
Simulation of Flow in Fractured
Poroelastic Media: A Comparison

of Different Discretization Approaches

I. Ambartsumyan1, E. Khattatov1, I. Yotov1(B), and P. Zunino2

1 Department of Mathematics, University of Pittsburgh, Pittsburgh,
PA 15260, USA

{ILA6,ELK58}@pitt.edu, yotov@math.pitt.edu
2 Department of Mechanical Engineering and Materials Science,

University of Pittsburgh, Pittsburgh, PA 15261, USA
paz13@pitt.edu

Abstract. We study two finite element computational models for solv-
ing coupled problems involving flow in a fracture and flow in poroelastic
media. The Brinkman equation is used in the fracture, while the Biot
system of poroelasticity is employed in the surrounding media. Appropri-
ate equilibrium and kinematic conditions are imposed on the interfaces.
We focus on the approximation of the interface conditions, which in
this context feature the interaction of different variables, such as veloc-
ities, displacements, stresses and pressures. The aim of this study is to
compare the Lagrange multiplier and the Nitsche’s methods applied to
enforce these non standard interface conditions.

1 Problem Set up

We consider a multiphysics model problem for flow in fractured and deformable
porous media, where the simulation domain Ω ⊂ Rd, d = 2, 3, is a union of non-
overlapping and possibly non-connected regions Ωf and Ωp. Here Ωf is a fluid
region with flow governed by the Brinkman equations and Ωp is a poroelasticity
region governed by the Biot system for coupled Darcy and elasticity equations.
Let Γfp = ∂Ωf ∩ ∂Ωp. Let (u�, p�) be the velocity-pressure pairs in Ω�, � = f ,
p, and let ηp be the displacement in Ωp. Let ν be the fluid viscosity, K the
symmetric and uniformly positive definite rock permeability tensor, f� body
force terms, and q� external source or sink terms. Let D(uf ) and σf (uf , pf )
denote, respectively, the deformation rate tensor and the stress tensor:

D(uf ) =
1
2
(∇uf + ∇uT

f ), σf (uf , pf ) = −pfI + 2νD(uf ).

In the fracture region Ωf , (uf , pf ) satisfy the Brinkman equations

− ∇ · σf (uf , pf ) + νK−1
f uf = ff , ∇ · uf = qf in Ωf , (1)
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where Kf represents the fracture permeability. Let σe(η) and σp(η, p) be the
elasticity and poroelasticity stress tensor, respectively:

σe(η) = λp(∇ · η)I + 2μpD(η), σp(η, p) = σe(η) − αpI, (2)

where α is the Biot-Willis constant. The poroelasticity region Ωp is governed by
the quasi-static Biot system [3]

−∇ · σp(ηp, pp) = fp in Ωp, (3)

νK−1up + ∇pp = 0,
∂

∂t
(s0pp + α∇ · ηp) + ∇ · up = qp in Ωp, (4)

where s0 is a storage coefficient. The interface conditions on the fluid-
poroelasticity interface Γfp are mass conservation, balance of normal stress, and
the Beavers-Joseph-Saffman (BJS) law [2,13] modeling slip with friction [1,14]:

uf · nf +
(∂ηp

∂t
+ up) · np = 0, (5)

−(σfnf ) · nf = pp, (6)

−(σfnf ) · τ f,j = ναBJS

√
K−1

j (uf − ∂ηp

∂t
) · τ f,j on Γfp, (7)

as well as conservation of momentum:

(σfnf ) · nf = (σpnp) · np, (σfnf ) · τ f,j = (σpnp) · τ p,j on Γfp, (8)

where nf and np are the outward unit normal vectors to ∂Ωf , and ∂Ωp, respec-
tively, τ f,j , 1 ≤ j ≤ d−1, is an orthogonal system of unit tangent vectors on Γfp,
Kj = (Kτ f,j) ·τ f,j , and αBJS > 0 is an experimentally determined friction coef-
ficient. We note that the continuity of flux takes into account the normal velocity
of the solid skeleton, while the BJS condition accounts for its tangential velocity.

