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Abstract. An extrapolation algorithm is considered for solving linear
fractional differential equations in this paper, which is based on the direct
discretization of the fractional differential operator. Numerical results
show that the approximate solutions of this numerical method has the
expected asymptotic expansions.

1 Introduction

We consider the Richardson extrapolation algorithms for solving the following
fractional order differential equation

C
0 Dα

t y(t) = βy(t) + f(t), 0 ≤ t ≤ 1, (1)
y(0) = y0, (2)

where β < 0 and f is a given function on [0, 1].
Extrapolation can be used to accelerate the convergence of a given sequence,

[1,2,13]. Its applicability depends on the fact that a given sequence of the approx-
imate solutions of the problem possesses an asymptotic expansion. Diethelm [3]
introduced an algorithm for solving the above linear differential equation of frac-
tional order, with 0 < α < 1, Diethelm and Walz [12] proved that the approx-
imate solution of the numerical algorithm in [3] has an asymptotic expansion.
See [5–11] for the numerical methods of the general nonlinear fractional differ-
ential equations.

Recently, Yan, Pal and Ford [14] extended the numerical method in [3] and
obtained a high order numerical method for solving (1) and (2) and proved that
the approximate solution has an asymptotic expansion. In this paper, we give
some numerical results to show that the approximate solutions of the proposed
numerical methods in this paper have the expected asymptotic expansions.

The paper is organized as follows: in Sect. 2, we introduce the numerical
method for solving (1) and (2) and discuss how to approximate the starting values
and the starting integrals appeared in the numerical method. In Sect. 3, we give
some numerical examples to show that the approximate solutions of the proposed
numerical methods in this paper have the expected asymptotic expansions.
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2 Higher Order Numerical Method

In this section we will consider a higher order numerical method for solving (1)
and (2). It is well-known that, when 0 < α < 1, (1) and (2) is equivalent to,
with 0 < α < 1,

R
0 Dα

t [y(t) − y0] = βy(t) + f(t), 0 ≤ t ≤ 1, (3)

where R
0 Dα

t y(t) denotes the Riemann-Liouville fractional derivative defined by,
with 0 < α < 1,

R
0 Dα

t y(t) =
1

Γ (1 − α)
d

dt

∫ t

0

(t − u)−αy(u) dτ. (4)

By using Hadamard finite-part integral, R
0 Dα

t can be written into

R
0 Dα

t y(t) =
1

Γ (−α)

∮ t

0

(t − u)−1−αy(u) du. (5)

Here the integral
∮

denotes a Hadamard finite-part integral [3].
Yan, Pal and Ford [14] extended the numerical method in Diethelm and

Walz [12] and obtained a high order numerical method for solving (1) and (2)
for 0 < α < 1. Let M be a fixed positive integer and let 0 = t0 < t1 < t2 < · · · <
t2j < t2j+1 < · · · < t2M = 1 be a partition of [0, 1] and h the step size. At the
nodes t2j = 2j

2M , the Eqs. (1) and (2) satisfy

R
0 Dα

t [y(t2j) − y0] = βy(t2j) + f(t2j), j = 1, 2, . . . ,M,

and at the nodes t2j+1 = 2j+1
2M , the Eqs. (1) and (2) satisfy

R
0 Dα

t [y(t2j+1) − y0] = βy(t2j+1) + f(t2j+1), j = 0, 1, 2, . . . ,M − 1. (6)

Note that

R
0 Dα

t y(t2j) =
1

Γ (−α)

∮ t2j

0
(t2j − τ)−1−αy(τ) dτ =

t−α
2j

Γ (−α)

∮ 1

0
w−1−αy(t2j − t2jw) dw. (7)

For every j, we denote g(w) = y(t2j − t2jw) and approximate the integral∮ 1

0
w−1−αg(w) dw by

∮ 1

0
w−1−αg2(w) dw, where g2(w) is the piecewise quadratic

interpolation polynomials on the nodes wl = l/2j, l = 0, 1, 2, . . . , 2j. More
precisely, we have, for k = 1, 2, . . . , j,

g2(w) =
(w − w2k−1)(w − w2k)

(w2k−2 − w2k−1)(w2k−2 − w2k)
g(w2k−2)

+
(w − w2k−2)(w − w2k)

(w2k−1 − w2k−2)(w2k−1 − w2k)
g(w2k−1)

+
(w − w2k−2)(w − w2k−1)

(w2k − w2k−2)(w2k − w2k−1)
g(w2k), for w ∈ [w2k−2, w2k].
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Thus

