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Abstract. This paper provides a brief survey on some of the recent
numerical techniques and schemes for solving Hamilton-Jacobi-Bellman
equations arising in pricing various options. These include optimization
methods in both infinite and finite dimensions and discretization schemes
for nonlinear parabolic PDEs.

1 Introduction

Financial derivative securities consist of three major parts: Forwards and Future
(obligation to buy or sell), Options (right to buy or sell) and Swaps (simultaneous
selling and purchasing). The first two form the basis of derivative securities. It
is known that an option is a contract which gives to its owner the right, not
obligation, to buy (call) or sell (put) a fixed quantity of assets of a specified
stock at a fixed price called exercise/strike price on or before a given date (expiry
date). There are two major types of options – European options which can be
exercised only on the expiry date and American options that are exercisable on
or before the expiry date.

An option has both intrinsic and time values, and can be traded on a sec-
ondary financial market even though it may not be exercisable at the time point.
How to accurately price options has long been a hot topic for mathematicians
and financial engineers. It was shown by Black and Scholes [7] that the value of
a European option on a stock satisfies a second order parabolic partial differen-
tial equation with respect to the time t and the underlying asset price S in a
complete market with constant volatility and interest rate and without transac-
tion costs on trading the option and its underlying stock. This equation is now
known as the Black-Scholes (BS) equation. A more comprehensive discussion of
this model can be found in [32]. The BS equation can be solved exactly when
the coefficients are constants. However, for problems of practical importance,
numerical solutions to them are normally sought. Therefore, efficient and accu-
rate numerical algorithms are essential for solving such a problem accurately.

The value of an American call option is usually the same as that of its
European counterpart. However, the value V (S, t) of an American put option on
an asset/stock whose price S follows a geometric Brownian motion is governed
by the following linear complementarity problem (LCP) (cf., e.g., [45,47])
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LV := −∂V

∂t
− 1

2
σ2(t)S2 ∂2V

∂S2
− r(t)S

∂V

∂S
+ r(t)V ≥ 0, (1)

V − V ∗(S) ≥ 0, LV · (V − V ∗(S)) = 0 (2)

for (S, t) ∈ Ω := I × [0, T ) almost everywhere (a.e.) with the payoff/terminal
and boundary conditions

V (S, T ) = V ∗(S), V (0, t) = V ∗(0), V (Smax, t) = 0, (3)

where I = (0, Smax) ⊂ R with Smax a positive constant usually much greater
than the strike price K of the option, σ(t) denotes the volatility of the asset, r(t)
the interest rate, and V ∗(S) is the final or payoff condition of the option. There
are various payoff conditions depending types of options [47]. For example the
payoff function for a vanilla American put is

V ∗(S) = max{K − S, 0}, S ∈ I.

The LCP (1)–(2) can also be written as

min{LV (S, t), V (S, t) − V ∗(S)} = 0 (S, t) ∈ Ω (4)

with (3). This equation is called a Hamilton-Jacobi-Bellman (HJB) equation
which is usually unsolvable analytically.

When selling and buying a put whose underlying stock incurs transaction
costs, the price of the put is no longer governed by the LCP or (4). Instead, a
Nonlineaar Complementarity Problem (NCP) needs to be solved to determine
the value of such an option. More specifically, the NCP is of the same form as
(1)–(2) with σ(t) replaced with σ(S, t, VS , VSS). Various models for the nonlinear
volatility have been proposed, for example [4,8,19,23,24]. A notable one is the
following nonlinear volatility model proposed in [4]:

σ2 (t, S, VSS) = σ2
0

(
1 + Ψ

(
er(T−t)a2S2VSS

))
(5)

where σ0 is a constant, a = κ
√

νN with κ being the transaction cost parameter,
ν a risk aversion factor and N the number of options to be sold. In the rest of
this paper, we simply refer to a as the transaction parameter. The function Ψ in
(5) is the solution to the following nonlinear initial value problem

Ψ ′(z) =
Ψ(z) + 1

2
√

zΨ(z) − z
for z �= 0 and Ψ(0) = 0

to which an implicit exact solution is derived in [13].
HJB equations also arise in determination of the reservation price of a Euro-

pean or American option under proportional transaction costs [15–17] and valu-
ation of American options under a Levy process [9,10], with uncertain valotility
[31,48], or with stochastic valotility [18,53], just to name a few. All of these
problems are of the form:

min{L1(V ) − f1, L2V − f2, ..., LmV − fm} = 0 (6)
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in a given solution domain with a set of boundary and terminal/payoff condi-
tions, where m is a positive integer and, usually, L1 is a 2nd-order nonlinear
differential operator and Li and fi are respectively a linear 1st- or 0th-order
differential operator and a given function for each of i = 2, ...,m.

