
Matrix-Free Iterative Processes
for Implementation of Implicit

Runge–Kutta Methods

Boris Faleichik(B) and Ivan Bondar

Belarusian State University, 220030 Minsk, Belarus
faleichik@bsu.by

Abstract. In this work we present so-called generalized Picard itera-
tions (GPI) – a family of iterative processes which allows to solve mildly
stiff ODE systems using implicit Runge–Kutta (IRK) methods without
storing and inverting Jacobi matrices. The key idea is to solve nonlinear
equations arising from the base IRK method by special iterative process
based on the idea of artificial time integration. By construction these
processes converge for all asymptotically stable linear ODE systems and
all A-stable base IRK methods at arbitrary large time steps. The con-
vergence rate is limited by the value of “stiffness ratio”, but not by
the value of Lipschitz constant of Jacobian. The computational scheme
is well suited for parallelization on systems with shared memory. The
presented numerical results exhibit that the proposed GPI methods in
case of mildly stiff problems can be more advantageous than traditional
explicit RK methods.

Keywords: Runge–Kutta methods · Stiff problems · Parallel methods

1 Generalized Picard Iterations

Consider an initial value problem for the system of ordinary differential equations

y′(t) = f(t, y(t)), y(t0) = y0, (1)

where y : IR → IRn, f : IR × IRn → IRn, and some base s-stage implicit Runge–
Kutta (RK) method for this problem:

y1 = y0 + τ

s∑

i=0

bif(t0 + ciτ, Yi).

Here y1 ≈ y(t0 + τ), and Yi ∈ IRn are unknown stage values which satisfy the
following system of nonlinear equations: Yi = y0+τ

∑s
j=0 aijf(t0+cjτ, Yj), i =

1, . . . , s. We use standard notation for RK method coefficients
(
aij

)s

i,j=1
= A,

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 177–184, 2015.
DOI: 10.1007/978-3-319-20239-6 17

178 B. Faleichik and I. Bondar

(b1, . . . , bs)T = b, (c1, . . . , cs)T = c. In practice it is handy to perform a standard
change of variables to minimize roundoff issues: Zi = Yi − y0:

ri(Z) = −Zi + τ

s∑

j=1

aijf(t0 + cjτ, y0 + Zj) = 0, i = 1, . . . , s, (2)

or simply

r(Z) = (r1(Z), . . . , rs(Z)) = 0, Z = (Z1, . . . , Zs)T . (3)

Our goal is to construct a method for matrix-free solution of (3), i.e. without
storing and inverting Jacobian matrix of f , which is usually done when Newton’s
or similar methods are used. In [1,2] we proposed a family of such methods,
which is called generalized Picard iterations. Let’s give a brief description of the
approach.

The idea is to use artificial time integration of an ‘embedding’ differential
equation Z ′ = r(Z) by some auxiliary explicit one-step method of RK type with
constant artificial time step ω. This results in the process which we shall call the
generalized Picard iteration (GPI). Its general form is simply

Z [m+1] = Φ(Z [m]), m = 1, 2, . . . (4)

where Φ is the time-stepping mapping of the auxiliary method. The key task
now is to define this mapping, i.e. to determine the coefficients of the auxiliary
method. We perform this by optimizing the convergence behavior of (4) on linear
problems. To make this precise we shall give the following definition.

Definition 1. Consider the linear model ODE y′(t) = λy(t), λ ∈ C, and cor-
responding GPI process (4) for the solution of induced RK equation of the form
(3). A region D ⊂ C, such that (4) converges for all λτ ∈ D is called the linear
convergence region of (4).

By substituting f(t, y) = λy in (2) we have

r(Z) = (λτA − I)Z + g0, Z ∈ IRs, (5)

where g0 = λτA(y01s), 1s = (1, ...1)T ∈ IRs. In this case we have

Φ(Z) = R(ω(λτA − I))Z + Q(ω, λτA − I)g0, (6)

where R is the stability polynomial of the auxiliary method, Q(ω, z) = (R(ωz)−
1)/z. According to the convergence criterion of linear fixed-point iterations, the
linear convergence region of GPI (4) in this case will be

D =
s⋂

i=1

μ−1
i (ω−1S + 1), (7)

where {μi} = Σ(A), Σ(·) is spectrum of a matrix, and S is the stability region
of the auxiliary method: S = {z ∈ C: |R(z)| < 1}. Furthermore, the convergence

Matrix-Free Iterative Processes for Implementation 179

Fig. 1. Convergence regions of ordinary (upper) and ‘preconditioned’ (lower) GPI
methods for base RadauIIA 4-stage method and auxiliary explicit Euler method. Black
points are μ−1

i . Contour lines correspond to the constant values of convergence factor
K(z) (8), (10).

factor of GPI process for (6) is determined by the spectral radius of R(ω(λτA −
I)), which is equal to K(λτ), where

K(z) = max
i

|R(ω(zμi − 1))|. (8)

The examples of convergence regions for GPI based on (2) with 7th order
RadauIIA base method [3, Sect. IV.5] and explicit Euler method being the aux-
iliary method are shown in the first row of Fig. 1. We see that generally as ω → 0
the area of D increases, but the overall convergence factor grows significantly.

