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Abstract. This work deals with the derivation of a novel transparent
boundary condition (TBC) for the coupling of the standard “parabolic”
equation (SPE) in underwater acoustics (assuming cylindrical symmetry)
with an elastic parabolic equation (EPE) for modelling the sea bottom
extending hereby the existing TBCs for a fluid model of the seabed.
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1 Introduction

“Parabolic” equation (PE) models appear in (underwater) acoustics as one-
way approximations to the Helmholtz equation in cylindrical coordinates with
azimuthal symmetry. These PE models have been widely used in the recent
past for wave propagation problems in various application areas, e.g. seismology,
optics and plasma physics but here we focus on their application to underwater
acoustics, where PEs have been introduced by Tappert [17]. For more details we
refer to [10].

In computational ocean acoustics one wants to determine the acoustic pres-
sure p(z, r) emerging from a time-harmonic point source situated in the water
at (zs, 0). The radial range variable is denoted by r > 0 and the depth variable
is 0 < z < zb. The water surface is located at z = 0, and the (horizontal) sea
bottom at z = zb. We point out that irregular bottom surfaces and sub-bottom
layers can be included by simply extending the range of z. For an alternative
strategy based on transformation techniques, including proofs of well-posedness
in the case of upsloping and downsloping wedge-type domains in 2D and 3D
we refer to [2,6]. Further, the 3D treatment of a sloping sea bootom in a finite
element context was presented in [16].
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In the sequel we denote the local sound speed by c(z, r), the density by ρ(z, r),
and the attenuation by α(z, r) ≥ 0. n(z, r) = c0/c(z, r) is the refractive index,
with a reference sound speed c0. The reference wave number is k0 = 2πf/c0,
where f denotes the (usually low) frequency of the emitted sound.

1.1 The Parabolic Approximations

The acoustic pressure p(z, r) satisfies the Helmholtz equation

1
r

∂

∂r

(
r

∂p

∂r

)
+ ρ

∂

∂z

(
ρ−1 ∂p

∂z

)
+ k2

0N2p = 0, r > 0, (1)

with the complex refractive index (where α accounts for damping in the medium)

N(z, r) = n(z, r) + iα(z, r)/k0. (2)

In the far field approximation (k0r � 1) the (complex valued) outgoing acoustic
field

ψ(z, r) =
√

k0r p(z, r) e−ik0r (3)

satisfies the one-way Helmholtz equation:

ψr = ik0

(√
1 − L − 1

)
ψ, r > 0. (4)

Here,
√

1 − L is a pseudo-differential operator, and L the Schrödinger operator

L = −k−2
0 ρ ∂z(ρ−1∂z) + V (z, r) (5)

with the complex valued “potential”

V (z, r) = 1 − N2(z, r) = 1 − [
n(z, r) + iα(z, r)/k0

]2
. (6)

“Parabolic” approximations of (4) are formal approximations of the pseudo–
differential operator

√
1 − L by rational functions of L. This procedure yields a

PDE that is easier to solve numerically than the pseudo-differential equation (4).
For more details we refer to [17,18]. The linear approximation of

√
1 − λ by 1− λ

2
gives the narrow angle or standard “parabolic” equation (SPE) of Tappert [17]

ψr = − ik0

2
Lψ, r > 0. (7)

This Schrödinger equation (7) is a good description of waves with a propagation
direction within about 15◦ of the horizontal. Rational approximations of the
form

(1 − λ)
1
2 ≈ f(λ) =

p0 − p1λ

1 − q1λ
(8)
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with real p0, p1, q1 yield the wide angle “parabolic” equations (WAPE)

ψr = ik0

(
p0 − p1L

1 − q1L
− 1

)
ψ, r > 0. (9)

improving the description of the wave propagation up to angles of about 40◦.
Here we focus on a proper boundary condition (BC) at the sea bottom for

the SPE (7) coupled to an elastic “parabolic” model for the sea bottom. At the
water surface one usually employs a Dirichlet BC ψ(z = 0, r) = 0 and at the
sea bottom one has to couple the wave propagation in the water to the wave
propagation in the bottom.

1.2 The Coupling Condition

For the bottom z > zb one usually use a fluid model (i.e. assuming that (7) or (9)
with possibly different rational approximation (8) also hold for z > zb) with
constant parameters cb, ρb, αb or with a linear squared refractive index [7,11].

In [4] we analyzed this coupling of WAPEs with different parameters p0, p1,
q1 and it turned out that the coupled model is well-defined (and the resulting
evolution equation is conservative in L2(R+; (σρ)−1dz)) if the coupling condition

p1(z)/q1(z) =: μ = const (10)

is satisfied. Hence, it is not advisable to couple the WAPE and the SPE (where
p1 = 1/2; q1 = 0) numerically; in this case the evolution is not conservative in
the dissipation-free case (α ≡ 0) [4]. If the parameters p0, p1, q1 are fixed in
one medium, condition (10) still leaves two free parameters to choose a different
rational approximation model of (1 − λ)

1
2 in (8) for the second medium (cf. [8]).

