces and let the operators Pm, Jm possess Property 1.
Suppose that for all m ∈ N, A and Am generate the semigroups S and Sm in
X and Xm, respectively. Suppose further that there exists constants M ≥ 1 and
ω ∈ R such that ‖S(t)‖, ‖Sm(t)‖ ≤ Meωt holds for all m ∈ N, t ≥ 0. Then the
following assertions are equivalent.

(i) There is a dense subspace Y ⊂ D(A) such that there is λ > 0 with (λ − A)Y
being dense in X. Furthermore, for all f ∈ Y there is a sequence with elements
fm ∈ D(Am) which satisfies lim

m→∞ ‖fm − Pmf‖Xm
= 0 and

lim
m→∞ ‖Amfm − PmAf‖Xm

= 0 .

(ii) It holds that lim
m→∞ ‖JmSm(t)Pmf − S(t)f‖ = 0 for all f ∈ X uniformly for

t in compact intervals.

Since in both Examples 1 and 2 the sequence Am converge to A in the sense
of Theorem 2(a) and all the other conditions are satisfied as well, Theorem2(b)
implies that um converge to u.

4.2 Semigroup Approximations as Time Discretisations

We consider the abstract Cauchy problem (7) where A generates the strongly
continuous semigroup S. Since multistep time discretisation schemes can also be
treated as one-step methods (see [12]), we only consider one-step time discreti-
sation methods. After some definitions, we will state the convergence results.

Property 2. Let Z be a Banach space, and let the map V : [0,∞) → L (Z,Z)
possess the following properties.

(i) The map V is strongly continuous, that is, the function [0,∞) � τ 
→
V (τ)f ∈ Z is continuous for all f ∈ Z.

(ii) V (0) = I, the identity on Z.

Definition 3. Let S be the semigroup with generator A and consider the
abstract Cauchy problem (7) on the Banach space X. Consider further a map
F : [0,∞) → L (X,X) with Property 2, which is called then time discretisation.

(a) The time discretisation F is called consistent with S if

lim
τ→0

1
τ

(
F (τ)S(t)f − S(t + τ)f

)
= 0

holds for all f ∈ X and uniformly for t in compact intervals.
(b) A time discretisation F is called stable, if there are constants T > 0 and

M ≥ 1 such that ‖F (τ)k‖ ≤ M holds for all τ ≥ 0 and k ∈ N with kτ ≤ T .
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(c) A time discretisation F is called convergent, if for all t ≥ 0, τn → 0, kn → ∞
with knτn → t we have

lim
n→∞ ‖S(t)f − F (τn)knf‖ = 0 for all f ∈ X.

Theorem 1(b) states that the semigroup S corresponds to the solution operator
of the abstract Cauchy problem (7). To get a reliable approximation to S (i.e., a
numerical solution), one has to ensure the convergence of the time discretisation
scheme F . The next celebrated result is the basic of the numerical convergence
analysis.

Theorem 3 (Lax Equivalence Theorem, [11]). A consistent time discreti-
sation is convergent if and only if it is stable.

One can also say something about the order of the convergence, however, maybe
only on a smaller set of initial values.

Definition 4. Let S be the semigroup with generator A and consider the
abstract Cauchy problem (7) on the Banach space X. Consider further a map
F : [0,∞) → L (X,X) with Property 2. Suppose that there is a densely and con-
tinuously embedded subspace Y ⊂ X, which is invariant under the semigroup,
and let p > 0.

(a) The time discretisation F is called consistent with S of order p on Y if there
is a constant C > 0 such that for all f ∈ Y we have

‖F (τ)f − S(τ)f‖ ≤ Cτp+1‖f‖Y .

(b) The time discretisation F is called convergent of order p on Y if for all t ≥ 0
there is a constant C̃ > 0 such that for all f ∈ Y we have

‖F (τ)kf − S(kτ)f‖ ≤ C̃tτp‖f‖Y (10)

for all k ∈ N, τ ≥ 0 with kτ ≤ t.

We note that p may depend on the subspace Y . Essentially by the same way as
proving Theorem 3, the next result can be shown.