In order to improve the situation instead of (2) we consider the ‘precondi-
tioned’ RK system

ri(Z) = −
s∑

j=1

ãijZj + τf(t0 + ciτ, y0 + Zi) = 0, i = 1, . . . , s, (9)

where (ãij) = Ã = A−1. If A is not singular this system is equivalent to (2),
but the corresponding GPI process (4) behaves much better for λτ � 0 (in stiff
case). Indeed, in scalar linear case instead of (5) now we have

r(Z) = (λτI − Ã)Z + λτ1sy0,

180 B. Faleichik and I. Bondar

and the convergence region and convergence factor become respectively

D =
s⋂

i=1

(μ−1
i + ω−1S) and K(z) = max

i
|R(ω(z − μ−1))|, (10)

see the second row in Fig. 1. We see that the preconditioned equation (9) is
better to use in stiff case, but for λτ ≈ 0 the ordinary RK equation (2) should
be used.

The simple analysis of the preconditioned GPI process allows to prove the
next important property.

Proposition 1. Let the base IRK method be A-stable and there exists r0 > 0
such that the open disk of radius r0 and center in (−r0, 0) is entirely covered by
the stability region of the auxiliary RK method. Then for any linear ODE system
y′ = Jy with Σ(J) ⊂ C− and any time step τ > 0 there exists ω0 > 0 such that
the preconditioned GPI iterations (4), (9) converge for all ω ∈ (0, ω0).

As we see, in order to achieve faster convergence of GPI we need |R(z)| to take
minimal possible values over the whole stability region S. In light of this we use
the following scheme of auxiliary method construction:

1. Select the desired shape of stability region Ω ≈ S taking the condition
Σ

(
∂f
∂y (t0, y0)

)
⊂ D as a reference point, see (7) and (10).

2. Choose σ – the desired number of stages for the auxiliary method, and
construct a stability polynomial R of degree σ basing on the condition1
∫∫

Ω
|R(z)|2dz → min. In our experiments we use minimization over an angu-

lar sector in the left halfplane:

∫ 1

0

∫ π+θ

π−θ

|R(ρeiϕ)|2dϕdρ → min .

We solve this problem numerically with higher-precision arithmetic using
Mathematica system. For example, if the spectrum of Jacobian is close to
the real axis we take θ = π/180 and for σ = 7 get a stability polynomial
which stability region is shown in Fig. 2.

3. Build an explicit RK scheme which implements the constructed stability poly-
nomial. This step can be performed in variety of ways. We use Lebedev’s app-
roach briefly described in [3], see also [1]: the factorized stability polynomial
R(z) = R1(z)R2(z) . . . RM (z) yields the representation of Φ as a composition
of one and two-stage methods: Φ = Φ1 ◦ Φ2 ◦ . . . ◦ ΦM , where

Rk(z) =

{
1 + δz for odd σ and k = 1,

(1 + δkz)(1 + δ′
kz), in quadratic case;

1 We use this kind of optimization mostly for simplicity reasons. Of course, in general
case this condition does not imply |R(z)| < 1 ∀z ∈ Ω, so special care should be taken
here.

Matrix-Free Iterative Processes for Implementation 181

Fig. 2. Stability region of 7-stage auxiliary method optimized with θ = π/180

Φk(X) = X + ωδr(X), if deg Rk = 1;
Φk(X) = g2,k − hαkγk(r2,k − r1,k), if deg Rk = 2,where

r1,k = r(X),
g1,k = X + hαkr1,k,

r2,k = r(g1,k),
g2,k = g1,k + hαkr2,k.

Here αk = (δ+δ′)/2, γk = 1−δδ′/α2
k, k = 1, . . . , M , and δ are the coefficients

which uniquely determine the auxiliary method mapping Φ.

In practice we perform iterations of GPI process (4) until the estimated error
‖Z [m] − Z∗‖, where r(Z∗) = 0, is less than 0.05 × Atol. Here Atol is, as usual,
the required tolerance for the local error y1 − y(t0 + τ). The error estimation
technique is based on the estimation of the convergence factor Θ as described in
[3, Section IV.8].

It is important to mention that the resulting method y
[m]
1 = y0+τ

∑s
i=1 f(t0+

ciτ, y0 + Z
[m]
i) is equivalent to some explicit RK method of order one at least.

