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Abstract. In this paper we present a new mathematical model describ-
ing acquired immune response to viral infection. The model is formulated
as a system of six ordinary differential equations (ODE). Conditions for
existence, uniqueness and non-negativity of the solutions are studied.
Numerical simulations for the case of dominating cellular immunity and
various initial values of concentrations of virus particles are presented
and discussed.
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1 Introduction

The use of mathematical models for investigations of the behavior of immune
system of organisms infected by pathogens such as viruses or organisms suffering
from cancer, can be effective tool for determining the tendencies of the disease
under medical treatments or without them [4–6,8–10,12].

An organism that meets a specific antigen for the first time possesses only
a small amount of lymphocytes able to recognize and neutralize the pathogen.
That is why the acquired immune system needs at least several days while bigger
amount of specific lymphocytes are produced and activated. During this period
of time the fight against the pathogen is performed by the innate immunity,
which functions quickly but does not possess specificity and efficiency. As a
result the infection can become strong and difficult to eradicate [1]. That is why
the acquired (or adaptive) immune mechanisms are often needed in order to
clean the infection.

When foreign antigens enter an organism, both humoral and cellular types of
acquired immunity start to function. Their mechanisms of functioning are differ-
ent. The humoral immunity applies antibodies, which neutralize free viral par-
ticles. The cellular immunity system employs cytotoxic T lymphocytes (CTL),
which destroy infected host cells [1].
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In our paper we present a model, which is a generalization of a basic model
proposed by G. Marchuk [10] and a model proposed by D. Wodarz [12]. In our
model we assume that the growth of the virus depends on the amount of the
infected cells as well as on the amount of the free viral particles that have entered
the organism. Additionally, we suppose that the production of antibodies and
CTL depends on the degree of the damage of the target organ: the higher is the
damage, the weaker is the production of antibodies and CTL.

The purpose of this paper is to illustrate the application of mathematical and
computational methods to immunology. The contents of our work are organized
as follows. In Sect. 2 we describe our mathematical model of acquired immune
response to viral infection. The model is a complicated system of ordinary dif-
ferential equations. Theorem for existence, uniqueness and non-negativity of its
solution is proved. In Sect. 3 we present some results of our simulations and
comment their biological meaning.

2 Mathematical Model

The interacting populations included in our model and their notations are the
following:

– x(t) - concentration of the susceptible uninfected cells of the target organ;
– y(t) - concentration of the infected cells;
– v(t) - concentration of the free virus particles;
– z(t) - concentration of CTL specific for the virus;
– w(t) - concentration of antibodies (immunoglobulins) specific for the virus;
– m(t) - degree of the target organ damage.

The proposed model describing the time dynamics of the considered variables
consists of the following six ordinary differential equations (ODE):

ẋ(t) = L − dx(t) − βx(t)v(t), (1)

ẏ(t) = βx(t)v(t) − ay(t) − py(t)z(t), (2)

v̇(t) = ky(t)v(t) − qv(t)w(t), (3)

ż(t) = cξ(m)v(t)z(t) − δ(z(t) − z̄) − by(t)z(t), (4)

ẇ(t) = γξ(m)v(t)w(t) − h(w(t) − w̄) − rv(t)w(t), (5)

ṁ(t) = sv(t) − nm(t). (6)

We suppose that the parameters of the model (1) - (6) are non-negative con-
stants and parameters L, z̄ and w̄ are positive. We look for solution such that
the unknown functions are continuously differentiable with non-negative initial
conditions.

Equation (1) describes the dynamics of the population of the susceptible
uninfected cells. The meaning of its parameters is the following: L describes
the production of uninfected cells; d - the rate of decrease of uninfected cells due
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to their natural death; β - the rate of decrease of uninfected cells due to their
infection by virus.

Equation (2) describes the dynamics of the population of the infected cells.
Parameter a characterizes the decrease of concentration of infected cells due to
their natural death; p denotes the rate of decrease of infected cells due to their
destruction by CTL.

Equation (3) describes the time dynamics of the concentration of free virus
particles. The viruses are produced inside the infected cells. The meaning of
its parameters is the following: k denotes the rate of production of virus par-
ticles inside the infected cells; q - the decrease of virus particles due to their
neutralization by antibodies.