Because of an optimization process involved and non-smooth payoff condi-
tions, (6) in general does not have any classic (twice continuously differentiable)
solutions. Instead, it has the so-called viscosity solutions [14]. Uniqueness of the
solution to (6) can usually be proved. For some simple cases, it is also possi-
ble to prove the unique solvability of (6) using a conventional technique. For
instance, if we introduce a weighted Sobolev space H1

0,w(I) and a convex set
K = {v ∈ H1

0,w(I) : v ≤ u∗} with u∗ = eβt(V0 −V ∗), where V0 = (1−S/Smax)K
and β = sup0<t<T σ2(t), the LCP (1) and (2) can be cast into the following
Variational Inequality (VI) (cf. [45] for details).

Problem 1. Find u(t) ∈ K such that, for all v ∈ K,
(

−∂u(t)
∂t

, v − u(t)
)

+ A(u(t), v − u(t); t) ≥ (f(t), v − u(t)) (7)

a.e. in (0, T ), where A(·, ·) is a bilinear form defined by

A(u, v; t) =
(
aS2u′ + bSu, v′) + (cu, v), u, v ∈ H1

0,w(I) (8)

with (·, ·) denoting the usual inner product, u = −eβt(V − V0), f(t) = eβtLV0,
a = σ2/2, b = r − σ2, and c = 2r + β − σ2.

For this VI we can show that the bilinear form A(·, ·) is coercive and Lipschitz
continuous, and thus Problem 1 has a unique solution by a standard argument.

2 The Penalty Method in Infinite Dimensions

The HJB Eq. (6), particularly (7), may be viewed as a constrained optimization
problem and it can be solved using an optimization technique. A popular choice is
a penalty approach in which a constrained optimization problem is approximated
by an unconstrained one with a penalty term in the objective function. Since
the resulting optimization problem is unconstrained, it is easier to solve than the
original. The linear penalty method for HJB equations was discussed in detail in
[6] and its extension to arbitrary power penalty has been proposed and analyzed
in [42,45,52] for various HJB equations.

Let us demonstrate the power penalty method using (1) and (2) which can
be rewritten in the following standard form

Lu(x, t) :=
∂u

∂t
+

∂

∂S

[
a(t)S2 ∂u

∂S
+ b(t)Su

]
− c(t)u ≤ f(S, t), (9)

u(S, t) − u∗(S, t) ≤ 0, (Lu(S, t) − f(S, t)) · (u(S, t) − u∗(S, t)) = 0, (10)

in Ω with the boundary and terminal conditions

uλ(0, t) = 0 = uλ(X, t) and uλ(S, T ) = u∗(S, T ), (11)
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where the coefficients functions and given data are defined in Problem 1. In
fact, (7) is the variational form of this LCP, and (9)–(10) can be viewed as the
optimality conditions of a constrained functional optimization problem with the
constraint in (10). (We will show this in finite dimensions later.) This motivates
us to devise the following penalty equation

Luλ(S, t) + λ[uλ(S, t) − u∗(S, t)]1/k
+ = f(S, t), (S, t) ∈ Ω (12)

satisfying (11), where λ > 0 and k > 0 are parameters and [z]+ = max{z, 0}
for any z. In (12) the power penalty term λ[uλ(S, t) − u∗(S, t)]1/k

+ penalizes the
positive part of uλ − u∗.

Equation (12) is a nonlinear parabolic PDE even when k = 1 and the varia-
tional problem corresponding to (12) is

Problem 2. Find uλ(t) ∈ H1
0,w(I) such that, for all v ∈ H1

0,w(I),

(
−∂uλ(t)

∂t
, v

)
+ A(uλ(t), v; t) + λ

(
[uλ(t) − u∗(t)]1/k

+ , v
)

= (f(t), v) (13)

a.e. in (0, T ), where A is the bilinear form defined in (8).

The unique solvability of Problem 2 can be proved by showing that the mapping
on the LHS of (13) is strongly monotone and continuous [45].