Hence, one can in fact obtain a better approximation in the second medium than
with the originally intended “parabolic approximation”.

1.3 Transparent Boundary Conditions

In practical simulations one is only interested in the acoustic field ψ(z, r) in the
water, i.e. for 0 < z < zb. While the physical problem is posed on the unbounded
z-interval (0,∞), one wishes to restrict the computational domain in the z-
direction by introducing an artificial boundary at or below the sea bottom. This
artificial BC should of course change the model as little as possible, or ideally
not at all.

In [13,15] Papadakis derived impedance BCs or transparent boundary condi-
tions (TBC) for the SPE and the WAPE, which completely solves the problem of
restricting the z–domain without changing the physical model: complementing
the WAPE (9) with a TBC at zb allows to recover — on the finite computational
domain (0, zb) — the exact half-space solution on 0 < z < ∞. As the SPE is a
Schrödinger equation, similar strategies have been developed independently for
quantum mechanical applications, cf. the review article [1].
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Let us finally note, that Zhang and Tindle [20] proposed an alternative app-
roach to the impedance BCs or TBCs of Papadakis. By minimizing the reflec-
tion coefficient at the water-bottom interface they derived in their equivalent
fluid approximation an expression for a complex fluid density that can be used
for modelling an elastic sea bottom in a classical fluid model. However, this
approach yields only satisfactory results for low shear wave speeds [20].

This work is organized as follows: In Sect. 2 we review the TBC for the SPE
coupled to an elastic bottom in the frequency domain and in Sect. 3 present in
detail the analytic inverse Laplace transformation to obtain this TBC in the
time domain. Finally, we draw a conclusion and summarize the basic inversion
rules previously used.

2 The Transparent Boundary Condition for a Fluid
Bottom

The basic idea of the derivation is to explicitly solve the equation in the sea bot-
tom, which is the exterior of the computational domain (0, zb). The TBC for the
SPE (or Schrödinger equation) was derived in [3,13,15] for various application
fields:

ψ(zb, r) = −(2πk0)− 1
2 e

π
4 i ρb

ρw

∫ r

0

ψz(zb, r − τ) eiωbττ− 1
2 dτ, (11)

with ωb = k0(N2
b −1)/2. This BC is nonlocal in the range variable r and involves

a mildly singular convolution kernel. Equivalently, it can be written as

ψz(zb, r) = −
(

2k0

π

) 1
2

e− π
4 i eiωbr ρw

ρb

d

dr

∫ r

0

ψ(zb, τ) e−iωbτ (r − τ)− 1
2 dτ. (12)

The r.h.s. of (12) can be expressed formally as a Riemann-Liouville fractional
derivative of order 1

2 , cf. [3]:

ψz(zb, r) = −
√

2k0e
− π

4 i eiωbr ρw

ρb
∂1/2

r

[
ψ(zb, r) e−iωbr

]
. (13)

3 The Transparent Boundary Condition for an Elastic
Bottom

The coupling of the SPE with an elastic parabolic equation (EPE) for the sea
bottom was described in [5,9,19]. Papadakis et al. [14,15] derived a TBC for
this coupling in the frequency regime. It reads for the Laplace transformed wave
field:

ψ̂(zb, s) = − ρb

ρw

1
k0N4

s

1
+
√

Mp(s)

×
[(

2Ms(s) + N2
s

)2 − 4 +

√
Mp(s) +

√
Ms(s)

(
Ms(s) + N2

s

)]
ψ̂z(zb, s), (14)
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with the notation

Mp(s) = 1 − N2
p − i

2
k0

s, Ms(s) = 1 − N2
s − i

2
k0

s. (15)

Here, Np = np + iαp/k0 and Ns = ns + iαs/k0 denote the complex refractive
indices for the compressional and shear waves in the bottom (cf. (2)).

4 The Transparent Boundary Condition in the Time
Domain

In a tedious calculation the transformed TBC (14) can indeed be inverse Laplace
transformed and it reads:

ψ(zb, r) =

C

[∫ r

0

ψz(zb, r − τ) eiωpτg(τ) dτ − 2iϕ

∫ r

0

ψzr(zb, r − τ) eiωpττ− 1
2 dτ

]
, (16)

with

C = − ρb

ρw

2

k
5/2
0 N4

s

√
2
π

e
π
4 i, ωp =

k0

2
(
N2

p − 1
)
, ϕ = −k0

2
(
N2

p − N2
s

)
,

and the kernel g(τ) given by

g(τ) = −3
(
1 − eiϕτ

)
τ− 5

2 + i
k0

2
(
3N2

p − N2
s − 2N2

s eiϕτ
)
τ− 3

2

+
k2

0

2
(
N4

p − N2
p N2

s + 1
2N4

s + N2
p − N2

s

)
τ− 1

2 = O
(
τ− 1

2
)
, for τ → ∞.

