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Preface

The International Conference on Finite Difference Methods is a traditional forum for
scientists from all over the world, providing opportunities to share ideas and establish
fruitful cooperation. The papers in this volume were presented at the 6th International
Conference on Finite Difference Methods: Theory and Applications. FDM: T&A was
held in Lozenetz, Bulgaria, in June 2014. The conference was organized and sponsored
by Rousse University. This conference continued the tradition of four previous meet-
ings: 1997 in Rousse (Bulgaria), organized by the Division of Numerical Analysis and
Statistics; 1998 in Minsk (Belarus), organized by the Institute of Mathematics, Belarus
Academy of Science; 2000 in Palanga, (Lithuania), organized by the Institute of
Mathematics and Informatics (Vilnus); and 2006 and 2010 in Lozenetz (Bulgaria),
organized by the Division of Numerical Analysis and Statistics, Rousse University.

The purpose of the first three conferences (held in Bulgaria, Belarus, and Lithuania)
was to bring together scientists from the East and West to exchange ideas and establish
research cooperation. We have observed that the contacts among scientists have
become more regular and we are proud of our contribution in this respect.

The general topic for FDM: T&A 2014 was finite difference and combined finite
difference methods as well as finite element methods and their various applications in
physics, chemistry, engineering, biology, and finance. A number of modern numerical
techniques were discussed and presented during the conference: splitting techniques,
Green’s function method, multigrid methods, and immersed interface method, among
others.

Some contemporary topics were the focus of the following minisymposia:
(1) Financial Mathematics; (2) Asymptotic-Numerical Treatment of Problems with

Boundary and Internal Layer; (3) Numerical Methods for Fractional Differential
Equations; (4) Computational Methods in Geophysics.

The success of the conference and the present volume are due to the joint efforts of
many colleagues from various institutions and organizations. We thank our colleagues
for their help in the organization of this conference. We especially thank M. Koleva for
her help in the preparation of this volume. We are also grateful to the organizers of the
minisymposia.

The 7th International FDM:T&A Conference will be organized in June 2018.

March 2015 Ivan Dimov
István Faragó
Lubin Vulkov
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Simulation of Flow in Fractured
Poroelastic Media: A Comparison

of Different Discretization Approaches

I. Ambartsumyan1, E. Khattatov1, I. Yotov1(B), and P. Zunino2

1 Department of Mathematics, University of Pittsburgh, Pittsburgh,
PA 15260, USA

{ILA6,ELK58}@pitt.edu, yotov@math.pitt.edu
2 Department of Mechanical Engineering and Materials Science,

University of Pittsburgh, Pittsburgh, PA 15261, USA
paz13@pitt.edu

Abstract. We study two finite element computational models for solv-
ing coupled problems involving flow in a fracture and flow in poroelastic
media. The Brinkman equation is used in the fracture, while the Biot
system of poroelasticity is employed in the surrounding media. Appropri-
ate equilibrium and kinematic conditions are imposed on the interfaces.
We focus on the approximation of the interface conditions, which in
this context feature the interaction of different variables, such as veloc-
ities, displacements, stresses and pressures. The aim of this study is to
compare the Lagrange multiplier and the Nitsche’s methods applied to
enforce these non standard interface conditions.

1 Problem Set up

We consider a multiphysics model problem for flow in fractured and deformable
porous media, where the simulation domain Ω ⊂ Rd, d = 2, 3, is a union of non-
overlapping and possibly non-connected regions Ωf and Ωp. Here Ωf is a fluid
region with flow governed by the Brinkman equations and Ωp is a poroelasticity
region governed by the Biot system for coupled Darcy and elasticity equations.
Let Γfp = ∂Ωf ∩ ∂Ωp. Let (u�, p�) be the velocity-pressure pairs in Ω�, � = f ,
p, and let ηp be the displacement in Ωp. Let ν be the fluid viscosity, K the
symmetric and uniformly positive definite rock permeability tensor, f� body
force terms, and q� external source or sink terms. Let D(uf ) and σf (uf , pf )
denote, respectively, the deformation rate tensor and the stress tensor:

D(uf ) =
1
2
(∇uf + ∇uT

f ), σf (uf , pf ) = −pfI + 2νD(uf ).

In the fracture region Ωf , (uf , pf ) satisfy the Brinkman equations

− ∇ · σf (uf , pf ) + νK−1
f uf = ff , ∇ · uf = qf in Ωf , (1)

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-20239-6 1



4 I. Ambartsumyan et al.

where Kf represents the fracture permeability. Let σe(η) and σp(η, p) be the
elasticity and poroelasticity stress tensor, respectively:

σe(η) = λp(∇ · η)I + 2μpD(η), σp(η, p) = σe(η) − αpI, (2)

where α is the Biot-Willis constant. The poroelasticity region Ωp is governed by
the quasi-static Biot system [3]

−∇ · σp(ηp, pp) = fp in Ωp, (3)

νK−1up + ∇pp = 0,
∂

∂t
(s0pp + α∇ · ηp) + ∇ · up = qp in Ωp, (4)

where s0 is a storage coefficient. The interface conditions on the fluid-
poroelasticity interface Γfp are mass conservation, balance of normal stress, and
the Beavers-Joseph-Saffman (BJS) law [2,13] modeling slip with friction [1,14]:

uf · nf +
(∂ηp

∂t
+ up) · np = 0, (5)

−(σfnf ) · nf = pp, (6)

−(σfnf ) · τ f,j = ναBJS

√
K−1

j (uf − ∂ηp

∂t
) · τ f,j on Γfp, (7)

as well as conservation of momentum:

(σfnf ) · nf = (σpnp) · np, (σfnf ) · τ f,j = (σpnp) · τ p,j on Γfp, (8)

where nf and np are the outward unit normal vectors to ∂Ωf , and ∂Ωp, respec-
tively, τ f,j , 1 ≤ j ≤ d−1, is an orthogonal system of unit tangent vectors on Γfp,
Kj = (Kτ f,j) ·τ f,j , and αBJS > 0 is an experimentally determined friction coef-
ficient. We note that the continuity of flux takes into account the normal velocity
of the solid skeleton, while the BJS condition accounts for its tangential velocity.

2 Numerical Approximation

Our discretization approach is based on the finite element method. For this
reason, we consider the weak formulation of the Biot-Brinkman system (1), (3)
and (4). It is obtained by multiplying the equations in each region by suitable
test functions, integrating by parts certain terms, and utilizing the interface and
boundary conditions. For simplicity the latter are assumed to be homogeneous:
uf = 0, up · np = 0 and ηp = 0 on ∂Ω. Let (·, ·)S , S ⊂ Rd, be the L2(S) inner
product and let 〈·, ·〉F , F ⊂ Rd−1, be the L2(F ) inner product or duality pairing.
Let us define

Vf = H1(Ωf )d, Wf = L2(Ωf ),

Vp = H(div;Ωp), Wp = L2(Ωp),

Xp = H1(Ωp)d.
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The global spaces are products of the subdomain spaces and satisfy the boundary
conditions. For simplicity assume for the moment that each region consists of a
single subdomain. Let b�(v, w) = −(∇ · v, w)Ω�

and let

af (uf ,vf ) = (2νD(uf ) : D(vf )Ωf
+ (νK−1

f uf ,vf ),

ad
p(up,vp) = (νK−1up,vp)Ωp

,

ae
p(ηp, ξp) = (σe(ηp) : D(ξp))Ωp

.

be the bilinear forms related to Brinkman, Darcy and the elasticity operators,
respectively.

To proceed with the discretization, we denote with Vf,h,Wf,h the finite ele-
ment spaces for the velocity and pressure approximation on the fluid domain
Ωf , with Vp,h,Wp,h the spaces for velocity and pressure approximation on the
porous matrix Ωp and with Xp,h the approximation spaces for the structure dis-
placement. We assume that all the finite element approximation spaces comply
with the prescribed Dirichlet conditions on external boundaries ∂Ωf , ∂Ωp. For
the time discretization, we denote with tn the current time step and with dτ the
first order (backward) discrete time derivative dτun := τ−1(un − un−1).

2.1 Approximation of Interface Conditions Using the Lagrange
Multiplier Method

To impose the interface conditions on Γfp we introduce a Lagrange multiplier
λh ∈ Λh = (Vp,h · np)′ with a physical meaning λh = −(σf,hnf ) · nf . Then,
we seek uf,h ∈ Vf,h, pf,h ∈ Wf,h, up,h ∈ Vp,h, pp,h ∈ Wp,h, ηp,h ∈ Xp,h, and
λh ∈ Λh such that for all vf,h ∈ Vf,h, wf,h ∈ Wf,h, vp,h ∈ Vp,h, wp,h ∈ Wp,h,
ξp,h ∈ Xp,h, and μh ∈ Λh,

af (uf,h,vf,h) + ad
p(up,h,vp,h) + ae

p(ηp,h, ξp,h) + aBJS(uf,h,ηp,h;vf,h, ξp,h)
+bf (vf,h, pf,h) + bp(vp,h, pp,h) + αbp(ξp,h, pp,h) + bΓ (vf,h,vp,h, ξp,h;λh)
= (ff,h,vf,h)Ωf

+ (fp,h, ξp,h)Ωp
, (9)

(s0dτpp,h, wp,h) − αbp(dτηp,h, wp,h) − bp(up,h, wp,h) − bf (uf,h, wf,h)
= (qf,h, wf,h)Ωf

+ (qp,h, wp,h)Ωp
, (10)

bΓ (uf,h,up,h, dτηp,h;μh) = 0, (11)

where

aBJS(uf ,ηp;vf , ξp) =
d−1∑

j=1

〈ναBJS

√
K−1

j (uf − ∂ηp

∂t
) · τ f,j , (vf − ξp) · τ f,j〉Γfp

,

bΓ (vf ,vp, ξp;μ) = 〈vf · nf + (ξ + vp) · np, μ〉Γfp
.
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We note that the balance of normal stress, BJS, and conservation of momentum
interface conditions (7) and (8) are natural and have been utilized in the deriva-
tion of the weak formulation, while the conservation of mass condition in (7) is
imposed weakly in (11).

We solve problem (9), (10) and (11) using piecewise linear finite elements
for the approximation of all the variables. It is well known that the equal-order
approximation is unstable for saddle point problems such as Darcy, Stokes or
Brinkman [4]. For this reason, we complement the discretization of Brinkman
problem, namely (1), with the Brezzi-Pitkaranta stabilization operator acting
on the pressure [4,5]. Owing to the pressure time derivative in equation (4) the
Biot system is not a saddle point problem. For this reason, pressure stabilization
is not required. Particular attention should be also devoted to the discretiza-
tion of the Lagrange multiplier space. For the piecewise linear approximation
adopted here, we observe that the Lagrange multiplier space coincides with the
normal components of the interface trace spaces of Vf,h, Vp,h, Xp,h. This prop-
erty has two important consequences. First, it is straightforward to show that
equation (11) is exactly satisfied. Second, owing to the results obtained in [12]
for general elliptic problems and the more recent analysis of Stokes-Darcy equa-
tions [9], it can be shown that this property entails the unique solvability of the
discrete system.

Besides the well posedness of the finite element method, stability of the time
discretization must be also addressed. To this purpose, by taking

(vf,h, wf,h,vp,h, wp,h, ξp,h, μ) = (un
f,h, pn

f,h,un
p,h, pn

p,h, dτηn
p,h, λh)

in (9)–(11) we obtain an energy equality

af (un
f,h,un

f,h) + ad
p(un

p,h,un
p,h) + ae

p(ηn
p,h, dτηn

p,h)

+

d−1∑

j=1

ναBJS‖K
−1/4
j (un

f,h − dτηn
p,h) · τ f,j‖2

L2(Γfp) + (dτs0p
n
p,h, pn

p,h) = F(tn;uf,h)

Using the following equality
∫

Ω

undτun =
1
2
dτ‖un‖2Ω +

1
2
τ‖dτun‖2Ω

the energy equality becomes
1

2
dτ

(
s0‖pn

p,h‖2
L2(Ωp) + ae

p(ηn
p,h, ηn

p,h)
)

+
τ

2

(
s0‖dτpn

p,h‖2
L2(Ωp) + ae

p(dτηn
p,h, dτηn

p,h

)

+af (un
f,h,un

f,h) + ad
p(un

p,h,un
p,h) +

d−1∑

j=1

ναBJS‖K
−1/4
j (un

f,h − dτηn
p,h) · τ f,j‖2

L2(Γfp)

= F(tn;uf,h)

Rearranging the following terms,

af (un
f,h,un

f,h) + ad
p(u

n
p,h,un

p,h) +
τ

2
ae

p(dτηn
p,h, dτηn

p,h)

= 2ν‖D(un
f,h)‖2Ωf

+ νK−1‖un
p,h‖2Ωp

+
τ

2
‖dτ∇ · ηn

p,h‖Ωp



Simulation of Flow in Fractured Poroelastic Media 7

using the bound on generic forcing term,

F(tn;un
f,h) ≤ (2ε′ν)−1‖F(tn)‖2 +

ε′

2
ν‖D(un

f,h)‖2Ωf
,

and combining these results and summing up with respect to time index n =
1, ..., N , the following energy estimate is obtained.

Theorem 1. For any ε′ > 0, the discrete problem (9), (10) and (11) satisfies
the following energy estimate:

1
2

(
s0‖pn

p,h‖2L2(Ωp)
+ ae

p(η
n
p,h,ηn

p,h)
)

+ τ
N∑

n=1

[
2ν(1 − ε′

4
)‖D(uf,h)‖2Ωf

+νK−1
f ‖uf,h‖2Ωf

+ νK−1‖up,h‖2Ωp
+

τ

2
(‖dτ∇ · ηn

p,h‖Ωp
+ s0‖dτpn

p,h‖)

+
d−1∑

j=1

ναBJS‖K
−1/4
j (uf,h − ∂ηp,h

∂t
) · τ f,j‖2L2(Γfp)

]

≤ 1
2

(
s0‖p0p,h‖2L2(Ωp)

+ ae
p(η

0
p,h,η0

p,h)
)

+ τ

N∑

n=1

(2ε′ν)−1‖F(tn)‖2. (12)

2.2 Approximation of Interface Conditions by Nitsche’s Method

The enforcement of interface conditions by means of Lagrange multipliers leads
to an accurate but expensive problem at the discrete level. For this reason, some
alternatives have been developed. The most straightforward strategy consists
in the application of a penalty method. The idea is to enrich the variational
formulation with new terms corresponding to additional quadratic functionals
which are minimized when the Dirichlet boundary conditions are exactly satis-
fied. The penalty method, however, suffers from lack of consistency with respect
to the continuous formulation of the problem. Among several interpretations,
Nitsches method can be seen as a variant of the penalty method. Indeed, it
allows to weakly enforce boundary and interface conditions and it restores the
strong consistency of the discrete scheme with respect to the continuous form
of the variational formulation. For an introduction to this technique applied to
general boundary and interface conditions we refer to [10], while this method is
applied to FSI in [7], and to the Biot-Stokes system in [6].

Applying Nitsche’s method to equations (1), (3) and (4) with the correspond-
ing interface and boundary conditions, we obtain the following discrete problem
formulation, that consists of a system of three coupled problems: for any index
n > 0, find ηn

h ∈ Xp,h, un
p,h ∈ Vp,h, pn

p,h ∈ Wp,h and un
f,h ∈ Vf,h, pn

f,h ∈ Wf,h

such that for any ∀ξh ∈ Xp,h, vp,h ∈ Vp,h, wp,h ∈ Wp,h, vf,h ∈ Vf,h, wf,h ∈
Wf,h the following equations are satisfied:

ae
p(ηn

h, ξh) − bp(pn
p,h, ξh) + 〈np · σf,hnp ,

(− ξh

) · np〉Γfp (13)

+ 〈ναBJS

√
K−1

j dτηn
h · tp , ξh · tp〉Γfp + 〈γνh−1dτηn

h · np , ξh · np〉Γfp

− 〈ναBJS

√
K−1

j un
f,h · tp , ξh · tp〉Γfp − 〈γνh−1(un

f,h − un
p,h

) · np , ξh · np〉Γfp = 0,
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s0(dτpn
p,h , wp,h)Ωp

+ ap(un
p,h,vp,h) − bp(pn

p,h,vp,h) + bp(wp,h,un
p,h) (14)

+ 〈γνh−1un
p,h · np ,vp,h · np〉Γfp

+ bs(wp,h, dτηn
h)

− 〈γνh−1
(
un

f,h − dτηn
h

) · np ,vp,h · np〉Γfp
− 〈np · σf,hnp ,vp,h · np〉Γfp

= 0,

〈ρfdτun
f,h , vf,h〉Ωf + af (un

f,h, vf,h) − bf (pn
f,h, vf,h) + bf (wf,h, un

f,h) (15)
− 〈nf · σf,hnf , vf,h · nf 〉Γfp − 〈nf · σf,h(ςvf,h, −wf,h)nf , un

f,h · nf 〉Γfp

+ 〈nf · σf,h(ςvf,h, −wf,h)nf ,
(
un

p,h + dτηn
h

) · nf 〉Γfp

+ 〈γνh−1un
f,h · nf , vf,h · nf 〉Γfp + 〈ναBJS

√
K−1

j un
f,h · tf , vf,h · tf 〉Γfp

− 〈γνh−1(un
p,h + dτηn

h

) · nf , vf,h · nf 〉Γfp − 〈ναBJS

√
K−1

j dτηn
h · tf , vf,h · tf 〉Γfp

= F(tn; vf,h),

where γ is a positive penalty (or stabilization) parameter and ς ∈ {−1, 0, 1} is
a symmetry parameter that allows us to switch from the so called symmetric,
incomplete and skew-symmetric problem formulations respectively. The value of
γ will be determined below, in order to guarantee the stability of the scheme.
To study the stability of the Nitsche’s method, we use the following inverse
inequality,

h‖D(uh)n‖2Γfp
≤ CTI‖D(uh)‖2Ωf

, (16)

where CTI is a positive constant uniformly upper bounded with respect to the
mesh characteristic size h, for a family of shape-regular and quasi-uniform meshes
[8]. Since we solve the FSI problem on fixed domains, the constant CTI does not
depend on the solution. The following result shows that the scheme (13), (14)
and (15) is stable for any time step.

Theorem 2. [6] For any ε̂′, ε̌′ that satisfy

1 − (ς + 1)
2

ε̂′CTI − ε̌′

2
> 0

where ς ∈ {−1, 0, 1} provided that γ > (ς + 1)(ε̂′)−1, there exist constants 0 <
c < 1 and C > 1, uniformly independent of the mesh characteristic size h, such
that

1

2

(
2μp‖D(ηN

h )‖2Ωp
+ λp‖∇ · ηN

h ‖2Ωp
+ s0‖pN

p,h‖2Ωp

)
(17)

+ cτ

N∑
n=1

[
2ν‖D(un

f,h)‖2Ωf
+ νK−1

f ‖un
f,h‖2Ωf

+ νK−1‖un
p,h‖2Ωp

+
τ

2

(
ρf ‖dτ un

f,h‖2Ωf
+ 2μp‖dτ D(ηn

h)‖2Ωp
+ s0‖dτ pn

p,h‖2Ωp
+ λp‖dτ ∇ · ηn

h‖2Ωp

)

+ νh−1
(‖(un

f,h − un
p,h − dτ ηn

h

) · n‖2Γfp
+ ‖(un

f,h − dτ ηn
h

) · t‖2Γfp

)]

≤ 1

2

(
2μp‖D(η0

h)‖2Ωp
+ λp‖∇ · η0

h‖2Ωp
+ s0‖p0p,h‖2Ωp

)

+ τ
N∑

n=1

C

ν
‖F(tn)‖2.
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More precisely, we have

c < min{(
1 − (ς + 1)

2
ε̂′CTI − ε̌′

2
)
,
(
(γ − (ς + 1)(ε̂′)−1

)},

C > (2ε̌′)−1.

3 Computational Results

We consider the test case motivated by the example investigated by Lesinigo
et al. in [11], Sect. 7.2. The computational domain consists of two unit squares
separated by a fracture of width δ = 0.1. The squares represent the poroelastic
subdomains of Ωp. We assume that there are no external forces or mass sources.
On the left and right boundaries we impose the homogeneous Dirichlet pressure
and the homogeneous Dirichlet displacement conditions, while on the remaining
external boundaries we impose zero normal flux and zero normal poroelastic
stress. In order to generate a nontrivial flow pattern, a uniform flow is enforced
on the bottom side of the fracture uf · n = 10, while the upper side of Ωf is
impermeable to flow. We expect to observe a vertical flow in Ωf , which progres-
sively fades out moving upwards, because of a significant leakage of fluid into
Ωp. Since the friction term is active in the Brinkman equation, we also expect
that the pressure decreases along the direction of the flow in Ωf .

We first consider a test case (we refer to it as Case A) designed to verify
the agreement with the example in [11]. Since there the tangential flow interface
condition is free slip and the porous media is not deformable, we take αBJS = 0
and Young modulus Ep = 1010 Pa (very hard material), see the parameter set
in Table 1. Furthermore, we investigate the behavior of the model in a regime
different from [11]. In particular, we choose αBJS = 1 (this configuration is called
Case B) and finally we consider a softer material characterized by Ep = 103 Pa
(this is denoted as Case C). All the problems were solved over the time interval
[0, 1] s with time step Δt = 0.1s.

The simulation results obtained with the Lagrange multiplier method are
reported in Fig. 1. On the left we observe that the main expected features of
the solution are correctly captured. For a more quantitative comparison, we plot
on the right the variation of velocity modulus and pressure along the (vertical)

Table 1. Poroelasticity and fluid parameters that are used in the numerical experi-
ments denoted as Case A.

Parameters Values Parameters Values

Young modulus Ep (Pa) 1010 poisson ratio 0.3

First Lamé param. μp(Pa) 3.84 109 Second Lamé param. λp(Pa) 5.76 109

Hydraulic conductivity νK−1(m3 s/Kg) I Mass storativity s0(Pa) 1

Biot-Willis constant α 1 BJS friction coef. αBJS 0

Hydraulic conductivity K−1
f (m3 s/Kg) 10I Brinkman viscosity ν 1
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Case A: αBJS = 0, Ep = 1010 Pa
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Case B: αBJS = 1, Ep = 1010 Pa
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Case C: αBJS = 1, Ep = 103 Pa
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Fig. 1. Velocity glyphs at time t = 1. For visualization purposes, the velocity field
on Ωp has been magnified of a factor 10. The background color shows the pressure
magnitude (left panel). Velocity and pressure plot along the vertical meanline of Ωf

(right panel).

meanline of Ωf and we compare these results with the ones reported in Fig. 7a
of [11]. An excellent agreement is observed. The analysis of the problem con-
figurations A, B, C shows that the BJS friction factor αBJS significantly affects
the pressure profile in the fluid region Ωf . Because the friction has increased,
but the flow rare is prescribed at the boundary, we observe a significant increase
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Case A: αBJS = 0, Ep = 1010 Pa
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Case B: αBJS = 1, Ep = 1010 Pa
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Case C: αBJS = 1, Ep = 103 Pa
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Fig. 2. Porous domain deformation at t = 1. The background color shows the fluid
pressure magnitude. For visualization purposes, the displacement field has been mag-
nified of a factor 107 for cases A and B. Results obtained with the Lagrange multiplier
scheme are reported in the left, the ones corresponding to Nitsche’s method are on the
right.

of the pressure at the inlet. The pressure field in the porous medium is also sen-
sitive to this variation, but with less intensity. We finally notice that cases B and
C look very similar. This suggests that the entire flow field is almost unaffected
by the stiffness of the material.

The sensitivity of the model with respect to the interface BJS friction coef-
ficient also emerges in Fig. 2, where we show the displacement of the porous
domain. In particular, we observe that the displacement field changes signifi-
cantly when we move from αBJS = 0 to αBJS = 1. Furthermore, even though
not revealed by the visualization because amplification factors are adopted, t
he displacement field is almost inversely proportional to the Young modulus of
the solid material. We finally notice that, although pf > pp along the fluid-solid
interface, the fluid is inducing a traction on the solid in cases B and C. This effect
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happens in this specific problem configuration, because pf � (2νD(uf )nf ) · nf

in Ωf and as a result (σf (uf , pf )nf ) · nf � 0. In the cases where αBJS = 1 the
tangential interaction dominates over the normal one in the fluid-solid interac-
tion. This justifies the differences between the displacement observed in cases A,
B and C.

3.1 Comparison of Lagrange Multiplier and Nitsche’s Methods

In this section we aim to accurately compare the two schemes proposed for the
solution of the problem. First, from a preliminary inspection based on visualiza-
tions similar to the ones of Fig. 1, we observe that the two methods provide very
similar results. They also provide equivalent accuracy and precision as confirmed
by the analysis of the convergence rate with respect to the mesh characteristic
size, h, reported in Table 2. As error indicators, we consider the dominating terms
that appear in the left hand sides of the stability estimates, namely Eqs. (12)
and (17) for the Lagrange and Nitsche’s methods respectively. Finally, since the
main distinction between the two proposed methods consists of the enforcement
of interface conditions, and in particular the mass conservation condition (5), we
analyze in Table 3 the numerical residual

RΓi
(uf ,ηp,up) :=

∫

Γi

(
uf · nf +

(∂ηp

∂t
+ up) · np

)
, Γi = Ωf ∩ Ωp,i , i = 1, 2,

for the approximate solutions provided by each method. The results of Table 3
confirm the higher accuracy of the Lagrange multiplier method for the approx-
imation of interface conditions. Indeed, Table 3 shows that the Lagrange multi-
plier method is exactly enforcing the desired condition at every interface node.

Table 2. Convergence analysis with respect to the mesh characteristic size for the
Lagrange multiplier method (top) and Nitsche’s method (bottom). Since an analyti-
cal solution is not available for the considered problem, we calculate the error with
respect to a numerical solution computed on a highly refined mesh with h = 1/320 and
denoted by ũf,h , p̃p,h , D(η̃h) , ũp,h. Then, the discretization error is given by eN

u,f,h :=

uN
f,h − ũN

f,h , eN
p,h := pN

p,h − p̃N
p,h , D(eN

η,h) := D(ηN
h ) − D(η̃N

h ) , en
u,p,h := un

p,h − ũn
p,h. To

facilitate the interpretation of the results, error norms are normalized with respect to
the corresponding norm of the solution.

h ‖eN
p,h‖Ωp Rate ‖D(eN

η,h)‖Ωp Rate
√

τ
∑N

n=1 ‖en
u,f,h‖2

Ωp
Rate

√
τ
∑N

n=1 ‖en
u,p,h‖2

Ωp
Rate

1/20 4.72E-02 4.03E-01 5.18E-02 1.77E-01

1/40 1.35E-02 1.81 2.36E-01 0.77 1.94E-02 1.41 6.21E-02 1.51

1/80 3.38E-03 1.99 1.24E-01 0.93 5.97E-03 1.70 1.86E-02 1.74

1/160 6.93E-04 2.29 7.31E-02 0.76 1.40E-03 2.09 4.74E-03 1.98

h ‖eN
p,h‖Ωp Rate ‖D(eN

η,h)‖Ωp Rate
√

τ
∑N

n=1 ‖en
u,f,h‖2

Ωp
Rate

√
τ
∑N

n=1 ‖en
u,p,h‖2

Ωp
Rate

1/20 8.68E-02 4.35E-01 1.24E-01 2.23E-01

1/40 3.19E-02 1.44 2.56E-01 0.76 3.39E-02 1.87 9.08E-02 1.30

1/80 1.11E-02 1.52 1.35E-01 0.93 1.06E-02 1.67 2.85E-02 1.67

1/160 3.30E-03 1.75 8.02E-02 0.75 2.49E-03 2.10 7.51E-03 1.92
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Table 3. The behavior of the indicator RΓi(uf,h, ηp,h,up,h) when varying the mesh
characteristic size.

Lagrange multipliers Nitsche

h RΓ1 RΓ2 RΓ1 RΓ2

1/20 4.4402E-12 3.8642E-12 2.7522E-01 2.7528E-01

1/40 1.9694E-12 1.9698E-12 4.8690E-03 4.8690E-03

1/80 4.2337E-13 4.2424E-13 1.5374E-03 1.5374E-03

1/160 1.0735E-13 1.0568E-13 3.8450E-04 3.8450E-04

1/320 2.5801E-13 2.5472E-13 9.3927E-05 9.3927E-05

Conversely, equation (5) is only approximately enforced by the Nitsche’s scheme
and as expected the residual decreases proportionally with h.
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Abstract. This work deals with the derivation of a novel transparent
boundary condition (TBC) for the coupling of the standard “parabolic”
equation (SPE) in underwater acoustics (assuming cylindrical symmetry)
with an elastic parabolic equation (EPE) for modelling the sea bottom
extending hereby the existing TBCs for a fluid model of the seabed.

Keywords: Transparent boundary condition · Elastic bottom ·
One-way Helmholtz equation · Standard “parabolic” equation · Seabed
interface

1 Introduction

“Parabolic” equation (PE) models appear in (underwater) acoustics as one-
way approximations to the Helmholtz equation in cylindrical coordinates with
azimuthal symmetry. These PE models have been widely used in the recent
past for wave propagation problems in various application areas, e.g. seismology,
optics and plasma physics but here we focus on their application to underwater
acoustics, where PEs have been introduced by Tappert [17]. For more details we
refer to [10].

In computational ocean acoustics one wants to determine the acoustic pres-
sure p(z, r) emerging from a time-harmonic point source situated in the water
at (zs, 0). The radial range variable is denoted by r > 0 and the depth variable
is 0 < z < zb. The water surface is located at z = 0, and the (horizontal) sea
bottom at z = zb. We point out that irregular bottom surfaces and sub-bottom
layers can be included by simply extending the range of z. For an alternative
strategy based on transformation techniques, including proofs of well-posedness
in the case of upsloping and downsloping wedge-type domains in 2D and 3D
we refer to [2,6]. Further, the 3D treatment of a sloping sea bootom in a finite
element context was presented in [16].
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 15–24, 2015.
DOI: 10.1007/978-3-319-20239-6 2
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In the sequel we denote the local sound speed by c(z, r), the density by ρ(z, r),
and the attenuation by α(z, r) ≥ 0. n(z, r) = c0/c(z, r) is the refractive index,
with a reference sound speed c0. The reference wave number is k0 = 2πf/c0,
where f denotes the (usually low) frequency of the emitted sound.

1.1 The Parabolic Approximations

The acoustic pressure p(z, r) satisfies the Helmholtz equation

1
r

∂

∂r

(
r

∂p

∂r

)
+ ρ

∂

∂z

(
ρ−1 ∂p

∂z

)
+ k2

0N2p = 0, r > 0, (1)

with the complex refractive index (where α accounts for damping in the medium)

N(z, r) = n(z, r) + iα(z, r)/k0. (2)

In the far field approximation (k0r � 1) the (complex valued) outgoing acoustic
field

ψ(z, r) =
√

k0r p(z, r) e−ik0r (3)

satisfies the one-way Helmholtz equation:

ψr = ik0

(√
1 − L − 1

)
ψ, r > 0. (4)

Here,
√

1 − L is a pseudo-differential operator, and L the Schrödinger operator

L = −k−2
0 ρ ∂z(ρ−1∂z) + V (z, r) (5)

with the complex valued “potential”

V (z, r) = 1 − N2(z, r) = 1 − [
n(z, r) + iα(z, r)/k0

]2
. (6)

“Parabolic” approximations of (4) are formal approximations of the pseudo–
differential operator

√
1 − L by rational functions of L. This procedure yields a

PDE that is easier to solve numerically than the pseudo-differential equation (4).
For more details we refer to [17,18]. The linear approximation of

√
1 − λ by 1− λ

2
gives the narrow angle or standard “parabolic” equation (SPE) of Tappert [17]

ψr = − ik0

2
Lψ, r > 0. (7)

This Schrödinger equation (7) is a good description of waves with a propagation
direction within about 15◦ of the horizontal. Rational approximations of the
form

(1 − λ)
1
2 ≈ f(λ) =

p0 − p1λ

1 − q1λ
(8)
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with real p0, p1, q1 yield the wide angle “parabolic” equations (WAPE)

ψr = ik0

(
p0 − p1L

1 − q1L
− 1

)
ψ, r > 0. (9)

improving the description of the wave propagation up to angles of about 40◦.
Here we focus on a proper boundary condition (BC) at the sea bottom for

the SPE (7) coupled to an elastic “parabolic” model for the sea bottom. At the
water surface one usually employs a Dirichlet BC ψ(z = 0, r) = 0 and at the
sea bottom one has to couple the wave propagation in the water to the wave
propagation in the bottom.

1.2 The Coupling Condition

For the bottom z > zb one usually use a fluid model (i.e. assuming that (7) or (9)
with possibly different rational approximation (8) also hold for z > zb) with
constant parameters cb, ρb, αb or with a linear squared refractive index [7,11].

In [4] we analyzed this coupling of WAPEs with different parameters p0, p1,
q1 and it turned out that the coupled model is well-defined (and the resulting
evolution equation is conservative in L2(R+; (σρ)−1dz)) if the coupling condition

p1(z)/q1(z) =: μ = const (10)

is satisfied. Hence, it is not advisable to couple the WAPE and the SPE (where
p1 = 1/2; q1 = 0) numerically; in this case the evolution is not conservative in
the dissipation-free case (α ≡ 0) [4]. If the parameters p0, p1, q1 are fixed in
one medium, condition (10) still leaves two free parameters to choose a different
rational approximation model of (1 − λ)

1
2 in (8) for the second medium (cf. [8]).

Hence, one can in fact obtain a better approximation in the second medium than
with the originally intended “parabolic approximation”.

1.3 Transparent Boundary Conditions

In practical simulations one is only interested in the acoustic field ψ(z, r) in the
water, i.e. for 0 < z < zb. While the physical problem is posed on the unbounded
z-interval (0,∞), one wishes to restrict the computational domain in the z-
direction by introducing an artificial boundary at or below the sea bottom. This
artificial BC should of course change the model as little as possible, or ideally
not at all.

In [13,15] Papadakis derived impedance BCs or transparent boundary condi-
tions (TBC) for the SPE and the WAPE, which completely solves the problem of
restricting the z–domain without changing the physical model: complementing
the WAPE (9) with a TBC at zb allows to recover — on the finite computational
domain (0, zb) — the exact half-space solution on 0 < z < ∞. As the SPE is a
Schrödinger equation, similar strategies have been developed independently for
quantum mechanical applications, cf. the review article [1].
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Let us finally note, that Zhang and Tindle [20] proposed an alternative app-
roach to the impedance BCs or TBCs of Papadakis. By minimizing the reflec-
tion coefficient at the water-bottom interface they derived in their equivalent
fluid approximation an expression for a complex fluid density that can be used
for modelling an elastic sea bottom in a classical fluid model. However, this
approach yields only satisfactory results for low shear wave speeds [20].

This work is organized as follows: In Sect. 2 we review the TBC for the SPE
coupled to an elastic bottom in the frequency domain and in Sect. 3 present in
detail the analytic inverse Laplace transformation to obtain this TBC in the
time domain. Finally, we draw a conclusion and summarize the basic inversion
rules previously used.

2 The Transparent Boundary Condition for a Fluid
Bottom

The basic idea of the derivation is to explicitly solve the equation in the sea bot-
tom, which is the exterior of the computational domain (0, zb). The TBC for the
SPE (or Schrödinger equation) was derived in [3,13,15] for various application
fields:

ψ(zb, r) = −(2πk0)− 1
2 e

π
4 i ρb

ρw

∫ r

0

ψz(zb, r − τ) eiωbττ− 1
2 dτ, (11)

with ωb = k0(N2
b −1)/2. This BC is nonlocal in the range variable r and involves

a mildly singular convolution kernel. Equivalently, it can be written as

ψz(zb, r) = −
(

2k0

π

) 1
2

e− π
4 i eiωbr ρw

ρb

d

dr

∫ r

0

ψ(zb, τ) e−iωbτ (r − τ)− 1
2 dτ. (12)

The r.h.s. of (12) can be expressed formally as a Riemann-Liouville fractional
derivative of order 1

2 , cf. [3]:

ψz(zb, r) = −
√

2k0e
− π

4 i eiωbr ρw

ρb
∂1/2

r

[
ψ(zb, r) e−iωbr

]
. (13)

3 The Transparent Boundary Condition for an Elastic
Bottom

The coupling of the SPE with an elastic parabolic equation (EPE) for the sea
bottom was described in [5,9,19]. Papadakis et al. [14,15] derived a TBC for
this coupling in the frequency regime. It reads for the Laplace transformed wave
field:

ψ̂(zb, s) = − ρb

ρw

1
k0N4

s

1
+
√

Mp(s)

×
[
(
2Ms(s) + N2

s

)2 − 4 +

√
Mp(s) +

√
Ms(s)

(
Ms(s) + N2

s

)
]

ψ̂z(zb, s), (14)
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with the notation

Mp(s) = 1 − N2
p − i

2
k0

s, Ms(s) = 1 − N2
s − i

2
k0

s. (15)

Here, Np = np + iαp/k0 and Ns = ns + iαs/k0 denote the complex refractive
indices for the compressional and shear waves in the bottom (cf. (2)).

4 The Transparent Boundary Condition in the Time
Domain

In a tedious calculation the transformed TBC (14) can indeed be inverse Laplace
transformed and it reads:

ψ(zb, r) =

C

[∫ r

0

ψz(zb, r − τ) eiωpτg(τ) dτ − 2iϕ

∫ r

0

ψzr(zb, r − τ) eiωpττ− 1
2 dτ

]
, (16)

with

C = − ρb

ρw

2

k
5/2
0 N4

s

√
2
π

e
π
4 i, ωp =

k0

2
(
N2

p − 1
)
, ϕ = −k0

2
(
N2

p − N2
s

)
,

and the kernel g(τ) given by

g(τ) = −3
(
1 − eiϕτ

)
τ− 5

2 + i
k0

2
(
3N2

p − N2
s − 2N2

s eiϕτ
)
τ− 3

2

+
k2

0

2
(
N4

p − N2
p N2

s + 1
2N4

s + N2
p − N2

s

)
τ− 1

2 = O
(
τ− 1

2
)
, for τ → ∞.

While this inverse transformation was carried out numerically in [14,15], our
novel analytical TBC in the time regime may simplify both the analysis and
the numerical solution of this coupled model. Let us remark that an asymptotic
analysis of the elastic seabed was made by Makrakis [12].

4.1 Derivation of (16)

With the abbreviation ψ̂(s) := ψ̂(zb, s) and the notation

mp(s) =
k0

2
Mp(s) = −i

[
s − i

k0

2
(N2

p − 1)
]
, (17)

ms(s) =
k0

2
Ms(s) = −i

[
s − i

k0

2
(N2

s − 1)
]
, (18)
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the transformed TBC (14) reads

ψ̂(s)

= − ρb

ρw

1
k0N4

s

[
k0

2

(
4
k0

ms(s) + N2
s

)2

+
√

mp(s)
− 4

√
2
k0

+
√

ms(s)
( 2

k0

ms(s) + N2
s

)
]

ψ̂z(s)

= − ρb

ρw

8
√

2

k
5/2
0 N4

s

[(
ms(s) + k0

4 N2
s

)2

+
√

mp(s)
− 4 +

√
ms(s)

(
ms(s) +

k0

2
N2

s

)
]

ψ̂z(s), (19)

where we denote the content of the square brackets by f(s − σ) with

σ = i
k0

2
(
N2

p − 1
)
. (20)

We observe that we can write

mp(s) = −i [s − σ], ms(s) = −i
[
s − σ + i

k0

2
(N2

p − N2
s )

]
.

The next step is a shift in the argument of ψ̂z(s) in (19) by σ:

ψ̂(s + σ) = − ρb

ρw

8
√

2

k
5/2
0 N4

s

f(s) ψ̂z(zb, s + σ), (21)

Taking the branch with positive real part +
√−i = e− π

4 i we get the kernel f(s)

f(s) =

[−is + k0
2 (N2

p − N2
s ) + k0

4 N2
s

]2

e− π
4 i +

√
s

− e− π
4 i +

√

s + i
k0

2
(N2

p − N2
s )(−i) +

√

s + i
k0

2
(N2

p − N2
s )

[
s + i

k0

2
N2

p

]
,

where
[
· · ·

]2
= −

[
s + i

k0

2
N2

p − i
k0

4
N2

s

]2

= −
[
s + i

k0

2
(N2

p − N2
s )

] [
s + i

k0

2
N2

p

]
+

k2
0

16
N4

s ,

i.e. we have

f(s) = e
π
4 i

{
1
+
√

s

[
k2

0

16
N4

s −
[
s + i

k0

2
(N2

p − N2
s )

] [
s + i

k0

2
N2

p

]]

+ +

√

s + i
k0

2
(N2

p − N2
s )

[
s + i

k0

2
N2

p

]
}

= e
π
4 i

{[
+

√

s + i
k0

2
(N2

p − N2
s ) − +

√
s − i

k0

2
(N2

p − N2
s )

1
+
√

s

]

·

·
[
s + i

k0

2
N2

p

]
+

k2
0

16
N4

s

1
+
√

s

}

= e
π
4 i

{[
+
√

s − γ − +
√

s + γ
1
+
√

s

] [
s + i

k0

2
N2

p

]
+

k2
0

16
N4

s

1
+
√

s

}
,
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with
γ = −i

k0

2
(N2

p − N2
s ).

Hence, inserting in (21) we obtain

ψ̂(s + σ) = C̃

{
i
k0

2
N2

p

[
+
√

s − γ − +
√

s + γ
1
+
√

s

]
+

k2
0

16
N4

s

1
+
√

s

}
ψ̂z(s + σ)

+ C̃

[
+
√

s − γ − +
√

s + γ
1
+
√

s

] {
s ψ̂z(s + σ)

}
, (22)

where

C̃ = − ρb

ρw

8
√

2

k
5/2
0 N4

s

e
π
4 i. (23)

Next, an inverse Laplace transformation of (22) yields the convolution integral

ψ(r) e−σr = C̃

∫ r

0

ψz(r − τ) e−σ(r−τ) g1(τ) dτ

+ C̃

∫ r

0

− ∂

∂τ

[
ψz(r − τ) e−σ(r−τ)

]
g2(τ) dτ, (24)

g1(τ) = L−1

{
i
k0

2
N2

p

[√
s − γ − √

s + γ
1√
s

]
+

k2
0

16
N4

s

1√
s

}

= i
k0

2
N2

p L−1
{√

s − γ − √
s
}

+
k2

0

4
(N2

p − 1
2N2

s )2L−1

{
1√
s

}

= i
k0

4
√

π
N2

p (1 − eγτ ) τ− 3
2 +

k2
0

4
√

π
(N2

p − 1
2N2

s )2 τ− 1
2 , (25)

g2(τ) = L−1

{√
s − γ − √

s + γ
1√
s

}
=

1
2
√

π
(1 − eγτ ) τ− 3

2 +
γ√
π

τ− 1
2

=
1

2
√

π

[
(1 − eγτ ) τ− 3

2 + γ τ− 1
2

]

︸ ︷︷ ︸
=g3(τ)

+
γ

2
√

π
τ− 1

2

︸ ︷︷ ︸
=g4(τ)

, (26)

I3 =
∫ r

0

− ∂

∂τ

[
ψz(r − τ) e−σ(r−τ)

]
g3(τ) dτ

=
∫ r

0

ψz(r − τ) e−σ(r−τ)g′
3(τ) dτ − ψz(r − τ) e−σ(r−τ)g3(τ)

∣
∣
∣
τ=r

τ=0︸ ︷︷ ︸
=0 (with ψz(0)=0)

, (27)



22 A. Arnold and M. Ehrhardt

ψ(r) e−σr = C̃

∫ r

0
ψz(r − τ) e−σ(r−τ)

[
g1(τ) + g′

3(τ)
]
dτ

+ C̃

∫ r

0
− ∂

∂r

[
ψz(r − τ) e−σ(r−τ)

]
g4(τ) dτ

= C̃

∫ r

0
ψz(r − τ) e−σ(r−τ)

[
g1(τ) + g′

3(τ)
]
dτ

+ C̃

∫ r

0

[
ψzr(r − τ) e−σ(r−τ) − σψz(r − τ) e−σ(r−τ)

]
g4(τ) dτ, (28)

i.e.

ψ(r) = C̃

[∫ r

0

ψz(r − τ) eστ g̃(τ) dτ +
∫ r

0

ψzr(r − τ) eστg4(τ) dτ

]
, (29)

where
g̃(τ) :=

[
g1(τ) + g′

3(τ) − σg4(τ)
]
. (30)

We calculate

g′
3(τ) =

1
2
√

π

[
−3

2
(1 − eγτ ) τ− 5

2 − γ eγτ τ− 3
2 − γ

2
τ− 3

2

]

=
1

4
√

π

[
−3(1 − eγτ ) τ− 5

2 − 2γ( 12 + eγτ ) τ− 3
2

]
, (31)

and

σg4(τ) =
σγ

2
√

π
τ− 1

2 =
1

4
√

π

k2
0

2
(N2

p − 1)(N2
p − N2

s ) τ− 1
2 , (32)

i.e. (30) gives finally

g̃(τ) =
1

4
√

π

[
ik0N

2
p

(
1 − eγτ

)
τ− 3

2 + k2
0

(
N2

p − 1
2N2

s

)2
τ− 1

2 − 3
(
1 − eγτ

)
τ− 5

2

+ ik0

(
N2

p − N2
s

)(
1
2 + eγτ

)
τ− 3

2 − k2
0

2
(
N2

p − 1
)(

N2
p − N2

s

)
τ− 1

2

]

=
1

4
√

π

[
k2

0

2
(
N4

p − N2
p N2

s + 1
2N4

s + N2
p − N2

s

)
τ− 1

2

+ i
k0

2
(
3N2

p − N2
s − 2N2

s eγτ
)
τ− 3

2 − 3
(
1 − eγτ

)
τ− 5

2

]

= O(τ− 1
2 ), τ → ∞. (33)

Finally, we define ϕ, ω, by setting γ =: iϕ, σ =: iω and

g(τ) = 4
√

πg̃(τ), C =
C̃

4
√

π
. (34)

This completes the calculation of (16).
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5 Conclusion and Outlook

First, we will make first numerical investigations for these new TBCs and investi-
gate their superiority compared to using their formulation in transformed space.
Next, instead of using an ad-hoc discretization of the analytic transparent BC
we will construct discrete TBCs of the fully discretized half-space problem in
the spirit of [4].

Acknowledgments. The first author was supported by the FWF (project I 395-N16
and the doctoral school “Dissipation and dispersion in non-linear partial differential
equations”).

Appendix: Laplace–Transformations

L−1
{√

s − γ − √
s
}

=
1

2
√

π
(1 − eγt) t−

3
2 , (L.1)

L−1

{
1√
s

}
=

1√
π

t−
1
2 , (L.2)

L−1
{

ψ̂(s + σ)
}

= ψ(t) e−σt, (L.3)

L−1
{

s ψ̂(s + σ)
}

=
d

dt

{
ψ(t) e−σt

}
if ψ(0) = 0. (L.4)
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Abstract. In the present paper the well-posedness of the elliptic differ-
ential equation

−u′′(t) + Au(t) = f(t)(−∞ < t < ∞)

in an arbitrary Banach space E with the general positive operator in
Hö lder spaces Cβ(R, Eα) is established. The exact estimates in Hölder
norms for the solution of the problem for elliptic equations are obtained.
The high order of accuracy two-step difference schemes generated by an
exact difference scheme or by Taylor’s decomposition on three points for
the approximate solutions of this differential equation are studied. The
well-posedness of the these difference schemes in the difference analogy of
Hölder spaces Cβ(Rτ , Eα) are obtained. The almost coercive inequality
for solutions in C(Rτ , E) of these difference schemes is established.

Keywords: Abstract elliptic equation · Banach spaces · Exact
estimates · Fractional spaces · Well-posedness

The role played by coercive inequalities (well-posedness) in the study of local
boundary-value problems for elliptic and parabolic differential equations is well
known (see, e.g., [1,2]). Well-posedness of local and nonlocal boundary value
problems for elliptic differential equations have been studied extensively by many
researchers (see [3–8,11–13,15–17] and the references therein). In the paper [10]
the elliptic differential equation

− u′′(t) + Au(t) = f(t),−∞ < t < ∞ (1)

with A positive operator in E was considered. A function u(t) is called a solution
of the problem (1) if the following conditions are satisfied:

(i) u(t) is twice continuously differentiable function on R = (−∞,∞).
(ii) The element u(t) belongs to D(A) for all t ∈ R, and the function Au(t) is

continuous on R.
(iii) u(t) satisfies the Eq. (1).
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A solution of problem (1) defined in this manner will from now on be referred
to as a solution of problem (1) in the space C(E) = C(R, E) of all continuous
functions ϕ(t) defined on R with values in E, equipped with the norm

||ϕ||C(E) = sup
t∈R

||ϕ(t)||E .

The well-posedness in C(E) of the boundary value problem (1) means that
coercive inequality

||u′′||C(E) + ||Au||C(E) ≤ M ||f ||C(E) (2)

is true for its solution u(t) ∈ C(E) with some M, does not depend on f(t) ∈
C(E). In this paper, positive constants, which can differ in time will be indicated
with an M. On the other hand M(α, β, · · ·) is used to focus on the fact that the
constant depends only on α, β, · · ·. It is known that from the coercive inequality
(2) the positivity of the operator A in the Banach space E follows under the
assumption that the operator has bounded inverse (Iλ + A)−1 for any λ ≥ 0, in
E and estimate

||(λI + A)−1||E→E ≤ M

1 + λ

holds. It turns out that this positivity property of the operator A in E is neces-
sary condition of well-posedness of the differential equation (1) in C(E). The pos-
itivity of the operator A in E is not a sufficient condition for the well-posedness
of the differential equation (1). As it turns out, problem (1) is not well- posed for
all such operators.The counterexample given by Sobolevskii in [10]. It is known
(see, for example [8]) that the operator A1/2 has better spectral properties than
the positive operator A. In particular, the operator λI + A1/2 has a bounded
inverse for any complex number λ with Reλ ≥ 0, and the estimate

‖(λI + A1/2)−1‖E→E ≤ M(|λ| + 1)−1

is true for some M ≥ 1. Thus, A1/2 is a strongly positive operator in E, i.e. the
following estimates hold:

‖e−tA1/2‖E→E ≤ Me−δt, t‖A1/2e−tA1/2‖E→E ≤ M, t > 0, δ > 0 (3)

It is easy to see that formula

u(t) =
1
2
A− 1

2

∞∫

−∞
e−|t−s|A 1

2 f(s)ds (4)

defines the unique solution in C(E) of differential equation (1) if, for example
and Af(t) ∈ C(E) or f ′′(t) ∈ C(E). It turns out formula formula (4) defines
the unique solution in C(E) of differential equation (1) under essentially less
restrictions on the smoothness of function f(t). We introduce the Hölder space
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Cβ(E) = Cβ(R, E), β ∈ [0, 1], of all E−valued abstract functions ϕ(t) defined
on R with the norm

‖ϕ‖Cβ(E) = ‖ϕ‖C(E) + sup
−∞<t<t+τ<∞

‖ϕ(t + τ) − ϕ(t)‖E

τβ
.

We call u(t) a solution of problem (1) in Cβ(E), if it is a solution of this problem
in C(E), and u′′(t), Au(t) ∈ Cβ(E). Problem (1) is called well-posed in Cβ(E),
if its solutions u(t) in Cβ(E) satisfy the following coercivity inequality

‖u′′‖Cβ(E) + ‖Au‖Cβ(E) ≤ M(β)‖f‖Cβ(E).

Theorem 1.1. Equation (1) is well-posed in Banach spaces Cβ(E) for all β ∈
(0, 1), iff A is positive operator in a Banach space E. For solution problem u(t)
in Cβ(E) of equation (1) coercivity inequality [10]

‖u′′‖Cβ(E) + ‖Au‖Cβ(E) ≤ M

β(1 − β)
‖f‖Cβ(E) (5)

takes place.

For α ∈ (0, 1), let Eα = Eα,∞(E,A1/2) be the fractional space consisting of all
v ∈ E for which the norm

‖v‖Eα
= ‖v‖E + sup

λ>0
‖λ1−αA1/2e−λA1/2

v‖E

is finite [18]. From (3) it follows that

‖e−tA1/2‖Eα→Eα
≤ Me−δt, t‖A1/2e−tA1/2‖Eα→Eα

≤ M, t > 0, δ > 0 (6)

Then, using (5), we get

‖u′′‖Cβ(Eα) + ‖Au‖Cβ(Eα) ≤ M

β(1 − β)
‖f‖Cβ(Eα). (7)

Note that one can not put β = 0 and β = 1 in (5). In present paper the
well-posedness of (1) in Hölder spaces Cβ(Eα) = Cβ(R, Eα), (α, β ∈ [0, 1], α +
β �= 0, α + β �= 2) is established. The exact estimates in Hölder norms for the
solution of the problem for elliptic equations are obtained. The high order of
accuracy two-step difference schemes generated by an exact difference scheme or
by Taylor’s decomposition on three points for the approximate solutions of this
differential equation are studied. The well-posedness of these difference schemes
in the difference analogy of Hölder spaces Cβ(Rτ , Eα), (0 ≤ β ≤ 1, 0 < α < 1)
are obtained. The almost coercive inequality for solutions in C(Rτ , E) of these
difference schemes is established.
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1 Well-Posedness of Elliptic Differential Equations

Theorem 2.1. For any α, β ∈ [0, 1], α + β �= 0, α + β �= 2, problem (1) is
well-posed in Cβ(Eα) and the estimate

‖u′′‖Cβ(Eα) + ‖Au‖Cβ(Eα) ≤ M min
{

1
β(1 − β)

,
1

α(1 − α)

}
‖f‖Cβ(Eα) (8)

is valid.

The proof of Theorem 2.1 is based on the formula (4), estimate (3), and the
definition of Eα−norm.

Now, we will consider the application of Theorem 2.1 For formulation it we
need the following theorem

Theorem 2.2. If A is positive operator in a Banach space E. Then Eα(A,E) =
E2α(A

1
2 , E) for all 0 < α < 1

2 [9].

We will consider 2m-th order multidimensional elliptic equations
⎧
⎪⎪⎨

⎪⎪⎩

−∂2u
∂y2 +

∑

|r|=2m

ar(x) ∂|τ|u
∂x

r1
1 ···∂xrn

n
+ δu(y, x) = f(y, x),

y ∈ R, x, r ∈ R
n, |r| = r1 + · · · + rn,

(9)

where ar(x) and f(y, x) are given sufficiently smooth functions and δ > 0 is the
sufficiently large number. It is assumed that the symbol

Bx(ξ) =
∑

|r|=2m

ar(x) (iξ1)
r1 · · · (iξn)rn , ξ = (ξ1, · · ·, ξn) ∈ R

n

of the differential operator of the form

Bx =
∑

|r|=2m

ar(x)
∂|r|

∂xr1
1 · · · ∂xrn

n
(10)

acting on functions defined on the space R
n, satisfies the inequalities

0 < M1|ξ|2m ≤ (−1)mBx(ξ) ≤ M2|ξ|2m < ∞ (11)

for ξ �= 0. The equation (9) has a unique smooth solution. This allows us to
reduce the equation (9) to the equation (1) in a Banach space E = Cμ(Rn)
of all continuous bounded functions defined on R

nsatisfying a Hölder condition
with the indicator μ ∈ (0, 1) with a strongly positive operator Ax = Bx + σI
defined by (10) (see, [20]).

Theorem 2.3. For the solution of the equation (9) the following estimate is
satisfied:

‖u‖C2+β(C2αm(Rn))+
∑

|τ |=2m

∥∥∥∥
∂|r|u

∂xr1
1 · · · ∂xrn

n

∥∥∥∥
Cβ(C2αm(Rn))

≤ M(δ, α, β)‖f‖Cβ(C2αm(Rn)).
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The proof of Theorem 2.5 is based on the abstract Theorems 2.1 and 2.2 and on
the theorem on the structure of the fractional spaces Eα(Ax, Cμ(Rn)) and on
the theorem about the well-posedness of elliptic equations.

Theorem 2.4. Eα(Ax, Cμ(Rn)) = C2mα+μ(Rn) for all 0 < α < 1
2m , 0 <

μ < 1 [18].

Theorem 2.5. Suppose that assumption (11) for the operator Ax holds. Then,
for the solutions of the differential equation

Axu(x) = ω(x), x ∈ R
n

the coercive solvability estimate [19]

∑

|τ |=2m

∥
∥
∥
∥

∂|r|u
∂xr1

1 · · · ∂xrn
n

∥
∥
∥
∥

C2mα(Rn)

≤ M(δ, α)||ω||C2mα(Rn), 0 < α <
1

2m

is valid.

2 Difference Schemes Generated by an Exact
Difference Scheme

For the construction of the two step difference schemes of an arbitrary high
order of accuracy for the approximate solutions of the differential equation (1)
we consider the uniform grid space

Rτ = (−∞,∞)τ = {tk = kτ, k = 0,±1, ...}.

The construction of two-step difference schemes of an arbitrary high order of
accuracy for the approximate solutions of the differential equation (1) is based
on the following theorem.

Theorem 3.1. [14] Let u(tk) be a solution of the differential equation (1) at the
grid points t = tk ∈ Rτ . Then {u(tk)}∞

−∞ is the solution of the following second
order difference equations:

−τ−2(u(tk+1)−2u(tk)+u(tk−1))+τ−2(I−exp{−τB})(u(tk+1)+u(tk−1)) (12)

+τ−2(exp{−2τB} − I)u(tk) = ψk,

ψk = (2τB)−1(ψ1,k + ψ2,k+1) − (2τB)−1 exp{−τB}(ψ1,k+1 + ψ2,k),

ψ1,k = τ−1

tk∫

tk−1

exp{−(tk − s)B}f(s)ds,

Applying the exact difference scheme (12), we obtain (l + j)−order of accuracy
two-step difference schemes

− τ−2(uk+1 − 2uk + uk−1) + τ−2(I − Rj,l(τB))(uk+1 + uk−1) (13)
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+τ−2(R2
j,l(τB) − I)uk = f l,j

k ,

f l,j
k = (2τB)−1(f l,j

1,k + f l,j
2,k+1) − (2τB)−1

Rj,l(τB)(f l,j
1,k+1 + f l,j

2,k),

f l,j
1,k =

l+j∑

m=1

m∑

λ=0

(
m
λ

)
Bm−λf (λ)(tk)

(−1)mτm

(m + 1)!
,

f l,j
2,k =

l+j∑

m=1

m∑

λ=0

(
m
λ

)
(−B)m−λf (λ)(tk−1)

τm

(m + 1)!
, k ∈ (−∞,∞).

Here, the function Rj,l(z) is constructed on the base of Padé’s fractions

Rj,l(z) =
Pj,l(z)
Qj,l(z)

,

respectively

Pj,l = 1 + a1z + ... + ajz
j , Qj,l(z) = 1 + b1z + ... + bjz

l,

where the coefficients ai, ai = 1, ..., j, and bi, i = 1, ..., l, are uniquely defined
from the conditio

| Rj,l(z) − e−z |= o(| z |j+l+1)

for | z |→ 0. Note that the difference scheme (13) for j = l and j = l − 1
include difference schemes of arbitrary high order of approximation. Moreover,
the corresponding functions Rj,l+1(z) tend to 0 as z → ∞ for j = l − 1, l. Such
difference schemes are simplest, in the sense that the degrees of the denominators
of the corresponding Pade approximants of the function exp{−z} are minimal
for a fixed order of approximation of the difference schemes. Let us investigate
the well posedness of the exact two-step difference scheme (13) for j = l−1, l−2.
Let us denote by Fτ (E) = F (Rτ , E) the space of grid functions ϕτ = {ϕk}∞

k=−∞
for fixed τ. Thus, Fτ (E) is the vector space whose elements are ordered elements
of E. The space Fτ (E) can be equipped with various norms and thus become a
normed space. Thus, for instance, the vector space Fτ (E) generates the normed
space Cτ (E) = C(Rτ , E) with the norm

‖ ϕ
τ‖Cτ (E) = sup

−∞<k<∞
‖ ϕk ‖E ,

the normed space Cβ
τ (E) = Cβ(Rτ , E) 0 < β < 1, with the norm

‖ ϕ
τ‖Cβ

τ (E) = ‖ ϕ
τ‖Cτ (E) + sup

−∞<k<k+r<∞
‖ ϕk+r − ϕk ‖E

1
(rτ)β

.

The difference scheme (13) is uniquely solvable, and the following formula holds

uk = τ(I − R2
j,l(τB))−1

∞∑

i=−∞
R

|k−i|
j,l (τB)f l,j

i , k ∈ (−∞,∞). (14)
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Since the boundary value problem (1) in the space C(E) of bounded continuous
functions defined on the real line with values in E is not well-posed in the case
of general positive operator A, then the well-posedness of the difference schemes
(13) in C(τ, E) norm does not take place uniformly with respect to τ > 0. This
means that the coercive norm

‖ uτ ‖k(τ,E) = ‖ {τ−2(uk+1 − 2uk + uk−1)}∞
−∞ ‖

C(τ,E)

+‖ {τ−2(I − Rj,l(τB)(uk+1 + uk−1) + τ−2(R2
j,l(τB) − I)uk}∞

−∞ ‖
C(τ,E)

tends to ∞ as τ → +0 . The investigation of difference schemes (13) permits
us to establish the order of growth of this norm to ∞.

Lemma 3.1. [14] Let B is a strongly positive operator in a Banach space E
with spectral angle φ(B,E) < π

l . Then the operator I + Rj,l(τB) is invertible
and one has the estimate

||(I + Rj,l(τB))−1||E→E ≤ M.

We have that

Theorem 3.2. Let A is a strongly positive operator in a Banach space E with
spectral angle φ(A,E) < π

l . Then the solutions of the difference problem (13) in
Cτ (E) obey the almost coercive inequality

‖ uτ ‖Kτ (E) ≤ M1 min
{

ln
1
τ

, 1 + |ln ‖ B ‖E→E |
}

‖ fτ
j,l ‖

Cτ (E)
.

Theorem 3.3. Let A is a strongly positive operator in a Banach space E with
spectral angle φ(A,E) < π

l . Then for any α, β ∈ [0, 1], α + β �= 0, α + β �= 2, the
solutions of the difference problem (13) in Cβ

τ (Eα) obey the coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}∞
−∞ ‖

Cβ
τ (Eα)

+ ‖ {τ−2(I − Rj,l(τB)(uk+1 + uk−1) + τ−2(R2
j,l(τB) − I)uk}∞

−∞ ‖
Cβ

τ (Eα)

≤ M min
{

1
β(1 − β)

,
1

α(1 − α)

}
‖ fτ

j,l ‖
Cβ

τ (Eα)
.

Now, the abstract theorems given from above are applied in the investigation of
difference schemes of higher order of accuracy with respect to the set all variables
for approximate solution of the boundary value problem (9). The discretization
of problem (9) is carried out in two steps. In the first step let us define the grid
space R

n
h (0 < h ≤ h0) as the set of all points of the Euclidean space R

n whose
coordinates are given by

xk = skh, sk = 0,±1,±2, · · ·, k = 1, · · ·, n.
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The number h is called the step of the grid space. A function ϕh defined on
R

n
h will be called a grid function. We introduce the space C (Rn

h) of all mesh
functions ϕh(x) defined on R

n
h with the norm

∥
∥ϕh

∥
∥

Ch
= sup

x∈R
n
h

∣
∣ϕh(x)

∣
∣ .

Let Cβ
h = Cβ (Rn

h) be the Hölder space of all mesh functions ϕh(x) defined on
R

n
h satisfying a Hölder condition with the indicator β ∈ (0, 1) with the norm

∥
∥ϕh

∥
∥

Cβ
h

=
∥
∥ϕh

∥
∥

Ch
+ sup

x, y ∈ R
n
h

x �= y

∣
∣ϕh(x) − ϕh(y)

∣
∣

|x − y|β
.

Then, let us give the difference operator Ax
h by the formula

Ax
huh(x) =

∑

2m≤|r|≤S

bx
rDr

huh(x) + δuh(x), x ∈ R
n
h. (15)

The coefficients are chosen in such a way that the operator Ax
h approximates in

a specified way the operator

∑

|r|=2m

ar(x)
∂|r|

∂xr1
1 ...∂xrn

n
+ δ.

We shall assume that for |ξkh| ≤ π the symbol A(ξh, h) of the operator Ax
h − δ

satisfies the inequalities

(−1)mAx(ξh, h) ≥ M1|ξ|2m, | arg Ax(ξh, h)| ≤ φ < φ0 ≤ π

l
. (16)

With the help of Ax
h we arrive at the boundary value problem

− d2vh(y, x)
dy2

+ Ax
hvh(y, x) = fh(y, x), y ∈ R, x ∈ R

n
h (17)

for an infinite system of ordinary differential equations. In the second step we
replace problem (17) by the difference scheme

− 1
τ2

(uh
k+1(x) − 2uh

k(x) + uh
k−1(x)) +

1
τ2

(I − Rj,l+1(τBx
h))(uh

k−1(x) + uh
k+1(x))

+
1
τ2

(R2
j,l+1(τBx

h)−I)uh
k(x) = f j,l

k (x), k ∈ (−∞,∞), x ∈ Rn
h, (Bx

h)2 = Ax
h. (18)

Let us give a number of corollaries of the abstract theorems given in the above

Theorem 3.4. The solutions of the difference scheme (18) satisfy the following
almost coercive stability estimates:

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}∞

−∞ ‖Cτ (Ch)≤ M ln
1

τ + h
‖ fτ,h

j,l ‖Cτ (Ch).



Well-Posedness of Elliptic Differential and Difference Equations 33

The proof of Theorem 3.4 is based on the abstract Theorem 3.2, the positivity
of the operator Ax

h in Ch and on the estimate

min
{

ln
1
τ

, 1 +
∣
∣ln ‖ Bx

h ‖Ch→Ch

∣
∣
}

≤ M ln
1

τ + h
. (19)

Theorem 3.5. The solutions of the difference scheme (18) satisfy the following
coercivity estimate

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}∞

−∞ ‖Cβ
τ (C2mα

h )≤ M(α, β) ‖ fτ,h
j,l ‖Cβ

τ (C2mα
h ).

The proof of Theorem 3.5 is based on the abstract Theorem 3.3, the positivity of
the operator Ax

h in Cα
h and on the theorem about the well-posedness of elliptic

difference equations [18] and on the fact that for any 0 < α < 1
2m the norms

in the spaces E′
β(Ax

h, Ch) and C2mα
h are equivalent uniformly in h and on the

following theorem on the structure of the fractional spaces E′
α((Ax

h)
1
2 , Ch).

Theorem 3.6. Let A is a strongly positive operator in a Banach space E with
spectral angle φ(A,E) < π

2 . Then for 0 < α < 1
2 the norms of the spaces

E′
α(A

1
2 , E) and E′

α
2
(A,E) are equivalent.

3 Difference Schemes Generated by Taylor’s
Decomposition on Three Points

We consider again the problem (1). Let the function u(t)(t ∈ R) has a (2l+2)-th
continuous derivative and tk−1, tk, tk+1 ∈ Rτ . We consider two-step difference
schemes generated by Taylor’s decomposition on three points

⎧
⎪⎪⎨

⎪⎪⎩

−τ−2(uk+1 − 2uk + uk−1) + Aluk = fk,−∞ < k < ∞,

Al =
l−1∑

m=0

2τ2m

(2m+2)!A
m+1, fk =

l−1∑

m=0

2τ2m

(2m+2)!

m∑

l=0

Am−if (2i)(tk),

tk = kτ,−∞ < k < ∞
(20)

of 2l -order of approximation of approximate solution of Eq. (1).
The step operator of difference scheme (20) is a operator R(τB) =

(I + τB)−1 and the B operator is denoted from the following formula

B = B(τ,A) =
1
2
τ2Al +

√
1
4
(τ2Al)

2 + Al

However, for the investigation of (20) it is necessary to construct an operator
B = B(τ,A) and to give estimates

‖ Rk(τB) ‖E→E ≤ M(1 + δτ)−k
, ‖ kτBRk(τB) ‖E→E ≤ M, k ≥ 1.

(21)
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The difference scheme (20) is uniquely solvable, and the following formula holds

uk = (I + τB)(2I + τB)−1B−1
∞∑

i=−∞
R|k−i|(τB)fiτ,−∞ < k < ∞, (22)

where

B = B(τ,A) =
τ2Al

2
+

√(
τ2Al

2

)2

+ Al, Al =
l−1∑

i=0

Ai+1 2τ2i

(2i + 2)!
.

From the formula (22) it follows that the investigation of the stability and well-
posedness of difference scheme (20) relies in an essential manner on a number
of properties of the powers of the operator (I + τB)−1. We were not able to
obtain the estimates for powers of the operator (I + τB)−1 in the general cases
of operator A. We begin by deriving some estimates for powers of the operator
(I +τB)−1 and a strongly positive operator A in a Banach space E with spectral
angle φ(A,E) < π

2l . The proof of estimates (21) is based upon three lemmas.

Lemma 4.1. [11] A necessary and sufficient condition for B to be strongly pos-
itive is that the estimates (21) are satisfied.

Lemma 4.2. [11] If A is a strongly positive operator, then the operator B
denoted by

B =
1
2
τA +

√
1
4

(τ2A)2 + A

is a strongly positive operator.

Lemma 4.3. [20] If A is a strongly positive operator with spectrum angle
φ(A,E) ≤ π

2l then the operator Al denoted by formula (20) is also a strongly
positive operator.

Since the boundary value problem (1) in the space C(E) of bounded continuous
functions defined on the real line with values in E is not well-posed in the case
of general positive operator A, then the coercive norm

‖ uτ ‖k(τ,E) = ‖ {τ−2(uk+1 − 2uk + uk−1)}∞
−∞ ‖

C(τ,E)
+ ‖ {Aluk}∞

−∞ ‖
C(τ,E)

tends to ∞ as τ → +0 . The investigation of difference schemes (20) permits
us to establish the order of growth of this norm to ∞.

Theorem 4.1. Let A is a strongly positive operator in a Banach space E with
spectral angle φ(A,E) < π

2l . Then the solutions of the difference scheme (20) in
Cτ (E) obey the almost coercive inequality

‖ uτ ‖Kτ (E) ≤ M1 min
{

ln
1
τ

, 1 + |ln ‖ B ‖E→E |
}

‖ fτ ‖Cτ (E).



Well-Posedness of Elliptic Differential and Difference Equations 35

Now let us study of the well-posedness of the difference problem (13) in Cα
τ (Eβ).

