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1 Introduction

Recently, considerable attention has been drawn to stochastic controlled systems
with hidden Markov chains. Much motivation stems from applications in distrib-
uted power management and platoon inter-vehicle distance maintenance, among
others. The dynamic systems of interest are controlled diffusions with switching,
known as switching diffusions [6]. Different from the extensive studies contained
in the aforementioned reference, the switching process in this paper is assumed
to be a continuous-time Markov chain that is hidden. We can only observe the
state of the Markov chain with additive noise. Mean-variance control problems
were first considered in the Nobel prize winning paper of Markowitz [2]. It was
subsequently considered by a host of researchers. The recent advances in back-
ward stochastic differential equations enable the treatment of the mean-variance
controls in continuous time, which is otherwise impossible because of the so-
called indefinite control weights; see Zhou and Li [7] for the first paper in this
direction and further details. Further work in conjunction with regime-switching
models can be found in Zhou and Yin [8], among others.

As a new twist of the mean-variance portfolio selections, our recent work
focuses on using the mean-variance formulation to treat networked control sys-
tems. That is, we borrow the idea in financial engineering to treat problems
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arising in networked control problems. Much of the motivation stems from appli-
cations arising in cyber-physical systems. It has been observed in [4] that a large
class of problems arising from networked systems and platoon controls can be
formulated as such systems, similar to the mean variance control problems that
were originally pursued in financial engineering [8]. In [4], we outlined three
potential applications in platoon controls based on mean-variance controls. The
first problem concerns the longitudinal inter-vehicle distance control. To increase
highway utility, it is desirable to reduce the total length of a platoon, resulting in
smaller overall inter-vehicle distances. The drawback of this strategy, however,
is the increase in the risk of collision due to traffic uncertainties. The task of
minimizing the risk with desired inter-vehicle distance fits naturally to a mean-
variance optimization framework. The second one is communication resource
allocation of bandwidths for vehicle-to-vehicle (V2V) communications. For a
given maximum throughput of a platoon communication system, the commu-
nication system operator must find a way to assign this resource to different
V2V channels, which may also be formulated as a mean-variance control prob-
lem. The third one is the platoon fuel consumption. Due to variations in vehicle
sizes and speeds, each vehicle’s fuel consumption is a controlled random process.
Tradeoff between a platoon’s team acceleration/maneuver capability and fuel
consumption can be summarized in a desired platoon fuel consumption rate.
Assigning fuels to different vehicles results in coordination of vehicle operations
modeled by subsystem fuel rate dynamics. This problem may also be casted
into the framework of mean-variance control. Such problems are highly nonlin-
ear, it is virtually impossible to find closed-form solutions. Our objective is thus
devoted to finding feasible algorithms for the desired tasks. Recently, in our work
[5], numerical approximation methods have been developed. The convergence of
the algorithms is proved. The basic idea is first to convert the partially observ-
able stochastic control problems to completely observed systems by means of
the Wonham filtering methodologies. Then we use relaxed controls and Markov
chain approximation techniques to build convergent numerical schemes. Based
on that work, this paper aims to provide case studies of two typical problems in
applications. Our main effort is to demonstrate using numerical methods solving
the problems arising in the specific applications.

The rest of the paper is arranged as follows. Section 2 formulates the problem.
Section 3 introduces the Markov chain approximation methods and provides the
approximation of the optimal controls. Sections 4 and 5 present two case studies
to illustrate the wide applications of the scheme developed in our work.

2 Problem Formulation

Consider a given probability space (Ω,F , P ) in which there is w1(t), a standard
ρ-dimensional Brownian motion with w1(t) = (w1

1(t), w
2
1(t), . . . , w

ρ
1(t))

′, where
z′ denotes the transpose of z. Let α(t) be a continuous-time finite-state Markov
chain, independent of w1(t), taking values in M = {1, 2, . . . ,m} with generator
Q = (qij)m×m. We consider a networked system that consists of ρ + 1 nodes
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(subsystems), which is modeled for t ∈ [s, T ] by

dx0(t) = μ0(t, α(t))x0(t)dt, x0(s) = x0,
dxl(t)= xl(t)μl(t, α(t))dt + xl(t)σ̄l(t, α(t))dw1(t), xl(s) = xl, l = 1, . . . , ρ,

(1.1)

where for each i, μl(t, i) is the drift and σ̄l(t, i) = (σ̄l1(t, i), . . ., σ̄lρ(t, i)) is the
volatility for the lth node. In our framework, instead of having full information
of the Markov chain, we can only observe

dy(t) = g(α(t))dt + βdw2(t), y(s) = 0, (1.2)

where β > 0 and w2(·) is a standard scalar Brownian motion, w1(·), w2(·), and
α(·) are independent. Moreover, the initial data p(s) = p = (p1, p2, . . . , pm) in
which pi = pi(s) = P (α(s) = i) is given for 1 ≤ i ≤ m. By distributing the
portion Nl(t) of the lth node’s flow xl(t) at time t and denoting the total flows
for the whole networked system as x(t), we have x(t) =

∑ρ
l=0 Nl(t)xl(t), t ≥ s.