2 Numerical Approximation

Our discretization approach is based on the finite element method. For this
reason, we consider the weak formulation of the Biot-Brinkman system (1), (3)
and (4). It is obtained by multiplying the equations in each region by suitable
test functions, integrating by parts certain terms, and utilizing the interface and
boundary conditions. For simplicity the latter are assumed to be homogeneous:
uf = 0, up · np = 0 and ηp = 0 on ∂Ω. Let (·, ·)S , S ⊂ Rd, be the L2(S) inner
product and let 〈·, ·〉F , F ⊂ Rd−1, be the L2(F ) inner product or duality pairing.
Let us define

Vf = H1(Ωf )d, Wf = L2(Ωf ),

Vp = H(div;Ωp), Wp = L2(Ωp),

Xp = H1(Ωp)d.
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The global spaces are products of the subdomain spaces and satisfy the boundary
conditions. For simplicity assume for the moment that each region consists of a
single subdomain. Let b�(v, w) = −(∇ · v, w)Ω�

and let

af (uf ,vf ) = (2νD(uf ) : D(vf )Ωf
+ (νK−1

f uf ,vf ),

ad
p(up,vp) = (νK−1up,vp)Ωp

,

ae
p(ηp, ξp) = (σe(ηp) : D(ξp))Ωp

.

be the bilinear forms related to Brinkman, Darcy and the elasticity operators,
respectively.

To proceed with the discretization, we denote with Vf,h,Wf,h the finite ele-
ment spaces for the velocity and pressure approximation on the fluid domain
Ωf , with Vp,h,Wp,h the spaces for velocity and pressure approximation on the
porous matrix Ωp and with Xp,h the approximation spaces for the structure dis-
placement. We assume that all the finite element approximation spaces comply
with the prescribed Dirichlet conditions on external boundaries ∂Ωf , ∂Ωp. For
the time discretization, we denote with tn the current time step and with dτ the
first order (backward) discrete time derivative dτun := τ−1(un − un−1).

2.1 Approximation of Interface Conditions Using the Lagrange
Multiplier Method

To impose the interface conditions on Γfp we introduce a Lagrange multiplier
λh ∈ Λh = (Vp,h · np)′ with a physical meaning λh = −(σf,hnf ) · nf . Then,
we seek uf,h ∈ Vf,h, pf,h ∈ Wf,h, up,h ∈ Vp,h, pp,h ∈ Wp,h, ηp,h ∈ Xp,h, and
λh ∈ Λh such that for all vf,h ∈ Vf,h, wf,h ∈ Wf,h, vp,h ∈ Vp,h, wp,h ∈ Wp,h,
ξp,h ∈ Xp,h, and μh ∈ Λh,

af (uf,h,vf,h) + ad
p(up,h,vp,h) + ae

p(ηp,h, ξp,h) + aBJS(uf,h,ηp,h;vf,h, ξp,h)
+bf (vf,h, pf,h) + bp(vp,h, pp,h) + αbp(ξp,h, pp,h) + bΓ (vf,h,vp,h, ξp,h;λh)
= (ff,h,vf,h)Ωf

+ (fp,h, ξp,h)Ωp
, (9)

(s0dτpp,h, wp,h) − αbp(dτηp,h, wp,h) − bp(up,h, wp,h) − bf (uf,h, wf,h)
= (qf,h, wf,h)Ωf

+ (qp,h, wp,h)Ωp
, (10)

bΓ (uf,h,up,h, dτηp,h;μh) = 0, (11)

where

aBJS(uf ,ηp;vf , ξp) =
d−1∑

j=1

〈ναBJS

√
K−1

j (uf − ∂ηp

∂t
) · τ f,j , (vf − ξp) · τ f,j〉Γfp

,

bΓ (vf ,vp, ξp;μ) = 〈vf · nf + (ξ + vp) · np, μ〉Γfp
.



6 I. Ambartsumyan et al.

We note that the balance of normal stress, BJS, and conservation of momentum
interface conditions (7) and (8) are natural and have been utilized in the deriva-
tion of the weak formulation, while the conservation of mass condition in (7) is
imposed weakly in (11).