Proposition 1. Suppose that there is a densely and continuously embedded sub-
space Y ⊂ X which is invariant under the semigroup operators S(t) satisfing
‖S(t)‖Y ≤ Meωt for some M ≥ 1 and ω ∈ R and for all t ≥ 0. If there is p > 0
such that F is a stable time discretisation scheme which is consistent of order p
on Y , then it is convergent of order p on Y .

Example 4. Let (A,D(A)) generate the semigroup S with ‖S(t)‖ ≤ Meωt for
some M ≥ 1 and ω ∈ R and for all t ≥ 0. For all τ ∈ (0, 1

ω ], we define the implicit
Euler time discretisation as F (τ) = (I − τA)−1 being consistent. Moreover, if
ω = 0 and Y = D(A2), one has p = 1 in (10).
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Since the generator property of the operator A is equivalent to the well-posedness
of the problem (7) (see Theorem II.6.7 in [5]), Theorem 3 and Proposition 1
concern only well-posed problems. There exist results, however, which prove the
generator property of an operator through approximations. They are extremely
important in numerical analysis. We present now one of the most famous ones
by Chernoff [4].

Theorem 4 (Chernoff Product Formula, Cor. III.5.3 in [5]). Let X be
a Banach space and consider a map F : [0,∞) → L (X,X) with the following
properties.

(a) The map F has Property 2.
(b) There exist constants M ≥ 1 and ω ∈ R such that ‖F (t)k‖ ≤ Meωkt for all

t ≥ 0 and k ∈ N.
(c) There is a subset Y ⊂ X such that (λ − A)Y is dense for some λ > ω and

the limit
Af := lim

τ↘0

1
τ

(
F (τ)f − f

)
(11)

exists for all f ∈ Y .

Then the closure A of A generates a strongly continuous semigroup S which is
given by

S(t)f = lim
k→∞

F ( t
k )kf (12)

for all f ∈ X and uniformly for t in compact intervals.

5 The Discrete Problem

In Sect. 3 we saw that the solution to the abstract Cauchy problem (7) is given by
the semigroup generated by the operator A appearing in (7). Thus, if one aims
to approximate the solution to problem (7), one has to approximate the corre-
sponding semigroup S by the product of appropriate operators Fm depending on
m ∈ N. As already seen in Examples 1 and 2, one chooses a space discretisation
scheme which corresponds to the approximation of the generator A by a sequence
of generators Am (cf. Section 4.1), then a time discretisation when the semigroup
Sm is approximated by the product of Fm (cf. Section 4.2). The solution of a
well-posed problem (7) is given by u(t) = S(t)u0 for all t ≥ 0. Application of
a space discretisation means that u(t) is approximated by um(t) = Sm(t)Pmu0,
m ∈ N (cf. Theorem 2). This is further approximated by using a time discretisa-
tion, that is, by um,k = Fm( t

k )kPmu0, m, k ∈ N (cf. Theorem 3 for the semigroup
Sm on Xm).

Definition 5. Let X be a Banach space and A : D(A) → X be the generator
of the strongly continuous semigroup S on X. Furthermore, let Fm : [0,∞) →
L (Xm,Xm) has Property 2 for all m ∈ N. Then um,k = JmFm( t

k )kPmu0 ∈ Xm

is called the numerical solution at time t ≥ 0 to the corresponding abstract
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Cauchy problem (7) with initial value u0. The numerical method is called con-
vergent at time level t ≥ 0 if for all u0 ∈ X one has

lim
m,k→∞

‖um,k−u(t)‖ = 0, that is, lim
m,k→∞

∥
∥JmFm( t

k )kPmu0−S(t)u0

∥
∥ = 0 (13)

uniformly for t in compact intervals.

we note that the notaion lim
m,k→∞

stands for the usual limit for the double indexed
sequences.

Remark 1. The following conditions are sufficient for the convergence (13).

(i) There exists ūm(t) ∈ X such that lim
k→∞

‖um,k − ūm(t)‖ = 0 uniformly for

m ∈ N.
(ii) It holds that lim

m→∞ ‖ūm(t) − u(t)‖ uniformly for t in compact intervals.

These conditions refer to the convergence of discretisations in time and space,
respectively, studied in Sects. 4.2 and 4.1.