Theorem 4.2. Suppose that the assumption of Theorem 4.1 holds. Then for
any α, β ∈ [0, 1], α + β �= 0, α + β �= 2, the solutions of the difference problem
(20) in Cβ

τ (Eα) obey the coercivity inequality

‖ {τ−2(uk+1 − 2uk + uk−1)}∞
−∞ ‖

Cβ
τ (Eα)

+ ‖ {Aluk}∞
−∞ ‖

Cβ
τ (Eα)

≤ M min
{

1
β(1 − β)

,
1

α(1 − α)

}
‖ fτ ‖Cβ

τ (Eα).

Now, the abstract theorems given from above are applied in the investigation of
difference schemes of higher order of accuracy with respect to the set all variables
for approximate solution of the boundary value problem (9). The discretization of
problem (9) is carried out in two steps, too. In the first step we give discretization
in space variable. It is done in the last section. In the second step we replace
problem (17) by the difference scheme
⎧
⎪⎪⎨

⎪⎪⎩

−τ−2
(
uh

k+1(x) − 2uh
k(x) + uh

k−1(x)
)

+ (Ax
h)l uh

k(x) = fh
k (x),−∞ < k < ∞,

(Ax
h)l =

l−1∑

m=0

2τ2m

(2m+2)! (Ax
h)m+1

, fk =
l−1∑

m=0

2τ2m

(2m+2)!

m∑

l=0

(Ax
h)m−i (

fh
k

)(2i) (tk, x),

tk = kτ,−∞ < k < ∞, x ∈ Rn
h.

(23)
Let us give a number of corollaries of the abstract theorems given in the above

Theorem 4.3. The solutions of the difference scheme (23) satisfy the following
almost coercive stability estimates:

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}∞

−∞ ‖Cτ (Ch)≤ M ln
1

τ + h
‖ fτ,h ‖Cτ (Ch).

The proof of Theorem 4.3 is based on the abstract Theorem 4.1, the positivity
of the operator Ax

h in Ch and on the estimate (19).

Theorem 4.4. The solutions of the difference scheme (23) satisfy the following
coercivity estimate

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}∞

−∞ ‖Cβ
τ (C2mα

h )≤ M(α, β) ‖ fτ,h ‖Cβ
τ (C2mα

h ).

The proof of Theorem 4.4 is based on the abstract Theorem 4.2, the positivity of
the operator Ax

h in Cα
h and on the theorem about the well-posedness of elliptic

equations [18] and on the fact that for any 0 < α < 1
2m the norms in the spaces

E′
β(Ax

h, Ch) and C2mα
h are equivalent uniformly in h and on the Theorem 3.13

on the structure of the fractional spaces E′
α((Ax

h)
1
2 , Ch)
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4 Conclusion

Applying method of present paper and papers [20–22], we can construct and
investigate a high order of accuracy uniform two-step difference schemes for the
approximate solution of the problem for the elliptic differential equation

−ε2u′′(t) + Au(t) = f(t)(−∞ < t < ∞)

in an arbitrary Banach space E with the positive operator A with a small
ε2 parameter in derivative.
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Abstract. The paper serves as a review on the basic results showing
how functional analytic tools have been applied in numerical analysis.
It deals with abstract Cauchy problems and present how their solutions
are approximated by using space and time discretisations. To this end
we introduce and apply the basic notions of operator semigroup theory.
The convergence is analysed through the famous theorems of Trotter
and Kato, Lax, and Chernoff. We also list some of their most important
applications.

Keywords: Numerical analysis · Operator semigroups · Convergence
analysis · Trotter–kato approximation theorem · Lax equivalence theo-
rem · Chernoff’s theorem

1 Introduction

In the present paper we will give an overview on how functional analytic tools
have been applied in numerical analysis. In particular, we will consider well-posed
partial differential equations and analyse how to ensure the convergence of their
numerical solution to the exact one. To this end, we will treat the problem in a
functional analytic framework and apply results from operator semigroup theory,
for which our main reference is the monograph by Engel-Nagel [5].

We start with an example to motivate what kind of problems are to solved
when seeking a numerical solution. In Sect. 3 the corresponding abstract problem
and its solution, the operator semigroup, will be introduced. The convergence
of the space and time discretisation methods are analysed in Sect. 4.1 and 4.2,
respectively, based on the results of Trotter [15], Kato [9], Ito and Kappel [8],
Lax and Richtmeyr [11], and Chernoff [4]. In Sect. 5 we show how the previous
results can be combined and present the convergence result of Bátkai et al. [1]
based on the work of Pazy [14]. Section 6 deals as an outlook on other topics in
numerical analysis where operator semigroups play an important role.

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 38–49, 2015.
DOI: 10.1007/978-3-319-20239-6 4
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2 Motivation

As a motivating example we consider the one-dimensional heat equation on the
interval [0, π] with homogeneous Dirichlet boundary condition

⎧
⎪⎨

⎪⎩

∂
∂tw(t, x) = ∂2

∂x2 w(t, x), t > 0, x ∈ (0, π),
w(0, x) = w0(x), x ∈ (0, π),
w(t, 0) = w(t, π) = 0

(1)

with the given initial function w0 ∈ L2(0, π). Its solution is obtained by separat-
ing the variables and has the form

w(t, x) =
∞∑

j=1

cje−j2t sin(jx) with cj = 2
π

π∫

0

w0(x) sin(jx)dx, j ∈ N. (2)

2.1 Numerical Solution

We show now two ways how to obtain an approximation to w, that is, the
numerical solution to problem (1).

Example 1 (Finite differences). We approximate the partial derivatives in prob-
lem (1) by the usual finite difference schemes on equidistant spatial and temporal
meshes with grid size h = π

m−1 > 0, for some fixed m ∈ N \ {1}, and time step
τ > 0:

∂
∂tw(t, x) ≈ 1

τ

(
w(t + τ, x) − w(t, x)

)
,

∂2

∂x2 w(t, x) ≈ 1
h2

(
w(t, x − h) − 2w(t, x) + w(t, x + h)

)
.

This leads to the following discrete problem for w
(�)
j ≈ w(�τ, (j − 1)h) for j =

1, ...,m and � ∈ N:

1
τ (w(�)

j − w
(�−1)
j ) = 1

h2

(
w

(�−1)
j+1 − 2w

(�−1)
j + w

(�−1)
j−1

)
. (3)

Due to the initial and boundary conditions w
(0)
j = w0((j − 1)h), j = 1, ...,m,

and w
(�)
1 = w

(�)
m = 0, � ∈ N, the solution

w
(�)
j = w

(�−1)
j + τ

h2

(
w

(�−1)
j+1 − 2w

(�−1)
j + w

(�−1)
j−1

)
(4)

can be computed step by step for all indices � ∈ N and j = 2, ...,m−1. Then the
approximation of w is obtained by certain interpolation schemes in space and
time.

Example 2 (Spectral method). Let ŵj ∈ R denote the jth Fourier coefficient
of w(·, x) and 〈·, ·〉 the inner product in L2(0, π). We define further the function
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ϕj(x) =
√

2
π sin(jx), j = 1, ...,m, satisfying the boundary condition in prob-

lem (1). By taking the discrete Fourier transform of both sides of problem (1), one
obtains the following initial value problem for the first m Fourier coefficients of w:

{
d
dt ŵj(t) = −j2ŵj(t), t ∈ R, j = 1, ...,m,

ŵj(0) = 〈w0, ϕj〉, j = 1, ...,m
(5)

with the solution ŵj(t) = e−j2tŵj(0) = e−j2t〈w0, ϕj〉. Then the approximation
of w is obtained with the help of the inverse discrete Fourier transform, that is,

w(t, x) ≈
m∑

j=1

ŵj(t)ϕj(x) =
m∑

j=1

e−j2t〈w0, ϕj〉
√

2
π sin(jx). (6)

We remark that the formula above really seems to approximate w, since it cor-

responds to cj =
√

2
π 〈w0, ϕj〉 for j = 1, ...,m and cj = 0 for j > m in (2). This

means that in this case the inifinite sum is approximated by a finite one.

2.2 Abstract Setting

Problem (1) can also be handled in an abstract way. To this end we define the
Banach space X = L2(0, π), the linear operator A : X → X as Af = f ′′ for
all f ∈ {η ∈ L2(0, π) : η(0) = η(π) = 0}, and the function u : [0,∞) → X as
(u(t))(x) = w(t, x) for all t ≥ 0 and x ∈ [0, π]. Then problem (1) corresponds to
the following initial value problem on X:

{
d
dtu(t) = Au(t), t > 0,

u(0) = u0

(7)

with u0 = w0. In order to solve problem (7) numerically, for m ∈ N one defines
Banach spaces Xm, some suitable (for the sake of simplicity linear) operators
Pm : X → Xm, Jm : Xm → X, and a linear operator Am : Xm → Xm. Then
the numerical solution um : [0,∞) → Xm is obtained from the following initial
value problem in Xm for all m ∈ N:

{
d
dtum(t) = Amum(t), t > 0,

um(0) = Pmu0

(8)

with u0 = w0. Problem (8) corresponds to the spatially discretised version of
problem (7). The solution of the original problem (1) is obtained as w(t, x) =
(u(t))(x) where it is to analysed whether u(t) = lim

m→∞ Jmum(t) holds uniformly

for t in compact intervals. In some cases um(t) is further approximated by um,k

by using certain time discretisation methods (see the examples below). Then

u(t) = lim
m→∞ Jm lim

k→∞
um,k (9)
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should hold uniformly for t in compact intervals. In Sect. 5 we will study under
which conditions the limit (9) holds. The corresponding choices of the spaces
and operators in Examples 1 and 2 are the following.

(a) Example 1. We choose Xm = R
m, (Pmw0)j = w0((j − 1)h) for j = 1, ...,m,

and

Am =
1
h2

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0

0 Dm−2

...
... 0
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎠

∈ R
m×m

with Dm−2 = tridiag(1,−2, 1) ∈ R
(m−2)×(m−2). Then for all t ≥ 0 and

j = 1, ...,m, (um(t))j ∈ R correspond to the approximate values at the grid
points (j − 1)h, and um(t) ∈ R

m is their vector. The solution to problem (8)
in this case reads as um(t) = etAmPmw0. Since

etAm = lim
k→∞

(
Im + t

kAm

)k
,

where Im ∈ R
m×m denotes the identity matrix, one approximates the expo-

nential matrix and obtaines the numerical solution

um,k =
(
Im + t

kAm

)k
Pmw0 for some k ∈ N.

If k ∈ N and τ = t
k > 0 are fixed, we have

u
(�)
m,k = (Im + τAm)�Pmw0 = (Im + τAm)u(�−1)

m,k for all � ∈ N,

and this corresponds to formula (4), that is,
(
u
(�)
m,k

)
j

= w
(�)
j . The operator

Jm describes an interpolation, such as the Lagrangian polynom, etc.

(b) Example 2. We choose Xm = R
m, (Pmw0)j = 〈w0, ϕj〉 for j = 1, ...,m, and

Am ∈ R
m×m with diagonal elements (Am)jj = −j2, j = 1, ...,m, and zero

otherwise. Then for all t ≥ 0, (um(t))j = cj is the jth Fourier coefficient of
w, and um(t) ∈ R

m is their vector. The solution to problem (8) reads then as

um(t) = etAmPmw0 =
m∑

j=1

e−j2t〈w0, ϕj〉.

The operator Jm corresponds now to the inverse discrete Fourier transform,
that is,

(
Jmum(t)

)
(x) =

m∑

j=1

(
um(t)

)
j
ϕj(x) for all t ≥ 0, x ∈ [0, π],

which really gives back formula (6).

In the examples above, problem (8) could be easily solved because the spaces
Xm were finite dimensional in both cases. However, problems like (7) and (8) can
be treated even if X and Xm are infinite dimensional. Then the corresponding
solutions are studied in an abstract way presented in the next section.
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3 The Continuous Problem

This section is devoted to introduce the basic notions of operator semigroup
theory needed later on. In order to study the convergence of space and time
discretisations, the given partial differential equation should be formulated as
an abstract Cauchy problem of the form (7) on an appropriate Banach space X
with the linear operator A : D(A) → X, where the connection to the unknown
function w of a partial differential equation is given by (u(t))(x) = w(t, x) for
all t ≥ 0 and x from the corresponding interval/domain (e.g. for all x ∈ [0, π] for
problem (1)). If A were a matrix or any bounded operator on X (A ∈ L (X,X)
in notation), the solution to problem (7) would be simply the exponential etA

applied to the initial value u0. Since A is unbounded in general, its exponential
cannot be defined as the infinite power series. One suspects, however, that the
solutions properties should somehow reflect the properties of the exponential
function.

Definition 1 (Definition I.5.1 in [5]). Let S : [0,∞) → L (X,X) be a map-
ping with the following properties.

(i) The identity S(t+s) = S(t)S(s) holds for all t, s ≥ 0, and one has S(0) = I,
the identity operator on X (semigroup property).

(ii) The mapping t → S(t)f ∈ X is continuous for all f ∈ X (strong continuity).

Then S is called a strongly continuous one-parameter semigroup of bounded lin-
ear operators on the Banach space X.

We note that there always exist constants M ≥ 1 and ω ∈ R such that the
estimate ‖S(t)‖ ≤ Meωt holds for all t ≥ 0 (cf. Proposition I.5.5 in [5]). Consider
the map u(t) = S(t)f for f ∈ X and note that if u is differentiable, then one
has d

dtu(t) = S(t)( d
dtu(t))|t=0 (cf. Lemma II.1.1 in [5]). Hence, the derivative of

the map u at t = 0 determines the derivative at each point t ≥ 0. This suggests
us to give this object a name.

Definition 2 (Definition II.1.2 and Lemma II.1.1 in [5]). The generator
A : D(A) → X of a strongly continuous semigroup S on the Banach space X is
the operator

Af := lim
τ↘0

1
τ

(
S(τ)f − f

)

defined for every f in its domain

D(A) :=
{

f ∈ X : lim
τ↘0

1
τ

(
S(τ)f − f

)
exists

}
.

The next result shows that the semigroup indeed yields the solution to the
corresponding abstract Cauchy problem.

Theorem 1 (Theorem II.1.4 and Proposition II.6.2 in [5]). The gen-
erator A : D(A) → X of a strongly continuous semigroup S has the following
properties.
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(a) Operator A is linear, closed, and densely defined, and it determines the semi-
group uniquely.

(b) For every u0 ∈ D(A), the solution to the abstract Cauchy problem (7) has
the form u(t) = S(t)u0.

This means that the solution of a partial differential equation, reformulated as an
abstract Cauchy problem (7), is determined through the semigroup S generated
by the operator A appearing in (7).

Example 3. Let X = L2(0, π) and (Af)(x) = f ′′(x) for all

f ∈ D(A) = {f ∈ L2(0, π) : f(0) = f(π) = 0}

as for the heat equation (1). Furthermore, let ϕj(x) =
√

2
π sin(jx) for j ∈ N.

One can show that then A generates the semigroup S of the form

S(t)f =
∞∑

j=1

e−j2t〈f, ϕj〉ϕj ,

where 〈·, ·〉 denotes the inner product in L2(0, π). We note that the spectral
method introduced in Example 2 follows this idea to approximate the solution
to the heat Eq. (1).

4 Space and Time Discretisations

In Sect. 3 we saw that well-posed partial differential equations can be formulated
as abstract Cauchy problems, and their solution is given by a strongly contin-
uous semigroup. In Examples 1 and 2 we introduced two usual ways how the
numerical solution to partial differential equations are usually obtained, that is,
by using certain spatial and temporal discretisation schemes. We saw then that
spatial discretisations mean the approximation of the generator A in problem
(7). Discretisation in time is the approximation of the resulting semigroup.

4.1 Generator Approximations as Space Discretisations

Let Xm, m ∈ N, be Banach spaces, and define some kind of projection and
embedding operators as follows, see e.g. in Sect. 4.1 in [8].

Property 1. Let X and Xm, m ∈ N be Banach spaces. Consider the bounded linear
operators Pm ∈ L (X,Xm) and Jm ∈ L (Xm,X) for m ∈ N with the properties

(i) PmJm = Im, the identity on Xm, and
(ii) lim

m→∞ ‖JmPmf − f‖ = 0 for all f ∈ X.

One can show that operators Pm, Jm in Examples 1 and 2 possess Property 1.
The famous result of Trotter [15] and Kato [9] states that, under suitable

conditions, if the generator A is approximated by a sequence of another genera-
tors Am, then the corresponding semigroups Sm will approximate the semigroup
S generated by A, as well.
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Theorem 2 (First Trotter–Kato Approximation Theorem, Theorem
4.2 and Proposition 4.3 in [8], cf. Theorem III.4.8 in [5]). For all m ∈ N

let X and Xm be Banach spaces and let the operators Pm, Jm possess Property 1.
Suppose that for all m ∈ N, A and Am generate the semigroups S and Sm in
X and Xm, respectively. Suppose further that there exists constants M ≥ 1 and
ω ∈ R such that ‖S(t)‖, ‖Sm(t)‖ ≤ Meωt holds for all m ∈ N, t ≥ 0. Then the
following assertions are equivalent.

(i) There is a dense subspace Y ⊂ D(A) such that there is λ > 0 with (λ − A)Y
being dense in X. Furthermore, for all f ∈ Y there is a sequence with elements
fm ∈ D(Am) which satisfies lim

m→∞ ‖fm − Pmf‖Xm
= 0 and

lim
m→∞ ‖Amfm − PmAf‖Xm

= 0 .

(ii) It holds that lim
m→∞ ‖JmSm(t)Pmf − S(t)f‖ = 0 for all f ∈ X uniformly for

t in compact intervals.

Since in both Examples 1 and 2 the sequence Am converge to A in the sense
of Theorem 2(a) and all the other conditions are satisfied as well, Theorem2(b)
implies that um converge to u.

4.2 Semigroup Approximations as Time Discretisations

We consider the abstract Cauchy problem (7) where A generates the strongly
continuous semigroup S. Since multistep time discretisation schemes can also be
treated as one-step methods (see [12]), we only consider one-step time discreti-
sation methods. After some definitions, we will state the convergence results.

Property 2. Let Z be a Banach space, and let the map V : [0,∞) → L (Z,Z)
possess the following properties.

(i) The map V is strongly continuous, that is, the function [0,∞) � τ →
V (τ)f ∈ Z is continuous for all f ∈ Z.

(ii) V (0) = I, the identity on Z.

Definition 3. Let S be the semigroup with generator A and consider the
abstract Cauchy problem (7) on the Banach space X. Consider further a map
F : [0,∞) → L (X,X) with Property 2, which is called then time discretisation.

(a) The time discretisation F is called consistent with S if

lim
τ→0

1
τ

(
F (τ)S(t)f − S(t + τ)f

)
= 0

holds for all f ∈ X and uniformly for t in compact intervals.
(b) A time discretisation F is called stable, if there are constants T > 0 and

M ≥ 1 such that ‖F (τ)k‖ ≤ M holds for all τ ≥ 0 and k ∈ N with kτ ≤ T .
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(c) A time discretisation F is called convergent, if for all t ≥ 0, τn → 0, kn → ∞
with knτn → t we have

lim
n→∞ ‖S(t)f − F (τn)knf‖ = 0 for all f ∈ X.

Theorem 1(b) states that the semigroup S corresponds to the solution operator
of the abstract Cauchy problem (7). To get a reliable approximation to S (i.e., a
numerical solution), one has to ensure the convergence of the time discretisation
scheme F . The next celebrated result is the basic of the numerical convergence
analysis.

Theorem 3 (Lax Equivalence Theorem, [11]). A consistent time discreti-
sation is convergent if and only if it is stable.

One can also say something about the order of the convergence, however, maybe
only on a smaller set of initial values.

Definition 4. Let S be the semigroup with generator A and consider the
abstract Cauchy problem (7) on the Banach space X. Consider further a map
F : [0,∞) → L (X,X) with Property 2. Suppose that there is a densely and con-
tinuously embedded subspace Y ⊂ X, which is invariant under the semigroup,
and let p > 0.

(a) The time discretisation F is called consistent with S of order p on Y if there
is a constant C > 0 such that for all f ∈ Y we have

‖F (τ)f − S(τ)f‖ ≤ Cτp+1‖f‖Y .

(b) The time discretisation F is called convergent of order p on Y if for all t ≥ 0
there is a constant C̃ > 0 such that for all f ∈ Y we have

‖F (τ)kf − S(kτ)f‖ ≤ C̃tτp‖f‖Y (10)

for all k ∈ N, τ ≥ 0 with kτ ≤ t.

We note that p may depend on the subspace Y . Essentially by the same way as
proving Theorem 3, the next result can be shown.

Proposition 1. Suppose that there is a densely and continuously embedded sub-
space Y ⊂ X which is invariant under the semigroup operators S(t) satisfing
‖S(t)‖Y ≤ Meωt for some M ≥ 1 and ω ∈ R and for all t ≥ 0. If there is p > 0
such that F is a stable time discretisation scheme which is consistent of order p
on Y , then it is convergent of order p on Y .

Example 4. Let (A,D(A)) generate the semigroup S with ‖S(t)‖ ≤ Meωt for
some M ≥ 1 and ω ∈ R and for all t ≥ 0. For all τ ∈ (0, 1

ω ], we define the implicit
Euler time discretisation as F (τ) = (I − τA)−1 being consistent. Moreover, if
ω = 0 and Y = D(A2), one has p = 1 in (10).
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Since the generator property of the operator A is equivalent to the well-posedness
of the problem (7) (see Theorem II.6.7 in [5]), Theorem 3 and Proposition 1
concern only well-posed problems. There exist results, however, which prove the
generator property of an operator through approximations. They are extremely
important in numerical analysis. We present now one of the most famous ones
by Chernoff [4].

Theorem 4 (Chernoff Product Formula, Cor. III.5.3 in [5]). Let X be
a Banach space and consider a map F : [0,∞) → L (X,X) with the following
properties.

(a) The map F has Property 2.
(b) There exist constants M ≥ 1 and ω ∈ R such that ‖F (t)k‖ ≤ Meωkt for all

t ≥ 0 and k ∈ N.
(c) There is a subset Y ⊂ X such that (λ − A)Y is dense for some λ > ω and

the limit
Af := lim

τ↘0

1
τ

(
F (τ)f − f

)
(11)

exists for all f ∈ Y .

Then the closure A of A generates a strongly continuous semigroup S which is
given by

S(t)f = lim
k→∞

F ( t
k )kf (12)

for all f ∈ X and uniformly for t in compact intervals.

5 The Discrete Problem

In Sect. 3 we saw that the solution to the abstract Cauchy problem (7) is given by
the semigroup generated by the operator A appearing in (7). Thus, if one aims
to approximate the solution to problem (7), one has to approximate the corre-
sponding semigroup S by the product of appropriate operators Fm depending on
m ∈ N. As already seen in Examples 1 and 2, one chooses a space discretisation
scheme which corresponds to the approximation of the generator A by a sequence
of generators Am (cf. Section 4.1), then a time discretisation when the semigroup
Sm is approximated by the product of Fm (cf. Section 4.2). The solution of a
well-posed problem (7) is given by u(t) = S(t)u0 for all t ≥ 0. Application of
a space discretisation means that u(t) is approximated by um(t) = Sm(t)Pmu0,
m ∈ N (cf. Theorem 2). This is further approximated by using a time discretisa-
tion, that is, by um,k = Fm( t

k )kPmu0, m, k ∈ N (cf. Theorem 3 for the semigroup
Sm on Xm).

Definition 5. Let X be a Banach space and A : D(A) → X be the generator
of the strongly continuous semigroup S on X. Furthermore, let Fm : [0,∞) →
L (Xm,Xm) has Property 2 for all m ∈ N. Then um,k = JmFm( t

k )kPmu0 ∈ Xm

is called the numerical solution at time t ≥ 0 to the corresponding abstract
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Cauchy problem (7) with initial value u0. The numerical method is called con-
vergent at time level t ≥ 0 if for all u0 ∈ X one has

lim
m,k→∞

‖um,k−u(t)‖ = 0, that is, lim
m,k→∞

∥
∥JmFm( t

k )kPmu0−S(t)u0

∥
∥ = 0 (13)

uniformly for t in compact intervals.

we note that the notaion lim
m,k→∞

stands for the usual limit for the double indexed
sequences.

Remark 1. The following conditions are sufficient for the convergence (13).

(i) There exists ūm(t) ∈ X such that lim
k→∞

‖um,k − ūm(t)‖ = 0 uniformly for

m ∈ N.
(ii) It holds that lim

m→∞ ‖ūm(t) − u(t)‖ uniformly for t in compact intervals.

These conditions refer to the convergence of discretisations in time and space,
respectively, studied in Sects. 4.2 and 4.1.

When considering well-posed problems (7), the Lax Equivalence Theorem 3 and
the First Trotter–Kato Approximation Theorem2 already imply the conver-
gence.

Proposition 2. Suppose that A, Am generates the semigroups S, Sm on the
Banach spaces X, Xm, respectively, for all m ∈ N, and that the operators Pm,
Jm, m ∈ N, possess Property 1 such that PmX ⊂ D(Am). Suppose further that

lim
m→∞ ‖AmPmf − PmAf‖Xm

= 0 (14)

holds for all f ∈ Y , where Y ⊂ D(A) and (λ − A)Y are dense in X for some
λ > 0. Moreover, let Fm : [0,∞) → Xm be a stable time discretisation which is
consistent with Sm for all m ∈ N. Then Fm is convergent, more precisely, for
all f ∈ X one has

lim
m,k→∞

∥
∥JmFm( t

k )kPmf − S(t)f
∥
∥ = 0

uniformly for t in compact intervals.

Proof. Due to Remark 1, it suffices to study the limits separately. The Lax Equiv-
alence Theorem 3 imply that Fm is convergent in Xm, that is,

lim
k→∞

∥
∥Fm( t

k )kfm − Sm(t)fm

∥
∥

Xm
= 0

holds for all fm ∈ Xm. Since operators Jm : Xm → X are bounded and with the
choice fm = Pmf for f ∈ X, we have that

lim
k→∞

∥
∥JmFm( t

k )kPmf − JmSm(t)Pmf
∥
∥ = 0 (15)
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uniformly for t in compact intervals. From (14), the First Trotter–Kato Approx-
imation Theorem 2 implies that

lim
m→∞ ‖JmSm(t)Pmf − S(t)f‖ = 0 (16)

holds for all f ∈ X uniformly for t in compact intervals. Hence, limits (15) and
(16), and Remark 1 with ūm(t) := JmSm(t)Pmf yield the convergence. ��
The results above all concern well-posed problems. In case when the operator A
is not known to be a generator of a semigroup, a modified version of Chernoff
Product Formula 4 can be applied. The original theorem, presented in Pazy [14],
states the result in the space Xm, however, we formulate it here as a result in
the space X.

Theorem 5 (Modified Chernoff Product Formula, [1]). Let Xm, m ∈ N

be Banach spaces and consider a sequence of maps Fm : [0,∞) → L (Xm,Xm)
with the following properties.

(a) The maps Fm have Property 2 for all m ∈ N.
(b) There exist constants M ≥ 1 and ω ∈ R such that ‖Fm(t)k‖ ≤ Meωkt for all

t ≥ 0 and m, k ∈ N.
(c) There is a subset Y ⊂ X such that (λ − A)Y is dense for some λ > ω and

the limit
lim

m→∞
1
τ

(
JmFm(τ)Pmf − JmPmf

)

exists uniformly for τ in compact intervals, and

Af := lim
τ↘0

lim
m→∞

1
τ

(
JmFm(τ)Pmf − JmPmf

)

exists for all f ∈ Y .

Then the closure A of A generates a strongly continuous semigroup S which is
given by

S(t)f = lim
m,k→∞

JmFm( t
k )kPmf (17)

for all f ∈ X and uniformly for t in compact intervals.

6 Outlook/Applications

With the help of similar techniques presented in Sect. 5, several numerical treat-
ments can be proved to be convergent. We just mention here a few examples
which are of great importance in practice. The convergence of the standard
time discretisation methods, such as Runge–Kutta methods, were analysed by
using Lax Equivalence Theorem3. Even more general rational approximations
are studied in Brenner and Thomée [3]. The convergence of various operator
splitting methods were proved e.g. in Trotter [16], Kato [10], Faragó and Havasi
[6], and Bátkai et al. [1] and [2] by using Chernoff Product Formula, Theorem4
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and its modified version, Theorem5. Exponential integrators were also studied
by using operator semigroup approach in Hochbruck and Ostermann [7]. Non-
linear problems are treated in Palencia and Sanz-Serna [13] contaning the Lax
Equivalence Theorem 3 as a special case of well-posed linear initial value prob-
lems.
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1 Introduction

In practical problems of mathematical physics and engineering, solution of partial
differential equations relies on approximations of different types. This paper calls
attention to local Trefftz approximations in subdomains covering the computa-
tional domain. Trefftz functions, by definition, satisfy the differential equations
of the problem. Examples include harmonic polynomials for the Laplace equa-
tion; plane waves, cylindrical or spherical harmonics for wave problems, and so
on. Trefftz approximations are well established in the context of pseudo-spectral
and domain decomposition methods, but this overview is devoted to applications
that are known less well or are entirely new:

1. Finite difference Trefftz schemes of arbitrarily high order, obtained by replac-
ing classical Taylor expansions with local Trefftz approximations.

2. Boundary difference Trefftz methods analogous to boundary integral equa-
tions but completely singularity-free.

3. Discontinuous Galerkin – Trefftz methods for Maxwell’s electrodynamics.
4. Numerical and analytical asymptotic boundary conditions based on Trefftz

approximations.
5. Homogenization of electromagnetic and photonic metamaterials: a two-scale

theory involving Trefftz approximations on both coarse and fine levels. This
explains, in particular, artificial magnetism at high frequencies.

This discussion of the versatility and power of Trefftz methods is intended to
stimulate their application in other areas of applied science and engineering.

2 Finite Difference Trefftz Schemes

Classical finite difference (FD) schemes are based upon, and derived from, Tay-
lor expansions. These expansions are general but have limited approximation
accuracy in cases where the solution is not sufficiently smooth – e.g. at material
interfaces. This is the root cause of the notorious “staircase” effect at off-grid
interface boundaries.

High-order schemes can be generated by replacing the Taylor expansions
with Trefftz approximations which typically have much higher accuracy [1–6].
By definition, Trefftz functions satisfy the underlying differential equation of the
problem and conditions at material interfaces. For example, waves in a homoge-
neous region can be represented as a superposition of plane waves; fields around
spherical/cylindrical particles can be approximated by spherical/cylindrical har-
monics; and so on.

One trivial example that helps to fix ideas is the Laplace equation in 1D.
An obvious Trefftz basis in this case is ψ1(x) = 1, ψ2(x) = x, and the solution
can be approximated as u(x) = c1ψ1(x)+c2ψ2(x) = c1+c2x. (This representation
happens to be exact, but only because the problem is one-dimensional.) Consider
a three-point stencil with nodes at, say, x1 = −h, x2 = 0, x3 = h, where h is the
grid size. Since there are three nodal values of u and only two free parameters
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c1,2, it is clear that these nodal values must be linearly dependent. This linear
dependence yields the difference scheme we seek. It is easy to show that the
coefficient vector s ∈ R

3 for the three-point stencil can be found as [1–3]

s ∈ Null NT
1D,Laplace, NT

1D,Laplace =
(

ψ1(x1) ψ1(x2) ψ1(x3)
ψ2(x1) ψ2(x2) ψ2(x3)

)
(1)

Substituting the nodal values of the ψs, one has

Null NT
1D,Laplace = Null

(
1 1 1

−h 0 h

)
= (1,−2, 1)T

Thus one arrives at the standard scheme s = (1,−2, 1)T (times an arbitrary
factor) for the Laplace equation. This result is trivial but is a particular case of
a more general nullspace formula of the Flexible Local Approximation MEthod
(“FLAME”)

s ∈ Null NT , NT
αβ = ψα(rβ) (2)

For illustration, we briefly describe two representative examples from [1–3].
The first example is a nine-point (3×3) order-six scheme for the 2D Helmholtz

equation. The basis set consists of eight plane waves traveling at angles φ0+mπ/4
(m = 0, 1, . . . , 7), where φ0 is a given angle; practical choices are φ0 = 0 or
φ0 = π/8. Evaluating these plane waves at the stencil nodes, one obtains an
8 × 9 matrix NT whose null vector – the FLAME scheme – can easily be found
with symbolic algebra. The result for φ0 = 0 is given in [3]. For φ0 = π/8, one
arrives at a scheme derived by Babuška et al. in 1995 [7] from very different
considerations. Here it is an automatic particular case of FLAME.

The second example involves wave propagation and Bloch modes in periodic
dielectric structures (photonic crystals). The most common physical arrange-
ment in 2D is a square lattice of dielectric cylinders. In this case, an effective
choice of the Trefftz-FLAME basis is cylindrical harmonics (Bessel/Hankel func-
tions) centered at any given cylinder and matched at its boundary. On a 3 × 3
stencil, one then obtains a FLAME scheme of order six – that is, exactly of the
same order as the respective scheme in a homogeneous region. The “staircase
effect” which plagues classical FD schemes is thereby eliminated, and FLAME is
routinely able to produce the level of accuracy unattainable with any traditional
methods. As an example, the Bloch wavenumber in cylindrical photonic crystals
can easily be obtained with 6 – 8 digits of accuracy even on coarse grids whose
grid size is comparable with the radius of the cylinder. In contrast, classical FD
schemes must accurately resolve the cylindrical boundary on a fine grid.

A clear and intuitive distinction between classical Taylor-based FD schemes
and FLAME can be expressed as follows. Classical schemes approximate the
underlying differential equation, while FLAME approximates the solution of
the equation. Clearly, there is substantial redundancy in trying to approximate
the operator on a whole class of sufficiently smooth functions, as only the solution
is of real interest. FLAME greatly reduces this redundancy.
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3 Boundary Difference Trefftz Schemes

Boundary difference methods (BDM) are discrete analogs of integral equation
methods. Loosely speaking, BDM are to finite difference schemes what integral
formulations are to partial differential equations. BDM date back to the work
of Saltzer in the 1950s [8] but have been explored much less extensively than
integral formulations.

There are two different paths for converting equations (either continuous
or discrete) from the whole domain to its boundary. The first path (known as
“direct” in the mathematical literature) is Calderón projections which on the
continuous level have been extensively studied (e.g. [9]) and on the discrete level
have been developed by Ryaben’kii and his coworkers [10,11].

An alternative path (“indirect”), arguably less fundamental but more appeal-
ing to engineers and practitioners, is to introduce auxiliary boundary sources
[12–15]. Fields in homogeneous subdomains can be expressed as convolutions of
these sources with the appropriate Green functions and then coupled via inter-
face boundary conditions. More specifically, our implementation of BDM, with
2D wave scattering as an example [12,15], consists in the following steps:

1. Precompute discrete Green’s functions (corresponding to the chosen FD
scheme) for all homogeneous subdomains – the scatterer(s) and air. The rel-
evant techniques are described in [12–15].

2. Introduce a uniform grid and determine the discrete boundary – two discrete
layers (or more, for bigger grid stencils) immediately adjacent to the physical
boundary of the scatterer. (See [10,11] for precise mathematical definitions.)
The grid is conceptually infinite, but the computational algorithm operates
on the boundary nodes only.

3. Introduce auxiliary discrete sources on the discrete boundary. In each sub-
domain (scatterer(s), air) express the field as a convolution of these sources
with the respective Green function.

4. Use FLAME to generate high-order matching conditions for fields across inter-
faces [12]. This can be done even for non-smooth and/or perfectly conducting
boundaries [15].

5. Solve the resulting system of equations, with discrete sources as unknowns.
6. Post-process the results; in particular, find fields on the grid via discrete

convolutions.

Advantages and disadvanatges of BDM stem from their dual nature as discrete
and boundary methods; see Table 1.

4 Discontinuous Galerkin Trefftz Methods

For problems with discontinuous coefficients, it is usually impossible to construct
global Trefftz functions that satisfy the governing equations everywhere in the
domain. For illustration, consider propagation of an electromagnetic wave in an
inhomogeneous time-independent dielectric linear medium Ω:

ε ∂tE − curlH = 0, μ ∂tH + curlE = 0



54 F. Kretzschmar et al.

Table 1. Advantages and disadvantages of boundary difference methods.

Advantages Disadvantages

As a discrete
method

Singularity-free. (Discrete Green’s
functions, in contrast with their
continuous counterparts, are
nonsingular.)

Subject to discretization errors,
in particular dispersion
errors in wave problems

As a boundary
method

Dimensionality of the problem is
reduced. No artificial
boundaries with absorbing
conditions needed.

Full matrices. However, fast
multipole acceleration for
matrix-vector products is
available

Frequency dispersion of the permittivity is disregarded, which is a good approx-
imation for dielectrics in their spectral transparency window. Ways of handling
dispersive media are well established in the finite difference time domain and
DG literature.

The fields satisfy initial and boundary conditions E(0) = E0, H(0) = H0,
and n×E = 0 on ∂Ω, where n is the outward unit normal vector on the boundary.
We assume that the domain can be partitioned into subdomains (cells, elements)
Kα (α = 1, 2, . . . , n) such that the coefficients ε, μ are constants within each
subdomain. Construction of local Trefftz bases is straightforward, and on the
time interval I = [0, T ] only the interface and boundary conditions remain to
be enforced: the continuity of n × E and n × H over the interfaces f between
subdomains and the condition n×E = 0 on boundary faces f ′. This is standard
in the framework of Discontinuous Galerkin methods [16–18]:

∑
f

∫
f × I

[n × H] · {v} − [n × E] · {w} − ∑
f ′

∫
f × I

n × E · w
+

∑
K

∫
K

εE(0) · v(0) + μH(0) · w(0) =
∑

K

∫
K

εE0 · v(0) + μH0 · w(0).

Expansion of all fields in a local Trefftz basis then yields a linear implicit time
stepping scheme that describes the evolution of the fields from t0 = 0 to t1 =
T . This method can also be derived by starting from the standard space-time
discontinuous Galerkin approximation [19–21] and utilizing Trefftz functions for
the local approximations [18]. Frequency domain applications can be treated
similarly [22,23]. As local Trefftz approximations one can use a complete set of
polynomial plane waves of the form

(Eip,Hip) = (eip,hip)(lip · r − t/
√

εμ)p,

where hip =
√

μ/ε lip ×eip and lip, eip are orthonormal vectors. For an appropri-
ate choice of directions lip, eip, these functions form a basis of the space of Trefftz
polynomials which satisfy Maxwell’s equations exactly in the respective subdo-
main. Clearly, even though there are much fewer Trefftz polynomials than generic
polynomials of the same order, the same order of approximation is achieved,
resulting in spectral convergence. Like the usual discontinuous Galerkin method,
the Trefftz version can also be shown to be energy stable and slightly dissipa-
tive, with the numerical dissipation decreasing as the order of approximation
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Fig. 1. Amplitude of the electric field in a 1D wave propagation problem. A plane wave
travels (in the direction from xmin to xmax) through an inhomogeneous medium with
a permittivity that jumps by a factor of four in the gray shaded area. The difference
in phase velocities in the two parts of the domain can be clearly seen. Although the
material interface is not resolved by the mesh, there is no loss of accuracy.

increases. Efficiency and accuracy of the discontinuous Galerkin Trefftz scheme
outlined above is demonstrated in [17,18,22,23].

The Trefftz DG method is quite flexible with regard to geometric features
and local refinement. Even non-conforming meshes with elements of very dif-
ferent size and shape can be handled without much difficulty. Moreover, due to
the variational character of the method, various boundary conditions and spe-
cial features can be modeled in a systematic way. For instance, the plane wave
basis described above can be used to define transparent boundary conditions of
arbitrary order [18]. If Trefftz functions for special configurations are available,
these can also be incorporated into the basis.

Figure 1 shows the space-time solution corresponding to an incident plane
wave in one spatial dimension, propagating through an off-grid material inter-
face. In the middle of the gray shaded area, the dielectric permittivity jumps
by a factor of four. The appropriate behavior of the field across the interface is
incorporated into the local Trefftz basis for the corresponding element.

As another example, the weak coupling between subdomains allows one to
interface waveguide modes with a polynomial plane wave approximation of inter-
connects; see [24] for a related application in the frequency domain.

5 Nonreflecting Trefftz Boundary Conditions

It is well known that finite difference or finite element solution of problems in
unbounded domains requires artificial domain truncation and special absorb-
ing/nonreflecting/transparent boundary conditions/Perfectly Matched Layers
(PML) to be imposed [25–38]); see also excellent reviews by Givoli, Tsynkov
and Hagstrom [39–41],

Let us consider the scalar wave equation in the frequency domain

∇2u + k2
0u = f in Rn, n = 1, 2, 3; supp f ⊂ Ω ⊂ Rn (3)
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We shall deal primarily with 2D problems, although all ideas can be extended to
3D, and some of them also carry over to time-dependent problems. For simplicity
of exposition, we assume that ∂Ω is a rectangle.

Problem (3) requires radiation boundary conditions (e.g. Sommerfeld) at
infinity, but our task is to replace these theoretical conditions with approximate
but accurate and practical ones on the exterior surface ∂Ω away from the sources.
This is to be done in such a way that the solution subject to these artificial
conditions be by some measure close to the true solution in Ω.

The ideas of Trefftz approximation can be extended to analytical and numer-
ical absorbing conditions. This section focuses on nonreflecting boundary condi-
tions for finite difference methods. Similar ideas in the context of Trefftz DG are
presented in [18]. Namely, let the exact solution of the unbounded problem be
approximated in the vicinity of a given point at the artificial exterior boundary
as a linear combination

ua =
∑

α

cαψα = cT ψ (4)

where c is a vector of complex coefficients and ψ is a vector of basis functions,
also in general complex. Coefficients c may be different at different boundary
points, but for simplicity of notation this is not explicitly indicated. We seek a
suitable boundary condition of the form

∑

β

sβlβ(ua) = 0 (5)

where {lβ} is a suitable set of m linear functionals, and s ∈ C
m is a set of

coefficients (“scheme”) to be determined. We require that the scheme be exact
for any ua, i.e. for any linear combination of basis functions:

∑

β

sβlβ

(
∑

α

cαψα

)

= 0

or in matrix form
cT NT s = 0

where NT is an n×m matrix with entries NT
αβ = lβ(ψα). Since the above equality

is required to hold for all c, one must have

s ∈ Null NT (6)

This derivation is completely parallel to that of FLAME (Sect. 2). (Gratkowski
[42] uses similar ideas to derive analytical boundary conditions, albeit for static
problems only and without the nullspace formula). However, it is beneficial to
consider other degrees of freedom {lβ}, not limited to the nodal values. A few
interesting combinations of basis functions and dof are summarized in Table 2.
Details are given in [43,44] and partly in [2,3]. Here we highlight only a few
points, to make the items in the table understandable.
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Table 2. Absorbing conditions resulting from particular choices of bases and dof.

Basis dof Absorbing condition Properties

Cylindrical
harmonics

Solution and its
radial derivatives

Bayliss-Turkel Varying order

Plane wave
and its
parametric
derivatives
at normal
incidence

Solution and its
derivatives

Engquist-Majda Varying order

A set of
outgoing
plane waves

Nodal values of the
solution on a grid
stencil

Trefftz-FLAME
absorbing condition

Accuracy reasonable
but convergence
slow

A set of
outgoing
plane waves

Nodal values of the
solution and its
radial derivatives
on a grid stencil

Generalized
Trefftz-FLAME
absorbing condition

Order 6 convergence
in 2D for
(6+3)-point
stencils

A set of
outgoing
Hankel
waves

Nodal values of the
solution and its
radial derivatives
on a grid stencil

Generalized
Trefftz-FLAME
absorbing condition

Order 6 convergence
as above, but
much lower errors

By “parametric derivatives” of a plane wave we mean the following. Let

ψ(x, y, k, θ) = exp (−ik(x cos θ + y sin θ)) (7)

be an outgoing plane wave relative to the half-space x > 0. Differentiating this
wave successively with respect to k at k = k0 or, alternatively, with respect to θ
at θ = 0, one obtains a Trefftz basis set, tailored toward accurate approximation
of the solution near normal incidence. (In practice, however, this approximation
tends to be good in a broad range of angles.) As shown in [43] and indicated
in the table, this basis set, with appropriate derivatives as dof, leads to the well
known Engquist-Majda condition.

Furthermore, as also indicated in the table, radial derivatives of the solution
at the boundary nodes of the grid can be added to the set of dof. In practical
terms, one could consider “double nodes” carrying two dof at the boundary: the
solution and its radial derivative. These additional degrees of freedom improve
the convergence and accuracy of the method dramatically. In numerical tests of
2D scattering from a PEC cylinder as an example, convergence of order six is
easily attained, and the relative error of the numerical solution is on the order
of 10−8 with 10 – 20 grid points per vacuum wavelength λ and the exterior
boundary placed at ∼ 1.5λ from the scatterer.

In summary, the proposed Trefftz generator of high-order nonreflecting bound-
ary conditions for wave problems has two main ingredients: a set of local Trefftz
basis functions (outgoing waves) and a commensurate set of linear functionals
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(degrees of freedom). Particular cases of this generator include classical conditions
due to Engquist-Majda and Bayliss-Turkel, possibly also their extensions [38], and
novel highly accurate conditions involving additional dof on finite difference grids.

6 Non-Asymptotic Trefftz Homogenization
of Periodic Structures

Trefftz approximations have also proved to be indispensable in a very different
arena – non-asymptotic effective medium theory (homogenization) of periodic
electromagnetic structures, over the last decade frequently referred to as “metama-
terials”. Such structures can be engineered to exhibit strong resonances at certain
frequencies and, consequently, unusual behavior of effective material parameters.
Most notably, appreciable magnetic response, not available in natural materials,
can be engineered. Spectacular manifestations of that include negative index of
refraction and cloaking (see e.g. [45] and references therein).

Many well-known mathematical and physical homogenization theories are
asymptotic in their nature – that is, derived in the limit of the lattice cell size
vanishingly small relative to the vacuum wavelength [46–48]. However, it has
become clear that in this asymptotic limit the nontrivial magnetic effects disap-
pear [49,50]. Thus a non-asymptotic theory is called for.

We developed such a theory in a series of publications [51–53]. The main math-
ematical idea consists in approximating the fields on the fine (subcell) and coarse
(multi-cell) scales with Trefftz functions [51], i.e. the respective eigenmodes that
satisfy Maxwell’s equations and boundary conditions as accurately as possible.
These functions include, in particular, Bloch modes on the fine scale and plane
waves (propagating in an equivalent medium, possibly anisotropic and magneto-
electric) on the coarse scale. The effective material parameters are determined by
minimizing approximation errors in Maxwell boundary conditions and dispersion
relations.

A notable feature of this approach is that the effective parameters can be
position-dependent and can be optimized for a defined range of illuminating
conditions [51,54]. Our method leads to a linear optimization problem, in con-
trast with the nonlinear inverse problem of S-parameter retrieval, and has a
built-in error indicator characterizing the accuracy of homogenization. Finally,
the proposed theory leads to analytical expressions of bulk material parameters
in terms of Bloch fields on the boundary of a lattice cell.

The non-asymptotic homogenization procedure is valid for periodic dielectric
structures with any composition and any size of cells (subwavelength but not
necessarily small). Anisotropy and magnetoelectric effects are fully accounted for.

7 Conclusion

Trefftz approximations are beneficial in a variety of areas and can be used to
generate high-order difference schemes, absorbing boundary conditions, bound-
ary difference schemes, Discontinuous Galerkin methods, and homogenization
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procedures. In all of these cases, approximation accuracy can be significantly
improved in comparison with more traditional techniques. The authors believe
that Trefftz methods will find even broader applications in the near future.
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Abstract. In this paper we present a further development of our asymp-
totic comparison principle, applying it for some new important classes
of initial boundary value problem for the nonlinear singularly perturbed
time periodic parabolic equations, which are called in applications as
reaction-diffusion-advection equations. We illustrate our approach for the
new problem with balanced nonlinearity. The theorems, which states the
existence of the periodic solution with internal layer, gives it’s asymptotic
approximation and state their Lyapunov stability are proved.

Keywords: Singularly perturbed problems · Moving fronts · Time
periodic reaction-diffusion-advection equations

1 Introduction

This work is devoted to nonlinear singularly perturbed periodic parabolic equa-
tions. In applications, these equations are often used as models reaction-diffusion
and reaction-diffusion-advection processes in chemical kinetics, synergetic, astro-
physics, biology, et al. It is well-known that such problems are extremely com-
plicated for numerical treatment as well for asymptotic investigations and it
needs to develop new asymptotic methods to investigate them formally as well
as rigorously.

We present our recent extension of the asymptotic comparison principal to
the new classes of singularly perturbed problems and present the application of
our approach to the nonlinear singularly perturbed periodic reaction-diffusion-
advection problem with internal layers. These results can be considered as a
further development of our investigations which were published in the review
paper [1] and papers [2] and [3].

Our rigorous investigation is based on the works on the comparison princi-
pal. These works are essentially using so called Krein-Rutman theorem and the
results on the comparison principal (see [4]) and the results of M.A. Krasnoselskij
on positive operators theory ( see, for example, [5] and references therein).
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In the present paper we discuss father development of the general scheme
of asymptotic method of differential inequalities, the basic ideas of which were
proposed in [6], for the periodic parabolic problems and illustrate it applying for
new important cases of periodic boundary value problem for the equation

ε2(Δu − ∂u

∂t
) = f(u,∇u, x, t, ε), x ∈ D ⊂ RN , t ∈ R, (1)

which is used in many applications and is called reaction-diffusion-advection
equation. For this problem we state the conditions which imply the existence of
periodic contrast structures - solutions with periodic internal layers. We use our
approach to investigate a case when equation (1) is quasylinear. We investigate
the following problems.

1. Existence and Lyapunov stability of the periodic contrast structures.
2. The analysis of local domain of stability of the stable contrast structures.

The basic idea of this approach is to construct lower and upper solutions to the
problem by using formal asymptotics. By using these we state the existence of the
solutions, estimate the accuracy of the asymptotics and investigate asymptotic
stability of the periodic solutions in the sense of Lyapunov.

Another aspects of this work is to emphasize the possibility of use this ana-
lytical treatment for numerical approaches. The possibility of this is described in
the our paper [7]. Moreover, analytic algorithms for asymptotic approximations
of layered solutions were intensively used for creating numerical algorithms, see,
e.g. the papers of H.-G. Roos, S. Franz and N. Kopteva (see [8–10] and refer-
ences there for this intensively developing field). All these results mainly concern
layered stationary solutions. We sagest the new classes of problems.

2 General Scheme of Asymptotic Method of Differential
Inequalities for Periodic Reaction-Advection-Diffusion
Equations

We consider some cases of initial boundary value problem

ε2(Δu − ∂u

∂t
) = f(u,∇u, x, t, ε), x ∈ D ⊂ RN , t ∈ R,

Bu = h(x, t), x ∈ ∂D, t ∈ R,
(2)

with periodicity condition u(x, t, ε) = u(x, t, ε) where ε is a small parameter,
f , h, and ∂D are sufficiently smooth, B is a boundary operator for Dirichlet,
Neumann or third order boundary conditions. We also assume that f , h are
T -periodic in t functions.

Denote by N the nonlinear operator in (2)

Nu ≡ ε2(Δu − ∂u

∂t
) − f(u, ∇u, x, t, ε).

We introduce the following definition for an upper and a lower solutions, which
is more strong than classical definition.
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Definition. The T -periodic functions β(x, t, ε) and α(x, t, ε) we call an asymp-
totic upper and a lower solutions of order q > 0 of problem (2) if for sufficiently
small ε they satisfy the inequalities

Nβ ≤ −cεq, Nα ≥ cεq, x ∈ D, t ∈ R, (3)

Bα ≤ h(x, t) ≤ Bβ, x ∈ ∂D, t ∈ R, (4)

where c is a positive constant.

Denote by L the linear operator which we get from N by linearizing f on the
stationary solution, by Lf the linearization f on the stationary solution and by
H the following characteristic of the nonlinearity

H ≡ f(β,∇β, x, t, ε) − f(α,∇α, x, t, ε) − Lf (β − α)

The property of H depend on the asymptotic lower and upper solutions.
Note that one of the most important our achievements is the method to construct
them by using the formal asymptotic expansion. In what follows we describe this
approach. Our assumption is

(A1). There exist asymptotic of order q an upper solution β and a lower
solution α such that β > α and |β − α| ≤ cεr for x ∈ D, t ∈ R and sufficiently
small ε.

We also assume
(A2). |H| ≤ cεp for x ∈ D, t ∈ R and sufficiently small ε.
(A3). p ≥ q

It is clear that the estimates of the assumptions (A2) (A2) depend on the prop-
erties of the nonliniarity f and the lower and Under the assumptions above the
following theorem take place.

Theorem 1. Suppose the assumptions (A1) − (A3) to be valid. Then, for suffi-
ciently small ε there exists a solution u(x, t, ε) of (2) which differ from the upper
or lower solution on the value of order O(εr) and is asymptotically stable in
Lyapunov sense with the local domain of stability [α, β]

The proof of Theorem 1 is based on the revised maximum principal, which used
Krein-Ruthman theorem.

From assumption (A1) it follows the existence of the periodic solution
u(x, t, ε) of problem (2) satisfying the inequalities inequalities α ≤ u(x, ε) ≤ β
(see [4]) and therefore we also have the asymptotic estimate for the solution. It
differ from the upper or lower solution on the value of order O(εr).

From (A2), (A3) it is easily follows that L(β − α) < 0. From (8) we have
B(β−α) > 0 and therefore the pricipal eigenvalue (which exists and real) satisfy
the estimate λp < 0, that imply the asymtotic stability of the periodic solution
solution in the sense of Lyapunov (see [4]).

We note that the analogues of Theorem 1 are valid for stationary and nonlocal
reaction-advection-diffusion equations (see [2]).



On Extension of Asymptotic Comparison Principle 65

In order to get the upper and lower solutions satisfying the assumptions of
Theorem 1 we use the formal asymptotics, which can be constructed in a lot of
cases by our method described, for example, in the review papers [1,11]. Under
quite natural assumptions the formal asymptotics of internal layer solution is
produced by the boundary layer operators LB , regular expansion operators LR

and by the operators describing the location of transition layer AΓ. To construct
the formal asymptotic we assume that the operators are invertible.

For the construction of asymptotic lower and upper solutions we require
that these operators are monotone (order preserving) when they act in the same
classes of functions in which we construct the asymptotic expansions by means
of these operators.

Finally we get α ≡ αn, β ≡ βn – modified n-th order formal asymptotic.
We illustrate our approach by the following example.

3 Periodic Solutions with Internal Layer in the Case
of Balanced Advection

We consider the boundary value problem

Nε(u) := ε

(
∂2u

∂x2
− ∂u

∂t

)

− A(u, x, t)
∂u

∂x
− B(u, x, t) = 0 for x ∈ (0, 1), t ∈ R,

u(0, t, ε) = u(−)(t), u(1, t, ε) = u(+)(t) for t ∈ R,

u(x, t, ε) = u(x, t + T, ε) for t ∈ R,

(5)

where ε is a small parameter, A, B, u(−) and u(+) are sufficiently smooth and T -
periodic in t. As we mentioned in the introduction the case of the non-balanced
advection was considered in [3] where you can find more details on the asymptotic
construction.

If we put ε = 0 in equation (9) we get the so-called degenerate equation

A(u, x, t)
∂u

∂x
+ B(u, x, t) = 0, (6)

where t has to be considered as a parameter. Equation (6) is a first order ordi-
nary differential equation and can be considered with one of the following initial
conditions from problem (9)

u(0, t) = u(−)(t), (7)

u(1, t) = u(+)(t). (8)

(H1). The problems (6),(7) and (6),(8) have the solutions u = ϕ(−)(x, t) and
u = ϕ(+)(x, t), respectively, which are defined for 0 ≤ x ≤ 1, t ∈ R and which
are T -periodic in t. Additionally we assume

ϕ(−)(x, t) < ϕ(+)(x, t) for x ∈ [0, 1], t ∈ R,
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A(ϕ(+)(x, t), x, t) < 0, A(ϕ(−)(x, t), x, t) > 0,

x ∈ [0, 1], t ∈ R.

To formulate the next assumptions we introduce the function I(x, t) by

I(x, t) :=
∫ ϕ(+)(x,t)

ϕ(−)(x,t)

A(u, x, t)du.

We assume
(H2). The function

I(x, t) ≡ 0 for x ∈ [0, 1], t ∈ R, (9)

and ∫ s

ϕ(−)(x,t)

A(u, x, t) du > 0

for any s ∈
(
ϕ(−)(x, t), ϕ(+)(x, t)

)
, x ∈ [0, 1], t ∈ R.

Assumption (H2) differ our statement from the non-balanced case, where the
equation I(x, t) = 0 a simple solution x = x0(t) ( ∂I

∂x (x0(t), t) < 0).

Construction of the Formal Asymptotics. The construction of the asymp-
totic follows the scheme proposed in [3], where it is possible to find some addi-
tional details.

To characterize the location of the interior layer we introduce the curve x =
x∗(t, ε) as locus of the intersection of the solution u(x, t, ε) of (2) with the surface

u =
1
2

(
ϕ(−)(x, t) + ϕ(+)(x, t)

)
=: ϕ(x, t).

In what follows we construct the asymptotic expansion of x∗(t, ε) in the form

x∗(t, ε) = x0(t) + ε x1(t) + ..., (10)

where x0(t) is the solution of equation (9) and xk(t), k = 1, 2, ..., are T -periodic
functions to be determined. For the following we use the notations

ξ :=
x − x∗(t, ε)

ε
,

D(−)
:= {(x, t) ∈ R2 : 0 ≤ x ≤ x∗(t, ε), t ∈ R},

D(+)
:= {(x, t) ∈ R2 : x∗(t, ε) ≤ x ≤ 1, t ∈ R}.

First we consider in D(−)
the boundary value problem

ε

(
∂2u

∂x2
− ∂u

∂t

)
− A(u, x, t)

∂u

∂x
− B(u, x, t) = 0 for (x, t) ∈ D(−)

,

u(0, t, ε) = u0(t), u(x(t, ε), t, ε) = ϕ(t, ε) for t ∈ R,

u(x, t, ε) = u(x, t + T, ε) for t ∈ R.

(11)
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We look for the formal asymptotic expansion of the solution U (−)(x, t, ε) of this
problem in the form

U (−)(x, t, ε) = Ū (−)(x, t, ε) + Q(−)(ξ, x∗, t, ε) =
∞∑

i=0

εi
(
Ū

(−)
i (x, t) + Q

(−)
i (ξ, x∗, t)

)
,

(12)

where Ū (−) and Q̄(−) denote the regular and the interior layer parts. Next we
study in D(+)

similar problem to construct U (+)(x, t, ε).
By using the standard procedure of boundary layer function method we can

construct these expansions and to show that operators L±
R, produsing regular

part of the asymptotics have the form

L±
R ≡ −A(ϕ(±)(x, t), x, t)

∂

∂x
−

(
Au(ϕ(±)(x, t), x, t)

∂U
(±)

0

∂x

+ Bu(ϕ(±)(x, t), x, t)
)
,

(13)

and therefore is the first order differential operator and from assumption (H1) it
follows that it is positively invertible for a negative right hand part - inequality
L±

Ru < 0 has a positive solution.
In order to construct the boundary layer functions describing the internal

layer near x∗(t, ε) we represent the differential operators

ε
∂2

∂x2 ,
∂

∂x
and ε

∂

∂t

in the form
1
ε

∂2

∂ξ2 ,
1
ε

∂

∂ξ
and − dx∗

dt

∂

∂ξ
+ ε

∂

∂t
.

For the transition layer functions we have equations

1
ε

∂2Q(±)

∂ξ2 +
∂x∗(t, ε)

∂t

∂Q(±)

∂ξ
− ε

∂Q(±)

∂t
=

=
1
ε

[
A

(
Ū (±)(x∗(t, ε) + εξ, t, ε) + Q(±), x∗(t, ε) + εξ, t

) ∂

∂ξ
Q(±)

]

+ A
(
Ū (±)(x∗(t, ε) + εξ, t, ε) + Q(±), x∗(t, ε) + εξ, t

) ∂Ū (±)

∂x

− A (Ū (±) (x∗(t, ε) + εξ, t, ε) , x∗(t, ε) + εξ, t
) ∂

∂x
Ū (±) (x∗(t, ε) + εξ, t, ε)

+ [B
(
Ū (±)(x∗(t, ε) + εξ, t, ε) + Q(±), x∗(t, ε) + εξ, t

)

−B
(
Ū (±) (x∗(t, ε) + εξ, t, ε) , x∗(t, ε) + εξ, t

)]

with boundary conditions

Q(±)(0, x∗, t, ε) + Ū (±) (x∗(t, ε), t, ε) = ϕ(x∗(t, ε), t).
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For Q
(±)
k (ξ, x∗, t) we use additional conditions at ±∞:

Q
(±)
k (±∞, x∗, t) = 0, t ∈ R.

From this representation we have the problems for Q
(±)
k (ξ, x∗, t) which were

investigated in details in [3].
In order to find the terms xi(t) of the expansion U± we use C1–matching

condition of the i–th order in ε of the expression

ε
∂Ū (+)

∂x
(x∗(t, ε), t, ε) +

∂Q(+)

∂ξ
(0, x∗, t, ε) =

ε
∂Ū (−)

∂x
(x∗(t, ε), t, ε) +

∂Q(−)

∂ξ
(0, x∗, t, ε).

Different from the non-balanced case zero-th order C1–matching condition is
satisfied identically because the assumption (A1), and x0(t) is determined from
the first order C1–matching condition. We get

{
dx0
dt

(
ϕ(−)(x0, t) − ϕ(+)(x0, t)

)
= H(+)(t, x0) − H(−)(t, x0),

x0(t + T ) = x0(t),
(14)

where

H(±)(t, x∗) =
∂ϕ(±)(x∗, t)

∂x
+

0∫

±∞

(

Φ(ξ, t, x∗)

(
∂Ã

∂u

∂ϕ(±)

∂x
ξ +

∂Ã

∂x
ξ

)

+ Ã(ξ, t)
∂ϕ(±)

∂x
+ B̃(ξ, t)

)

dξ

− Ū
(±)
1 Ā(±) (x∗, t) .

Here we use the notations

Φ(ξ, t, x∗) =

⎧
⎨

⎩

∂Q
(−)
0

∂ξ (0, x∗, t, ε) for ξ ≤ 0,

∂Q
(+)
0

∂ξ (0, x∗, t, ε) for ξ ≥ 0,

and functions Ã(ξ, t) and B̃(ξ, t) are functions A and B evaluated at the point
(Q(±)

0 (ξ, x∗, t) + Ū
(±)
0 (x∗, t) , x∗, t, 0).

We assume
(H3). Problem (14) has the solution x0(t) ∈ (0, 1).

We define also H(t, x∗) = H(+)(t, x∗) − H(−)(t, x∗).
Using i-th order C1-matching conditions, we get the problem to determine

xi(t) {
−dxi

dt − Dxi = Gi(t),
x1(t + T ) = xi(t),

(15)
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where

D(t) =

(
∂H

∂x∗
(t, x∗)

∣
∣
∣
∣
x∗=x0

+ v0
∂

∂x∗

(
ϕ(+)(x∗, t) − ϕ(−)(x∗, t)

)∣
∣
∣
∣
x∗=x0

)

×

(
ϕ(+)(x0, t) − ϕ(−)(x0, t)

)−1

,

and Gi(t) is known on the each step function. If we assume

(H4). The function D(t) satisfies the inequality
T∫

0

D(t)dt > 0,

we get that producing xi(t) first order periodic operator AΓ is the order preserv-
ing operator (AΓδ(t) < 0 has a positive solution).

Existence Results. We denote by D(−)
n and D(−)

n the domains

D(−)
n := {(x, t) ∈ R2 : 0 ≤ x ≤

n+1∑

i=0

xi(t)εi, t ∈ R},

D(+)
n := {(x, t) ∈ R2 :

n+1∑

i=0

xi(t)εi ≤ x ≤ 1, t ∈ R}

and denote by U
(±)
n the partial sums of order n of the expansions , where ξ is

replaced by
(
x − ∑n+1

i=0 xi(t)εi
)
/ε.

We introduce the notation

Un(x, t, ε) =

{
U

(−)
n (x, t, ε) for (x, t) ∈ D(−)

n ,

U
(+)
n (x, t, ε) for (x, t) ∈ D(+)

n .

Then we have the following existence theorem

Theorem 2. Suppose the assumptions (H1) − (H4) to be valid. Then, for suffi-
ciently small ε there exists a solution u(x, t, ε) of (9) which T -periodic in t, has
an interior layer and satisfies

|u(x, t, ε) − Un(x, t, ε)| ≤ cεn+1 (x, t) ∈ D
where the positive constant c does not depend on ε.

Construction of the Upper and Lower Solutions. The proof of the theorem
presented in the previous section is based on the technique of lower and upper
solutions.

The upper and lower solutions satisfying the definition above are constructed
by means of the modification of the formal asymptotics. In order to describe them
we introduce the periodic curves x = xβ(t, ε) and x = xα(t, ε) as the n-th partial
sums of the asymptotics of x∗(t, ε) with a small shifts at the last term

xβ(t, ε) = x0(t) + εx1(t) + ... + εn(xn(t) − δ(t))
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and
xα(t, ε) = x0(t) + εx1(t) + ... + εn(xn(t) + δ(t))

where δ(t) > 0 is a positive solution of the inequality AΓδ(t) < 0. These curves
divide our domain D into two subdomains D(−)

β , D(+)

β and D(−)

α , D(+)

α where

D(−)

β := {(x, t) ∈ R2 : 0 ≤ x ≤ xβ(t, ε), t ∈ R},

D(+)

β := {(x, t) ∈ R2 : xβ(t, ε) ≤ x ≤ 1, t ∈ R}.

The domains D(±)

α are defined similarly.
Now we can define the upper solution β(x, t, ε) = βn(x, t, ε) and the lower

solution α(x, t, ε) = αn(x, t, ε) by the expressions

βn(x, t, ε) = β(±)
n (x, t, ε) = Ū

(±)
0 (x, t) + εŪ

(±)
1 (x, t)

+... + εnŪ (±)
n (x, t) + εn+1(Ū (±)

n+1(x, t) + v(x))

+Q
(±)
0 (ξβ , t) + εQ

(±)
1 (ξβ , t) + ...

+εn+1Q
(±)
(n+1)β(ξβ , t) + εn+2Q

(±)
(n+2)β(ξβ , t, ε)

and

αn(x, t, ε) = α(±)
n (x, t, ε) = Ū

(±)
0 (x, t) + εŪ

(±)
1 (x, t)

+... + εnŪ (±)
n (x, t) + εn+1(Ū (±)

n+1(x, t) − v(x))

+Q
(±)
0 (ξα, t) + εQ

(±)
1 (ξα, t) + ...

+εn+1Q
(±)
(n+1)α(ξα, t) + εn+2Q

(±)
(n+2)α(ξα, t, ε),

where v(x) > 0 is is a positive solution of the inequality L±
Rv(x) < 0,

ξβ = (x − xβ)/ε, ξα = (x − xα)/ε,, the function βn(x, t, ε) = β
(±)
n (x, t, ε) in

D(±)

β and similarly we define αn(x, t, ε). We can check it directly, that αn(x, t, ε
and βn(x, t, ε) satisfy the definition of the lower and upper solutions.

The existence theorem and its estimate for the solution follows from the
differential inequalities theorem and from the structure of the upper and lower
solutions (see, also, [3]), which we summarise in the following lemma.

Lemma 1. The functions βn(x, t, ε) and αn(x, t, ε) satisfies the following uni-
form in D estimates:

βn(x, t, ε) − αn(x, t, ε) = O(εn),
|αn(x, t, ε) − up(x, t, ε)| = O(εn),
|βn(x, t, ε) − up(x, t, ε)| = O(εn)
∂αn

∂x
=

∂up

∂x
+ O(εn−1),

∂βn

∂x
=

∂up

∂x
+ O(εn−1).

(16)

where up(x, t, ε) is the periodic internal layer solution of problem (9), stated in
the Theorem2.



On Extension of Asymptotic Comparison Principle 71

Stability Results. In this section we investigate the stability (in the sense of
Lyapunov) of the periodic solution up(x, t, ε) established by Theorem 2. We use
the Theorem 1. From the construction of lower and upper solutions it follows
that they are asymptotic order of q = n + 1. Direct calculations shows that the
constant p in our case is 2n − 2 (analogous calculations one can found in [2]).
Therefore inequality p ≥ q is satisfied for n ≥ 3. We formulate our result as the
theorem.

Theorem 3. Suppose the assumptions (H1) − (H4) to be satisfied. Then for
sufficiently small ε the periodic solution of problem (9) with interior layer is
asymptotically stable with a local region of attraction [α3(x, t, ε), β3(x, t, ε)].
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Abstract. For boundary value problems with singularity, we developed
the theory of finite difference schemes based on concept of an Rν-gene-
ralized solution. The difference scheme is constructed, the rate of con-
vergence of the approximate solution to the Rν-generalized solution in
the norm of the Sobolev weighted space is established.

Keywords: The Rν-generalized solution for BVP · Finite difference
method

1 Introduction

For boundary value problems with a singular solution, we developed the theory
of numerical methods on the concept of an Rν-generalized solution (see, e.g.,
[1–18]). We can define a weighted space or set containing the unique Rν-
generalized solution depending on the singularities of the input data (the coef-
ficients and right-hand sides of the equation and the boundary conditions) and
on the geometry of the domain boundary. For boundary value problems with
singularity, it was constructed of the numerical methods with the convergence
rate independent of the size singularity, for example, of the reentrant angle on
the boundary of the domain.

In this paper we construct a finite difference scheme for boundary value
problem in the rectangle. We study the rate with which an approximate solution
by the proposed difference scheme converges toward an exact Rν-generalized
solution in the difference norm of the Sobolev weighted space.