We solve problem (9), (10) and (11) using piecewise linear finite elements
for the approximation of all the variables. It is well known that the equal-order
approximation is unstable for saddle point problems such as Darcy, Stokes or
Brinkman [4]. For this reason, we complement the discretization of Brinkman
problem, namely (1), with the Brezzi-Pitkaranta stabilization operator acting
on the pressure [4,5]. Owing to the pressure time derivative in equation (4) the
Biot system is not a saddle point problem. For this reason, pressure stabilization
is not required. Particular attention should be also devoted to the discretiza-
tion of the Lagrange multiplier space. For the piecewise linear approximation
adopted here, we observe that the Lagrange multiplier space coincides with the
normal components of the interface trace spaces of Vf,h, Vp,h, Xp,h. This prop-
erty has two important consequences. First, it is straightforward to show that
equation (11) is exactly satisfied. Second, owing to the results obtained in [12]
for general elliptic problems and the more recent analysis of Stokes-Darcy equa-
tions [9], it can be shown that this property entails the unique solvability of the
discrete system.

Besides the well posedness of the finite element method, stability of the time
discretization must be also addressed. To this purpose, by taking

(vf,h, wf,h,vp,h, wp,h, ξp,h, μ) = (un
f,h, pn

f,h,un
p,h, pn

p,h, dτηn
p,h, λh)

in (9)–(11) we obtain an energy equality

af (un
f,h,un

f,h) + ad
p(un

p,h,un
p,h) + ae

p(ηn
p,h, dτηn

p,h)

+

d−1∑

j=1

ναBJS‖K
−1/4
j (un

f,h − dτηn
p,h) · τ f,j‖2

L2(Γfp) + (dτs0p
n
p,h, pn

p,h) = F(tn;uf,h)

Using the following equality
∫

Ω

undτun =
1
2
dτ‖un‖2Ω +

1
2
τ‖dτun‖2Ω

the energy equality becomes
1

2
dτ

(
s0‖pn

p,h‖2
L2(Ωp) + ae

p(ηn
p,h, ηn

p,h)
)

+
τ

2

(
s0‖dτpn

p,h‖2
L2(Ωp) + ae

p(dτηn
p,h, dτηn

p,h

)

+af (un
f,h,un

f,h) + ad
p(un

p,h,un
p,h) +

d−1∑

j=1

ναBJS‖K
−1/4
j (un

f,h − dτηn
p,h) · τ f,j‖2

L2(Γfp)

= F(tn;uf,h)

Rearranging the following terms,

af (un
f,h,un

f,h) + ad
p(u

n
p,h,un

p,h) +
τ

2
ae

p(dτηn
p,h, dτηn

p,h)

= 2ν‖D(un
f,h)‖2Ωf

+ νK−1‖un
p,h‖2Ωp

+
τ

2
‖dτ∇ · ηn

p,h‖Ωp
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using the bound on generic forcing term,

F(tn;un
f,h) ≤ (2ε′ν)−1‖F(tn)‖2 +

ε′

2
ν‖D(un

f,h)‖2Ωf
,

and combining these results and summing up with respect to time index n =
1, ..., N , the following energy estimate is obtained.

Theorem 1. For any ε′ > 0, the discrete problem (9), (10) and (11) satisfies
the following energy estimate:

1
2

(
s0‖pn

p,h‖2L2(Ωp)
+ ae

p(η
n
p,h,ηn

p,h)
)

+ τ
N∑

n=1

[
2ν(1 − ε′

4
)‖D(uf,h)‖2Ωf

+νK−1
f ‖uf,h‖2Ωf

+ νK−1‖up,h‖2Ωp
+

τ

2
(‖dτ∇ · ηn

p,h‖Ωp
+ s0‖dτpn

p,h‖)

+
d−1∑

j=1

ναBJS‖K
−1/4
j (uf,h − ∂ηp,h

∂t
) · τ f,j‖2L2(Γfp)

]

≤ 1
2

(
s0‖p0p,h‖2L2(Ωp)

+ ae
p(η

0
p,h,η0

p,h)
)

+ τ

N∑

n=1

(2ε′ν)−1‖F(tn)‖2. (12)