R
0 Dα

t y(t2j) =
t−α
2j

Γ (−α)

∮ 1

0

w−1−αy(t2j − t2jw) dw

=
t−α
2j

Γ (−α)

( j∑
k=1

∮ w2k

w2k−2

w−1−αg2(w) dw + R2j(g)
)

=
t−α
2j

Γ (−α)

( 2j∑
k=0

αk,2jy(t2j−k) + R2j(g)
)

where R2j(g) is the remainder term and αk,2j , k = 0, 1, 2, . . . , 2j are weights
given by

(−α)(−α + 1)(−α + 2)(2j)−ααl,2j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−α(α + 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,
1
2 (F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,
1
2F2(j), for l = 2j.

Here

F0(k) =(2k − 1)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 1) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1),

F1(k) =(2k − 2)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 2) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1),

and

F2(k) =(2k − 2)(2k − 1)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 2) + (2k − 1)

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1).

Hence (3) satisfies for j = 1, 2, . . . ,M ,

y(t2j) =
1

α0,2j − tα
2jΓ (−α)β

[
t2jΓ (−α)f(t2j) −

2j∑
k=1

αk,2jy(t2j−k) + y0

2j∑
k=0

αk,2j − R2j(g)
]
. (8)
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At the nodes t2j+1 = 2j+1
2M , j = 0, 1, 2, . . . ,M − 1, we have

R
0 Dα

t y(t2j+1) =
1

Γ (−α)

∮ t2j+1

0

(t2j+1 − τ)−1−αy(τ) dτ

=
1

Γ (−α)

∮ t1

0

(t2j+1 − τ)−1−αy(τ) dτ

+
t−α
2j+1

Γ (−α)

∮ 2j
2j+1

0

w−1−αy(t2j+1 − t2j+1w) dw.

For every j, we denote g(w) = y(t2j+1 − t2j+1w) and approximate the inte-

gral
∮ 2j

2j+1
0 w−1−αg(w) dw by

∮ 2j
2j+1
0 w−1−αg2(w) dw, where g2(w) is the piecewise

quadratic interpolation polynomials on the nodes wl = l
2j+1 , l = 0, 1, 2, . . . , 2j.

We then get

R
0 Dα

t y(t2j+1) =
1

Γ (−α)

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ

+
t−α
2j+1

Γ (−α)

( j∑
k=1

∮ w2k

w2k−2

w−1−αg2(w) dw + R2j+1(g)
)

=
1

Γ (−α)

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ

+
t−α
2j+1

Γ (−α)

( 2j∑
k=0

αk,2j+1y(t2j+1−k) + R2j+1(g)
)

where R2j+1(g) is the remainder term and αk,2j+1 = αk,2j , k = 0, 1, 2, . . . , 2j.
Hence

y(t2j+1) =
1

α0,2j+1 − tα
2j+1Γ (−α)β

[
tα
2j+1Γ (−α)f(t2j+1) −

2j∑
k=1

αk,2j+1y(t2j+1−k)

+ y0

2j∑
k=0

αk,2j+1 − R2j+1(g) − tα
2j+1

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ
]
. (9)

Here α0,l − tαl Γ (−α)β < 0, l = 2j, 2j + 1, which follow from Γ (−α) < 0, β < 0
and α0,2j+1 = α0,2j < 0.

Let y2j ≈ y(t2j) and y2j+1 ≈ y(t2j+1) denote the approximate solutions of
y(t2j) and y(t2j+1), respectively. We define the following numerical methods for
solving (1) and (2), with j = 1, 2, . . . ,M ,

y2j =
1

α0,2j − tα2jΓ (−α)β

[
t2jΓ (−α)f(t2j)−

2j∑
k=1

αk,2jy2j−k +y0

2j∑
k=0

αk,2j

]
, (10)
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and, with j = 1, 2, . . . ,M − 1,

y2j+1 =
1

α0,2j+1 − tα2j+1Γ (−α)β

[
tα2j+1Γ (−α)f(t2j+1) −

2j∑
k=1

αk,2j+1y2j+1−k

+ y0

2j∑
k=0

αk,2j+1 − tα2j+1

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ
]
. (11)

Yan, Pal and Ford [14] proved the following Theorem.