2 Notation and Auxiliary Statements

Let Ω = {x : x = (x1, x2),−l1 < x1 < l2, 0 < x2 < l2} be a rectangle with
boundary ∂Ω; and let Ω be the closure of Ω, i.e. Ω = Ω ∪ ∂Ω. The boundary

∂Ω =
4⋃

i=1

∂Ω(i), where sides of the rectangle ∂Ω(i), i = 1, 2, 3, 4 are defined by the

equations x1 = −l1, x2 = 0, x1 = l1, x2 = l2 respectively. In addition, we denote
by ∂Ω(5) = {x : x = (x1, 0),−l1 ≤ x1 ≤ 0}, Γ = ∂Ω(2) \ ∂Ω(5). Let ∂Ω0 be a set
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 72–83, 2015.
DOI: 10.1007/978-3-319-20239-6 7



FDM for BVP with Singularity 73

of points {τi}5i=1 =
{

4⋃

i=1

∂Ω(i−1,i) ∪ ∂Ω(4,5)

}
. Here ∂Ω(i−1,i) = ∂Ω(i−1) ∩ ∂Ω(i)

(i = 1, . . . , 4) and ∂Ω(0,1) = ∂Ω(4,1), ∂Ω(0) = ∂Ω(4), ∂Ω(4,5) = Γ ∩ ∂Ω(5).
Let Oδ

i be a disk of radius δ > 0 with its center in τi (i = 1, . . . , 5), i.e. Oδ
i =

{x : ‖x − τi‖ ≤ δ}, and supopse that Oδ
i ∩ Oδ

j = ∅, i �= j. Let Ω1 = Ω ∩
n⋃

i−1

Oδ
i .

We introduce a weight function ρ(x) which coincides with the distance to the
point τi in Oδ

i and it is equal to δ outside Ω1.
We introduce the weighted spaces with norms:

‖v‖2W k
2,α(Ω) =

∑

|λ|≤k

∫

Ω

ρ2α|Dλv|2dx, ‖v‖W k
2,0(Ω) = ‖v‖W k

2 (Ω),

‖v‖W 0
2,α(Ω) = ‖v‖L2,α(Ω), |v|2W s

2,α(Ω) =
∫

Ω

ρ2α|Dsv|2dx, s ≤ k,

‖v‖2Hk
2,α(Ω) =

∑

|λ|≤k

∫

Ω

ρ2α+2|λ|−2k|Dλv|2dx, (1)

where Dλ =
∂|λ|

∂xλ1
1 ∂xλ2

2

, λ = (λ1, λ2) and |λ| = λ1 + λ2, k is a nonnegative

integer, and α is a real number.
The space H1

2,α(Ω) is defined as the closures of the set of infinitely differen-
tiable in R

2 functions with support Ω and vanish in a neighbourhood ∂Ω \ Γ .
Let γ is subset ∂Ω. We say that ϕ ∈ H

k−1/2
2,α (γ) if there exists a function

Φ(x) from Hk
2,α(Ω) such that Φ(x) |γ = ϕ(x) and

‖ϕ‖
H

k−1/2
2,α (γ)

= inf
Φ|γ =ϕ

‖Φ‖Hk
2,α(Ω).

Lemma 1 [2]. Let k be a nonnegative integer:

(A) If v ∈ Hk
2,α(Ω), then ρα−(k−s)v ∈ W s

2,0(Ω) (s = 0, . . . , k) and

|ραv|W k
2,0(Ω) + |ρα−1v|W k−1

2,0 (Ω) + . . . + |ρα−kv|W k−1
2,0 (Ω) ≤ C1‖v‖Hk

2,α(Ω)
,

where C1 is a positive constant independent of v.
(B) If ρα−(k−s)v ∈ W s

2,0(Ω) (s = 0, . . . , k), then v ∈ Hk
2,α(Ω) and there exist

positive constants C∗
0 , . . . , C∗

k independent of v such that

C∗
k |ραv|W k

2,0(Ω) +C∗
k−1|ρα−1v|W k−1

2,0 (Ω) + . . .+C∗
0 |ρα−kv|L2,0(Ω) ≤ ‖v‖Hk

2,α(Ω)
.

Lemma 2. Let Q ⊂ R
2 be an open subset with the Lipschitz continuous bound-

ary and let F (v) is a bounded continuous linear functional on W k+1
2 (Q) (k ≥ 0).

Suppose that

∀p ∈ Pk =

⎧
⎨

⎩

k∑

i=0

k−i∑

j=0

aijx
i
1x

j
2

⎫
⎬

⎭
|F (p)| ≤ δ2, δ2 = const .
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Then there exists constant δ3(Q) such that

∀v ∈ W k+1
2 (Q) |F (v)| ≤ δ3(Q)|v|W k+1

2 (Q) + δ2.

The proof of this statement follows from the Bramble-Hilbert lemma directly [19].

3 Problem Formulation

Consider the differential equation

Av ≡ −
2∑

l=1

∂

∂xl

(
al(x)

∂v

∂xl

)
+ a(x)v(x) = f(x), x ∈ Ω (2)

with boundary conditions

∂v

∂N
= ϕ1(x), x ∈ Γ, v = ϕ2(x), x ∈ ∂Ω \ Γ. (3)

Here
∂v

∂N
is a conormal derivative.

Assume that the coefficients of the equation and the right-hand sides (2) and (3)
satisfy

al ∈ C3(Ω), a ∈ C2(Ω), a(x) ≥ a0 > 0, (4)
2∑

l=1

al(x)ξ2l ≥ λ

2∑

l=1

ξ2l , x ∈ Ω, (5)

f ∈ H2
2,μ(Ω), ϕ1 ∈ H

5/2
2,μ (Γ ), ϕ2 ∈ H

7/2
2,μ (∂Ω \ Γ ), (6)

where λ is positive constant independent of x, ξ1 and ξ2 are any real parameters,
and μ is some nonnegative real number.

Definition 1. A function vν form the space H1
2,ν(Ω) is called an Rν-generalized

solution of boundary value problem (2), (3) if vν = ϕ2 almost everywhere on
∂Ω \ Γ and for all g from H1

2,ν(Ω) the following integral identity

∫

Ω

[
2∑

l=1

ρ2νal
∂vν

∂xl

∂g

∂xl
+ al

∂vν

∂xl

∂ρ2ν

∂xl
g + aρ2νvνg

]

dx

=
∫

Ω

ρ2νfgdx +
∫

Γ

ρ2νϕ1gdx1, (7)

holds, where ν is arbitrary but fixed and satisfies the inequality ν ≥ μ − 3.

The existence and uniqueness, the coercitive and differential properties of the
Rν-generalized solution for the differential equation (2) with different boundary
conditions were established in [6,8,9,18]. In this paper we do not propose to
study the differentiability properties of the Rν-generalized solution. Therefore
we assume that vν belongs to the space H4

2,μ(Ω).



FDM for BVP with Singularity 75

4 Difference Scheme

Let us construct a difference mesh in Ω by analogy with [1]. We briefly explain
the construction: Ωh = {xh : xh = ((i1 − 0.5 sign(i1))h1, i2h2), h1 = 2l1/2N1 −
1, h2 = l2/N2, i1 = −N1, . . . ,−1, 1, . . . , N1, i2 = 0, . . . , N2}, Ωh = {xh : xh =
((i1−0.5 sign(i1))h1, i2h2),−N1 < i1 < N1, i1 �= 0, 0 < i2 < N2}, ∂Ωh = Ωh\Ωh,
Γh = {xh : xh = ((i1 − 0.5 sign(i1))h1, 0), 1 ≤ i1 < N1}, ∂Ω

(1)

h = {xh : xh =
(−l1, i2h2), 0 ≤ i2 ≤ N2}, ∂Ω

(1+2)
h = {xh : xh = (l1, i2h2), 0 < i2 < N2},

∂Ω
(5)
h = ∂Ω

(2)
h \Γh, ∂Ω

(1,2)
h = ∂Ω

(1)

h ∩∂Ω
(2)

h , ∂Ω
(5)
h ∩Γh = {xh : xh = (−h1, 0)}.

Let u and w be mesh functions given on Ωh. The difference quotients, inner
products, and norms on Ωh are defined as follows:

u = u(xh) = u(x1h, x2h), I±1u(xh) = u(x1h ± h1, x2h), I±2u(xh) = u(x1h, x2h ± h2),

∂+
1 u = (I+1u − u)/h1, ∂−

1 u = (u − I−1u)/h1, ∂+
1 ∂−

1 u = (I+1u − 2u + I−1u)/h2
1,

(u,w)L2,α(Ωh)
=

∑

xh∈Ωh

ρ2α
h uw�, ‖u‖2

L2,α(Ωh)
= (u, u)L2,α(Ωh)

,

(∂+
l u, ∂+

l w)L2,α(Ωh)
=

∑

xh∈Ωh(+l )
ρ2α

h ∂+
l u∂+

l w�,

|u|2
W 1

2,α(Ωh)
=

1
2

2∑

l=1

[
(∂+

l u, ∂+
l u)L2,α(Ωh)

+ (∂−
l u, ∂−

l u)L2,α(Ωh)

]
,

‖u‖2
W 1

2,α(Ωh)
= |u|2

W 1
2,α(Ωh)

+ ‖u‖2
L2,α(Ωh)

,

/u, w/L2,α(∂Ωh)
=

2∑

l=1

∑

xh∈∂Ωh( l
l+2)

ρ2α
h uw�

l, ‖u‖′

L2,α(∂Ωh)
= /u, u/

1/2

L2,α(∂Ωh)
.

Here Ωh

(
+
l

)
, Ωh

(−
l

)
are the sets of nodes of the mesh Ωh at which the difference

quotients ∂+
l and ∂−

l are defined, ∂Ωh

(
l

l+2

)
= ∂Ω

(l)
h ∪ ∂Ω

(l+2)
h , and

� = �1�2, �
l =

2∏

i=1
i�=l

hi, �l =

{
�l, xh ∈ Ωh \ ∂Ωh

(
l

l+2

)
,

�l/2, xh ∈ ∂Ωh

(
l

l+2

)
.

In this paper we will assume h1 = h2.
The mesh function ρh(xh) is defined of the following rule:

ρh(xh) = min
{

h1−β/2, min
i=1,...,5

dist(xh, τi)
}

, 0 ≤ β ≤ 1.

Let Ω′
h is the set of nodes of the mesh at which function ρh(xh) is dist(xh, τi).

We choose β such that ρh(xh) ≤ ρ(xh) for xh ∈ Ωh and Ω′
h ⊂ Ω1.



76 V.A. Rukavishnikov and E.I. Rukavishnikova

To determine an Rν-generalized solution of problem (2), (3) we use the difference
scheme

Ahρu = Fhρ, xh ∈ Ωh, (8)

where

Ahρu =
{

Ahρu, xh ∈ Ωh,
ahρu, xh ∈ ∂Ωh; Fhρu =

⎧
⎨

⎩

ρν
hfh, xh ∈ Ωh,

(h2/2)ρμ
hfh + ρμ

hϕ1h, xh ∈ Γh,
ρν

hϕ2h, xh ∈ ∂Ωh \ Γh;

Ahρu ≡ −1
2

2∑

l=1

[
∂+

l (alρ
ν
h∂−

l u) + ∂−
l (alρ

ν
h∂+

l u)
]
+ aρν

hu,

ahρ ≡ −ρν
ha2 + I+2(ρν

ha2)
2

∂+
2 u − h2

2
1
2

(
∂+
1 (a1ρ

ν
h∂−

1 u) +∂−
1 (a1ρ

ν
h∂+

1 u)
)

+
h2

2
aρν

hu, xh ∈ Γh,

ahρu ≡ ρν
hu, xh ∈ ∂Ωh \ Γh.

5 Approximation Error

For the research of the approximation error of the difference problem (5), for
z = [vν ]h − u we pose the problem

Ahρz = ψ, xh ∈ Ωh, (9)

where ψ(xh) = Ahρ[vν ]h − Fhρ(xh) is the approximation error of the difference
scheme at an Rν-generalized solution of the differential problem.
We represent ψ(xh) in the form of a sum

ψ = ψ1 + ψ2, (10)

here for xh ∈ Ωh

ψ1(xh) =
1
2

2∑

l=1

ρν
h

[
∂+

l (al∂
−
l [vν ]h) + ∂−

l (al∂
+
l [vν ]h)

]
+ aρν

h[vν ]h − ρν
hfh,

ψ2(xh) = −1
2

2∑

l=1

[
∂−

l ρν
hal∂

−
l [vν ]h + ∂+

l ρν
hal∂

+
l [vν ]h

]
;

for xh ∈ Γ2

ψ1(xh) = −ρν
h

a2 + I+2a2

2
∂+
2 [vν ]h−h2

2
1
2

(
ρν

h∂+
1 (a1∂

−
1 [vν ]h) + ∂−

1 (a1∂
+
1 [vν ]h)

)

+
h2

2
aρν

h[vν ]h − h2

2
ρν

hfh − ρν
hϕ1h,

ψ2(xh) = −h

2
I+2a2∂

+
2 ρν

h∂+
2 [vν ]h − h2

4
(
a1∂

+
1 ρν

h∂+
1 [vν ]h + a1∂

−
1 ρν

h∂−
1 [vν ]h

)
;

for xh ∈ ∂Ωh \ Γh error is ψ(xh) = 0.
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Lemma 3. Let the Rν-generalized solution vν of the boundary value problem
(2), (3) belongs to the space H4

2,ν(Ω) (ν ≥ μ) and conditions (4)–(6) be satisfied.
Then the estimate

|ψ1(xh)| ≤ c2|h|2(h1h2)−1/2‖vν‖H4
2,ν(ωi1i2 )

+ O(|h|2), xh ∈ Ωh ∩ ωi1i2 , (11)

where c2 is independent of h and vν , ωi1i2 = {x : (x1, x2), (ik − 1)hk < xk <
(ik + 1)hk, k = 1, 2}.
Lemma 4. Suppose vν ∈ H4

2,ν(Ω) and the conditions (3) be realized. Then for
ψ2(xh), xh ∈ Ω′

h the inequality

|ψ2(xh)| ≤ c3ρ
2(xh)(h1h2)−1/2

(
|vν |W 1

2,ν−3(ωi1i2 )
+ |vν |W 2

2,ν−2(ωi1i2 )

)
(12)

holds, where c3 is independent of h and vν .

The Lemma 2 was proved in [3,4]. The proof of Lemma 3 for al = 1 can be found
in [4]. The condition (4) ensures the validity of the Lemma3 and Lemma 4 for
problem (9). Moreover for al �= 1 ψ1(p) = O(|h|2) for any p(x) from P3. This
explains the presence of the term O(|h|2) on the right-hand side (11).

Lemma 5. Suppose that the conditions of Lemma 3 are satisfied. Then for
ψ1(xh), xh ∈ ωi10 ∩ Γh the following estimate is valid

|ψ1(xh)| ≤ c4|h|3(h1h2)−1/2‖vν‖H4
2,ν(ωi10) + O(|h|2), (13)

where c4 is a positive constant not dependent the functions f and vν , ωi10 = {x :
x = (x1, x2), (i1 − 1)h1 < x1 < (i1 + 1)h1, 0 ≤ x2 < h}.
Proof. We map ωi10 onto the rectangle Π = {y : y = (y1, y2),−1 < y1 < 1, 0 <
y2 < 1} by means of the linear transformation y1 = (x1 − i1h1)/h1, y2 = x2/h2.
If the function ϕ(x) is defined on ωi10, then we denote by ϕ(y) the function
which is defined on Π by ϕ(y) = ϕ(y1h1 + i1h1, y2h2). We estimate |ψ1(xh)|,
xh ∈ ωi10 ∩ Γh, by the norm of the function ρν(y)vν(y) in the space W 4

2 (Π).
We have

∣
∣
∣
∣ρ

ν
h(xh)

a2(xh) + I+2a2(xh)
2

∂+
2 [vν ]h

∣
∣ ≤ c5

h2
max

x∈ωi10
|ρν(x)vν(x)|

≤ c5
h2

max
y∈Π

|ρν(y)vν(y)| ≤ c5|h|−1‖ρνvν‖W 2
2 (Π), (14)

∣
∣
∣
∣
h2

4
ρν(xh)

(
∂+
1 (a1∂

−
1 [vν ]h) + ∂−

1 (a1∂
+
1 [vν ]h)

)
∣
∣
∣
∣ ≤ c6|h|−1‖ρνvν‖W 2

2 (Π), (15)

∣
∣
∣
∣
h2

2
a(xh)ρν

h(xh)[vν ]h

∣
∣
∣
∣ ≤ c7|h|−1‖ρνv‖W 2

2 (Π). (16)
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Due to conditons (4) and the Sobolev embedding theorems the inequalities
(14)–(16) are valid; the norm of the function ρνv in the space W 2

2 (Π) is defined
because v ∈ H4

2,ν(Ω).

Note that, if the function ϕ1 ∈ H
5/2
2,μ (Γ ), then there exists its extension Φ1(x)

to Ω in the space H3
2,μ(Ω). It is obvious that Φ1 ∈ H2

2,ν(Ω) and by Lemma 1
ρνΦ1 belongs to H2

2 (Ω). Besides the inequalities (14)–(16) we have

∣
∣
∣
∣
h2

2
ρν

h (xh)fh(xh) + ρν
h(xh)ϕ1h(xh)| ≤ max

x∈ωi10εε

∣
∣
∣
∣
h2

2
ρν(x)f(x) + ρν(x)Φ1(x)

∣
∣
∣
∣

≤ max
y∈Πε

∣
∣
∣
∣
h2

2
ρν(y)f(y) + ρν(y)Φ1(y)

∣
∣
∣
∣ ≤ c8‖h2

2
ρνf + ρνΦ1‖W 2

2 (Πε). (17)

Here ωi10ε is a set of points in Ω belonging to a semi-circle with radius
h/2 − ε and with center at the point xh (ε is an arbitrary positive number such
that ε < h/2); Πε is the image of the domain ωi10ε which is obtained by means
of the transformation y1 = (x1 − i1h1)/h1, y2 = x2/h2.

We estimate the semi-norms of the function
h2

2
ρν(y)f(y)+ρν(y)Φ1(y) in the

spaces L2(Πε), W 1
2 (Πε), W 2

2 (Πε) by the norm ‖ρνvν‖W 4
2 (Π).

We denote by Qi10ε a set which is defined by the equality Qi10ε = ωi10 \
ωi10ε/2. Let δε(x) be a cut-off function that is infinitely differentiable and for
a sufficiently small ε satisfies the following conditions: δε(x) = 1 for x ∈ ωi10ε;
δε(x) = 0 for x ∈ Qi10ε; 0 ≤ δε(x) ≤ 1 for x ∈ ωi10.

Then, we substitute g(x) by the function δ(x)g0(x) in (7) (where δ(x) is the
function δε(x), which is extended by zero on Ω, g0(x) is an arbitrary function
in the space H1

2,ν) and integrate the obtained equality over x2 on (0, h2/2). As
a result we obtain

h2

2

∫

ωi10

[
2∑

l=1

ρ2νal
∂vν

∂xl

∂(δg0)
∂xl

+al
∂ρ2ν

∂xl

∂vν

∂xl
δg0 + ρ2νavνδg0

]
dx

=
h2

2

∫

ωi10

ρ2νfδg0dx +
∫

ωi10

ρ2νΦ1δg0dx. (18)

Successively, we substitute in equation (18) instead of g0 the functions
(

h2

2
f + Φ1

)
δ,

2∑

s=1

1
ρν

Δ−
s Δ+

s

(
δρν

(
h2

2
f + Φ1

))
,

2∑

a,l=1

1
ρν

Δ−
l Δ−

s Δ+
l Δ+

s

(
δρν

(
h2

2
f + Φ1

))
,

where Δ−
1 ϕ(x) =

ϕ(x1 − H,x2) − ϕ(x)
−H

, Δ+
1 ϕ(x) =

ϕ(x1 + H,x2) − ϕ(x)
H

,

0 < H <
ε

2
.
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As a result, by analogy with Lemma 1 in [3], we establish the estimate
∣
∣
∣
∣
h2

2
ρν

h(xh)f(xh) + ρν
h(xh)ϕ1h(xh)

∣
∣
∣
∣ ≤ c9|h|−1‖ρνvν‖W 4

2 (Π). (19)

Now, we denote that, if the Rν-generalized solution vν ∈ P3(Π), then it is a
classical solution of the problem (2), (3), moreover

−a2(xh) + I+2a2(xh)

2
∂+
2 [vν ]h = −a2(xh)

∂vν(xh)

∂x2
− h2

2

∂

∂x2

(
a2(xh)

∂vν(xh)

∂x2

)
+ O(h2),

−1

2

(
∂+
1 (a1(xh)∂

−
1 [vν ]h) + ∂−

1 (a1(xh)∂
+
1 [vν ]h)

)
= − ∂

∂x1

(
a1(xh)

∂vν(xh)

∂x1

)
+ O(h2),

xh ∈ Γh,

and ϕ1(xh) = O(h2) for xh ∈ Γh.
By using this remark and inequalities (14)–(16), (19), we obtain the estimate

|ψ1(xh)| ≤ c10|h|−1|ρνvν |W4
2 (Π) + O(h2) ≤ c11|h|3(h1h2)

−1/2|ρνvν |W4
2 (ωi10)

+ O(h2)

≤ c4|h|3(h1h2)
−1/2‖vν‖H4

2,ν(ωi10)
+ O(h2).

�
Lemma 6. Let vν ∈ H4

2,ν(Ω). Then for ψ2(xh), xh ∈ Γh ∩ Ω
′
h the following

estimate is valid

|ψ2(xh)| ≤ c12ρ
2
h(xh)

(
|vν |H1

2,ν−3(ωi10) + |vν |H2
2,ν−2(ωi10)

)
, (20)

where c12 is a positive constant independent of h, ρh and vν .

By analogy with Lemma 2 from [4], we estimate each addend of ψ2(xh) for xh ∈
Γh ∩Ω

′
h in absolute value, except of the term

∣
∣
∣
∣
h2a1

4
∂−
1 ρν

h∂−
1 [vν ]h

∣
∣
∣
∣. But this term

is equal zero, since ∂−
1 ρν

h

(
h1

2
, 0

)
= 0.

6 Convergence and Stability

In this section we obtain the weak stability of the difference scheme (8) and we
get the estimate of the rate of convergence of the solution u this scheme to an
Rν-generalized solution of the original problem (2), (3).

Lemma 7. Let Ahρ be the operator defined in (8); assume that conditions (4),
(5) are satisfied. Then for any function w given on Ωh the inequality

|h|− νβ
4

(
‖Ahρw‖L2(Ωh) + ‖ahρw‖′

L2(Γh)
+ |h|−1‖ahρw‖ ′

L2(∂Ωh\Γh)

)

≥ c13‖w‖W 1
2,ν(Ωh)

(21)

holds, where c13 is positive constant independent of h and w.
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Proof. By transforming the first term in (Ahρw,w)Ωh
with the use of summation

by parts and taking into account of boundary conditions, we get

(Ahρw,w)Ωh
=

(

−1
2

2∑

l=1

[
∂+

l (alρ
ν
h∂−

l w) + ∂−
l (alρ

ν
h∂+

l w)
]
+ aρν

hw,w

)

Ωh

=
1
2

2∑

l=1

[
(alρ

ν
h∂−

l w, ∂−
l w)

Ωh∪∂Ω
(l+2)
h

+ (alρ
ν
h∂+

l w, ∂+
l w)

Ωh∪∂Ω
(l)
h

]
+ (aρνw,w)Ωh

+
2∑

k,l=1
k �=l

[
alρ

ν
h + I+l(alρ

ν
h)

2
hk∂+

l ww
∣
∣
∣∂Ω

(l)
h

− alρ
ν
h + I−l(alρ

ν
h)

2
hk∂−

l ww
∣
∣
∣∂Ω

(l+2)
h

]
.

(22)

By virtue of boundary condition on Γh we have the equality
/

a2ρ
ν
h + I+2(a2ρ

ν
h)

2
∂+
2 w, w

/

Γh

= −
/

h2

2

1

2

(
∂+
1 (a1ρ

ν
h∂−

1 w) + ∂−
1 (a1ρ

ν
h∂+

1 w)
)
, w

/

Γh

+

/
h2

2
aρν

hw, w

/

Γh

−
/

h2

2
ρν

hfh + ρν
hϕ1h, w

/

Γh

. (23)

By transforming the first term on the right-hand side (23) with the use of sum-
mation by parts, we have

−
/

h2

2

1

2

(
∂+
1 (a1ρ

ν
h∂−

1 w) + ∂−
1 (a1ρ

ν
h∂+

1 w)
)
, w

/

Γh

=
1

2

[
(a1ρ

ν
h∂−

1 w, ∂−
1 w)

Γh∪(∂Ω
(3)
h

∩Γ h)
+ (a1ρ

ν
h∂+

1 w, ∂+
1 w)

Γh∪(∂Ω
(5)
h

∩Γ h)

]

+
h2

2

a1ρ
ν
h + I+1(a1ρ

ν
h)

2
∂+
1 ww

∣∣∣
∂Ω

(5)
h

∩Γ h
− h2

2

a1ρ
ν
h + I−1(a1ρ

ν
h)

2
∂−
1 ww

∣∣∣
∂Ω

(3)
h

∩Γ h
.

(24)

Using (23), (24), we rewrite the equality (22) in the form

(Ahρw, w)Ωh
+ /ahρw, w/Γh

=
1

2

2∑
l=1

[
(alρ

ν
h∂−

l w, ∂−
l w)

Ωh∪∂Ω
(l+2)
h

+ (alρ
ν
h∂+

l w, ∂+
l w)

Ωh∪∂Ω
(l)
h

]

+
1

2

[
(a1ρν

h∂−
1 w, ∂−

1 w)
Γh∪(∂Ω

(3)
h

∩Γ h)
+ (a1ρν

h∂+
1 w, ∂+

1 w)
Γh∪(∂Ω

(5)
h

∩Γ h)

]

+ (aρνw, w)Ωh∩Γh
+

a1ρν
h + I+1(a1ρν

h)

2
h2∂+

1 ww

∣∣∣∣∂Ω
(1)
h

− a1ρν
h + I−1(a1ρν

h)

2
h2∂−

1 ww

∣∣∣∣∂Ω
(3)
h

+
h2

2

a1ρν
h + I+1(a1ρν

h)

2
∂+
1 ww

∣∣∣∣∂Ω
(5)
h

∩Γ h
− h2

2

a1ρν
h + I−1(a1ρν

h)

2
∂−
1 ww

∣∣∣∣∂Ω
(3)
h

∩Γ h

+
a2ρν

h + I+2(a2ρν
h)

2
h1∂+

2 ww

∣∣∣∣∂Ω
(5)
h

− a2ρν
h + I−2(a2ρν

h)

2
h1∂−

2 ww

∣∣∣∣∂Ω
(4)
h

. (25)
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We multiply and divide by function ρ
ν/2
h the inner products of the left-hand side

of the equality (25) and we estimate them with the use of the Cauchy-Schwartz
inequality, the ε-inequality and the inequality

‖w‖′2
L2,ν/2(Γh)

≤ c14

(
|w|2W 1

2,ν/2(Ωh∪Γh)
+ ‖w‖′2

L2,ν/2(∂Ω
(4)
h )

)
.

As a result we obtain

(Ahρw,w)Ωh
+ /ahρw,w/Γh

≤ 1
4ε1

(
‖Ahρw‖2L2,−ν/2(Ωh)

+ ‖ahρw‖′2
L2,−ν/2(Γh)

)

+ ε1

(
‖w‖2L2,ν/2(Ωh)

+ C14

(
|w|2W 1

2,ν/2(Ωh∪Γh)
+ ‖w‖′2

L2,ν/2(∂Ω
(4)
h )

))
. (26)

Note that

‖∂+
1 w‖2

L2,ν/2(∂Ω
(4)
h ∪∂Ω

(5)
h )

+ ‖∂+
2 w‖2

L2,ν/2(∂Ω
(1)
h ∪∂Ω

(3)
h )

≤ ε2

(
‖∂+

1 w‖2
L2,ν/2(∂Ω

(4)
h ∪∂Ω

(5)
h )

+ ‖∂+
2 w‖2

L2,ν/2(∂Ω
(1)
h ∪∂Ω

(3)
h )

)

+
1

4ε2
|h|−1‖w‖′2

L2,ν/2(∂Ωh\Γh)
, (27)

∣
∣
∣
∣h2

a1ρ
ν
h + I+1(a1ρ

ν
h)

2
∂+
1 ww

∣
∣
∣∂Ω

(1)
h

∣
∣
∣
∣

≤ c15

∣
∣
∣(ρν/2

h h
1/2
1 h

1/2
2 ∂+

1 w)(ρν/2
h h

1/2
2 h

−1/2
1 w)

∣
∣
∣∂Ω

(1)
h

∣
∣
∣

≤ c16

(
ε3‖∂+

1 w‖′2
L2,ν/2(∂Ω(1)) +

1
4ε3

h−1
1 ‖w‖′2

L2,ν/2(∂Ω
(1)
h )

)
. (28)

We carry the last six terms from the right-hand side of the equality (25) to its
left-hand side and we estimate the modulus of each of them by analogy with
(28). Then, using estimations (26), (27) and conditions (4), (5), we get

1
4ε

(
‖Ahρw‖2L2,−ν/2(Ωh)

+ ‖ahρw‖′2
L2,−ν/2(Γh)

)
+ c17ε‖w‖2

W 1
2,ν/2(Ωh)

+
c18|h|−1

ε
‖w‖′2

L2,ν/2(∂Ωh\Γh)
≥ min(λ, a0)‖w‖2

W 1
2,ν/2(Ωh)

. (29)

By choosing ε sufficiently small and by extracting the square root of both sides
of inequality (29), we obtain

‖Ahρw‖2L2,−ν/2(Ωh)
+ ‖ahρw‖′

L2,−ν/2(Γh)
+ |h|−1‖w‖′

L2,ν/2(∂Ωh\Γh)

≥ C19‖w‖2
W 1

2,ν/2(Ωh)
.

From this inequality we get the estimate (21).
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On the basis of the lemms 3–7 we establish the estimate of the convergence
rate.

Theorem 1. Let Ahρ be the operator defined in (8); assume that conditions (4),
(5) are satisfied and vν ∈ H4

2,ν(Ω). Then the approximate Rν-generalized solution
u obtained by the difference scheme (8) converges to the Rν-generalized solution
vν to the original problem (2), (3) in the norm W 1

2,ν(Ωh) and the following
estimate holds:

‖u − [vν ]h‖W 1
2,ν(Ωh)

≤ c20|h|2−β− νβ
4 ‖vν‖H4

2,ν(Ω),

where C20 is a positive constant not depending on u, vν and h.
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Abstract. This paper deals with the calculation of linear and quadratic
functionals of approximate solutions obtained by the finite element
method. It is shown that under certain conditions the output functionals
of an approximate solution are computed with higher order of accuracy
than that of the solution itself. These abstract results are illustrated by
two numerical examples for the Poisson equation.

Keywords: Finite element method · Output functionals · Dual
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Convergence order

1 Introduction

Traditional methods for solving equations of mathematical physics, such as the
finite element method, are to find a solution in the entire domain. Meanwhile,
in a number of applications, researchers are interested not in the solution as a
whole, but only in its goal-oriented output functionals. For example, in air flow
around the body, engineers are interested in lift and drag rather than in the
solution at every point in the space [1,2]. In such cases, one would be interested
in the precision of these output functionals rather than of the entire solution.
Moreover, with appropriate triangulation in the finite element method one can
achieve a significant increase in the accuracy of the required functionals without
increasing the computational time for the problem as a whole [2,3].

It has long been noted that the finite elements of higher degrees provide
a higher order of convergence for an approximate solutions (under sufficient
smoothness of the exact solution) [4–6]. And the weaker the norm in which the
error between the exact and approximate solutions u − uh is estimated, the
higher the rate of convergence. For example, in the norms of the Sobolev spaces
Hm(Ω), the less m, the higher the attainable convergence rate

∥
∥u − uh

∥
∥

Hm(Ω)
≤ chk+1−m ‖u‖Hk+1(Ω) , 0 ≤ m ≤ k + 1,

where k is the full degree of the polynomials involved in the approximation
of the solution. When solving second-order elliptic equations, the use of linear
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 84–95, 2015.
DOI: 10.1007/978-3-319-20239-6 8
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or polylinear polynomials corresponding to k = 1 quite simply leads to this
estimate for m = 1. The Aubin-Nitsche approach (independently discovered and
described in [7–9]) leads to this estimate for m = 0.

In this paper first we prove some abstract results and then consider a two-
dimensional model problem solved by the finite element method with cubic
Hermite elements. Unexpectedly the ultrahigh order of convergence was achieved
for some output linear and quadratic functionals of an approximate solution
which does not directly followed from the accuracy order of an approximate
solution. Thus, the paper is devoted to the theoretical justification of this
beneficial effect with the help of dual problems.

2 An Abstract Results

Let V and W be the Banach spaces with norms ‖·‖V and ‖·‖W respectively and
Vh and Wh be the families of their finite-dimensional subspaces (trial and test
subspaces of the finite element method) with a discrete set of h approaching 0.

Let a(v, w) : V × W → R be a bounded bilinear form

|a(v, w)| ≤ c1 ‖v‖V ‖w‖W ∀ v ∈ V, w ∈ W (1)

with a constant c1 independent of v and u. And let f(w) : W → R be a linear
functional.

Suppose that we solve the problem:
find u ∈ V such that

a(u, ϕ) = f(ϕ) ∀ϕ ∈ W. (2)

But as it mentioned above, let the main purpose consist in the computation of
the value J(u) of an (output) linear functional J(v) : V → R.

Instead of problem (2) we solve the following one (for example, by the finite
element method):
find uh ∈ Vh such that

a(uh, ϕ) = f(ϕ) ∀ϕ ∈ Wh. (3)

Thereafter we compute the approximate value J(uh).
For a moment, suppose that the functional J(v) is bounded:

|J(v)| ≤ c2 ‖v‖V ∀ v ∈ V (4)

with a constant c2 independent of v. Then we get the estimate
∣
∣J(u) − J(uh)

∣
∣ ≤ c2

∥
∥u − uh

∥
∥

V
. (5)

We see that this estimate gives a rather modest result.
To improve this situation, consider the auxiliary dual problem:

find w ∈ W such that
a(ψ,w) = J(ψ) ∀ψ ∈ V. (6)

This problem is indeed auxiliary: we need not solve it either analytically or
numerically.
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Theorem 1. Let the problems (2), (3), and (6) with the condition (1) have
unique solutions u, uh, and w, respectively. Besides, the approximation properties
of the subspaces Vh and Wh provide the following estimate:

∥
∥u − uh

∥
∥

V
≤ c3h

r (7)

and there exists an element wh ∈ Wh such that
∥
∥w − wh

∥
∥

W
≤ c4h

s (8)

with constants c3, c4, r > 0, s > 0 independent of h. Then
∣
∣J(u) − J(uh)

∣
∣ ≤ c1c3c4h

r+s. (9)

Proof. Due to linearity
∣
∣J(u) − J(uh)

∣
∣ =

∣
∣J(u − uh)

∣
∣ . (10)

From (6) we have
J(u − uh) = a(u − uh, w). (11)

From the problems (2) and (3) it follows that a(u − uh, wh) = 0. Subtract this
from (11):

J(u − uh) = a(u − uh, w − wh). (12)

Then due to (1), (7), (8) we get
∣
∣J(u − uh)

∣
∣ ≤ c1

∥
∥u − uh

∥
∥

V

∥
∥w − wh

∥
∥

W
≤ c1c3c4h

r+s. � (13)

Thus, the estimate (9) demonstrates a higher order of accuracy which is improved
by the order of approximation in the dual problem.

Now consider the case where we need to find a quadratic functional of an
approximate solution. For this purpose we introduce a symmetric bilinear form
b(v, w) : V × V → R and try to find the value I(u) = b(u, u). Solving the
problem (3) we get an the approximate solution uh ∈ Vh for which we can
compute I(uh) = b(uh, uh). Show that under some simple conditions we again
get a higher order of accuracy like for the linear functional.

For this purpose consider the auxiliary dual problem:
find w ∈ W such that

a(ψ,w) = b(u + uh, ψ) ∀ψ ∈ V. (14)

Again this problem is indeed auxiliary and we need not solve it either analytically
or numerically.

Theorem 2. Let the problems (2), (3), and (14) with the condition (1) have
unique solutions u, uh, and w, respectively. And let the approximation properties
of subspaces Vh and Wh provide the estimates (7) and (8). Then

∣
∣I(u) − I(uh)

∣
∣ ≤ c1c3c4h

r+s. (15)
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Proof. Due to linearity in each arguments and symmetry between them we get
∣
∣I(u) − I(uh)

∣
∣ =

∣
∣b(u, u) − b(uh, uh)

∣
∣ =

∣
∣b(u + uh, u − uh)

∣
∣ . (16)

From (14) we have

b(u + uh, u − uh) = a(u − uh, w). (17)

From the problems (2) and (3) it follows that a(u − uh, wh) = 0. Subtract this
from (17):

b(u + uh, u − uh) = a(u − uh, w − wh).

Then due to (1), (7), (8) we get
∣
∣b(u + uh, u − uh)

∣
∣ ≤ c1

∥
∥u − uh

∥
∥

V

∥
∥w − wh

∥
∥

W
≤ c1c3c4h

r+s. �

Note that we did not use in the direct way the boundedness of the bilinear form

|b(v, w)| ≤ c5 ‖v‖V ‖w‖V ∀ v, w ∈ V.

From here on, constants ci are independent of functions in the right-hand side
and of h. The usage of the above inequality gives a much weaker order of accu-
racy:

∣
∣I(u) − I(uh)

∣
∣ =

∣
∣b(u + uh, u − uh)

∣
∣ ≤ c5

∥
∥u + uh

∥
∥

V

∥
∥u − uh

∥
∥

V
≤

≤ c3c5h
r
∥
∥u + uh

∥
∥

V
.

3 Formulations of Test Problems

Let Ω be the square [0, 1] × [0, 1] with the boundary Γ. For our further consid-
eration we use the usual notations for Sobolev spaces [10]. Let H0(Ω) = L2(Ω)
be the Hilbert space of functions Lebesgue measurable on Ω and equipped with
the inner product

(u, v)Ω =
∫

Ω

u v dΩ, u, v ∈ H0(Ω),

and the finite norm

‖u‖0,Ω = (u, u)1/2
Ω , u ∈ H0(Ω).

For integer positive k, Hk(Ω) is the Hilbert space of functions u ∈ H0(Ω) whose
weak derivatives up to order k inclusive belong to H0(Ω). The norm in this space
is defined by the formula

‖u‖k,Ω =

⎛

⎝
∑

0≤s+r≤k

∣
∣
∣
∣

∂s+ru

∂xs ∂yr

∣
∣
∣
∣

2

0,Ω

⎞

⎠

1/2

.
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Introduce also the functional space H1
0 (Ω) as the closure in the norm ‖·‖1,Ω of

all infinitely differentiable functions with support in Ω.
Consider the following model problem: find u(x, y) ∈ H2(Ω) such that

− Δu = f(x, y) in Ω, (18)

u = 0 on Γ. (19)

Let the solution u be smooth enough: u ∈ H4(Ω). Then f ∈ H2(Ω).
First take the output functional

J(u) :=
∫

Ω

ug dΩ (20)

with some function g ∈ H0(Ω) and show that this functional is computed by
bicubic finite elements with higher order of accuracy than a solution as a whole.

To get the weak form of this problem, multiply the equation (18) by an arbi-
trary function ϕ ∈ H1

0 (Ω) and integrate by parts with the help of the boundary
conditions (19). As a result we get the equality

∫

Ω

(
∂u

∂x

∂ϕ

∂x
+

∂u

∂y

∂ϕ

∂y

)
dΩ =

∫

Ω

fϕ dΩ. (21)

In the weak form [5,6,11] this problem is reformulated as follows:
find u ∈ H1

0 (Ω) such that

a(u, ϕ) = (f, ϕ)Ω ∀ϕ ∈ H1
0 (Ω) (22)

with the bilinear form

a(u, ϕ) =
∫

Ω

(
∂u

∂x

∂ϕ

∂x
+

∂u

∂y

∂ϕ

∂y

)
dΩ.

We construct a uniform triangulation �h by subdividing Ω into N2 closed
“rectangles” by the lines

xi = ih, i = 0, ..., N ; yj = jh, j = 0, ..., N ; where h = 1/N.

Here we shall describe a finite element by the triple (e, Pe, Σe) [6] where e is
a “reference” cell (in this paper we put e = [0, 1]2); Pe is a space of polynomials
on e; and Σe is the set of linear functionals called degrees of freedom (DoF).

Denote by Pk with positive integer k the space of all polynomials in two
variables of full degree k: ∑

0≤i+j≤k

ai,jx
iyj .

And denote by Qk the space of all polynomials of degree k for each variable:
∑

0≤i,j≤k

ai,jx
iyj .
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First consider the possible implementation of the bilinear finite elements for
solving the problem (22) by the Bubnov-Galerkin finite element method. Due to
the approximation properties of these elements we can get only

∥
∥u − uh

∥
∥
1,Ω

≤ c3h and
∥
∥w − wh

∥
∥
1,Ω

≤ c4h

with an interpolant wh. Then from Theorem 1 we obtain
∣
∣J(u) − J(uh)

∣
∣ ≤ c1c3c4h

2.

But this estimate does not provide us an improvement in comparison with
the direct analysis by Aubin-Nitsche trick.

The situation is different for finite elements of higher order. First consider
Lagrange elements on square e = [0, 1]2 (Fig. 1). Introduce the corresponding
grid of nodes

S(2) = S(1) × S(1) where S(1) = {ai : ai = i/3, i = 0, ..., 3} .

a) full element b) serendipity element

Fig. 1. Nodes of the full and incomplete “serendipity” Lagrange cubic elements.

Then the bicubic element is described by the triple (e, Q3, Σ3) where

Σ3 = {ψi,j : ψi,j(p) = p(ai, aj) ∀ i, j = 0, ..., 3 ∀ p ∈ Q3} . (23)

It has 16 degrees of freedom on one elementary cell.
The usual mapping of the two-dimensional “reference” element into an ele-

mentary cell [xi, xi+1] × [yj , yj+1] of the triangulation �h has the form
{

x′ = xi + hx,
y′ = yj + hy.

(24)

Generally speaking, the numbers of DoF are excessive to obtain the corre-
sponding approximation order. Indeed, to achieve the same order of approxima-
tion it is sufficient to take polynomials P3 on e [6] with the number of DoF equal
to 10. Therefore the incomplete Lagrange “serendipity” element is often used.
In this case, the DoF are omitted which lie strictly inside the cell e and have no
influence on interelement continuity (Fig. 1b) [5,6]. The number of DoF for the
serendipity element decreases and becomes equal 12. Since the polynomial spaces



90 V. Shaydurov and T. Xu

satisfy the condition Q3′ ⊃ P3, the serendipity element provides the same order
of approximation as the full Lagrange element and is more effective because of
less number of DoF.

Now consider a simple Hermite bicubic element [12] (Fig. 2a). The number of
DoF and the space of polynomials of this element coincide with those of the cubic
serendipity element. Therefore, it may seem that they have identical properties.
In fact, this is not the case! The Hermite element appears to be more efficient.
To show this, we compare the global number of DoF for the interpolation of a
smooth function u by these elements on the triangulation �h of the rectangle Ω.

a) the simple bicubic element b) the Bogner-Fox-Shmit element

Fig. 2. The cubic Hermite elements. A circle means that DoF involve both first-order
derivatives; a double arrow means that DoF involve the second-order mixed derivative.

The global number of DoF of the interpolant uh
I on the triangulation �h

is not proportional to the number of DoF on an element. A part of DoF for
different elements coincides along interelement boundaries. Therefore, as the
local characteristics of the global number of DoF we take the number Mof DoF
for the element on the half-closed set [0, 1)2 (Fig. 3). When mapping the element
on the cells of �h, these DoF are not repeated and exhaust all nodes inside Ω.
Their total number is MN2.

a) the full element b) the serendipity element

Fig. 3. Nodes of the Lagrange elements on the half-closed set [0, 1)2.

An open question remains on the number of nodes on the boundary Γ. In
the Dirichlet problem, these DoF are excessive, but they are necessary for the
Neumann problem. In both cases their number is of O(N). Thus, MN2 is the
principal term of the asymptotic number of unknowns and equations in the finite
element method, e.g., for a second-order elliptic equation.
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The index M for the full Lagrange, serendipity, and Hermite bicubic elements
is 9, 5, and 3 (Fig. 4a), respectively. Thus, the number of unknowns and equations
in the finite element method for the Hermite element is approximately 3 times
less than that for the full Lagrange element and 5/3 times less than that for the
serendipity element. Such is the case despite the fact that they have the same
order of approximation.

a) simple bicubic element b) Bogner-Fox- Shmit element

Fig. 4. Nodes of the Hermite elements on the half-closed set [0, 1)2.

The Bogner-Fox-Schmit element [12–14] is a more complicated Hermite bicu-
bic finite element. It is defined by the triple (Fig. 2b)

(e, Q3, Σ3′) where Σ3′ = {ψs,i,j (s = 0, 1, 2, 3) : ψ0,i,j(p) = p(ai, aj),

ψ1,i,j(p) = ∂p/∂x(ai, aj), ψ2,i,j(p) = ∂p/∂y(ai, aj), (25)

ψ3,i,j(p) = ∂2p/∂x∂y(ai, aj) ∀ i, j = 0, 3
}

.

For the triangulation �h, it provides continuity of an approximation uh as well
as of its first-order derivatives [12–14]. Thus, this element belongs to H2(Ω) [11].
At the same time, it has the index M = 4 (Fig. 4b) which is less than the indices
M of the Lagrange full and serendipity elements.

Now consider the implementation of any cubic finite elements for solving
the problem (22) by the Bubnov-Galerkin finite element method. Due to the
approximation properties of these elements (under sufficient smoothness) we
can get ∥

∥u − uh
∥
∥
1,Ω

≤ c3h
3 and

∥
∥w − wh

∥
∥
1,Ω

≤ c4h
3

for an interpolant wh. Then from Theorem 1 we obtain
∣
∣J(u) − J(uh)

∣
∣ ≤ c1c3c4h

6. (26)

4 Numerical Results

Now consider the concrete problem (18)–(19) with the right-hand side

f(x, y) = 16(1 − x)(1 − y)(x2 + y2) sin(4xy) + 8(x − x2 + y − y2) cos(4xy). (27)
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This problem has the exact solution

u(x, y) = sin(4xy)(1 − x)(1 − y).

And assume that we need to compute the output functional

J(u) :=
∫

Ω

u dΩ. (28)

We solve the problem (22) by the finite element method with the help of the
Bogner-Fox-Schmit finite element. And then calculate (28) for an approximate
solution uh :

J(uh) :=
∫

Ω

uh dΩ. (29)

We perform these computations for h = 1/8, 1/16, 1/32 and determine the
error εh

1 =
∣
∣J(u) − J(uh)

∣
∣ . We demonstrate this error in Table 1 together with

its decreasing exponent dh
1 = ln2

∣
∣ε2h

1 /εh
1

∣
∣ .

Table 1. The approximation errors and their decreasing exponent.

i h εh1 =
∣∣J(u) − J(uh)

∣∣ dh
1 εh2 =

∣∣I(u) − I(uh)
∣∣ dh

2

1 1/8 5.81 × 10−9 − 3.92 × 10−9 −
2 1/16 9.64 × 10−11 5.91 6.94 × 10−11 5.81

3 1/32 1.53 × 10−12 5.97 1.15 × 10−12 5.91

From this Table we can see that εh
1 =

∣
∣J(u) − J(uh)

∣
∣ tends to zero asymptotically

as O(h6). But this does not follow from Theorem 1 in the direct way. Indeed, in
this case the problem (6) has the form

−Δw = 1 in Ω,
w = 0 on Γ.

(30)

Despite the smoothness of the right-hand side the solution w does not belong to
space H3(Ω) because of singularities in four angles of the rectangle [15].

There are two ways to avoid these singularities. One of them is in special
condensation of mesh in the vicinity of singularities. This is a really productive
way in some cases [3]. But in our situation we got the sixth order without any
condensation of mesh. This means that the justification must be finer. It may
be transformed in different ways. One of them consists in the introduction of
weighted norms in spaces ‖·‖V and ‖·‖W . The reasoning is very tedious. We
simplify it by some transformation of the theorem proof. Take the right-hand
side of equality (12) and transform it in following way:

a(u − uh, w − wh) =
∫

Ω

−Δ(w − wh)(u − uh) dΩ. (31)
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Introduce the weight function

ρ(x, y) = x(1 − x)y(1 − y)

and use it in the following way:
∣
∣
∣
∣

∫

Ω

−ρΔ(w − wh)ρ−1(u − uh) dΩ

∣
∣
∣
∣ ≤ ∥

∥ρΔ(w − wh)
∥
∥
0,Ω

∥
∥ρ−1(u − uh)

∥
∥
0,Ω

.

The first norm becomes small enough because of weight degenerating in the
vicinity of each angle: ∥

∥ρΔ(w − wh)
∥
∥
0,Ω

≤ ch2.

And the second norm becomes small enough because of the Aubin-Nitsche trick
and degenerating both functions in the vicinity of the boundary:

∥
∥ρ−1(u − uh)

∥
∥
0,Ω

≤ ch4.

Therefore ∣
∣J(u − uh)

∣
∣ =

∣
∣a(u − uh, w − wh)

∣
∣ ≤ ch6.

This estimate indeed is consistent with numerical results.
For the quadratic functional the situation with Theorem2 is simpler. Let we

need to compute the output functional

I(u) :=
∫

Ω

u2 dΩ = b(u, u) where b(v, w) =
∫

Ω

vw dΩ. (32)

Let we solved the problem (22) by the finite element method with the help of the
Bogner-Fox-Schmit finite element again. And then calculate the required value
(32) for an approximate solution uh :

I(uh) :=
∫

Ω

(uh)2 dΩ. (33)

We perform there computations for h = 1/8, 1/16, 1/32 and determine the
error εh

2 =
∣
∣I(u) − I(uh)

∣
∣ . This error is demonstrated in Table 1 together with

its decreasing exponent dh
2 = ln2

∣
∣ε2h

2 /εh
2

∣
∣ . From this Table we can see that

εh
2 =

∣
∣I(u) − I(uh)

∣
∣ tends to zero asymptotically as O(h6). Moreover, this follows

directly from Theorem 2. Indeed, the function w is a solution of the problem

−Δw = u + uh in Ω,
w = 0 on Γ.

(34)

First, this time the right-hand side of the problem belongs to H2(Ω) due to the
application of the Bogner-Fox-Schmit element. Second, it equals zero in each
angle of the rectangle Ω. These properties ensure that w ∈ H4(Ω) [15] and

∥
∥w − wh

∥
∥
1,Ω

≤ c4h
3.

Function u also belongs to H4(Ω) and provides the estimate [6]
∥
∥u − uh

∥
∥
1,Ω

≤ c4h
3.

Thus, Theorem 2 indeed guarantees the sixth order of accuracy.
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5 Resume

By virtue of the dual problems, for some linear and quadratic functionals we
prove convergence of higher order than follows from the standard theory of the
finite element method. Note that this effect becomes possible for more compli-
cated (for example, cubic) finite elements than linear ones. For linear elements
on triangles and for bilinear ones on quadrangles this approach does not give
higher order of accuracy than it follows from the usual implementation of the
Aubin-Nitsche trick.

Moreover, once again we remind that Hermite finite elements are more
effective in comparison with the Lagrange ones of the same degrees of poly-
nomials due to a smaller number of unknowns and of discrete equations in the
finite element method. Besides, the Bogner-Fox-Schmit finite element is more
effective than the Lagrange cubic elements and belongs to H2(Ω) which simpli-
fies the justification of higher order convergence and gives some useful possibil-
ities like direct computation of a residual for an approximate solution uh. This
provides necessary and visual information for condensation of a triangulation.
Usually, their use is limited to domains consisting of rectangles. But the com-
plementing of these elements by suitable triangular elements near the boundary
[16] extends the possible range of their application.

This work is supported by Project 14-11-00147 of Russian Scientific
Foundation.
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Abstract. This work deals with the problem of choosing a time step for
the numerical solution of boundary value problems for parabolic equa-
tions. The problem solution is derived using the fully implicit scheme,
whereas a time step is selected via explicit calculations. Using the explicit
scheme, we calculate the solution at a new time level. We employ this
solution in order to obtain the solution at the previous time level (the
implicit scheme, explicit calculations). This solution should be close to
the solution of our problem at this time level with a prescribed accuracy.
Such an algorithm leads to explicit formulas for the calculation of the
time step and takes into account both the dynamics of the problem solu-
tion and changes in coefficients of the equation and in its right-hand side.

1 Introduction

The problem of the control over a time step is relatively well resolved for the
numerically solving Cauchy problem for systems of differential equations [1–3].
The basic approach involves the following stages. First, we perform additional
calculations in order to estimate the error of the approximate solution at a new
time level. Further, a time step is estimated using the theoretical asymptotic
dependence of accuracy on a time step. After that we decide is it necessary to
correct the time step and to repeat calculations.

Additional calculations for estimating the error of the approximate solution
may be performed in a different way. In particular, it is possible to obtain an
approximate solution using two different schemes that have the same theoretical
order of accuracy. The most famous example of this strategy involves the solution
of the problem on a separate time interval using a preliminary step (the first
solution) and the step reduced by half (the second solution). In numerically
solving the Cauchy problem for systems of ordinary differential equations, there
are also applied nested methods, where two approximate solutions of different
orders of accuracy are compared.

In this paper, we consider an a priori selection of a time step for the approx-
imate solution of boundary value problems (BVPs) for parabolic equations. To
obtain the solution at a new time level, the backward Euler scheme is employed.
The time step at the new time level is explicitly calculated using two previous
time levels and takes into account changes in the equation coefficients and in its
right-hand side.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 96–103, 2015.
DOI: 10.1007/978-3-319-20239-6 9
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2 Differential Problem

Let us consider the Cauchy problem for the linear equation

B(t)
du

dt
+ A(t)u = f(t), 0 < t ≤ T, (1)

supplemented with the initial condition

u(0) = u0. (2)

The problem is investigated in a finite-dimensional Hilbert space H. Assume
that in H, we have

A(t) ≥ 0, B(t) = B∗(t) ≥ δE, δ > 0,

where E is the unit (identity) operator.
We present an a priori estimate for the solution of the problem (1), (2).

Assume that
d

dt
B(t) ≤ βB(t). (3)

Multiply equation (1) scalarly in H by u. Due to the non-negativity of the
operator A, we have

(B(t)u, u) ≤ (f, u).

In view of (
B(t)

du

dt
, u

)
=

1
2

d

dt
(B(t)u, u) − 1

2

(
d

dt
B(t)u, u

)
,

we get
1
2

d

dt
(B(t)u, u) ≤ 1

2

(
d

dt
B(t)u, u

)
+ (f, u).

Taking into account (1) and

(f, u) ≤ ‖u‖B ‖f‖B−1,

we obtain the inequality

d

dt
‖u‖B ≤ β

2
‖u‖B + ‖f‖B−1.

From this inequality, we have (Gronwall’s lemma) the following estimate for
stability with respect for the initial data and the right-hand side:

‖u(t)‖B ≤ exp
(

β

2
t

)
‖u0‖B +

∫ t

0

exp
(

β

2
(t − θ)

)
‖f(θ)‖B−1dθ.

For the right-hand side, we apply a simpler estimate

‖f(t)‖B−1 ≤ 1
δ
‖f(t)‖,
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which results in

‖u(t)‖B ≤ exp
(

β

2
t

)
‖u0‖B +

1
δ

∫ t

0

exp
(

β

2
(t − θ)

)
‖f(θ)‖dθ. (4)

The estimate (4) serves us as a reference point for constructing discretization
in time.

The problem (1), (2) can be associated with the BVP for the parabolic equa-
tion. In this problem, an unknown function u(x, t) satisfies the equation

c(x, t)
∂u

∂t
−

m∑

α=1

∂

∂xα

(
k(x, t)

∂u

∂xα

)
+ d(x, t)u = f(x, t), x ∈ Ω, 0 < t ≤ T,

where k ≤ k(x) ≤ k, x ∈ Ω, k > 0, c(x, t) ≥ c0 > 0, d(x, t) ≥ 0. The equation
is complemented by the Dirichlet boundary conditions

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t ≤ T,

and the initial condition

u(x, 0) = u0(x), x ∈ Ω.

The problem (1), (2) results from finite difference, finite volume or finite element
approximations (lumped masses scheme [4–6]) for numerically solving BVPs for
a parabolic equation of second order.

3 Time-Stepping Technique

To solve numerically this time-dependent problem, we introduce a non-uniform
grid in time:

t0 = 0, tn+1 = tn + τn+1, n = 0, 1, ..., N − 1, tN = T.

We will employ notation fn = f(tn). For the problem (1), (2), we apply the fully
implicit scheme, where the transition from the current time level to the next one
is performed as follows:

Bn+1
yn+1 − yn

τn+1
+ An+1yn+1 = fn+1, n = 0, 1, ..., N − 1, (5)

starting from the initial condition

y0 = u0. (6)

Let us obtain a discrete analogue of the estimate (4). At the discrete level,
we associate the condition (3) with the following Lipschitz-continuity condition:

((Bn+1 − Bn)y, y) ≤ τn+1β(Bny, y). (7)
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Multiplying (5) by τn+1yn+1, under the restriction An+1 ≥ 0, we get

(Bn+1yn+1, yn+1) ≤ (Bn+1yn, yn+1) + τn+1(fn+1, yn+1). (8)

For the second term in the right-hand side, we use the estimates

(fn+1, yn+1) ≤ ‖fn+1‖B−1
n+1

‖yn+1‖Bn+1 , ‖fn+1‖B−1
n+1

≤ 1
δ
‖fn+1‖.

For the first term in the right-hand side of (8), we have

(Bn+1yn, yn+1) ≤ ‖yn‖Bn+1‖yn+1‖Bn+1 .

In view of (8), we arrive at

‖yn‖2Bn+1
= (Bn+1yn, yn)

= (Bnyn, yn) + ((Bn+1 − Bn)yn, yn) ≤ (1 + βτn+1)‖yn‖2Bn
.

Thus, from (8), we arrive at the level-wise estimate

‖yn+1‖Bn+1 ≤ �‖yn‖Bn
+

τn+1

δ
‖fn+1‖, � = 1 +

β

2
τn+1.

Thus, we obtain the discrete analog of the estimate (4):

‖yn+1‖Bn+1 ≤ �n+1‖u0‖B0 +
1
δ

n∑

k=0

�n−kτk+1‖fk+1‖ (9)

corresponding to the problem (5), (6).
The a priori estimate (9) is used to study the convergence of the approximate

solution to the exact one. For the error zn = yn−un of the approximate solution,
we have the problem

Bn+1
zn+1 − zn

τn+1
+ An+1zn+1 = ψn+1, n = 0, 1, ..., N − 1,

z0 = 0.

Here ψn+1 stands for the truncation error:

ψn+1 = fn+1 − Bn+1
un+1 − un

τn+1
+ An+1un+1. (10)

Similarly to (9), we get the estimate for error:

‖zn+1‖Bn+1 ≤ 1
δ

n∑

k=0

�n−kτk+1‖ψk+1‖.

Therefore, to control the error, we can employ the summarized error τn+1ε over
the interval tn ≤ t ≤ tn+1. In this case, a value ε defines the same level of the
error over the entire interval of integration.
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4 Algorithm for the Estimation of a Time Step

If we will be able to calculate the truncation error ψn+1, then it will be possible
to get a posteriori estimate for the error. Comparing ‖ψn+1‖ with the prescribed
error level δ, this makes possible to evaluate the quality of the choice of the time
step τn+1. Namely, if ‖ψn+1‖ is much larger (smaller) than δ, then the time step
is taken too large (small), and if ‖ψn+1‖ is close to δ, then this time step is
optimal. Thus, we have

τn+1 : ‖ψn+1‖ ≈ δ. (11)

The problem is that we cannot evaluate the truncation error, since it is deter-
mined using the exact solution that is unknown. Because of this, we must focus
on some estimates for the truncation error that guarantee the fulfilment of (11).

The general approach to the adaptive choice of a time step for solving
unsteady problems consists of the following key elements: begin itemize item a
selection of a predicted time step via an analysis of the solution at the previous
time levels; item conduction of calculations with the predicted time step; item a
study on accuracy for the obtained approximate solution and the possible recal-
culation with a smaller time step, if necessary. end itemize This general strategy
is usually implemented (see, e.g., [1–3]) employing the asymptotic analysis for
the error of the approximate solution in the assumption that the error does not
vary essentially in time. The main features of our approach to selecting the time
step proposed in [7] are presented below.

In our case, the predicted time step is constant. To estimate the time step
at the new time level (in the transition from the time level tn to the time level
tn+1)), we focus on the previous time step τn = tn − tn−1. First of all, we are
interested in the possibility of using a larger time step at new time level. In view
of this, we define the predicted time step as follows :

τ̃n+1 = γτn, (12)

where γ is a numerical parameter. The factor γ for the maximum inctreasing the
time step is defined, for example, to be equal to 1.25 or 1.5. The problem para-
meters (the coefficients of the equation and the right-hand side) are estimated
over the interval [tn, tn + τ̃n+1]. In estimating the time step, we should not miss
the time moment, when changes in the parameters of the problem are observed.

The choice of the time step under the restriction τn+1 ≤ τ̃n+1 is performed
using calculation formulas based on the implicit error estimate at the new time
level. The approximate solution at the new time level is evaluated by the implicit
scheme (5), whereas estimating the time step is carried out via the explicit
scheme. Both the implicit and explicit schemes have the same order of approx-
imation and they are considered with the same initial conditions (at t = tn).
We perform a small number (one or two) of time steps, and therefore, possible
computational instability for the explicit scheme has no time to appear. Because
of this, we can expect that such approximate solutions are close to each other.
On the basis of this closeness, we evaluate the error of the approximate solution
and obtain the calculation formula for the time step.
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Among possible variants for the correction of the time step, we consider the
following technique. The step τn+1 is selected from the conditions:

Forward Step. Using the explicit scheme, we calculate the solution vn+1 at
the time level tn+1;

Backward Step. From the obtained vn+1, applying the implicit scheme, we
determine vn at the time level tn (explicit calculations);

Step Selecting. The step τn+1 is evaluated via closeness between vn and yn.

In fact, we carry out the back analysis of the error of the approximate solution
over the interval tn ≤ t ≤ tn+1 using two schemes (explicit and implicit) of the
same accuracy.

Let us present the formulas for selecting a time step. The solution vn+1 is
determined from the equation

Bn
vn+1 − yn

τn+1
+ Anyn = fn. (13)

For vn, we have

Bn+1
vn+1 − vn

τn+1
+ An+1vn+1 = fn+1. (14)

Note that for explicit schemes, we must calculate B−1
n v. We believe that this

problem is much easier than the evaluation of A−1
n v.

The equations (13), (14) may be rewritten in the form

vn+1 − yn

τn+1
+ Ãnyn = f̃n, (15)

vn+1 − vn

τn+1
+ Ãn+1vn+1 = f̃n+1, (16)

where
Ãn = B−1

n An, f̃n = B−1
n fn.

From (15), (16), we immediately get

vn − yn = τn+1(Ãn+1 − Ãn)yn − τn+1(f̃n+1 − f̃n) (17)

+ τ2
n+1Ãn+1(f̃n − Ãnyn).

The first two terms are associated with the time derivative applied to the
problem operator and to the right-hand side. To evaluate them approximately,
it seems reasonable to use the time step from the previous time level. But this
may be inconvenient to implement.

For instance, we have

τn+1(f̃n+1 − f̃n) = τ2
n+1

f̃n+1 − f̃n

τn+1
,

and therefore we have to evaluate the difference derivative of the right-hand side
for tn ≤ t ≤ tn+1. The problem is that the derivation of such estimates involves
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the unknown value tn+1. The simplest approach is to evaluate this derivative
using the previous time step:

f̃n+1 − f̃n

τn+1
≈ f̃(tn + τn) − f̃n

τn
.

But in this case, if τn+1 > τn, then we cannot detect significant changes in the
right-hand side for tn + τn < t ≤ tn + τn+1.

It seems natural to evaluate changes in the problem operator and the right-
hand side over the whole time interval [tn, tn+ τ̃n+1]. Under the assumption (12),
we can estimate the time derivative of the right-hand side, putting

f̃n+1 − f̃n

τn+1
≈ f̃(tn + γτn) − f̃n

γτn
.

Therefore

τn+1(f̃n+1 − f̃n) ≈ τ2
n+1

γτn
(f̃(tn + γτn) − f̃n),

τn+1(Ãn+1 − Ãn)yn ≈ τ2
n+1

γτn
(Ã(tn + γτn) − Ãn)yn.

For the last term in the right-hand side of (17), in view of (5), we have

τ2
n+1Ãn+1(f̃n − Ãnyn) =

τ2
n+1

τn
Ãn+1(yn − yn−1).

With accuracy up to O(τ3
n+1), we put

τ2
n+1Ãn+1(f̃n − Ãnyn) ≈ τ2

n+1

τn
Ã(tn + γτn)(yn − yn−1).

With this in mind, the equality (17) is replaced by the approximate equality:

vn − yn ≈ τ2
n+1

τn

(
1
γ

(Ã(tn + γτn) − Ãn)yn − 1
γ

(f̃(tn + γτn) − f̃n)

+ Ã(tn + γτn)(yn − yn−1)
)
. (18)

The value of vn − yn we associate with the solution error over the interval
tn ≤ t ≤ tn+1. Because of this, we set

‖vn − yn‖ ≤ τn+1ε. (19)

From (18), we have

‖vn − yn‖ � τ2
n+1

τn

(
1
γ

‖Ã(tn + γτn) − Ãn)yn‖

+
1
γ

‖f̃(tn + γτn) − f̃n‖ + ‖Ã(tn + γτn)(yn − yn−1)‖
)
. (20)
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For a predicted time step, we also require that it will be not too small.
Because of this, we put

τn+1 ≥ τ0, (21)

where τ0 is a specified minimum time step.
In view of (21) and τn+1 ≤ τ̃n+1 from (18), we obtain the following formula

for calculating the time step:

τn+1 = max {τ0,min{γ, γn+1}τn},

γn+1 = ε

(
1
γ

‖(Ã(tn + γτn) − Ãn)yn‖

+
1
γ

‖f̃(tn + γτn) − f̃n‖ + ‖Ã(tn + γτn)(yn − yn−1)‖
)−1

.

This formula for selecting a time step reflects clearly (see the denominator in the
expression for γn+1) corrective actions, which are related to the time-dependence
of the problem operator (the first part) and the right-hand side (the second part)
as well as to the time-variation of the solution itself (the third part).
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Abstract. This paper provides a brief survey on some of the recent
numerical techniques and schemes for solving Hamilton-Jacobi-Bellman
equations arising in pricing various options. These include optimization
methods in both infinite and finite dimensions and discretization schemes
for nonlinear parabolic PDEs.

1 Introduction

Financial derivative securities consist of three major parts: Forwards and Future
(obligation to buy or sell), Options (right to buy or sell) and Swaps (simultaneous
selling and purchasing). The first two form the basis of derivative securities. It
is known that an option is a contract which gives to its owner the right, not
obligation, to buy (call) or sell (put) a fixed quantity of assets of a specified
stock at a fixed price called exercise/strike price on or before a given date (expiry
date). There are two major types of options – European options which can be
exercised only on the expiry date and American options that are exercisable on
or before the expiry date.

An option has both intrinsic and time values, and can be traded on a sec-
ondary financial market even though it may not be exercisable at the time point.
How to accurately price options has long been a hot topic for mathematicians
and financial engineers. It was shown by Black and Scholes [7] that the value of
a European option on a stock satisfies a second order parabolic partial differen-
tial equation with respect to the time t and the underlying asset price S in a
complete market with constant volatility and interest rate and without transac-
tion costs on trading the option and its underlying stock. This equation is now
known as the Black-Scholes (BS) equation. A more comprehensive discussion of
this model can be found in [32]. The BS equation can be solved exactly when
the coefficients are constants. However, for problems of practical importance,
numerical solutions to them are normally sought. Therefore, efficient and accu-
rate numerical algorithms are essential for solving such a problem accurately.

The value of an American call option is usually the same as that of its
European counterpart. However, the value V (S, t) of an American put option on
an asset/stock whose price S follows a geometric Brownian motion is governed
by the following linear complementarity problem (LCP) (cf., e.g., [45,47])
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 104–116, 2015.
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LV := −∂V

∂t
− 1

2
σ2(t)S2 ∂2V

∂S2
− r(t)S

∂V

∂S
+ r(t)V ≥ 0, (1)

V − V ∗(S) ≥ 0, LV · (V − V ∗(S)) = 0 (2)

for (S, t) ∈ Ω := I × [0, T ) almost everywhere (a.e.) with the payoff/terminal
and boundary conditions

V (S, T ) = V ∗(S), V (0, t) = V ∗(0), V (Smax, t) = 0, (3)

where I = (0, Smax) ⊂ R with Smax a positive constant usually much greater
than the strike price K of the option, σ(t) denotes the volatility of the asset, r(t)
the interest rate, and V ∗(S) is the final or payoff condition of the option. There
are various payoff conditions depending types of options [47]. For example the
payoff function for a vanilla American put is

V ∗(S) = max{K − S, 0}, S ∈ I.

The LCP (1)–(2) can also be written as

min{LV (S, t), V (S, t) − V ∗(S)} = 0 (S, t) ∈ Ω (4)

with (3). This equation is called a Hamilton-Jacobi-Bellman (HJB) equation
which is usually unsolvable analytically.

When selling and buying a put whose underlying stock incurs transaction
costs, the price of the put is no longer governed by the LCP or (4). Instead, a
Nonlineaar Complementarity Problem (NCP) needs to be solved to determine
the value of such an option. More specifically, the NCP is of the same form as
(1)–(2) with σ(t) replaced with σ(S, t, VS , VSS). Various models for the nonlinear
volatility have been proposed, for example [4,8,19,23,24]. A notable one is the
following nonlinear volatility model proposed in [4]:

σ2 (t, S, VSS) = σ2
0

(
1 + Ψ

(
er(T−t)a2S2VSS

))
(5)

where σ0 is a constant, a = κ
√

νN with κ being the transaction cost parameter,
ν a risk aversion factor and N the number of options to be sold. In the rest of
this paper, we simply refer to a as the transaction parameter. The function Ψ in
(5) is the solution to the following nonlinear initial value problem

Ψ ′(z) =
Ψ(z) + 1

2
√

zΨ(z) − z
for z �= 0 and Ψ(0) = 0

to which an implicit exact solution is derived in [13].
HJB equations also arise in determination of the reservation price of a Euro-

pean or American option under proportional transaction costs [15–17] and valu-
ation of American options under a Levy process [9,10], with uncertain valotility
[31,48], or with stochastic valotility [18,53], just to name a few. All of these
problems are of the form:

min{L1(V ) − f1, L2V − f2, ..., LmV − fm} = 0 (6)
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in a given solution domain with a set of boundary and terminal/payoff condi-
tions, where m is a positive integer and, usually, L1 is a 2nd-order nonlinear
differential operator and Li and fi are respectively a linear 1st- or 0th-order
differential operator and a given function for each of i = 2, ...,m.