2.2 Approximation of Interface Conditions by Nitsche’s Method

The enforcement of interface conditions by means of Lagrange multipliers leads
to an accurate but expensive problem at the discrete level. For this reason, some
alternatives have been developed. The most straightforward strategy consists
in the application of a penalty method. The idea is to enrich the variational
formulation with new terms corresponding to additional quadratic functionals
which are minimized when the Dirichlet boundary conditions are exactly satis-
fied. The penalty method, however, suffers from lack of consistency with respect
to the continuous formulation of the problem. Among several interpretations,
Nitsches method can be seen as a variant of the penalty method. Indeed, it
allows to weakly enforce boundary and interface conditions and it restores the
strong consistency of the discrete scheme with respect to the continuous form
of the variational formulation. For an introduction to this technique applied to
general boundary and interface conditions we refer to [10], while this method is
applied to FSI in [7], and to the Biot-Stokes system in [6].

Applying Nitsche’s method to equations (1), (3) and (4) with the correspond-
ing interface and boundary conditions, we obtain the following discrete problem
formulation, that consists of a system of three coupled problems: for any index
n > 0, find ηn

h ∈ Xp,h, un
p,h ∈ Vp,h, pn

p,h ∈ Wp,h and un
f,h ∈ Vf,h, pn

f,h ∈ Wf,h

such that for any ∀ξh ∈ Xp,h, vp,h ∈ Vp,h, wp,h ∈ Wp,h, vf,h ∈ Vf,h, wf,h ∈
Wf,h the following equations are satisfied:

ae
p(ηn

h, ξh) − bp(pn
p,h, ξh) + 〈np · σf,hnp ,

(− ξh

) · np〉Γfp (13)

+ 〈ναBJS

√
K−1

j dτηn
h · tp , ξh · tp〉Γfp + 〈γνh−1dτηn

h · np , ξh · np〉Γfp

− 〈ναBJS

√
K−1

j un
f,h · tp , ξh · tp〉Γfp − 〈γνh−1(un

f,h − un
p,h

) · np , ξh · np〉Γfp = 0,
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s0(dτpn
p,h , wp,h)Ωp

+ ap(un
p,h,vp,h) − bp(pn

p,h,vp,h) + bp(wp,h,un
p,h) (14)

+ 〈γνh−1un
p,h · np ,vp,h · np〉Γfp

+ bs(wp,h, dτηn
h)

− 〈γνh−1
(
un

f,h − dτηn
h

) · np ,vp,h · np〉Γfp
− 〈np · σf,hnp ,vp,h · np〉Γfp

= 0,

〈ρfdτun
f,h , vf,h〉Ωf + af (un

f,h, vf,h) − bf (pn
f,h, vf,h) + bf (wf,h, un

f,h) (15)
− 〈nf · σf,hnf , vf,h · nf 〉Γfp − 〈nf · σf,h(ςvf,h, −wf,h)nf , un

f,h · nf 〉Γfp

+ 〈nf · σf,h(ςvf,h, −wf,h)nf ,
(
un

p,h + dτηn
h

) · nf 〉Γfp

+ 〈γνh−1un
f,h · nf , vf,h · nf 〉Γfp + 〈ναBJS

√
K−1

j un
f,h · tf , vf,h · tf 〉Γfp

− 〈γνh−1(un
p,h + dτηn

h

) · nf , vf,h · nf 〉Γfp − 〈ναBJS

√
K−1

j dτηn
h · tf , vf,h · tf 〉Γfp

= F(tn; vf,h),

where γ is a positive penalty (or stabilization) parameter and ς ∈ {−1, 0, 1} is
a symmetry parameter that allows us to switch from the so called symmetric,
incomplete and skew-symmetric problem formulations respectively. The value of
γ will be determined below, in order to guarantee the stability of the scheme.
To study the stability of the Nitsche’s method, we use the following inverse
inequality,

h‖D(uh)n‖2Γfp
≤ CTI‖D(uh)‖2Ωf

, (16)

where CTI is a positive constant uniformly upper bounded with respect to the
mesh characteristic size h, for a family of shape-regular and quasi-uniform meshes
[8]. Since we solve the FSI problem on fixed domains, the constant CTI does not
depend on the solution. The following result shows that the scheme (13), (14)
and (15) is stable for any time step.