With x(s) =
∑ρ

l=0 Nl(s)xl(s) = x, the dynamics of x(t) are given as

dx(t)= [x(t)μ0(t, α(t)) + M(t, α(t))π(t)]dt + π′(t)σ̄(t, α(t))dw1(t), (1.3)

in which π(t) = (π1(t), . . . , πρ(t))′ and πl(t) = Nl(t)xl(t) for l = 1, . . . , ρ is the
actual flow of the network system for the lth node and π0(t) = x(t)−∑ρ

l=1 πl(t)
is the actual flow of the networked system for the first node, and M(t, α(t)) =
(μi(t, α(t)) − μ0(t, α(t)) : i = 1, . . . , ρ) and σ̄(t, α(t)) = (σ̄lj(t, α(t)))ρ×ρ. We
define Ft = σ{w1(s̃), y(s̃), x(s) : s ≤ s̃ ≤ t}. Our objective is to find an Ft

admissible control π(·) in a compact set under the constraint that the expected
terminal flow is Ex(T ) = κ for some given κ ∈ R, so that the risk measured by
the variance of the terminal flow is minimized. Specifically, we have the following
goal

min J(s, x, p, π(·)) := E[x(T ) − κ]2

subject to Ex(T ) = κ.
(1.4)

We apply the Lagrange multiplier techniques (see, e.g.,[7]) to arrive at the uncon-
strained optimization problem

min J(s, x, p, π(·), λ) := E[x(T ) + λ − κ]2 − λ2

subject to (x(·), π(·)) admissible, (1.5)

where λ is the Lagrange multiplier. A pair (
√

Var (x(T )), κ) ∈ R
2, corresponding

to the optimal control if it exists, is called an efficient point.
Next, to treat the partially observed control problem, let pi(t) = P (α(t) =

i|Fy(t)) for i = 1, 2, . . . , m, with p(t) = (p1(t), . . . , pm(t)) ∈ R
1×m and Fy(t) =

σ{y(s̃) : s ≤ s̃ ≤ t}. It was shown in [3] that this conditional probability satisfies
the following system of stochastic differential equations

dpi(t)=

m∑

j=1

qjipj(t)dt +
1

β
pi(t)(g(i) − α(t))dŵ2(t), pi(s) = pi, i = 1, . . . , m (1.6)
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where α(t) =
∑m

i=1 g(i)pi(t) and ŵ2(t) is the innovation process. Now we have
a completely observable system so that x(s) = x, pi(s) = pi, and

dx(t) = μ(x(t), p(t), π(t))dt + σ(x(t), p(t), π(t))dw1(t)

dpi(t)=
m∑

j=1

qjipj(t)dt +
1
β

pi(t)(g(i) − α(t))dŵ2(t), for i ∈ {1, . . . , m} (1.7)

where

μ(x(t), p(t), π(t)) =
m∑

i=1

μ0(t, i)pi(t)x(t) +
ρ∑

l=1

m∑

i=1

(μl(t, i) − μ0(t, i))pi(t)πl(t)

σ(x(t), p(t), π(t))dw1(t) =
ρ∑

l=1

ρ∑

j=1

m∑

i=1

πl(t)σ̄lj(t, i)pi(t)dwj
1(t).