Because of an optimization process involved and non-smooth payoff condi-
tions, (6) in general does not have any classic (twice continuously differentiable)
solutions. Instead, it has the so-called viscosity solutions [14]. Uniqueness of the
solution to (6) can usually be proved. For some simple cases, it is also possi-
ble to prove the unique solvability of (6) using a conventional technique. For
instance, if we introduce a weighted Sobolev space H1

0,w(I) and a convex set
K = {v ∈ H1

0,w(I) : v ≤ u∗} with u∗ = eβt(V0 −V ∗), where V0 = (1−S/Smax)K
and β = sup0<t<T σ2(t), the LCP (1) and (2) can be cast into the following
Variational Inequality (VI) (cf. [45] for details).

Problem 1. Find u(t) ∈ K such that, for all v ∈ K,
(

−∂u(t)
∂t

, v − u(t)
)

+ A(u(t), v − u(t); t) ≥ (f(t), v − u(t)) (7)

a.e. in (0, T ), where A(·, ·) is a bilinear form defined by

A(u, v; t) =
(
aS2u′ + bSu, v′) + (cu, v), u, v ∈ H1

0,w(I) (8)

with (·, ·) denoting the usual inner product, u = −eβt(V − V0), f(t) = eβtLV0,
a = σ2/2, b = r − σ2, and c = 2r + β − σ2.

For this VI we can show that the bilinear form A(·, ·) is coercive and Lipschitz
continuous, and thus Problem 1 has a unique solution by a standard argument.

2 The Penalty Method in Infinite Dimensions

The HJB Eq. (6), particularly (7), may be viewed as a constrained optimization
problem and it can be solved using an optimization technique. A popular choice is
a penalty approach in which a constrained optimization problem is approximated
by an unconstrained one with a penalty term in the objective function. Since
the resulting optimization problem is unconstrained, it is easier to solve than the
original. The linear penalty method for HJB equations was discussed in detail in
[6] and its extension to arbitrary power penalty has been proposed and analyzed
in [42,45,52] for various HJB equations.

Let us demonstrate the power penalty method using (1) and (2) which can
be rewritten in the following standard form

Lu(x, t) :=
∂u

∂t
+

∂

∂S

[
a(t)S2 ∂u

∂S
+ b(t)Su

]
− c(t)u ≤ f(S, t), (9)

u(S, t) − u∗(S, t) ≤ 0, (Lu(S, t) − f(S, t)) · (u(S, t) − u∗(S, t)) = 0, (10)

in Ω with the boundary and terminal conditions

uλ(0, t) = 0 = uλ(X, t) and uλ(S, T ) = u∗(S, T ), (11)
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where the coefficients functions and given data are defined in Problem 1. In
fact, (7) is the variational form of this LCP, and (9)–(10) can be viewed as the
optimality conditions of a constrained functional optimization problem with the
constraint in (10). (We will show this in finite dimensions later.) This motivates
us to devise the following penalty equation

Luλ(S, t) + λ[uλ(S, t) − u∗(S, t)]1/k
+ = f(S, t), (S, t) ∈ Ω (12)

satisfying (11), where λ > 0 and k > 0 are parameters and [z]+ = max{z, 0}
for any z. In (12) the power penalty term λ[uλ(S, t) − u∗(S, t)]1/k

+ penalizes the
positive part of uλ − u∗.

Equation (12) is a nonlinear parabolic PDE even when k = 1 and the varia-
tional problem corresponding to (12) is

Problem 2. Find uλ(t) ∈ H1
0,w(I) such that, for all v ∈ H1

0,w(I),

(
−∂uλ(t)

∂t
, v

)
+ A(uλ(t), v; t) + λ

(
[uλ(t) − u∗(t)]1/k

+ , v
)

= (f(t), v) (13)

a.e. in (0, T ), where A is the bilinear form defined in (8).

The unique solvability of Problem 2 can be proved by showing that the mapping
on the LHS of (13) is strongly monotone and continuous [45].

The solution to Problem 2 is in general not equal to that of Problem 1, but
we expect that when λ → ∞, uλ → u at some rate depending on λ and k.
A convergence theory for this penalty method is established in [6] for k = 1 and
in [45] for any k > 0, which requires the introduction of some function spaces
and norms.

For any Hilbert space H(I), let Lp(0, T ;H(I)) denote the space defined by

Lp(0, T ;H(I)) = {v(·, t) : v(·, t) ∈ H(I) a.e. in (0, T ); ||v(·, t)||H ∈ Lp((0, T ))},

where 1 ≤ p ≤ ∞ and || · ||H denotes the natural norm on H(I). The space

Lp(0, T ;H(I)) is equipped with the norm ||v||Lp(0,T ;H(I)) =
(∫ T

0
||v(·, t)||pHdt

)1/p

.

Clearly, Lp(0, T ;Lp(I)) = Lp(I × (0, T )) = Lp(Ω). Using this space, it is possible
to establish the following theorem.

Theorem 1. Let u and uλ be the solutions to Problems 1 and 2, respectively.
If uλ ∈ L1+1/k(Ω) and ∂u

∂t ∈ Lk+1(Ω), then there exists a constant C > 0,
independent of u, uλ and λ, such that

||u − uλ||L∞(0,T ;L2(I)) + ||u − uλ||L2(0,T ;H1
0,w(I)) ≤ C

λk/2
, (14)

where k is the parameter used in (13).

Theorem 1 tells us that uλ → u at the rate of O(λ−k/2) as λ or/and k goes to ∞.
Similar results for Nonlinear Complementarity Problems (NCPs) and bounded
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NCPs are given in [42,52]. The idea of the above penalty approach can also be
used for solving (6). More specifically, (6) can be approximated by the following
penalty equation

L1(Vλ) −
m∑

i=1

λi[LiVλ − fi]
1/k
− = f1, (15)

where [z]− = max{0,−z} for any z, λ = (λ1, ..., λm)� is a set of penalty para-
meters and k > 0 is a power parameter. (Clearly, we may use different k’s for
different penalty terms in the above equation.) It would be thought that, as
established above for Problem 2, (15) is uniquely solvable and its solution con-
verges exponentially to that of (6). However, for some cases we are only able
to prove that (15) has a unique viscosity solution and the solution converges to
that of (6), but unable to establish the rates of convergence. For example, the
penalty method for the HJB equations arising from determining the reservation
prices of European and American options with transaction costs [28–30] in which
the constraints contain derivatives of the solution. The main reason for this is
that when the penalty terms contain differential operators, we may not be able
to prove the strong monotonicity of the operator on the LHS of (15).

We also comment that though the solution to the penalty equation converges
to that of the HJB equation, it does not mean that the constraints are strictly
satisfied for any fixed (λ, k). Instead, they are satisfied up to an approximation
error. Thus, the above method is sometimes called an exterior penalty method. It
is possible to construct an interior penalty method such as that proposed in [35]
and analyzed in [49] in which an approximation always satisfies the constraints.

3 Discretization Schemes

LCPs and HJB equations in infinite dimensions such as (6, 9, 10 and 13) can
hardly be solved exactly unless for some trivial cases. Therefore, a numerical
scheme is needed to for the discretization of such a system so that the discretized
system can be solved by linear/nonlinear algebraic system solver in finite dimen-
sions. Various discretization schemes can be used for the PDEs depending on the
problem in question. Popular spatial discretization schemes for (12) are

– upwind finite difference schemes [11,25,26,29,30,37],
– fitted finite volume method [3,12,22,36,39,46,50], and
– finite element methods [1,2,38].

In designing a descretization scheme for (12), the main requirements are as
follows.

1. The scheme should be unconditionally or conditionally stable and the solution
to the discretized system should converge to the viscosity solution to (13).

2. The solution to the discretized system should be non-negative irrespectively
of choices of mesh or other parameters, as by nature prices are non-negative.

3. The finite dimensional linear/nonlinear system can be solved efficiently by an
advanced, usually iterative, solver.
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Item 2 is guaranteed if the discretiztion is monotone or the system matrix of
the discrtized equation is an M -matrix in the linear case. In this case, a discrete
maximum principle is satisfied by the scheme and so the solution to the discrtized
system attains its extrema at the boundary of the solution domain.

Note that the BS operator L in (12) becomes degenerate as S → 0+. Math-
ematically, the weak solution to (12) cannot take a trace (boundary condition)
at S = 0. This is why we needed the introduction of a weighted Sobolev space
H1

0,w(I) in the previous section. Also, because of this difficulty, one usually needs
to truncate the spatial domain I into (Smin, Smax) for a small positive number
Smin < Smax if a conventional scheme is used to discretize (12). Equivalently,
a common practice is to use x = ln S to transform I into −∞ < x < ln Smax

and solve the transformed problem on a finite interval. A fitted finite volume is
proposed in [39] for solving the BS equation governing European options without
this domain transformation or truncation. The scheme has the merit that it is
unconditionally stable, has the first-order convergence rate in mesh parameters
and yields a system of which the coefficient matrix is an M -matrix. We now
demonstrate this scheme using (12).

Let I be divided into N sub-intervals Ii := (Si, Si+1), i = 0, 1, .., N − 1
with 0 = S0 < S1 < · · · < SN = Smax. For each i = 0, 1, ..., N − 1, we put
hi = Si+1 − Si and h = max0≤i≤N−1 hi. Dual to this mesh, we define another
mesh with nodes Si−1/2 = (Si−1 + Si)/2 for i = 1, 2, ..., N , S−1/2 = 0 and
SN+1/2 = Smax. Integrating both sides of (12) over (Si−1/2, Si+1/2) and applying
the mid-point quadrature rule to the first, third, fourth and last terms, we obtain

−∂ui

∂t
li−

[
Si+1/2ρ(u)|Si+1/2 − Si−1/2ρ(u)|Si−1/2

]
+

[
ciui + λ[ui − u∗

i ]
1/k
+

]
li = fili

(16)

for i = 1, 2, ..., N − 1, where li = Si+1/2 − Si−1/2, ci = c(Si, t), fi = f(Si, t),
u∗

i = u∗(Si), ui is the nodal approximation to u(Si, t) to be determined and ρ(u)
is a flux associated with u defined by ρ(u) := aSuS + bu.

To derive an approximation to the flux at the two end-points Si+1/2 and
Si−1/2, let us consider the following two-point boundary value problem

(ρi)′ := (aSv′ + bi+1/2v)′ = 0, S ∈ Ii, v(Si) = ui, v(Si+1) = ui+1, (17)

where bi+1/2 = b(Si+1/2, t). This is motivated by the technique used for singu-
larly perturbed convection-diffusion equations (cf. [33,34]). When i ≥ 1, (17)
has the exact solution

ρi = bi+1/2

Sαi
i+1ui+1 − Sαi

i ui

Sαi
i+1 − Sαi

i

, v =
ρi

bi+1/2
− ui+1 − ui

Sαi
i+1 − Sαi

i

(SiSi+1)αiS−αi , (18)

where αi = bi+1/2/a. Obviously, ρi i provides an approximation to the flux ρ(u)
at Si+1/2 for i = 1, ..., N − 1.

When i = 0, (17) becomes degenerate at S = 0, and we need to look into the
asymptotic behaviour of ρ0 as S0 → 0+. This is given in the following two cases.
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If α0 < 0, it is easy t see to verify that limS0→0+ ρ0 = b1/2u0. Similarly, if
α0 > 0, we have from (18) limx0→0+ ρ0 = b1/2u1. Combining these two cases
we have

ρ0 = b1/2

1 − sign(b1/2)
2

u0 + b1/2

1 + sign(b1/2)
2

u1, (19)

since α0 = b1/2/a and b1/2 have the same sign pattern.
Using (18) and (19), we have from (16)

− ∂ui

∂t
li + ei,i−1ui−1 + ei,iui + ei,i+1ui+1 + di(ui) = fili, (20)

where, di(ui) = λli[ui − u∗
i ]

1/k
+ ,

e1,0 = −x1

2
b1/2

1 − sign(b1/2)
2

, e1,2 = −b1+1/2x1+1/2x
α1
2

xα1
2 − xα1

1

,

e1,1 =
x1

2
b1/2

1 + sign(b1/2)
2

+
b1+1/2x1+1/2x

α1
1

xα1
2 − xα1

1

+ c1l1,

ei,i−1 = −bi−1xi−1/2x
αi−1
i−1

x
αi−1
i − x

αi−1
i−1

, ei,i+1 = −bi+1/2xi+1/2x
αi
i+1

xαi
i+1 − xαi

i

,

ei,i =
bi−1xi−1/2x

αi−1
i

x
αi−1
i − x

αi−1
i−1

+
bi+1/2xi+1/2x

αi
i

xαi
i+1 − xαi

i

+ cili

for i = 2, 3, ..., N − 1. These form an N − 1 nonlinear ODE system for U(t) :=
(u1(t), ..., uN (t))� with the homogeneous boundary condition u0(t) = 0 = uN (t).

LetEi be a rowvector definedbyEi = (0, .., 0, ei,i−1(t), ei,i(t), ei,i+1(t), 0, ..., 0)
fir i = 1, ..., N −1, where ei,i−1, ei,i, ei,i+1 are defined above and those not defined
are zeros. Obviously, using Ei, (20) can be rewritten as

− ∂ui(t)
∂t

li + Ei(t)U(t) + di(ui(t)) = fi(t)li, (21)

for i = 1, 2, ..., N − 1. This is a first order ODE system.
To discretize (21), we choose ti (i = 0, 1, ...,M) satisfying T = t0 > t1 >

· · · > tM = 0, and apply the two-level implicit time-stepping method with a
splitting parameter θ ∈ [1/2, 1] to (21) to yield

um+1
i − um

i

−Δtm
li + θ

[
Em+1

i Um+1 + di(um+1
i )

]
+ (1 − θ) [Em

i Um + di(um
i )]

= (θfm+1
i + (1 − θ)fm

i )li

for m = 0, 1, ...,M − 1, where Δtm = tm+1 − tm < 0, Em
i = Ei(tm), fm

i =
f(xi, tm) and Um = (um

1 , um
2 , ..., um

N−1)
�. This nonlinear system can be re-

written as the following matrix form

(θEm+1 +Gm)Um+1 +θD(Um+1) = Fm +[Gm − (1−θ)Em]Um − (1−θ)D(Um)
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for m = 0, 1, ...,M − 1, where the coefficient matrices are self-explanatory. The
boundary and terminal conditions areum

0 = 0 = um
N and U0 = (u∗

1, u
∗
2, ..., u

∗
N−1)

�.
When θ = 1/2, the time-stepping scheme becomes that of the Crank-Nicolson

and when θ = 1, it is the backward Euler scheme. Both of the two cases are
unconditionally stable. It is easy to show that the linear part of the coefficient
matrix of the above system is an M -matrix and the nonlinear part is strongly
monotone. Thus, the solution to the system is non-negative. An upper error
bound of order O(h+Δt) in a discrete analogue of the norm in (14) for the solu-
tion to the above system has been proved in [3] under certain conditions, where
h and Δt denote the maximal mesh sizes in space and time. A superconvergent
fitted finite volume method for (12) with the linear penalty, based on a judicious
choice of the dual mesh in the above scheme, has been recently proposed in [46]
which has the merit that the scheme yields a superconvergent derivative (Delta
of an option) with almost no additional computational costs.

Upwind finite difference schemes in space have been used for solving HJB
equations arising from pricing other types of options such as those in [26,29,30].
In these cases, we showed the convergence of the numerical schemes by proving
they are consistent, stable and monotone [5]. However, convergence rates for
these schemes have not been established. We comment that, the use of upwind
finite difference methods for multi-dimensional HJB equations such as those
arising from pricing options on multiple assets or with stochastic volatility [22,51]
does not in general yield systems whose coefficient matrices are M -matrix. In
this case, the finite volume method has to be used.

4 The Penalty Method in Finite Dimensions

The process for solving HJB equations in the previous sections is to use the
penalty equation to approximate an HJB equation and then solve the penalty
equation by a discretization scheme. This process is reversible, i.e., one may
discretize an HJB equation first to yield a finite-dimensional one and then devise
a penalty method for solving the HJB equation in finite-dimensions. Let us
demonstrate this procedure using (9) and (10).

The application of the fitted finite volume method and time-stepping scheme
in the previous section to the LCP (9) and (10) yields, at each time step, an
LCP of the form

Ax ≤ b, x ≤ 0 and x�(Ax − b) = 0, (22)

where x ∈ R
n for a positive integer n, A is an n×n positive-definite matrix and

b ∈ R
n is a known vector. In (22), x represents an approximation of the values

of u − u∗ at the interior spatial mesh nodes. Let us consider the minimization
problem

min
x∈Rn

Q(x) subject to x ≤ 0, (23)

where Q(x) is a quadratic function of x such that ∇Q(x) = Ax−b. The Karush–
Kuhn–Tucker (KKT) conditions for this problem are

Ax − b + μ = 0, μ�x = 0, μ ≥ 0, x ≤ 0,
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where μ ∈ R
n is the multiplier. From the first and third expressions in the above

we have Ax − b = −μ ≤ 0. Using this inequality and eliminating μ from the
above yields (22). Therefore, (22) is an optimality condition for (23) and thus
both have the same solutions. To find an approximation to the solution of (23),
we consider the following unconstrained problem

min
x∈Rn

(
Q(x) +

λ

1 + 1/k
[x]1+1/k

+

)
,

where λ > 1 is the penalty constant and k > 0 is a parameter. The 1st-order
necessary optimality condition for this problem is

Axλ − b + λ[xλ]1/k
+ = 0 or Axλ + λ[xλ]1/k

+ = b.

This is a (power) penalty equation approximating (22). Clearly, it is a finite-
dimensional analogue of (12). The solution xλ is an approximation to that of (22).

Discretized HJB equations are often of the form: f(x) ≤ b, x ≤ 0 and
x�f(x) = 0 ([27]). Following the above discussion, the penalty equation approx-
imating this NCP is

f(xλ) + λ[xλ]1/k
+ = 0, (24)

where f : Rn �→ R
n. If, for some α, β > 0, γ ∈ (0, 1] and ξ ∈ (1, 2], f satisfies

1. Holder Continuity: ||f(x1) − f(x2)||2 ≤ β||x1 − x2||γ2 , ∀x1, x2 ∈ R
n,

2. ξ-monotonicity: (x1 − x2)�(f(x1) − f(x2)) ≥ α||x1 − x2||ξ2, ∀x1, x2 ∈ R
n,

then one can show that there exist a positive constant C, independent of λ, such
that

||xλ − x||2 ≤ C

λk/(ξ−γ)
, (25)

where x and xλ are respectively the solutions to the NCP and (24) and || · ||2
denotes the l2-norm on R

n (cf. [20,43]).
Note that the convergence rate of the power penalty method in finite-

dimensions established above is higher than the one in (14) of its infinite-
dimensional counterpart, particularly when f(x) is strongly monotone and
Lipschitz continuous (i.e., ξ = 2 and γ = 1). However, the arbitrary constant
C in (25) is dependent on the dimensionality n, since in the proof of (25) we
used the fact that all norms in R

n are equivalent which is not true in infinite
dimensions.

Discretization of some HJB equations such as those arising from determining
reservation price of an option under proportional transaction costs (cf. [29,30])
gives rise to optimization problems with bound constraints on Bx for a non-
square matrix B, rather than on x. This kind of HJB equations also arises in
optimization problems with bound constraints on derivatives. Power penalty
methods have been extended to NCPs and mixed NCPs with either unbounded
or bounded linear constraints (cf. [21,40,41,44]) and the upper error bounds in
these cases are essentially the same as that in (25).
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Note that the nonlinear penalty term in (24) becomes non-Lipschitz when
k > 1. When solve (24) using a gradient-based method such Newton’s method,
the penalty term needs to be smoothed out locally in [0, ε] with ε a small positive
number, i.e., we replace λ[xλ]1/k

+ with λφ(xλ), where φ is given by

φ(z) =

{
z

1
k , z ≥ ε,[
ε

1
k −2(3 − 1

k )z2 + ε
1
k −3( 1

k − 2)z3
]
, z < ε,

The coefficient matrix of the linearized system of (24) is usually an M -matrix
and thus a preconditioned conjugate gradient based iterative method can be
used for solving it, particularly when (24) is large-scale.

5 Concluding Remarks

Pricing financial options often involves numerical solution of PDE-constrained
nonlinear and non-smooth optimization problems. An efficient numerical tech-
nique for option pricing should contain three components - discretization of
differential operators, techniques for constrained optimization and numerical
solution of nonlinear and non-smooth algebraic systems. In this work we have
presented some of our recent advances in the development of efficient and accu-
rate numerical methods for pricing options. Extensive numerical experiments
on these methods have been carried out and we refer the reader to the listed
references for details.
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1 Introduction

Recently, considerable attention has been drawn to stochastic controlled systems
with hidden Markov chains. Much motivation stems from applications in distrib-
uted power management and platoon inter-vehicle distance maintenance, among
others. The dynamic systems of interest are controlled diffusions with switching,
known as switching diffusions [6]. Different from the extensive studies contained
in the aforementioned reference, the switching process in this paper is assumed
to be a continuous-time Markov chain that is hidden. We can only observe the
state of the Markov chain with additive noise. Mean-variance control problems
were first considered in the Nobel prize winning paper of Markowitz [2]. It was
subsequently considered by a host of researchers. The recent advances in back-
ward stochastic differential equations enable the treatment of the mean-variance
controls in continuous time, which is otherwise impossible because of the so-
called indefinite control weights; see Zhou and Li [7] for the first paper in this
direction and further details. Further work in conjunction with regime-switching
models can be found in Zhou and Yin [8], among others.

As a new twist of the mean-variance portfolio selections, our recent work
focuses on using the mean-variance formulation to treat networked control sys-
tems. That is, we borrow the idea in financial engineering to treat problems
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arising in networked control problems. Much of the motivation stems from appli-
cations arising in cyber-physical systems. It has been observed in [4] that a large
class of problems arising from networked systems and platoon controls can be
formulated as such systems, similar to the mean variance control problems that
were originally pursued in financial engineering [8]. In [4], we outlined three
potential applications in platoon controls based on mean-variance controls. The
first problem concerns the longitudinal inter-vehicle distance control. To increase
highway utility, it is desirable to reduce the total length of a platoon, resulting in
smaller overall inter-vehicle distances. The drawback of this strategy, however,
is the increase in the risk of collision due to traffic uncertainties. The task of
minimizing the risk with desired inter-vehicle distance fits naturally to a mean-
variance optimization framework. The second one is communication resource
allocation of bandwidths for vehicle-to-vehicle (V2V) communications. For a
given maximum throughput of a platoon communication system, the commu-
nication system operator must find a way to assign this resource to different
V2V channels, which may also be formulated as a mean-variance control prob-
lem. The third one is the platoon fuel consumption. Due to variations in vehicle
sizes and speeds, each vehicle’s fuel consumption is a controlled random process.
Tradeoff between a platoon’s team acceleration/maneuver capability and fuel
consumption can be summarized in a desired platoon fuel consumption rate.
Assigning fuels to different vehicles results in coordination of vehicle operations
modeled by subsystem fuel rate dynamics. This problem may also be casted
into the framework of mean-variance control. Such problems are highly nonlin-
ear, it is virtually impossible to find closed-form solutions. Our objective is thus
devoted to finding feasible algorithms for the desired tasks. Recently, in our work
[5], numerical approximation methods have been developed. The convergence of
the algorithms is proved. The basic idea is first to convert the partially observ-
able stochastic control problems to completely observed systems by means of
the Wonham filtering methodologies. Then we use relaxed controls and Markov
chain approximation techniques to build convergent numerical schemes. Based
on that work, this paper aims to provide case studies of two typical problems in
applications. Our main effort is to demonstrate using numerical methods solving
the problems arising in the specific applications.

The rest of the paper is arranged as follows. Section 2 formulates the problem.
Section 3 introduces the Markov chain approximation methods and provides the
approximation of the optimal controls. Sections 4 and 5 present two case studies
to illustrate the wide applications of the scheme developed in our work.

2 Problem Formulation

Consider a given probability space (Ω,F , P ) in which there is w1(t), a standard
ρ-dimensional Brownian motion with w1(t) = (w1

1(t), w
2
1(t), . . . , w

ρ
1(t))

′, where
z′ denotes the transpose of z. Let α(t) be a continuous-time finite-state Markov
chain, independent of w1(t), taking values in M = {1, 2, . . . ,m} with generator
Q = (qij)m×m. We consider a networked system that consists of ρ + 1 nodes



Applications of Numerical Methods 119

(subsystems), which is modeled for t ∈ [s, T ] by

dx0(t) = μ0(t, α(t))x0(t)dt, x0(s) = x0,
dxl(t)= xl(t)μl(t, α(t))dt + xl(t)σ̄l(t, α(t))dw1(t), xl(s) = xl, l = 1, . . . , ρ,

(1.1)

where for each i, μl(t, i) is the drift and σ̄l(t, i) = (σ̄l1(t, i), . . ., σ̄lρ(t, i)) is the
volatility for the lth node. In our framework, instead of having full information
of the Markov chain, we can only observe

dy(t) = g(α(t))dt + βdw2(t), y(s) = 0, (1.2)

where β > 0 and w2(·) is a standard scalar Brownian motion, w1(·), w2(·), and
α(·) are independent. Moreover, the initial data p(s) = p = (p1, p2, . . . , pm) in
which pi = pi(s) = P (α(s) = i) is given for 1 ≤ i ≤ m. By distributing the
portion Nl(t) of the lth node’s flow xl(t) at time t and denoting the total flows
for the whole networked system as x(t), we have x(t) =

∑ρ
l=0 Nl(t)xl(t), t ≥ s.

With x(s) =
∑ρ

l=0 Nl(s)xl(s) = x, the dynamics of x(t) are given as

dx(t)= [x(t)μ0(t, α(t)) + M(t, α(t))π(t)]dt + π′(t)σ̄(t, α(t))dw1(t), (1.3)

in which π(t) = (π1(t), . . . , πρ(t))′ and πl(t) = Nl(t)xl(t) for l = 1, . . . , ρ is the
actual flow of the network system for the lth node and π0(t) = x(t)−∑ρ

l=1 πl(t)
is the actual flow of the networked system for the first node, and M(t, α(t)) =
(μi(t, α(t)) − μ0(t, α(t)) : i = 1, . . . , ρ) and σ̄(t, α(t)) = (σ̄lj(t, α(t)))ρ×ρ. We
define Ft = σ{w1(s̃), y(s̃), x(s) : s ≤ s̃ ≤ t}. Our objective is to find an Ft

admissible control π(·) in a compact set under the constraint that the expected
terminal flow is Ex(T ) = κ for some given κ ∈ R, so that the risk measured by
the variance of the terminal flow is minimized. Specifically, we have the following
goal

min J(s, x, p, π(·)) := E[x(T ) − κ]2

subject to Ex(T ) = κ.
(1.4)

We apply the Lagrange multiplier techniques (see, e.g.,[7]) to arrive at the uncon-
strained optimization problem

min J(s, x, p, π(·), λ) := E[x(T ) + λ − κ]2 − λ2

subject to (x(·), π(·)) admissible, (1.5)

where λ is the Lagrange multiplier. A pair (
√

Var (x(T )), κ) ∈ R
2, corresponding

to the optimal control if it exists, is called an efficient point.
Next, to treat the partially observed control problem, let pi(t) = P (α(t) =

i|Fy(t)) for i = 1, 2, . . . , m, with p(t) = (p1(t), . . . , pm(t)) ∈ R
1×m and Fy(t) =

σ{y(s̃) : s ≤ s̃ ≤ t}. It was shown in [3] that this conditional probability satisfies
the following system of stochastic differential equations

dpi(t)=

m∑

j=1

qjipj(t)dt +
1

β
pi(t)(g(i) − α(t))dŵ2(t), pi(s) = pi, i = 1, . . . , m (1.6)
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where α(t) =
∑m

i=1 g(i)pi(t) and ŵ2(t) is the innovation process. Now we have
a completely observable system so that x(s) = x, pi(s) = pi, and

dx(t) = μ(x(t), p(t), π(t))dt + σ(x(t), p(t), π(t))dw1(t)

dpi(t)=
m∑

j=1

qjipj(t)dt +
1
β

pi(t)(g(i) − α(t))dŵ2(t), for i ∈ {1, . . . , m} (1.7)

where

μ(x(t), p(t), π(t)) =
m∑

i=1

μ0(t, i)pi(t)x(t) +
ρ∑

l=1

m∑

i=1

(μl(t, i) − μ0(t, i))pi(t)πl(t)

σ(x(t), p(t), π(t))dw1(t) =
ρ∑

l=1

ρ∑

j=1

m∑

i=1

πl(t)σ̄lj(t, i)pi(t)dwj
1(t).

For an arbitrary and φ(·, ·, ·) ∈ C1,2,2(R), consider the operator

Lrφ(s, x, p) =
∂φ

∂s
+

∂φ

∂x
μ(x, p, r) +

1
2

∂2φ

∂x2
[σ(x, p, r)σ′(x, p, r)]

+
m∑

i=1

∂φ

∂pi

m∑

j=1

qjipj +
1
2

m∑

i=1

∂2φ

∂(pi)2
1
β2

[pi(g(i) − α)]2. (1.8)

Let W (s, x, p, π) be the objective function with Eπ
s,x,p denoting the expectation

of functionals on [s, T ] with x(s) = x, p(s) = p, the admissible control π = π(·),
and the value function V (s, x, p)

(1.9)

The value function is a solution of the following equation

(1.10)

with boundary condition V (T, x, p) = (x(T ) + λ − κ)2 − λ2. Note that
(1.10) is known as the Hamilton-Jacobi-Bellman (HJB) equation. To pro-
ceed, we use the relaxed control representation. For the σ-algebra and

of Borel subsets of and , an admissible relaxed con-
trol or simply a relaxed control m(·) is a measure on such
that for all t ∈ [s, T ]. For notational
simplicity, for any , we write m(B × [s, T ]) as m(B, T − s). Since

for all t ∈ [s, T ] and m(B, ·) is nondecreasing, it is
absolutely continuous. Hence the derivative ṁ(B, t) = mt(B) exists almost
everywhere for each B. We can further define the relaxed control representa-
tion m(·) of π(·) by mt(B) = I{π(t)∈B} for any . We say that M(·) is
a measure-value Ft martingale with values M(B, t) if M(B, ·) is an Ft martingale

for each , and for each t, the following holds: ,
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M(A ∪ B, t) = M(A, t) + M(B, t) w.p.1. for all disjoint , and
EM2(Bn, t) → 0 if Bn → ∅. We say that M(·) is orthogonal if M(A, ·)
and M(B, ·) are Ft martingales whenever A ∩ B = ∅. If M(·), M̄(·) are Ft

martingale measures and M(A, ·), M̄(B, ·) are Ft martingales for any Borel
set A,B, then M(·) and M̄(·) are said to be strongly orthogonal. Letting
M(·) = (M1(·), . . . , Mρ(·))′, a vector valued martingale measure, we impose the
following conditions.

(A1) M(·) = (M1(·), . . . ,Mρ(·))′ is square integrable and continuous; each com-
ponent is orthogonal; and the pairs are strongly orthogonal.

Under (A1), there are measure-valued random processes mi(·) such that
the quadratic variation processes satisfy, for each t and ,〈
Mi(A, ·), Mj(B, ·)〉(t) = δijmi(A ∩ B, t).

(A2) mi does not depend on i, mi(·) = m(·), and for all t.

With the help of the martingale measures and relaxed controls, we can
represent our control system in the following way:

(A3) μ(·, ·, ·) and σ(·, ·, ·) are continuous; μ(·, p, c) and σ(·, p, c) are Lipschitz
continuous uniformly in p, c and bounded.

(A4) σ(x, p, c) = (σ1(x, p, c), . . . , σρ(x, p, c)) > 0.

3 Approximation Algorithms

To facilitate subsequent numerical computations, let vi(t) = log pi(t). Itô’s rule
leads to the dynamics of vi(t). We can then obtain the following discrete-time
approximation of the Wonham filter

vh2,i
n+1 = vh2,i

n + h2[
m∑

j=1

qji
ph2,j
n

ph2,i
n

− 1

2β2
(g(i) − ᾱh2

n )2] +
√

h2
1

β
(g(i) − ᾱh2

n )εn,

vh2,i
0 = log(pi), ph2,i

n+1 = exp(vh2,i
n+1),

(1.11)

where ᾱh2
n =

∑m
i=1 g(i)ph2,i

n and {εn} is a sequence of i.i.d. random vari-
ables satisfying Eεn = 0, Eε2n = 1, and E|εn|2+γ < ∞ for some γ > 0 with
εn = ŵ2((n+1)h2)−ŵ2(nh2)√

h2
. Here ph2,i

n appeared as a denominator in (1.11) and
we have concentrated on the case that ph2,i

n stays away from 0. Let h1 > 0 be a
discretization parameter for state variables, and recall that h2 > 0 is the step size
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for the time variable. We construct a discrete-time finite-states Markov chain to
approximate the controlled diffusion process, x(t). Let Nh2 = (T − s)/h2 be an
integer and define Sh1 = {x : x = kh1, k = 0,±1,±2, . . .}. We use πh1,h2

n to
denote the random variable that is the control action for the chain at discrete
time n. Let πh1,h2 = (πh1,h2

0 , πh1,h2
1 , . . .) denote the sequence of -valued random

variables which are the control actions at time 0, 1, . . . and ph2 = (ph2
0 , ph2

1 , . . .) be
the corresponding posterior probabilities in which ph2

n = (ph2,1
n , ph2,2

n , . . . , ph2,m
n ).

We define the difference Δξh1,h2
n = ξh1,h2

n+1 − ξh1,h2
n and let Eh1,h2,r

x,p,n , V h1,h2,r
x,p,n

denote the conditional expectation and variance given {ξh1,h2
k , πh1,h2

k , ph2
k , k ≤

n, ξh1,h2
n = x, ph2

n = p, πh1,h2
n = r}. By stating that {ξh1,h2

n , n < ∞} is a con-
trolled discrete-time Markov chain on a discrete-time state space Sh1 with tran-
sition probabilities denoted by ph1,h2((x, y)|r, p), we mean that the transition
probabilities are functions of a control variable r and posterior probability p.
The sequence {ξh1,h2

n , n < ∞} is said to be locally consistent with (1.7) if it
satisfies

Eh1,h2,r
x,p,n Δξh1,h2

n = μ(x, p, r)h2 + o(h2),
V h1,h2,r

x,p,n Δξh1,h2
n = σ(x, p, r)σ′(x, p, r)h2 + o(h2),

supn |Δξh1,h2
n | → 0, as h1, h2 → 0.

(1.12)

With the approximating Markov chain given above, we can approximate the cost
function Wh1,h2(s, x, p, πh1,h2) in which x(T ) is replaced by ξh1,h2

Nh2
and can find

approximation of V (s, x, p). Now we will proceed to find a reasonable Markov
chain that is locally consistent. We first suppose that the control space has a
unique admissible control , so that we can drop inf in (1.10). We
discretize (1.8) by a finite difference method using step-size h1 > 0 for the state
variable and h2 > 0 for the time variable as mentioned above. For simplicity, we
omit the details. We can show that the approximating Markov chain constructed
above satisfies local consistency. Note that we have used local transitions here
so that we can avoid the problem of “numerical noise”or “numerical viscosity”,
which appears in non-local transitions cases, and is even more serious in higher
dimension scenarios, see [1] for more details. We omit most of the details and
please refer to [5] for further demonstration.

It can be shown that the Markov chain {ξh1,h2
n , n < ∞} with transition

probabilities ph1,h2(·) properly defined is locally consistent with (1.7). Next, we
give the discrete-time approximation algorithm for the controlled Markov chain.
Based on the local consistency, we can represent ξh1,h2

n+1 as

ξh1,h2
n+1 = ξh1,h2

n +μ(ξh1,h2
n , ph2

n , πh1,h2
n )h2+ σ(ξh1,h2

n , ph2
n , πh1,h2

n )Δwh1,h2
n + o(1),(1.13)

where o(1) can be written as εh1,h2
n in which εh1,h2

n → 0 as h1, h2 → 0. To approx-
imate the continuous-time process (x(t), p(t),m(t),M(t)), we use continuous-
time interpolation. For t ∈ [nh2, (n + 1)h2), we define the piecewise constant
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interpolations by

ξh1,h2(t) = ξh1,h2
n , ph2(t) = ph2

n , ᾱh1,h2(t) =
m∑

i=1

g(i)ph2
n , πh1,h2(t) = πh1,h2

n ,

zh2(t) = n, wh1,h2
l (t) =

zh2 (t)−1∑

k=0

Δwh1,h2
l,k , εh1,h2(t) = εh1,h2

n .

(1.14)

With most of the technical details omitted, which can be found in [5], we present
the main approximation theorem below.

Theorem 1. Assuming (A1)-(A4), let {ξh1,h2
n , n < ∞}, the approximat-

ing chain be constructed with transition probabilities properly defined. Let
{πh1,h2

n , n < ∞} be a sequence of admissible controls, ξh1,h2(·) and ph2(·) be the
continuous time interpolation defined in (1.14), mh1,h2(·) be the relaxed control
representation of πh1,h2(·) (continuous time interpolation of πh1,h2

n ). Then

(ξh1,h2(·), ph2(·),mh1,h2(·),Mh1,h2(·)) istight,

(ξh1,h2(·), ph2(·), mh1,h2(·), Mh1,h2(·)) converges weakly to (x(·), p(·),m(·),M(·)),
and W (s, x, p,mh1,h2) → W (s, x, p,m). Denoting the limit of a weakly convergent
subsequence by (x(·), p(·),m(·),M(·)), the martingale measure M(·) has quadratic
variation process given by m(·) and the desired limit dynamics hold. Moreover,
V h1,h2(s, x, p) → V (s, x, p) as h1 → 0 and h2 → 0.

4 Case Study I: Distributed Power Management

Consider a distribution network of three renewable energy generators and energy
storage devices. Typically, the distributed generators can be photovoltaic (PV)
systems, wind turbines, bio-engines, fuel cells, etc. Energy storage devices can
be batteries, super-capacitors, etc. To be concrete, let xi(t), i = 1, 2, 3 be the
maximum power generating capacity of the ith generator at time t. In addition,
x0(t) is the available maximum capacity that is allowed to be purchased from
the main grid at t.

Let Ni(t) be the portion of the power generated by the ith generator that is
used to satisfy total power demand, Then, the total locally generated power at
time t is

∑3
i=1 Ni(t)xi(t). Implicitly, the remaining power will be purchased from

the main grid, i.e., π0(t) = N0(t)x0(t) = x(t) − ∑3
i=1 Ni(t)xi(t). A renewable

generator’s maximum capacity is a stochastic process. For example, a wind tur-
bine’s maximum power is determined by the wind speed and direction. Similarly,
a PV system’s output is determined by how much solar radiation is available at
a given time, weather condition, and the angle that the sunlight is shining on
the solar panels. Here, {xi(t) : i = 0, 1, . . . , 3} is given by (1.1) with α(t) being
a 3-state switching process which takes values in {1, 2, 3} with generator

Q =

⎛

⎝
−0.5 0, 2 0.3
0.3 −0.6 0.3
0.4 0.4 −0.8

⎞

⎠, μ1(α) = 2α, μ2(α) = α + 1, μ3(α) = α + 2,
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σ1(α) = (α, 0, 0), σ2(α) = (0, α
2 , 0) and σ3(α) = (0, 0, α

3 ), for α = 1, 2, 3,
and w1(t) ∈ R

3. Here, the drift term represents average solar radiation val-
ues throughout a day; and diffusion term represents solar radiation fluctuations
which are caused by many factors such as clouds, weather conditions, etc. The
dynamics of the process depend on an event variable α which reflects system
structural changes. This is exemplified by scheduled or emergency maintenance
of solar modules, failure of a battery cell, addition of super-capacitor banks, tap
changes in transformer actions, etc.

It is noted that sometimes such switching actions α cannot be observed
directly, such as solar or battery cell failures. However, such switching actions
will affect certain measured variables. For example, battery cell failures will
cause a jump in terminal voltages. In this study, instead of direct access to α,
we assume (1.2) is observable where g(1) = 1, g(2) = 2 and g(3) = 3, β = 1 > 0
is a constant, and w2(t) is a Brownian motion, independent of w1(t). y(t) is a
measured quantity. Distributed power management aims to decide dispatching
parameters Ni(t), i = 1, . . . , 3. This can be formulated as a mean-variance con-
trol problem. To meet the total power consumption demand z = 1 MW (mega
watts), it is required that we have the constraint Ex(T ) = z. On the other hand,
to maintain grid stability, smooth operations, and reduced waste, it is desirable
that generation-consumption disparity in transient be as small as possible. It is
well understood in traditional power flow analysis that transient power fluctu-
ations cause energy loss on lines, affect voltage and frequency stability. In view
of (1.4), the Lagrange multiplier technique leads to (1.5). The value function
and corresponding control are in Fig. 1 in which x axis is the possible consump-
tion demand of all the generators in the system at T = 2 and y axis represent
the feedback control π1 for the first generator and value function V , respec-
tively. The efficient frontier is demonstrated in Fig. 2 in which the x axis is the
standard deviation of total generation-consumption of the system and y axis is
the expected power consumption. We use the simplex method to find out the
optimal λ.

5 Case Study II: Communication Resource Allocation

The second case study is concerned with communication resource allocation
of bandwidths for vehicle-to-vehicle (V2V) communications. For a given maxi-
mum throughput of a platoon communication system, the communication system
must find a way to assign this resource to different V2V channels. If the total
bandwidth used is lower than the assigned bandwidth, there will be a waste of
resource. Conversely, usage of bandwidths over the budget may incur high costs
or interfere with other platoons’ operations. In this case, each channel’s band-
width usage is the state of the subsystem. Their summation is a random process
and is desired to approach the maximum throughput (the desired mean at the
terminal time) with variations as small as possible. Consequently, it becomes a
mean-variance control problem.

Consider a platoon of five vehicles. Let Bi(t), i = 0, 1, . . . , 4 be the maxi-
mum transmission data rate of vehicle i at time t. In practice, the maximum



Applications of Numerical Methods 125

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

O
pt

im
al

 fe
ed

ba
ck

 c
on

tr
ol

(a) Optimal feedback control π1(t) =
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Fig. 1. Optimal control for the first generator and value function V for the power
management system
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Fig. 2. Mean variance efficient frontier for power management system in which step
sizes for the state variable and time variable are h1 = 0.25 and h2 = 0.001, respectively.
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data rate is determined by the processing capability limits, the resources used
by other tasks of the vehicle’s communication system, and the bandwidth allo-
cation scheme between vehicles (e.g., through wireless transmission scheduling).
If the platoon is assigned with the total data rate B(t) Mbps (mega bits per
second), which must be shared by all the vehicles within the platoon. Let Ni(t)
be the portion of Bi(t) that is used in the actual transmission by vehicle i.
Then, Ni(t)Bi(t) is the data rate of vehicle i and the total data rate of the
entire platoon is desired to be B(t) =

∑4
i=0 Ni(t)Bi(t). Due to dynamics of

many tasks, Bi(t) is a stochastic process. In addition, since vehicles move along
roads, we have a communication network whose topology switches. Assume that
{Bi(t) : i = 0, 1, . . . , 4} obeys the stochastic system (1.1) with the Markov
chain α(t) having m states, representing m possible network topologies. To be
concrete, suppose that m = 1, 2, 3, 4 and the switching process has the generator

Q =

⎛

⎜
⎜
⎝

−0.7 0.5 0.1 0.1
0.4 −0.8 0.2 0.2
0.2 0.1 −0.5 0.2
0.1 0.2 0.3 −0.6

⎞

⎟
⎟
⎠ and μ0(α(t), t) = 0.5α, μ1(α(t), t) = α + t,

μ2(α(t), t) = 2α + 1.5t, μ3(α, t) = α − t, σ1(α(t), t) = (α, 0, 0, 0), σ2(α(t), t) =
(0, α

2 , 0, 0), σ3(α(t), t) = (0, 0, α
3 , 0) for α = 1, 2, 3, 4, and w1(t) ∈ R

4. Here, the
drift term represents average maximum data rates during an operating time
interval of the communication system and Bi(t)σi(α(t), t)dw1(t) represents fluc-
tuations on Bi, which are determined by other communication tasks such as
coding, data compression, packet formation, etc. The dynamics of the process
depend on the event variable α which reflects communication network topol-
ogy changes. Communication link changes typically contain both observable and
unobservable elements. It is noted that a communication link can be terminated
by the associated vehicles, which is an observable event. However, packet loss
can cause a link to be broken which is not observable directly until the data
transmission is completed and data were lost. In this sense, this unobservable
event can be partially observed from data flows and receipt acknowledgement.
Consequently, the event α can be modeled by (1.2) where g(1) = 2, g(2) = 1.5,
g(3) = 3 and g(4) = −1, and β = 1 > 0 is a constant. Here y(t) is a measured
variable for the event.

Communication system management decides data rate allocation strategies
by assigning Ni(t) proportion of data rate to vehicle i, i = 1, . . . , 4. This can
be formulated as a mean-variance control problem. To use efficiently the total
available data rate z = 2 Mbps, we require that at the end of the resource
assignment period T , EB(T ) = z. To ensure that the platoon does not overuse
resources (causing interruptions to other platoons, incurring penalty, etc.) or
waste resources, it is desirable that the platoon’s actual total data rate is as
close to 2 Mbps as possible. This is consistent to (1.4), or equivalently (1.5).

The value function and corresponding control are in Fig. 3 in which x axis is
the possible value for the resource assignment at T = 2 in the platoon communi-
cation system and y axis represents π1- the feedback control or in other words,
the data rate of the first vehicle and value function V , respectively. The efficient
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(a) Optimal feedback control (data rate)
π1(t) for the first vehicle by using the step
size h1 = 0.25 for state variable and step
size h2 = 0.001 for the time variable with
fixed expectation B = 2
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(b) Approximate value function V by us-
ing the step size h1 = 0.25 for state vari-
able and step size h2 = 0.001 for the time
variable with fixed expectation B = 2

Fig. 3. Optimal control for the first vehicle and value function V for the entire platoon
system
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Fig. 4. Mean variance efficient frontier for communication system in which step sizes
for the state variable and time variable are h1 = 0.25 and h2 = 0.001, respectively.

frontier is demonstrated in Fig. 4 in which the x axis is the standard deviation
of the total data rate of the entire platoon and y axis is the standard deviation
of the total data rate allocation for the V2V communications at the end of the
resource assignment period.
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6 Concluding Remarks

This paper presented case studies on two applications. The main characteristics
of the problems are regime-switching diffusions with a hidden Markov chain. Our
effort was devoted to the numerical solutions of the problems. After converting
the problems into completely observed systems, based on Markov chain approx-
imation techniques, controlled discrete-time Markov chains were constructed for
the intended task. Although only two examples have been presented, the tech-
niques used and the methods of approximation can be applied to a wide range
of applications.
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Abstract. We deal with an initial-boundary value problem for the gen-
eralized time-dependent Schrödinger equation with variable coefficients
in an unbounded n–dimensional parallelepiped (n ≥ 1). To solve it, the
Crank-Nicolson in time and the polylinear finite element in space method
with the discrete transparent boundary conditions is considered. We
present its stability properties and derive new error estimates O(τ2+|h|2)
uniformly in time in L2 space norm, for n ≥ 1, and mesh H1 space
norm, for 1 ≤ n ≤ 3 (a superconvergence result), under the Sobolev-
type assumptions on the initial function. Such estimates are proved for
methods with the discrete TBCs for the first time.

Keywords: Time-dependent Schrödinger equation · Unbounded
domain · Crank-Nicolson scheme · Finite element method · Dis-
crete transparent boundary conditions · Stability · Error estimates ·
Superconvergence

1 Introduction

The linear time-dependent Schrödinger equation is the key one in many phys-
ical fields. It should be often solved in unbounded space domains. A number
of approaches were developed to deal with such problems using approximate
transparent boundary conditions (TBCs) at the artificial boundaries.

Among the best methods of such kind are those using the so-called discrete
TBCs remarkable by the clear mathematical background and the corresponding
rigorous stability results in theory as well as the complete absence of spurious
reflections in practice. They first were constructed and studied for the stan-
dard Crank-Nicolson in time finite-difference schemes, see [1,5] and also [2,3], in
the cases of the infinite or semi-infinite axis and strip. Later families of finite-
difference schemes with general space averages were treated in [4,12,15]. In par-
ticular, they include the linear and bilinear FEMs in space.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 129–141, 2015.
DOI: 10.1007/978-3-319-20239-6 12
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In this paper, we consider the Crank-Nicolson-polylinear FEM in an
unbounded n–dimensional parallelepiped (n ≥ 1), present results on its sta-
bility with respect to the initial data and a free term as well as on exploiting
the discrete TBCs and mainly derive the corresponding new error estimates
O(τ2 + |h|2) uniform in time and in L2 norm (for n ≥ 1) and mesh H1 norm (for
1 ≤ n ≤ 3) in space under the Sobolev-type assumptions on the initial function.
The latter estimate is a superconvergence result. Such estimates are proved for
the methods with the discrete TBCs for the first time. Importantly, the error
estimates contain no mesh steps in negative powers like for other approximate
TBCs, see [6,7], that is one more advantage of using the discrete TBCs.

2 The IBVP and Numerical Methods
to Solve it

We deal with the initial-boundary value problem (IBVP) for the time-dependent
generalized Schrödinger equation with n ≥ 1 space variables

i�ρDtψ = Hψ := −�
2

2 div(B∇ψ) + V ψ on Π × (0, T ), (1)

ψ|∂Π = 0, ψ|t=0 = ψ0(x) on Π. (2)

Hereafter ψ = ψ(x, t) is the complex-valued unknown wave function, i is the
imaginary unit and � > 0 is a physical constant. The x = (x1, . . . , xn)-depending
coefficients ρ, V ∈ L∞(Π) and the n×n matrix B ∈ L∞(Π) are real-valued and
satisfy ρ(x) ≥ ρ > 0 and B(x) ≥ B I > 0 on Π, where I is the unit matrix
(whereas V can have any sign in general). Here Π := R for n = 1 or, for n ≥ 2,
Π := R × Π1̂ is the infinite parallelepiped, with Π1̂ := (0,X2) × · · · × (0,Xn).

Also Dt = ∂
∂t and Di = ∂

∂xi
are the partial derivatives, and the operators div

and ∇ are taken with respect to space variables.
We also assume that, for some (sufficiently large) X0 > 0,

ρ(x) = ρ∞, B(x) = diag (B1∞, . . . , Bn∞), V (x) = V∞ for |x1| ≥ X0, (3)

where diag (B1∞, . . . , Bn∞) is the diagonal matrix with the listed positive diag-
onal entries. More generally, it could be easily assumed that ρ, B and V have
different constant values for x1 ≤ −X0 and for x1 ≥ X0. Let X1 > X0, and
Ω = ΩX = (−X1,X1) for n = 1 or Ω = ΩX = (−X1,X1) × Π1̂ for n ≥ 2.

We consider the weak solution ψ ∈ C([0, T ];H1
0 (Π)) having Dtψ ∈

C([0, T ];L2(Π)) and satisfying the integral identity

i�(Dtψ(·, t), ϕ)L2,ρ(Π) = LΠ(ψ(·, t), ϕ) for any ϕ ∈ H1
0 (Π), on [0, T ], (4)

and the initial condition ψ|t=0 = ψ0 ∈ H1
0 (Π). Hereafter we use the stan-

dard complex Lebesgue and Sobolev spaces (and subspaces), the weighted com-
plex Lebesgue space L2,ρ(G) endowed by the inner product (w,ϕ)L2,ρ(G) :=
(ρw, ϕ)L2(G) and the H-related Hermitian-symmetric sesquilinear form

LG(w,ϕ) := �
2

2 (B∇w,∇ϕ)L2(G) + (V w,ϕ)L2(G), with G = Π,Ω, etc.
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We define a non-uniform mesh in x1 on R containing the points ±X1 and
being uniform with a step 0 < h1 < X1 outside [−X1 + h1,X1 − h1] ⊃
[−X0,X0]. We also define non-uniform meshes in x2, . . . , xn respectively on
[0,X2], . . . , [0,Xn] (containing the ends of the segments). They induce the par-
tition of Π̄ into finite elements that are rectangular parallelepipeds without
common internal points. Let |h| be their maximal diagonal length. Let Sh(Π̄)
be the (infinite-dimensional) subspace of functions in H1

0 (Π) that are polylinear
over each element. Clearly Sh(Π̄) ⊂ C(Π̄) ∩ L2(Π). Let Sh be the restriction of
Sh(Π̄) to Ω̄.

Let ω τ
M be the non-uniform mesh 0 = t0 < . . . < tM = T with steps τm :=

tm−tm−1. We put τmax := max1≤m≤M τm and τ̂m := τm+τm+1
2 for 1 ≤ m ≤ M−1

and τ̂0 := τ1
2 . We define the time mesh operators

∂tY
m :=

Y m − Y m−1

τm
, ∂̂tY

m :=
Y m+1 − Y m

τ̂m
, stY

m :=
Y m−1 + Y m

2
.

We introduce the Crank-Nicolson-polylinear FEM approximate solution Ψ :
ω τ

M → Sh(Π̄) satisfying the integral identity

i�(∂tΨ
m, ϕ)L2,ρ(Π) = LΠ(stΨ

m, ϕ) for any ϕ ∈ Sh(Π̄) and 1 ≤ m ≤ M, (5)

compare with (4), and the initial condition Ψ |t=0 = Ψ0 ∈ Sh(Π̄), where Ψ0 is an
approximation for ψ0.

Let �m
∞(ϕ) be a conjugate linear functional on Sh(Π̄) that we add to the right-

hand side of (5) to study stability in more detail and to derive error estimates.

Proposition 1. Let �m
∞(ϕ) = (Fm, ϕ)L2(Π) with Fm ∈ L2(Π) for 1 ≤ m ≤ M .

Then there exists a unique approximate solution Ψ and the following first stability
bound holds

max
0≤m≤M

‖Ψm‖L2,ρ(Π) ≤ ‖Ψ0‖L2,ρ(Π) +
2
�

M∑

m=1

‖Fm‖L2,1/ρ(Π) τm. (6)

We introduce also the “energy” norm such that

‖w‖2H+v̂ρ;Π := LΠ(w,w) + v̂‖w‖2L2,ρ(Π) ≥ δ̂‖w‖2L2,ρ(Π) for any w ∈ H1
0 (Π), (7)

with some real numbers v̂ and δ̂ > 0. Inequality (7) is knowingly valid for v̂ so
large that �

2

2 Bλ0 + V (x) + (v̂ − δ̂)ρ(x) ≥ 0 on Ω with λ0 :=
∑n

k=2

(
π

Xk

)2 (here
λ0 = 0 for n = 1). We define also the corresponding dual mesh depending norm

‖w‖H−1
h (Π) := max

ϕ∈Sh(Π̄): ‖ϕ‖H+v̂ρ; Π=1
|〈w,ϕ〉Π | ≤ c‖w‖H−1(Π),

where 〈w,ϕ〉Π is the conjugate duality relation on H−1(Π) × H1
0 (Π) and

H−1(Π) = [H1
0 (Π)]∗. Hereafter c and c1 are generic constants independent of

the meshes, any functions and T whereas c0 denotes absolute constants (fixed
numbers).
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Proposition 2. Let �m
∞(ϕ) = 〈Fm, ϕ〉Π with Fm ∈ H−1(Π) for 1 ≤ m ≤ M

and F 0 ∈ H−1(Π) be arbitrary. Then there exists a unique approximate solution
Ψ and the following second stability bound holds

max
0≤m≤M

‖Ψm‖H+v̂ρ;Π ≤ ∥
∥Ψ0

∥
∥

H+v̂ρ;Π

+4
M∑

m=1

( |v̂|
�

‖Fm‖H−1
h (Π) +

∥
∥∂tF

m
∥
∥

H−1
h (Π)

)
τm + 4

∥
∥F 0

∥
∥(−1)

h
. (8)

Method (5) cannot be directly used in practice because of the infinite number of
unknowns at each time level. Nevertheless it is possible to restrict the method
to Ω̄ provided that Ψ0 ∈ S0h := {ϕ ∈ Sh; ϕ(x) = 0 on Ω \ Ω0}, where Ω0 :=
ΩX1−h1,X2,...,Xn

, and ω τ
M is uniform with the step τ = T

M . Let both assumptions
be valid up to the end of the section.

By definition, the discrete TBCs are conditions at the artificial boundaries
x1 = ±X1 allowing to accomplish the restriction (they are non-local in x2, . . . , xn

and t). To write down them explicitly, for clarity, we confine ourselves by the
case of the uniform mesh in xk with the step hk = Xk

Jk
, for 2 ≤ k ≤ n, and define

the related well-known direct and inverse discrete sine Fourier transforms

P (q) = (FkP )(q) :=
2
Jk

Jk−1∑

j=1

Pj sin
πqj

Jk
, 1 ≤ q ≤ Jk − 1,

Pj =
(F−1

k P (·))
j

:=
Jk−1∑

q=1

P (q) sin
πqj

Jk
, 1 ≤ j ≤ Jk − 1.

The related eigenvalues of the 1D linear in xk FEM counterparts of the
operators −D2

k and the unit one (for zero Dirichlet boundary values at xk =
0,Xk) are

λ(k)
q =

( 2
hk

sin
πqhk

2Xk

)2

, σ(k)
q = 1 − 2

3
sin2 πqhk

2Xk
∈

(1
3
, 1

)
.

Denote by ωh1̂ the internal part of the introduced uniform mesh in Π̄1̂ and define
the related mesh inner product

(U,W )ωh1̂
:=

J2−1∑

j2=1

. . .

Jn−1∑

jn=1

Uj2,...,jn
W ∗

j2,...,jn
h2 . . . hn for n ≥ 2

or set (U,W )ωh1̂
:= UW ∗ for n = 1, where W ∗ is the complex conjugate for W .

Recall that the discrete convolution of mesh functions R,Q: ω τ
M → C is given

by (R ∗ Q)m :=
∑m

p=0 RpQm−p for 0 ≤ m ≤ M .

Proposition 3. The restriction Ψ |Ω̄ of the above approximate solution obeys
the integral identity on Ω

i� (∂tΨ
m, ϕ)L2,ρ(Ω) = LΩ(stΨ

m, ϕ)

−�
2

2 B1∞(Sm
refΨ

m
X1

, ϕ|x1=X1)ωh1̂
+ �

2

2 B1∞(Sm
refΨ

m
−X1

, ϕ|x1=−X1)ωh1̂
(9)
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for any ϕ ∈ Sh and 1 ≤ m ≤ M , and the initial condition

Ψ |t=0 = Ψ0|Ω̄ ∈ Sh. (10)

Here Ψm
±X1

=
{
Ψ0

∣
∣
x1=±X1

, . . . , Ψm
∣
∣
x1=±X1

}
is a vector-function.

The operator Sref in the discrete TBC has the form

Sm
refΦ

m := F−1
2 . . . F−1

n

[
σ(2)

q2 . . . σ(n)
qn

Rq ∗ Φq
]m

on ω τ
M (11)

for any Φ: ωh1̂ × ω τ
M → C such that Φ0 = 0, where Φm := {Φ0, . . . , Φm},

Φq := (Fn . . . (F2Φ)(q2) . . . )(qn) and q = (q2, . . . , qn). Here the kernel Rq can be
computed by the recurrent formulas

R0
q = c1q, R1

q = −c1qκqμq, Rm
q =

2m − 3

m
κqμqRm−1

q − m − 3

m
κ2
qRm−2

q , m ≥ 2,

with the coefficients defined by

c1q = −|αq|1/2

2
e−i(arg αq)/2, κq = −ei arg αq , μq =

βq

|αq| ∈ (−1, 1), (12)

αq = 2aq +
1
3
h2
1a

2
q �= 0, arg αq ∈ (0, 2π), βq = 2 Re aq +

1
3
h2
1|aq|2,

aq =
V∞

B1∞�2
+

1
2B1∞

(
B2∞

λ
(2)
q2

σ
(2)
q2

+ · · · + Bn∞
λ
(n)
qn

σ
(n)
qn

)
+ i

2ρ∞
τ�B1∞

.

The next lemma is important to prove stability results for method (9), (10).

Lemma 1. The operator Sm
ref satisfies the inequalities [2,3]

Im
m∑

l=1

(Sl
refΦ

l, stΦ
l
)
ωh1̂

τ ≥ 0, Im
m∑

l=1

(Sl
refΦ

l, (i�∂t + v̂st)Φl
)
ωh1̂

τ ≥ 0

on ω τ
M , for any Φ: ωh1̂ × ω τ

M → C such that Φ0 = 0 and v̂ ≥ −V∞
ρ∞

(see (3)).

Let �m(ϕ) be a conjugate linear functional on Sh that we add to the right-hand
side of (9) to study stability in more detail.

Proposition 4. Let �m(ϕ) = (Fm, ϕ)L2(Ω) with Fm ∈ L2(Ω) for 1 ≤ m ≤ M .
Then the solution to (9), (10) is unique and satisfies the first stability bound

max
0≤m≤M

‖Ψm‖L2,ρ(Ω) ≤ ‖Ψ0‖L2,ρ(Ω) +
2
�

M∑

m=1

‖Fm‖L2,1/ρ(Ω) τ. (13)

We introduce the “energy” norm on Ω such that

‖w‖2H+v̂ρ;Ω := LΩ(w,w) + v̂ ‖√
ρ w‖2L2(Ω) > 0, (14)
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for any w ∈ H̃1(Ω) := {H1(Ω); w|(−X1,X1)×∂Π1̂
= 0} except for w = 0, and some

real number v̂ ≥ −V∞
ρ∞

. In particular, for v̂ so large that �
2

2 Bλ0+V (x)+v̂ρ(x) > 0
on Ω, (14) is valid. Define also the respective dual mesh depending norm

‖w‖H−1
h (Ω) := max

ϕ∈Sh: ‖ϕ‖H+v̂ρ; Ω=1
|〈w,ϕ〉Ω | ≤ c‖w‖H−1(Ω), H−1(Ω) = [H̃1(Ω)]∗,

where 〈w,ϕ〉Ω is the conjugate duality relation on H−1(Ω) × H̃1(Ω).

Proposition 5. Let �m(ϕ) = 〈Fm, ϕ〉Ω with Fm ∈ H−1(Ω) for 1 ≤ m ≤ M
and F 0 ∈ H−1(Ω) be arbitrary. Then the solution to (9), (10) is unique and
satisfies the second stability bound

max
0≤m≤M

‖Ψm‖H+v̂ρ;Ω ≤ ∥
∥Ψ0

∥
∥

H+v̂ρ;Ω

+4
M∑

m=1

( |v̂|
�

‖Fm‖H−1
h (Ω) +

∥
∥∂tF

m
∥
∥

H−1
h (Ω)

)
τ + 4

∥
∥F 0

∥
∥

H−1
h (Ω)

. (15)

Propositions 1–5 and Lemma 1 in the quite similar cases of the semi-infinite Π =
(0,∞) (n = 1) and Π = (0,∞) × (0,X2) (n = 2) were proved respectively in
[4] and [12,15] (see also [16]), where families of finite-difference schemes with
space averages depending on a parameter θ were treated covering, in particular,
the linear and bilinear FEMs (for θ = 1

6 ). For the presented improvement in
formulas (12), see also [14]. For n = 1, the results are as well particular cases
of those from [13] (given specifically for general FEM). The case n ≥ 3 can be
treated in the same manner as n = 2 (for such an example, see [11]).

The numerical results for the method can be found in [4,15,16].

3 Error Estimates

Let condition (7) be valid and σw be the elliptic projection of w ∈ H1
0 (Π) onto

Sh(Π̄) such that

LΠ(σw,ϕ) + v̂(σw,ϕ)L2,ρ(Π) = LΠ(w,ϕ) + v̂(w,ϕ)L2,ρ(Π) (16)

for any ϕ ∈ Sh(Π̄). Note that σw exists and is unique. We also assume below
that B ∈ W 1,∞(Π) and then the following error estimate holds

‖w − σw‖L2,ρ(Π) ≤ c|h|2‖(Hρ + v̂)w‖L2,ρ(Π) for any w ∈ H2(Π) ∩ H1
0 (Π).(17)

We consider Hρ := 1
ρH as an unbounded operator in L2,ρ(Π) with D(Hρ) =

H2(Π) ∩ H1
0 (Π). Assume below that ψ0 ∈ D(H3

ρ).

Proposition 6. The following first error estimate holds

max
0≤m≤M

‖(ψ − Ψ)m‖L2,ρ(Π) ≤ ‖Ψ0 − σψ0‖L2,ρ(Π)

+c(1 + T )
{
τ2
max‖H3

ρψ
0‖L2,ρ(Π) +|h|2(‖H2

ρψ
0‖L2,ρ(Π) + ‖ψ0‖L2,ρ(Π)

)}
. (18)

Here σψ0 can be replaced by ψ0.



Error Estimates of the Crank-Nicolson-Polylinear FEM 135

Proof. 1. For y ∈ L1(0, T ), define the average (the projection on the time mesh)
[y]m := 1

τm

∫ tm

tm−1
y(t)dt, 1 ≤ m ≤ M, and notice that

M∑

m=1

‖[u]m‖Bτm ≤
∫ T

0

‖u(·, t)‖B dt, (19)

where ‖ · ‖B = ‖ · ‖L2,ρ(Π) or ‖ · ‖H+v̂ρ;Π and u ∈ L1(0, T ;B), and

|[y]m − sty
m| ≤ c0τ

2
m[|D2

t y|]m, 1 ≤ m ≤ M, for y ∈ W 2,1(0, T ). (20)

2. Applying [·] to identity (4), we get

i�([Dtψ]m, ϕ)L2,ρ(Π) = LΠ([ψ]m, ϕ) for any ϕ ∈ H1
0 (Π) and 1 ≤ m ≤ M. (21)

Then for any η: ω τ
M → Sh(Π̄) from identities (5) and (21) it follows that

i�(∂t(Ψ − η)m, ϕ)L2,ρ(Π) − LΠ(st(Ψ − η)m, ϕ)

= i�(([Dtψ]−∂tη)m, ϕ)L2,ρ(Π) − LΠ(([ψ] − stη)m, ϕ) for any ϕ ∈ Sh(Π̄).

Let ηm := σψm, 0 ≤ m ≤ M . By identity (16) and [Dty] = ∂ty we get

i�(ρ∂t(Ψ − σψ)m, ϕ)L2(Π) − LΠ(st(Ψ − σψ)m, ϕ)
= i�(ρ([Dtψ]m − [Dtσψ]m), ϕ)L2(Π) − LΠ(([ψ] − stψ)m, ϕ)

+v̂(ρst(ψ − σψ)m, ϕ)L2(Π) =: (F,ϕ)L2(Π) for any 1 ≤ m ≤ M, (22)

where (after rearranging the summands)

F = −([Hψ] − stHψ) + i�ρ[Dt(ψ − σψ)] + v̂ρst(ψ − σψ). (23)

Let now on � = 1. Proposition 1 together with (19) lead to the bound

max
0≤m≤M

‖(Ψ − σψ)m‖L2,ρ(Π) ≤ ‖Ψ0 − σψ0‖L2,ρ(Π) + 2
M∑

m=1

‖Fm‖L2,1/ρ(Π) τm

≤ ‖Ψ0 − σψ0‖L2,ρ(Π) + 2
M∑

m=1

‖(
[Hρψ] − stHρψ

)m‖L2,ρ(Π)τm

+2
∫ T

0

‖Dt(ψ − σψ)‖L2,ρ(Π) dt + 2|v̂|T max
0≤m≤M

‖(ψ − σψ)m‖L2,ρ(Π).

The formula ψ − Ψ = ψ − σψ − (Ψ − σψ) and estimates (17) and (20) imply

max
0≤m≤M

‖(ψ − Ψ)m‖L2,ρ(Π) ≤ ‖Ψ0 − σψ0‖L2,ρ(Π)

+c
{

τ2
max

∫ T

0

‖D2
t Hρψ‖L2,ρ(Π) dt + |h|2

∫ T

0

‖Dt(Hρ + v̂)ψ‖L2,ρ(Π) dt

+(1 + |v̂|T )|h|2 max
0≤m≤M

‖(Hρ + v̂)ψm‖L2,ρ(Π)

}
. (24)
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Under the above assumptions, the solution to problem (1), (2) satisfies the
bound

max
0≤t≤T

‖Dk
t ψ‖L2,ρ(Π) ≤ ‖(Dk

t ψ)|t=0‖L2,ρ(Π)=‖Hk
ρψ0‖L2,ρ(Π), 0 ≤ k ≤ 3,(25)

and the property Dk
t ψ = Dk−l

t (−iHρ)lψ for 1 ≤ l ≤ k. Therefore

max
0≤m≤M

‖(ψ − Ψ)m‖L2,ρ(Π) ≤ ‖Ψ0 − σψ0‖L2,ρ(Π) + c
{
Tτ2

max‖H3
ρψ

0‖L2,ρ(Π)

+T |h|2‖H2
ρψ

0‖L2,ρ(Π) + (1 + |v̂|T )|h|2(‖Hρψ
0‖L2,ρ(Π) + |v̂|‖ψ0‖L2,ρ(Π)

)}
.

Note that for v̂ = 0 the estimate is simplified.
The following multiplicative inequality holds

‖Hl
ρψ

0‖2L2,ρ(Π) ≤ ‖Hl+1
ρ ψ0‖L2,ρ(Π)‖Hl−1

ρ ψ0‖L2,ρ(Π) for l = 1, 2. (26)

Using (17) for w = ψ0 together with (26) for l = 1, we complete the proof. ��
Corollary 1. Let ψ0(x) = 0 for |x1| ≥ X0, Ψ0 ∈ S0h and ω τ

M be uniform. Then
for the solution to (9), (10) the following first error estimate holds

max
0≤m≤M

‖(ψ − Ψ)m‖L2,ρ(Ω) ≤ ‖Ψ0 − ψ0‖L2,ρ(Ω)

+c(1 + T )
{
τ2‖H3

ρψ
0‖L2,ρ(Ω) + |h|2(‖H2

ρψ
0‖L2,ρ(Ω) + ‖ψ0‖L2,ρ(Ω)

)}
.