Theorem 2. [6] For any ε̂′, ε̌′ that satisfy

1 − (ς + 1)
2

ε̂′CTI − ε̌′

2
> 0

where ς ∈ {−1, 0, 1} provided that γ > (ς + 1)(ε̂′)−1, there exist constants 0 <
c < 1 and C > 1, uniformly independent of the mesh characteristic size h, such
that

1

2

(
2μp‖D(ηN

h )‖2Ωp
+ λp‖∇ · ηN

h ‖2Ωp
+ s0‖pN

p,h‖2Ωp

)
(17)

+ cτ

N∑
n=1

[
2ν‖D(un

f,h)‖2Ωf
+ νK−1

f ‖un
f,h‖2Ωf

+ νK−1‖un
p,h‖2Ωp

+
τ

2

(
ρf ‖dτ un

f,h‖2Ωf
+ 2μp‖dτ D(ηn

h)‖2Ωp
+ s0‖dτ pn

p,h‖2Ωp
+ λp‖dτ ∇ · ηn

h‖2Ωp

)

+ νh−1
(‖(un

f,h − un
p,h − dτ ηn

h

) · n‖2Γfp
+ ‖(un

f,h − dτ ηn
h

) · t‖2Γfp

)]

≤ 1

2

(
2μp‖D(η0

h)‖2Ωp
+ λp‖∇ · η0

h‖2Ωp
+ s0‖p0p,h‖2Ωp

)

+ τ
N∑

n=1

C

ν
‖F(tn)‖2.
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More precisely, we have

c < min{(
1 − (ς + 1)

2
ε̂′CTI − ε̌′

2
)
,
(
(γ − (ς + 1)(ε̂′)−1

)},

C > (2ε̌′)−1.

3 Computational Results

We consider the test case motivated by the example investigated by Lesinigo
et al. in [11], Sect. 7.2. The computational domain consists of two unit squares
separated by a fracture of width δ = 0.1. The squares represent the poroelastic
subdomains of Ωp. We assume that there are no external forces or mass sources.
On the left and right boundaries we impose the homogeneous Dirichlet pressure
and the homogeneous Dirichlet displacement conditions, while on the remaining
external boundaries we impose zero normal flux and zero normal poroelastic
stress. In order to generate a nontrivial flow pattern, a uniform flow is enforced
on the bottom side of the fracture uf · n = 10, while the upper side of Ωf is
impermeable to flow. We expect to observe a vertical flow in Ωf , which progres-
sively fades out moving upwards, because of a significant leakage of fluid into
Ωp. Since the friction term is active in the Brinkman equation, we also expect
that the pressure decreases along the direction of the flow in Ωf .

We first consider a test case (we refer to it as Case A) designed to verify
the agreement with the example in [11]. Since there the tangential flow interface
condition is free slip and the porous media is not deformable, we take αBJS = 0
and Young modulus Ep = 1010 Pa (very hard material), see the parameter set
in Table 1. Furthermore, we investigate the behavior of the model in a regime
different from [11]. In particular, we choose αBJS = 1 (this configuration is called
Case B) and finally we consider a softer material characterized by Ep = 103 Pa
(this is denoted as Case C). All the problems were solved over the time interval
[0, 1] s with time step Δt = 0.1s.

The simulation results obtained with the Lagrange multiplier method are
reported in Fig. 1. On the left we observe that the main expected features of
the solution are correctly captured. For a more quantitative comparison, we plot
on the right the variation of velocity modulus and pressure along the (vertical)

Table 1. Poroelasticity and fluid parameters that are used in the numerical experi-
ments denoted as Case A.