While this inverse transformation was carried out numerically in [14,15], our
novel analytical TBC in the time regime may simplify both the analysis and
the numerical solution of this coupled model. Let us remark that an asymptotic
analysis of the elastic seabed was made by Makrakis [12].

4.1 Derivation of (16)

With the abbreviation ψ̂(s) := ψ̂(zb, s) and the notation

mp(s) =
k0

2
Mp(s) = −i

[
s − i

k0

2
(N2

p − 1)
]
, (17)

ms(s) =
k0

2
Ms(s) = −i

[
s − i

k0

2
(N2

s − 1)
]
, (18)
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the transformed TBC (14) reads

ψ̂(s)

= − ρb

ρw

1
k0N4

s

[
k0

2

(
4
k0

ms(s) + N2
s

)2
+
√

mp(s)
− 4

√
2
k0

+
√

ms(s)
( 2

k0

ms(s) + N2
s

)]
ψ̂z(s)

= − ρb

ρw

8
√

2

k
5/2
0 N4

s

[(
ms(s) + k0

4 N2
s

)2
+
√

mp(s)
− 4 +

√
ms(s)

(
ms(s) +

k0

2
N2

s

)]
ψ̂z(s), (19)

where we denote the content of the square brackets by f(s − σ) with

σ = i
k0

2
(
N2

p − 1
)
. (20)

We observe that we can write

mp(s) = −i [s − σ], ms(s) = −i
[
s − σ + i

k0

2
(N2

p − N2
s )

]
.

The next step is a shift in the argument of ψ̂z(s) in (19) by σ:

ψ̂(s + σ) = − ρb

ρw

8
√

2

k
5/2
0 N4

s

f(s) ψ̂z(zb, s + σ), (21)

Taking the branch with positive real part +
√−i = e− π

4 i we get the kernel f(s)

f(s) =

[−is + k0
2 (N2

p − N2
s ) + k0

4 N2
s

]2
e− π

4 i +
√

s

− e− π
4 i +

√
s + i

k0

2
(N2

p − N2
s )(−i) +

√
s + i

k0

2
(N2

p − N2
s )

[
s + i

k0

2
N2

p

]
,

where [
· · ·

]2
= −

[
s + i

k0

2
N2

p − i
k0

4
N2

s

]2

= −
[
s + i

k0

2
(N2

p − N2
s )

] [
s + i

k0

2
N2

p

]
+

k2
0

16
N4

s ,

i.e. we have

f(s) = e
π
4 i

{
1
+
√

s

[
k2

0

16
N4

s −
[
s + i

k0

2
(N2

p − N2
s )

] [
s + i

k0

2
N2

p

]]

+ +

√
s + i

k0

2
(N2

p − N2
s )

[
s + i

k0

2
N2

p

]}

= e
π
4 i

{[
+

√
s + i

k0

2
(N2

p − N2
s ) − +

√
s − i

k0

2
(N2

p − N2
s )

1
+
√

s

]
·

·
[
s + i

k0

2
N2

p

]
+

k2
0

16
N4

s

1
+
√

s

}

= e
π
4 i

{[
+
√

s − γ − +
√

s + γ
1
+
√

s

] [
s + i

k0

2
N2

p

]
+

k2
0

16
N4

s

1
+
√

s

}
,



A Transparent Boundary Condition for an Elastic Bottom 21

with
γ = −i

k0

2
(N2

p − N2
s ).

Hence, inserting in (21) we obtain

ψ̂(s + σ) = C̃

{
i
k0

2
N2

p

[
+
√

s − γ − +
√

s + γ
1
+
√

s

]
+

k2
0

16
N4

s

1
+
√

s

}
ψ̂z(s + σ)

+ C̃

[
+
√

s − γ − +
√

s + γ
1
+
√

s

] {
s ψ̂z(s + σ)

}
, (22)

where

C̃ = − ρb

ρw

8
√

2

k
5/2
0 N4

s

e
π
4 i. (23)

Next, an inverse Laplace transformation of (22) yields the convolution integral

ψ(r) e−σr = C̃

∫ r

0

ψz(r − τ) e−σ(r−τ) g1(τ) dτ

+ C̃

∫ r

0

− ∂

∂τ

[
ψz(r − τ) e−σ(r−τ)