The result immediately follows from Proposition 6. Notice also that, for 1 ≤ n ≤
3, for the interpolant sψ0 in S0h for ψ0, the following error estimate holds

‖sψ0 − ψ0‖L2,ρ(Ω) ≤ c|h|2(‖Hρψ
0‖L2,ρ(Ω) + ‖ψ0‖L2,ρ(Ω)

)
,

thus one can set simply Ψ0 := sψ0. Other possible choices of Ψ0 with the same
error estimate, for any n ≥ 1, are the L2(Ω0) (possibly with a weight like ρ)
projection of ψ0 onto S0h or its elliptic projection onto S0h like (16) (with Π
replaced by Ω0 and any ϕ ∈ S0h).

Let B ∈ W 2,∞(Π) and ρ, V ∈ W 1,∞(Π).

Proposition 7. Let H3
ρψ

0 ∈ H1
0 (Π), 1 ≤ n ≤ 3 and Ψ0 := sψ0. Then the

following second error estimate holds

max
0≤m≤M

‖sψm − Ψm ‖H+v̂ρ; Π ≤ c(1 + T )
{

τ2
max

(‖H3
ρψ0‖H+v̂ρ; Π + ‖H2

ρψ0‖H+v̂ρ; Π

)

+|h|2(‖H3
ρψ0‖L2,ρ(Π) + ‖ψ0‖L2,ρ(Π)

)}
. (27)

Here sψm is the interpolant in Sh(Π̄) for ψm, 0 ≤ m ≤ M .

Proof. 1. Let first n ≥ 1. Inequality (7) implies

‖ρw‖H−1
h (Π) ≤ δ̂−1/2‖w‖L2,ρ(Π), ‖w‖L2,ρ(Π) ≤ δ̂−1/2‖w‖H+v̂ρ;Π . (28)
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Then setting ĉ := 1 + |v̂|
δ̂

, we also get

‖Hw‖H−1
h (Π) ≤ ‖(H + v̂ρ)w‖H−1

h (Π) + |v̂|‖ρw‖H−1
h (Π) ≤ ĉ‖w‖H+v̂ρ;Π . (29)

For y ∈ L1(0, T ), define two more averages (projections on the time mesh)

[y]m2 :=
1

2τ̂m

∫ tm+1

tm−1

y(t)dt, 〈y〉m :=
1

τ̂m

∫ tm+1

tm−1

y(t)em(t)dt, 1 ≤ m ≤ M − 1,

[y]02 := [y]1, 〈y〉0 :=
2
τ1

∫ t1

0

y(t)e0(t)dt,

where em(t) is the “hat” function linear on all segments [tl−1, tl] and such that
em(tm) = 1 and em(tl) = 0 for all l �= m.

Notice that the following relations hold

∂̂t[y]m = 〈Dty〉m, (∂̂tsty)m = [Dty]m2 , 1 ≤ m ≤ M − 1, (30)

[y]1 − y(0) =
τ1
2

〈Dty〉0, (sty)1 − y(0) =
τ1
2

[Dty]1, for y∈W 1,1(0, T ), (31)

M−1∑

m=0

‖〈u〉m‖τ̂m ≤
∫ T

0

‖u(·, t)‖ dt,

M−1∑

m=0

‖[u]m2 ‖τ̂m ≤
∫ T

0

‖u(·, t)‖ dt, (32)

where ‖ · ‖ = ‖ · ‖L2,ρ(Π) and u ∈ L2,1(Π × (0, T )), and

|〈y〉m − [y]m2 | ≤ c0τ
2
m[|D2

t y|]m2 , 1 ≤ m ≤ M − 1, for y ∈ W 2,1(0, T ). (33)

2. Let first Ψ0 ∈ Sh(Π̄) be arbitrary. We go back to the error identity (22).
Applying Proposition 2, now we get

max
0≤m≤M

‖(Ψ − σψ)m‖H+v̂ρ;Π ≤ ‖Ψ0 − σψ0‖H+v̂ρ;Π

+4
M−1∑

m=0

‖∂̂tF
m‖H−1

h (Π)τ̂m + 4|v̂|
M∑

m=1

‖Fm‖H−1
h (Π)τm + 4‖F 0‖H−1

h (Π), (34)

where the right-hand side is slightly transformed and F is given by (23). We
introduce the decomposition

F = Fτ + ρFh, Fτ := −([Hψ] − stHψ), Fh := i[Dt(ψ − σψ)] + v̂st(ψ − σψ)

as well as set F 0
τ := 0 and F 0

h = iDt(ψ − σψ)|t=0 + v̂(ψ0 − σψ0).
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Applying sequentially relations (29), (30), (20), (33), (19) and (32), we obtain

Sτ := |v̂|
M∑

m=1

‖Fm
τ ‖H−1

h (Π)τm +
M−1∑

m=0

‖∂̂tF
m
τ ‖H−1

h (Π)τ̂m

≤ ĉ
(
|v̂|

M∑

m=1

‖([ψ] − stψ)m‖ H+v̂ρ;Πτm +
M−1∑

m=1

‖(〈Dtψ〉 − [Dtψ]2)m‖H+v̂ρ;Π τ̂m

+ ‖([ψ] − stψ)1‖H+v̂ρ;Π

)

≤ ĉc0τ
2
max

(
|v̂|

M∑

m=1

‖[|D2
t ψ|]m‖H+v̂ρ;Πτm +

M−1∑

m=1

‖[|D3
t ψ|]m2 ‖H+v̂ρ;Π τ̂m

+‖[|D2
t ψ|]1‖H+v̂ρ;Π

)

≤ ĉc0τ
2
max

{
‖(D2

t ψ)|t=0‖H+v̂ρ; Π +

∫ T

0

(|v̂|‖D2
t ψ‖H+v̂ρ; Π + 2‖D3

t ψ‖H+v̂ρ; Π

)
dt
}

. (35)

The left inequality (28) implies

Sh := |v̂|
M∑

m=1

‖ρFm
h ‖H−1

h (Π)τm + ‖ρF 0
h‖H−1

h (Π) +
M−1∑

m=0

‖ρ∂̂tF
m
h ‖H−1

h (Π)τ̂m

≤ δ̂−1/2
(
|v̂|

M∑

m=1

‖Fm
h ‖L2,ρ(Π)τm + ‖F 0

h‖L2,ρ(Π) +
M−1∑

m=0

‖∂̂tF
m
h ‖L2,ρ(Π)τ̂m

)
, (36)

and further the error estimate (17) leads to

‖F 0
h‖L2,ρ(Π) ≤ ‖Dt(ψ − σψ)|t=0‖L2,ρ(Π) + |v̂|‖ψ0 − σψ0‖L2,ρ(Π)

≤ c|h|2(‖Dt(Hρ + v̂)ψ|t=0‖L2,ρ(Π) + |v̂|‖(Hρ + v̂)ψ0‖L2,ρ(Π)

)
. (37)

Applying sequentially relations (30), (31), (17) and (32), we also obtain

M−1∑

m=0

‖∂̂tF
m
h ‖L2,ρ(Π)τ̂m

≤
M−1∑

m=0

(‖〈D2
t (ψ − σψ)〉m‖L2,ρ(Π) + |v̂|‖[Dt(ψ − σψ)]m2 ‖L2,ρ(Π)

)
τ̂m

≤ c|h|2
M−1∑

m=0

(‖〈D2
t (Hρ + v̂)ψ〉m‖L2,ρ(Π) + |v̂|‖[Dt(Hρ + v̂)ψ]m2 ‖L2,ρ(Π)

)
τ̂m

≤ c|h|2
∫ T

0

(‖D2
t (Hρ + v̂)ψ‖L2,ρ(Π) + |v̂|‖Dt(Hρ + v̂)ψ‖L2,ρ(Π)

)
dt. (38)
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Inserting into (34) all the estimates (35)-(38) together with the estimate for∑M
m=1 ‖Fm

h ‖L2,ρ(Π)τm used in the preceding proof in (24), we derive

max
0≤m≤M

‖(Ψ − σψ)m‖H+v̂ρ;Π ≤ ‖Ψ0 − σψ0‖H+v̂ρ;Π + 4Sτ + 4Sh

≤ cτ2
max

{
‖(D2

t ψ)|t=0‖H+v̂ρ;Π +
∫ T

0

(|v̂|‖D2
t ψ‖H+v̂ρ;Π + ‖D3

t ψ‖H+v̂ρ;Π

)
dt

}

+ c|h|2
{

|v̂|
∫ T

0

‖Dt(Hρ + v̂)ψ‖L2,ρ(Π) dt + v̂2T max
0≤t≤T

‖(Hρ + v̂)ψm‖L2,ρ(Π)

+ ‖Dt(Hρ + v̂)ψ|t=0‖L2,ρ(Π) + |v̂|‖(Hρ + v̂)ψ0‖L2,ρ(Π)

+
∫ T

0

(‖D2
t (Hρ + v̂)ψ‖L2,ρ(Π) + |v̂|‖Dt(Hρ + v̂)ψ‖L2,ρ(Π)

)
dt

}
.

Once again for v̂ = 0 the estimate is essentially simplified.
Under all the above assumptions, the solution to problem (1), (2) satisfies

the bound

max
0≤t≤T

‖Dk
t ψ‖H+v̂ρ;Π ≤ ‖(Dk

t ψ)|t=0‖H+v̂ρ;Π = ‖Hk
ρψ0‖H+v̂ρ;Π , 0 ≤ k ≤ 3.

This bound and (25) and the property Dk
t ψ = Dk−l

t (−iHρ)lψ, 1 ≤ l ≤ k, imply

max
0≤m≤M

‖(Ψ − σψ)m‖H+v̂ρ;Π ≤ ‖Ψ0 − σψ0‖H+v̂ρ;Π

≤ c(1 + T )
{

τ2
max

(‖H2
ρψ0‖H+v̂ρ; Π + ‖H3

ρψ0‖H+v̂ρ; Π

)
+|h|2

3∑
k=0

‖Hk
ρψ0‖L2,ρ(Π)

}
.(39)

3. Let now 1 ≤ n ≤ 3 and Ψ0 = sψ0. Similarly to [9], Lemma 5.1 for n = 1
and [10], Theorem 2.1 for n = 2 and 3 (see also [8]), the following elliptic FEM
error estimate holds

‖sw − σw‖H+v̂ρ;Π ≤ c|h|2
(∑

p�=q

‖D2
pDqw‖L2(Π) +

n∑

p=1

‖D2
pw‖L2(Π)

)

≤ c1|h|2(‖Hρw‖H+v̂ρ;Π + ‖w‖H+v̂ρ;Π

)

for any w ∈ D(Hρ) such that Hρw ∈ H1
0 (Π), taking into account the above

regularity assumptions on B, ρ and V , where the first sum is taken over all p
and q from 1 to n excluding p = q and disappears for n = 1. This estimate allows
to pass from (39) to the final estimate (27) by the triangle inequality together
with inequalities (26) and

‖Hl
ρψ

0‖2H+v̂ρ;Π ≤ ‖(Hρ + v̂)Hl
ρψ

0‖L2,ρ(Π)‖Hl
ρψ

0‖L2,ρ(Π), l = 0, 1.

��
Corollary 2. Let ψ0(x) = 0 for |x1| ≥ X0, 1 ≤ n ≤ 3 and Ψ0 = sψ0 on Ω̄ and
ω τ

M be uniform. Then for the solution to (9), (10) the following second error
estimate holds
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max
0≤m≤M

‖sψm−Ψm‖H+v̂ρ;Ω ≤ c(1 + T )
{

τ2
(‖H3

ρψ
0‖H+v̂ρ;Ω + ‖H2

ρψ
0‖H+v̂ρ;Ω

)

+ |h|2(‖H3
ρψ

0‖L2,ρ(Ω) + ‖ψ0‖L2,ρ(Ω)

)}
.

The result immediately follows from Proposition 7.
Note that the norm ‖ · ‖H+v̂ρ;Ω is equivalent to ‖ · ‖H1(Ω) and ‖s · ‖H1(Ω) is

actually the mesh counterpart of the latter norm.
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Abstract. The initial-boundary value problem for the delay parabolic
partial differential equation with nonlocal conditions is studied. The con-
vergence estimates for solutions of first and second order of accuracy
difference schemes in Hölder norms are obtained. The theoretical state-
ments are supported by a numerical example.

Keywords: Difference schemes · Delay parabolic equation · Hölder
spaces · Convergence

1 Introduction

Delay differential equations provide a mathematical model for a physical or bio-
logical system in which the rate of change of the system depends on the past
history. The theory of these equations is well developed and has numerous appli-
cations in natural and engineering sciences. Typical examples that delay differ-
ential equations appear are diffusive population models with temporal averages
over the past,tumor growth, neural networks, control theory, climate models
etc. Numerical solutions of delay ordinary differential equations have been stud-
ied mostly for ordinary differential equations (cf., e.g., [1–9] and the references
therein). Generally, delay partial differential equations get less attention than
delay ordinary differential equations.

In recent years, A. Ashyralyev and P. E. Sobolevskii obtained the sta-
bility estimates in Hölder norms for solutions of the initial-value problem
of delay differential and difference equations of the parabolic type [10,11].
D.B. Gabriella used extrapolation spaces to solve delay differential equations
with unbounded delay operators [12]. Different kinds of problems for delay
partial differential equations are solved by using operator approach (see,
e.g., [13–20]).

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 145–152, 2015.
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In this paper, the initial-boundary value problem for the delay differential equa-
tion of the parabolic type

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut(t, x) − a(x)uxx(t, x) + c(x)u(t, x)
= d(t)(−a(x)uxx(t − ω, x) + c(x)u(t − ω, x)),
0 < t < ∞, x ∈ (0, L),
u(t, x) = g(t, x),−ω ≤ t ≤ 0, x ∈ [0, L],
u (t, 0) = u (t, L) , ux (t, 0) = ux (t, L) , t ≥ 0

(1)

is studied. Here g(t, x) (t ∈ (−∞, 0), x ∈ [0, L]), a(x), c(x) (x ∈ (0, L)) are given
smooth bounded functions and a(x) ≥ a > 0, c(x) ≥ c > 0 . Difference schemes
of first and second order of accuracy for the numerical solutions of Problem (1)
are presented. The convergence of these difference schemes are studied. The
numerical solutions are found by using MATLAB programs.

2 Difference Schemes, Convergence Estimate

The discretization of Problem (1) is carried out in two steps. In the first step,
we define the grid space

[0, L]h = {x = xn : xn = nh, 0 ≤ n ≤ M, Mh = L} .

To formulate our results, we introduce the Banach space
◦
C

α

h =
◦
C

α

[0, L]h, α ∈
[0, 1), of all grid functions ϕh = {ϕn}M

n=0 defined on [0, L]h with ϕ0 = ϕM ,
ϕ1 − ϕ0 = ϕM − ϕM−1 or 3ϕ0 − 4ϕ1 + ϕ2 = −3ϕM + 4ϕM−1 − ϕM−2 equipped
with the norm

∥
∥ϕh

∥
∥ ◦

C
α

h

=
∥
∥ϕh

∥
∥

Ch
+ sup

1≤n<n+r≤M−1
|ϕn+r − ϕn| (rh)−α

,

∥
∥ϕh

∥
∥

Ch
= max

1≤n≤M−1
|ϕn| .

Moreover, Cτ (E) = C ([0,∞)τ , E) is the Banach space of all grid functions
fτ = {fk}∞

k=1 defined on

[0,∞)τ = {tk = kτ, k = 0, 1, · · · }

with values in E equipped with the norm

‖fτ‖Cτ (E) = sup
1≤k<∞

‖fk‖E .

To the differential operator A generated by Problem (1), we assign the difference
operators Ax

h, Bx
h by the formulas

Ax
hϕh (x) =

{
−a (xn)

ϕn+1 − 2ϕn + ϕn−1

h2
+ c (xn) ϕn

}M−1

1

,
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Bx
h (t) ϕh (x) = d (t)Ax

hϕh (x) ,

acting in the space of grid functions ϕh (x) = {ϕn}M
0 satisfying the conditions

ϕ0 = ϕM , ϕ1−ϕ0 = ϕM −ϕM−1 for the first order of approximation of difference
operator Ax

h and the conditions ϕ0 = ϕM , 3ϕ0 − 4ϕ1 + ϕ2 = −3ϕM + 4ϕM−1 −
ϕM−2 for the second order of approximation of difference operator Ax

h. It is well
known that Ax

h is a strongly positive operator in Ch. With the help of Ax
h and

d (t) Ax
h, we arrive at the initial value problem

{
duh(t,x)

dt + Ax
huh (t, x) = d (t) Ax

huh (t − w, x) , 0 < t < ∞,

uh (t, x) = gh (t, x) , −ω ≤ t ≤ 0.
(2)

In the second step, we consider difference schemes of first and second order of
accuracy

⎧
⎪⎨

⎪⎩

1
τ

(
uh

k (x) − uh
k−1 (x)

)
+ Ax

huh
k (x) = d (tk) Ax

huh
k−N (x) ,

tk = kτ, 1 ≤ k, Nτ = w,

uh
k (x) = gh (tk, x) , tk = kτ, −N ≤ k ≤ 0,

(3)

⎧
⎪⎨

⎪⎩

1
τ (uh

k (x) − uh
k−1 (x)) + (Ax

h + 1
2τ (Ax

h)2)uh
k (x)

= 1
2 (I + τ

2Ax
h)d

(
tk − τ

2

)
Ax

h(uh
k−N (x) + uh

k−N−1 (x)),
tk = kτ, 1 ≤ k, uh

k = gh(tk, x), tk = kτ, −N ≤ k ≤ 0.

(4)

Note that in (4), we assign the difference operator (Ax
h)2 = Ax

h ·Ax
h acting in the

space of grid functions ϕh (x) = {ϕn}M
0 satisfying the conditions

ϕ0 = ϕM , 3ϕ0 − 4ϕ1 + ϕ2 = −3ϕM + 4ϕM−1 − ϕM−2,

2ϕ0 − 5ϕ1 + 4ϕ2 − ϕ3 = 2ϕM − 5ϕM−1 + 4ϕM−2 − ϕM−3,

10ϕ0 − 15ϕ1 + 6ϕ2 − ϕ3 = −10ϕM + 15ϕM−1 − 6ϕM−2 + ϕM−3

generated by second order approximations of conditions ϕ0 = ϕL, ϕ′
0 = ϕ′

L, ϕ′′
0 =

ϕ′′
L and ϕ′′′

0 = ϕ′′′
L .

Theorem 1. Assume that

sup
0≤t<∞

|d(t)| ≤ 1 − α

M22−α
. (5)

Suppose that Problem (1) has a smooth solution u (t, x) and
∫ ∞

0

[
max

0≤x≤L
|uss (s, x)| + sup

0<x<x+y<L

|uss (s, x + y) − uss (s, x)|
y2α

]
ds < ∞,

∫ ∞

0

[
max

0≤x≤L
|uxxxx (s, x)| + sup

0<x<x+y<L

|uxxxx (s, x + y) − uxxxx (s, x)|
y2α

]
ds < ∞.

Then, for the solution of difference scheme (3), the following convergence esti-
mate holds

sup
k

∥
∥uh

k − uh (tk, ·)∥∥ ◦
C

2α

h

≤ M1

(
τ + h2

)

with M1 is a real number independent of τ , α and h.
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Proof. Using notations of Ax
h and Bx

h (tk), we can obtain the following formula
for the solution

uh
k (x) = Rkgh (0, x) +

k∑

j=1

Rk−j+1Bx
h (tj) gh (tj−N , x) τ, 1 ≤ k ≤ N, (6)

and
uh

k (x) = Rk−nNuh
nN (x)

+
k∑

j=nN+1

Rk−j+1Bx
h (tj) uh

j−N (x) τ, nN ≤ k ≤ (n + 1) N, (7)

where R =
(
I + τAh

x

)−1. The proof of the Theorem 1 is based on the
Formulas (6) and (7) on the convergence theorem for difference schemes in
Cτ

(
Eh

α

)
, on the estimate

‖ exp{−tkAx
h}‖Ch→Ch

≤ M, k ≥ 0, (8)

and on the fact that in the Eh
α = Eα(Ax

h, Ch)- norms are equivalent to the norms
◦
C

2α

h uniformly in h for 0 < α < 1
2 (see, [13]).

Theorem 2. Assume that assumption (5) of the Theorem 1 and the following
conditions hold.

∫ ∞

0

[
max

0≤x≤L
|usss (s, x)| + sup

0<x<x+y<L

|usss (s, x + y) − usss (s, x)|
y2α

]
ds < ∞,

∫ ∞

0

[
max

0≤x≤L
|uxxss (s, x)| + sup

0<x<x+y<L

|uxxss (s, x + y) − uxxss (s, x)|
y2α

]
ds < ∞,

∫ ∞

0

[
max

0≤x≤L
|uxxxxs (s, x)| + sup

0<x<x+y<L

|uxxxxs (s, x + y) − uxxxxs (s, x)|
y2α

]
ds < ∞.

Then for the solution of difference scheme (4), the following convergence estimate
is satisfied

sup
k

∥
∥uh

k − uh (tk, ·)∥∥ ◦
C

2α

h

≤ M2

(
τ2 + h2

)

with M2 is a real number independent of τ , α and h.

Proof. Using notations of Ax
h and Bx

h (tk) again, we can obtain the following
formula for the solution

uh
k (x) = Rkgh (0, x)

+
k∑

j=1

Rk−j+1

(
I +

τAx
h

2

)
(
gh (tj−N , x) + gh (tj−N−1, x)

)
τ, 1 ≤ k ≤ N, (9)
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and

uh
k (x) = Rk−nNuh

nN (x)

+
k∑

j=nN+1

Rk−j+1

(
I +

τAx
h

2

)
Bx

h (tj)
1
2

(
uh

j−N (x) + uh
j−N−1 (x)

)
τ,

nN ≤ k ≤ (n + 1) N. (10)

where R =
(

I + τAx
h + (τAh

x)2
2

)−1

. The proof of the Theorem 2 is based on

the Formulas (9) and (10) on the convergence theorem for difference schemes
in Cτ

(
Eh

α

)
, on the estimate (8) and on the equivalence of the norms as in

Theorem 1.
Finally, the numerical methods are given in the following section for the

solution of delay parabolic differential equation with the nonlocal condition.
The method is illustrated by numerical examples.

3 Numerical Applications

We consider the initial-boundary value problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,x)
∂t − ∂2u(t,x)

∂x2 = − (0.1) ∂2u(t−1,x)
∂x2 , t > 0, 0 < x < π,

u (t, x) = e−4t sin 2x,−1 ≤ t ≤ 0, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) , ux (t, 0) = ux (t, π) , t ≥ 0

(11)

for the delay parabolic differential equation. The exact solution of this problem
for t ∈ [n − 1, n] , n = 0, 1, 2, · · · , x ∈ [0, π] is

u (t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−4t sin 2x, −1 ≤ t ≤ 0,

e−4t
{
1 + 4 (0.1) e4t

}
sin 2x, 0 ≤ t ≤ 1,

e−4t

{
1 + 4 (0.1) e4t +

[4(0.1)e4(t−1)]2

2!

}
sin 2x, 1 ≤ t ≤ 2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

e−4t

{
1 + 4 (0.1) e4t + · · · +

[4(0.1)e4(t−n)]n+1

(n+1)!

}
sin 2x, n ≤ t ≤ n + 1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

We get the following first order of accuracy difference scheme for the approx-
imate solution of the initial-boundary value problem for the delay parabolic
Eq. (11)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk
n−uk−1

n

τ − uk
n+1−2uk

n+uk
n−1

h2 = −0.1
uk−N

n+1 −2uk−N
n +uk−N

n−1
h2 ,

mN + 1 ≤ k ≤ (m + 1) N, m = 0, 1, · · · , 1 ≤ n ≤ M − 1,

uk
n = e−4tk sin 2xn, −N ≤ k ≤ 0, 0 ≤ n ≤ M,

uk
0 = uk

M , uk
1 − uk

0 = uk
M − uk

M−1, k ≥ 0.

(12)

We can rewrite (12) in matrix form

AUk + BUk−1 = Rϕk, 1 ≤ k ≤ N, U0 = ϕ. (13)

From (13) it follows that

Uk = −A−1BUk−1 + A−1Rϕk, 1 ≤ k ≤ N. (14)

Second, using the second order of accuracy difference scheme for the approxi-
mate solution of Problem (11) we obtain the following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk
n−uk−1

n

τ − uk
n+1−2uk

n+uk
n−1

h2 + τ
2

(
uk

n+2−4uk
n+1+6uk

n−4uk
n−1+uk

n−2
h4

)

= − (0.1)
{

uk−N
n+1 −2uk−N

n +uk−N
n−1

2h2 +
uk−1−N

n+1 −2uk−1−N
n +uk−1−N

n−1
2h2

− τ
2

[
uk−N

n+2 −4uk−N
n+1 +6uk−N

n −4uk−N
n−1 +uk−N

n−2
2h4

+
uk−1−N

n+2 −4uk−1−N
n+1 +6uk−1−N

n −4uk−1−N
n−1 +uk−1−N

n−2
2h4

]}
= 0,

mN + 1 ≤ k ≤ (m + 1)N, m = 0, 1, · · · , 2 ≤ n ≤ M − 2,

uk
n = e−4tk sin 2xn, −N ≤ k ≤ 0, 0 ≤ n ≤ M,

uk
0 = uk

M , k ≥ 0,

3uk
0 − 4uk

1 + uk
2 = −3uk

M + 4uk
M−1 − uk

M−2, k ≥ 0,

2uk
0 − 5uk

1 + 4uk
2 − uk

3 = 2uk
M − 5uk

M−1 + 4uk
M−2 − uk

M−3, k ≥ 0,

10uk
0 − 15uk

1 + 6uk
2 − uk

3 = −10uk
M + 15uk

M−1 − 6uk
M−2 + uk

M−3, k ≥ 0.
(15)

We have again (M + 1) × (M + 1) system of linear equations and we rewrite
them in the matrix form (13). Now, we give numerical results for different values
of N and M and uk

n represent the numerical solutions of these difference schemes
at (tk, xn) . Tables 1, 2, 3, and 4 are constructed for N = M = 50, 100, 200 in
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Table 1. Comparison of the errors of different difference schemes in t ∈ [0, 1]

Method N=M=50 N=M=100 N=M=200

Difference scheme (3) 0.1073487831 0.0547768623 0.0276391767

Difference scheme (4) 0.0022364343 0.0005798409 0.0001463692

Table 2. Comparison of the errors of different difference schemes in t ∈ [1, 2]

Method N=M=50 N=M=100 N=M=200

Difference scheme (3) 0.0044792100 0.0023497584 0.0012013854

Difference scheme (4) 0.0014763957 0.0003821482 0.0000965218

Table 3. Comparison of the errors of different difference schemes in t ∈ [2, 3]

Method N=M=50 N=M=100 N=M=200

Difference scheme (3) 0.0030208607 0.0015155583 0.0007582183

Difference scheme (4) 0.0003769232 0.0000973214 0.0000245676

Table 4. Comparison of the errors of different difference schemes in t ∈ [3, 4]

Method N=M=50 N=M=100 N=M=200

Difference scheme (3) 0.0008494067 0.0004217773 0.0002100074

Difference scheme (4) 0.0000762753 0.0000196839 0.0000049727

t ∈ [0, 1], t ∈ [1, 2], t ∈ [2, 3], t ∈ [3, 4] respectively and the error is computed by
the following formula.

EN
M = max

−N≤k≤N

1≤n≤M

∣
∣u (tk, xn) − uk

n

∣
∣ .

Thus the numerical results of this section support the theoretical arguments
in Theorems 1 and 2.
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3. Cooke, K.L., Györi, I.: Numerical approximation of the solutions of delay differen-
tial equations on an infinite interval using piecewise constant arguments. Comput.
Math. Appl. 28, 81–92 (1994)

4. Torelli, L.: Stability of numerical methods for delay differential equations. J. Com-
put. and Appl. Math. 25, 15–26 (1989)



152 A. Ashyralyev and D. Agirseven

5. Yenicerioglu, A.F.: The behavior of solutions of second order delay differential
equations. J. Math. Anal. Appl. 332(2), 1278–1290 (2007)

6. Ashyralyev, A., Akca, H.: Stability estimates of difference schemes for neu-
tral delay differential equations. Nonlinear Anal.: Theory Methods Appl. 44(4),
443–452 (2001)

7. Ashyralyev, A., Akca, H., Yenicerioglu, A.F.: Stability properties of difference
schemes for neutral differential equations. Differ. Equ. Appl. 3, 57–66 (2003)

8. Liu J., Dong P., Shang G.: Sufficient conditions for inverse anticipating synchro-
nization of unidirectional coupled chaotic systems with multiple time delays. In:
Proceedings of the Chinese Control and Decision Conference, pp. 751–756. IEEE
(2010)

9. Mohamad, S., Akca, H., Covachev, V.: Discrete-time cohen-grossberg neural net-
works with transmission delays and impulses. Differ. Differ. Equ. Appl. Book Ser.:
Tatra Mountains Math. Publ. 43, 145–161 (2009)

10. Ashyralyev, A., Sobolevskii, P.E.: On the stability of the delay differential and
difference equations. Abstr. Appl. Anal. 6(5), 267–297 (2001)

11. Ashyralyev, A., Sobolevskii, P.E.: New Difference Schemes for Partial Differential
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Abstract. A method of investigation of numerical schemes deriving
from the variational formulation of the problem (variational- difference
method and FEM) is discusses. The method is based on the reduction
of the numerical schemes to the canonical finite difference form. The
resulting numerical scheme standard notation in the form of a grid oper-
ator equality is used for analyzing its approximation, stability and other
properties. The application of this approach to a wider classes of finite
elements (from the simplest ones to the Hermitian elements and serendip-
ities) is discussed. These opportunities are illustrated by the analysis of
FEM schemes for Timoshenko shells and elasticity dynamic problems.

1 Conversion of Finite Element Numerical Schemes to
Finite Difference Form

The investigation of difference schemes involves the standard scheme notation
in the form of a grid operator equality. In the case of uniform difference grids
the FEM scheme operator can be written in the final form, which is suitable for
the theoretical analysis. The conversion procedure is similar to the construct-
ing the system of Euler differential equations of the variational problem. Lets
consider the construction method for the two-dimensional case, which can be
naturally is generalized to the n- dimensional case. Let R2 = {x} = {(x1, x2)}
set uniform (possibly oblique), the main grid coordinates of nodes

xij =
[

x1
ij

x2
ij

]
= Bh

[
i
j

]
+

[
x1
0

x2
0

]
i, j ∈ Z, (1)

where Bh – is real nonsingular matrix 2× 2. To refine the concept of certainty
uniform finite element mesh. The finite element mesh in R2 is said to be uniform
if the elements and their nodes are periodically with a period given by a grid
form (1). Let a functional is given

W =
∫

Ω

F (u, p1, p2) dΩ, (2)

where u is an unknown function satisfying the given boundary conditions;
p1 = ∂ u

∂ x1 , p2 = ∂ u
∂ x2 .
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It is necessary to find a function u, deliver functional W extreme or stationary
value. Solution of this problem satisfies the differential equation of Euler

∂ F

∂ u
− ∂

∂ x1

∂ F

∂ p1
− ∂

∂ x2

∂ F

∂ p2
= 0 (3)

and boundary conditions. Constructing of FEM numerical scheme reduces to
the partition of the region into finite elements (construction of the finite element
mesh) and the choice of basis functions, then the FEM problem is defined. It
further reduces by known methods [3,4] to an algebraic system.

We assume that the FEM problem is defined, i.e. functional (2) is given, built
finite element mesh and selected basis functions. Consider the transformation
scheme to FEM finite difference form in the simplest case of Lagrangian elements.

We assume that each cell is divided into r, finite elements, where r = 1 to
quadrilateral elements and r = 2 for the triangular elements (three-dimensional
case r can take values from 1 to 6). Then the functional (2) can be written as

Wh =
∑

(i, j)∈ Ωh

r∑

k=1

∫

Ei j k

F (u, p1, p2) d Ω, (4)

where Eijk - k -th element in the (i, j )-th cell of the main foil. Assuming that
the k -th element of the type comprising mk node template has Sk. Unknown
function u in the element is given as

u =
mk−1∑

l=0

Clkϕlk, (5)

where ϕl k (l = 0, . . . , mk − 1)- the basic function of the k-type element. For
example, for a 4-node bilinear element

f(x1, x2) = c0 + c1(x1 − x1
c) + c2(x2 − x2

c) + c3(x1 − x1
c)(x

2 − x2
c)

(here (x1
c , x

2
c)- the coordinates of the element center). Coefficients cm can be

expressed through the function node values cm =
∑

k=1 βm
k fk (it uses the local

node numbering). As a result of the transition to a nodes global numbering for
the l-type element the following formula we get:

cm = d+
m,lfij =

∑

(p,q)∈Sl

β m,l
p,q fi+p,j+q . (6)

This formula also defines the basic differential operators d+
m,l. Coefficients β m,l

p,q

depend from the element template and matrix Bh. We also introduce the char-
acters taken from different operators adjoint to (6):

d −
m,lfij = (−1)Km

∑

(p,q)∈Sl

β m,l
p,q fi−p,j−q . (7)
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Here Km– is order of derivative, which is approximated by the operator. Clk

coefficients can be expressed through the values of function u at the nodes of
the element, and further through the difference operators dk+

0 , . . . , dk+
mk−1. As a

result, the function u in element Eijk may be represented as

u =
mk−1∑

l=0

(
d+l,ku

)

ij
ψlk, (8)

where ψlk- some linear combinations of functions ϕlk.
After substituting (8) into (4) integration we obtain

Wh =
∑

(i, j)∈Ωh

r∑

k=1

γkΦk (ξij0, . . . , ξijmk−1) . (9)

where ξijl =
(
d+l u

)
ij

.
We write the variation of the functional (9):

δ Wh =
∑

(i, j)∈Ωh

r∑

k=1

γk

(
fk0δ

(
dk+
0 u

)
+ . . . + fkmk−1δ

(
dk+

mk−1u
))

ij
. (10)

Here we use the notation
(fkl)ij =

∂ Φk

∂ ξijl

Substituting (10) in the discrete variation equation

δ Wh = 0

and applying grid integration by parts, we obtain

∑

(i, j)∈Ωh

r∑

k=1

γk

mk−1∑

l=0

(−1)Kld−
l,kfklδ ul = 0.

The last equality is satisfied if the conditions

r∑

k=1

γk

mk−1∑

l=0

(−1)Kld−
l,kfkl = 0 (11)

obey at all nodes of the difference grid. Equation (11) represents a difference
scheme standard form. Thus, we obtain the final difference form of the FEM
scheme.

This method of FEM schemes conversion to finite differences can be used for
theoretical analysis of a wide FEM schemes class for both linear and nonlinear
problems. The method of variational-difference schemes transformation to finite
differences is similar with not great distinctions. Similar transformations for
other types of finite elements (Hermitian, sirendipity etc.) were considered in [1].
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2 Analysis of Approximation of Variational-Difference
and Finite Element Schemes of Timoshenko Plates
Theory

Consider the system of equations describing the transverse vibrations of the
Tymoshenko plate [5] 1D case recorded in the dimensionless form. System has
the form

a
(

∂2w
∂ x2 + ∂ ψ

∂ x

)
− ∂2w

∂ t2 = 0
∂2w
∂ x2 − 12a

η2

(
∂ w
∂ x + ψ

) − ∂2ψ
∂ t2 = 0

(12)

It is equivalent to a single equation of the fourth order

∂4w

∂ x4
+

12a

η2

∂2w

∂ t2
−

(
1 +

1
a

)
∂4w

∂ x 2∂ t2
+

1
a

∂4w

∂ t4
= 0. (13)

Consider the difference schemes approximation of the equations system (12).
Finite-difference scheme has the form

{
a (D11w + D01ψ) − Dttw = 0
D11ψ − 12a

η2 (D01w + ψ) − Dttψ = 0 (14)

variational-difference scheme has the form
{

a (D11w + D01ψ) − Dttw = 0
D11ψ − 12a

η2 (D01w + D00ψ) − Dttψ = 0 (15)

linear finite element scheme has the form
{

a (D11w + D01ψ) − Dttw = 0
D11ψ − 12a

η2 (D01w + D0ψ) − Dttψ = 0 (16)

There in (14)–(16) D1lf = 1
h2 (fi+1 − 2fi + fi−1), D00f = 1

4 (fi+1 + 2fi + fi−1),
D01f = 1

2h (fi+1 − fi−1), D0f = 1
6 (fi+1 + 4fi + fi−1),

Dttf = 1
τ2

(
f j+1 − 2f j + f j−1

)
.

Schemes (14)-(16) differ by only one equations member approximation - func-
tion ψ. They all have second-order approximation. Transform them to the form
similar to (13). Finite-difference scheme (14) takes the form:

(

1 + 3a

(
h

η

)2
)

D11D11w +
12
η2

Dttw −
(

1 +
1
a

)
D11Dttw +

1
a
DttDttw = 0.

(17)
variational-difference scheme (15) takes the form:

D11D11w +
12
η2

D00DBBw −
(

1 +
1
a

)
D11Dttw +

1
a
DttDttw = 0. (18)
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linear finite element scheme (16) takes the form:
(

1 + a

(
h

η

)2
)

D11D11w +
12
η2

D∗
0Dttw −

(
1 +

1
a

)
D11Dttw +

1
a
DttDttw = 0.

(19)
Comparing (17)-(19) with the original differential equation (13), we conclude
that at finite values of the quantity h/η (relationship grid spacing to plate thick-
ness) difference equations (17) and (19) do not approximate equation (13) but,
respectively, the equations

(

1 + 3a

(
h

η

)2
)

∂4w

∂ x4
+

12
η2

∂2w

∂ t2
−

(
1 +

1
a

)
∂4w

∂x 2∂ t2
+

1
a

∂4w

∂ t4
= 0. (20)

and
(

1 + a

(
h

η

)2
)

∂4w

∂ x4
+

12
η2

∂2w

∂ t2
−

(
1 +

1
a

)
∂4w

∂x 2∂ t2
+

1
a

∂4w

∂ t4
= 0. (21)

Thus, we can conclude that all schemes have the convergence in the usual sense,
but the finite difference and finite element schemes do not have the uniform
convergence by grid problem parameter. Scheme (15) has the uniform conver-
gence of the parameter h/η. Quantitative analysis confirming the findings is
given in [1]. A similar analysis was conducted and the approximation for two-
dimensional schemes. Analysis results agree well with well known reduced inte-
gration technique by O. Zienkievich [6], due to which the scheme (16) becomes
the scheme (15).

3 Influence of the Mutual Location of Finite Elements
on the Accuracy of the Numerical Solution

Consider the effect of finite element mutual location influence to approximation
and accuracy of schemes. We take the 3D elastic problem and 4-node linear finite
element. Way of the base parallelepiped dividing into tetrahedrons defined by a
set of templates elements. Pattern of each element contains four integer vector
is a subset of {(000), (001), (010), (011), (100), (101), (110), (111)}.

Below you can see the types of partitions hexahedron.
(1) 5 tetrahedra (Fig. 1.):

S1 = {(000), (011), (101), (110)}, S2 = {(000), (011), (101), (001)},

S3 = {(000), (100), (101), (110)}, S4 = {(000), (011), (010), (110)},

S5 = {(111), (011), (101), (110)}
(2) 6 tetrahedra with centrally symmetric partition (Fig. 2.):

S1 = {(010), (001), (101), (011)}, S2 = {(000), (001), (101), (010)},

S3 = {(000), (100), (101), (010)}, S4 = {(101), (110), (010), (100)},

S5 = {(111), (110), (010), (101)}, S6 = {(111), (011), (010), (101)}.



158 D.T. Chekmarev

Fig. 1. 5 tetrahedra

Fig. 2. 6 tetrahedra,

(3) 6 tetrahedra with rotational-symmetric partition:

S1 = {(010), (001), (101), (011)}, S2 = {(000), (001), (101), (010)},

S3 = {(000), (100), (101), (010)}, S4 = {(100), (101), (011), (111)},

S5 = {(100), (011), (110), (111)}, S6 = {(100), (011), (010), (110)}.

(4) 6 tetrahedra with non-symmetric partition:

S1 = {(010), (001), (101), (011)}, S2 = {(000), (001), (101), (010)},

S3 = {(000), (100), (101), (010)}, S4 = {(100), (010), (110), (111)},

S5 = {(100), (010), (101), (111)}, S6 = {(010), (101), (011), (111)}.

Unknown functions in linear element represented in the form

f(x1, x2, x3) = c0 + c1(x1 − x1
c) + c2(x2 − x2

c) + c3(x3 − x3
c)

(here (x1
c , x

3
c , x

3
c) - the coordinates of the center of the element).
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We write the functional as energy internal of the linearly elastic body:

W =
1
2

∫

Ω

σαβεαβdΩ

Further, according to the algorithm described above, we obtain the representa-
tion of FEM schemes in the traditional finite-difference form

(λ + μ)

∣
∣
∣
∣
∣
∣

D11 u1 + D12 u2 + D13 u3

D21 u1 + D22 u2 + D23 u3

D31 u1 + D32 u2 + D33 u3

∣
∣
∣
∣
∣
∣
+ μ DΔ

∣
∣
∣
∣
∣
∣

u1

u2

u3

∣
∣
∣
∣
∣
∣
+ ρ

∣
∣
∣
∣
∣
∣

F1

F2

F3

∣
∣
∣
∣
∣
∣
= ρDtt

∣
∣
∣
∣
∣
∣

u1

u2

u3

∣
∣
∣
∣
∣
∣
, (22)

a similar system of Lame equations

(λ + μ) grad div u + μΔu + ρF = ρ
∂2u

∂t2
(23)

where the operators Dij approximate second derivatives, respectively, for the i-th
and j-th coordinates, Dttf = 1

τ2 (f(t + τ) − 2f(t) + f(t − τ)) approximates the
second derivative with respect to time, DΔ = D11+D22+D33 - the grid Laplace
operator. Dij operators have different specific form depending on the variant
schemes investigated and may be either the first or second order approximation.
Schemes for linear finite element we have Dij =

∑s
l=1 γld

+
i,ld

−
j,l, where s = 5, γ1 =

1
3 , γ2 = γ3 = γ4 = γ5 = 1

6 the scheme with the partition parallelepiped 5
tetrahedron; s = 6, γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = 1

6 for schemes with the
partition parallelepiped 6 tetrahedron. Analysis grid approximation equation
(23) by equation (22) conducted a standard method for the case of orthogonal
grid with the coordinates of the grid nodes are equal x1

ijk = x1
0 + h1i, x2

ijk =
x2
0 +h2j, x3

ijk = x3
0 +h3k) showed that one of this schemes (centrally symmetric

partition) has second order approximation, and the other three - the first order
approximation. The results of the test problem solutions also showed a different
rate of schemes convergence

4 Variational-Difference and Finite Element Schemes on
Rare Grids [7]

There in formulas (11) is an overall view of finite difference schemes represent
FEM on uniform grids. They contain coefficients γk = Vk/ΔV , where Vk - the
volume (area) element k -type, ΔV - the basic unit of volume of a uniform grid
of the form (1). Coefficients γk satisfy the obvious equality

p∑

k=1

γk = 1, (24)

reflects the continuous filling elements of the computational domain (here p - the
number of elements that make up the cell.) Varying set of coefficients γk, while
maintaining this equality, we obtain new difference schemes, some of which can
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be quite successful. In particular, variation in the difference scheme similar to
(15) on the coefficients of the triangular cells are equal γ1 = γ2 = 1/2. Substi-
tuting their values γ1 = 1, γ2 = 0, we obtain “rare mesh” variational- difference
scheme. The scheme has a much better convergence than the original. Note it is
also more economical, because it is actually two times less computational cells.
A detailed analysis of this scheme are given in [1,2].

Further developing this method, we arrive at the idea of rare mesh schemes
FEM. Under the rare mesh scheme we understand the scheme, in which some
of the coefficients γk equal to zero. Relevant elements do not contribute to the
numerical scheme and may be excluded from the calculations. This approach
proved to be very productive in solving the three-dimensional elasticity problems.
In particular, the scheme has been proposed on the basis of a linear 4 -node finite
element, which for central tetrahedron (Fig. 1.) Ratio γk was 1, the remaining
tetrahedra - zero. This scheme is significantly more economical than traditional
and has better convergence. Also, it has no the drawback of numerical schemes
on hexahedral elements - the “hourglass instability”. Detailed description of the
scheme, the results of its analysis and testing described are given in [7,8].

5 Conclusion

Method described in the study of numerical schemes based on the variational
formulation of problems allows more deeply study their properties and to propose
ways to improve, as evidenced by the examples discussed. He partly overcomes
the gap between the theory of difference schemes and finite element method.
This approach can be applied to the analysis of a wide variety of schemes FEM
mathematical physics problems.
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Abstract. The numerical method for solving of the hypersonic nonequi-
librium aerogasdynamics problems is suggested. The method is based
on the full three-dimensional Navier-Stokes equations, supplemented by
the equations of chemical kinetics and the finite difference TVD method.
The developed algorithms are implemented in the computer-aided soft-
ware package SIGMA. The results of simulation of the hypersonic flow
about the spherical nose segment of a model hypersonic vehicle are
presented.

Keywords: Computational fluid dynamics · Hypersonic flows · TVD
schemes · Parallel processing

1 Introduction

TVD schemes [1] have recently become quite popular in solving of gas dynamics
problems due to the higher accuracy and monotonic property of the numerical
solutions. However, they are usually used in an orthogonal coordinate system,
so experience with these schemes for geometrically adaptive meshes in domains
of complex curvilinear shape while is not great. The aim of this work is the
development of a variant of the method, based on the TVD Harten scheme of the
second order accurate, for numerical solution of the equations of gas dynamics
in arbitrary non-orthogonal curvilinear coordinate systems.

We consider the Navier-Stokes equations with chemical kinetics, describing
high–speed flow around an aircraft. Integration of the Navier-Stokes equations is
performed by the splitting into physical processes. At the first stage the members
of the viscous terms are excluded from the consideration. The problem is solved
for ideal gas by the developed TVD scheme. Then the viscous components are
approximated using the implicit difference schemes with splitting method into
the spatial directions, which are solved by the Thomas algorithm. Further the
equations of chemical kinetics are solved in 3 stages. Firstly, an explicit-implicit
scheme is used to solve the system of difference equations with source terms.
Then the convection of the chemical components is taken into account. The
TVD scheme is used to solve the equations similarly the step of the solving of
the inviscid flow. And then the diffusion of the chemical components is taken
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 161–168, 2015.
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into account. The algorithm for solving the equations is similarly the step of the
solving of the viscous components.

The results of a simulation of a flow about an spherical nose segment of a
model hypersonic aircraft are presented. The chemical gas-phase model included
all the main components of high temperature air for flight conditions in the
Earth’s atmosphere. The peak wavelengths of the spectral intensity of the body
have been obtained.

2 The System of Equations

Consider the system of equations of a viscous heat-conducting gas (the Navier-
Stokes equations) with chemical kinetics:

∂ρ

∂t
+ ∇ · ρv = 0, (1)

∂ρv

∂t
+ ∇ · (ρv ⊗ v + pE − T v) = 0, (2)

∂ρε

∂t
+ ∇ · ((ρε + p) v − T v · v + q) = 0, (3)

∂ρyi

∂t
+ ∇ · (ρyiv − ρDij∇yi) = ωi, (4)

where ρ — the gas density of the gas mixture, t — the time, v — the velocity
vector of the center of mass of the mixture, p — the pressure, E — the identity
tensor, ε — the total energy per unit volume, yi = ρi/ρ — the mass concentration
of the i-th spice, ωi — the source of generation of the i-th spice, Dij — the
diffusion coefficients.

This system adds relations for the perfect gas, viscous stress tensor and heat
flux vector

p = ρ
R0

M0
θ,

1
M0

=
7∑

i=1

yi

Mi
, ε = e +

|v|2
2

, e = cVθ, |v|2 = v · v,

cV =
7∑

i=1

yicVi, T v = −2
3
μ(∇ · v)E + μ(∇ ⊗ v + ∇ ⊗ vT ), q = −λ∇θ,

where R — the universal gas constant, Mi — the molecular weight of the i-th
spice, θ — the gas temperature, e — the internal energy per unit volume, cVi —
the specific heat at constant volume of the i-th spice, μ — the coefficient of
viscosity, λ — the thermal conductivity of the gas.

We consider the binary diffusion model. The coefficients of diffusion, viscosity
and thermal conductivity are given by the following functions [6]

D12 = 1.85·10−7 θ3/2

pσ2
12Ω

(1,1)
12

(
M1 + M2

M1M2

)1/2

,
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μ =
6∑

i=1

μi

1 +
6∑

j=1,j �=i

Gμ
ij

γj

γi

, λ =
6∑

i=1

λi

1 +
6∑

j=1,j �=i

Gλ
ij

γj

γi

, γi =
yi

Mi
,

where σ12 — the characteristic distance, Ω
(1,1)
12 — the collision integral, μi, λi —

the viscosity and thermal conductivity of pure gases, Gμ
ij , Gλ

ij — the universal
constants.

The gas mixture consists of seven spices and the possible chemical reactions
that occur in shock layer at high temperatures are following

O2 + M ↔ 2O + M N2 + M ↔ 2N + M NO + M ↔ N + O + M

NO + O ↔ O2 + N N2 + O ↔ NO + N NO + O ↔ NO+ + e−,

where M is any of the six spices considered to be the catalyst, e− — the electronic
component. Associate the index i = 1, 2, 3, 4, 5, 6 with the components of O, N,
NO, O2, N2, NO+, respectively.

Also the conditions of conservation of atomic composition

yO2 = 0.21 − 0.5 · (yO + yNO + yNO+), yN2 = 0.79 − 0.5 · (yN + yNO + yNO+)

and mixture quasineutrality yNO+ = ye− are valid, thus only four spices are
independent.

3 Numerical Method

The integration of the Navier-Stokes equations with chemical kinetics is per-
formed by the method of the splitting into physical processes.

System of equations describing the ideal gas in the computational coordi-
nates Xi [2,4] as follows

∂U

∂t
+

3∑

i,j=1

P i
j

∂V j

∂Xi
= 0, P i

j =
∂Xi

∂xj
. (5)

where U = [ρ, ρv̄x, ρv̄y, ρv̄z, ρE]T , F = [ρv, ρvv̄x + pδi
1, ρvv̄y + pδi

2, ρvv̄z +
pδi

3, ρ(E + p)v]T , P i
j — the components of the inverse Jacobian matrix of the

transformation of Cartesian coordinates xj to the computational coordinates Xi,
v̄i — the Cartesian components of the velocity vector.

Consider the technique of obtaining the explicit second order accurate TVD
scheme based on the Harten schemes [1], which is obtained by applying a nonoscil-
latory first order accurate scheme to an appropriately modified flux function
f̃ = (f + 1

λg)

Un+1
η = Un

η −
3∑

i,j=1

λj
η

(
Ṽ

i,j,n

η+1/2 − Ṽ
i,j,n

η−1/2

)
, λj

η =
Δt

Xj
η+ − Xj

η−
,
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where Un
η = U(Xη, tn), Ṽ

i,j,n

η+1/2 — the columns of the numerical flux function
in the i-th direction defined by the following formula

Ṽ
i,j,n

η+1/2 = 0, 5 ·
(
V i,n

η · P j
i,η + V i,n

η+ · P j
i,η + Rj,n

η+1/2 · Φi,j,n
η+1/2

)
.

Here Ri,n
η+1/2 = (Ri,n

η+ + Ri,n
η )/2, Ri,n

η = Ri(Xη, tn) — the matrix of the right
eigenvectors of the matrix Gi = ∂V i/∂U .

Numerical viscosity vector Φi,j,n
η+1/2 have the following components

ϕi,j,m
η+1/2 = 0.5 · ψ

(
âi,j,m

η+1/2

)
·
(
gi,j,m

η + gi,j,m
η+

)
− ψ

(
âi,j,m

η+1/2 + γi,j,m
η+1/2

)
· αj,m

η+1/2,

γi,j,m
η+1/2 =

⎧
⎨

⎩

ψ
(

âi,j,m
η+1/2

)
(gi,j,m

η+ −gi,j,m
η )

2·αi,m
η+1/2

, αi,m
η+1/2 �= 0;

0, αi,m
η+1/2 = 0;

where gi,j,m
η = minmod

(
αj,m

η−1/2, α
j,m
η+1/2

)
, âi,j,m

η+1/2 = ai,m
η+1/2 · P j

i,η, ai,m
η+1/2 =

am(Xη, tn) — eigenvectors of the matrix Gi, αj
η+1/2 =

(
αj,1

η+1/2, . . . , α
j,5
η+1/2

)T

=
(
Rj,n

η+1/2

)−1

· (
Un

η+ − Un
η

)
, ψ(z) — the numerical viscosity function, which is

defined by the formula

ψ(z) =
{ |z|, |z| ≥ ε;(

z2 + ε2
)
/2ε, |z| < ε.

Then the viscous components are taken into account

ρ
∂v̄k

∂t
= Pn

i

∂

∂Xn

(
M̄ ikj

l P s
j

∂v̄l

∂Xs

)
,

ρ
∂e

∂t
= Pn

i

∂

∂Xn

(
λP k

i

∂θ

∂Xk

)
+ M̄pqk

l P s
kPm

p

∂v̄l

∂Xs

∂v̄q

∂Xm
,

M ijk
l = M̄mjspP i

mP k
s δpl, M̄mjsp = μ1δ

mjδsp + μ2(δmsδjp + δmpδjp).

Its are approximated using the implicit difference scheme with splitting method
into the spatial directions

Step 1: ρn+ 2
6 (Ūn+ 3

6 − Ū
n+ 2

6 ) =
Δt

2
Λ1Ū

n+ 3
6 ,

where Ū
n+ 2

6 — the values obtained after the solving of the Euler system.

Step 2: ρn+ 3
6 (Ūn+ 4

6 − Ū
n+ 3

6 ) =
Δt

2
Λ2Ū

n+ 4
6 .

Step 3: ρn+ 4
6 (Ūn+ 5

6 − Ū
n+ 4

6 ) =
Δt

2
Λ3Ū

n+ 5
6 .
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These equations are solved sequentially and independently from each other by
the Thomas algorithm. In step 4 the mixed derivatives are calculated by the
explicit scheme

ρn+ 2
6 (Ūn+1 − Ū

n+ 5
6 ) = Δt

[
3∑

i=1

ΛiŪ
n+ 5

6 + (Λ12 + Λ13 + Λ23)Ū
n+ 2

6 + F̄
n+ 2

6

]

.

where Λi =
∂

∂Xi

(
A

∂

∂Xi

)
, Λij =

∂

∂Xi

(
A

∂

∂Xj

)
, i �= j.

Here U = [v̄x, v̄y, v̄z, θ]T , F̄ = [0, 0, 0, M̄pqk
l P s

k Pm
p (∂v̄l/∂Xs)(∂v̄q/∂Xm)]T .

Further the equations of chemical kinetics are solved in 3 stages.
Firstly, the mass fluxes of each i-th spice due to chemical transformation are

taken into account
∂Xi

∂t
= ω̇i, Xi =

ρyi

Mi
, ω̇i =

ωi

Mi
. (6)

The source of generation of the i-th spice is calculated using the law of mass
action

ω̇1 = ϕ11 + ϕ13 + ϕ14 + ϕ15 + ϕ16,
ω̇2 = ϕ22 + ϕ13 − ϕ14 − ϕ15 + ϕ16,
ω̇3 = −ϕ13 + ϕ14 − ϕ15,
ω̇6 = −ϕ16,

ϕ11 = 2k1(K1X4 − X2
1 ),

ϕ13 = k3(K3X3 − X1X2),
ϕ14 = −k4(K4X1X3 − X2X4),
ϕ15 = −k5(K5X1X5 − X2X3),
ϕ16 = −k6(K6X1X2 − X6X7),
ϕ22 = 2k2(K2X5 − X2

2 ),

where ki, Ki — the specific rate of the reverse reactions and equilibrium constant,
respectively, which are temperature-dependent [4].

The system (6) is solved by the explicit-implicit scheme [4]

Xn+1 = X̃n+1 +
[
Xn − X̃n+1 + Δt

(
αω̇n + (1 − α)˜̇ωn+1

)] ·

·
[
E − (1 − α)Δt

[
∂ ˜̇ωn+1

∂X

]]−1

.

where X̃ — the intermediate value of the iterative process, α — the blending
coefficient.

Then the convection of chemical components is taken into account

∂ρyi

∂t
+ ∇ · ρyiv = 0. (7)

The system is solved by the TVD scheme similarly the step of the solving of the
inviscid flow.

And then the diffusion of chemical components is taken into account

∂ρyi

∂t
= ∇ · (ρDij∇yi). (8)

These equations are solved similarly the step of the solving of the viscous
components.
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(a) STL geometry (b) Surface spline (c) Curvilinear blocks (d) Hexahedron mesh

Fig. 1. Import of geometry, domain construction and mesh generation

4 Description of Developed Software

The developed algorithms were implemented by the authors in their software
package SIGMA [5]. It includes the complete set of modules that are required
for the computer simulation. SIGMA includes a three–dimensional geometric
modeling module, which allows to generate a wide range of geometric shapes;
a module, which allows to set properties, parameters and initial conditions; an
adaptive mesh generator (preprocessing components); a solver (processor) and a
visualization tools (post–processor). Each SIGMA module is the detached cross–
platform software, implemented using C++ with the ability to create extensions.
Most of the iterative procedures for the mesh generation and solving are imple-
mented using OpenMP and MPI libraries by means of geometric decomposition.

The preprocessor module has a graphical interface that allows you to cre-
ate a solution domain visually. The domain is constructed from a set of initial
hexahedral blocks (primitives) by their combining and subsequent deformation.
The deformation is performed by changing of coordinates of control points of
the domain by entering them or reading from a file. The control points of the
domain are located on the boundary surfaces of the primitives, form a regular
surface mesh and are the basis for the construction of the linear or cubic spline
surfaces. It is possible to generate the curved blocks which are based on the
geometries of the surfaces, imported from solid modeling software, see Fig. 1. In
this case, the functions for generation of the points in given sections and along
the lines between the two specified points on the surface are implemented for the
construction of the regular mesh of the control points on the imported surfaces.

The mesh generator creates non-orthogonal block-structured grids (see Fig. 1)
anduses explicit formof thealgebraic transformation,whichrefers to the lagrangian
coordinate transformations of transfinite interpolation methods [4]. Additional
transformations of the grids are introduced to concentration the nodes near the
boundaries. The preprocessor is able to construct the O-grid blocks for the cer-
tain types of curved domains like in ANSYS ICEM CFD.
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(a) Pressure p, Pa (b) Temperature θ, K

(c) Atomic nitrogen concentration (d) Atomic oxygen concentration

Fig. 2. Import of geometry, domains construction and meshes generation

5 Results

The simulation of the hypersonic flow about a spherical nose segment at Mach
number M = 20 and altitude h = 30 km was considered. A solid ball had the
following characteristics: radius R = 30 cm, emissivity ε = 1. The main goal of
the simulation was the calculation of the spectral radiant intensity of the body
as a function of wavelength.

Figure 2 shows the three-dimensional distributions of gasdynamic parameters
near the body. The coating materials of the ball should be able to withstand
extremely high temperature up to 6500 ◦K in the stagnation point. At such
temperatures the processes of dissociation and ionization of air molecules occur.
The initial concentrations of a mixture of molecular oxygen and nitrogen are
changed and the new concentrations of atomic nitrogen and oxygen are generated
near the body. The heat transfer coefficient, heat flux and spectral irradiances
are calculated using the distribution of the temperature in the flow and on the
surface of the blackbody. And it was obtained that the peak wavelengths of the
spectral intensity of the body is located in the near-infrared range.

6 Conclusion

A method based on the TVD scheme of the second order accurate for numeri-
cal solving of the full three-dimensional Navier-Stokes equations with chemical
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kinetics in domains with a complicated form has been proposed. The formu-
lation allows to take into account the changes in the chemical composition of
the flow and calculate more accurately the integral characteristics of the gas
mixture such as thermal conductivity, viscosity, specific heat, which effect on
the mechanical and thermal stresses near the critical components of aerospace
vehicles. The developed algorithms have been implemented in the computer-
aided software package SIGMA. SIGMA appropriates for simulation of super-
sonic and hypersonic flows, defining fields of mechanical and thermal stresses,
as well as concentrations of chemical substances near the critical components
of aerospace vehicles. SIGMA contains preprocessor, processor and postproces-
sor and is capable to perform calculations on high-performance computers. The
developed numerical method and software can be applied to the analysis of aero-
dynamics of hypersonic aircrafts.
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Abstract. This paper describes an application of the surface harmonics
method to derivation of few-group finite difference equations for neutron
flux distribution in a 3D triangular-lattice reactor model. The Boltzmann
neutron transport equation is used as the original equation. Few-group
finite difference equations are derived, which describe the neutron impor-
tance distribution (the multiplication factor in the homogeneous eigen-
value problem) in the reactor core. The derived finite difference equations
remain adjoint to each other like the original equation of neutron trans-
port and its adjoint equation. Non-diffusion approximations apply to
calculation of a whole reactor core if we increase the number of trial
functions for describing the neutron flux distribution in each cell and
the size of the matrices of the few-group coefficients for finite difference
equations.

1 Introduction

Finite difference methods are used in many areas of nuclear engineering including
nuclear reactor physics calculations. This paper addresses the issues of deriving
finite difference equations for calculation of the space and energy distribution of
neutrons within a heterogeneous reactor. Neutron flux distribution in the reac-
tor is described by the transport equation for neutron density. Neutron density
depends on coordinates, neutron energy, and Ω - the unit vector of neutron
direction (v = {E,Ω} is used for brevity). Since the operating reactor is almost
always in the steady-state (critical) condition, the so-called conditionally criti-
cal equation (see [1]) can be used for calculating the steady-state neutron flux
distribution

L̂Φ(r,v) − 1
keff

K̂f Φ(r,v) = 0 (1)

where keff is the eigenvalue of the problem, the so-called effective multiplication
factor in the reactor physics,

L̂Φ(r,v) = Ω∇Φ(r,v)+Σt(r,E )Φ(r,v)−
∞∫

0

∫

4π

Σs(r,v′ → v)Φ(r,v′)dE ′dΩ ′

is the neutron transport operator, K̂fΦ(r,v) = 1
4π

∞∫

0

∫

4π

χ(r, E,E′)νfΣf (r, E′)

Φ(r,v′)dE ′dΩ ′ is the fission neutron generation operator.
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In reactor physics the homogenization approach is now most widely used
to calculate neutron fluxes in nuclear reactor cores. This approach is based on
a two-step calculation scheme: first, certain neutron flux distributions in cells
of a reactor core model are calculated and used for “homogenization”of the
cells and, second, the diffusion equation for the core with piecewise-constant
properties is solved. The main approximations of the homogenization method
are the use of neutron flux distribution in a closed cell for “homogenization”
and the use of diffusion approximation for calculation of a whole reactor core.
A number of attempts have been made to avoid these approximations. An exam-
ple is the surface harmonics approach which has been known since 80-es of XX
century. This paper develops principles of the surface harmonics method and
presents its implementation for deriving finite difference equations that describe
the neutron flux and neutron importance distributions in a 3D triangular-lattice
heterogeneous reactor core model. The neutron importance obeys the following
adjoint equation to (1):

L̂+Φ+(r,v) − 1
keff

K̂+
f Φ+(r,v) = 0 . (2)

The possibility of obtaining similar equations for 2D core simulations is
demonstrated in [2]. This paper relies upon reciprocity relations for neutron flux
and neutron importance distributions at cell faces given in [2,3] and applies the
method to 3D geometry with the angular momenta of neutron flux distribution
at the cell faces being of higher order than those in the diffusion approximation
case.

2 Derivation of Finite Difference Equations

Following the surface harmonics method (or homogenization method), the reac-
tor core with the reflector is divided in plan into unit cells depending on the
lattice geometry. The choice of the cell heights is determined by the reactor core
subdivision along the height assuming homogeneity of the physical properties of
the cell materials along the height or symmetry of the properties relative to the
central cross-section plane of the cell.

Next, the neutron flux distribution in each cell is written as a linear combi-
nation of certain trial functions (the cell index is omitted):

ΦN (r,v) =
N−1∑

n=0

G∑

g=1

AngΨng(r,v). (3)

Equation (3) distinguishes summation over energy groups of neutrons (which
are used for reactor calculations) because trial functions of the same type and
their functionals are most well suited for generating vectors of length G and
matrices of size G×G. Index n designates types of trial functions Ψng(r,v) (the
types of trial functions are ordered symmetrically, N types are used in this case),
Ang are amplitudes of trial functions.
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It is assumed that the trial functions in (3) obey neutron transport Eq. (1)
inside the cell and certain non-uniform boundary conditions. Various (symmet-
rically ordered) combinations of cell-inlet and cell-outlet neutron fluxes are con-
sidered as boundary conditions for trial functions. Substitution of (3) into (1)
gives equation residual (as δ-function) localized only at the cell boundaries. The
reason is that the continuity of neutron flux distribution at the cell boundaries
cannot be obtained with a finite number of trial functions. The condition of
zeroing this residual (with weight of neutron importance):

K∑

k=0

∫

Sk

∞∫

0

∫

4π

(Ω,n)Φ+
Nk−(r,v)[ΦNk+(r,v) − ΦNk−(r,v)]dSdEdΩ = 0 (4)

gives equations which link the trial function amplitudes of neighbor cells. Here n
(normal to the cell boundary) is outward-directed, an integral over cell bound-
aries written as the sum of integrals over the surface Sk of each k-th cell (K
is the total number of cells in the reactor), ΦN±(r,v) are neutron (or neutron
importance) distributions to the right (+) and left (−) of the boundary. A sub
integral expression for the boundary face of the cell in (4) is not considered here.
The neutron importance is a reasonably smooth function of coordinates, there-
fore, the coefficients of spherical harmonics (see [4]) serial expansion for neutron
importance at the cell boundaries should diminish fast. Inserting the expansion
into (4), using a recurrent formula for associated Legendre polynomial, grouping
even and odd angular momenta of neutron flux and neutron importance distri-
butions, expressing the integral over the cell boundary as the sum of integrals
over the x, y faces (Ski, i = 1, 2, ...,M the number of faces) and z faces (Skj ,
j = 1, 2) of the k-th cell faces , we obtain the following expression for residual
(to within numerical factors which are not important for equation derivation):

K∑

k=1

∞∑

l=0

l∑

m=−l

{ M∑

i=1

∫

Ski

∞∫

0

{
U2l,m+

Nki− (r, E)
[
Φ2l+1,m

Nki+ (r, E) − Φ2l+1,m
Nki− (r, E)

]

+ Φ2l+1,m+
Nki− (r, E)

[
U2l,m

Nki+(r, E) − U2l,m
Nki−(r, E)

]}
dSdE

+
2∑

j=1

∫

Skj

∞∫

0

{
U2l,m+

Nkj− (r, E)
[
Φ2l+1,m

Nkj+ (r, E) − Φ2l+1,m
Nkj− (r, E)

]

+ Φ2l+1,m+
Nkj− (r, E)

[
U2l,m

Nkj+(r, E) − U2l,m
Nkj−(r, E)

]}
dSdE

}
= 0 (5)

In this expression, Φ2l+1,m
Nki± (r, E), (Φ2l+1,m+

Nki± (r, E)) are odd angular momenta
of the neutron flux (importance) distribution, linear combinations of even angu-
lar momenta of the neutron flux distribution, (Φ2l,m

Nki±(r, E) and Φ2l+2,m
Nki± (r, E))

are denoted by U2l,m
Nki±(r, E) and similar combinations of even angular momenta

of the neutron importance are denoted by U2l,m+
Nki± (r, E) , the equation residual

is written separately for (x, y) and z faces of each cell. Quantities U2l,m
Nki±(r, E)
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(U2l,m+
Nki± (r, E)) will be hereinafter referred as neutron (importance) levels simi-

larly like N.I. Laletin called the combination of total neutron flux density and the
second angular momentum as the neutron level in his early papers (see e.g. [5]).