Equation (4) describes the dynamics of CTL. The meaning of its parameters
is the following: c characterizes the production of CTL; δ - the natural death
of CTL; b - the decrease of concentration of CTL due to their killing activity
against infected cells; z̄ is the amount of CTL circulating in a healthy organism.

Equation (5) describes the dynamics of the concentration of antibodies. Their
production depends on the amount of viruses and on the degree of target organ
damage. The meaning of its parameters is the following: γ characterizes the
production of antibodies; h - the rate of their natural death; r - the decrease of
concentration of antibodies due to their antiviral activity; w̄ is the amount of
antibodies circulating in a healthy organism.

Equation (6) describes the degree of target organ damage. The damage
depends on the amount of virus particles and can decrease due to repair processes
in the organism. The meaning of its parameters is the following: s denotes the
rate of damage of the target organ by viruses; n - the rate of recovery of the
target organ.

ξ(m) (participating in Eqs. (4) and (5)) is assumed to be non-increasing non-
negative continuous function that accounts for the violation of the normal func-
tioning of the immune system due to the damage of the target organ [1]. We
assume that there exists its limit value m̄ ∈ (0, 1). If the value of m is less than
m̄ we suppose that the damage of the infected organ is small and it does not
affect the efficiency of the immune system. On the other hand, if m is greater
than m̄, we suppose that the damage of the infected organ is considerable and the
immune response is weakened. The form of the function ξ(m) is not uniquely
defined. It can be chosen such that ξ(m) = 1 for m ≤ m̄ and ξ(1) = 0. For
example it can be defined as follows:

ξ(m) =
{

1 for 0 ≤ m ≤ m̄,
m−1
m̄−1 for m̄ < m ≤ 1.

(7)

Now we formulate theorems for non-negativity, existence and uniqueness of the
solution to model (1) - (6).

Theorem 1. If the system (1) - (6) with initial conditions x(0) = x0 > 0,
y(0) = y0 ≥ 0, v(0) = v0 ≥ 0, z(0) = z0 = z̄ > 0, w(0) = w0 = w̄ > 0,
m(0) = m0 ≥ 0 possesses solution then this solution is non-negative for every
t ≥ 0.
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Proof. Consider Eq. (1). Let us assume that that there exist values of t > 0
such that x(t) < 0. From the initial condition x(0) > 0 and the continuity of
the function x(t) it follows that there exists an instant in time t1 at which x(t)
changes its sign (i.e. x(t) > 0 for t < t1, x(t1) = 0 and x(t) < 0 for t > t1). From
here we would have ẋ(t1) < 0. This would be a contradiction with Eq. (1) giving
ẋ(t1) = L > 0. Therefore the assumption about the possible negativity of x(t)
is incorrect.

The solution to Eq. (3) can be written in the form:

v(t) = v(0)e
∫ t
0 [ky(u)−qw(u)]du ≥ 0 for t ≥ 0.

From the non-negativity of x(t) and v(t) the non-negativity of y(t) follows, since
from Eq. (2) we obtain:

y(t) = e− ∫ t
0 [pz(u)+a]du

[
y(0) +

∫ t

0

βx(u)v(u)e
∫ t
0 [pz(u)+a]dudu

]
.

From Eq. (4) the non-negativity of z(t) follows, since

z(t) = e
∫ t
0 [cξ(m)v(u)−β−by(u)]du

[
z(0) +

∫ t

0

δz̄e− ∫ t
0 [cξ(m)v(u)−β−by(u)]dudu

]
.

Similarly, from Eq. (5) the non-negativity of w(t) follows, since

w(t) = e
∫ t
0 [γξ(m)v(u)−h−rv(u)]du

[
w(0) +

∫ t

0

hw̄e− ∫ t
0 [γξ(m)v(u)−h−rv(u)]dudu

]
.

Finally, from Eq. (6) the non-negativity of m(t) follows, since

m(t) = e−nt
[
m(0) +

∫ t

0

sv(u)enudu
]
.