For an arbitrary and φ(·, ·, ·) ∈ C1,2,2(R), consider the operator

Lrφ(s, x, p) =
∂φ

∂s
+

∂φ

∂x
μ(x, p, r) +

1
2

∂2φ

∂x2
[σ(x, p, r)σ′(x, p, r)]

+
m∑

i=1

∂φ

∂pi

m∑

j=1

qjipj +
1
2

m∑

i=1

∂2φ

∂(pi)2
1
β2

[pi(g(i) − α)]2. (1.8)

Let W (s, x, p, π) be the objective function with Eπ
s,x,p denoting the expectation

of functionals on [s, T ] with x(s) = x, p(s) = p, the admissible control π = π(·),
and the value function V (s, x, p)

(1.9)

The value function is a solution of the following equation

(1.10)

with boundary condition V (T, x, p) = (x(T ) + λ − κ)2 − λ2. Note that
(1.10) is known as the Hamilton-Jacobi-Bellman (HJB) equation. To pro-
ceed, we use the relaxed control representation. For the σ-algebra and

of Borel subsets of and , an admissible relaxed con-
trol or simply a relaxed control m(·) is a measure on such
that for all t ∈ [s, T ]. For notational
simplicity, for any , we write m(B × [s, T ]) as m(B, T − s). Since

for all t ∈ [s, T ] and m(B, ·) is nondecreasing, it is
absolutely continuous. Hence the derivative ṁ(B, t) = mt(B) exists almost
everywhere for each B. We can further define the relaxed control representa-
tion m(·) of π(·) by mt(B) = I{π(t)∈B} for any . We say that M(·) is
a measure-value Ft martingale with values M(B, t) if M(B, ·) is an Ft martingale

for each , and for each t, the following holds: ,
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M(A ∪ B, t) = M(A, t) + M(B, t) w.p.1. for all disjoint , and
EM2(Bn, t) → 0 if Bn → ∅. We say that M(·) is orthogonal if M(A, ·)
and M(B, ·) are Ft martingales whenever A ∩ B = ∅. If M(·), M̄(·) are Ft

martingale measures and M(A, ·), M̄(B, ·) are Ft martingales for any Borel
set A,B, then M(·) and M̄(·) are said to be strongly orthogonal. Letting
M(·) = (M1(·), . . . , Mρ(·))′, a vector valued martingale measure, we impose the
following conditions.

(A1) M(·) = (M1(·), . . . ,Mρ(·))′ is square integrable and continuous; each com-
ponent is orthogonal; and the pairs are strongly orthogonal.

Under (A1), there are measure-valued random processes mi(·) such that
the quadratic variation processes satisfy, for each t and ,〈
Mi(A, ·), Mj(B, ·)〉(t) = δijmi(A ∩ B, t).

(A2) mi does not depend on i, mi(·) = m(·), and for all t.

With the help of the martingale measures and relaxed controls, we can
represent our control system in the following way:

(A3) μ(·, ·, ·) and σ(·, ·, ·) are continuous; μ(·, p, c) and σ(·, p, c) are Lipschitz
continuous uniformly in p, c and bounded.

(A4) σ(x, p, c) = (σ1(x, p, c), . . . , σρ(x, p, c)) > 0.

3 Approximation Algorithms

To facilitate subsequent numerical computations, let vi(t) = log pi(t). Itô’s rule
leads to the dynamics of vi(t). We can then obtain the following discrete-time
approximation of the Wonham filter

vh2,i
n+1 = vh2,i

n + h2[
m∑

j=1

qji
ph2,j
n

ph2,i
n

− 1

2β2
(g(i) − ᾱh2

n )2] +
√

h2
1

β
(g(i) − ᾱh2

n )εn,

vh2,i
0 = log(pi), ph2,i

n+1 = exp(vh2,i
n+1),

(1.11)

where ᾱh2
n =

∑m
i=1 g(i)ph2,i

n and {εn} is a sequence of i.i.d. random vari-
ables satisfying Eεn = 0, Eε2n = 1, and E|εn|2+γ < ∞ for some γ > 0 with
εn = ŵ2((n+1)h2)−ŵ2(nh2)√

h2
. Here ph2,i

n appeared as a denominator in (1.11) and
we have concentrated on the case that ph2,i

n stays away from 0. Let h1 > 0 be a
discretization parameter for state variables, and recall that h2 > 0 is the step size
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for the time variable. We construct a discrete-time finite-states Markov chain to
approximate the controlled diffusion process, x(t). Let Nh2 = (T − s)/h2 be an
integer and define Sh1 = {x : x = kh1, k = 0,±1,±2, . . .}. We use πh1,h2

n to
denote the random variable that is the control action for the chain at discrete
time n. Let πh1,h2 = (πh1,h2

0 , πh1,h2
1 , . . .) denote the sequence of -valued random

variables which are the control actions at time 0, 1, . . . and ph2 = (ph2
0 , ph2

1 , . . .) be
the corresponding posterior probabilities in which ph2

n = (ph2,1
n , ph2,2

n , . . . , ph2,m
n ).