Previous studies on the surface harmonics method (see e.g. [6,7]) demon-
strate that limiting the summation in (5) to terms with l = 0 (and m = 0) leads
to finite difference equations which look like a finite difference approximation of
the few-group diffusion equation. There are no technical constraints on a larger
number of terms. In that case we will have to additionally sew together odd
angular momenta of higher order and combinations of even angular momenta.
Sewing conditions determine the choice of trial functions for neutron flux distrib-
ution. It is convenient to use unit odd angular momenta as boundary conditions.
Before defining the angular momenta, their energy and spatial dependence at the
cell boundaries should be determined. Definition of G for linearly independent
spectra of odd momenta θ2l+1,m

rg (r, E), θ2l+1,m
zg (r, E), g=1, 2, . . . , G will deter-

mine the number of groups for the reactor calculation. Sets of neutron spectra
can certainly be different at the (x, y) and z faces. We here restrict to the case
of the triangular lattice with hexagonal unit cells and write the neutron flux
distribution in the k-th cell in a vector form as follows (also see [6]):

Φk
N (r,v)=

(
ϕr

k(r,v)
)′
Ir
k+

(
ϕz

k(r,v)
)′
Iz
k+

(
ψx

k(r,v)
)′
Jx

k+
(
ψy

k(r,v)
)′
Jy

k

+
(
ψz

k(r,v)
)′
Jz

k+
(
ξx
k (r,v)

)′
Px

k+
(
ξy
k(r,v)

)′
Py

k+
(
τz
k (r,v)

)′
Tk (6)

In the above expression the length of vectors G is the number of groups used for
reactor calculations; the amplitudes of trial functions are arranged as column-
vectors; for preserving the laws of matrix multiplication, column-vectors of trial
functions are transposed (transposition is labeled by the accent mark: vector
elements will be arranged in a row). Terms in the sum (trial functions) represent
various schemes of neutron currents to and out of the cell (through x, y, and
z faces, see Fig. 1). Relation (5) for residual also includes neutron currents and
importance levels as a weight function. Let us write neutron importance in each
cell by analogy with the neutron flux distribution (3), (6) as a linear combination
of trial functions (assuming vector elements with + index being arranged in a
row):

Φk+
N (r,v)=Ir+

k

(
ϕr+

k (r,v)
)′+Iz+

k

(
ϕz+

k (r,v)
)′+Jx+

k

(
ψx+

k (r,v)
)′+Jy+

k

(
ψy+

k (r,v)
)′

+ Jz+
k

(
ψz+

k (r,v)
)′ + Px+

k

(
ξx+
k (r,v)

)′ + Px+
k

(
ξx+
k (r,v)

)′ + T+
k

(
τ+
k (r,v)

)′

(7)

It is assumed that trial functions in (7) satisfy adjoint equation of neu-
tron transport (2) and certain non-uniform boundary conditions. Symmetrically
ordered combinations of cell-inlet and cell-outlet importance currents are con-
sidered as boundary conditions for trial functions in (6). Then Eq. (5) can be
rewritten as:

K∑

k=1

{
Srk

M∑

i=1

[
u+
ki(jik−jki)+j+ki(uik−uki)

]
+Szk

2∑

j=1

[
u+
kj(jjk−jkj)+j+kj(ujk−ukj)

]}
=0, (8)
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where Srk and Szk are areas of the (x, y) and z faces of the k-th cell, respec-
tively; vectors jlm (j+lm) denote face average neutron (importance) currents at the
m-th face of the l-th cell, vectors ulm (u+

lm) denote face average neutron (impor-
tance) levels at the m-th face of the l-th cell. To satisfy (8), we now equate the
expressions preceding the amplitudes of coupled functions to zero and obtain
the following set of equations (k=1, 2, . . . , K) for computing amplitudes of trial
functions:

1
M

M∑

i=1

[
ϕr
rk(jik − jki) + uki − uik

]
+

1
2

2∑

j=1

ϕr
zk(jjk − jkj) = 0 (9)

1
2

2∑

j=1

[
ϕz
zk(jjk − jkj) + ukj − ujk

]
+

1
M

M∑

i=1

ϕz
rk(jik − jki) = 0 (10)

M∑

i=1

[
ψr
k(jik − jki) + uki − uik

]
cos αi = 0

M∑

i=1

[
ψr
k(jik − jki) + uki − uik

]
sin αi = 0 (11)

M∑

j=2

[
ψz
k(jjk − jkj) + ukj − ujk

]
cos αj = 0 (12)

M∑

i=1

[
ξk(jik − jki) + uki − uik

]
cos2αi = 0

M∑

i=1

[
ξk(jik − jki) + uki − uik

]
sin2αi = 0 (13)

M∑

i=1

[
τk(jik − jki) + uki − uik

]
cos3αi = 0 (14)

Matrices ϕr
r, ϕz

r, ϕr
z , ϕz

z , ψr , ψz , ξ , τ in the last expressions are formed from
few-group first face (perpendicular to axis) average neutrons levels (combinations
of zero-order and second-order angular momenta) calculated for corresponding
trial functions:

hr =
1
Sr

∫ ∞

0

∫

Sr1

θr(E)
(
Uh

r (r, E)
)′

dSdE, h = ϕr, ϕz, ψr, ξ, τ,

hz =
1
Sz

∫ ∞

0

∫

Sz1

θz(E)
(
Uh

z (r, E)
)′

dSdE, h = ϕr, ϕz, ψz. (15)
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Similar matrices

h+
r =

1
Sr

∞∫

0

∫

Sr1

(
Uh+

r (r, E)
)′

θr(E)dSdE,h+
z =

1
Sz

∞∫

0

∫

Sz1

(
Uh+

z (r, E)
)′

θz(E)dSdE,

will appear in expressions for u+
k - face average neutron importance levels at the

(x, y) and z faces of the k-th cell. Expressions (9–14) were obtain with using
reciprocity relations (see e.g. [3]): ϕr+

r = ϕr
r, ϕz+

z = ϕz
z, ψr+ = ψr, ψz+ = ψz,

ξ+ = ξ, τ+ = τ , ϕr+
z = MSr

2Sz
ϕz

r , ϕz+
r = 2Sz

MSr
ϕr

z.

Fig. 1. Neutron currents for trial function

Generally speaking, set (9–14) is
a closed algebraic system of equations
which are solved to find amplitudes
of all trial functions; knowing ampli-
tudes and trial functions, the neutron
flux distribution in each cell can be
found. Writing the system (9–14) in
a more convenient and clearer form is
beyond the scope of our paper. How-
ever Eqs. (11), (12) can be expressed
in the form that is close to the finite
difference formulation of Ficks law.
Eqs. (9), (10) can be used to construct
a relation similar to the finite differ-
ence formulation of the diffusion equa-
tion for variables Φ which are close
to few-group cell average neutron flux
densities, but with other formulas for
calculating the diffusion coefficients,
cross sections for generation, neutron
absorption, and transition of neutrons
from one energy group to another:

Srk

Vk
L̂r

kΦk +
Szk

Vk
L̂z

kΦk − ΣkΦk = 0, (16)

where Σk - group cell macrosection matrix; L̂r
kΦk =

∑
(ψi + ψk)−1(Φi − Φk),

L̂z
kΦk =

∑2
j=1 (ψz

i + ψz
k)−1(RiΦi − RkΦk) - finite-difference operators

∇D∇Φk. A similar approach to the simplest case (2D geometry, symmetrical
cells, one neutron group, neutron currents and neutron fluxes are sewed together
at cell faces) is described in Chap. 9 of [9].

The above described approach can be applied to deriving finite difference
equations for neutron importance in the reactor core. Transformations will yield
a transposed system of equations of (9–14) type where square matrix multipli-
cation by column–vector is replaced with raw–vector multiplication by the same
square matrix. For example Eq. (16)-type is written as

Srk

Vk
L̂r+

k Φ+
k +

Szk

Vk
L̂z+

k Φ+
k − Φ+

k Σk = 0,
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where

L̂r+
k Φk =

M∑

i=1

(Φ+
i − Φ+

k )(ψi + ψk)−1,

L̂z+
k Φk =

2∑

j=1

(Φ+
i Ri − Φ+

k Rk)(ψz
i + ψz

k)−1,

variables Φ are close to few-group cell average neutron importance.

3 Consideration of Higher Angular Momenta at Cell
Faces

To construct finite difference equations, we used trial functions representing
normal projections of neutron currents at the cell faces (when other odd angular
momenta at the cell faces are equal to zero). Various schemes of higher, e.g. third-
order angular momenta at the cell faces also can be used. With higher momenta,
the size of matrices and vectors in (6), (7) is increased. A formal derivation and
form of Eqs. (9–14) or (16) remains absolutely unchanged. When trial functions
for defining third-order angular momenta such as Φ3,0(rs, E) at the cell faces are
added to description of neutron distribution in the cell, amplitudes of these trial
functions are also added to corresponding vectors in (6), (7), thus increasing
the length of the vectors of spectra and levels used in calculations of h-type
matrices (15):

I =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ1,0
1

Φ1,0
2

· · ·
Φ1,0

G

Φ3,0
1

Φ3,0
2

· · ·
Φ3,0

G

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, θ(E) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ1,0
1 (E)

θ1,0
2 (E)
· · ·

θ1,0
G (E)

θ3,0
1 (E)

θ3,0
2 (E)
· · ·

θ3,0
G (E)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Uh(r, E) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Uh1,0
1 (r, E)

Uh1,0
2 (r, E)

· · ·
Uh1,0

G (r, E)
Uh3,0
1 (r, E)

Uh3,0
2 (r, E)

· · ·
Uh3,0

G (r, E)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As [8] shows, reciprocity relations also hold for type matrices of increased
size and derivation of equation system (9–14) or (16) will not change in this
case. So, system of Eqs. (9–14) or (16) avoids using diffusion approximations in
calculation of a whole reactor core. It is advantageous that this avoidance is
implemented by only increasing the matrix size with the equations remaining
unchanged in form.

4 Conclusion

The present paper applies the surface harmonics method to obtaining a system
of finite difference equations for description of neutron flux distribution in the
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3D heterogeneous reactor with triangular lattice. The presented approach is also
used to derive an adjoint system of finite difference equations for neutron impor-
tance distribution in the reactor (solution of an adjoint equation for neutron
transport). The finite difference equations are derived by sewing together the
linear combinations of angular momenta of neutron distribution or the angular
momenta neutron importance distributions at the cell faces. Transition to higher-
order approximations (no diffusion approximation needed) within the derived
system of equations is implemented by only increasing the size of the coefficient
matrices of equations and, consequently, the number of trial functions used for
description of neutron distribution in the unit cells of the heterogeneous reactor.
No homogenization is used because the method first solves a system of finite
difference equations (with a spatial step corresponding to a lattice pitch) and
then constructs a detailed neutron flux distribution in the reactor cells.
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Abstract. In this work we present so-called generalized Picard itera-
tions (GPI) – a family of iterative processes which allows to solve mildly
stiff ODE systems using implicit Runge–Kutta (IRK) methods without
storing and inverting Jacobi matrices. The key idea is to solve nonlinear
equations arising from the base IRK method by special iterative process
based on the idea of artificial time integration. By construction these
processes converge for all asymptotically stable linear ODE systems and
all A-stable base IRK methods at arbitrary large time steps. The con-
vergence rate is limited by the value of “stiffness ratio”, but not by
the value of Lipschitz constant of Jacobian. The computational scheme
is well suited for parallelization on systems with shared memory. The
presented numerical results exhibit that the proposed GPI methods in
case of mildly stiff problems can be more advantageous than traditional
explicit RK methods.

Keywords: Runge–Kutta methods · Stiff problems · Parallel methods

1 Generalized Picard Iterations

Consider an initial value problem for the system of ordinary differential equations

y′(t) = f(t, y(t)), y(t0) = y0, (1)

where y : IR → IRn, f : IR × IRn → IRn, and some base s-stage implicit Runge–
Kutta (RK) method for this problem:

y1 = y0 + τ

s∑

i=0

bif(t0 + ciτ, Yi).

Here y1 ≈ y(t0 + τ), and Yi ∈ IRn are unknown stage values which satisfy the
following system of nonlinear equations: Yi = y0+τ

∑s
j=0 aijf(t0+cjτ, Yj), i =

1, . . . , s. We use standard notation for RK method coefficients
(
aij

)s

i,j=1
= A,

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 177–184, 2015.
DOI: 10.1007/978-3-319-20239-6 17
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(b1, . . . , bs)T = b, (c1, . . . , cs)T = c. In practice it is handy to perform a standard
change of variables to minimize roundoff issues: Zi = Yi − y0:

ri(Z) = −Zi + τ

s∑

j=1

aijf(t0 + cjτ, y0 + Zj) = 0, i = 1, . . . , s, (2)

or simply

r(Z) = (r1(Z), . . . , rs(Z)) = 0, Z = (Z1, . . . , Zs)T . (3)

Our goal is to construct a method for matrix-free solution of (3), i.e. without
storing and inverting Jacobian matrix of f , which is usually done when Newton’s
or similar methods are used. In [1,2] we proposed a family of such methods,
which is called generalized Picard iterations. Let’s give a brief description of the
approach.

The idea is to use artificial time integration of an ‘embedding’ differential
equation Z ′ = r(Z) by some auxiliary explicit one-step method of RK type with
constant artificial time step ω. This results in the process which we shall call the
generalized Picard iteration (GPI). Its general form is simply

Z [m+1] = Φ(Z [m]), m = 1, 2, . . . (4)

where Φ is the time-stepping mapping of the auxiliary method. The key task
now is to define this mapping, i.e. to determine the coefficients of the auxiliary
method. We perform this by optimizing the convergence behavior of (4) on linear
problems. To make this precise we shall give the following definition.

Definition 1. Consider the linear model ODE y′(t) = λy(t), λ ∈ C, and cor-
responding GPI process (4) for the solution of induced RK equation of the form
(3). A region D ⊂ C, such that (4) converges for all λτ ∈ D is called the linear
convergence region of (4).

By substituting f(t, y) = λy in (2) we have

r(Z) = (λτA − I)Z + g0, Z ∈ IRs, (5)

where g0 = λτA(y01s), 1s = (1, ...1)T ∈ IRs. In this case we have

Φ(Z) = R(ω(λτA − I))Z + Q(ω, λτA − I)g0, (6)

where R is the stability polynomial of the auxiliary method, Q(ω, z) = (R(ωz)−
1)/z. According to the convergence criterion of linear fixed-point iterations, the
linear convergence region of GPI (4) in this case will be

D =
s⋂

i=1

μ−1
i (ω−1S + 1), (7)

where {μi} = Σ(A), Σ(·) is spectrum of a matrix, and S is the stability region
of the auxiliary method: S = {z ∈ C: |R(z)| < 1}. Furthermore, the convergence
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Fig. 1. Convergence regions of ordinary (upper) and ‘preconditioned’ (lower) GPI
methods for base RadauIIA 4-stage method and auxiliary explicit Euler method. Black
points are μ−1

i . Contour lines correspond to the constant values of convergence factor
K(z) (8), (10).

factor of GPI process for (6) is determined by the spectral radius of R(ω(λτA −
I)), which is equal to K(λτ), where

K(z) = max
i

|R(ω(zμi − 1))|. (8)

The examples of convergence regions for GPI based on (2) with 7th order
RadauIIA base method [3, Sect. IV.5] and explicit Euler method being the aux-
iliary method are shown in the first row of Fig. 1. We see that generally as ω → 0
the area of D increases, but the overall convergence factor grows significantly.

In order to improve the situation instead of (2) we consider the ‘precondi-
tioned’ RK system

ri(Z) = −
s∑

j=1

ãijZj + τf(t0 + ciτ, y0 + Zi) = 0, i = 1, . . . , s, (9)

where (ãij) = Ã = A−1. If A is not singular this system is equivalent to (2),
but the corresponding GPI process (4) behaves much better for λτ � 0 (in stiff
case). Indeed, in scalar linear case instead of (5) now we have

r(Z) = (λτI − Ã)Z + λτ1sy0,
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and the convergence region and convergence factor become respectively

D =
s⋂

i=1

(μ−1
i + ω−1S) and K(z) = max

i
|R(ω(z − μ−1))|, (10)

see the second row in Fig. 1. We see that the preconditioned equation (9) is
better to use in stiff case, but for λτ ≈ 0 the ordinary RK equation (2) should
be used.

The simple analysis of the preconditioned GPI process allows to prove the
next important property.

Proposition 1. Let the base IRK method be A-stable and there exists r0 > 0
such that the open disk of radius r0 and center in (−r0, 0) is entirely covered by
the stability region of the auxiliary RK method. Then for any linear ODE system
y′ = Jy with Σ(J) ⊂ C− and any time step τ > 0 there exists ω0 > 0 such that
the preconditioned GPI iterations (4), (9) converge for all ω ∈ (0, ω0).

As we see, in order to achieve faster convergence of GPI we need |R(z)| to take
minimal possible values over the whole stability region S. In light of this we use
the following scheme of auxiliary method construction:

1. Select the desired shape of stability region Ω ≈ S taking the condition
Σ

(
∂f
∂y (t0, y0)

)
⊂ D as a reference point, see (7) and (10).

2. Choose σ – the desired number of stages for the auxiliary method, and
construct a stability polynomial R of degree σ basing on the condition1
∫∫

Ω
|R(z)|2dz → min. In our experiments we use minimization over an angu-

lar sector in the left halfplane:

∫ 1

0

∫ π+θ

π−θ

|R(ρeiϕ)|2dϕdρ → min .

We solve this problem numerically with higher-precision arithmetic using
Mathematica system. For example, if the spectrum of Jacobian is close to
the real axis we take θ = π/180 and for σ = 7 get a stability polynomial
which stability region is shown in Fig. 2.

3. Build an explicit RK scheme which implements the constructed stability poly-
nomial. This step can be performed in variety of ways. We use Lebedev’s app-
roach briefly described in [3], see also [1]: the factorized stability polynomial
R(z) = R1(z)R2(z) . . . RM (z) yields the representation of Φ as a composition
of one and two-stage methods: Φ = Φ1 ◦ Φ2 ◦ . . . ◦ ΦM , where

Rk(z) =

{
1 + δz for odd σ and k = 1,

(1 + δkz)(1 + δ′
kz), in quadratic case;

1 We use this kind of optimization mostly for simplicity reasons. Of course, in general
case this condition does not imply |R(z)| < 1 ∀z ∈ Ω, so special care should be taken
here.
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Fig. 2. Stability region of 7-stage auxiliary method optimized with θ = π/180

Φk(X) = X + ωδr(X), if deg Rk = 1;
Φk(X) = g2,k − hαkγk(r2,k − r1,k), if deg Rk = 2,where

r1,k = r(X),
g1,k = X + hαkr1,k,

r2,k = r(g1,k),
g2,k = g1,k + hαkr2,k.

Here αk = (δ+δ′)/2, γk = 1−δδ′/α2
k, k = 1, . . . , M , and δ are the coefficients

which uniquely determine the auxiliary method mapping Φ.

In practice we perform iterations of GPI process (4) until the estimated error
‖Z [m] − Z∗‖, where r(Z∗) = 0, is less than 0.05 × Atol. Here Atol is, as usual,
the required tolerance for the local error y1 − y(t0 + τ). The error estimation
technique is based on the estimation of the convergence factor Θ as described in
[3, Section IV.8].

It is important to mention that the resulting method y
[m]
1 = y0+τ

∑s
i=1 f(t0+

ciτ, y0 + Z
[m]
i ) is equivalent to some explicit RK method of order one at least.

Though instead of this form we use

y
[m]
1 = y0 +

s∑

i=1

diZ
[m]
i ,

where (d1, . . . , ds)T = bT A−1, which gives method of only order zero, but per-
forms better on stiff problems (see [1] for details).
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2 Numerical Experiments

Our experimental code based on GPI is written in C++ and has a parallelization
option, which is implemented using OpenMP. If this option is enabled the inde-
pendent components ri of the residual function r (3) are evaluated in parallel.
The step size and error control is implemented in a standard way by using two
methods of different order. In our case these are 4-stage RadauIIA and Gaussian
methods of order 7 and 8 respectively. Since both of them are collocation meth-
ods, we effectively exploit the continuous polynomial approximation which they
provide: this polynomial is used for predicting the initial approximation Z [0] for
the error controller method and for the main method on new steps.

The Jacobian spectral radius estimate should be provided by the user in order
to properly select the value of auxiliary time step ω. In our tests we compute
this estimate on each step using Gershgorin theorem. This estimate is also used
for switching between ‘stiff’ and ‘non-stiff’ GPI methods. In stiff case we use
the ‘preconditioned’ residual function (9) with 7-stage auxiliary method from
Fig. 2. In non-stiff case we use ordinary residual (2) with explicit Euler auxiliary
method which linear convergence regions have been shown in the first row of
Fig. 1.

Further details of the implementation the interested reader can find in [1].
Since GPI methods are actually explicit, in its current state our code can

not compete with implicit methods in cases when Newton’s method is applica-
ble. That’s why we compare the performance of our code with highly-regarded
DOP853 code, which implements explicit Dormand-Prince RK methods with
variable order and is applicable in case of mildly stiff problems. We used C
language version of this code2. Each diagram shows results of the solvers with
required absolute tolerance settings Atol = 10−i, i = 2, 3, . . . , 10. The actual
absolute error at the endpoint and elapsed CPU time measured in seconds are
depicted in logarithmic scales.

The experiment was performed on a machine with 4-core Intel Core 2 Quad
Q6600 2.4 GHz processor and Linux operating system.

2.1 HIRES Problem

The first test problem is the well-known HIRES problem which describes a chem-
ical reaction of photomorphogenesis [3, Section IV.10]. This is a system of 8
nonlinear ODEs. The endpoint of integration is 421.8122, the reference solution
was downloaded from E. Hairer’s webpage3. The results of the experiment are
shown in Fig. 3. We see that for moderate tolerances the serial GPI code out-
performs DOP853, which is quite surprising. The parallel version works much
slower, which is expected, since the dimension of the system is too small and
thus the parallelization overhead is higher than the speed-up.

One may also note the unnatural behavior of GPI codes for Atol = 0.01,
which means that the error controlling mechanism needs to be tweaked.
2 http://www.unige.ch/∼hairer/prog/nonstiff/cprog.tar.
3 http://www.unige.ch/∼hairer/testset/stiff/hires/res exact pic.

http://www.unige.ch/~hairer/prog/nonstiff/cprog.tar
http://www.unige.ch/~hairer/testset/stiff/hires/res_exact_pic
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Fig. 3. HIRES problem test results.

2.2 BRUSS2D Problem

The second is another classic test problem BRUSS-2D which is a method-
of-lines discretisation of two-dimensional parabolic reaction-diffusion PDE [3,
Section IV.10]. We solved this problem on two spatial grids: 64 × 64 (Fig. 4) and
128 × 128 (Fig. 5). The value of the diffusion coefficient α is 1 in both cases.

Fig. 4. BRUSS-2D problem with N = 64, α = 1. The dimension of ODE is 8192.

For both of these tests the parallel version of GPI (running on 4 processors)
was approximately 2.5 times faster than the serial.
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Fig. 5. BRUSS-2D problem with N = 128, α = 1. The dimension of ODE is 32768.
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Abstract. In this paper a mathematical model for simulation of ther-
mal fields from wells located in permafrost area is considered, which takes
into account basic physical, technological, and climatic factors that lead
to a nonlinear boundary condition on the surface of the soil. To find the
thermal fields a finite-difference method is used to solve the problem of
Stefan type, and solvability of the corresponding difference problem is
proved. Possibilities of the developed software are presented to carry out
various numerical experiments and make long-term forecasts in simula-
tions of thermal fields in the system “well – permafrost” with annual
cycle of thawing/freezing the upper layers of the soil due to seasonal
temperature changes, intensity of solar radiation and technical parame-
ters of the wells. Comparison of numerical and experimental data are
in good agreement (difference is about 5 %) due to, in particular, that
the software adapts to the geographic location by using special iterative
algorithm of determination of the parameters, included in the non-linear
boundary condition on the soil surface.

1 Introduction

In Russia, permafrost, the soils which are conserved with frozen state during long
time, occupies a total area of 10 million km2, up to 65 % of the territory. These
areas are extremely important for Russian economy, as here there are produced
about 93 % of Russian natural gas and 75 % of oil, which in monetary terms,
provides up to 70 % of exports. Thawing of ice-rich soils will be followed by
the earth’s surface subsidence and activation of cryogenic hazardous geological
processes, called thermokarst. It is found that not only climate change, but
human activities lead to permafrost thawing.

According to Russian Constructive Standards, before developing an oil and
gas field it is necessary that the soil surface at the work site must be first covered
by a riprap of about two meters thickness, which usually consists of penoplex,
sand layer and a concrete slabs.

Then on the prepared work site, a number of wells may be placed with
dependence of production rate. The following restriction is used: two wells cannot
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 185–192, 2015.
DOI: 10.1007/978-3-319-20239-6 18
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be drilled at a distance lower than two radii of thawing from each other (i.e.,
lower than the distance which will be covered by zero isotherm for 25–30 years
of operation of a single well).

Thus, the problem of the optimal planning and designing work sites is very
important, as to deliver materials for construction is expensive by flights, because
of absence of land-ways in northern and polar regions of oil and gas fields.

2 Mathematical Model

We consider a problem of Stefan type for heat propagation in frozen soil from
heated well(tube) which may be insulated, taking into account phase transi-
tion. Numerical methods for solving problems of heat conductivity are the most
effective and universal methods of researching such processes. A large number
of works are devoted to development of numerical methods for solving bound-
ary value problems of heat conduction. Basics of finite difference methods are
detailed in the works [1,2]. It is known that the difference methods for solv-
ing mathematical problems provide highly accurate results, take into account a
large number of parameters and do not require rigid restrictions and assump-
tions. However, as a rule, computational codes are cumbersome, and analysis of
results is difficult. On the other hand, the existing analytical solutions (for exam-
ple, [3]), and a numerically–analytical methods [4,5] cannot usually consider real
boundary conditions and can be used only for testing numerical methods.

At present there are the following difference methods for solving problems
of Stefan type: a method of front catching by difference grid node, a method
of fronts straightening, a method of smoothing factors and through calculation
methods [6], and others. The method of front catching by grid node is used
only for one-dimensional single-front problems, and straightening method only
for multiple-front problems. A essential feature of these methods is that the
finite difference schemes are constructed with explicit front of phase transition.
It should be noted that the methods with explicit fixing of phase transition are
not suitable in the case of temperature cycling on the boundary, because there
may be several non-monotonic moving fronts, and some of them may merge
with each other or disappear. In [7] a through calculation scheme developed
with smoothing of discontinuous phase transition coefficients in heat conduc-
tion equation. Through calculation scheme is characterized by the phase transi-
tion boundary is not determined explicitly, and homogeneous difference schemes
may be used. The heat of phase transformation is introduced with using Dirac
δ-function as a concentrated heat of phase transition in the specific heat ratio.
The obtained discontinuous function then “shared” with respect to temperature,
and does not depend on the number of measurements, phases, and fronts.

The models which are most similar to the results of this work, we have to
mention ones with using a one-dimensional heat equation taking into account a
variety of factors: snow cover, vegetation etc. A detailed review of these models
is presented in [8], but it is not assumed that there is any engineering systems
installed in the permafrost zone. When taking into account solar radiation and
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the presence of snow cover it was thought that short-wave part of the radi-
ation can penetrate through snow cover to a considerable depth, varying by
Bouguer–Lambert law. In our three-dimensional model snow cover, vegetation,
solar radiation per year, as well as other climatic factors are taken into consider-
ation by using a special iterative algorithm of some coefficients variating, which
are a terms of non-linear boundary condition on the surface of the soil. However,
these parameters can be found more accurately, if there is additional informa-
tion about temperature distribution up to depth 10–11 m for a season for this
temperature. This approach allows to makes it easier to compose an initial data
that are often cannot be accurately, or, for example, it is impossible to measure
the thickness of snow cover, and determine the snow properties depending on
solar radiation, etc.
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Fig. 1. The main heat flows and boundary conditions

In this paper the results of numerical simulations of thermal fields from two
wells are presented. The computational domain is a three-dimensional box in
which the vertical wells are considered as inner boundaries. The considered soil
is possible to be non-homogenous and may include a number of elements, such as
ice-rock lenses, different layers, engineering constructions (riprap), and insulating
layers around the wells.

As a basic mathematical model with including localized heat of phase tran-
sition is considered – an approach to solve the problem of Stefan type, without
the explicit separation of the phase transition [6]. The heat of phase transforma-
tion is introduced with using Dirac δ-function as a concentrated heat of phase
transition in the specific heat ratio.

First let consider heat exchange on a flat ground surface directly illumi-
nated by the sun. Let the initial time be t0 = 0, and the ground is a box
Ω and T0(x, y, z) is initial temperature. The computational domain is a three-
dimensional box, where x and y axes are parallel to the ground surface and the
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z axis is directed downward. We assume that the size of the box Ω is defined by
positive numbers Lx, Ly, Lz: −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly, −Lz ≤ z ≤ 0. Let
T = T (t, x, y, z) be soil temperature at the point (x, y, z) at the time moment t.
The main heat flow associated with climatic factors on the surface z = 0 is shown
in Fig. 1.

The ground surface z=0 is a main zone of formation of natural thermal
fields. On this surface the equation of balance of flows is used as a boundary
condition, with taking into account the main climate factors: air temperature
and solar radiation. Tair = Tair(t) denotes the temperature in the surface layer
of air, which varies from time to time in accordance with the annual cycle of
temperature; σ = 5, 67 · 10−8 W/(m2K4) is Stefan–Boltzmann constant; b =
b(t, x, y) is heat transfer coefficient; λ = λ(T ) is thermal conductivity coefficient;
ε = ε(t, x, y) is the coefficient of emissivity. The coefficients of heat transfer and
emissivity depend on the type and condition of the soil surface. Ω can include
a number of engineering structures. Suppose that in Ω there are 2 objects that
are heat sources (for example producing insulated wells). We denote the surface
of these objects by Ωi = Ωi(x, y, z), i = 1, 2, (see Fig. 1).

Thus, the modeling of thawing in the soil is reduced to the solution in Ω of
the following heat equation [6]:

ρ
(
cν(T ) + kδ(T − T ∗)

)∂T

∂t
= ∇ (λ(T )ΔT ), (1)

where ρ is density [kg/m3], T ∗ is temperature of phase transition [K],

cν(T ) =
{

c1(x, y, z), T < T ∗,
c2(x, y, z), T > T ∗, is specific heat [J/kg K],

λ(T ) =
{

λ1(x, y, z), T < T ∗,
λ2(x, y, z), T > T ∗, is thermal conductivity coefficient [W/m K ],

k = k(x, y, z) is specific heat of phase transition, δ is Dirac delta function.
Thus, it is necessary to solve equation (1) in the area Ω with initial condition

T (0, x, y, z) = T0(x, y, z) (2)

and boundary conditions [9,10]

γq + b(Tair − T (x, y, 0, t)) = εσ(T 4(x, y, 0, t) − T 4
air) + λ

∂T (x, y, 0, t)
∂z

, (3)

T

∣
∣
∣
∣
Ω10

= T1(t), T

∣
∣
∣
∣
Ω20

= T2(t), (4)

∂T

∂x

∣
∣
∣
∣
x=±Lx

=
∂T

∂y

∣
∣
∣
∣
y=±Ly

=
∂T

∂z

∣
∣
∣
∣
z=−Lz

= 0. (5)
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Boundary condition (2) determines an initial distribution of soil temperature
at the time moment from which we plan to start the numerical calculation.
Condition (3) is obtained from the balance the heat fluxes at the ground surface
z = 0. Here total solar radiation q(t) is the sum of direct solar radiation. Soil
is absorbed only part of the total radiation which equal to γq(t), where γ =
γ(t, x, y) is the part of energy that is formed to heat the soil, which in general
depends on atmospheric conditions, angle of incidence of solar radiation, i.e.
latitude and time.

Thus, the simulation of heat transfer in three-dimensional domain with the
phase transition is reduced to solving the initial-boundary value problem (1)–(5).

3 Numerical Results

The base of this numerical method is an algorithm with good reliability in finding
thermal fields of underground pipelines [14–16], but in view of specificity, related
to the possible phase transitions in the soil [9–12].

On the base of ideas in [6] a finite difference method is used with splitting
by the spatial variables in three-dimensional domain to solve the problem for
Eq. (1) in Ω. We construct an orthogonal grid, uniform, or condensing near the
ground surface or to the surfaces of Ω1 and Ω2.

In computations the nonlinear boundary condition is approximated, as a rule,
by a linear one or with using an iterative process of calculations. At present
implicit finite difference schemes, which leads to solving nonlinear equation, are
not used in investigations devoted to direct numerical simulation of heat propa-
gation problems with nonlinear boundary conditions.

To solve a difference system for Eq. (1) a sweep method is considered [13].
In [15] solvability of the system with nonlinear difference boundary condition
was proved.

With using the model (1)-(5) numerical calculations were carried out for
Western Siberia region (Suzun oil and gas field). Monthly average solar radia-
tion and air temperature used in computations are consistent with the data in
Atmospheric Science Data Center (ASDC) at NASA Langley Research Center.

As a basic soil we will use a loam with the following parameters. Thermal
conductivity: frozen — 1.82 W/(m K), melted — 1.58 W/(m K), volumetric
heat: frozen — 2130 kJ/(m3 K), melted — 3140 kJ/(m3 K), volumetric heat
of phase transition — 1.384·105 kJ/(m3 K). The background temperature of
permafrost is -0.7◦C, except for the layer of seasonal thawing (freezing) of soil.

There is a layer of riprap of 2.5 m. The riprap consists of three layers: peno-
plex (0.2 m), sand (2.0 m) and the concrete slab on the top (0.3 m). Parameters:
concrete slab with density 2500.0 kg/m3, thermal conductivity 1.69 W/(m K),
specific heat 0.84 kJ/(kg K); sand with density 1600.0 kg/m3, thermal con-
ductivity 0.47 W/(m K), specific heat 0.84 kJ/(kg K), penoplex with density
35.0 kg/m3, thermal conductivity 0.031 W/(m K), specific heat 1.53 kJ/(kg K).

Let consider two wells at the distance of 10 m from each other. Radius of
the wells is 0.089 m. Temperature in the wells is 45 ◦C basic temperature of
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Fig. 2. Thermal fields from two identical wells.

permafrost is −0.7 ◦C. The wells have a cement shell with thickness of 0.176 m,
and upper part up to 22 m has two additional insulating shells: up to radius
0.410 m a penoplex layer is inserted, up to radius 0.5 m — cement.

Further the results of simulations of different regimes of exploitation are
shown.

In Fig. 2 thermal fields for 7 and 10 years of exploitation of wells are shown.
Upper layers in April and October are different because of seasonal changes.
We may see thermal fluxes which propagate from non-insulated lower part and
interaction with fluxes from upper boundary. Joining two fronts of thawing is
observed on 3rd year of exploitation.

In Fig. 3 the left well has been stopped after 7 years of exploitation and soil
around the well began to cool. It doesn’t return to the initial temperature due
to the molten state of the soil and the influence of the second well still being in
operation. But the upper layers of the soil are frozen in winter and these processes
may leads to thermokarst processes which may destroy the well equipping.
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Fig. 3. Thermal fields from two wells, when one is turned off.

4 Conclusion

Based on a mathematical model numerical algorithm and software package
Wellfrost is developed. Solvability of the corresponding difference equations
with nonlinear boundary condition (3) is proved, which is not commonly used
by researchers when considering similar problems. The difference between the
numerical and experimental data was about 5 %, in particular, due to boundary
condition (3) allowed to describe natural thermal fields.

Developed software complex has been tested for eight oil and gas fields in
permafrost zone. Numerical simulation using and analysis of radii of thawing
allowed to choose optimal parameters and to reduce costs in field development
at the design stage. In the numerical calculations it were observed some patterns
in increasing speed of propagation of permafrost thawing between two wells,
depending on various parameters. These results allow the standards in distance
between wells to be corrected.
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Abstract. In this paper we apply modified implicit methods for nonlinear
dynamical systems related to constrained and non-separable Hamiltonian
problems. The application of well-known standard Runge-Kutta integra-
tor methods based on splitting schemes failed, while the energy conserva-
tion is no longer guaranteed. We propose a novel class of iterative implicit
method that resolves the nonlinearity and achieve an asymptotic sym-
plectic behavior. In comparison to explicit symplectic methods we achieve
more accurate results for 5–10 iterations for only double computational
time.

Keywords: Semi-implicit integrators · Levitron problem · Iterative
Euler method · Crank-Nicolson methods · Symplectic splitting · Long
time computations

1 Introduction

Nonlinear dynamical systems with non-separable Hamiltonian are important in
real-life applications, by the way, they are delicate to solve. While standard
integrators fail, see [1,3,4,8], it is important to consider new iterative solver
techniques, that combine the ideas of decomposing into simpler equation parts
and resolving the nonlinearity. The main challenge is to design implicit integra-
tors, which are cheap in computational costs and fulfill the physical constraints
of energy conservation, see [2,5,6].

We deal with the nonlinear evolution equation of the dynamical variable
u(q,p) (including q and p themselves) is given by the Poisson bracket,

∂tu(q,p) =
(∂u

∂q
· ∂H

∂p
− ∂u

∂p
· ∂H

∂q

)
= (A(q,p) + B(q,p))u(q,p). (1)

where A can be an unbounded and nonlinear operator. For solving Hamiltonian
problems, we can apply the structure of decomposing L = A + B, where A is
the kinetic and B is the potential operator, depending on the variables (q,p).

To study the trajectories of the dynamical system, we deal with the following
system of nonlinear ordinary differential equation:

dc
dt

= ċ(t) = f(c, t), t ∈ [0, T ], and c(0) = c0, (2)
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where c = (p,q)t and the nonlinear operator f = (fp, fq)t is given as

f(c, t) = f(p,q, t), (3)

where fp(p,q, t) = −∂H
∂q (p,q), fq(p,q, t) = ∂H

∂p (p,q). We assume a system
with m differential equations, where m is even with c = (c1, . . . , cm)t =
(p1, . . . , pm/2, q1, . . . , qm/2)t and in detail the nonlinear operators are compo-
nentwise given as:

f(c) = (−∂H

∂q1
(p,q), . . . ,− ∂H

∂qm/2
(p,q),

∂H

∂p1
(p,q), . . . ,

∂H

∂pm/2
(p,q))t. (4)

For such a nonlinear dynamical equation system, we have to apply time-
integrators, that can resolve this nonlinear behavior. Further, we need energy
conservation for long times and fast algorithms to study the stability of the tra-
jectories. In the following, we propose a novel class of asymptotic symplectic
integrators.

The paper is outlined in the following:
The time-integrators are discussed in Sect. 2. Application of the numerical

schemes to the test problem of a Levitron are done in Sect. 3. In the conclu-
sions, that are given in Sect. 4, we summarize our results.

2 Time-Integrator Methods

We compare the standard Runge-Kutta integrator with a new class of iterative
semi-implicit solvers with respect to long-term stability of the Levitron. In the
following, different methods will be compared.

2.1 Implicit Methods Embedded to Waveform-Relaxation Schemes

To circumvent the expensive computations of implicit methods, we use the prop-
erty of the Hamiltonian, that the nonlinear function depends only on the recent
variable in the function producing a decoupling with respect to Waveform-
relaxation schemes. Therefore, we can use the implicit behavior of the multistep
methods without any fixpoint schemes as an explicit method. In the asymptotic
behavior of the iterative scheme for i → ∞, we obtain a semi-implicit Euler
method, which is symplectic, see [5].

The initial value of (1) is rewritten in the following form:

u′ = f(u,u, t), u(0) = u0, (5)

where we have the special structure of the Hamiltonian problem:

u =
(
p
q

)
, f(u,u, t) =

(
−∂H

∂q (p,q)
∂H
∂p (p,q)

)

. (6)
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The well-known Picard or Waveform-relaxation scheme, see [7], for system (5)
has the form:

u′i+1 = f(ui+1,ui, t), ui+1(0) = u0, (7)

where x0(t) is an initial iteration and the nonlinear splitting function
f : (IRm)2 × [0, T ] → IRm.

The semi-implicit Euler scheme, see [5], is applied with the difference approx-
imation and is given as:

un+1 = un + Δt f(un+1,un, tn). (8)

The exact integrator is given as: (Ju′)(t) = u(0) +
∫ t

0
u′(s) ds.

The semi-implicit integrators, with respect to the Hamiltonian structure (1)
are given as

– Semi-implicit Euler Integrator: (Jimplicit Euleru′)(t) = tu(t).
– Fractional-Step Integrator: (JFSu′)(t) = t(θu(t) + (1 − θ)u(0)), θ ∈ [0, 1].
– Crank-Nicolson Integrator: (JCNu′)(t) = t

2 (u(t) + u(0)).
– Leap-Frog Integrator:

(JLeapu′)(t) = (Jimplicit Euler) ◦ (J∗
implicit Euler)(u

′)(t) = t u(t/2).

Corollary 1. The composition of two symplectic one-step integrators, in our
case, e.g., (Jimplicit Euler) and the conjugate integrator J∗

implicit Euler, is also sym-
plectic in the composition, see [2].

Corollary 2. The system (5) has a unique solution u′∗ and the sequence {ui}
applied by the algorithm (7) converge to u∗, where u∗ = Ju′∗ is the unique
solution of (5).

Definition 1. We apply the norm || · ||m in IRm such that:

||f(u1,u2)(t) − f(v1,v2)(t)||L2 ≤
2∑

l=1

al||ul − vl||, (9)

a1, a2 are Lipschitz constants.
We have ũ = u′ for t ∈ [0, T ] and

(Jũ)(t) = u(0) +
∫ t

0

ũ ds, (10)

where u(0) = u0 is the initial condition.
For the implicit Euler integrator we apply:

(Jimplicit Eulerũ)(t) = tũ(t), (11)

where we have a first order scheme and the error is given as ||(Jũ)(t) −
(Jimplicit Eulerũ)(t)|| ≤ O(t2). Analogue this was done for the fractional step
scheme for θ ∈ [0, 1

2 ) and θ ∈ ( 12 , 1].
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For the Crank-Nicolson or trapezoidal integrator we apply:

(JCN ũ)(t) =
t

2
(ũ(t) + ũ(0)), (12)

where we have a second order scheme and the error is given as ||(Jũ)(t) −
(JCN ũ)(t)|| ≤ O(t3).

Corollary 3. The system (5) has a unique solution ũ∗ and the sequence {ui}
applied by the algorithm (7) converge to u∗, where u∗ = Jũ∗ is the unique
solution of (5).

Proof. The proof idea is also described in [7].
We apply the following details:

||f(J(ũ1, J(ũ1, t) − f(J(ũ2, J(ũ2, t)|| ≤
2∑

l=1

al||J(ũ1) − J(ũ2)||

≤
2∑

l=1

al

∫ t

0

||ũ1) − ũ2|| ds ≤
2∑

l=1

al Vc||ũ1) − ũ2||, (13)

where Vc : C([0, T ], IRm) → C([0, T ], IRm) is a linear Voltera integral operator
with (Vcp)(t) =

∫ t

0
p(s) ds. Further L =

∑2
l=1 alVc is a compact and non-

negative operator.
The iterative scheme can be estimated as:

||ũi+k+1(t) − ũi(t)|| ≤
k−1∑

j=0

||ũi+j+1(t) − ũi+j(t)||

≤
k−1∑

j=0

Lj ||ũi+1(t) − ũi(t)|| ≤ (I − L)−1Lk||ũ1(t) − ũ0(t)|| = Λ(i)(t). (14)

Therefore, the inequality (14) converges uniformly, {ũi(t)} is a Cauchy sequence
in the function space C([0, T ], IRm) as long as {Λ(i)} uniformly converges in
C([0, T ], IRm×m),

While ρ(L) < 1, we find a norm ||L||ε ≤ ρ(L) + ε < 1 and

||Λ(i)||ε ≤ ||L||iε||φ0||ε, (15)

where φ0 = (I − L)−1||ũ1(t) − ũ0(t)||.
Therefore the sequence {ũi(t)} converge to a unique solution ũ∗(t) and we

obtain a unique solution u∗(t) of system (5).

2.2 Algorithmic Structures of the Iterative Semi-implicit
Integrators

The iterative semi-implicit methods are given in Algorithm 1. We deal with the
following superscripts of the solutions u:
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– un is defined as the solution at the time-point tn,
– ui,n is defined as the iterative solution of u in the i-th iterative step at the

time-point tn.
– If we apply un+1 = ui,n+1, we replace the solution in the next time point tn+1

with the iterative solution in the i-th iterative step.
– If we apply u0,n+1 = un, we initialize the iterative scheme with the solution

in time point tn.

Algorithm 1. We compute the solution u(tn) at the time points n =
1, 2, 3, . . . , N , the initialization of the iterative scheme is given with the initial
condition of the Eq. (5) as u0,1 = u0. The time-step is given with Δt = tn − tn−1

and the error bound is given as ε = 10−5. We start with n = 1:

1. Initialization i = 0:

u0,n+1 = un, (16)

2. Iterative Steps:
– Semi-implicit Euler Step:

ui,n+1 = un + Δt f(ui−1,n+1,ui,n+1, tn+1). (17)

– Fractional Step:

ui,n+1 = un + Δt
(
θf(ui−1,n+1,ui,n+1, tn+1)

+ (1 − θ)f(un,un, tn)) , θ ∈ [0, 1]. (18)

– Crank-Nicolson Step:

ui,n+1 = un +
Δt

2
(
f(ui−1,n+1,ui,n+1, tn+1) + f(un,un, tn)

)
. (19)

– Composition of two symplectic Integrators, e.g. Leap-Frog Integrator:

pi,n+1/2 = pn +
Δt

2
fp(ui−1,n+1/2,ui,n+1/2, tn+1/2), (20)

qi,n+1/2 = qn+1/2 +
Δt

2
fq(ui−1,n+1/2,ui,n+1/2, tn+1/2), (21)

qi,n+1 = qn+1/2 +
Δt

2
fq(ui−1,n+1,ui,n+1, tn+1), (22)

pi,n+1 = pn+1/2 +
Δt

2
fp(ui−1,n+1,ui,n+1, tn+1). (23)

3. Stopping Criterion: If i = I or the error is given as

||ui,n+1 − ui−1,n+1|| ≤ ε, (24)

we have un+1 = ui,n+1.
Else n = n + 1,

If n = N + 1, we are done and have computed all N solutions and stop,
Else go to step 1.
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We obtain a new class of asymptotic symplectic integrators, which is symplec-
tic only for separable Hamiltonians, using e.g. splitting, and embed the method
into a waveform-relaxation scheme, see [7]. The waveform-relaxation scheme
resolves iteratively the nonlinearity of the dynamical system with a convergence
order of O(Δti), where i is the number of iterations and Δt is the time-step,
see [7].

The order of the semi-implicit Euler integrator can be improved by applying
two semi-implicit Euler integrators (positive and negative time step) and one
gets a Leap-Frog integrator of second order, see [5].

The semi-implicit Crank-Nicolson method, based on the trapezoidal rule,
while the Trapezoidal rule is symplectic, see [8], we could embed such an asymp-
totic symplecticity.

Remark 1. We have derived asymptotic symplectic methods, based on the sym-
plectic kernel-functions. Such methods can be improved by compositions of sym-
metric integrators, see [2]. An alternative multistep method is not symplectic,
see [2] and such methods can not be applied. We have applied BDF2 methods
and obtained less stable results as for example with semi-implicit Euler methods.

3 Numerical Example

The numerical example is based on a Levitron, which is well-studied, see for
example [1,4]. A Levitron is a spinning gyroscope which levitates in a magnetic
field. To analyze the trajectories of the gyroscope it is important to energy
preserving integrators, see [1].

The model equations are the following [4]:

H =
1

2m

(
p2x + p2y + p2z

)
+

p2θ
2A

+
p2ψ
2C

+
(pφ − pψ sin θ)2

2A cos2 θ
+ mgz − μρ

(
1
2
Φ2(z)

·(x sin θ + y cos θ sin φ) + (−Φ1(z) +
1
4
(x2 + y2)Φ3(z)) cos θ cos φ)

)
, (25)

where the higher order Φi(z) are defined as Φi(z) = ∂Φi−1(z)
∂z .

For the Levitron test case we compare standard explicit integrators with the
novel iterative semi-implicit integrators. At least only sufficient energy conser-
vation can guarantee realistic numerical solutions of the Levitron, see [4].

Our parameters of the model Eq. (1) are given as: a = 5 cm (radius of
the base plate), b = 1.5 cm (radius of the Levitron), m = 20.0 g (mass of the
top), A = mb2

4 (first moments of inertia), C = mb2

2 (second moment of inertia),
σ = 20 · 2π 1

s (spin rate), μ · ρ = −0.000095 V 2s2 (dipole strength of the top
× dipole density of the base), (x, y, z) = (1, 0, 31.3)mm (initial point of the
Levitron), φ = ψ = θ = 0◦ (initial angles) (px, py, pz) = (0, 0, 0)kg m2 s−1

(initial momenta) and (pθ, pφ, pψ) = (0, 0, σC)kg m2 s−1.
The time step is Δt = 10−6s and the maximum number of time-steps which

was tested is N = 108, representing a time of 100 s.
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We see, that the energy conservation for long-time computations t ≥ 80s
is fulfilled only for the iterative semi-implicit integrators, i.e. IEU10 (implicit
Euler with i = 10, CN10 (Crank-Nicolson with i = 10), Leap Frog with i =
10. Here, we resolve the nonlinearity of the Hamiltonian and gain asymptotic
symplecticity, due to the fact of the symplectic kernel. While shorter times in
the range of 20 ≤ t ≤ 80s can be reached with sufficient energy conservation
by explicit schemes (e.g. Runge-Kutta 4th order schemes), the overall benefit of
the novel schemes are long-time conservations, see Fig. 1. For long-time studies,
the Levitron moved into the stable attractor x = 0, y = 0, z = zs, which is the
stable point and we see only small perturbations.

Fig. 1. Long energy computations with semi-implicit methods in the time-interval t =
[0, 100]s (106 timesteps).

The computational time of such schemes increases, see Table 1, such that an
application of the iterative semi-implicit schemes is more efficient for long-time
studies.

Table 1. Computational time for 106 time-steps of explicit and implicit schemes.

Schemes Comput. Time [s] Schemes Comput. Time [s]

expl. Euler 20.6 it. CN i = 1 40.9

expl. RK (Ord. 4) 141.0 it. CN i = 5 121.2

it. Euler i = 1 21.4 it. CN i = 10 222.0

it. Euler i = 5 101.4 Leapfrog i = 1 40.3

it. Euler i = 10 201.4 Leapfrog i = 5 201.5

Leapfrog i = 10 404



200 J. Geiser et al.

In summary, the iterative semi-implicit schemes are more effective, because
they can resolve the nonlinear Hamiltonian structure and gain asymptotic sym-
plecticity. We overcome restriction of the CFL (Courant-Friedrich-Levy) condi-
tion, which is known for the explicit schemes. In real-life applications, the choice
of the integrator are given by the dilemma: if the problem does not require long
times to be studied a relatively simple integrator can be the most efficient, e.g.
explicit symplectic Runge-Kutta methods. For long-time analysis like the sta-
bility problem of the Levitron it is necessary to have very small error in energy
conservation for this system. Therefore, only more complex composite iterative
solvers are important.

4 Conclusions and Discussions

We present a new class of iterative implicit time-integrators for non-linear prob-
lems with non-separable Hamiltonians. We could prove asymptotic symplecticity
for the iterative implicit schemes. We see the benefit of iterative semi-implicit
methods, which produce stable results for long time computations. Further, they
are cheaper than fully implicit schemes, while they only update explicit the next
iterative solution. Nevertheless explicit methods are fast but they failed in energy
conservation for longer time intervals, e.g. t ≥ 50 s. Based on this fact, iterative
semi-implicit methods are more attractive, while combining resolution of the
nonlinearity and the asymptotic symplecticity with additional iterative cycles.
We could demonstrate long-time stability of about 20 h for a test trajectory,
which have at least only twice computational effort compared with standard 4th
order schemes. In the future, we will concentrate on analyzing and designing
this composition types of iterative semi-implicit integrators for nonlinear and
non-separable Hamiltonian systems.
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Abstract. In this paper we present a model to simulate textile as used
in pest control. For this application, textile is coated with a repellent,
protecting the user from insect bites, and one wants to determine optimal
material properties. The model extends an existing 3 scale method to
allow for simulations in saturated conditions. This is achieved with the
addition of an overlapping domain decomposition approach for the fiber-
yarn interaction.

With the model we present how the performance of a coating can be
determined: how much material is required, what evaporative properties
are needed, how can the coating be replenished? Furthermore, the model
can be used to evaluate the effects of the used textile substrate, like the
type and number of fibers or the weaving structure. Lastly, it can be
used to validate simple first-order models of coated textile.

Numerical results indicate the 3 scale approach is valid. The influence
of different textile properties on the effectiveness of the resulting textile
component is presented.

Keywords: Diffusion · Textile modeling · Upscaling · Multi-scale
modeling · Domain decomposition

1 Introduction

Typical textiles used in pest control are treated scrims. These are open structures.
One can however also consider treated shirts and trousers, as an alternative to
smearing products onto exposed skin, or spraying products onto textile. Textile
can be treated in different ways: printed film coating and bath coating. We con-
sider the case of a bath coating that results into coated fibers as opposed to coated
yarns or fabric. This method retains maximally the original properties of the tex-
tile. As the coating is on the fiber level, it is useful to include a meso-model which
describes the interaction from fiber to yarn and from yarn to fabric, [1].
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To model the application in mind we thus make a distinction on three levels
of the scrim. First we model the fiber with one or more coatings containing
an active component (AC). To this end the fiber will be seen as a cylindrical
object. The boundary conditions depend on the chosen textile and the void
space characteristics. Secondly we model the yarn, a porous structure built out
of fibers, upscaling the outcome of the fiber model using an overlapping domain
decomposition method. The third model represents the scrim or fabric itself, with
its environment, again using overlapping domain decomposition to calculate the
overall properties of the fabric using the yarn properties.

The aim of the model is to develop a textile fabric that can maximally protect
the user from harmful insect bites. To achieve this, the textile must spatially repel
the insects. This will be possible with repellents when their vapour concentration
is higher than the minimum effective concentration (MEC). For example, for
DEET which repels mosquitoes, this is around 2μg/L air (depending on the
species), [2]. As a consequence, pure DEET evaporation could be reduced a
factor 22 and still give rise to repellency. Applying the DEET to textile via a
coating which reduces the evaporation rate would hence be beneficial. Moreover,
as the total fiber surface is larger than the fabric surface, a further reduction in
DEET evaporation is possible.

We start with an outline of the three scale model in the next Section, and
then show in Sect. 3 numerical examples of how the model can aid in the design
of protective textiles.

2 Multiscale Model

2.1 The Micro-level

We consider the cylindrical diffusion equation in [1]. However, to upscale the
fiber concentration to the yarn level of the model we now use the overlapping
domain decomposition technique. Therefore the original domain [0, Rf ] (with
Rf the radius of the fiber cross section) is extended with a zone Ωf

o = [Rf , kRf ]
overlapping with the yarn model domain, where k is determined in such a way
that after upscaling to the yarn level the overlap domain corresponds to the
available air space on the yarn level. In this zone the governing PDE is given by

∂Cf (r, t)
∂t

=
1
r

∂

∂r

(
rDf

∂Cf (r, t)
∂r

)
− Γf (Ωf

o , t), Rf ≤ r ≤ kRf , (1)

with homogeneous Neumann BC

∂Cf

∂r
(kRf , t) = 0,

where Df is the diffusion coefficient of the AC in air. The extra sink term
Γf (Ωf

o , t) is the concentration of AC that is removed from the micro-scale due
to diffusion to the meso-level, see Sect. 2.2.
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Equation 1 can be combined with the equation in [0, Rf ] by setting Γf to
zero there, and considering Df as the diffusion in the fiber, instead of in air.
At the fiber surface, r = Rf , the evaporation condition, [3], is imposed with an
evaporative flux

Fevap(t) = Shlg (Cs(T ) − CB) · H (Cf (Rf , t) − Cmin, Cs(T ) − CB) . (2)

In this, S is the effective area fraction where evaporation or condensation takes
place, hlg the mass transfer coefficient from liquid to gas [mm/s], Cs(T ) the
saturated concentration in air (temperature depending), CB the concentration of
the component in the air at the boundary, Cmin a minimum amount of component
in the fibers which relates to the absorption isotherm and chemically bound
component, and H defined as

H(v, c) =

⎧
⎨

⎩

1, c ≤ 0
0, c > 0 & v < 0
1, c > 0 & v > 0

. (3)

2.2 The Meso-level with Overlapping Domain Decomposition
Technique

Based on the model described in [1,3], the governing model for the concentration
of the AC on the yarn level for a yarn of radius Ry is

ε
∂Cy(r, t)

∂t
=

1
r

∂

∂r

(
εr

Dy

τy

∂Cy(r, t)
∂r

)
+ Γin(Ωf

o , t), r ∈ [0, Ry], (4)

where Dy is the diffusion coefficient of the AC in the yarn air gaps, ε is the
porosity depending on position and τy is the tortuosity of the yarn.

The term Γin(Ωf
o , t) in the equation above is a source term that describes

the upscaled amount of AC change in the overlap zone of the fiber level due to
release from the fiber. It is calculated by upscaling the concentration change in
the overlapping zone of the fiber during the current time step, i.e. by upscaling
Cf (Ωf

o , tj)−Cf (Ωf
o , tj−1) representing the concentration coming from one single

fiber to the overlap zone. Upscaling is done by multiplying with the total number
of fibers in a yarn cross section, taking possible blends of different kinds of fibers
into account. Note that the yarn domain will be split up in zones, and in every
zone a fiber model will be solved. The value of CB used in the fiber model will
be the average of the computed Cy over the zone. We call these fiber models the
representative fiber models. As the fibers are present everywhere for r ∈ [0, Ry],
the fiber overlap zone is implicit in the yarn model.

After solving the yarn model for tj we know the concentration change in
the implicit overlap zones [Rf , kRf ] for the fibers in the yarn zone considered
(new CB value) and downscale it again to the concentration change for one
single fiber. This will be used in the next time step as Γf (Ωf

o , tj+1) for the fiber
model.
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We did not consider boundary conditions yet. Due to the radial symmetry,
at r = 0 we have a homogeneous Neumann BC. At r = Ry, we again consider
the domain overlapping technique. Hence, to upscale to the macro-level model
containing the total fabric and its environment we extend the original domain
[0, Ry] with an overlapping domain Ωy

o at the interval [Ry, 2Ry] with the PDE
(4) slightly adapted to

ε
∂Cy(r, t)

∂t
=

1
r

∂

∂r

(
εr

Dy

τy

∂Cy(r, t)
∂r

)
+ Γin(Ωf

o , t) − Γout(Ωy
o , t), (5)

with a homogeneous Neumann BC

∂Cy

∂r
(2Ry) = 0.

The sink term Γout(Ωy
o , t) is the concentration of AC that is removed from the

meso-scale due to diffusion to the macro-level, see Sect. 2.3. No special treatment
at r = Ry is needed, as that boundary is only characterized by ε and τy becoming
unity. Furthermore, Γin is zero for r > Ry, and Γout is zero for r < Ry.

2.3 The Macro-level and Domain Decomposition Method

As mentioned above we will use an overlap zone Ωy
o = [Ry, 2Ry], to upscale from

the meso-level to the fabric level.
The room 1D diffusion equation for a room of length L with textile placed

at x = 0 is

∂tC = ∂x(D∂xC) + Γs(x, t), x ∈ [Ry, L], ∂xC(Ry) = 0,

with D the diffusion of the AC in air and Γs(x, t) the concentration per time
unit added/removed at x and only non-zero for x < 2Ry. We situate the overlap
zone in the first cell for numerical integration so there the source term Γs is
corresponding to the upscaled concentration change in the overlap zone of the
yarns Cy(Ωy

o , tj) − Cy(Ωy
o , tj−1) according to the number of yarns in the fabric.

Then the fabric model is solved to obtain a new concentration value near a
yarn. Because we model only half the room while the full yarn is considered,
the calculated mass loss should be multiplied by 2. Next the correct Γout(Ωy

o , tj)
term on the yarn level is set, downscaling the mass calculated from the room
model in this time step to keep mass balance. This yarn model sink term is based
on the concentration change occurring in the fabric overlap zone, i.e. the mass
removed from the fabric overlap zone, downscaled to one yarn.

As BC at x = L we can consider a homogeneous Neumann condition for
simulations in a closed environment, or a homogeneous Dirichlet BC to take
basic ventilation into account (open cup test).

2.4 The Complete Three Step Model

For the numerical scheme of the algorithm we make the distinction between the
r-coordinate of the fiber level, ri, 1 ≤ i ≤ I and the r-coordinate of the yarn
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level, r′
k, 1 ≤ k ≤ K. On each time step one complete three step model is solved

using on every scale a finite volume discretization in space, and a ODE Backward
Differentiation Formula solver in time (method of lines).

We initiate the numerical computations with the fiber level with initial con-
centrations Cf (ri, r′

k, t0) = Cinit(r′
k) for a fiber at radial position r′

k in the yarn
corresponding to the amount of AC in the coating after production of the fabric.
The sink term Γf (t) is zero for this first step. Next a yarn model is solved using
the change in concentration in the overlap zone of the fiber over the current time
step calculated in the fiber model and upscaled to the yarn source term Γin. The
sink term Γout is the concentration change in the overlap zone of the yarn due
to the fabric model diffusion in the previous time step. For the first time step
Γout is zero.

Afterwards a fabric model is solved now upscaling the concentration change
in the overlap zone of the yarn to the source term Γs.

A typical fabric can consist of different types of yarns. In this case two dif-
ferent yarn models are used. Likewise, a yarn can consist of a blend of different
fibers. In that case, for every yarn zone we consider as many fiber models as
there are fibers types present. Per construction, the upscaling and downscaling
of mass changes in the overlap zones are fully mass conservative. This requires
a correct characterization of the fabric, yarns and fibers used.

3 Experiments

We consider the problem of having the best possible protection. For this the
concentration of AC must be sufficiently high for the evaporation to cause a
build up of component sufficient to repel insects. From (2) we can deduce that
the evaporation speed for textiles reduces over its lifetime, as the effective area
S reduces with available compound. That is, we have that evaporation surface
S is equal to nCf (Rf , t)/ρ, where ρ is the density of the compound, and n the
porosity available for the compound. As a consequence, a minimum effective
dose of a compound can be determined from dose studies. For DEET absorbed
by cotton muslin cloth this is 20 nmol/cm2, [4].

The above reasoning leads one to conclude that all concentrations above the
MED are evaporating more compound than needed for repellency. As for our
example cotton muslin cloth can absorb up to 7500 nmol/cm2, a lot of material
is wasted to achieve long duration protection.

We propose and investigate two techniques to overcome this drawback. We
will concentrate on DEET as a compound, as all material properties of this
repellent are well known.

3.1 Extending Lifetime

Consider the following production method.

1. A finished cotton product (scrim or apparel) needs to obtain repellent prop-
erties.
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2. The product is drenched with DEET so as to absorb a pre-set mass of DEET.
3. The product is dried to remove surface DEET.
4. The product is coated with a polymer blocking layer that reduces the diffusion

of DEET to the surface.
5. The product is coated with a second polymer layer that has normal diffusion

properties, but reduced evaporation properties. This layer can optionally also
be enriched with DEET.

To simulate this, we consider an initial condition of the fiber consisting of 3 zones:
the cotton zone with a high DEET concentration, a blocking zone with no DEET
content and low diffusion coefficient, and a surface layer zone. Typical simulation
results for 4 cases are shown in Figs. 1 and 2. Case 1 has a blocking layer combined
with a pure DEET mass transfer coefficient (hlg = 0.897mm/s). Case 2 is like
Case 1 but with a blocking layer that has it’s diffusion coefficient an order
smaller. Case 3 is like Case 1 but with mass transfer coefficient 4 orders smaller.
Case 4 is like Case 1 but with a mass transfer coefficient for DEET as typical
with a polymer coating technique (S = 1 combined with hlg = 810−5mm/s).

Fig. 1. Left: evolution of the concentration of active component (AC) at the fiber
surface (Case 3 & 4 overlap). Right: resulting concentration in the air 4 mm away from
the fabric, bottom dashed line indicates the minimum amount needed for repellency of
DEET, the top dashed line the saturation concentration.

Fig. 2. Total mass in a single yarn of the fabric.
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The results give insight in how material properties can be adapted to maxi-
mize the effectiveness of the textile product. The threshold for repellency is the
bottom horizontal dashed line in Fig. 1. It can be seen that Case 1 and 2 give
excellent protection at the expense of overusing AC. After 8 hours also Case 4
offers protection, and this with a minimal loss of AC mass, as evident in Fig. 2.
The model allows to investigate the material properties needed to obtain an opti-
mal lifetime. The model next can be used to investigate the effects of changing
the fabric types: mixing in polyester fibers, changing yarn densities, ...

3.2 Replenishing Compound

An alternative approach to reduce the use of repellent is reactivating the textile
after use. In this case the textile is folded in a closed container, at high initial
temperature. DEET is released in the container up to saturation concentration,
after which the temperature is reduced, leading to oversaturation and conden-
sation of DEET, according to Eq. (2) with S = n. In this case the textile will
absorb the repellent. As no liquid DEET is used, no unwanted side effects due
to over-use should be present.

We perform a simplified simulation, in which we don’t take temperature
effects into account and assume an oversaturation can be maintained for a long
time. This will sufficiently correspond to the actual behaviour.

The result of a typical investigation of this use case is given in Fig. 3. In this
figure the concentration at the surface of a fiber is given during the activation of
the fiber. As the diffusion into a cotton fiber is fast, this will closely match the
concentration over the entire fiber. Note that the activation is a slow process,
over 8 hours, the concentration in the fiber is only augmented to 2 μg/mm3.
This however is enough to give protection for 10 hours, as is evident from the
release profile shown in Fig. 4. Due to the low initial content, the protection at
4 mm only starts after 30 min however.

Fig. 3. Left: Evolution of the concentration of active component (AC) at the fiber
surface during replenishing a fabric in a closed container. Right: reduction of compound
in a closed container due to absorption by the fabric.
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Fig. 4. Release of a replenished fabric over time, when used in a large room

4 Conclusion and Future Work

Our interest is the development of protective clothing. To this aim a textile model
has been developed to investigate the influence of characteristics on 3 different
scales: fiber properties, yarn properties and finally how yarns are combined into
a garment or scrim. We have shown that the model can be used in the design
phase of the textile. As future work we will validate the model with laboratory
tests, to show that the model results are in accordance with experimental results
of lifetime and effectiveness. In a later stadium we plan to develop optimization
tools that allow guided design of protective clothing based the constructed model.

Acknowledgements. The authors gratefully acknowledge the support of the Euro-
pean Commission, FP7, project number 228639.
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Abstract. For solving of the Navier-Stokes equations describing the
incompressible viscous fluid flows the Splitting on physical factors
Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite
difference scheme (second-order accuracy in space, minimum scheme vis-
cosity and dispersion, capable for work in the wide range of Reynolds
(Re) and internal Froude (Fr) numbers and monotonous) based on the
Modified Central Difference Scheme (MCDS) and the Modified Upwind
Difference Scheme (MUDS) with a special switch condition depending
on the velocity sign and the signs of the first and second differences of
the transferred functions has been developed and successfully applied.
At the present paper the description of the numerical method SMIF and
its applications for simulation of the 3D separated homogeneous and
density stratified fluid flows around a sphere and a circular cylinder are
demonstrated.

Keywords: Direct numerical simulation · Viscous fluid · Visualization
of the vortex structures · Flow regime · Sphere · Cylinder

1 Introduction

Many phenomena in the nature may be considered in the frame of the incom-
pressible fluid flows. Such flows are described by the Navier-Stokes equations.
As usually we have deal with the flows with large gradient of hydrodynamic
parameters (flows with free surface, stratified fluid flows, separated flows, etc.).
For the direct numerical simulation of such flows the finite difference schemes
should possess by the following properties: high order of accuracy, minimum
scheme viscosity and dispersion and monotonisity. The Splitting on the physical
factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite
difference scheme (second-order accuracy in space, minimum scheme viscosity
and dispersion, capable for work in wide range of Reynolds and Froude numbers
and monotonous) has been developed [1,2] and successfully applied for solving
of the different problems: 3D separated homogeneous and stratified viscous fluid
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flows around a sphere and a circular cylinder including transitional regimes [3–
12]; the flows with free surface including regimes with broken surface wave [1,2];
the air, heat and mass transfer in the clean rooms [13]. At the present paper
the classifications of the regimes of the 3D separated homogeneous viscous fluid
flows around a circular cylinder (at Re < 400) and the 3D density stratified
viscous fluid flows around a sphere (at Re < 700) will be demonstrated.

2 Numerical Method SMIF

Let ρ(x, y, z) = 1 − x/(2A) + S(x, y, z) is the non-dimensional density of the
linearly stratified fluid where x, y, z are the Cartesian coordinates; z, x, y are
the streamwise, lift and lateral directions (x, y, z have been non-dimensionalized
by d/2, d is a diameter of the body); A = Λ/d is the scale ratio, Λ is the
buoyancy scale, which is related to the buoyancy frequency N and period
Tb(N = 2π/Tb, N

2 = g/Λ); g is the scalar of the gravitational acceler-
ation; S is a dimensionless perturbation of salinity. The density stratified
viscous fluid flows have been simulated on the basis of the Navier-Stokes equa-
tions in the Boussinesq approximation (1)-(2) (including the diffusion equation
(1) for the stratified component (salt)) with four dimensionless parameters:
Fr = U/(N · d), Re = U · d/ν,A � 1, Sc = ν/κ = 709.22, where U is the
scalar of the body velocity, ν is the kinematical viscosity, κ is the salt diffusion
coefficient.

∂S

∂t
+ (v · ∇) S =

2
Sc · Re

ΔS +
vx
2A

(1)

∂v
∂t

+ (v · ∇)v = −∇p +
2

Re
Δv +

A

2Fr2
S
g
g

∇ · v = 0 (2)

In (1)-(2) v = (vx, vy, vz) is the velocity vector (non-dimensionalized by U), p is
a perturbation of pressure (non-dimensionalized by ρ0U

2).
For solving of the Navier-Stokes equations (1)-(2) the Splitting on physical

factors Method for Incompressible Fluid flows (SMIF) has been used [1,2].
Let the velocity, the perturbation of pressure and the perturbation of salinity

are known at some moment tn = n · τ , where τ is time step, and n is the number
of time-steps. Then the calculation of the unknown functions at the next time
level tn+1 = (n + 1) · τ for equations (1)-(2) can be presented in the following
four-step form:

Sn+1 − Sn

τ
= − (vn · ∇) Sn +

2
Sc · Re

ΔSn +
vn
x

2A
(3)

ṽ − vn

τ
= − (vn · ∇)vn +

2
Re

Δvn +
A

2Fr2
Sn+1g

g
(4)

τΔp = ∇ · ṽ vn+1 − ṽ
τ

= −∇p (5)

The Poisson equation for the pressure (5) has been solved by the diagonal Pre-
conditioned Conjugate Gradients Method.



The Theory and Applications of the SMIF Method 211

In order to understand the finite-difference scheme for the convective terms
of the equations (1)-(2) let us consider the linear model equation and a finite-
difference approximation of this equation:

ft + ufx = 0, u = const;
fn+1
i − fn

i

τ
+ u

fn
i+1/2 − fn

i−1/2

h
= 0 (6)

Let us investigate the class of the difference scheme which can be written in the
form of the two-parameter family which depends on the parameters α and β in
the following manner:

fn
i+1/2 = αfn

i−1 + (1 − α − β)fn
i + βfn

i+1, if u ≥ 0,

fn
i+1/2 = αfn

i+2 + (1 − α − β)fn
i+1 + βfn

i , if u < 0. (7)

In this case the first differential approximation for equation (6) has the form

ft + ufx = [α − β + γ] · h · |u| · fxx, (8)

where γ = 0.5 · (1 − C) and C = τ |u|/h is the Courant number.
If we put α = β = 0 in (7) we’ll obtain usual first order monotonic scheme

which is stable when 0 ≤ C ≤ 1.
It is known that it is impossible to construct a homogeneous monotonic

difference scheme of higher order than the first order of the approximation for
equation (6). A monotonic scheme of higher order can therefore only be con-
structed either on the basis of second-order homogeneous scheme using smoothing
operators, or on the basis of the hybrid schemes using different switch conditions
from one scheme to another (depending on the nature of the solution), possibly
with the use of smoothing. Here we are going to consider a hybrid monotonic dif-
ference scheme.

Let us investigate schemes with upwind differences (UD), i.e. β = 0. The
requirement that the scheme viscosity should be a minimum, as can readily be
seen from equation (8), impose the following condition on α = −γ (the modified
upwind difference scheme (MUDS)).

For schemes with α = 0, the analogous condition is β = γ (the modified
central difference scheme (MCDS)).

Since an explicit finite difference scheme considered, we shall restrict the
subsequent analysis to the necessary condition 0 ≤ C ≤ 1 for stability.