The solution to Problem 2 is in general not equal to that of Problem 1, but
we expect that when λ → ∞, uλ → u at some rate depending on λ and k.
A convergence theory for this penalty method is established in [6] for k = 1 and
in [45] for any k > 0, which requires the introduction of some function spaces
and norms.

For any Hilbert space H(I), let Lp(0, T ;H(I)) denote the space defined by

Lp(0, T ;H(I)) = {v(·, t) : v(·, t) ∈ H(I) a.e. in (0, T ); ||v(·, t)||H ∈ Lp((0, T ))},

where 1 ≤ p ≤ ∞ and || · ||H denotes the natural norm on H(I). The space

Lp(0, T ;H(I)) is equipped with the norm ||v||Lp(0,T ;H(I)) =
(∫ T

0
||v(·, t)||pHdt

)1/p

.

Clearly, Lp(0, T ;Lp(I)) = Lp(I × (0, T )) = Lp(Ω). Using this space, it is possible
to establish the following theorem.

Theorem 1. Let u and uλ be the solutions to Problems 1 and 2, respectively.
If uλ ∈ L1+1/k(Ω) and ∂u

∂t ∈ Lk+1(Ω), then there exists a constant C > 0,
independent of u, uλ and λ, such that

||u − uλ||L∞(0,T ;L2(I)) + ||u − uλ||L2(0,T ;H1
0,w(I)) ≤ C

λk/2
, (14)

where k is the parameter used in (13).

Theorem 1 tells us that uλ → u at the rate of O(λ−k/2) as λ or/and k goes to ∞.
Similar results for Nonlinear Complementarity Problems (NCPs) and bounded
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NCPs are given in [42,52]. The idea of the above penalty approach can also be
used for solving (6). More specifically, (6) can be approximated by the following
penalty equation

L1(Vλ) −
m∑

i=1

λi[LiVλ − fi]
1/k
− = f1, (15)

where [z]− = max{0,−z} for any z, λ = (λ1, ..., λm)� is a set of penalty para-
meters and k > 0 is a power parameter. (Clearly, we may use different k’s for
different penalty terms in the above equation.) It would be thought that, as
established above for Problem 2, (15) is uniquely solvable and its solution con-
verges exponentially to that of (6). However, for some cases we are only able
to prove that (15) has a unique viscosity solution and the solution converges to
that of (6), but unable to establish the rates of convergence. For example, the
penalty method for the HJB equations arising from determining the reservation
prices of European and American options with transaction costs [28–30] in which
the constraints contain derivatives of the solution. The main reason for this is
that when the penalty terms contain differential operators, we may not be able
to prove the strong monotonicity of the operator on the LHS of (15).

We also comment that though the solution to the penalty equation converges
to that of the HJB equation, it does not mean that the constraints are strictly
satisfied for any fixed (λ, k). Instead, they are satisfied up to an approximation
error. Thus, the above method is sometimes called an exterior penalty method. It
is possible to construct an interior penalty method such as that proposed in [35]
and analyzed in [49] in which an approximation always satisfies the constraints.

3 Discretization Schemes

LCPs and HJB equations in infinite dimensions such as (6, 9, 10 and 13) can
hardly be solved exactly unless for some trivial cases. Therefore, a numerical
scheme is needed to for the discretization of such a system so that the discretized
system can be solved by linear/nonlinear algebraic system solver in finite dimen-
sions. Various discretization schemes can be used for the PDEs depending on the
problem in question. Popular spatial discretization schemes for (12) are

– upwind finite difference schemes [11,25,26,29,30,37],
– fitted finite volume method [3,12,22,36,39,46,50], and
– finite element methods [1,2,38].

In designing a descretization scheme for (12), the main requirements are as
follows.

1. The scheme should be unconditionally or conditionally stable and the solution
to the discretized system should converge to the viscosity solution to (13).

2. The solution to the discretized system should be non-negative irrespectively
of choices of mesh or other parameters, as by nature prices are non-negative.

3. The finite dimensional linear/nonlinear system can be solved efficiently by an
advanced, usually iterative, solver.
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Item 2 is guaranteed if the discretiztion is monotone or the system matrix of
the discrtized equation is an M -matrix in the linear case. In this case, a discrete
maximum principle is satisfied by the scheme and so the solution to the discrtized
system attains its extrema at the boundary of the solution domain.