We define the difference Δξh1,h2
n = ξh1,h2

n+1 − ξh1,h2
n and let Eh1,h2,r

x,p,n , V h1,h2,r
x,p,n

denote the conditional expectation and variance given {ξh1,h2
k , πh1,h2

k , ph2
k , k ≤

n, ξh1,h2
n = x, ph2

n = p, πh1,h2
n = r}. By stating that {ξh1,h2

n , n < ∞} is a con-
trolled discrete-time Markov chain on a discrete-time state space Sh1 with tran-
sition probabilities denoted by ph1,h2((x, y)|r, p), we mean that the transition
probabilities are functions of a control variable r and posterior probability p.
The sequence {ξh1,h2

n , n < ∞} is said to be locally consistent with (1.7) if it
satisfies

Eh1,h2,r
x,p,n Δξh1,h2

n = μ(x, p, r)h2 + o(h2),
V h1,h2,r

x,p,n Δξh1,h2
n = σ(x, p, r)σ′(x, p, r)h2 + o(h2),

supn |Δξh1,h2
n | → 0, as h1, h2 → 0.

(1.12)

With the approximating Markov chain given above, we can approximate the cost
function Wh1,h2(s, x, p, πh1,h2) in which x(T ) is replaced by ξh1,h2

Nh2
and can find

approximation of V (s, x, p). Now we will proceed to find a reasonable Markov
chain that is locally consistent. We first suppose that the control space has a
unique admissible control , so that we can drop inf in (1.10). We
discretize (1.8) by a finite difference method using step-size h1 > 0 for the state
variable and h2 > 0 for the time variable as mentioned above. For simplicity, we
omit the details. We can show that the approximating Markov chain constructed
above satisfies local consistency. Note that we have used local transitions here
so that we can avoid the problem of “numerical noise”or “numerical viscosity”,
which appears in non-local transitions cases, and is even more serious in higher
dimension scenarios, see [1] for more details. We omit most of the details and
please refer to [5] for further demonstration.

It can be shown that the Markov chain {ξh1,h2
n , n < ∞} with transition

probabilities ph1,h2(·) properly defined is locally consistent with (1.7). Next, we
give the discrete-time approximation algorithm for the controlled Markov chain.
Based on the local consistency, we can represent ξh1,h2

n+1 as

ξh1,h2
n+1 = ξh1,h2

n +μ(ξh1,h2
n , ph2

n , πh1,h2
n )h2+ σ(ξh1,h2

n , ph2
n , πh1,h2

n )Δwh1,h2
n + o(1),(1.13)

where o(1) can be written as εh1,h2
n in which εh1,h2

n → 0 as h1, h2 → 0. To approx-
imate the continuous-time process (x(t), p(t),m(t),M(t)), we use continuous-
time interpolation. For t ∈ [nh2, (n + 1)h2), we define the piecewise constant
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interpolations by

ξh1,h2(t) = ξh1,h2
n , ph2(t) = ph2

n , ᾱh1,h2(t) =
m∑

i=1

g(i)ph2
n , πh1,h2(t) = πh1,h2

n ,

zh2(t) = n, wh1,h2
l (t) =

zh2 (t)−1∑

k=0

Δwh1,h2
l,k , εh1,h2(t) = εh1,h2

n .

(1.14)

With most of the technical details omitted, which can be found in [5], we present
the main approximation theorem below.

Theorem 1. Assuming (A1)-(A4), let {ξh1,h2
n , n < ∞}, the approximat-

ing chain be constructed with transition probabilities properly defined. Let
{πh1,h2

n , n < ∞} be a sequence of admissible controls, ξh1,h2(·) and ph2(·) be the
continuous time interpolation defined in (1.14), mh1,h2(·) be the relaxed control
representation of πh1,h2(·) (continuous time interpolation of πh1,h2

n ). Then

(ξh1,h2(·), ph2(·),mh1,h2(·),Mh1,h2(·)) istight,

(ξh1,h2(·), ph2(·), mh1,h2(·), Mh1,h2(·)) converges weakly to (x(·), p(·),m(·),M(·)),
and W (s, x, p,mh1,h2) → W (s, x, p,m). Denoting the limit of a weakly convergent
subsequence by (x(·), p(·),m(·),M(·)), the martingale measure M(·) has quadratic
variation process given by m(·) and the desired limit dynamics hold. Moreover,
V h1,h2(s, x, p) → V (s, x, p) as h1 → 0 and h2 → 0.

