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Abstract. A method of investigation of numerical schemes deriving
from the variational formulation of the problem (variational- difference
method and FEM) is discusses. The method is based on the reduction
of the numerical schemes to the canonical finite difference form. The
resulting numerical scheme standard notation in the form of a grid oper-
ator equality is used for analyzing its approximation, stability and other
properties. The application of this approach to a wider classes of finite
elements (from the simplest ones to the Hermitian elements and serendip-
ities) is discussed. These opportunities are illustrated by the analysis of
FEM schemes for Timoshenko shells and elasticity dynamic problems.

1 Conversion of Finite Element Numerical Schemes to
Finite Difference Form

The investigation of difference schemes involves the standard scheme notation
in the form of a grid operator equality. In the case of uniform difference grids
the FEM scheme operator can be written in the final form, which is suitable for
the theoretical analysis. The conversion procedure is similar to the construct-
ing the system of Euler differential equations of the variational problem. Lets
consider the construction method for the two-dimensional case, which can be
naturally is generalized to the n- dimensional case. Let R2 = {x} = {(x1, x2)}
set uniform (possibly oblique), the main grid coordinates of nodes

xij =
[

x1
ij

x2
ij

]
= Bh

[
i
j

]
+

[
x1
0

x2
0

]
i, j ∈ Z, (1)

where Bh – is real nonsingular matrix 2× 2. To refine the concept of certainty
uniform finite element mesh. The finite element mesh in R2 is said to be uniform
if the elements and their nodes are periodically with a period given by a grid
form (1). Let a functional is given

W =
∫

Ω

F (u, p1, p2) dΩ, (2)

where u is an unknown function satisfying the given boundary conditions;
p1 = ∂ u

∂ x1 , p2 = ∂ u
∂ x2 .
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It is necessary to find a function u, deliver functional W extreme or stationary
value. Solution of this problem satisfies the differential equation of Euler

∂ F

∂ u
− ∂

∂ x1

∂ F

∂ p1
− ∂

∂ x2

∂ F

∂ p2
= 0 (3)

and boundary conditions. Constructing of FEM numerical scheme reduces to
the partition of the region into finite elements (construction of the finite element
mesh) and the choice of basis functions, then the FEM problem is defined. It
further reduces by known methods [3,4] to an algebraic system.

We assume that the FEM problem is defined, i.e. functional (2) is given, built
finite element mesh and selected basis functions. Consider the transformation
scheme to FEM finite difference form in the simplest case of Lagrangian elements.

We assume that each cell is divided into r, finite elements, where r = 1 to
quadrilateral elements and r = 2 for the triangular elements (three-dimensional
case r can take values from 1 to 6). Then the functional (2) can be written as

Wh =
∑

(i, j)∈ Ωh

r∑
k=1

∫
Ei j k

F (u, p1, p2) d Ω, (4)

where Eijk - k -th element in the (i, j )-th cell of the main foil. Assuming that
the k -th element of the type comprising mk node template has Sk. Unknown
function u in the element is given as

u =
mk−1∑
l=0

Clkϕlk, (5)

where ϕl k (l = 0, . . . ,mk − 1)- the basic function of the k-type element. For
example, for a 4-node bilinear element

f(x1, x2) = c0 + c1(x1 − x1
c) + c2(x2 − x2

c) + c3(x1 − x1
c)(x

2 − x2
c)

(here (x1
c , x

2
c)- the coordinates of the element center). Coefficients cm can be

expressed through the function node values cm =
∑

k=1 βm
k fk (it uses the local

node numbering). As a result of the transition to a nodes global numbering for
the l-type element the following formula we get:

cm = d+
m,lfij =

∑
(p,q)∈Sl

β m,l
p,q fi+p,j+q . (6)

This formula also defines the basic differential operators d+
m,l. Coefficients β m,l

p,q

depend from the element template and matrix Bh. We also introduce the char-
acters taken from different operators adjoint to (6):

d −
m,lfij = (−1)Km

∑
(p,q)∈Sl

β m,l
p,q fi−p,j−q . (7)
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Here Km– is order of derivative, which is approximated by the operator. Clk

coefficients can be expressed through the values of function u at the nodes of
the element, and further through the difference operators dk+