]
g2(τ) dτ, (24)

g1(τ) = L−1

{
i
k0

2
N2

p

[√
s − γ − √

s + γ
1√
s

]
+

k2
0

16
N4

s

1√
s

}

= i
k0

2
N2

p L−1
{√

s − γ − √
s
}

+
k2

0

4
(N2

p − 1
2N2

s )2L−1

{
1√
s

}

= i
k0

4
√

π
N2

p (1 − eγτ ) τ− 3
2 +

k2
0

4
√

π
(N2

p − 1
2N2

s )2 τ− 1
2 , (25)

g2(τ) = L−1

{√
s − γ − √

s + γ
1√
s

}
=

1
2
√

π
(1 − eγτ ) τ− 3

2 +
γ√
π

τ− 1
2

=
1

2
√

π

[
(1 − eγτ ) τ− 3

2 + γ τ− 1
2

]
︸ ︷︷ ︸

=g3(τ)

+
γ

2
√

π
τ− 1

2

︸ ︷︷ ︸
=g4(τ)

, (26)

I3 =
∫ r

0

− ∂

∂τ

[
ψz(r − τ) e−σ(r−τ)

]
g3(τ) dτ

=
∫ r

0

ψz(r − τ) e−σ(r−τ)g′
3(τ) dτ − ψz(r − τ) e−σ(r−τ)g3(τ)

∣∣∣τ=r

τ=0︸ ︷︷ ︸
=0 (with ψz(0)=0)

, (27)
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ψ(r) e−σr = C̃

∫ r

0
ψz(r − τ) e−σ(r−τ)

[
g1(τ) + g′

3(τ)
]
dτ

+ C̃

∫ r

0
− ∂

∂r

[
ψz(r − τ) e−σ(r−τ)

]
g4(τ) dτ

= C̃

∫ r

0
ψz(r − τ) e−σ(r−τ)

[
g1(τ) + g′

3(τ)
]
dτ

+ C̃

∫ r

0

[
ψzr(r − τ) e−σ(r−τ) − σψz(r − τ) e−σ(r−τ)

]
g4(τ) dτ, (28)

i.e.

ψ(r) = C̃

[∫ r

0

ψz(r − τ) eστ g̃(τ) dτ +
∫ r

0

ψzr(r − τ) eστg4(τ) dτ

]
, (29)

where
g̃(τ) :=

[
g1(τ) + g′

3(τ) − σg4(τ)
]
. (30)

We calculate

g′
3(τ) =

1
2
√

π

[
−3

2
(1 − eγτ ) τ− 5

2 − γ eγτ τ− 3
2 − γ

2
τ− 3

2

]

=
1

4
√

π

[
−3(1 − eγτ ) τ− 5

2 − 2γ( 12 + eγτ ) τ− 3
2

]
, (31)

and

σg4(τ) =
σγ

2
√

π
τ− 1

2 =
1

4
√

π

k2
0

2
(N2

p − 1)(N2
p − N2

s ) τ− 1
2 , (32)

i.e. (30) gives finally

g̃(τ) =
1

4
√

π

[
ik0N

2
p

(
1 − eγτ

)
τ− 3

2 + k2
0

(
N2

p − 1
2N2

s

)2
τ− 1

2 − 3
(
1 − eγτ

)
τ− 5

2

+ ik0

(
N2

p − N2
s

)(
1
2 + eγτ

)
τ− 3

2 − k2
0

2
(
N2

p − 1
)(

N2
p − N2

s

)
τ− 1

2

]

=
1

4
√

π

[
k2

0

2
(
N4

p − N2
p N2

s + 1
2N4

s + N2
p − N2

s

)
τ− 1

2

+ i
k0

2
(
3N2

p − N2
s − 2N2

s eγτ
)
τ− 3

2 − 3
(
1 − eγτ

)
τ− 5

2

]

= O(τ− 1
2 ), τ → ∞. (33)

Finally, we define ϕ, ω, by setting γ =: iϕ, σ =: iω and

g(τ) = 4
√

πg̃(τ), C =
C̃

4
√

π
. (34)

This completes the calculation of (16).
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5 Conclusion and Outlook

First, we will make first numerical investigations for these new TBCs and investi-
gate their superiority compared to using their formulation in transformed space.
Next, instead of using an ad-hoc discretization of the analytic transparent BC
we will construct discrete TBCs of the fully discretized half-space problem in
the spirit of [4].

Acknowledgments. The first author was supported by the FWF (project I 395-N16
and the doctoral school “Dissipation and dispersion in non-linear partial differential
equations”).

Appendix: Laplace–Transformations

L−1
{√

s − γ − √
s
}

=
1

2
√

π
(1 − eγt) t−

3
2 , (L.1)

L−1

{
1√
s

}
=

1√
π

t−
1
2 , (L.2)

L−1
{

ψ̂(s + σ)
}

= ψ(t) e−σt, (L.3)

L−1
{

s ψ̂(s + σ)
}

=
d

dt

{
ψ(t) e−σt

}
if ψ(0) = 0. (L.4)
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