4 Case Study I: Distributed Power Management

Consider a distribution network of three renewable energy generators and energy
storage devices. Typically, the distributed generators can be photovoltaic (PV)
systems, wind turbines, bio-engines, fuel cells, etc. Energy storage devices can
be batteries, super-capacitors, etc. To be concrete, let xi(t), i = 1, 2, 3 be the
maximum power generating capacity of the ith generator at time t. In addition,
x0(t) is the available maximum capacity that is allowed to be purchased from
the main grid at t.

Let Ni(t) be the portion of the power generated by the ith generator that is
used to satisfy total power demand, Then, the total locally generated power at
time t is

∑3
i=1 Ni(t)xi(t). Implicitly, the remaining power will be purchased from

the main grid, i.e., π0(t) = N0(t)x0(t) = x(t) − ∑3
i=1 Ni(t)xi(t). A renewable

generator’s maximum capacity is a stochastic process. For example, a wind tur-
bine’s maximum power is determined by the wind speed and direction. Similarly,
a PV system’s output is determined by how much solar radiation is available at
a given time, weather condition, and the angle that the sunlight is shining on
the solar panels. Here, {xi(t) : i = 0, 1, . . . , 3} is given by (1.1) with α(t) being
a 3-state switching process which takes values in {1, 2, 3} with generator

Q =

⎛

⎝
−0.5 0, 2 0.3
0.3 −0.6 0.3
0.4 0.4 −0.8

⎞

⎠, μ1(α) = 2α, μ2(α) = α + 1, μ3(α) = α + 2,
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σ1(α) = (α, 0, 0), σ2(α) = (0, α
2 , 0) and σ3(α) = (0, 0, α

3 ), for α = 1, 2, 3,
and w1(t) ∈ R

3. Here, the drift term represents average solar radiation val-
ues throughout a day; and diffusion term represents solar radiation fluctuations
which are caused by many factors such as clouds, weather conditions, etc. The
dynamics of the process depend on an event variable α which reflects system
structural changes. This is exemplified by scheduled or emergency maintenance
of solar modules, failure of a battery cell, addition of super-capacitor banks, tap
changes in transformer actions, etc.

It is noted that sometimes such switching actions α cannot be observed
directly, such as solar or battery cell failures. However, such switching actions
will affect certain measured variables. For example, battery cell failures will
cause a jump in terminal voltages. In this study, instead of direct access to α,
we assume (1.2) is observable where g(1) = 1, g(2) = 2 and g(3) = 3, β = 1 > 0
is a constant, and w2(t) is a Brownian motion, independent of w1(t). y(t) is a
measured quantity. Distributed power management aims to decide dispatching
parameters Ni(t), i = 1, . . . , 3. This can be formulated as a mean-variance con-
trol problem. To meet the total power consumption demand z = 1 MW (mega
watts), it is required that we have the constraint Ex(T ) = z. On the other hand,
to maintain grid stability, smooth operations, and reduced waste, it is desirable
that generation-consumption disparity in transient be as small as possible. It is
well understood in traditional power flow analysis that transient power fluctu-
ations cause energy loss on lines, affect voltage and frequency stability. In view
of (1.4), the Lagrange multiplier technique leads to (1.5). The value function
and corresponding control are in Fig. 1 in which x axis is the possible consump-
tion demand of all the generators in the system at T = 2 and y axis represent
the feedback control π1 for the first generator and value function V , respec-
tively. The efficient frontier is demonstrated in Fig. 2 in which the x axis is the
standard deviation of total generation-consumption of the system and y axis is
the expected power consumption. We use the simplex method to find out the
optimal λ.

5 Case Study II: Communication Resource Allocation

The second case study is concerned with communication resource allocation
of bandwidths for vehicle-to-vehicle (V2V) communications. For a given maxi-
mum throughput of a platoon communication system, the communication system
must find a way to assign this resource to different V2V channels. If the total
bandwidth used is lower than the assigned bandwidth, there will be a waste of
resource. Conversely, usage of bandwidths over the budget may incur high costs
or interfere with other platoons’ operations. In this case, each channel’s band-
width usage is the state of the subsystem. Their summation is a random process
and is desired to approach the maximum throughput (the desired mean at the
terminal time) with variations as small as possible. Consequently, it becomes a
mean-variance control problem.