0 , . . . , dk+
mk−1. As a

result, the function u in element Eijk may be represented as

u =
mk−1∑
l=0

(
d+l,ku

)
ij

ψlk, (8)

where ψlk- some linear combinations of functions ϕlk.
After substituting (8) into (4) integration we obtain

Wh =
∑

(i, j)∈Ωh

r∑
k=1

γkΦk (ξij0, . . . , ξijmk−1) . (9)

where ξijl =
(
d+l u

)
ij

.
We write the variation of the functional (9):

δ Wh =
∑

(i, j)∈Ωh

r∑
k=1

γk

(
fk0δ

(
dk+
0 u

)
+ . . . + fkmk−1δ

(
dk+

mk−1u
))

ij
. (10)

Here we use the notation
(fkl)ij =

∂ Φk

∂ ξijl

Substituting (10) in the discrete variation equation

δ Wh = 0

and applying grid integration by parts, we obtain

∑
(i, j)∈Ωh

r∑
k=1

γk

mk−1∑
l=0

(−1)Kld−
l,kfklδ ul = 0.

The last equality is satisfied if the conditions

r∑
k=1

γk

mk−1∑
l=0

(−1)Kld−
l,kfkl = 0 (11)

obey at all nodes of the difference grid. Equation (11) represents a difference
scheme standard form. Thus, we obtain the final difference form of the FEM
scheme.

This method of FEM schemes conversion to finite differences can be used for
theoretical analysis of a wide FEM schemes class for both linear and nonlinear
problems. The method of variational-difference schemes transformation to finite
differences is similar with not great distinctions. Similar transformations for
other types of finite elements (Hermitian, sirendipity etc.) were considered in [1].
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2 Analysis of Approximation of Variational-Difference
and Finite Element Schemes of Timoshenko Plates
Theory

Consider the system of equations describing the transverse vibrations of the
Tymoshenko plate [5] 1D case recorded in the dimensionless form. System has
the form

a
(

∂2w
∂ x2 + ∂ ψ

∂ x

)
− ∂2w

∂ t2 = 0
∂2w
∂ x2 − 12a

η2

(
∂ w
∂ x + ψ

) − ∂2ψ
∂ t2 = 0

(12)

It is equivalent to a single equation of the fourth order

∂4w

∂ x4
+

12a

η2

∂2w

∂ t2
−

(
1 +

1
a

)
∂4w

∂ x 2∂ t2
+

1
a

∂4w

∂ t4
= 0. (13)

Consider the difference schemes approximation of the equations system (12).
Finite-difference scheme has the form

{
a (D11w + D01ψ) − Dttw = 0
D11ψ − 12a

η2 (D01w + ψ) − Dttψ = 0 (14)

variational-difference scheme has the form
{

a (D11w + D01ψ) − Dttw = 0
D11ψ − 12a

η2 (D01w + D00ψ) − Dttψ = 0 (15)

linear finite element scheme has the form
{

a (D11w + D01ψ) − Dttw = 0
D11ψ − 12a

η2 (D01w + D0ψ) − Dttψ = 0 (16)

There in (14)–(16) D1lf = 1
h2 (fi+1 − 2fi + fi−1), D00f = 1

4 (fi+1 + 2fi + fi−1),
D01f = 1

2h (fi+1 − fi−1), D0f = 1
6 (fi+1 + 4fi + fi−1),

Dttf = 1
τ2

(
f j+1 − 2f j + f j−1

)
.

Schemes (14)-(16) differ by only one equations member approximation - func-
tion ψ. They all have second-order approximation. Transform them to the form
similar to (13). Finite-difference scheme (14) takes the form:

(
1 + 3a

(
h

η

)2
)

D11D11w +
12
η2

Dttw −
(

1 +
1
a

)
D11Dttw +

1
a
DttDttw = 0.