Theorem 2. For every T > 0 on the interval [0, T ] there exists a unique con-
tinuously differentiable solution to the system (1) – (6) with initial conditions
x(0) = x0 > 0, y(0) = y0 ≥ 0, v(0) = v0 ≥ 0, z(0) = z0 = z̄ > 0,
w(0) = w0 = w̄ > 0, m(0) = m0 ≥ 0.

Proof. The local existence of the solution follows from the continuity of the right-
hand sides (Peano theorem [7]). The uniqueness of the solution follows from the
continuity of the partial derivatives of the right-hand sides with respect to the
unknown functions [7].

It can be shown that the functions x(t), y(t) and v(t) are bounded on [0, T ].
Let us denote their maximal values with X, Y and V respectively. The following
a priory bounds can be established for the solution on [0, T ]:

ẋ(t) ≤ L − dx(t), (8)

ẏ(t) ≤ βXv(t) − ay(t), (9)
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v̇(t) ≤ kY v(t), (10)

ż(t) ≤ cV z(t) − δ(z(t) − z̄), (11)

ẇ(t) = γV w(t) − h(w(t) − w̄), (12)

ṁ(t) = sv(t) − nm(t). (13)

By the estimations (8) -(13) we see that, the nonlinear system (1) – (6) behaves
not worse than a linear system. Therefore a global solution on [0, T ] exists.

3 Numerical Experiments and Discussion

The Cauchy problem (1)–(6) consisting of six nonlinear ODE is solved numer-
ically. The system is solved by using the code ode15s from the Matlab ODE
suite with RelTol = 10−3 and AbsTol = 10−4. ode15s is a multistep solver
using numerical differential formulae (see, e.g. [11]).
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Fig. 1. Concentrations of antibodies (AB) and CTL at v0 = 0.1 (low initial virus load).

The aim of our numerical experiments is to study the role of the magnitude v0
of the initial virus load for the outcome of the competition between the immune
system and the viral infection in the case when both parts of the immune systems
(the cellular and the humoral immunity) are strong.

The initial conditions and parameters of the model have been set to simulate
a full adaptive (humoral and cellular) immune response to viral infection. We
have assumed the initial presence of susceptible uninfected cells, virus particles,
antibodies and precursor CTL, as well as the initial absence of infected cells and
effector CTL. The initial values for populations and the parameters have been
set as follows:

x(0) = 1, y(0) = 0, z(0) = 0.9, w(0) = 1,m(0) = 0,
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Fig. 2. Concentration of infected cells at v0 = 0.1 (low initial virus load).
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Fig. 3. Concentrations of antibodies and CTL at v0 = 0.2 (high initial virus load).

L = 10, d = 2, β = 0.01, a = 0.1,

p = 1, k = 1, q = 1,

c = 1, δ = 0.1, b = 10, γ = 0.5, h = 0.1,

r = 10, s = 10, n = 1.5.

Additionally, we assume that ξ(m) = 1 for every value of m and chose various
values of the parameter v0 specified in the captions of the figures.

Results of our numerical experiments are presented in Figs. 1–4. In the first
part of our numerical experiments we consider the case of low initial virus load
(v0 = 0.1). The results for the dynamics of concentrations of antibodies and
CTL as well as of infected cells are presented in Figs. 1 and 2 respectively.

In the second part of our numerical experiments we consider the case of high
initial virus load (v0 = 0.2). The results are presented in Figs. 3 and 4.
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Fig. 4. Concentration of infected cells at v0 = 0.2 (high initial virus load).

Our results show that in the presence of both cellular and humoral types of
immunity, the strength and prolongation of infection does not depend signifi-
cantly of the initial virus load. Strong cellular immunity kill the infected cells,
which are needed for the viral replication. On the other hand, strong humoral
response is able to destroy the free viral particles. Working in cooperation, the
both adaptive immune mechanisms are able to eradicate the infection very effec-
tively. Thus, the enhancement of the immune system is of crucial importance in
the fight against viral infections.

We conclude that numerical simulations utilizing mathematical models may
lead to a reduction in the quantity of experimental studies performed in virology.
One of our future aims includes the determination of the parameters of the
system (1)–(6) in order to fit existing experimental and clinical data. Another
future plan is investigation of the role of function ξ(m).
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