Note that the BS operator L in (12) becomes degenerate as S → 0+. Math-
ematically, the weak solution to (12) cannot take a trace (boundary condition)
at S = 0. This is why we needed the introduction of a weighted Sobolev space
H1

0,w(I) in the previous section. Also, because of this difficulty, one usually needs
to truncate the spatial domain I into (Smin, Smax) for a small positive number
Smin < Smax if a conventional scheme is used to discretize (12). Equivalently,
a common practice is to use x = ln S to transform I into −∞ < x < ln Smax

and solve the transformed problem on a finite interval. A fitted finite volume is
proposed in [39] for solving the BS equation governing European options without
this domain transformation or truncation. The scheme has the merit that it is
unconditionally stable, has the first-order convergence rate in mesh parameters
and yields a system of which the coefficient matrix is an M -matrix. We now
demonstrate this scheme using (12).

Let I be divided into N sub-intervals Ii := (Si, Si+1), i = 0, 1, .., N − 1
with 0 = S0 < S1 < · · · < SN = Smax. For each i = 0, 1, ..., N − 1, we put
hi = Si+1 − Si and h = max0≤i≤N−1 hi. Dual to this mesh, we define another
mesh with nodes Si−1/2 = (Si−1 + Si)/2 for i = 1, 2, ..., N , S−1/2 = 0 and
SN+1/2 = Smax. Integrating both sides of (12) over (Si−1/2, Si+1/2) and applying
the mid-point quadrature rule to the first, third, fourth and last terms, we obtain

−∂ui

∂t
li−

[
Si+1/2ρ(u)|Si+1/2 − Si−1/2ρ(u)|Si−1/2

]
+

[
ciui + λ[ui − u∗

i ]
1/k
+

]
li = fili

(16)

for i = 1, 2, ..., N − 1, where li = Si+1/2 − Si−1/2, ci = c(Si, t), fi = f(Si, t),
u∗

i = u∗(Si), ui is the nodal approximation to u(Si, t) to be determined and ρ(u)
is a flux associated with u defined by ρ(u) := aSuS + bu.

To derive an approximation to the flux at the two end-points Si+1/2 and
Si−1/2, let us consider the following two-point boundary value problem

(ρi)′ := (aSv′ + bi+1/2v)′ = 0, S ∈ Ii, v(Si) = ui, v(Si+1) = ui+1, (17)

where bi+1/2 = b(Si+1/2, t). This is motivated by the technique used for singu-
larly perturbed convection-diffusion equations (cf. [33,34]). When i ≥ 1, (17)
has the exact solution

ρi = bi+1/2

Sαi
i+1ui+1 − Sαi

i ui

Sαi
i+1 − Sαi

i

, v =
ρi

bi+1/2
− ui+1 − ui

Sαi
i+1 − Sαi

i

(SiSi+1)αiS−αi , (18)

where αi = bi+1/2/a. Obviously, ρi i provides an approximation to the flux ρ(u)
at Si+1/2 for i = 1, ..., N − 1.

When i = 0, (17) becomes degenerate at S = 0, and we need to look into the
asymptotic behaviour of ρ0 as S0 → 0+. This is given in the following two cases.
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If α0 < 0, it is easy t see to verify that limS0→0+ ρ0 = b1/2u0. Similarly, if
α0 > 0, we have from (18) limx0→0+ ρ0 = b1/2u1. Combining these two cases
we have

ρ0 = b1/2

1 − sign(b1/2)
2

u0 + b1/2

1 + sign(b1/2)
2

u1, (19)

since α0 = b1/2/a and b1/2 have the same sign pattern.
Using (18) and (19), we have from (16)

− ∂ui

∂t
li + ei,i−1ui−1 + ei,iui + ei,i+1ui+1 + di(ui) = fili, (20)

where, di(ui) = λli[ui − u∗
i ]

1/k
+ ,

e1,0 = −x1

2
b1/2

1 − sign(b1/2)
2

, e1,2 = −b1+1/2x1+1/2x
α1
2

xα1
2 − xα1

1

,

e1,1 =
x1

2
b1/2

1 + sign(b1/2)
2

+
b1+1/2x1+1/2x

α1
1

xα1
2 − xα1

1

+ c1l1,

ei,i−1 = −bi−1xi−1/2x
αi−1
i−1

x
αi−1
i − x

αi−1
i−1

, ei,i+1 = −bi+1/2xi+1/2x
αi
i+1

xαi
i+1 − xαi

i

,

ei,i =
bi−1xi−1/2x

αi−1
i

x
αi−1
i − x

αi−1
i−1

+
bi+1/2xi+1/2x

αi
i

xαi
i+1 − xαi

i

+ cili

for i = 2, 3, ..., N − 1. These form an N − 1 nonlinear ODE system for U(t) :=
(u1(t), ..., uN (t))� with the homogeneous boundary condition u0(t) = 0 = uN (t).