(17)
variational-difference scheme (15) takes the form:

D11D11w +
12
η2

D00DBBw −
(

1 +
1
a

)
D11Dttw +

1
a
DttDttw = 0. (18)
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linear finite element scheme (16) takes the form:(
1 + a

(
h

η

)2
)

D11D11w +
12
η2

D∗
0Dttw −

(
1 +

1
a

)
D11Dttw +

1
a
DttDttw = 0.

(19)
Comparing (17)-(19) with the original differential equation (13), we conclude
that at finite values of the quantity h/η (relationship grid spacing to plate thick-
ness) difference equations (17) and (19) do not approximate equation (13) but,
respectively, the equations(

1 + 3a
(

h

η

)2
)

∂4w

∂ x4
+

12
η2

∂2w

∂ t2
−

(
1 +

1
a

)
∂4w

∂x 2∂ t2
+

1
a

∂4w

∂ t4
= 0. (20)

and (
1 + a

(
h

η

)2
)

∂4w

∂ x4
+

12
η2

∂2w

∂ t2
−

(
1 +

1
a

)
∂4w

∂x 2∂ t2
+

1
a

∂4w

∂ t4
= 0. (21)

Thus, we can conclude that all schemes have the convergence in the usual sense,
but the finite difference and finite element schemes do not have the uniform
convergence by grid problem parameter. Scheme (15) has the uniform conver-
gence of the parameter h/η. Quantitative analysis confirming the findings is
given in [1]. A similar analysis was conducted and the approximation for two-
dimensional schemes. Analysis results agree well with well known reduced inte-
gration technique by O. Zienkievich [6], due to which the scheme (16) becomes
the scheme (15).

3 Influence of the Mutual Location of Finite Elements
on the Accuracy of the Numerical Solution

Consider the effect of finite element mutual location influence to approximation
and accuracy of schemes. We take the 3D elastic problem and 4-node linear finite
element. Way of the base parallelepiped dividing into tetrahedrons defined by a
set of templates elements. Pattern of each element contains four integer vector
is a subset of {(000), (001), (010), (011), (100), (101), (110), (111)}.

Below you can see the types of partitions hexahedron.
(1) 5 tetrahedra (Fig. 1.):

S1 = {(000), (011), (101), (110)}, S2 = {(000), (011), (101), (001)},

S3 = {(000), (100), (101), (110)}, S4 = {(000), (011), (010), (110)},

S5 = {(111), (011), (101), (110)}
(2) 6 tetrahedra with centrally symmetric partition (Fig. 2.):

S1 = {(010), (001), (101), (011)}, S2 = {(000), (001), (101), (010)},

S3 = {(000), (100), (101), (010)}, S4 = {(101), (110), (010), (100)},

S5 = {(111), (110), (010), (101)}, S6 = {(111), (011), (010), (101)}.
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Fig. 1. 5 tetrahedra

Fig. 2. 6 tetrahedra,

(3) 6 tetrahedra with rotational-symmetric partition:

S1 = {(010), (001), (101), (011)}, S2 = {(000), (001), (101), (010)},

S3 = {(000), (100), (101), (010)}, S4 = {(100), (101), (011), (111)},

S5 = {(100), (011), (110), (111)}, S6 = {(100), (011), (010), (110)}.

(4) 6 tetrahedra with non-symmetric partition:

S1 = {(010), (001), (101), (011)}, S2 = {(000), (001), (101), (010)},

S3 = {(000), (100), (101), (010)}, S4 = {(100), (010), (110), (111)},

S5 = {(100), (010), (101), (111)}, S6 = {(010), (101), (011), (111)}.