Consider a platoon of five vehicles. Let Bi(t), i = 0, 1, . . . , 4 be the maxi-
mum transmission data rate of vehicle i at time t. In practice, the maximum
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data rate is determined by the processing capability limits, the resources used
by other tasks of the vehicle’s communication system, and the bandwidth allo-
cation scheme between vehicles (e.g., through wireless transmission scheduling).
If the platoon is assigned with the total data rate B(t) Mbps (mega bits per
second), which must be shared by all the vehicles within the platoon. Let Ni(t)
be the portion of Bi(t) that is used in the actual transmission by vehicle i.
Then, Ni(t)Bi(t) is the data rate of vehicle i and the total data rate of the
entire platoon is desired to be B(t) =

∑4
i=0 Ni(t)Bi(t). Due to dynamics of

many tasks, Bi(t) is a stochastic process. In addition, since vehicles move along
roads, we have a communication network whose topology switches. Assume that
{Bi(t) : i = 0, 1, . . . , 4} obeys the stochastic system (1.1) with the Markov
chain α(t) having m states, representing m possible network topologies. To be
concrete, suppose that m = 1, 2, 3, 4 and the switching process has the generator

Q =

⎛

⎜
⎜
⎝

−0.7 0.5 0.1 0.1
0.4 −0.8 0.2 0.2
0.2 0.1 −0.5 0.2
0.1 0.2 0.3 −0.6

⎞

⎟
⎟
⎠ and μ0(α(t), t) = 0.5α, μ1(α(t), t) = α + t,

μ2(α(t), t) = 2α + 1.5t, μ3(α, t) = α − t, σ1(α(t), t) = (α, 0, 0, 0), σ2(α(t), t) =
(0, α

2 , 0, 0), σ3(α(t), t) = (0, 0, α
3 , 0) for α = 1, 2, 3, 4, and w1(t) ∈ R

4. Here, the
drift term represents average maximum data rates during an operating time
interval of the communication system and Bi(t)σi(α(t), t)dw1(t) represents fluc-
tuations on Bi, which are determined by other communication tasks such as
coding, data compression, packet formation, etc. The dynamics of the process
depend on the event variable α which reflects communication network topol-
ogy changes. Communication link changes typically contain both observable and
unobservable elements. It is noted that a communication link can be terminated
by the associated vehicles, which is an observable event. However, packet loss
can cause a link to be broken which is not observable directly until the data
transmission is completed and data were lost. In this sense, this unobservable
event can be partially observed from data flows and receipt acknowledgement.
Consequently, the event α can be modeled by (1.2) where g(1) = 2, g(2) = 1.5,
g(3) = 3 and g(4) = −1, and β = 1 > 0 is a constant. Here y(t) is a measured
variable for the event.

Communication system management decides data rate allocation strategies
by assigning Ni(t) proportion of data rate to vehicle i, i = 1, . . . , 4. This can
be formulated as a mean-variance control problem. To use efficiently the total
available data rate z = 2 Mbps, we require that at the end of the resource
assignment period T , EB(T ) = z. To ensure that the platoon does not overuse
resources (causing interruptions to other platoons, incurring penalty, etc.) or
waste resources, it is desirable that the platoon’s actual total data rate is as
close to 2 Mbps as possible. This is consistent to (1.4), or equivalently (1.5).

The value function and corresponding control are in Fig. 3 in which x axis is
the possible value for the resource assignment at T = 2 in the platoon communi-
cation system and y axis represents π1- the feedback control or in other words,
the data rate of the first vehicle and value function V , respectively. The efficient
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(a) Optimal feedback control (data rate)
π1(t) for the first vehicle by using the step
size h1 = 0.25 for state variable and step
size h2 = 0.001 for the time variable with
fixed expectation B = 2
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(b) Approximate value function V by us-
ing the step size h1 = 0.25 for state vari-
able and step size h2 = 0.001 for the time
variable with fixed expectation B = 2

Fig. 3. Optimal control for the first vehicle and value function V for the entire platoon
system
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Fig. 4. Mean variance efficient frontier for communication system in which step sizes
for the state variable and time variable are h1 = 0.25 and h2 = 0.001, respectively.

frontier is demonstrated in Fig. 4 in which the x axis is the standard deviation
of the total data rate of the entire platoon and y axis is the standard deviation
of the total data rate allocation for the V2V communications at the end of the
resource assignment period.
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6 Concluding Remarks

This paper presented case studies on two applications. The main characteristics
of the problems are regime-switching diffusions with a hidden Markov chain. Our
effort was devoted to the numerical solutions of the problems. After converting
the problems into completely observed systems, based on Markov chain approx-
imation techniques, controlled discrete-time Markov chains were constructed for
the intended task. Although only two examples have been presented, the tech-
niques used and the methods of approximation can be applied to a wide range
of applications.
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