LetEi be a rowvector definedbyEi = (0, .., 0, ei,i−1(t), ei,i(t), ei,i+1(t), 0, ..., 0)
fir i = 1, ..., N −1, where ei,i−1, ei,i, ei,i+1 are defined above and those not defined
are zeros. Obviously, using Ei, (20) can be rewritten as

− ∂ui(t)
∂t

li + Ei(t)U(t) + di(ui(t)) = fi(t)li, (21)

for i = 1, 2, ..., N − 1. This is a first order ODE system.
To discretize (21), we choose ti (i = 0, 1, ...,M) satisfying T = t0 > t1 >

· · · > tM = 0, and apply the two-level implicit time-stepping method with a
splitting parameter θ ∈ [1/2, 1] to (21) to yield

um+1
i − um

i

−Δtm
li + θ

[
Em+1

i Um+1 + di(um+1
i )

]
+ (1 − θ) [Em

i Um + di(um
i )]

= (θfm+1
i + (1 − θ)fm

i )li

for m = 0, 1, ...,M − 1, where Δtm = tm+1 − tm < 0, Em
i = Ei(tm), fm

i =
f(xi, tm) and Um = (um

1 , um
2 , ..., um

N−1)
�. This nonlinear system can be re-

written as the following matrix form

(θEm+1 +Gm)Um+1 +θD(Um+1) = Fm +[Gm − (1−θ)Em]Um − (1−θ)D(Um)
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for m = 0, 1, ...,M − 1, where the coefficient matrices are self-explanatory. The
boundary and terminal conditions areum

0 = 0 = um
N and U0 = (u∗

1, u
∗
2, ..., u

∗
N−1)

�.
When θ = 1/2, the time-stepping scheme becomes that of the Crank-Nicolson

and when θ = 1, it is the backward Euler scheme. Both of the two cases are
unconditionally stable. It is easy to show that the linear part of the coefficient
matrix of the above system is an M -matrix and the nonlinear part is strongly
monotone. Thus, the solution to the system is non-negative. An upper error
bound of order O(h+Δt) in a discrete analogue of the norm in (14) for the solu-
tion to the above system has been proved in [3] under certain conditions, where
h and Δt denote the maximal mesh sizes in space and time. A superconvergent
fitted finite volume method for (12) with the linear penalty, based on a judicious
choice of the dual mesh in the above scheme, has been recently proposed in [46]
which has the merit that the scheme yields a superconvergent derivative (Delta
of an option) with almost no additional computational costs.

Upwind finite difference schemes in space have been used for solving HJB
equations arising from pricing other types of options such as those in [26,29,30].
In these cases, we showed the convergence of the numerical schemes by proving
they are consistent, stable and monotone [5]. However, convergence rates for
these schemes have not been established. We comment that, the use of upwind
finite difference methods for multi-dimensional HJB equations such as those
arising from pricing options on multiple assets or with stochastic volatility [22,51]
does not in general yield systems whose coefficient matrices are M -matrix. In
this case, the finite volume method has to be used.

4 The Penalty Method in Finite Dimensions

The process for solving HJB equations in the previous sections is to use the
penalty equation to approximate an HJB equation and then solve the penalty
equation by a discretization scheme. This process is reversible, i.e., one may
discretize an HJB equation first to yield a finite-dimensional one and then devise
a penalty method for solving the HJB equation in finite-dimensions. Let us
demonstrate this procedure using (9) and (10).