Let us assume that there is a monotonic net function fn
i , for example,

Δfn
i+1/2 ≡ fn

i+1 − fn
i ≥ 0 at any i.

The function fn+1
i will also be monotonic when the following conditions are

satisfied: (a) Δfn
i+1/2 ≥ ζ(C) ·Δfn

i−1/2 (for MUDS); b) Δfn
i+1/2 ≤ σ(C) ·Δfn

i−1/2

(for MCDS), where ζ(C) = 0.5 · (1 − C)/(2 − C); σ(C) = 2 · (1 + C)/C.
It can be seen from this that the domains of monotonicity of the homoge-

neous schemes being considered have a non-empty intersection. Hence, a whole
class of hybrid schemes is distinguished by the condition of switching from one
homogeneous scheme to another. The general form of this condition is as follows:
Δfn

i+1/2 = δ · Δfn
i−1/2, where ζ(C) ≤ δ ≤ σ(C).
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The choice of δ = 1 corresponds to the points of the interchange of the
sign of the second difference fn

i and makes it possible to obtain the estimation
fxx = O(h) for the required function f at the intersection points, by means
of which a second-order approximation is retained with respect to the spatial
variables of smooth solutions. We used the following switching condition: if (u ·
ΔfΔ2f)ni+1/2 ≥ 0, then MUDS is used; if (u · ΔfΔ2f)ni+1/2 < 0, then MCDS is
used; where Δ2fn

i+1/2 = Δfn
i+1 − Δfn

i .
On smooth solutions this scheme has a second order of approximation with

respect to the time and spatial variables. It is stable when the Courant criterion
0 ≤ C ≤ 1 is satisfied and monotonic. More over it was shown that this hybrid
scheme comes nearest to the third order schemes. The generalization of the
considered finite-difference scheme for 2D and 3D problems is easily performed
for convective terms in equations (1) - (2). For the approximation of other space
derivatives in equations (1) - (2) the central differences are used.

The efficiency of the method SMIF and the greater power of supercomputers
make it possible adequately to model the 3D separated incompressible viscous
flows past a sphere and a circular cylinder at moderate Reynolds numbers [3–12]
and the air, heat and mass transfer in the clean rooms [13].

3 The Visualization Techniques

For the visualization of the 3D vortex structures in the fluid flows the isosur-
faces of the streamwise component of vorticity wx (Fig. 1, w = rotv) and the
isosurfaces of β and λ2 have been drawing, where β is the imaginary part of the
complex-conjugate eigen-values of the velocity gradient tensor G [14] (Fig. 2b),
λ2 is the second eigen-value of the S2 + Ω2 tensor, where S and Ω are the sym-
metric and antisymmetric parts of G [4,15] (Fig. 2a). The good efficiency of this
β-visualization technique has been demonstrated in [5,6,9].

4 Some Fluid Flow Regimes Around a Circular Cylinder

Let us consider the homogeneous viscous fluid flow regimes around a circular
cylinder. At Re > 40 the periodical formation of vortex tubes is simulated in

Fig. 1. The isosurfaces of the streamwise component of vorticity wx (w = rotv) for
the circular cylinder with length L = 7.5 · d: a) Re = 240 (mode A); b) Re = 320
(mode B).
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Fig. 2. Vortex structures of the sphere wake at Fr > 10: a-c - Re = 200, 250, 350;
a) λ2 = −10−6 and −0.16; b) β = 0.04; c) λ2 = −2 · 10−5.

the wake. At Re = 191 2D-3D transition is observed in the wake. It means that
at Re > 191 there is a periodicity of the flow along the circular cylinder axis. At
191 < Re < 300 and 300 ≤ Re ≤ 400 the periodicity scales are equal to 3.5 · d ≤
λ ≤ 4 · d (mode A) and 0.8 · d ≤ λ ≤ 1.0 · d (mode B) correspondingly (Fig. 1).
Owing to our investigations it was found that the values of the maximum phase
difference along the circular cylinder axis are approximately equal to 0.1−0.2 ·T
(for mode A) and 0.015− 0.030 ·T (for mode B), where the time T is the period
of the flow [3].

5 The Classification of Fluid Flow Regimes Around
a Sphere

For Fr > 10 the homogeneous viscous fluid flow regime I is observed in the sphere
wake. The following classification of the flow subregimes of I [5] has been obtained
by SMIF at Re ≤ 700, F r > 10: I − 1) Re ≤ 20.5 - a steady axisymmetrical flow
without separation; I − 2) 20.5 < Re ≤ 200 - a steady axisymmetrical wake
with a vortex ring in the recirculation zone (RZ) and a vortex sheet (VSh)
surrounding RZ (Fig. 2a); I − 3) 200 < Re ≤ 270 a steady double-thread wake
with a deformed vortex ring in RZ (Fig. 2b); I − 4) 270 < Re ≤ 400 a periodical
generation of the vortex loops (VLs) (facing upwards), the periodical separation
of the one edge of VSh (Fig. 2c) (at 270 < Re ≤ 290, 290 < Re ≤ 320 and
320 < Re ≤ 400 the different chains of the basic formation mechanisms of
vortices (FMV) are realized in RZ); I − 5) 400 < Re ≤ 700 - the periodical
separation of the opposite edges of the irregularly rotating VSh.

For Fr ≤ 10 let us first consider the flow regimes at 100 < Re < 700.
For flow regimeII(1.5 ≤ Fr ≤ 10 - the quasi-homogeneous case (with four

additional threads connected with VSh surrounding the sphere, Fig. 3a)) the
boundaries of the analogous sub-regimes II-1, II-2, II-3, II-4, II-5 are slightly
shifted. The vortex structures are flattened in vertical direction and combined
with four additional vortex threads. With decreasing of Fr from 10 to 2 the
vortex ring is deformed in an oval. In the vertical plane the part of fluid
is supplied in RZ. Then this fluid goes through the core of the vortex oval
and is emitted downstream in the horizontal plane. The 3D instantaneous
stream lines which are going near the sphere surface go around this vortex
oval and form the four vortex threads (see Fig. 3a for the sub-regime II − 2).
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Fig. 3. The vortex structures of the stratified fluid around a moving sphere at
Re = 100 (a-b) and Re = 250 (c-d): a-d- Fr = 2, 1, 2, 1; a-d- the isosurfaces of
β = 0.055; 0.02; 0.04; 0.08.

For subregime II-3 (at Re = 250, F r = 2) the six-threads wake is observed
(Fig. 3c). The domination of the four additional threads is obvious here. Unlike
Fr > 10 at Fr = 2, Re = 250 the unsteadiness in the form of the periodical
fluctuation of the rear stagnation point around axis z is observed.

At Fr < 1.5(200 < Re ≤ 700) the big initial vertical flattening of the flow
prevent the vortex formation mechanisms typical for the homogeneous fluid.
At Fr < 1.5 the new vortex formation mechanisms (which are typical for the
stratified fluid) are realized with increasing of Re. With decreasing of Fr the
fluid structures around the sphere are slowly flattened both along the vertical
axis x and along the line of the sphere motion (along axis z) (the length of the
internal waves (IWs) in the vertical plane is λ/d ≈ 2 · π · Fr ). For example
two free foci in y − z plane are approaching to the sphere with decreasing of Fr.
The length of four threads (connected with the vortex sheet surrounding the
sphere) is also diminished with reducing of Fr and at Fr ≤ 0.1 these threads
are transformed in the sheets of density (DSh) before the sphere (Fig. 4b).

Fig. 4. The vortex structures of the stratified fluid around a moving sphere at Re = 100:
a-b- Fr = 0.5, 0.08; a-b- the isosurfaces of β = 0.02; 0.005.

Thus the following classification of the viscous fluid flow regimes around a
sphere at 100 < Re < 700 and Fr ≤ 10 [6,9] has been obtained by SMIF:
II)1.5 ≤ Fr ≤ 10 the quasi-homogeneous case (with four additional threads
connected with VSh surrounding the sphere, Fig. 3a); III − 2)0.9 < Fr < 1.5 -
the non-axisymmetric attached vortex in RZ, Fig. 3b; IV − 2)0.6 < Fr ≤ 0.9
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the two symmetric vortex loops in RZ; V − 2)0.4 ≤ Fr ≤ 0.6 the absence of
RZ (Fig. 4a); VI − 2)0.25 < Fr < 0.4 - a new RZ; VII − 2)Fr ≤ 0.25 - the two
vertical vortices in new RZ (bounded by IWs) (Fig. 4b). At Fr ≤ 0.3, Re > 120 a
periodical generation of the vortex loops (facing left or right) has been observed.
The corresponding Strouhal numbers 0.19 < St = f · d/U < 0.24 (where f is
the frequency of shedding) and horizontal and vertical separation angles are in a
good agreement with the experiment [16]. The increments of the drag coefficient
Δ Cd (Fr) = Cd(Fr) − Cd(∞) are in a good agreement with the experiment
[17,18] conducted at Re > 150.

Let us now consider the flow regimes at Re = 10, F r ≤ 10. At Fr < 1 the
increments of the drag coefficient Δ Cd(Fr) for Re = 10 are 2 ÷ 6 times greater
than for 100 < Re < 700 (for Fr = 0.004, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 2.0
ΔCd = 1.461, 1.546, 1.626, 1.816, 1.783, 1.481, 0.628, 0.076, 0.179, 0.164 corre-
spondingly). At Re = 10 the following classification of viscous fluid flow regimes
around a sphere has been obtained by SMIF: II − 1)0.32 ≤ Fr < 10 - the quasi-
homogeneous case - the flow without separation with the vertical and horizontal
symmetry planes; V − 1)0.25 < Fr < 0.32 - the nearest wave crest on axis z (in
wake) is very close to the sphere; VI − 1)1.6 < Fr ≤ 0.25 - a new RZ (generated
from the nearest wave crest) - the two vertical vortices in new RZ (bounded by
IWs); VII − 1)Fr ≤ 0.16 - the absence of RZ.
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Abstract. In this paper, we consider an inverse problem of determin-
ing the time-dependent thermal conductivity from Cauchy data in a
one-dimensional heat equation with space-dependent heat capacity. The
parabolic partial differential equation is discretised using the finite -
difference method and the inverse problem is recast as a nonlinear least-
squares minimization. This is solved using the lsqnonlin routine from
the MATLAB toolbox. Numerical results are presented and discussed
showing that accurate and stable numerical solutions are achieved.

Keywords: Inverse problem · Finite-difference method · Thermal
conductivity

1 Introduction

The scope of inverse problems has existed in various branches of physics, engi-
neering and mathematics for a long time. The theory of inverse problems has
been extensively developed within the past decade due partly to its importance
in applications; on the other hand the numerical solutions to such problems need
huge computations and also reliable numerical methods. For instance, deconvo-
lution in seismic exploration, image reconstruction and parameter identification
all require high performance computers and reliable solution methods to carry
out the computation [7].

Parameter identification problems consists in using the input of actual obser-
vation or indirect measurement, contaminated with noise, to infer the values
of the parameters characterizing the system under investigation. Often, these
inverse problems are ill-posed according to the Hadamard concept which is:
if the solution does not exist or, is not unique or, if it violates the continuous
dependence upon input data. Most identification problems satisfy the first two
conditions and violate the third one which is the stability.

Determination of leading coefficient or, the coefficient of highest-order deriv-
ative in the parabolic heat equation has been investigated widely. For example,
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in [2] the problem of space-dependent diffusivity identification has been stud-
ied, while the time-dependent case has been investigated in [4]. Also, for the
temperature-dependent case we refer to [1,8].

In this paper, we consider obtaining the numerical solution of inverse time-
dependent multiplier of the highest-order derivative in the parabolic heat equa-
tion for which its unique solvability has previously been established/proved by
Ivanchov [3, Sect. 4.3]. Physically, this unknown thermal property coefficient cor-
responds to the thermal conductivity of the heat conducting system which has
also a space-varying known heat capacity.

The mathematical formulation for the inverse nonlinear problem is described
in Sect. 2. The numerical method is based on the Crank-Nicholson finite-
difference scheme used as direct solver in a least-squares minimization, as
described in Sects. 3 and 4, respectively. This combination yields an accurate
and stable numerical solution, as it is discussed in Sect. 5. Finally, the conclu-
sions of this research are highlighted in Sect. 6.

2 Mathematical Formulation

Let L > 0 and T > 0 be fixed numbers and consider the inverse problem of
finding the time-dependent thermal conductivity C[0, T ] � a(t) > 0 for t ∈ [0, T ]
and the temperature u(x, t) ∈ C2,1(QT ) ∩ C1,0(QT ), which satisfy the heat
equation

c(x)
∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + F (x, t), (x, t) ∈ QT := (0, L) × (0, T ), (1)

where c(x) > 0 is the heat capacity and F is a heat source, the initial condition

u(x, 0) = φ(x), x ∈ [0, L], (2)

the Dirichlet boundary conditions

u(0, t) = μ1(t), u(h, t) = μ2(t), t ∈ [0, T ], (3)

and the heat flux additional measurement

− a(t)ux(0, t) = μ3(t), t ∈ [0, T ]. (4)

Dividing Eq. (1) by c(x) and denoting

b(x) =
1

c(x)
, f(x, t) =

F (x, t)
c(x)

(5)

we obtain

∂u

∂t
(x, t) = a(t)b(x)

∂2u

∂x2
(x, t) + f(x, t), (x, t) ∈ QT . (6)

This inverse problem was previously investigated theoretically by Ivanchov [3]
who established its unique solvability as follows:
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Theorem 1. (Existence)
Suppose that the following conditions hold:

1. b ∈ C1[0, L], φ ∈ C1[0, L], μi ∈ C1[0, T ], i = 1, 2, μ3 ∈ C[0, T ], f ∈ C1,0(QT );
2. b(x) > 0, φ′(x) > 0, b′(x) ≤ 0 for x ∈ [0, L]; μ3(t) < 0, μ′

1(t) − f(0, t) ≤ 0,
μ′
2(t) − f(L, t) ≥ 0 for t ∈ [0, T ], fx(x, t) ≥ 0 for (x, t) ∈ QT ;

3. φ(0) = μ1(0), φ(L) = μ2(0).

Then there exists a solution to the inverse problem (2)–(4) and (6).

Theorem 2. (Uniqueness)
If b ∈ C1[0, L], b(x) > 0 for x ∈ [0, L], μ3(t) �= 0 for t ∈ [0, T ], then the
solution of the inverse problem (2)–(4) and (6) is unique.

3 Solution of Direct Problem

In this section, we consider the direct initial boundary value problem given by
equations (2), (3) and (6), where a(t), b(x), f(x, t), φ(x) and μi(t), i = 1, 2,
are known and the temperature u(x, t) is the solution to be determined. We use
the finite-difference method (FDM) with a Crank-Nicholson scheme [5], which
is unconditionally stable and second-order accurate in space and time.

The discrete form of direct problem is as follows. We subdivided the domain
QT = (0, L)×(0, T ) into M ×N subintervals of equal step length Δx = L/M and
Δt = T/N , respectively. At the node (i, j) we denote ui,j = u(xi, tj), a(tj) = aj ,
b(xi) = bi and f(xi, tj) = fi,j , where xi = iΔx, tj = jΔt, for i = 0,M , j = 0, N .

Considering the general partial differential equation

ut = G(x, t, uxx), (7)

the Crank-Nicolson method is basically based on central finite-difference approx-
imations for space and forward finite-difference approximations for time which
gives second-order convergence rate. This method is equivalent to take average of
forward and backward Euler schemes in time, hence Eq. (7) can approximated as:

ui,j+1 − ui,j

Δt
=

1
2

(Gi,j + Gi,j+1) , i = 1, (M − 1), j = 0, (N − 1), (8)

ui,0 = φ(xi), i = 0,M, (9)
u0,j = μ1(tj), uM,j = μ2(tj), j = 0, N, (10)

where

Gi,j = G

(
xi, tj ,

ui+1,j − 2ui,j + ui−1,j

(Δx)2

)
,

i = 1, (M − 1), j = 0, (N − 1). (11)

For our problem, Eq. (1) can be discretised in the form of (8) as

− Ai,j+1ui−1,j+1 + (1 + Bi,j+1)ui,j+1 − Ci,j+1ui+1,j+1 =

Ai,jui−1,j + (1 − Bi,j)ui,j + Ci,jui+1,j +
Δt

2
(fi,j + fi,j+1) (12)
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for i = 1, (M − 1), j = 0, N , where

Ai,j = Ci,j =
(Δt)ajbi

2(Δx)2
Bi,j =

(Δt)ajbi

(Δx)2
.

At each time step tj+1, for j = 0, (N − 1), using the Dirichlet boundary con-
ditions (10), the above difference equation can be reformulated as a (M − 1) ×
(M − 1) system of linear equations of the form,

Duj+1 = Euj + b, (13)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM−1,j+1)tr,

D =

⎛

⎜⎜⎜⎜⎜⎝

1 + B1,j+1 −C1,j+1 0 · · · 0 0 0
−A2,j+1 1 + B2,j+1 −C2,j+1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −AM−2,j+1 1 + BM−2,j+1 −CM−2,j+1

0 0 0 · · · 0 −AM−1,j+1 1 + BM−1,j+1

⎞

⎟⎟⎟⎟⎟⎠
,

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − B1,j C1,j 0 · · · 0 0 0
A2,j 1 − B2,j C2,j · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · AM−2,j 1 − BM−2,j CM−2,j

0 0 0 · · · 0 AM−1,j 1 − BM−1,j

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Δt
2 (f1,j + f1,j+1) + A1,j+1μ1(tj)

Δt
2 (f2,j + f2,j+1)

...
Δt
2 (fM−2,j + fM−2,j+1)

Δt
2 (fM−1,j + fM−1,j+1) + CM−1,j+1μ2(tj)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

4 Numerical Approach to the Inverse Problem

In the inverse problem, we wish to obtain stable and accurate reconstructions of
the time-dependent thermal conductivity a(t) and the temperature u(x, t) satis-
fying the Eqs. (2)–(4) and (6). The most common approach based on imposing
the measurement (4) in a least-squares sense, namely, is minimizing

F (a) :=
∥
∥a(t)ux(0, t) + μ3(t)

∥
∥2

, (14)
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where the norm is usually the L2[0, T ]-norm. The discretization of (14) yields

F (a) =
N∑

j=0

[
ajux(0, tj) + μ3(tj)

]2
. (15)

The minimization of the objective function (15) subject to the physical simple
lower bound constraints a > 0 is accomplished using the MATLAB toolbox
routine lsqnonlin, which does not require supplying by the user the gradient of
the objective function, [6].

This routine attempts to find a minimum of a scalar function of several
variables, starting from an initial guess, subject to constraints and this generally
is referred to as a constrained nonlinear optimization. We use the Trust-Region-
Reflective (TRR) algorithm from lsqnonlin, [6], and the positive components of
the vector a are sought in the interval (10−10, 103).

We also take the parameters of the routine as follows:

– Number of variables M = N = 40.
– Maximum number of iterations = 102 × (number of variables).
– Maximum number of objective function evaluations

= 103 × (number of variables).
– Solution Tolerance (aTol) = 10−20.
– Object function Tolerance (FunTol) = 10−20.
– Nonlinear constraint tolerance = 10−6.

In our problem, we take the initial guess as a(0) = 1. It is worth mentioning
that at the first time step, i.e. j = 0, the derivative ux(0, 0) is obtained from the
initial condition as

ux(0, 0) =
4φ1 − φ2 − 3φ0

2(Δx)
, (16)

where φi = φ(xi) for i = 0,M .
The inverse problem under investigation is solved subject to both exact and

noisy heat flux measurements, μ3(t). The noisy data is numerically simulated as

με
3(tj) = μ3(tj) + εj , j = 0, N, (17)

where εj are random variables generated from a Gaussian normal distribution
with mean zero and standard deviation σ given by

σ = p × max
t∈[0,T ]

|μ3(t)|, (18)

where p represents the percentage of noise. We use the MATLAB function norm-
rnd to generate the random variables ε = (εj)j=0,N as follows:

ε = normrnd(0, σ,N + 1). (19)
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5 Numerical Results and Discussion

In this section, we present a test example to illustrate the accuracy and stability
of the numerical scheme based on the FDM combined with the minimization of
the least-squares functional (15), as described in Sect. 4.

We take L = T = 1 and present the numerical results obtained with M =
N = 40 for the inverse problem (2)–(4) and (6) with the input data

φ(x) = u(x, 0) = x + sin(x), b(x) = 2 − x2,

μ1(t) = u(0, t) = 8t, μ2(t) = u(1, t) = 1 + sin(1) + 8t,

f(x, t) = 8 + (1 + t)(2 − x2) sin(x), μ3(t) = −a(t)ux(0, t) = −2 − 2t.

One can observe that the conditions of Theorems 1 and 2 are satisfied hence the
problem is uniquely solvable. The analytical solution is given by

a(t) = 1 + t, u(x, t) = x + sin(x) + 8t. (20)

Although not illustrated, it is reported that excellent agreement between the
exact and numerical solutions for (a(t), u(x, t)) has been obtained for exact data,
i.e. p = 0.

We next investigate the stability of the numerical solution with respect to the
noise in the data (4), defined by Eq. (17). Although not illustrated, it is reported
that a decreasing convergence of the objective functional (15) is achieved for
p ∈ {2%, 20%} noise in 8 iterations each, to reach a stationary value of O(10−24).

Figure 1 shows the numerical solutions for the thermal conductivity a(t), for
p ∈ {2%, 20%} noise. From this figure, it can be seen that the numerical solu-
tion for the thermal conductivity coefficient a(t) converges to the exact solution
a(t) = 1 + t, as the percentage of noise p decreases from 20 % to 2 % and then
to 0. The nonlinear least-squares minimization produces good and consistent
retrievals of the solution even for a large amount of noise such as 20 %. That
is to say, our inverse problem is rather stable and in fact no regularization was
needed to be included in the least-squares functional (15).
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Fig. 1. The thermal conductivity a(t) for (a) p = 2 % and (b) p = 20 % noise.
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Figure 2 shows the exact solution, the numerical solution for the temperature
u(x, t) and the relative error between them. From this figure it can be seen that
the numerical solution is stable and furthermore, its accuracy is consistent with
the amount of noise included into the input data (4).

Numerical outputs such as the number of iterations and function evaluations,
as well as the final convergent value of the objective function are provided in
Table 1.
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Fig. 2. The exact and numerical temperature u(x, t) for (a) p = 2 % and (b) p = 20 %
noise. The relative error between them is also included.

Table 1. Number of iterations, number of function evaluations, and value of objective
function (15) at final iteration, for p ∈ {0, 2 %, 20 %} noise.

p = 0 p = 2 % p = 20 %

No. of iterations 10 8 8

No. of function evaluations 451 328 328

Function value 1.7E − 24 1.1E − 24 1.6E − 24



224 M.S. Hussein and D. Lesnic

6 Conclusions

The inverse problem which requires determining a time-dependent thermal con-
ductivity when the spacewise dependent heat capacity is given for the heat
equation under an overspecified heat flux boundary condition has been inves-
tigated. The direct solver based on a Crank-Nicolson finite difference scheme
has been developed. The inverse problem has been reduced to a nonlinear least-
squares minimization which has been solved using the MATLAB toolbox routine
lsqnonlin. Numerical results show that an accurate and stable solution has been
obtained.
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Abstract. This work deals with the inverse problem of simultaneous
determination of two unknown time-dependent terms in a one-dimensional
parabolic equation. The additional information is given by two integral
observations. We prove theorems of existence and uniqueness of solution.
We also give estimates of maximum modulus of unknown right-hand side
and unknown coefficient of the equation with constants derived explicitly
in terms of input data.

1 Introduction

In present paper we study the existence and the uniqueness of the solution
{u(t, x), d(t), f(t)} of the inverse problem

ut − a(t, x)uxx + b(t, x)ux + d(t)u = f(t)g(t, x), (t, x) ∈ Q; (1)

u(0, x) = u0(x), x ∈ [−l, l]; u(t,−l) = u(t, l) = 0, t ∈ [0, T ]; (2)

∫ l

−l

u(t, x)ω(x)dx = ϕ(t),
∫ l

−l

u(t, x)χ(x)dx = ψ(t), t ∈ [0, T ]. (3)

Here Q = [0, T ] × [−l, l], a(t, x), b(t, x), g(t, x), u0(x), ω(x), χ(x), ϕ(t), ψ(t) are
some known functions.

Additional information is given in the form of integral observations (3) which
can physically mean, say, a measurement of function u(t, x) by sensor averaging
over the segment [−l, l] of space variable.

Inverse problems of determination of two coefficients in parabolic equations
in the various posing other than (1)–(3) were considered in several papers [1–3],
etc. However there the inverse problems contained additional conditions different
from (3).

The spaces Lp(Q), Lp([−l, l]), L∞([0, T ]),W 1,2
2 (Q), C0,α(Q) with correspond-

ing norms are defined as usual (e.g. see [4]). We also denote L+
∞([0, T ]) =

{h(t) ∈ L∞([0, T ]) : h(t) ≥ 0}, BR = {h(t) ∈ L∞([0, T ]) : |h(t)| ≤ R},
B+

R = {h(t) ∈ L∞([0, T ]) : 0 ≤ h(t) ≤ R}, R = const > 0.
c© Springer International Publishing Switzerland 2015
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Throughout the paper we assume that all functions occurring in the input
data of problem (1)–(3) are measurable and satisfy the following conditions:

(A) a1 ≤ a(t, x) ≤ a2, |ax(t, x)| ≤ K∗
a , |axx(t, x)| ≤ K∗∗

a , (t, x) ∈ Q;

(B) |b(t, x)| ≤ Kb, |bx(t, x)| ≤ K∗
b , |g(t, x)| ≤ Kg, (t, x) ∈ Q;

(C) |ω(x)| ≤ Kω, |ω′(x)| ≤ K∗
ω, |ω′′(x)| ≤ K∗∗

ω , |χ(x)| ≤ Kχ,

|χ′(x)| ≤ K∗
χ, |χ′′(x)| ≤ K∗∗

χ , x ∈ [−l, l]; ω(±l) = χ(±l) = 0;

(D) u0(x) ∈ 0

W1
2[−l, l]), |u0(x)| ≤ M0, x ∈ [0, T ];

(E) |ϕ(t)| ≤ Kϕ, |ϕ′(t)| ≤ K∗
ϕ, |ψ(t)| ≤ Kψ, |ψ′(t)| ≤ K∗

ψ, t ∈ [0, T ];

ϕ(0) =
∫ l

−l
u0(x)ω(x)dx, ψ(0) =

∫ l

−l
u0(x)χ(x)dx.

Here a1, a2,M0,Kg,Kω,Kχ = const > 0, K∗
a ,K∗∗

a ,Kb,K
∗
b ,K∗

ω,K∗∗
ω ,K∗

χ,K∗∗
χ =

const ≥ 0.
Let us denote

Gω(t) =
∫ l

−l

g(t, x)ω(x)dx, Gχ(t) =
∫ l

−l

g(t, x)χ(x)dx,

Δ1(t) = ψ(t)Gω(t) − ϕ(t)Gχ(t), Δ2(t) = Gχ(t)ϕ′(t) − Gω(t)ψ′(t),

Qω(t;u) =
∫ l

−l

[(aω)xx+(bω)x]u(t, x)dx, Qχ(t;u) =
∫ l

−l

[(aχ)xx+(bχ)x]u(t, x)dx,

Jω(t;u) = −ϕ′(t) + Qω(t;u), Jχ(t;u) = −ψ′(t) + Qχ(t;u),

Δd(t;u) = Gω(t)Jχ(t;u) − Gχ(t)Jω(t;u), Δf (t;u) = ϕ(t)Jχ(t;u) − ψ(t)Jω(t;u),

where u(t, x) is a function from L∞(Q).
Let us also put K1 = K∗∗

a Kω + 2K∗
aK∗

ω + a2K
∗∗
ω + K∗

b Kω + KbK
∗
ω, K2 =

K∗∗
a Kχ+2K∗

aK∗
χ+a2K

∗∗
χ +K∗

b Kχ+KbK
∗
χ, M(R) = M0+KgRT, R = const > 0.

Definition. A generalized solution of the problem (1)–(3) is a triplet of func-
tions {u(t, x), d(t), f(t)}, u(t, x) ∈ W 1,2

2 (Q)
⋂

C0,α(Q), α = const ∈ (0, 1), d(t) ∈
L+

∞([0, T ]), f(t) ∈ L∞([0, T ]), satisfying Eq. (1) almost everywhere in Q and such
that the function u(t, x) satisfies conditions (2) and (3).

Remark. In view of assumptions (A), (B), (C) for each d(t) ∈ L+
∞([0, T ]),

f(t) ∈ L∞([0, T ]) there exists a solution u(t, x) of the direct problem (1)–(2)
(see [4]). Moreover, if |f(t)| ≤ Rf , t ∈ [0, T ], then by the maximum principle we
have

|u(t, x)| ≤ M0 + KgRfT ≡ M(Rf ). (4)
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2 Uniqueness of the Solution of the Inverse Problem

Theorem 1. Let conditions (A) − (E) be satisfied. Suppose that there exists a
constant δ1 > 0 that ∀t ∈ [0, T ]

Δ1(t) ≥ δ1 > 0. (5)

Then there exists at most one solution of the inverse problem (1)–(3).

Proof. Suppose that there exist two distinct solutions {u(1)(t, x), d(1)(t),
f (1)(t)} and {u(2)(t, x), d(2)(t), f (2)(t)} of the problem (1)–(3). Set

û(t, x) = u(1)(t, x) − u(2)(t, x), d̂(t) = d(1)(t) − d(2)(t), f̂(t) = f (1)(t) − f (2)(t).

Then

ût − a(t, x)ûxx + b(t, x)ûx + d(1)(t)û

= −d̂(t)u(2)(t, x) + f̂(t)g(t, x), (t, x) ∈ Q, (6)

û(0, x) = 0, x ∈ [−l, l], û(t,−l) = û(t, l) = 0, t ∈ [0, T ], (7)
∫ l

−l

û(t, x)ω(x)dx = 0,

∫ l

−l

ûx(t, x)ω(x)dx = 0, t ∈ [0, T ]. (8)

We multiply (6) by ω(x) and integrate the resulting relation over [−l, l]. Then
integrating by parts and taking into account (8) and (A) − (C) we obtain

d̂(t)ϕ(t) − f̂(t)Gω(t) = Qω(t; û). (9)

Similarly, multiplying (6) by χ(x) and integrating the resulting relation over
[−l, l] we obtain

d̂(t)ψ(t) − f̂(t)Gχ(t) = Qχ(t; û). (10)

From (9) and (10), via the condition (5), we obtain

d̂(t) = Δ∗
d(t; û)/Δ1(t), f̂(t) = Δ∗

f (t; û)/Δ1(t), (11)

where
Δ∗

d(t; û) = Gω(t)Qχ(t; û) − Gχ(t)Qω(t; û),

Δ∗
f (t; û) = ϕ(t)Qχ(t; û) − ψ(t)Qω(t; û).

We substitute (11) into (6) and obtain the following integro-differential
relation:

ût − a(t, x)ûxx+b(t, x)ûx + d(1)(t)û

= −Δ∗
d(t; û)
Δ1(t)

u(2)(t, x) +
Δ∗

f (t; û)
Δ1(t)

g(t, x), (t, x) ∈ Q. (12)
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Let us multiply (12) by −ûxx and integrate over Qτ ≡ [0, τ ] × [−l, l], where
τ ∈ [0, t1] and t1 > 0 will be chosen below. By integrating by parts in the
resulting relation and by using conditions (A) − (E), Poincaré inequality and
the well-known inequality

|ab| ≤ ε

2
a2 +

1
2ε

b2, ε > 0,

we obtain

1
2
‖ûx(τ, ·)‖2L2([−l,l]) +

a0

2
‖ûxx‖2L2(Qτ )

≤ c1‖ûx‖2L2(Qτ )
+ c2

∫ τ

0

|Δ∗
d(t; û)|2dt + c3

∫ τ

0

|Δ∗
f (t; û)|2dt, (13)

where c1, c2, c3 = const > 0 depend on l, T, δ1, the constants from (A) − (E)
and maximum modulus of functions d(i)(t), f (i)(t), u(i)(t, x), i = 1, 2 , but do not
depend on t1.

From the definition of Δ∗
d(t; û) and Δ∗

f (t; û) it is easy to prove that
∫ τ

0

|Δ∗
d(t; û)|2dt ≤ c4‖û‖2L2(Qτ )

≤ c5‖ûx‖2L2(Qτ )
,

∫ τ

0

|Δ∗
f (t; û)|2dt ≤ c6‖û‖2L2(Qτ )

≤ c7‖ûx‖2L2(Qτ )
,

where c4, c5, c6, c7 = const > 0 do not depend on t1; here we also use Poincaré
inequality.

Then from (13) we have

1
2
‖ûx(τ, ·)‖2L2([−l,l]) +

a0

2
‖ûxx‖2L2(Qτ )

≤ c8|ûx‖2L2(Qτ )
≤ c8 ·t1 · sup

0≤τ≤t1

‖ûx(τ, ·)‖2L2([−l,l]), (14)

where the positive constant c8 does not depend on t1.
Now we choose a t1 > 0 such that c8·t1 < 1/2. Then from (14) it follows that

sup
0≤τ≤t1

‖ûx(τ, ·)‖2L2([−l,l]) = 0.

This together with relation (7) implies that û(t, x) = 0 a.e. in Qt1 ≡ [0, t1] ×
[−l, l].

By reproducing the above arguments for the rectangles [t1, 2t1] × [−l, l],
[2t1, 3t1] × [−l, l] and so on, in finitely many steps we find that û(t, x) = 0
a.e. in Q. Then from relation (11) we obtain that d̂(t) = f̂(t) = 0, t ∈ [0, T ].

The proof of Theorem 1 is complete.
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3 Existence of the Solution of the Inverse Problem

In this section in addition to conditions (A)–(E) and (5) we make the following
assumptions: there exists a positive constant δ2 that

Δ2(t) ≡ Gχ(t)ϕ′(t) − Gωψ′(t) ≥ δ2 > 0, (15)

and also
2lKgT (KϕK2 + KψK1) < δ1. (16)

Then we put

Rf =
KϕK∗

ψ + KψK∗
ϕ + 2lM0(KϕK2 + KψK1)

δ1 − 2lKgT (KϕK2 + KψK1)
(17)

and suppose that

4l2Kg(M0 + KgTRf )(KχK1 + KωK2) ≤ δ2. (18)

Let us derive a system of operator equations for the functions d(t) and f(t).
Let d(t) ∈ L+

∞([0, T ]), f(t) ∈ BRf
and let u(t, x) be a solution of direct

problem (1)–(2) with selected functions d(t) and f(t) in the Eq. (1).
We multiply (1) by ω(x) and integrate the resulting relation over [−l, l]. By

taking into account conditions (A) − (E), (2), (3) we obtain

d(t)ϕ(t) − f(t)Gω(t) = Jω(t;u). (19)

Similarly, multiplying (1) by χ(x), integrating the resulting relation over
[−l, l] and taking into account conditions (A) − (E), (2), (3) we obtain

d(t)ψ(t) − f(t)Gχ(t) = Jχ(t;u). (20)

Due to condition (5), the algebraic system (19)–(20) has a unique solution
{d(t), f(t)} given by formulas

d(t) = Δd(t;u)/Δ1(t), f(t) = Δf (t;u)/Δ1(t). (21)

We introduce a nonlinear operator A ≡ (A1,A2) : L+
∞([0, T ]) × BRf

−→
L∞([0, T ]) × L∞([0, T ]) by setting

A1(d, f) = Δd(t;u)/Δ1(t), A2(d, f) = Δf (t;u)/Δ1(t), (22)

where u(t, x) is a solution of direct problem (1)–(2) with selected functions
d(t), f(t) in Eq. (1).

By the definition of A1 and A2, relations (21) can be represented in the form

d(t) = A1(d, f), f(t) = A2(d, f). (23)

Lemma 1. Let conditions (A)−(E), (5), (15), (16) and (18) (with Rf from (17))
be satisfied. Then, for any d(t) ∈ L+

∞([0, T ]), f(t) ∈ BRf
we have A1(d, f) ≥ 0.
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Proof. Since the function u(t, x) satisfies the estimate (4), then, from (18)
and (15) together with the definitions of Δd(t;u) and the constants K1,K2 the
inequality Δd(t;u) ≥ 0 holds. Then, by (5) and the definition of A1(d, f) we
have A1(d, f) ≥ 0. Lemma 1 is proved.

Lemma 2. Let conditions (A) − (E), (5), (15), (16) hold. Then the triplet
of functions {u(t, x), d(t), f(t)}, u(t, x) ∈ W 1,2

2 (Q)
⋂

C0,α(Q), α = const ∈
(0, 1), d(t) ∈ L+

∞([0, T ]), f(t) ∈ BRf
, is a generalized solution of problem (1)–(3)

if and only if this triplet of functions satisfies the relations (1), (2) and (23).

The proof of this Lemma is standard (see, for example, [5]).

Lemma 3. Let conditions of Lemma 2 hold. Then for all d(t) ∈ L+
∞([0, T ]),

f(t) ∈ BRf

‖A2(d, f)‖L∞([0,T ]) ≤ Rf . (24)

Proof. By the definition of A2 and inequality (4) we have

‖A2(d, f)‖L∞([0,T ]) ≤ 1
δ1

‖Δf (t;u)‖L∞([0,T ])

≤ 1
δ1

(
KϕK∗

ψ + KψK∗
ϕ

)
+

2l

δ1
(KϕK2 + KψK1) · (M0 + KgRfT ) . (25)

Now taking into account the definition of Rf in (17) we deduce from (25)
the inequality (24). Lemma 3 is proved.

Lemma 4. Let conditions of Lemma 2 hold and f(t) ∈ BRf
. Then

‖A1(d, f)‖L∞([0,T ]) ≤ Rd, (26)

where

Rd =
2l

δ1
Kg

(
KωK∗

ψ + KχK∗
ϕ

)
+

4l2

δ1
Kg (KωK2 + KχK1)·(M0 + KgRfT ) . (27)

Proof. The assertion of the lemma is an immediate consequence of the definition
of the A2, conditions (A) − (E), (5) and inequality (4).

Lemma 5. Let conditions of Lemma 2 hold. Then the operator A ≡ (A1,A2)
given by (22) is continuous on the set B+

Rd
× BRf

.

Proof. In the proof of this lemma by ci we denote positive constants depending
on l, T , constants from conditions (A) − (E), as well as Rd and Rf .

Let {d(i)(t), {f (i)(t)} ∈ B+
Rd

× BRf
, i = 1, 2, and u(i)(t, x) be generalized solu-

tions of corresponding direct problem (1)–(2). Set

û(t, x) = u(1)(t, x) − u(2)(t, x), d̂(t) = d(1)(t) − d(2)(t), f̂(t) = f (1)(t) − f (2)(t).

Then, these functions satisfy the relations (6) and (7).
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By virtue of the maximum principle we have the estimate

|u(2)(t, x)| ≤ M(Rf ) ≡ M0 + KgRfT, (t, x) ∈ Q.

Once again using the maximum principle for the problem (6)–(7) we obtain

|û(t, x)| ≤ T [M(Rf )‖d̂‖L∞([0,T ]) + Kg‖f̂‖L∞([0,T ])]. (28)

By the definition of Jω(t;u), Jχ(t;u),Δd(t;u),Δf (t;u) and conditions (A) −
(E) we have

‖Δd(t;u(1)) − Δd(t;u(2))‖L∞([0,T ]) ≤ c1‖û‖L∞(Q),

‖Δf (t;u(1)) − Δf (t;u(2))‖L∞([0,T ]) ≤ c2‖û‖L∞(Q).

Then, the definition of the operators Ai(d, f), i = 1, 2, and condition (7)
imply that

‖Ai(d(1), f (1)) − Ai(d(2), f (2))‖L∞([0,T ]) ≤ c3‖û‖L∞(Q), i = 1, 2.

From the last estimate using (28) we find that

‖Ai(d(1), f (1)) − Ai(d(2), f (2))‖L∞([0,T ]) → 0

as
‖d(1) − d(2)‖L∞([0,T ]) + ‖f (1) − f (2)‖L∞([0,T ]) → 0.

Thus, the operator A is continuous on the set B+
Rd

× BRf
. Lemma 5 is proved.

Lemma 6. Let conditions of Lemma 1 hold. Then A is compact operator map-
ping B+

Rd
× BRf

into itself.

Proof. Let d(t) ∈ B+
Rd

, f(t) ∈ BRf
, and let u(t, x) be the generalized solution

of direct problem (1)–(2) with chosen d(t) and f(t) in the Eq. (1). Then by [4]

|û|C0,α(Q) ≤ R0, (29)

where R0 = const > 0 and α = const ∈ (0, 1) depend on the input data of
problem (1)–(2) and on Rd and Rf .

Since the space C0,α(Q) is compactly embedded in the space C(Q), then
from the definition of the operator A and Lemmas 1, 3, 4 it follows that A
is a compact operator mapping set B+

Rd
× BRf

into itself. By Lemma 5 it is
also continuous operator on this set. Consequently, it is a completely compact
operator mapping B+

Rd
× BRf

into itself. The proof of Lemma 6 is complete.

Theorem 2. Let conditions of Lemma 1 hold. Then there exists a generalized
solution {u(t, x), d(t), f(t)} of the inverse problem (1)–(3). Moreover, 0 ≤ d(t) ≤
Rd, |f(t)| ≤ Rf and u(t, x) satisfies the estimate (4).
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Proof. By Lemma 6, the operator A is a completely compact operator mapping
the bounded convex closed set B+

Rd
×BRf

into itself. By the Shauder fixed point
theorem (e.g. see [6], p. 193) the system of Eq. (23) has a solution {d(t), f(t)} ∈
B+

Rd
× BRf

Now the assertion of the theorem follows from Lemma 2.
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Abstract. In this paper effectiveness of several parallel implementations
of the finite element method is investigated for an algorithm of a numer-
ical solution of the boundary function problem for the shallow water
equations. The parallel technologies MPI, OpenMP and MPI+OpenMP
are used.

Keywords: data assimilation problem · finite element method and high
performance computation

1 Introduction

The shallow water equations are used for the numerical modeling of the surface
waves in a large area taking into account the sphericity of the Earth and the Corio-
lis acceleration [1–4]. In [5] the finite element method (the FEM) was constructed
for this differential problem and the problem is reduced to the vector-matrix form.
The system of linear algebraic equations is solved with a Jacobi-type iterative
method which can be parallelized well. The diagonal dominance of its convergence
is provided by choosing the time step.

The using of the FEM for spatial discretization of the problem has a number
of advantages. The main one is the possibility to use unstructured nonuniform
grids for numerical domains of complex shapes. At the same time, the FEM is
more compute-intensive [6] than the finite difference method. Grids with a large
number of finite elements are often used for physical problems. Therefore, usage
of high-performance computing systems for the FEM is urgent [7–12].

Nowadays SMP-nodes clusters are widespread. The hybrid MPI+OpenMP
approach is a natural parallel programming paradigm for this architecture [11,12].
In this case the FEM parallelizing with MPI is used for the distributed memory
architectures. Then OpenMP can be employed within each MPI process. In order
the hybrid program to be effective it is necessary to make an efficient MPI and
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OpenMP implementations of the FEM. In the case OpenMP is used it is impor-
tant to avoid the data dependency in the loops concerning the FEM.

In the present work for the shallow water equations inverse problem we study
the effectiveness of several parallel implementations of the FEM based on tech-
nologies MPI, OpenMP and MPI+OpenMP. For development of the effective
parallel programs some features of FEM implementation on high-performance
systems with shared and distributed memory are investigated theoretically and
numerically.

We consider the following problem (for details see [13,14]). Let (r, λ, ϕ) be
spherical coordinates with the origin at the south pole, 0 ≤ λ ≤ 2π, 0 ≤ ϕ < π,
r = RE , where RE is the radius of the Earth which is assumed to be constant. Let
Ω be a domain in the plain (λ, ϕ) with the piecewise smooth Lipchitz boundary
Γ=Γ1 ∪Γ2 of the class C(2), where Γ1 is the coastline and Γ2 = Γ \Γ1 is the sea
boundary. The points ϕ = 0 and ϕ = π (poles) are not involved in Ω. Divide
the segment [0, T ] into K intervals by points: 0 = t0 < t1 < · · · < tK = T
with the step τ = T/K. Write in Ω the vertically averaged equations of motion
and continuity [1,4] for the unknown functions u, v and ξ at the time instant
tk+1, k = 0, 1, . . . ,K − 1:

(
1
τ

+ Rf

)
u − lv − mg

∂ξ

∂λ
= f1 +

1
τ

uk in Ω,

(
1
τ

+ Rf

)
v + lu − ng

∂ξ

∂ϕ
= f2 +

1
τ

vk in Ω, (1)

1
τ

ξ − m

(
∂

∂λ
(Hu) +

∂

∂ϕ

( n

m
Hv

))
= f3 +

1
τ

ξk in Ω,

where u and v are components of the velocity vector U in λ and ϕ direc-
tions, respectively; ξ is a deviation of a free surface from the nonperturbed
level; H(λ, ϕ) > 0 is a depth of a water area at a point (λ, ϕ); the function
Rf = r∗|Uk|/H takes into account the base friction force, r∗ is the friction coef-
ficient; l = −2ω cos ϕ is the Coriolis parameter; m = 1/(RE sin ϕ); n = 1/RE ; g
is the acceleration of gravity; f1 = f1(t, λ, ϕ), f2 = f2(t, λ, ϕ) and f3 = f3(t, λ, ϕ)
are given functions of external forces. For an arbitrary function f(t, λ, φ) we use
fk = f(tk, λ, φ), f = f(tk+1, λ, φ) = fk+1.

We consider boundary conditions in the following form:

HUn + βχ2

√
gHξ = χ2

√
gHd on Γ, (2)

where Un = U ·n, n = (n1,
n

m
n2) is the vector of an outer normal to the bound-

ary; β ∈ (0, 1] is a given parameter; χ2 = 0 on Γ1, χ2 = 1 on Γ2; d = d(t, λ, ϕ)
is an unknown boundary function on the boundary Γ2 and equal to zero on Γ1.

To close the problem (1) – (2) we consider the following closed condition:

ξ = ξobs on Γ0, (3)

where ξobs ∈ L2(Γ0) is a given function (for example, from observation data) on
some part of the boundary Γ0 ⊂ Γ .
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Problem 1 (Inverse Problem). Let for a fixed time instant tk+1, k =
0, 1, ...,K − 1, the observation function ξobs be given on Γ0, the function d be
unknown on Γ2 and equal to zero on Γ1. At the time instant tk+1 find u, v, ξ,
d satisfying system (1), boundary condition (2) and closure condition (3).

In [13,14] an iterative algorithm is proposed to find the numerical solution of
Problem 1. It consists of an alternate solving of the following coupled equations:
direct, adjoint and the boundary function refinement equation. The algorithm is
compute-intensive on each iteration. At the same time, recovery of the boundary
function requires a lot of iterations in case the quality observation data is poor,
i.d., for instance, with white noise or with gaps. Therefore, the development of
the effective parallel implementation of the algorithm is urgent.

2 The Parallel Implementation on SMP-node Cluster

For the numerical modeling of long waves propagation in a large water area the
finite element method with linear triangular finite elements is used [5].

The Jacobi-type iterative process is used when solving the linear algebraic
system generated by the FEM. Notice some features of implementation of the
algorithm related to the FEM. The global stiffness matrix depends on time and
must be recalculated at each time step. However, when implementing the Jacobi-
type method on finite elements there is no need to store the global stiffness matrix
explicitly. Only elements of local stiffness matrices are stored in the program.
Moreover, only their diagonal elements depend on time and are recalculated at
each time step. A residual is assembled with the use of finite elements local
stiffness matrices. An assembling residual process includes computing a running
sum with use of finite elements local stiffness matrices.

To investigate a speedup of several parallel implementations of the algorithm
the model problem is considered for the square domain on the sphere. A regular
grid with consistent triangulation is used in the computational domain. In the
numerical experiments the grid of 1600 × 1600 points in space directions is used
and 100 time steps are done. The experiments are carried out using up to 100
computational cores of a cluster and demonstrate a good scalability.

The most time-consuming operation in the FEM is the residual assembling
using finite elements local stiffness matrices. There are at least two ways to
compute a residual:

(1) by elements (Fig. 1 to the right) (the traditional way realizing the most
profitable memory allocation for storage of information about triangulation);

(2) by grid points (Fig. 1 to the right) (the way which requires creation irregular
structures in the memory for storing the information on triangulation).

The numerical experiments on studying effectiveness of several parallel imple-
mentations of our FEM are performed on high-performance clusters of SFU and
SSCC SB RAS [15]. Consider the following theoretical and numerical results.
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Fig. 1. The scheme of residual assembling by grid points (to the left) and by elements
(to the right)

1. Sequential implementation. More or less, the execution time T1 of the sequen-
tial program consists of the time T calc

1 of calculations and the time Tmem
1 of

memory operations:
T1 = T calc

1 + Tmem
1 .

The numerical experiments shows that the execution time for the program with
the residual assembling by elements is 1.5 times less than the execution time for
program with the residual assembling by grid points (Fig. 2). This effect can be
explained by more favourable memory distribution causing a decrease of Tmem

1

value when a residual is assembled by elements.
While compiling the sequential versions of the program we use a set of com-

piler keys reducing the execution time T1. This value of T1 is used to calculate a
speedup of the parallel versions. For calculating a speedup of each parallel version
the same way of the residual assembling must be used for both the sequential
and the parallel versions.

2. OpenMP-implementations for shared memory architecture. In this case the
following time overheads arise: (1) the time for threads creation and exit; (2)
the time for OpenMP loop scheduling (static, dynamic, guided, etc.); (3) the
time for threads synchronization in the main loop to the residual assembling
by elements; (4) the time for the global reduction operation calculating the
stop criterion of the iterative process.

Consider in detail item 3. A complete residual in a point is assembled by
running sum using several triangle elements (Fig. 1). In case of the residual
assembling by elements different threads may simultaneously handle the same
grid point while bypassing the finite elements in the main loop. Hence, in this
case it is extremely necessary to synchronize the threads additionally.

Estimate the execution time Tth of OpenMP-program with th threads. The
execution time Tth consists of the time T calc

th of performing calculations, the time
Tmem
th of memory operation and the time T synch

th of overheads specified in points
(1)–(4): Tth = T calc

th + Tmem
th + T synch

th .
Moreover, when using OpenMP the time T calc

1 of calculations usually
decreases proportionally to the number of OpenMP-threads involved. The time
of memory operations by th threads is also reduced as compared to Tmem

1 but
possible simultaneous reading and writing impair parallelism [16]. Then, the
execution time of OpenMP-program with th threads is the following:
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Tth =
T calc
1

th
+

γ(th)
th

Tmem
1 + T synch

th , 1 < γ(th) < th.

Thus, to obtain a good speedup of OpenMP-program the multithreading
overheads are to be small as compared to the computational effort.

The numerical results show that when a residual is assembled by elements the
threads synchronization in the main loop is the most time-consuming operation.
The synchronization overheads take up to 40 % of the execution time Tth of the
program. In this case efficiency of the paralleling is about 25 % (Fig. 2). When a
residual is assembled by grid points the supplementary threads synchronization
is not required which makes this approach advantageous (Fig. 2). If up to 30
threads are used efficiency runs up to 90 % while for more than 30 threads it
reaches about 80 % (a thread onto a core).

3. MPI-implementations for distributed memory architecture. In this case data
parallelism and decomposition of the computational domain without shadow
lines (overlaps) are used. For both ways of the residual assembling the follow-
ing overheads [14] arise inevitably at each iteration: (1) the time required to
point-to-point exchanges between adjacent processes for computation of the
complete residual in a cut line of the computational domain; (2) the time for
the global reduction operation calculating the stop criterion of the iterative
process.

The execution time Tp of an MPI-program with p MPI-processes (one MPI-
process per a core) consists of the time T calc

p of performing calculations, the time
Tmem
p of memory operations and the overhead time T comm

p for communication:
Tp = T calc

p +Tmem
p +T comm

p . As unblocked point-to-point communication is used
and the number of neighbours in item 1 is independent of p so the time T comm

p

depends on p weakly.
Moreover, all MPI-processes perform their parts of calculations and memory

operations simultaneously. Then, the execution time of an MPI-program with p
processes is the following:

Tp =
T calc
1 + Tmem

1

p
+ T comm

p . (4)

From (4) follows that the way of the residual assembling has no significant
effects on a speedup of an MPI-program. It can be explained by the fact that
the execution time difference in these two cases of the residual assembling is
determined by the difference in their time Tmem

p of memory operations. The
numerical experiments validate these conclusions. They show the advantage
of the residual assembling by elements. Figures 2 and 3 demonstrate that this
version of the program has efficiency of about 80 % and is performed faster than
an MPI-program with the residual assembling by grid points. The reason is more
profitable memory distribution in the first case. It is necessary to note that the
execution time of the best MPI-program is less than the execution time of the
fastest OpenMP-program (Fig. 2a).
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Fig. 2. Graphs of dependence of execution time (a) and a speedup (b) on the number
of cores for MPI and OpenMP programs

4. Joint usage of MPI and OpenMP technologies for a SMP-node cluster
(Fig. 3). The execution time Tp×th of an MPI+OpenMP-program with p MPI-
processes and th OpenMP-threads per a MPI-process is specified as

TSMP
p×th =

T calc
1

p × th
+

γ(th)Tmem
1

p × th
+ T synch

th + T comm
p , 1 < γ < th. (5)

From (4)-(5) it is concluded that the benefits from joint usage of OpenMP and
MPI technologies compared to the straight MPI approach can be derived only if
the overhead generated by th OpenMP-threads and p MPI-processes is less than
the overhead of p × th MPI-processes:

T comm
p×th >

γ(th) − 1
p × th

Tmem
1 + T synch

th + T comm
p , 1 < γ < th.

In the numerical experiments (Fig. 3) there are two MPI-processes per node
with five OpenMP-threads per each MPI-process. Figure 3 shows that in the case
of the residual assembling by grid points the speedup of the MPI+OpenMP-
program almost coincides with the linear speedup, and the efficiency is about
100 %. In the case of the residual assembling by elements the MPI+OpenMP-
program efficiency is only 40 %, which should be explained by a high overhead
of OpenMP-threads synchronization.

Figure 3 demonstrates that the MPI+OpenMP-program with the residual
assembling by grid points is the most effective among the examined parallel
implementations. At the same time, this parallel version is most difficult to
implement as it requires creation, storage and processing of additional irregular
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structures. However, the MPI-program with the residual assembling by elements
has the least execution time (Fig. 3a).

Thus far a speedup was considered as Sp = T1/Tp, where the algorithms
for sequential and parallel versions coincide. However, the best time T best

1 of the
sequential program is achieved in the case of the residual assembling by elements.
Figure 4 shows that the MPI-program with the residual assembling by elements
has the best speedup calculated as Sp = T best

1 /Tp for all the programs.
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Abstract. We consider an unconditionally stable splitting scheme for
solving coupled systems of equations arising in poroelasticity and ther-
moelasticity problems. The scheme is based on splitting the systems
of equation into physical processes, which means the transition to the
new time level is associated with solving separate sub-problems for dis-
placement and pressure/temperature. The stability of the scheme is
achieved by switching to three-level finite-difference scheme with weight.
We present stability estimates of the scheme based on Samarskii’s the-
ory of stability for operator-difference schemes. We provide numerical
experiments supporting the stability estimates of the splitting scheme.

1 Introduction

The poroelasticity and thermoelasticity problems play important role in applied
mathematical modeling [12]. The basic mathematical model includes the Lame
elliptic equation for the displacement vector and non-stationary parabolic equa-
tion for the fluid pressure/temperature. The most important feature of mathe-
matical models of poroelasticity and thermoelasticity consists in that these two
equations are strongly tied together. On the one hand, the equation for displace-
ments contains the body force, which is proportional to the pressure/temperature
gradient. On the other hand, the equation for pressure includes the term, which
describes the compressibility of porous medium (the divergence of displacement
velocity).

Computational algorithms for numerical solving poroelasticity and ther-
moelasticity problems are mostly based on the finite element discretization in
space [1,5] and the standard two-level schemes for time discretization. In work
[4] the stability and convergence of two-level schemes for poroelasticity problem
with the finite-difference discretization are studied on the basis of the general
theory of stability (correctness) for operator-difference schemes [9,10].

For poroelasticity and thermoelasticity problems, it is essential to construct
schemes with splitting into physical processes, when the transition to a new
time level is associated with the sequential solution of separate sub-problems for
the displacement and pressure/temperature. Various classes of such schemes are
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 241–248, 2015.
DOI: 10.1007/978-3-319-20239-6 25
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based on the additive splitting of operator [8,11]. For poroelasticity problem,
splitting schemes are constructed and used in works [6].

In this work, on the basis of Samarskii’s regularization principle [9] we con-
struct the splitting scheme for poroelasticity and thermoelasticity problems. The
stability of the scheme is achieved by switching to a three-level finite-difference
scheme with weight.

2 Mathematical Model

Lets u be the displacement vector and p be the fluid pressure. For homogeneous,
isotropic porous medium the poroelasticity equations can be expressed as

div σ(u) − α grad p = 0, (1)

α
∂ div u

∂t
+

1
M

∂p

∂t
− div

(
k

η
grad p

)
= f(x, t). (2)

Here, σ(u) is the stress tensor:

σ = 2με(u) + λ div u I,

where μ, λ is the Lame coefficients, I is the identity tensor, and ε is the strain
stress:

ε(u) =
1
2

(
grad u + grad uT

)
.

Other notations: M is the Biot modulus, k is the permeability, η is the viscosity,
α is the Biot-Willis coefficient and f(x, t) is the function that represents the
source term.

The problem for the system of Eqs. (1), (2) is considered in a bounded domain
Ω with a boundary Γ , where we set the following boundary conditions. For the
displacement (Γ = Γu

D + Γu
N ) we set

u = 0, x ∈ Γu
D, σn = 0, x ∈ Γu

N , (3)

where n is the unit normal to the boundary. Similarly, boundary conditions for
the pressure are:

p = 0, x ∈ Γu
N , −k

η

∂p

∂n
= 0, x ∈ Γu

D. (4)

In addition, we set the following initial condition for the pressure:

p(x, 0) = s(x), x ∈ Ω. (5)

Similarly, we set the initial-boundary value problem for thermoelasticity. In
this case, the increment θ with respect to an initial temperature T is the unknown
instead of the pressure p. The thermoelasticity equations have the following form:

div σ(u) − α grad θ = 0,
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αT
∂ div u

∂t
+ c

∂θ

∂t
− div(k grad θ) = f(x, t).

In this case, α is proportional to the coefficient of volume expansion αT (α =
αT (3λ+2μ)), k is the thermal conductivity, and c is heat capacity in the absence
of deformation.

3 Finite Element Discretization

For the discretization in space using the finite-element method we first come to
a variational formulation of problem (1)–(5). We define the Hilbert space for
scalar values L2(Ω) with the following scalar product and norm, respectively,

< u, v >=
∫

Ω

u(x) v(x) dx, ||u|| =< u, u >1/2 .

For vector values we use L2(Ω) = [L2(Ω)]m, where m = 2, 3 is the dimension of
the domain Ω. Let H1(Ω) and H1(Ω) be the Sobolev spaces. We define spaces
for scalar and vector functions:

Q = {q ∈ H1(Ω) : q(x) = 0, x ∈ Γu
N},

V = {v ∈ H1(Ω) : v(x) = 0, x ∈ Γu
D}.

Multiplying Eqs. (1) and (2) by test functions v and q, respectively, and
integrating by parts to eliminate the second order derivatives, we obtain the
variational problem: Find u ∈ V , p ∈ Q such that

a(u,v) + g(p,v) = 0, v ∈ V , (6)

d

(
du

dt
, q

)
+ c

(
dp

dt
, q

)
+ b(p, q) =< f, q >, q ∈ Q. (7)

The bilinear forms in (6), (7) are defined as follows:

a(u,v) =
∫

Ω

σ(u) ε(v) dx, g(p,v) = α

∫

Ω

grad p v dx,

c(p, q) =
1
M

∫

Ω

p q dx, d(u, q) = α

∫

Ω

div u q dx,

b(p, q) =
∫

Ω

k

η
grad p grad q dx.

The bilinear forms a(·, ·), b(·, ·), and c(·, ·) are symmetric and positive-defined,
and d(v, q) = −g(q,v) for the boundary conditions (3), (4).



244 A.E. Kolesov et al.

The discrete problem is obtained by restricting the variational problem to
discrete spaces: Find uh ∈ Vh ⊂ V , ph ∈ Qh ⊂ Q such that

a(uh,vh) + g(ph,vh) = 0, vh ∈ Vh ⊂ V , (8)

d

(
duh

dt
, qh

)
+ c

(
dph

dt
, qh

)
+ b(ph, qh) =< fh, qh >, qh ∈ Qh ⊂ Q. (9)

The system (8), (9) is completed by the initial condition

< ph(0), qh >=< s, qh >, qh ∈ Qh ⊂ Q. (10)

For stability analysis we come to an operator-difference formulation. We link
operators Ah, Bh, Ch,Dh, Gh with the corresponding bilinear forms, for example:

< Ahuh,v >= a(uh,v), ∀ uh,v ∈ Vh,

It allows to switch from the problem (8)–(10) to the following Cauchy problem:

Ahuh + Ghph = 0, (11)

Dh
duh

dt
+ Ch

dph

dt
+ Bhph = fh, (12)

ph(0) = sh, (13)

where < fh, q >=< f, v >, < sh, q >=< s, v >, ∀ q ∈ Vh. The finite-dimensional
operator Ah, Bh, Ch are stationary, self-adjoint, and positive-defined:

Ah = A∗
h > 0, Bh = B∗

h > 0, Ch = C∗
h > 0,

and Dh = −G∗
h.

4 Splitting Scheme

For the time discretization we use a uniform grid with step-size τ > 0. Let
un = uh(x, tn), pn = ph(x, tn), where tn = nτ , n = 0, 1, ...,. Then, the standard
implicit two-level scheme reads as

Ahun+1
h + Ghpn+1

h = 0, (14)

Dh
un+1

h − un
h

τ
+ Ch

pn+1
h − pn

h

τ
+ Bhpn+1

h = fn+1
h . (15)

The computational realization of the implicit scheme (13)–(15), is associated
with simultaneous calculation of un+1, pn+1 at every time level n = 0, 1, ....
This coupled system of equations requires special computational algorithms [7].
Therefore, splitting schemes for the poroelasticity and thermoelasticity problems
are attracting increasing interest [6]. The simplest splitting scheme is an explicit-
implicit scheme:

Ahun+1
h + Ghpn

h = 0, (16)
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Dh
un+1

h − un
h

τ
+ Ch

pn+1
h − pn

h

τ
+ Bhpn+1

h = fn+1
h . (17)

In this case, the transition to a next time level is associated with solving the
separate sub-problems for the displacement (16) and pressure (17).

Expressing uh from (11) and inserting it into (12), we obtain the single
equation for the pressure ph:

− DhA−1
h Gh

dph

dt
+ Ch

dph

dt
+ Bhph = fh. (18)

We write (18) as the standard Cauchy problem for a homogeneous evolution-
ary equation:

B̃
dph

dt
+ Ãph = fh, (19)

p(0) = sh. (20)

where Ã = Bh and the operator B̃ is the sum of two self-adjoint, positive-define
operators

B̃ = B̃0 + B̃1, B̃0 = Ch, B̃1 = −DhA−1
h Gh. (21)

The operators Ã, B̃ are stationary, self-adjoint, and positive-defined.
Under the additional constraint

B̃1 ≤ γB̃0, γ > 0, (22)

for the numerical solution of (19), (20), we can use a three-level explicit-implicit
scheme

B̃0

(
θ
pn+1 − pn

τ
+ (1 − θ)

pn − pn−1

τ

)
+ B̃1

pn − pn−1

τ
+ Ãpn+1 = fn+1. (23)

The equation is supplemented by the initial condition:

p0 = s, B̃
p1 − p0

τ
+ Ãp1 = f1. (24)

The value of the weight θ must be chosen from a stability condition of the scheme
(23), (24) [3].

Theorem 1. For 2θ ≥ 1+γ the scheme (23), (24) is unconditionally stable and
its solution satisfies a priori estimate

En+1 ≤ En +
τ

2

∥
∥fn+1

∥
∥2

C−1 , (25)

where

En =
∥
∥
∥
∥

un + un−1

2

∥
∥
∥
∥

2

A

+
∥
∥
∥
∥

un − un−1

τ

∥
∥
∥
∥

2

D− τ2
4 A

,

and the operators C,D are

C = B̃ + τÃ, D =
τ

2

(
(2θ − 1)B̃0 − B̃1

)
+

τ2

2
Ã. (26)
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Combining (21) and (23), we get

−DhA−1
h Gh

pn − pn−1

τ
+ Ch

(
θ
pn+1 − pn

τ
+ (1 − θ)

pn − pn−1

τ

)

+ Bhpn+1 = fn+1.

(27)

The stability condition of scheme (27) (theorem 1) is 2θ ≥ 1 + γh, where γh

is defined by (see (22)) the condition

−DhA−1
h Gh ≤ γhCh.

For the poroelasticity problem (1)–(5), we have

γh = Mλmax (28)

where λ is the largest eigenvalue of the following eigenproblem:

GhDhu = λAhu. (29)

Taking into account (16), we get

Dh
un+1 − un

τ
+ Ch

(
θ
pn+1 − pn

τ
+ (1 − θ)

pn − pn−1

τ

)

+ Bhpn+1 = fn+1.

(30)

Thus, the natural approximation (17) corresponds to the weight θ = 1.
The main result of our analysis is the following theorem

Theorem 2. The splitting scheme (16), (30) is unconditionally stable for 2θ ≥
1 + γh, where γh is the constant in (28).

5 Numerical Experiments

We consider a poroelasticity problem in a unit square domain with an applied
pressure p = f(t) on some centered upper boundary as in Fig. 1. The applied
pressure is f(t) = β sin(βt), where β = (λ + 2μ)k/η and βt is the dimensionless
time. The rest of boundary is drained p = 0. Also, we set a free boundary
condition for displacement u×n = 0, (σ ·n) ·n = 0. The initial pressure is zero
p = 0. This problem is similar to the well-known Barry-Mercer problem widely
used to test the accuracy of numerical methods [2]. The following set of material
parameters are chosen: λ = 15 GPa, μ = 10 GPa, M = 100 GPa, α = 0.9,
k = 10−13 m2, η = 0.001 Pa/s.

For the numerical solution we use two computational meshes: the coarse mesh
with 6600 cells and the fine mesh with 26400 cells. The time step is chosen as
τ = 0.01βt. We find the largest eigenvalue λmax of the eigenproblem (29) to
calculate γh. For our problem, γh = 3.4. Note that γh hardly depends on the
mesh size h.
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Figure 2 shows the dimensionless pressure p = p/(2λ + μ) (left) and displace-
ment (right) at time βt = π/2, which are obtained using the implicit scheme (14)–
(15) and the fine mesh. The displacement is presented on the deformed domain.
These results will be used as “etalon” solutions pe and ue for evaluating the errors
of the pressure εp = ||pe − p|| and displacement εu = ||ue − u||, respectively.

Figure 3 illustrates the errors of the dimensional pressure εp and displacement
εu obtained using the implicit scheme and splitting scheme for several values of
weights θ on the coarse mesh. We see that the splitting scheme (16), (30) is
unstable for θ = 1. The increase in the value of θ improves the stability of the
scheme. For θ = 0.5(γh + 1) = 2.2, the scheme is stable. This confirms the
proposed stability condition of our scheme.

Fig. 1. Computational domain

Fig. 2. Dimensionless pressure (left) and displacement distributions (right)
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Fig. 3. Errors of the dimensional pressure (left) and displacement (right) obtained

using the implicit scheme and the splitting scheme for θ = 1.0 , θ = 1.4 ,
θ = 1.8 , and θ = 2.2
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Abstract. In this paper we present a new mathematical model describ-
ing acquired immune response to viral infection. The model is formulated
as a system of six ordinary differential equations (ODE). Conditions for
existence, uniqueness and non-negativity of the solutions are studied.
Numerical simulations for the case of dominating cellular immunity and
various initial values of concentrations of virus particles are presented
and discussed.
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1 Introduction

The use of mathematical models for investigations of the behavior of immune
system of organisms infected by pathogens such as viruses or organisms suffering
from cancer, can be effective tool for determining the tendencies of the disease
under medical treatments or without them [4–6,8–10,12].

An organism that meets a specific antigen for the first time possesses only
a small amount of lymphocytes able to recognize and neutralize the pathogen.
That is why the acquired immune system needs at least several days while bigger
amount of specific lymphocytes are produced and activated. During this period
of time the fight against the pathogen is performed by the innate immunity,
which functions quickly but does not possess specificity and efficiency. As a
result the infection can become strong and difficult to eradicate [1]. That is why
the acquired (or adaptive) immune mechanisms are often needed in order to
clean the infection.

When foreign antigens enter an organism, both humoral and cellular types of
acquired immunity start to function. Their mechanisms of functioning are differ-
ent. The humoral immunity applies antibodies, which neutralize free viral par-
ticles. The cellular immunity system employs cytotoxic T lymphocytes (CTL),
which destroy infected host cells [1].

c© Springer International Publishing Switzerland 2015
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In our paper we present a model, which is a generalization of a basic model
proposed by G. Marchuk [10] and a model proposed by D. Wodarz [12]. In our
model we assume that the growth of the virus depends on the amount of the
infected cells as well as on the amount of the free viral particles that have entered
the organism. Additionally, we suppose that the production of antibodies and
CTL depends on the degree of the damage of the target organ: the higher is the
damage, the weaker is the production of antibodies and CTL.

The purpose of this paper is to illustrate the application of mathematical and
computational methods to immunology. The contents of our work are organized
as follows. In Sect. 2 we describe our mathematical model of acquired immune
response to viral infection. The model is a complicated system of ordinary dif-
ferential equations. Theorem for existence, uniqueness and non-negativity of its
solution is proved. In Sect. 3 we present some results of our simulations and
comment their biological meaning.

2 Mathematical Model

The interacting populations included in our model and their notations are the
following:

– x(t) - concentration of the susceptible uninfected cells of the target organ;
– y(t) - concentration of the infected cells;
– v(t) - concentration of the free virus particles;
– z(t) - concentration of CTL specific for the virus;
– w(t) - concentration of antibodies (immunoglobulins) specific for the virus;
– m(t) - degree of the target organ damage.