Though instead of this form we use

y
[m]
1 = y0 +

s∑

i=1

diZ
[m]
i ,

where (d1, . . . , ds)T = bT A−1, which gives method of only order zero, but per-
forms better on stiff problems (see [1] for details).

182 B. Faleichik and I. Bondar

2 Numerical Experiments

Our experimental code based on GPI is written in C++ and has a parallelization
option, which is implemented using OpenMP. If this option is enabled the inde-
pendent components ri of the residual function r (3) are evaluated in parallel.
The step size and error control is implemented in a standard way by using two
methods of different order. In our case these are 4-stage RadauIIA and Gaussian
methods of order 7 and 8 respectively. Since both of them are collocation meth-
ods, we effectively exploit the continuous polynomial approximation which they
provide: this polynomial is used for predicting the initial approximation Z [0] for
the error controller method and for the main method on new steps.

The Jacobian spectral radius estimate should be provided by the user in order
to properly select the value of auxiliary time step ω. In our tests we compute
this estimate on each step using Gershgorin theorem. This estimate is also used
for switching between ‘stiff’ and ‘non-stiff’ GPI methods. In stiff case we use
the ‘preconditioned’ residual function (9) with 7-stage auxiliary method from
Fig. 2. In non-stiff case we use ordinary residual (2) with explicit Euler auxiliary
method which linear convergence regions have been shown in the first row of
Fig. 1.

Further details of the implementation the interested reader can find in [1].
Since GPI methods are actually explicit, in its current state our code can

not compete with implicit methods in cases when Newton’s method is applica-
ble. That’s why we compare the performance of our code with highly-regarded
DOP853 code, which implements explicit Dormand-Prince RK methods with
variable order and is applicable in case of mildly stiff problems. We used C
language version of this code2. Each diagram shows results of the solvers with
required absolute tolerance settings Atol = 10−i, i = 2, 3, . . . , 10. The actual
absolute error at the endpoint and elapsed CPU time measured in seconds are
depicted in logarithmic scales.

The experiment was performed on a machine with 4-core Intel Core 2 Quad
Q6600 2.4 GHz processor and Linux operating system.

2.1 HIRES Problem

The first test problem is the well-known HIRES problem which describes a chem-
ical reaction of photomorphogenesis [3, Section IV.10]. This is a system of 8
nonlinear ODEs. The endpoint of integration is 421.8122, the reference solution
was downloaded from E. Hairer’s webpage3. The results of the experiment are
shown in Fig. 3. We see that for moderate tolerances the serial GPI code out-
performs DOP853, which is quite surprising. The parallel version works much
slower, which is expected, since the dimension of the system is too small and
thus the parallelization overhead is higher than the speed-up.

One may also note the unnatural behavior of GPI codes for Atol = 0.01,
which means that the error controlling mechanism needs to be tweaked.
2 http://www.unige.ch/∼hairer/prog/nonstiff/cprog.tar.
3 http://www.unige.ch/∼hairer/testset/stiff/hires/res exact pic.

http://www.unige.ch/~hairer/prog/nonstiff/cprog.tar
http://www.unige.ch/~hairer/testset/stiff/hires/res_exact_pic

Matrix-Free Iterative Processes for Implementation 183

Fig. 3. HIRES problem test results.

2.2 BRUSS2D Problem

The second is another classic test problem BRUSS-2D which is a method-
of-lines discretisation of two-dimensional parabolic reaction-diffusion PDE [3,
Section IV.10]. We solved this problem on two spatial grids: 64 × 64 (Fig. 4) and
128 × 128 (Fig. 5). The value of the diffusion coefficient α is 1 in both cases.

Fig. 4. BRUSS-2D problem with N = 64, α = 1. The dimension of ODE is 8192.

For both of these tests the parallel version of GPI (running on 4 processors)
was approximately 2.5 times faster than the serial.

184 B. Faleichik and I. Bondar

Fig. 5. BRUSS-2D problem with N = 128, α = 1. The dimension of ODE is 32768.

References

1. Faleichik, B., Bondar, I., Byl, V.: Generalized Picard iterations: a class of iterated
Runge-Kutta methods for stiff problems. J. Comp. Appl. Math. 262, 37–50 (2013)

2. Faleichik, B.V.: Explicit implementation of collocation methods for stiff systems
with complex spectrum. J. Numer. Anal. 5(1–2), 49–59 (2010)

3. Hairer, E., Wanner, G.: Solving ordinary differential equations II. In: Hairer, E.,
Wanner, G. (eds.) Stiff and Differential-Algebraic Problems, 2nd edn. Springer,
Heidelberg (1996)

	Matrix-Free Iterative Processes for Implementation of Implicit Runge--Kutta Methods
	1 Generalized Picard Iterations
	2 Numerical Experiments
	2.1 HIRES Problem
	2.2 BRUSS2D Problem

	References