Unknown functions in linear element represented in the form

f(x1, x2, x3) = c0 + c1(x1 − x1
c) + c2(x2 − x2

c) + c3(x3 − x3
c)

(here (x1
c , x

3
c , x

3
c) - the coordinates of the center of the element).
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We write the functional as energy internal of the linearly elastic body:

W =
1
2

∫
Ω

σαβεαβdΩ

Further, according to the algorithm described above, we obtain the representa-
tion of FEM schemes in the traditional finite-difference form

(λ + μ)

∣∣∣∣∣∣
D11 u1 + D12 u2 + D13 u3

D21 u1 + D22 u2 + D23 u3

D31 u1 + D32 u2 + D33 u3

∣∣∣∣∣∣ + μ DΔ

∣∣∣∣∣∣
u1

u2

u3

∣∣∣∣∣∣ + ρ

∣∣∣∣∣∣
F1

F2

F3

∣∣∣∣∣∣ = ρDtt

∣∣∣∣∣∣
u1

u2

u3

∣∣∣∣∣∣ , (22)

a similar system of Lame equations

(λ + μ) grad div u + μΔu + ρF = ρ
∂2u

∂t2
(23)

where the operators Dij approximate second derivatives, respectively, for the i-th
and j-th coordinates, Dttf = 1

τ2 (f(t + τ) − 2f(t) + f(t − τ)) approximates the
second derivative with respect to time, DΔ = D11+D22+D33 - the grid Laplace
operator. Dij operators have different specific form depending on the variant
schemes investigated and may be either the first or second order approximation.
Schemes for linear finite element we have Dij =

∑s
l=1 γld

+
i,ld

−
j,l, where s = 5, γ1 =

1
3 , γ2 = γ3 = γ4 = γ5 = 1

6 the scheme with the partition parallelepiped 5
tetrahedron; s = 6, γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = 1

6 for schemes with the
partition parallelepiped 6 tetrahedron. Analysis grid approximation equation
(23) by equation (22) conducted a standard method for the case of orthogonal
grid with the coordinates of the grid nodes are equal x1

ijk = x1
0 + h1i, x2

ijk =
x2
0 +h2j, x3

ijk = x3
0 +h3k) showed that one of this schemes (centrally symmetric

partition) has second order approximation, and the other three - the first order
approximation. The results of the test problem solutions also showed a different
rate of schemes convergence

4 Variational-Difference and Finite Element Schemes on
Rare Grids [7]

There in formulas (11) is an overall view of finite difference schemes represent
FEM on uniform grids. They contain coefficients γk = Vk/ΔV , where Vk - the
volume (area) element k -type, ΔV - the basic unit of volume of a uniform grid
of the form (1). Coefficients γk satisfy the obvious equality

p∑
k=1

γk = 1, (24)

reflects the continuous filling elements of the computational domain (here p - the
number of elements that make up the cell.) Varying set of coefficients γk, while
maintaining this equality, we obtain new difference schemes, some of which can
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be quite successful. In particular, variation in the difference scheme similar to
(15) on the coefficients of the triangular cells are equal γ1 = γ2 = 1/2. Substi-
tuting their values γ1 = 1, γ2 = 0, we obtain “rare mesh” variational- difference
scheme. The scheme has a much better convergence than the original. Note it is
also more economical, because it is actually two times less computational cells.
A detailed analysis of this scheme are given in [1,2].

Further developing this method, we arrive at the idea of rare mesh schemes
FEM. Under the rare mesh scheme we understand the scheme, in which some
of the coefficients γk equal to zero. Relevant elements do not contribute to the
numerical scheme and may be excluded from the calculations. This approach
proved to be very productive in solving the three-dimensional elasticity problems.
In particular, the scheme has been proposed on the basis of a linear 4 -node finite
element, which for central tetrahedron (Fig. 1.) Ratio γk was 1, the remaining
tetrahedra - zero. This scheme is significantly more economical than traditional
and has better convergence. Also, it has no the drawback of numerical schemes
on hexahedral elements - the “hourglass instability”. Detailed description of the
scheme, the results of its analysis and testing described are given in [7,8].

5 Conclusion

Method described in the study of numerical schemes based on the variational
formulation of problems allows more deeply study their properties and to propose
ways to improve, as evidenced by the examples discussed. He partly overcomes
the gap between the theory of difference schemes and finite element method.
This approach can be applied to the analysis of a wide variety of schemes FEM
mathematical physics problems.
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