Parameters Values Parameters Values

Young modulus Ep (Pa) 1010 poisson ratio 0.3

First Lamé param. μp(Pa) 3.84 109 Second Lamé param. λp(Pa) 5.76 109

Hydraulic conductivity νK−1(m3 s/Kg) I Mass storativity s0(Pa) 1

Biot-Willis constant α 1 BJS friction coef. αBJS 0

Hydraulic conductivity K−1
f (m3 s/Kg) 10I Brinkman viscosity ν 1
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Case A: αBJS = 0, Ep = 1010 Pa
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Case B: αBJS = 1, Ep = 1010 Pa
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Case C: αBJS = 1, Ep = 103 Pa
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Fig. 1. Velocity glyphs at time t = 1. For visualization purposes, the velocity field
on Ωp has been magnified of a factor 10. The background color shows the pressure
magnitude (left panel). Velocity and pressure plot along the vertical meanline of Ωf

(right panel).

meanline of Ωf and we compare these results with the ones reported in Fig. 7a
of [11]. An excellent agreement is observed. The analysis of the problem con-
figurations A, B, C shows that the BJS friction factor αBJS significantly affects
the pressure profile in the fluid region Ωf . Because the friction has increased,
but the flow rare is prescribed at the boundary, we observe a significant increase
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Case A: αBJS = 0, Ep = 1010 Pa
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Case B: αBJS = 1, Ep = 1010 Pa
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Case C: αBJS = 1, Ep = 103 Pa
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Fig. 2. Porous domain deformation at t = 1. The background color shows the fluid
pressure magnitude. For visualization purposes, the displacement field has been mag-
nified of a factor 107 for cases A and B. Results obtained with the Lagrange multiplier
scheme are reported in the left, the ones corresponding to Nitsche’s method are on the
right.

of the pressure at the inlet. The pressure field in the porous medium is also sen-
sitive to this variation, but with less intensity. We finally notice that cases B and
C look very similar. This suggests that the entire flow field is almost unaffected
by the stiffness of the material.

The sensitivity of the model with respect to the interface BJS friction coef-
ficient also emerges in Fig. 2, where we show the displacement of the porous
domain. In particular, we observe that the displacement field changes signifi-
cantly when we move from αBJS = 0 to αBJS = 1. Furthermore, even though
not revealed by the visualization because amplification factors are adopted, t
he displacement field is almost inversely proportional to the Young modulus of
the solid material. We finally notice that, although pf > pp along the fluid-solid
interface, the fluid is inducing a traction on the solid in cases B and C. This effect
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happens in this specific problem configuration, because pf � (2νD(uf )nf ) · nf

in Ωf and as a result (σf (uf , pf )nf ) · nf � 0. In the cases where αBJS = 1 the
tangential interaction dominates over the normal one in the fluid-solid interac-
tion. This justifies the differences between the displacement observed in cases A,
B and C.

3.1 Comparison of Lagrange Multiplier and Nitsche’s Methods

In this section we aim to accurately compare the two schemes proposed for the
solution of the problem. First, from a preliminary inspection based on visualiza-
tions similar to the ones of Fig. 1, we observe that the two methods provide very
similar results. They also provide equivalent accuracy and precision as confirmed
by the analysis of the convergence rate with respect to the mesh characteristic
size, h, reported in Table 2. As error indicators, we consider the dominating terms
that appear in the left hand sides of the stability estimates, namely Eqs. (12)
and (17) for the Lagrange and Nitsche’s methods respectively. Finally, since the
main distinction between the two proposed methods consists of the enforcement
of interface conditions, and in particular the mass conservation condition (5), we
analyze in Table 3 the numerical residual

RΓi
(uf ,ηp,up) :=

∫

Γi

(
uf · nf +

(∂ηp

∂t
+ up) · np

)
, Γi = Ωf ∩ Ωp,i , i = 1, 2,

for the approximate solutions provided by each method. The results of Table 3
confirm the higher accuracy of the Lagrange multiplier method for the approx-
imation of interface conditions. Indeed, Table 3 shows that the Lagrange multi-
plier method is exactly enforcing the desired condition at every interface node.