The application of the fitted finite volume method and time-stepping scheme
in the previous section to the LCP (9) and (10) yields, at each time step, an
LCP of the form

Ax ≤ b, x ≤ 0 and x�(Ax − b) = 0, (22)

where x ∈ R
n for a positive integer n, A is an n×n positive-definite matrix and

b ∈ R
n is a known vector. In (22), x represents an approximation of the values

of u − u∗ at the interior spatial mesh nodes. Let us consider the minimization
problem

min
x∈Rn

Q(x) subject to x ≤ 0, (23)

where Q(x) is a quadratic function of x such that ∇Q(x) = Ax−b. The Karush–
Kuhn–Tucker (KKT) conditions for this problem are

Ax − b + μ = 0, μ�x = 0, μ ≥ 0, x ≤ 0,
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where μ ∈ R
n is the multiplier. From the first and third expressions in the above

we have Ax − b = −μ ≤ 0. Using this inequality and eliminating μ from the
above yields (22). Therefore, (22) is an optimality condition for (23) and thus
both have the same solutions. To find an approximation to the solution of (23),
we consider the following unconstrained problem

min
x∈Rn

(
Q(x) +

λ

1 + 1/k
[x]1+1/k

+

)
,

where λ > 1 is the penalty constant and k > 0 is a parameter. The 1st-order
necessary optimality condition for this problem is

Axλ − b + λ[xλ]1/k
+ = 0 or Axλ + λ[xλ]1/k

+ = b.

This is a (power) penalty equation approximating (22). Clearly, it is a finite-
dimensional analogue of (12). The solution xλ is an approximation to that of (22).

Discretized HJB equations are often of the form: f(x) ≤ b, x ≤ 0 and
x�f(x) = 0 ([27]). Following the above discussion, the penalty equation approx-
imating this NCP is

f(xλ) + λ[xλ]1/k
+ = 0, (24)

where f : Rn �→ R
n. If, for some α, β > 0, γ ∈ (0, 1] and ξ ∈ (1, 2], f satisfies

1. Holder Continuity: ||f(x1) − f(x2)||2 ≤ β||x1 − x2||γ2 , ∀x1, x2 ∈ R
n,

2. ξ-monotonicity: (x1 − x2)�(f(x1) − f(x2)) ≥ α||x1 − x2||ξ2, ∀x1, x2 ∈ R
n,

then one can show that there exist a positive constant C, independent of λ, such
that

||xλ − x||2 ≤ C

λk/(ξ−γ)
, (25)

where x and xλ are respectively the solutions to the NCP and (24) and || · ||2
denotes the l2-norm on R

n (cf. [20,43]).
Note that the convergence rate of the power penalty method in finite-

dimensions established above is higher than the one in (14) of its infinite-
dimensional counterpart, particularly when f(x) is strongly monotone and
Lipschitz continuous (i.e., ξ = 2 and γ = 1). However, the arbitrary constant
C in (25) is dependent on the dimensionality n, since in the proof of (25) we
used the fact that all norms in R

n are equivalent which is not true in infinite
dimensions.

Discretization of some HJB equations such as those arising from determining
reservation price of an option under proportional transaction costs (cf. [29,30])
gives rise to optimization problems with bound constraints on Bx for a non-
square matrix B, rather than on x. This kind of HJB equations also arises in
optimization problems with bound constraints on derivatives. Power penalty
methods have been extended to NCPs and mixed NCPs with either unbounded
or bounded linear constraints (cf. [21,40,41,44]) and the upper error bounds in
these cases are essentially the same as that in (25).
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Note that the nonlinear penalty term in (24) becomes non-Lipschitz when
k > 1. When solve (24) using a gradient-based method such Newton’s method,
the penalty term needs to be smoothed out locally in [0, ε] with ε a small positive
number, i.e., we replace λ[xλ]1/k

+ with λφ(xλ), where φ is given by

φ(z) =

{
z

1
k , z ≥ ε,[
ε

1
k −2(3 − 1

k )z2 + ε
1
k −3( 1

k − 2)z3
]
, z < ε,

The coefficient matrix of the linearized system of (24) is usually an M -matrix
and thus a preconditioned conjugate gradient based iterative method can be
used for solving it, particularly when (24) is large-scale.

5 Concluding Remarks

Pricing financial options often involves numerical solution of PDE-constrained
nonlinear and non-smooth optimization problems. An efficient numerical tech-
nique for option pricing should contain three components - discretization of
differential operators, techniques for constrained optimization and numerical
solution of nonlinear and non-smooth algebraic systems. In this work we have
presented some of our recent advances in the development of efficient and accu-
rate numerical methods for pricing options. Extensive numerical experiments
on these methods have been carried out and we refer the reader to the listed
references for details.
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