When considering well-posed problems (7), the Lax Equivalence Theorem 3 and
the First Trotter–Kato Approximation Theorem2 already imply the conver-
gence.

Proposition 2. Suppose that A, Am generates the semigroups S, Sm on the
Banach spaces X, Xm, respectively, for all m ∈ N, and that the operators Pm,
Jm, m ∈ N, possess Property 1 such that PmX ⊂ D(Am). Suppose further that

lim
m→∞ ‖AmPmf − PmAf‖Xm

= 0 (14)

holds for all f ∈ Y , where Y ⊂ D(A) and (λ − A)Y are dense in X for some
λ > 0. Moreover, let Fm : [0,∞) → Xm be a stable time discretisation which is
consistent with Sm for all m ∈ N. Then Fm is convergent, more precisely, for
all f ∈ X one has

lim
m,k→∞

∥
∥JmFm( t

k )kPmf − S(t)f
∥
∥ = 0

uniformly for t in compact intervals.

Proof. Due to Remark 1, it suffices to study the limits separately. The Lax Equiv-
alence Theorem 3 imply that Fm is convergent in Xm, that is,

lim
k→∞

∥
∥Fm( t

k )kfm − Sm(t)fm

∥
∥

Xm
= 0

holds for all fm ∈ Xm. Since operators Jm : Xm → X are bounded and with the
choice fm = Pmf for f ∈ X, we have that

lim
k→∞

∥
∥JmFm( t

k )kPmf − JmSm(t)Pmf
∥
∥ = 0 (15)
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uniformly for t in compact intervals. From (14), the First Trotter–Kato Approx-
imation Theorem 2 implies that

lim
m→∞ ‖JmSm(t)Pmf − S(t)f‖ = 0 (16)

holds for all f ∈ X uniformly for t in compact intervals. Hence, limits (15) and
(16), and Remark 1 with ūm(t) := JmSm(t)Pmf yield the convergence. ��
The results above all concern well-posed problems. In case when the operator A
is not known to be a generator of a semigroup, a modified version of Chernoff
Product Formula 4 can be applied. The original theorem, presented in Pazy [14],
states the result in the space Xm, however, we formulate it here as a result in
the space X.

Theorem 5 (Modified Chernoff Product Formula, [1]). Let Xm, m ∈ N

be Banach spaces and consider a sequence of maps Fm : [0,∞) → L (Xm,Xm)
with the following properties.

(a) The maps Fm have Property 2 for all m ∈ N.
(b) There exist constants M ≥ 1 and ω ∈ R such that ‖Fm(t)k‖ ≤ Meωkt for all

t ≥ 0 and m, k ∈ N.
(c) There is a subset Y ⊂ X such that (λ − A)Y is dense for some λ > ω and

the limit
lim

m→∞
1
τ

(
JmFm(τ)Pmf − JmPmf

)

exists uniformly for τ in compact intervals, and

Af := lim
τ↘0

lim
m→∞

1
τ

(
JmFm(τ)Pmf − JmPmf

)

exists for all f ∈ Y .

Then the closure A of A generates a strongly continuous semigroup S which is
given by

S(t)f = lim
m,k→∞

JmFm( t
k )kPmf (17)

for all f ∈ X and uniformly for t in compact intervals.

6 Outlook/Applications

With the help of similar techniques presented in Sect. 5, several numerical treat-
ments can be proved to be convergent. We just mention here a few examples
which are of great importance in practice. The convergence of the standard
time discretisation methods, such as Runge–Kutta methods, were analysed by
using Lax Equivalence Theorem3. Even more general rational approximations
are studied in Brenner and Thomée [3]. The convergence of various operator
splitting methods were proved e.g. in Trotter [16], Kato [10], Faragó and Havasi
[6], and Bátkai et al. [1] and [2] by using Chernoff Product Formula, Theorem4
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and its modified version, Theorem5. Exponential integrators were also studied
by using operator semigroup approach in Hochbruck and Ostermann [7]. Non-
linear problems are treated in Palencia and Sanz-Serna [13] contaning the Lax
Equivalence Theorem 3 as a special case of well-posed linear initial value prob-
lems.
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