Table 2. Convergence analysis with respect to the mesh characteristic size for the
Lagrange multiplier method (top) and Nitsche’s method (bottom). Since an analyti-
cal solution is not available for the considered problem, we calculate the error with
respect to a numerical solution computed on a highly refined mesh with h = 1/320 and
denoted by ũf,h , p̃p,h , D(η̃h) , ũp,h. Then, the discretization error is given by eN

u,f,h :=

uN
f,h − ũN

f,h , eN
p,h := pN

p,h − p̃N
p,h , D(eN

η,h) := D(ηN
h ) − D(η̃N

h ) , en
u,p,h := un

p,h − ũn
p,h. To

facilitate the interpretation of the results, error norms are normalized with respect to
the corresponding norm of the solution.

h ‖eN
p,h‖Ωp Rate ‖D(eN

η,h)‖Ωp Rate
√

τ
∑N

n=1 ‖en
u,f,h‖2

Ωp
Rate

√
τ
∑N

n=1 ‖en
u,p,h‖2

Ωp
Rate

1/20 4.72E-02 4.03E-01 5.18E-02 1.77E-01

1/40 1.35E-02 1.81 2.36E-01 0.77 1.94E-02 1.41 6.21E-02 1.51

1/80 3.38E-03 1.99 1.24E-01 0.93 5.97E-03 1.70 1.86E-02 1.74

1/160 6.93E-04 2.29 7.31E-02 0.76 1.40E-03 2.09 4.74E-03 1.98

h ‖eN
p,h‖Ωp Rate ‖D(eN

η,h)‖Ωp Rate
√

τ
∑N

n=1 ‖en
u,f,h‖2

Ωp
Rate

√
τ
∑N

n=1 ‖en
u,p,h‖2

Ωp
Rate

1/20 8.68E-02 4.35E-01 1.24E-01 2.23E-01

1/40 3.19E-02 1.44 2.56E-01 0.76 3.39E-02 1.87 9.08E-02 1.30

1/80 1.11E-02 1.52 1.35E-01 0.93 1.06E-02 1.67 2.85E-02 1.67

1/160 3.30E-03 1.75 8.02E-02 0.75 2.49E-03 2.10 7.51E-03 1.92
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Table 3. The behavior of the indicator RΓi(uf,h, ηp,h,up,h) when varying the mesh
characteristic size.

Lagrange multipliers Nitsche

h RΓ1 RΓ2 RΓ1 RΓ2

1/20 4.4402E-12 3.8642E-12 2.7522E-01 2.7528E-01

1/40 1.9694E-12 1.9698E-12 4.8690E-03 4.8690E-03

1/80 4.2337E-13 4.2424E-13 1.5374E-03 1.5374E-03

1/160 1.0735E-13 1.0568E-13 3.8450E-04 3.8450E-04

1/320 2.5801E-13 2.5472E-13 9.3927E-05 9.3927E-05

Conversely, equation (5) is only approximately enforced by the Nitsche’s scheme
and as expected the residual decreases proportionally with h.
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12. Pitkäranta, J.: Boundary subspaces for the finite element method
with Lagrange multipliers. Numer. Math. 33(3), 273–289 (1979).
http://dx.doi.org/10.1007/BF01398644

13. Saffman, P.: On the boundary condition at the surface of a porous media. Stud.
Appl. Math. 50, 93–101 (1971)

14. Showalter, R.E.: Poroelastic filtration coupled to Stokes flow. In: Control theory
of partial differential equations, Lectures Notes Pure Applied Mathematics, vol.
242, pp. 229–241. Chapman & Hall/CRC, Boca Raton (2005). http://dx.doi.org/
10.1201/9781420028317.ch16

http://dx.doi.org/10.1007/s00211-013-0583-z
http://dx.doi.org/10.1007/BF01398644
http://dx.doi.org/10.1201/9781420028317.ch16
http://dx.doi.org/10.1201/9781420028317.ch16

	Simulation of Flow in Fractured Poroelastic Media: A Comparison of Different Discretization Approaches
	1 Problem Set up
	2 Numerical Approximation
	2.1 Approximation of Interface Conditions Using the Lagrange Multiplier Method
	2.2 Approximation of Interface Conditions by Nitsche's Method

	3 Computational Results
	3.1 Comparison of Lagrange Multiplier and Nitsche's Methods

	References