Theorem 1 (Theorem 2.1 in [14]). Let 0 < α < 1 and M be a positive
integer. Let 0 = t0 < t1 < t2 < · · · < t2j < t2j+1 < · · · < t2M = 1 be
a partition of [0, 1] and h the step size. Let y(t2j), y(t2j+1), y2j and y2j+1 be
the exact and the approximate solutions of (8)–(11), respectively. Assume that
y ∈ Cm+2[0, 1], m ≥ 3. Further assume that we can approximate the starting
value y1 and the starting integral

∫ t1
0

(t2j+1−τ)−1−αy(τ) dτ in (11) by using some
numerical methods and obtain the required accuracy. Then there exist coefficients
cμ = cμ(α) and c∗

μ = c∗
μ(α) such that the sequence {yl}, l = 0, 1, 2, . . . , 2M

possesses an asymptotic expansion of the form

y(t2M ) − y2M =

m+1∑
μ=3

cμ(2M)α−μ +

μ∗∑
μ=2

c∗
μ(2M)−2μ + o((2M)α−m−1), for M → ∞,

that is,

y(t2M ) − y2M =
m+1∑
μ=3

cμhμ−α +
μ∗∑

μ=2

c∗
μh2μ + o(hm+1−α), for h → 0,

where μ∗ is the integer satisfying 2μ∗ < m + 1 − α < 2(μ∗ + 1), and cμ and c∗
μ

are certain coefficients that depend on y.

3 Numerical Simulations

Example 1. Consider the following example in [9], with 0 < α < 1,

C
0 Dα

t y(t) + y(t) = 0, t ∈ [0, 1], (12)
y(0) = 1. (13)

It is well known that the exact solution is

y(t) = Eα(−tα),

where

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)

is the Mittag-Leffler function of order α. Here the given function f is smooth
and f = 0 (Table 1).
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Table 1. Errors for Eqs. (12) and (13) with α = 0.3, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 1.1296e-003

1/20 2.0412e-004 5.3779e-006

1/40 3.6454e-005 4.5025e-007 2.7527e-008

1/80 6.4759e-006 3.8539e-008 1.3800e-009

1/160 1.1475e-006 3.3431e-009 6.9354e-011

1/320 2.0310e-007 2.9225e-010 3.5604e-012

Table 2. Orders (“EOC ”) for Eqs. (12) and (13) with α = 0.3, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.46

1/40 2.49 3.58

1/80 2.49 3.55 4.32

1/160 2.5 3.53 4.31

1/320 2.5 3.52 4.28

Choose the step size h = 1/10. In Table 2, we displayed the errors of the
algorithms (10) and (11) at t = 1 and of the first two extrapolation steps in the
Romberg tableau with α = 0.3. We observe that the first column (the errors
of the basic algorithm without extrapolation) converges as h3−α. The second
column (errors using one extrapolation step)converges as h4−α, and the last
column (two extrapolation steps) converges as h4. We also consider other values
of α ∈ (0, 1). We observe that when α is close to 1, the convergence seems to be
even a bit faster. But when α is close to 0, the convergence is a bit slower than
expected which is consistent with the numerical observation in [12] for the lower
order method.

Example 2. Consider the following example in [4], with 0 < α < 1,

C
0 Dα

t y(t) + y(t) = t4 − 1
2
t3 − 3

Γ (4 − α)
t3−α +

24
Γ (5 − α)

t4−α, t ∈ [0, 1], (14)

y(0) = 0, (15)

whose exact solution is given by y(t) = t4 − 1
2 t3.

Choose the step size h = 1/10. In Table 3, we displayed the errors of the
algorithms (10) and (11) at t = 1 and of the first two extrapolation steps in the
Romberg tableau with α = 0.3. We observe that the first column converges as
h3−α. The second column converges as h4−α and the last column converges as
h4. We also consider other values of α ∈ (0, 1). We observe that when α is close
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Table 3. Errors for Eqs. (12)–(15) with α = 0.3, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 1.4571e-004

1/20 2.3118e-005 8.2097e-007

1/40 3.6127e-006 6.5021e-008 2.0039e-009

1/80 5.6030e-007 5.1186e-009 1.2514e-010

1/160 8.6565e-008 4.0106e-010 7.8051e-012

1/320 1.3348e-008 3.1315e-011 4.9268e-013

Table 4. Orders (“EOC”) for Eqs. (12)–(15) with α = 0.3, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.66

1/40 2.68 3.66

1/80 2.69 3.67 4.00

1/160 2.70 3.67 4.00

1/320 2.70 3.68 3.98

to 1, the convergence seems to be even a bit faster. But when α is close to 0, the
convergence is a bit slower than expected which is consistent with the numerical
observation in [12] for the lower order method (Table 4).
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