The proposed model describing the time dynamics of the considered variables
consists of the following six ordinary differential equations (ODE):

ẋ(t) = L − dx(t) − βx(t)v(t), (1)

ẏ(t) = βx(t)v(t) − ay(t) − py(t)z(t), (2)

v̇(t) = ky(t)v(t) − qv(t)w(t), (3)

ż(t) = cξ(m)v(t)z(t) − δ(z(t) − z̄) − by(t)z(t), (4)

ẇ(t) = γξ(m)v(t)w(t) − h(w(t) − w̄) − rv(t)w(t), (5)

ṁ(t) = sv(t) − nm(t). (6)

We suppose that the parameters of the model (1) - (6) are non-negative con-
stants and parameters L, z̄ and w̄ are positive. We look for solution such that
the unknown functions are continuously differentiable with non-negative initial
conditions.

Equation (1) describes the dynamics of the population of the susceptible
uninfected cells. The meaning of its parameters is the following: L describes
the production of uninfected cells; d - the rate of decrease of uninfected cells due
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to their natural death; β - the rate of decrease of uninfected cells due to their
infection by virus.

Equation (2) describes the dynamics of the population of the infected cells.
Parameter a characterizes the decrease of concentration of infected cells due to
their natural death; p denotes the rate of decrease of infected cells due to their
destruction by CTL.

Equation (3) describes the time dynamics of the concentration of free virus
particles. The viruses are produced inside the infected cells. The meaning of
its parameters is the following: k denotes the rate of production of virus par-
ticles inside the infected cells; q - the decrease of virus particles due to their
neutralization by antibodies.

Equation (4) describes the dynamics of CTL. The meaning of its parameters
is the following: c characterizes the production of CTL; δ - the natural death
of CTL; b - the decrease of concentration of CTL due to their killing activity
against infected cells; z̄ is the amount of CTL circulating in a healthy organism.

Equation (5) describes the dynamics of the concentration of antibodies. Their
production depends on the amount of viruses and on the degree of target organ
damage. The meaning of its parameters is the following: γ characterizes the
production of antibodies; h - the rate of their natural death; r - the decrease of
concentration of antibodies due to their antiviral activity; w̄ is the amount of
antibodies circulating in a healthy organism.

Equation (6) describes the degree of target organ damage. The damage
depends on the amount of virus particles and can decrease due to repair processes
in the organism. The meaning of its parameters is the following: s denotes the
rate of damage of the target organ by viruses; n - the rate of recovery of the
target organ.

ξ(m) (participating in Eqs. (4) and (5)) is assumed to be non-increasing non-
negative continuous function that accounts for the violation of the normal func-
tioning of the immune system due to the damage of the target organ [1]. We
assume that there exists its limit value m̄ ∈ (0, 1). If the value of m is less than
m̄ we suppose that the damage of the infected organ is small and it does not
affect the efficiency of the immune system. On the other hand, if m is greater
than m̄, we suppose that the damage of the infected organ is considerable and the
immune response is weakened. The form of the function ξ(m) is not uniquely
defined. It can be chosen such that ξ(m) = 1 for m ≤ m̄ and ξ(1) = 0. For
example it can be defined as follows:

ξ(m) =
{

1 for 0 ≤ m ≤ m̄,
m−1
m̄−1 for m̄ < m ≤ 1.

(7)

Now we formulate theorems for non-negativity, existence and uniqueness of the
solution to model (1) - (6).

Theorem 1. If the system (1) - (6) with initial conditions x(0) = x0 > 0,
y(0) = y0 ≥ 0, v(0) = v0 ≥ 0, z(0) = z0 = z̄ > 0, w(0) = w0 = w̄ > 0,
m(0) = m0 ≥ 0 possesses solution then this solution is non-negative for every
t ≥ 0.
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Proof. Consider Eq. (1). Let us assume that that there exist values of t > 0
such that x(t) < 0. From the initial condition x(0) > 0 and the continuity of
the function x(t) it follows that there exists an instant in time t1 at which x(t)
changes its sign (i.e. x(t) > 0 for t < t1, x(t1) = 0 and x(t) < 0 for t > t1). From
here we would have ẋ(t1) < 0. This would be a contradiction with Eq. (1) giving
ẋ(t1) = L > 0. Therefore the assumption about the possible negativity of x(t)
is incorrect.

The solution to Eq. (3) can be written in the form:

v(t) = v(0)e
∫ t
0 [ky(u)−qw(u)]du ≥ 0 for t ≥ 0.

From the non-negativity of x(t) and v(t) the non-negativity of y(t) follows, since
from Eq. (2) we obtain:

y(t) = e− ∫ t
0 [pz(u)+a]du

[
y(0) +

∫ t

0

βx(u)v(u)e
∫ t
0 [pz(u)+a]dudu

]
.

From Eq. (4) the non-negativity of z(t) follows, since

z(t) = e
∫ t
0 [cξ(m)v(u)−β−by(u)]du

[
z(0) +

∫ t

0

δz̄e− ∫ t
0 [cξ(m)v(u)−β−by(u)]dudu

]
.

Similarly, from Eq. (5) the non-negativity of w(t) follows, since

w(t) = e
∫ t
0 [γξ(m)v(u)−h−rv(u)]du

[
w(0) +

∫ t

0

hw̄e− ∫ t
0 [γξ(m)v(u)−h−rv(u)]dudu

]
.

Finally, from Eq. (6) the non-negativity of m(t) follows, since

m(t) = e−nt
[
m(0) +

∫ t

0

sv(u)enudu
]
.

Theorem 2. For every T > 0 on the interval [0, T ] there exists a unique con-
tinuously differentiable solution to the system (1) – (6) with initial conditions
x(0) = x0 > 0, y(0) = y0 ≥ 0, v(0) = v0 ≥ 0, z(0) = z0 = z̄ > 0,
w(0) = w0 = w̄ > 0, m(0) = m0 ≥ 0.

Proof. The local existence of the solution follows from the continuity of the right-
hand sides (Peano theorem [7]). The uniqueness of the solution follows from the
continuity of the partial derivatives of the right-hand sides with respect to the
unknown functions [7].

It can be shown that the functions x(t), y(t) and v(t) are bounded on [0, T ].
Let us denote their maximal values with X, Y and V respectively. The following
a priory bounds can be established for the solution on [0, T ]:

ẋ(t) ≤ L − dx(t), (8)

ẏ(t) ≤ βXv(t) − ay(t), (9)
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v̇(t) ≤ kY v(t), (10)

ż(t) ≤ cV z(t) − δ(z(t) − z̄), (11)

ẇ(t) = γV w(t) − h(w(t) − w̄), (12)

ṁ(t) = sv(t) − nm(t). (13)

By the estimations (8) -(13) we see that, the nonlinear system (1) – (6) behaves
not worse than a linear system. Therefore a global solution on [0, T ] exists.

3 Numerical Experiments and Discussion

The Cauchy problem (1)–(6) consisting of six nonlinear ODE is solved numer-
ically. The system is solved by using the code ode15s from the Matlab ODE
suite with RelTol = 10−3 and AbsTol = 10−4. ode15s is a multistep solver
using numerical differential formulae (see, e.g. [11]).
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Fig. 1. Concentrations of antibodies (AB) and CTL at v0 = 0.1 (low initial virus load).

The aim of our numerical experiments is to study the role of the magnitude v0
of the initial virus load for the outcome of the competition between the immune
system and the viral infection in the case when both parts of the immune systems
(the cellular and the humoral immunity) are strong.

The initial conditions and parameters of the model have been set to simulate
a full adaptive (humoral and cellular) immune response to viral infection. We
have assumed the initial presence of susceptible uninfected cells, virus particles,
antibodies and precursor CTL, as well as the initial absence of infected cells and
effector CTL. The initial values for populations and the parameters have been
set as follows:

x(0) = 1, y(0) = 0, z(0) = 0.9, w(0) = 1,m(0) = 0,
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Fig. 2. Concentration of infected cells at v0 = 0.1 (low initial virus load).
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Fig. 3. Concentrations of antibodies and CTL at v0 = 0.2 (high initial virus load).

L = 10, d = 2, β = 0.01, a = 0.1,

p = 1, k = 1, q = 1,

c = 1, δ = 0.1, b = 10, γ = 0.5, h = 0.1,

r = 10, s = 10, n = 1.5.

Additionally, we assume that ξ(m) = 1 for every value of m and chose various
values of the parameter v0 specified in the captions of the figures.

Results of our numerical experiments are presented in Figs. 1–4. In the first
part of our numerical experiments we consider the case of low initial virus load
(v0 = 0.1). The results for the dynamics of concentrations of antibodies and
CTL as well as of infected cells are presented in Figs. 1 and 2 respectively.

In the second part of our numerical experiments we consider the case of high
initial virus load (v0 = 0.2). The results are presented in Figs. 3 and 4.
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Fig. 4. Concentration of infected cells at v0 = 0.2 (high initial virus load).

Our results show that in the presence of both cellular and humoral types of
immunity, the strength and prolongation of infection does not depend signifi-
cantly of the initial virus load. Strong cellular immunity kill the infected cells,
which are needed for the viral replication. On the other hand, strong humoral
response is able to destroy the free viral particles. Working in cooperation, the
both adaptive immune mechanisms are able to eradicate the infection very effec-
tively. Thus, the enhancement of the immune system is of crucial importance in
the fight against viral infections.

We conclude that numerical simulations utilizing mathematical models may
lead to a reduction in the quantity of experimental studies performed in virology.
One of our future aims includes the determination of the parameters of the
system (1)–(6) in order to fit existing experimental and clinical data. Another
future plan is investigation of the role of function ξ(m).
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Abstract. In this paper we present numerical methods for solving a
non-linear time-fractional parabolic model. To cope with non-local in
time nature of the problem, we exploit the idea of the two-grid method
and develop fast numerical algorithms. Moreover, we show that suit-
able modifications of the standard two-grid technique lead to signifi-
cant reduction of the computational time. Numerical results are also
discussed.

1 Introduction

Fractional derivative have broad applications in mathematics, physics and engi-
neering [5,15], such as anomalous transport in disordered systems, some perco-
lations in porous media, and the diffusion of biological populations. The most
important advantage of using fractional differential equations is their non-local
property. This means that the next state of a system depends not only upon its
current state but also upon all of its historical states. Thus the fractional-order
models are more realistic and it is one reason why fractional calculus has been
extensively investigated.

However the non-linear fractional differential equations are difficult to get
their exact solutions [8,13]. An effective method for solving such equations is
needed.

Consider the following non-linear time-fractional equation

Dα
c ut = (um)xx + f(u), 0 < α < 1, m > 1, m ∈ R, (x, t) ∈ R × (0, T ], (1)

with given initial condition u(x, 0) = u0(x), where Dα
c is the differential operator

in the sense of Caputo

Dα
c ut =

1
Γ (1 − α)

t∫

0

∂u(x, s)
∂s

(t − s)−αds, 0 < α < 1. (2)

If m = 2, Eq. (1) is the generalized non-linear biological population equation
[4], where u denotes the population density and f represents the population
supply due to births and deaths.
c© Springer International Publishing Switzerland 2015
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An example of constitutive equation for f is f(u) = c1u
p(1 − c2u

q), where
c1, c2, p, q are real numbers. More precisely, if c2 = 0, p = 1 we have Malthusian
Law [6], the case p = q = 1, c1 > 0, c2 > 0 corresponds to Verhulst Law [6] and
c2 = 0, 0 < p < 1, c1 ≤ 0 is Porous Media model [2,16].

For α → 1, some properties of (1) such as Hölder estimates of its solutions
are studied in [14]. Different iterative methods to construct approximate ana-
lytical solutions to the generalized non-linear biological population equation are
developed: new iterative method [10], homotopy perturbation method [13,18],
Adomian decomposition method [4].

For brevity, we shall concentrate on the following boundary value problem

Dα
c ut = (um)xx, m > 1, 0 < α < 1, (x, t) ∈ (a, b) × (0, T ],

u(a, t) = ua(t), u(b, t) = ub(t), t ∈ (0, T ], (3)
u(x, 0) = u0(x), x ∈ [a, b].

The main difficulty in the numerical computation of (3) is in the treatment of
the memory integral

∫ t

0
v(t − s)w(s)ds, which arise from the discretization of

Caputo time derivative. The solution process involves, at any given time step,
the history of all computed solutions at each previous time levels. Thus, there
is a potential need to store and operate on the entire history of the numerical
solution. To cope with this problem in many articles (see [17,19], for example)
is obtained a recursive formula, which involves only values at the current and
previous time step, and not the entire history. Then this formula is incorporated
into a numerical scheme, which then become local in time. This approach can
be applied for known functions v and w or in the case of specific form of one of
these functions - for example exponential, which are not our case. Moreover, the
approach presented in [19] involves infinity series, which have to be computed
at each grid node, and therefore undesired truncation error appears.

The aim of this paper is to develop efficient numerical method, based on
the two-grid technique, for solving (3). The two-grid idea is to solve non-linear
problem (time-fractional in our case) on the coarse mesh and linear problem
(time-fractional in our case) on the fine mesh. Thus we attain the same pre-
cision as with one-grid procedure on the fine mesh, but saving computational
time. We extend this approach and develop numerical algorithm (MTGM) which
is equivalent of solving a non-linear time-fractional differential model on a coarse
mesh and linear classical (integer) parabolic problem on a fine mesh. We also
propose another technique (PTGM), where the two-grid idea is implemented as
postprocessing procedure. The presented strategies lead additionally to signifi-
cant reduction of the computational time and can be easily implemented for the
initial value problem (1). In fact, we emphasize on the rapid computation of the
memory integral.

The rest of the paper is organized as follows. In the next section, implement-
ing the two-grid idea in different manner, we develop three numerical algorithms.
In Sect. 3 we analyze numerically accuracy, convergence and efficiency of the pro-
posed methods. Comparison results are also available. Finally, we provide some
concluding remarks.
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2 Numerical Method

In this section we shall implement the the two-grid methodology in different
manner in order to save computational effort and accelerate the convergence.

The two grid approach was proposed in [1,20], for a linearization of non-
linear elliptic problems. The two-grid finite element method was also used by
Xu and many other scientists (see the reference in [9]) for discretizing non-
symmetric indefinite elliptic and parabolic equations. By employing two finite
element spaces of different scales, one coarse and one fine space, the method was
used for symmetrization of nonsymmetric problems, which reduces the solution
of a nonsymmetric problem on a fine grid to the solution of a corresponding
(but much smaller) nonsymmetric problem, discretized on the coarse grid and
the solution of a symmetric positive definite problem on the fine grid. Many
different applications of the two-grid approach for classical differential problems
are developed, see [7,11,12,21] among others.

In this section we shall present the following two-grid approaches:

• Application of the classical two-grid method (CTGM) for the model problem
(3).

• Modified two-grid method (MTGM). We differ from the CTGM in the treatment
of memory integral.

• Application of the two-grid technique as postprocessing procedure (PTGM).

All these algorithms are based on Newton’s iteration procedure.

2.1 Classical Newton’s Method

The computational domain [a, b] × [0, T ] is discretized by uniform mesh ω:

ω = ωh × ωτ , ωh = {xi = a + ih, i = 0, . . . , N, h = (b − a)/N},

ωτ = {tn = nτ, n = 0, . . . , M, Mτ = T}.

Next, the numerical solution at point (xi, tn) will be denoted by un
i = u(xi, tn)

and un = [un
0 , un

1 , . . . , un
N ].

The time-fractional derivative is replaced by simple quadrature formula [3]:

Dα
c ut(xi, tn) =

τ−α

Γ (2 − α)

⎡

⎢
⎣λ0u

n
i −

n−1∑

l=1
(n>1)

(λn−l−1 − λn−l)ul
i − λn−1u

0
i

⎤

⎥
⎦+O(τ2−α),

(4)
where λj = (j + 1)1−α − j1−α.

Now, using the standard central difference quotient, from (4), at each time
level n = 0, 1, . . . , we get the following discretization of the model problem (3)

τ−α

Γ (2 − α)
λ0u

n+1
i + Λun+1

i =
τ−α

Γ (2 − α)
F (un

i , . . . , u0
i ), i = 1, . . . , N − 1,

un+1
0 = ua(tn+1), un+1

N = ub(tn+1), u0(xi) = u0
i , i = 0, . . . , N,
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where Λun
i := [(un

i+1)
m − 2(un

i )m + (un
i−1)

m]/h2 and F (un
i , . . . , u0

i ) :=

n∑

l=1

(λn−l−1 −

λn−l)u
l
i + λn−lu

0
i .

Applying Newton’s method, the solution un+1 at each time layer n = 0, 1, . . . ,
is a result of the iteration process uk+1,n+1 = uk,n+1 + �k+1,n+1, k = 0, 1, . . .

L(uk,n+1
i ,�k+1,n+1

i ) =
τ−α

Γ (2 − α)

[
−uk,n+1

i + F (un
i , . . . , u0

i )
]

+ Λuk,n+1
i ,

�k+1,n+1
0 = ua(x0) − uk,n+1

0 , �k+1,n+1
N = ub(xN ) − uk,n+1

N , (5)

L(vi, wi) :=
(

τ−α

Γ (2 − α)
+

2mvm−1
i

h2

)
wi − mvm−1

i+1

h2
wi+1 − mvm−1

i−1

h2
wi−1,

where i = 1, . . . , N − 1 and u0,n+1
i = un

i for i = 0, . . . , N .

2.2 Two-Grid Algorithms

We define two uniform meshes in space: coarse mesh ωH and fine mesh ωh,
h << H:

ωH = {xi = a + iH, i = 0, . . . , Nc, H = (b − a)/Nc},

ωh = {xi = a + ih, i = 0, . . . , Nf , h = (b − a)/Nf}.

Following the idea of the two-grid approach, we construct the algorithm

CTGM At each time level n = 0, 1 . . . perform the following two steps:
Step 1. Solve the non-linear fractional order problem (3) on the coarse mesh

ωH , applying Newton’s iteration procedure (5) to obtain the solution uH .
Step 2. Perform only one Newton’s iteration (5) on the mesh ωh with initial

guess uH

L(uH
i ,�h

i ) =
τ−α

Γ (2 − α)
[−uH

i + F(un
i , . . . ,u0

i )
]
+ ΛuH

i , i = 1, . . . , Nf − 1,

�h
0 = ua(x0) − uH

0 , �h
Nf

= ub(xNf
) − uH

Nf
,

to obtain the solution un+1 = uH + �h. Actually, uH is interpolated solution
uH on the fine mesh ωh.

Next, we modify the second step of this algorithm

MTGM At each time level n = 0, 1 . . . perform the following two steps:
Step 1. Solve the non-linear fractional order problem (3) on the coarse mesh

ωH , applying Newton’s iteration procedure (5) to obtain the solution uH .
Step 2. Perform only one Newton’s iteration (5) on the mesh ωh with initial

guess uH

L(uH
i ,�h

i ) =
τ−α

Γ (2 − α)
[−uH

i + FH
i

]
+ ΛuH

i , i = 1, . . . , Nf − 1,

�h
0 = ua(x0) − uH

0 , �h
Nf

= ub(xNf
) − uH

Nf
,
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to obtain the solution un+1 = uH +�h. Here FH and uH are interpolated coarse
values of uH and F (·), respectively on the fine mesh ωh.

With CTGM we need to store the solution history, obtained from the second
step of the algorithm, i.e. on the fine mesh, and at each time level we have to
recompute the summation also at step 2, while in MTGM we use interpolated
value of F , obtained on the coarse mesh. Thus, at each time level, the memory
integral computes only once - on the coarse grid for k = 0 and we need the
history only for the solution at coarse grid nodes. Namely, on the fine mesh with
MTGM we avoid the non-local nature of the problem.

The next algorithm can be interpret as postprocessing procedure on a sub-
stantially refined grid, because Step 2 performs only at the final time t = T .

PTGM

Step 1. While t ≤ T , solve the non-linear fractional order problem (3) on the
coarse mesh ωH , applying Newton’s iteration procedure (5). Denote the solution
at final time by uH,T

Step 2. At the final time t = T , continue Newton iteration process (5) on the
fine mesh ωh, starting with initial guess u0,n+1 := uH,T (interpolated on the fine
mesh), obtained in Step 1 at time t = T . As in MTGM we use the interpolated
value FH

i of F on the fine mesh ωh.

Remark 1. The non-linear term f(u) in (1) can be easy incorporated in the
two-grid Newton iteration procedure. To solve the initial value problem (1) in
desired computational interval, a second order left and right finite difference can
be used in order to approximate the second spatial derivative at both ends of
the interval. This affects the accuracy, but not the order of convergence.

3 Numerical Experiments

In this section we shall verify accuracy, convergence rate and performance of
the presented two-grid algorithms: CTGM, MTGM, PTGM. We deal with exact
solution uex(x, t) = t1+αeCx [3] adding residual term in the right-hand side of
the differential equation in the model. Error (EN ) and convergence rate (CR)
are computed in maximal discrete norm (‖ · ‖), using the grid size reduction
CR = log2[EN/2/EN ], EN = ‖uex(x, tn) − un‖, where un is computed on
uniform mesh with N grid nodes in space.

Due to quadratic convergence of the Newton iterations, the expected order
of convergence for CTGM and MTGM is O(τ2−α +H4 +h2). This confirms from
the computations. Thus the optimal choice for the fine mesh size is h = H2.
For PTGM we observe O(τ2−α + H3 + h2) convergence rate for α ≥ 0.5 and
O(τ2−α + H5/2 + h2) for α < 0.5. Again the selection of fine mesh step size is
small enough in order to capture the rate of convergence on the coarse mesh,
i.e. h = H3/2. Similarly, the time step τ is fixed in agreement with the ratio
τ = h2/(2−α).

Newton’s iterations process continue until ‖uk+1,n+1 − uk,n+1‖ ≤ 10−10.
Computations are performed in the interval [0, 1] up to final time T and m = 2.
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Table 1. Errors, convergence rates and CPU time for different α, Example 1

CTGM MTGM

α Nc Nf τ ENf CR CPU ENf CRs CPU

0.8 5 25 4.678e-3 5.899e-4 0.58 6.461e-4 0.42

0.8 10 100 4.642e-4 3.780e-5 3.96 78.30 4.251e-5 3.93 9.43

0.8 20 400 4.605e-5 2.371e-6 3.99 25931.42 2.512e-6 4.08 1431.92

0.5 5 25 1.368e-2 6.681e-4 0.36 6.763e-4 0.29

0.5 10 100 2.154e-3 4.758e-5 3.81 4.40 4.769e-5 3.83 1.15

0.5 20 400 3.393e-4 3.097e-6 3.94 545.45 3.093e-6 3.95 35.05

0.2 5 25 2.797e-2 1.796e-4 0.26 1.794e-4 0.23

0.2 10 100 5.995e-3 1.497e-5 3.58 0.95 1.496e-5 3.58 0.50

0.2 20 400 1.285e-3 1.079e-6 3.79 40.95 1.078e-6 3.79 4.90

0.2 40 1600 2.753e-4 7.321e-8 3.88 3305.10 7.312e-8 3.88 157.80

Table 2. Errors, convergence rates and CPU time for different α, PTGM, Example 1

α Nc Nf τ ENf CR CPU

0.8 5 11 1.789e-2 2.671e-3 0.179

0.8 10 32 3.162e-3 3.655e-4 2.87 0.418

0.8 20 90 5.590e-4 4.708e-5 2.96 10.402

0.8 40 254 9.882e-5 5.961e-6 2.98 609.470

0.5 5 11 4.000e-2 2.743e-3 0.176

0.5 10 32 1.000e-2 4.428e-4 2.63 0.218

0.5 20 90 2.500e-3 6.051e-5 2.87 0.867

0.5 40 254 6.250e-4 8.039e-6 2.91 16.521

0.2 5 11 6.840e-2 6.248e-4 0.169

0.2 10 32 2.154e-2 1.280e-4 2.29 0.196

0.2 20 90 6.786e-3 2.100e-5 2.61 0.345

0.2 40 254 2.137e-3 3.564e-6 2.56 2.103

In order to compare the results at one and the same final time, we use a linear
interpolation in time. To interpolate the coarse mesh solution on the fine mesh
we use a cubic spline interpolation, while for the opposite action - from fine to
coarse mesh solution we apply a linear interpolation.

Example 1 (Exact solution test for (3)). In this example we will compare the
accuracy, convergence rate and computational cost (CPU time) of the presented
methods for C = 1. The results for CTGM, MTGM, PTGM at T = 0.1 and
different values of α are given in Tables 1, 2. It become clear that MTGM attains
the same accuracy and convergence rate as CTGM, but MTGM is much more
fast in comparison with CTGM. Although, PTGM is also cheap (in the sense of
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Table 3. Errors and CPU time for different algorithms, α = 0.5, Example 1

METHOD T Nc Nf τ ENf CPU

CTGM 1 5 25 0.01 2.48406e-4 5.124

MTGM 1 5 25 0.01 2.25752e-4 1.584

PTGM 1 14 52 0.01 2.29260e-4 3.159

CTGM 2 5 25 0.005 6.96817e-4 71.843

MTGM 2 5 25 0.005 6.61889e-4 15.983

PTGM 2 12 42 0.005 6.55361e-4 28.930

PTGM 2 11 36 0.005 7.74930e-4 26.313

Table 4. Errors and convergence rate in maximal and L2 discrete norms, CPU time,
MTGM, α = 0.5, Example 2

Nc τ ENf CR CPU

25 9.685e-2 1.81611e-2 0.407

50 1.368e-2 1.40391e-3 3.6933 0.923

100 2.154e-3 9.34142e-5 3.9097 17.498

computational effort) algorithm, we observe slower convergence in comparison
with MTGM, especially for α < 0.5.

Next we will show how one and the same accuracy can be attained with two-
grid algorithms CTGM, MTGM, PTGM for an optimal choice of the fine mesh
step size for α = 0.5. The results are listed in Table 3. It was found that for a
long time, MTGM is even more precise than CTGM and PTGM is more stable,
but needs more time than MTGM to reach one and the same precision.

Example 2 (Initial value biological model). Consider the problem (1), f(u) =
u(1 − 2u). As it was mentioned in Remark 1, the presented algorithms can be
applied also in this case, using left and right second-order difference for the space
derivative at both ends of the computational interval. We repeat the convergence
test from Example 1 in the interval [−5, 5] with MTGM, α = 0.5, C = 0.2, such
that the maximal discrete norm of the solution in the computational interval to
be equal to the one in Example 1, see Table 4.

4 Conclusions

The main advantage of the proposed methods is that we attain the same accu-
racy as applying Newton method on the fine mesh, but saving computational
cost. The efficiency of the two-grid approach is obvious: we reach a high accu-
racy, solving non-linear equations on a coarse grid and linear equations on a fine
mesh. Moreover, the coarse grid can be very coarse and the results are still
precise. Applying this idea in a different manner we obtain new algorithms
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(MTHM, PTGM), which performance is very fast and leads to significant reduc-
tion of the computational cost. Moreover, they are more stable in time.

Acknowledgement. This research is supported by the Bulgarian National Fund of
Science under the Project I02/20 - 2014.
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Abstract. A family of four level conservative finite difference schemes
(FDS) for the multidimensional Boussinesq Equation is constructed and
studied theoretically. A preservation of the discrete energy for this app-
roach is established. We prove that the discrete solution of the FDS
converges to the exact solution with a second order of convergence with
respect to space and time mesh steps in the first discrete Sobolev norm
and in the uniform norm. The numerical experiments for the one-
dimensional problem confirm the theoretical rate of convergence and the
preservation of the discrete energy in time.

1 Introduction

In this paper we consider the Cauchy problem for the Boussinesq type equation
(BE)

∂2u

∂t2
= Δu + β1Δ

∂2u

∂t2
− β2Δ

2u + Δf(u), x ∈ R
d, 0 < t ≤ T, T < ∞ (1)

on the unbounded region R
d with asymptotic boundary conditions

u(x, t) → 0, Δu(x, t) → 0, |x| → ∞, (2)

and initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x). (3)

Here Δ is the Laplace operator and the constants β1 and β2 are positive. The
nonlinearity function f can be in the form f(u) = up, p = 2, 3, ..., f(u) = aup +
bu2p+1, etc.

BE occurs in a number of physical systems, for example in the modeling of
surface waves in shallow waters (in this case f(u) = αu2 with α > 0), see [6].
The form (1) of BE is derived from the original Boussinesq system in [6] and is
referred in the literature as the ’generalized double dispersion equation’ or the
’Boussinesq paradigm equation’.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 266–273, 2015.
DOI: 10.1007/978-3-319-20239-6 28
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BE (1)–(3) may have either a globally defined bounded solution or a blowing
up solution. Sufficient conditions for the global existence or for the blow up of
the weak solutions to (1)–(3) are given in [13,14,17,19] in terms of the initial
data u0, u1, the non-linearity f and the initial energy. In this paper we assume
that the solution to (1)–(3) exists and is smooth enough. We note also that the
solution to (1)–(3) satisfies the energy conservation law, see e.g. [9,19]

It is of great importance to preserve the energy conservation law of (1)–(3)
under the discretization method for solving (1), especially when solving problem
(1)–(3) over a long time interval. The numerical methods that satisfy discrete
conservation identity are called conservative methods.

Several numerical methods – finite difference methods, finite element meth-
ods, spectral and pseudo-spectral methods, vector additive schemes – have been
proposed for the BE, see e.g. [1–5,8,11,15,16,18]. Only certain numerical schemes
for approximation of BE conserve the discrete energy, see [6,9,12].

In this paper we analyze theoretically the family of new conservative four level
finite difference schemes, presented in [10]. These new schemes are explicit with
respect to the non-linearity in the sense that no iterations are needed for evalua-
tion of the discrete solution on the highest time level (the three level schemes are
implicit in the same sense - a system of nonlinear equations has to be solved for
evaluation of the discrete solution on the highest time level). Section 3 contains
the main results - the proof of the discrete conservation law and convergence
theorems of the method. We establish a second order of convergence in the first
discrete Sobolev mesh norm and in the uniform norm. This rate of convergence
is compatible with the rate of convergence of the similar linear problem. The
convergence of the schemes is demonstrated numerically in Sect. 4 for the one
dimensional problem. Algorithmic aspects of the scheme’s implementation and
extensive numerical experiments can also be found in [10].

2 Finite Difference Scheme

For simplicity of the presentation we deal with the two dimensional case, i.e.
d = 2 in (1). We discretize BPE (1)–(3) on a sufficiently large space domain
Ω = [−L1, L1] × [−L2, L2] assuming that the solution and its first and second
derivatives are negligible outside Ω. For integers N1, N2 set the space steps
hi = Li/Ni, i = 1, 2 and h = (h1, h2). Let Ωh = {(xi, yj) : xi = ih1, i =
−N1, . . . , N1, yj = jh2, j = −N2, . . . , N2}. Next, for integer N we denote the
time step by τ = T/N . For each of the time levels tk = kτ, k = 0, 1, 2, . . . , N

we consider a mesh function v
(k)
i,j defined on Ωh × {tk}. Whenever possible the

sub-indexes i, j of the mesh functions are omitted.
The discrete scalar product 〈v, w〉 =

∑
i,j h1h2vi,jwi,j is associated with the

space of mesh functions v, w, which vanish on the boundary of Ωh. Denote by
Δh the standard 5-point discrete Laplacian. We use also the following notation
v
(k)
t =

(
v(k+1) − v(k)

)
τ−1.
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The standard approximation to the second time derivative ∂2u
∂t2 (·, tk) uses

three time levels of the discrete functions and is defined as

v
(k)
t̄t =

(
v(k+1) − 2v(k) + v(k−1)

)
τ−2.

In this paper the time derivative ∂2u
∂t2 (·, tk + τ/2) is approximated using four

consecutive time levels (k + 2), (k + 1), (k) and (k − 1) by the expression

v
(k)

t̂t̂
= 0.5(v(k+2) − v(k+1) − v(k) + v(k−1))τ−2.

Spatial derivatives included in (1) can be evaluated on the four time levels. Thus
we introduce two symmetric approximations to u(·, tk+τ/2) with real parameters
θ and μ:

vθ(k) = θv(k+2) + (0.5 − θ)v(k+1) + (0.5 − θ)v(k) + θv(k−1),

vμ(k) = μv(k+2) + (0.5 − μ)v(k+1) + (0.5 − μ)v(k) + μv(k−1).

The approximation vθ(k) with parameter θ will be applied when constructing
approximations to the Laplacian Δv and the approximation vμ(k) with parameter
μ- for the bi-Laplacian (Δ)2v.

The nonlinear term f in (1) can be treated in different ways, see [7,12,15,16].
Here we approximate f(u) using the gradient form of f , f(s) = F ′(s), F (u) =∫ u

0
f(s)ds and the values of v on time levels k and k + 1:

F (v(k+1)) − F (v(k))
v(k+1) − v(k)

. (4)

Note that in the case of a polynomial function f the expression (4) can be
evaluated easily, without division (if f(u) = αu2, then the function in (4) is
equal to α(v(k+1)2 + v(k+1)v(k) + v(k)2)/3).

Our four-time-level finite difference scheme defines the approximate solution
v
(k)
i,j as the solution of

v
(k)

t̂t̂
− β1Δhv

(k)

t̂t̂
− Δhvθ(k) + β2(Δh)2vμ(k) = Δh

F (v(k+1)) − F (v(k))
v(k+1) − v(k)

(5)

at the internal mesh points of Ωh, i.e. |i| < N1 and |j| < N2.
Initial values v(0) and v(1) on time levels t = 0 and t = τ are evaluated by

formulas

v
(0)
i,j = u0(xi, yj), (6)

v
(1)
i,j = u0(xi, yj) + τu1(xi, yj)

+ 0.5τ2(I − β1Δh)−1
(
Δhu0 − β2(Δh)2u0 + Δhf(u0)

)
(xi, yj),

where I stands for the identity operator. The third initial value v(−1) at time
level t = −τ is found from the equation

v
(0)
t̄t(i,j) =

(
v
(1)
(i,j) − 2v

(0)
(i,j) + v

(−1)
(i,j)

)
τ−2 (7)

= (I − β1Δh)−1 (
Δhu0 − β2Δ

2
hu0 + Δhf(u0)

)
(xi, yj).
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The boundary conditions at the boundary mesh points, i.e. |i| = N1 or |j| =
N2, of Ωh are

v
(k)
i,j = 0, Δhv

(k)
i,j = 0, k = 1, 2, . . . , N. (8)

In order to implement the second boundary condition in (8), the grid overlaps
the domain Ωh by one line at each boundary.

Equations (5)–(8) constitute a family of finite difference schemes depending
on the parameters θ and μ. By Taylor series expansion of the solution u at point
(xi, yj , t

k+τ/2) one concludes that for each fixed θ and μ the local approximation
error of the finite difference scheme is O(|h|2 + τ2).

3 Convergence of the Family of Finite Difference Schemes

In the space of functions which vanish on the boundary of Ωh we define operators
A = −Δh and B = I−β1Δh−2τ2θΔh+2τ2β2μ(Δh)2. Note that these operators
are self-adjoint and positive definite (the additional requirements θ ≥ 0 and
μ ≥ 0 are needed for B > 0). For the analysis of the error we rewrite (5) in the
operator form

Bv
(k)

t̂t̂
+ 0.5(A + β2A

2)(v(k+1) + v(k)) + A
F (v(k+1)) − F (v(k))

v(k+1) − v(k)
= 0. (9)

and introduce the discrete energy functional Eh(v(k)) as

Eh(v(k)) = 0.5
〈
A−1Bv

(k)
t , v

(k−1)
t

〉
+ 0.5

〈
v(k) + β2Av(k), v(k)

〉
+

〈
F (v(k)), 1

〉
.

(10)

We multiply (9) by A−1
(
v(k+1) − v(k)

)
, use summation by parts and the

boundary conditions (8). In this way we obtain the following

Theorem 1 (Discrete Conservation Law). The discrete energy (10) of the
solution to the difference schemes (5)–(8) is conserved in time:

Eh(v(k)) = Eh(v(0)), k = 1, 2, . . . , N.

Theorem 1 states that, as in the continuous case, the conservation property
holds for the solution to the finite difference scheme (5)–(8), i.e. the proposed
finite difference schemes are conservative.

The key result of the paper is the following theorem for the convergence of
the solution v of the finite difference scheme to the exact solution u to BPE.
Denote by z = v − u the error of the numerical solution.

Theorem 2 (Convergence of the Method). Assume that f is a polynomial
of u of degree m, u ∈ C4,4(R2 × [0, T )) and that:

(i) the solution v to the finite difference scheme (5)–(8) is bounded in the max-
imal norm;
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(ii) the parameters θ and μ satisfy the operator inequality

A−1 + β1I + τ2(2θ − 0.5)I + τ2β2(2μ − 0.5)A > εI (11)

with some positive real number ε.

Let M be a constant such that M ≥ max
i,j,k

(
|u(xi, yj , tk)|, |v(k)

i,j |
)

and τ < C1M
−1

(the constant C1 is independent of h, τ , u and v). Then the discrete solution
v to (5)–(8) converges to the exact solution u as |h|, τ → 0 and there exists a
constant C (independent of h, τ and u) such that the following estimate holds
for the error z = u − v at every time level k = 1, 2, ..., N

0.25||z(k) + z(k+1)||2 + 0.25β2||A1/2(z(k) + z(k+1))||2 ≤ CeMtk
(|h|2 + τ2

)2
.

(12)

Proof. We sketch the proof because it is too lengthy. First, we substitute v = z+u
into the finite difference equation (9) and obtain the following equation for the
error z:

Bz
(k)

t̂t̂
+ 0.5(A + β2A

2)(z(k+1) + z(k)) = ψ(k), (13)

where

ψ(k) = −A
F (v(k+1)) − F (v(k))

v(k+1) − v(k)
− Bu

(k)

t̂t̂
− 0.5(A + β2A

2)(u(k+1) + u(k)).

We use Taylor series for the function u about the point (xi, yj , t
k + τ/2) and

represent the error ψ(k) as ψ(k) = ψ
(k)
1 + Aψ

(k)
2 with ψ

(k)
1 = O(|h|2 + τ2) and

|ψ(k)
2 | ≤ (|z(k)| + |z(k+1)|)(max(|u(k)|, |u(k+1)|, |v(k)|, |v(k+1)|))m−1. The initial

conditions (3) are approximated locally by (6) and (7) with O(|h|2 + τ2) error.
By multiplication of the difference equation (13) by A−1(z(k+2) + z(k+1) −

z(k) − z(k−1)) we get for Z(k) = 0.5(z(k+1) + z(k)) the main inequality
〈
(A−1B − 0.5τ2I − 0.5τ2β2A)Z(k)

t , Z
(k)
t

〉
+ 0.5

〈
|Z(k+1)|

〉2

+ 0.5
〈
|Z(k)|

〉2

+ 0.5β2

〈
|A0.5Z(k+1)|

〉2

+ 0.5β2

〈
|A0.5Z(k)|

〉2

≤ ε1τ
〈
|ψ(k)

1 |
〉2

+ ε1τ
〈
|ψ(k)

2 |
〉2

+
τ

4ε1

〈
Z

(k)
t , Z

(k)
t

〉
+

τ

4ε1

〈
Z

(k−1)
t , Z

(k−1)
t

〉

+ 0.5
〈
|Z(k)|

〉2

+ 0.5
〈
|Z(k−1)|

〉2

+ 0.5β2

〈
|A0.5Z(k)|

〉2

+ 0.5β2

〈
|A0.5Z(k−1)|

〉2

+
〈
(A−1B − 0.5τ2I − 0.5τ2β2A)Z(k−1)

t , Z
(k−1)
t

〉
.

Then we sum the above inequalities over k = 1, 2, · · · N , use Gronwall’s inequal-
ity, the properties of ψ1 and ψ2 and obtain the desired estimate (12).

Theorem 2 gives second order of convergence of the FDS in the discrete W 1
2

norm, which is compatible with the rate of convergence of the similar linear
problem. Thus, the non-linearity does not deteriorate the rate of convergence.
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The assumptions for the boundedness of the exact and discrete solutions in
Theorem 2 could not be dropped. Note that the initial differential problem may
have either bounded on the time interval [0, T ) solutions or blowing up solutions.

Corollary 1. If θ ≥ 0.25 and μ ≥ 0.25 then the convergence of the discrete
solution to the exact solution is of second order when |h| and τ go independently
to zero.

If μ = 0 then the discrete solution converges to the exact solution provided
τ2 < h2 β1−ε+τ2(2θ−0.5)

2dβ2
.

Combining Theorem 2 with the embedding theorems we get error estimates
in the uniform norm:

Corollary 2. Under the assumptions of Theorem 2 the finite difference scheme
(5)–(8) admits the following error estimate

max
i

|z(k)i + z
(k+1)
i | ≤ CeMtk

(|h|2 + τ2
)
, d = 1;

max
i,j

|z(k)i + z
(k+1)
i | ≤ CeMtk

√
ln(max{N1, N2})

(|h|2 + τ2
)
, d = 2.

The above estimates are optimal for the 1D case and almost optimal (up to a
logarithmic factor) for the 2D case.

4 Numerical Results

The numerical procedure for computation of the discrete solutions at the higher
time level is very efficient, especially when μ = 0. In this case a system of linear
equations (5) with the discrete Laplacian equations in a rectangular domain has
to be solved. The restriction (11) on the time step is mild (see Corollary 1).
Note also that no iterations are needed for evaluation of the discrete solution on
the highest time level nevertheless the considered method has a nonlinear term
and is conservative! This is because the non-linearity is approximated on the
previous time levels.

Now we present some numerical results concerning the proposed finite dif-
ference scheme in the one-dimensional case - for d = 1 and β1 = 1.5, β2 = 0.5,
f(u) = 3u2, μ = 0, θ = 0.25, τ = h

√
(β1/(8β2)). It is well known that in this

case BE possesses exact solutions - waves of permanent form, which propagate
in time with the velocity c:

ũ(x, t;x0, c) =
3
2

c2 − 1
α

sech2

(
x − x0 − ct

2

√
c2 − 1

β1c2 − β2

)

These solutions, called solitons, are analytical functions with maximum located
at the initial moment at the point x0.
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Example 1: Single solitary wave (1 soliton)
We solve the problem (1)–(3) using following initial data

u(x, 0) = ũ(x, 0; 0, 2),
∂u

∂t
(x, 0) =

∂ũ(x, 0; 0, 2)
∂t

.

We compare the numerical solution to the exact one and evaluate the error E
in the discrete uniform norm. The results are shown in the first two columns of
Table 1.

Example 2: Colliding solitary waves (2 solitons)
The initial conditions in this case are:

u(x, 0) = ũ(x, 0;−40, 2) + ũ(x, 0; 50,−1.5),
du

dt
(x, 0) =

dũ

dt
(x, 0;−40, 2) +

dũ

dt
(x, 0; 50,−1.5).

In this case no explicit solution to (1)–(3) is available. Thus to illustrate the
method’s convergence we relay on grid-doubling. For every h the error is cal-
culated by the Runge method as E2

1/(E1 − E2) with E1 = ‖u[h] − u[h/2]‖,
E2 = ‖u[h/2] − u[h/4]‖, where u[h] is the calculated solution with step h for
T = 20. The numerical rate of convergence is (log E1 − log E2)/ log 2.

Table 1. Errors in uniform norm and rate of convergence for one and two solitons,
T = 20

1 soliton 2 soliton

h L∞ Error Rate L∞ Error Rate

0.08 0.0029301

0.04 0.0007326 1.9998523 0.1193204

0.02 0.0001836 1.9963024 0.0298805 1.9975659

0.01 4.9437 e-005 1.8930601 0.0008015 1.8984112

The calculations shown on Table 1 confirm that the schemes are of order
O(h2 + τ2). Our calculations also show that the discrete energy functional
Eh(v(k)) is preserved in time with high accuracy - for t ∈ (0, 20] the relative
error in calculation of Eh(v(k)) is 7.0407e − 08.
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Abstract. In this paper, we deal with the following p-Laplacian frac-
tional boundary value problem: φp(Dα

0+u(t)) + f(t, u(t)) = 0, 0 < t < 1,
u(0) = u′(0) = u′(1) = 0, where 2 < α � 3 is a real number. Dα

0+ is the
standard Riemann–Liouville differentiation, and f : [0, 1] × [0, +∞) →
[0, +∞) is continuous. By the properties of the Green function and some
fixed-point theorems on cone, some existence and multiplicity results of
positive solutions are obtained. As applications, examples are presented
to illustrate the main results.

Keywords: Fractional differential equation · Boundary value problem ·
P -Laplacian operator · Green’s function · Fixed-point theorem

1 Introduction

Fractional differential equations have been of great interest recently. It is caused
both by the intensive development of the theory of fractional calculus itself
and by the applications, see [1,2]. Many people pay attention to the existence
and multiplicity of solutions or positive solutions for boundary value problems
of nonlinear fractional differential equations by means of some fixed-point theo-
rems, such as the Schauder fixed-point theorem, the Leggett-Williams fixed-point
theorem, the Guo–Krasnosel’skii fixed-point theorem, and the upper and lower
solutions method, see [3–14]. However, there are only a few papers devoted to
the study of fractional differential equations with p-Laplacian operator, and the
theories and applications seem to be just being initiated.

Bai and Lü [13] studied the following two-point boundary value problem
of fractional differential equations Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) =
u(1) = 0, where 1 < α � 2 is a real number and Dα

0+ is the standard Riemann–
Liouville fractional derivative. They obtained the existence of positive solutions
by means of Guo–Krasnosel skii fixed-point theorem and Leggett–Williams fixed-
point theorem.

Zhao and Sun etc. [14] considered the existence of multiple positive solu-
tions for the nonlinear fractional differential equation boundary value problem

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 274–281, 2015.
DOI: 10.1007/978-3-319-20239-6 29
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Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u′(0) = u′(1) = 0, where 2 < α � 3

is a real number and Dα
0+ is the Riemann–Liouville fractional differentiation.

Using lower and upper solution method and Leggett–Williams fixed point the-
orem, some new existence criteria are obtained for the above boundary value
problems.

From the above works, we can see a fact, although the fractional boundary
value problems have been studied by some authors, to the best of our knowledge,
the fractional differential equation with p-Laplacian operator is seldom consid-
ered. In this paper, we investigate the following existence of positive solutions
of fractional differential equation with p-Laplacian operator:

φp(Dα
0+u(t)) + f(t, u(t)) = 0, 0 < t < 1, (1)

u(0) = u′(0) = u′(1) = 0, (2)

where 2 < α � 3, φp(s) = |s|p−2s, p > 1, (φp)−1 = φq, 1/p + 1/q = 1 and Dα
0+

is the standard Riemann-Liouville differentiation, and f : [0, 1] × [0,+∞) →
[0,+∞) is continuous.

In this paper, we firstly derive the corresponding Green’s function. Conse-
quently, problem (1) and (2) is deduced to a equivalent Fredholm integral equa-
tion of the second kind. Finally, by the means of Guo–Krasnosel’skii fixed-point
theorem and Leggett–Williams fixed-point theorem, the existence and multiplic-
ity of positive solutions are obtained.

The plan of this paper is as follows. In Sect. 2, we will present some definitions
and lemmas. In Sect. 3, some results are given. In Sect. 4, we present examples
to demonstrate our results.

2 Background Materials and Preliminaries

In this section, we present some necessary definitions and lemmas.

Definition 1. ([13]) The fractional integral of order α > 0 of a function y :

(0,+∞) → R is given by Iα
0+y(t) =

1
Γ (α)

∫ t

0

(t − s)α−1y(s)ds provided the right

side is pointwise defined on (0,+∞).

Definition 2. ([13]) The fractional derivative of order α > 0 of a continuous

function y : (0,+∞) → R is given by Dα
0+y(t) =

1

Γ (n − α)
(

d

dt
)n

∫ t

0

y(s)

(t − s)α−n+1
ds,

where n = [α] + 1, provided that the right side is point wise defined on (0,+∞).

Remark 1. ([13]) As a basic example, we quote for λ > −1, Dα
0+tλ = Γ (λ+1)

Γ (λ−α+1)

tλ−α, giving in particular Dα
0+tα−m = 0,m = 1, 2, · · · , N, where N is the smallest

integer greater than or equal to α.

In fact λ > −1, Dα
0+tλ = 1

Γ (n−α) (
d
dt )

n
∫ t

0
sλ

(t−s)α−n+1 ds = 1
Γ (n−α) (

d
dt )

ntn−α+λ

∫ 1

0
zλ(1 − z)n−α−1dz = Γ (λ+1)

Γ (λ+1+n−α) (
d
dt )

ntn−α+λ. So, Dα
0+tα−m = Γ (α−m+1)

Γ (n−m+1)

( d
dt )

ntn−m = 0, for m = 1, 2, · · · , N. From Definition 2 and Remark 1, we then
obtain follow Lemma.
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Lemma 1. ([13]) Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1). Then the
fractional deferential equation Dα

0+u(t) = 0 has u(t) = c1t
α−1 + c2t

α−2 + · · · +
cntα−n, ci ∈ R, i = 1, 2, · · · , n, as unique solutions.

As Dα
0+Iα

0+u = u for all u ∈ C(0, 1) ∩ L(0, 1). From Lemma 1 we deduce the
following law of composition.

Lemma 2. ([13]) Assume that u ∈ C(0, 1) ∩ L(0, 1),with a fractional derivative
of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then Iα

0+Dα
0+u(t) = u(t) +

c1t
α−1 + c2t

α−2 + · · · + cntα−n, for some ci ∈ R, i = 1, 2, · · · , n.

Lemma 3. Given y ∈ C[0, 1] and 2 < α � 3, the unique solution of

φp(Dα
0+u(t)) + y(t) = 0, 0 < t < 1, (3)

u(0) = u′(0) = u′(1) = 0, (4)

is u(t) =
∫ 1

0

G(t, s)φq(y(s))ds, where

G(t, s) =

{
tα−1(1−s)α−2−(t−s)α−1

Γ (α) , 0 � s � t � 1,
tα−1(1−s)α−2

Γ (α) , 0 � t � s � 1.
(5)

Proof. We may apply Lemma 2 to reduce Eq. (3) to an equivalent integral equa-
tion u(t) = −Iα

0+φq(y(t)) + c1t
α−1 + c2t

α−2 + c3t
α−3 for some c1, c2, c3 ∈ R.

Consequently, the general solution of Eq. (3) is

u(t) = −
∫ t

0

(t − s)α−1

Γ (α)
φq(y(s))ds + c1t

α−1 + c2t
α−2 + c3t

α−3.

By (4), c3 = 0, c2 = 0, c1 =
∫ 1

0

(1 − s)α−2

Γ (α)
φq(y(s))ds. Therefore, the unique

solution of problem (3) and (4) is

u(t) = −
∫ t

0

(t − s)α−1

Γ (α)
φq(y(s))ds +

∫ 1

0

(1 − s)α−2tα−1

Γ (α)
φq(y(s))ds

=

∫ t

0

tα−1(1 − s)α−2 − (t − s)α−1

Γ (α)
φq(y(s))ds +

∫ 1

t

tα−1(1 − s)α−2

Γ (α)
φq(y(s))ds

=

∫ 1

0

G(t, s)φq(y(s))ds.

The proof is complete.

Lemma 4. ([13]) The function G(t,s) defined by (5) satisfies the following con-
ditions: (1) G(t, s) > 0, for t, s ∈ (0, 1);

(2) q(t)G(1, s) � G(t, s) � G(1, s), for t, s ∈ [0, 1], where q(t) = tα−1. (6)
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Definition 3. ([13]) The map θ is said to be a nonnegative continuous concave
functional on a cone Pof a real Banach space E provided that θ : P → [0,+∞)
is continuous and θ(tx + (1 − t)y) � tθ(x) + (1 − t)θ(y) for all x, y ∈ P and
0 � t � 1.

Lemma 5. ([13]) Let E be a Banach space, P ⊆ E a cone, and Ω1, Ω2 two
bounded open balls of E centered at the origin with Ω̄1 ⊂ Ω2. Suppose that
A : P ∩ (Ω̄2 \ Ω1) → P is a completely continuous operator such that either

(i) ||Ax|| � ||x||, x ∈ P ∩ ∂Ω1 and ||Ax|| � ||x||, x ∈ P ∩ ∂Ω2, or
(ii) ||Ax|| � ||x||, x ∈ P ∩ ∂Ω1 and ||Ax|| � ||x||, x ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω̄2 \ Ω1).

Lemma 6. ([13]) Let P be a cone in a real Banach space E, Pc = {x ∈
P | ||x|| � c}, θ a nonnegative continuous concave functional on P such that
θ(x) � ||x||, for all x ∈ P̄c,and P (θ, b, d) = {x ∈ P | b � θ(x), ||x|| � d}. Suppose
A : P̄c → P̄c is completely continuous and there exist constants 0 < a < b < d � c
such that (C1) {x ∈ P (θ, b, d)|θ(x) > b} �= ∅ and θ(Ax) > b for x ∈ P (θ, b, d);
(C2) ||Ax|| < a for x � a; (C3) θ(Ax) > b for x ∈ P (θ, b, c) with ||Ax|| > d.
Then A has at least three fixed points x1, x2, x3 with

||x1|| < a, b < θ(x2), a < ||x3|| with θ(x3) < b.

Remark 2. ([13]) If there holds d=c, then condition (C1) of Lemma6 implies
condition (C3) of Lemma 6.

3 Main Results

In this section, we impose growth conditions on f which allow us to apply
Lemmas 5 and 6 to establish some results of existence and multiplicity of pos-
itive solutions for problem (1) and (2). Let E = C[0, 1] be endowed with the
ordering u � v if u(t) � v(t) for all t ∈ [0, 1], and the maximum norm ||u|| =
max0�t�1 |u(t)|. Define the cone P ⊂ E by P = {u ∈ E| u(t) � 0}.

Let the nonnegative continuous concave functional θ on the cone P be defined
by θ(u) = min

1/4�t�3/4
|u(t)|.

Lemma 7. Let T : P → P be the operator defined by Tu(t) :=
∫ 1

0

G(t, s)φq

(f(s, u(s)))ds. Then T : P → P is completely continuous.

Proof. The operator T : P → P is continuous in view of nonnegativeness
and continuity of G(t, s) and f(t, u). Let Ω ⊂ P be bounded, i.e., there exists
a positive constant M > 0 such that ||u|| � M, for all u ∈ Ω. Let L =

max0�t�1,0�u�M |φq(f(t, u))|+1,then, for u ∈ Ω, we have |Tu(t)| =
∫ 1

0

G(t, s)φq

(f(s, u(s)))ds � L

∫ 1

0

G(1, s)ds. Hence, T (Ω) is bounded.
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On the other hand, given ε > 0, setting δ = min{ 1
2 , 1

2 (Γ (α)ε
L )}, then, for

each u ∈ Ω, t1, t2 ∈ [0, 1], t1 < t2, and t2 − t1 < δ, we have |Tu(t2)−Tu(t1)| < ε.
That is to say, T (Ω)is equicontinuity. In fact,

|Tu(t2) − Tu(t1)| = |
∫ 1

0

G(t2, s)φq(f(s, u(s)))ds −
∫ 1

0

G(t1, s)φq(f(s, u(s)))ds|

=
∫ t1

0

[G(t2, s)−G(t1, s)]φq(f(s, u(s)))ds+
∫ 1

t2

[G(t2, s)−G(t1, s)]φq(f(s, u(s)))ds

+
∫ t2

t1

[G(t2, s)−G(t1, s)]φq(f(s, u(s)))ds <
L

Γ (α)
[
∫ t1

0

(1− s)α−2(tα−1
2 − tα−1

1 )ds

+
∫ 1

t2

(1 − s)α−2(tα−1
2 − tα−1

1 )ds +
∫ t2

t1

(1 − s)α−2(tα−1
2 − tα−1

1 )ds]

<
L

Γ (α)
(tα−1

2 − tα−1
1 ).

In the following, we divide the proof into two cases.
Case 1. δ � t1 < t2 < 1,

|Tu(t2) − Tu(t1)| <
L

Γ (α)
(tα−1

2 − tα−1
1 ) � L

Γ (α)
(α − 1)(t2 − t1) � L

Γ (α)
(α − 1)δ � ε.

Case 2. 0 � t1 < δ, t2 < 2δ,

|Tu(t2)−Tu(t1)| <
L

Γ (α)
(tα−1

2 − tα−1
1 ) � L

Γ (α)
tα−1
2 � L

Γ (α)
t2 <

L

Γ (α)
(2δ) � ε.

By the means of the Arzela–Ascoli theorem, we have T : P → P is completely
continuous.The proof is complete. Denote

M = (
∫ 1

0

G(1, s)ds)−1, σ = min
1/4�t�3/4

q(t) = (
1
4
)α−1, N = (

∫ 3/4

1/4

σG(1, s)ds)−1.

Theorem 1. Let f(t, u) is continuous on [0, 1]×[0,+∞).Assume that there exist
two positive constants r2 > r1 > 0 such that

(A1) φq(f(t, u)) � Mr2, for (t, u) ∈ [0, 1] × [0, r2];
(A2) φq(f(t, u)) � Nr1, for (t, u) ∈ [0, 1] × [0, r1].

Then problem (1) and (2) has at least one positive solution u such that r1 �
||u|| � r2.

Proof. By Lemmas 3 and 7, we know T : P → P is completely continuous and
problem (1) and (2) has a solution u = u(t) if and only if u solves the operator
equation u = Tu. In order to apply Lemma 5, we separate the proof into the
following two steps.
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Step 1. Let Ω2 := {u ∈ P | ||u|| < r2}. For u ∈ ∂Ω2, we have 0 � u(t) � r2
for all t ∈ [0, 1]. It follows form (A1) that for t ∈ [0, 1],

||Tu|| = max
0�t�1

∫ 1

0

G(t, s)φq(f(s, u(s)))ds � Mr2

∫ 1

0

G(1, s)ds = r2 = ||u||.

Step 2. Let Ω1 := {u ∈ P | ||u|| < r1}. For u ∈ ∂Ω1, we have 0 � u(t) � r1
for all t ∈ [0, 1]. It follows form (A2) that for t ∈ [1/4, 3/4],

Tu(t) =
∫ 1

0

G(t, s)φq(f(s, u(s)))ds �
∫ 1

0

q(t)G(1, s)φq(f(s, u(s)))ds

� Nr1

∫ 3/4

1/4

σG(1, s)ds = r1 = ||u||.

So, ||Tu|| � ||u||, for u ∈ ∂Ω1. Therefore, by (ii) of Lemma 5, we complete the
proof.

Theorem 2. Let f(t, u) is continuous on [0, 1] × [0,+∞) and there exist con-
stants 0 < a < b < c such that the following assumptions hold:

(B1) φq(f(t, u)) < Ma, for (t, u) ∈ [0, 1] × [0, a];

(B2) φq(f(t, u)) � Nb, for (t, u) ∈ [1/4, 3/4] × [b, c];

(B3) φq(f(t, u)) � Mc, for (t, u) ∈ [0, 1] × [0, c]. Then, the boundary value
problem (1) and (2) has at least three positive solutions u1, u2, and u3 with

max
0�t�1

|u1(t)| < a, b < min
1/4�t�3/4

|u2(t)| < max
0�t�1

|u2(t)| � c,

a < max
0�t�1

|u3(t)| � c, min
1/4�t�3/4

|u3(t)| < b.

Proof. We show that all the conditions of Lemma6 are satisfied.
If u ∈ P̄c, then ||u|| � c. Assumption (B3) implies φq(f(t, u(t))) � Mc for

0 � t � 1. Consequently,

||Tu|| = max
0�t�1

|
∫ 1

0

G(t, s)φq(f(s, u(s)))ds| �
∫ 1

0

G(1, s)φq(f(s, u(s)))ds

�
∫ 1

0

G(1, s)Mcds � c.

Hence, T : P̄c → P̄c. In the same way, if u ∈ P̄a, then assumption (B1) yields,
φq(f(t, u(t))) < Ma, 0 � t � 1. Therefore, condition (C2) of Lemma6 satisfied.

To check condition (C1) of Lemma 6, we choose u(t) = (b + c)/2, 0 � t � 1.
It is easy to see that u(t) = (b + c)/2 ∈ P (θ, b, c), θ(u) = θ((b + c)/2) > b, conse-
quently, {u ∈ P (θ, b, c)| θ(u) > b} �= ∅. Hence, if u ∈ P (θ, b, c), then b � u(t) � c
for 1/4 � t � 3/4. Form assumption (B2), we have φq(f(t, u(t))) � Nb, for 1/4 �
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t � 3/4. So θ(Tu) = min
1/4�t�3/4

|(Tu)(t)| �
∫ 1

0

q(t)G(1, s)φq(f(s, u(s)))ds >

∫ 3/4

1/4

σG(1, s)Nbds = b, i.e., θ(Tu) > b, for all u ∈ P (θ, b, c). This shows that

condition (C1) of Lemma 6 is also satisfied.
By Lemma 6 and Remark 2, the boundary value problem (1.1) and (1.2) has

at least three positive solutions u1, u2, and u3 satisfying

max
0�t�1

|u1(t)| < a, b < min
1/4�t�3/4

|u2(t)|, a < max
0�t�1

|u3(t)|, min
1/4�t�3/4

|u3(t)| < b.

The proof is complete.

4 Examples

In this section, we will give some examples to illustrate our main results.

Example 4.1. Consider the following problem φ3/2(D
3/2
0+ u(t))+u2+ sin t

4 + 1
4 =

0, 0 < t < 1, u(0) = u′(0) = u′(1) = 0. We have M = (
∫ 1

0

G(1, s)ds)−1 =

5
√

π

4
≈ 2.2156, N = (

∫ 3/4

1/4

σG(1, s)ds)−1 ≈ 28.2479.

Choosing r1 = 1/500, r2 = 1, then

φ3(f(t, u)) = (u2 +
sin t

4
+

1
4
)2 � 2.13268 � Mr2, for (t, u) ∈ [0, 1] × [0, 1],

φ3(f(t, u)) = (u2 +
sin t

4
+

1
4
)2 � 0.0625 � Nr1, for (t, u) ∈ [0, 1] × [0, 1/500].

From Theorem 1, the problem has at least one solution u such that 1/500 �
||u|| � 1.

Example 4.2. Consider the following problem φ3/2(D
3/2
0+ u(t)) + f(t, u) = 0,

0 < t < 1, u(0) = u′(0) = u′(1) = 0. where

f(t, u) =

{
t
20 + 37

9 u, for u � 1,
t
20 + u

9 + 4, for u > 1.

We have M = (
∫ 1

0

G(1, s)ds)−1 =
5
√

π

4
≈ 2.2156, N = (

∫ 3/4

1/4

σG(1, s)ds)−1 ≈
28.2479.
Choosing a = 1/10, b = 1/2, c = 18, then

φ3(f(t, u)) = (
t

20
+

37
9

u)2 � 0.2125 � Ma ≈ 0.2216, for (t, u) ∈ [0, 1]×[0, 1/10],

φ3(f(t, u)) = (
t

20
+

u

9
+4)2 � 16.97 � Nb ≈ 14.1239, for (t, u) ∈ [1/4, 3/4]× [1/2, 18],
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φ3(f(t, u)) = (
t

20
+

u

9
+4)2 � 36.1562 � Mc ≈ 39.8808, for (t, u) ∈ [0, 1]×[0, 18].

By Theorem 2, the problem has at least three positive solutions u1, u2 and u3

with max
0�t�1

|u1(t)| < 1/10, 1/2 < min
1/4�t�3/4

|u2(t)| < max
0�t�1

|u2(t)| � 18, 1/10 <

max
0�t�1

|u3(t)| � 18, min
1/4�t�3/4

|u3(t)| < 1/2.
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Finite-Difference Simulation of Wave
Propagation Through Prestressed Elastic Media
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Abstract. The new computational model for the seismic wave propaga-
tion is proposed, the governing equations of which are written in terms
of velocities, stress tensor and small rotation of element of the medium.
The properties of wavefields in the prestressed medium are studied and
some examples showing anisotropy of prestressed state are discussed. The
staggered grid numerical method is developed for solving the governing
equations of the model and numerical examples are presented.

1 Introduction

Analysis of seismoacoustic wavefields is the basic tool for the study of internal
structure of Earth and rock masses in the mining technology. The impact of
prestressed zones on seismic waves is a poorly studied problem and one can
expect that the account of initial stress can have an influence on interpretation
of the results of solution of inverse problems and seismic imaging. The basis of
the theory of elastic waves in prestressed elastic media goes back to the pioneer
work of M.Bio [1]. Its application to seismic problems was not systematic (see,
for example, [2,3] and references therein) and there is still an open area for
research work.

We propose a new computational model for small amplitude wave propaga-
tion in the prestressed medium, the simplified version of which is presented in [4].
The derivation of the model is based on the general theory of finite deformations
and as a result, the governing equations in terms of velocities, stress and small
rotations are formulated in the form of the first order hyperbolic system.

2 Derivation of Governing Equations

The method of derivation of governing equations for small amplitude wave prop-
agation in the prestressed elastic medium is based on the presented in [5] rela-
tionship between stress rate and strain rate in the hypoelastic representation
of the hyperelastic model of solid. The governing equations are formulated in
Lagrangian coordinates, but the method of derivation requires an introduction
of Eulerian coordinates and, in addition, reference unstressed configuration with
its own coordinates of unstressed state.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 282–289, 2015.
DOI: 10.1007/978-3-319-20239-6 30
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Denote xi Eulerian coordinates of the particle of the medium and xi
0 corre-

sponding Lagrangian coordinates. Assume that the element of the medium in
Lagrangian coordinates containing this particle is prestressed, that is nonzero
stress field exists inside this element. Let us introduce coordinates ξi of the par-
ticle corresponding to the unstressed reference state of the element. Thus, the
deformation gradients characterizing deformation from the unstressed reference
configuration to the Lagrangian configuration and from the Lagrangian config-
uration to the current Eulerian configuration

(
F 0

)i

j
= ∂xi

0
∂ξj , (F )i

j = ∂xi

∂xj
0

can
be introduced. The total deformation from the reference unstressed state to the
Eulerian state is characterized by the total deformation gradient (Ftot)

i
j = ∂xi

∂ξj =

(F )i
α

(
F 0

)α

j
. For our purpose it is more appropriate to use inverse deformation

gradients:

(
f0

)i

j
=

∂ξi

∂xj
, (f)i

j =
∂xi

0

∂xj
, (ftot)

i
j =

∂ξi

∂xj
=

(
f0

)i

α
(f)α

j

Below the Finger strain tensor is used as a measure of deformation and the total
strain from the unstressed state to the current configuration is characterizes by

(G)ij = (ftot)
α
i (ftot)

α
j = (f)α

i

(
f0

)β

α

(
f0

)α

γ
(f)γ

j .

Thus, (G)ij = (f)α
i

(
G0

)
αγ

(f)γ
j , where

(
G0

)
αγ

=
(
f0

)β

α

(
f0

)α

γ
, is the Finger

strain tensor characterizing deformation from the unstressed state to Lagrangian
configuration. Further we will use the matrix form of the Finger tensor, which
reads as G = fT G0f , where the superscript T denotes a matrix transposition.

For the derivation of governing equations we use the so-called hyperelastic
model which is based on the fundamental laws of thermodynamics. If the specific
elastic energy E (G11, . . . , G33) is the known function of the strain tensor, then
according to [6], the Cauchy stress tensor in Eulerian configuration is given as

sij = −2ρ
∂E

∂Gαj
Gαi, (1)

where ρ = ρ00/det (Ftot) is the mass density and ρ00 is the density of the medium
in the unstressed state. For the isotropic medium the elastic energy depends on
invariants of the strain tensor. The density is a function of the Finger tensor

ρ = ρ00
√

detG = ρ00

√
detG0det (fT f) = ρ0

√
det (fT f), ρ0 = ρ00

√
detG0.

The governing equations for the prestressed medium motion consist of the
momentum conservation laws and evolution equations for the parameters char-
acterizing deformation. Denoting ui the velocity vector the momentum equation
in Eulerian coordinates can be written in a standard form and reads as

∂ρui

∂t
+

∂
(
ρuiuk − sik

)

∂xk
= 0. (2)
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What concerns an evolution of the strain parameters, it requires thorough con-
sideration. As a consequence of the definition of deformation gradient (F )i

j = ∂xi

∂xj
0

the following evolution equation in matrix form can be derived:

df

dt
= −fU, (3)

where f =
[
(f)i

j

]
= F−1, U =

[
∂ui

∂xj

]
is the velocity gradient and d

dt = ∂
∂t +

uα ∂
∂xα is the material derivative. Note that the Finger tensor G0, characterizing

deformation from the reference unstressed state to Lagrangian configuration,
does not change during the motion, i.e. dG0

dt = 0.
As a consequence the evolution equation for the Finger tensor can be derived

dG

dt
= −GU − UT G. (4)

With the use of stress-strain relation (1) one can derive the following equation

ds

dt
= −sU − UT s + β0I trW + β1W + β2G trW + β3I tr (GW )

+
1

2
β4 (GW + WG) + β5G2 trW + β6G tr (GW ) + β7I tr

(
G2W

)

+
1

2
β8

(
G2W + WG2

)
+ β9G2 tr (GW ) + β10G tr

(
G2W

)
+ β11G2 tr

(
G2W

)
(5)

Here W = 1
2

(
U + UT

)
is the strain rate tensor in Eulerian coordinates, coeffi-

cients β0, β1, . . . , β11 are functions of invariants of G and depend on the choice of
energy E. Thus, Eqs. (2) – (5) can be used for the derivation of the small ampli-
tude wave propagation in the prestressed isotropic medium with the arbitrary
dependence of the elastic energy on three invariants of the strain tensor.

Assume that the energy is given as a function of the Almansi strain tensor
ε = [εij ] = 1

2 (I − G) in the following form

E =
λ

2ρ00
(ε11 + ε22 + ε33 )2 +

μ

ρ00
(εijεji)

where λ, μ are the Lame parameters. The stress tensor (1) takes a form

s =
ρ

ρ00

(
λ trε I + 2μ ε − 2λ trε ε − 4μ ε2

)
(6)

Assume that the stress tensor s = Σ + σ is the sum of the initial stress Σ and
its perturbation σ. The initially prestressed state satisfies equilibrium equations
in Lagrangian configuration ∂Σij

∂xj
0

= 0, where Σij is connected with the Almansi

tensor of the prestressed state by the linearized relation (6) which reduces to
Hooke’s law Σ = λ trε0 I + 2μ ε0.

We will derive equations in Lagrangian coordinates but with the use of the
Cauchy stress tensor referred to Eulerian coordinates. Introduce the small defor-
mation and small rotation tensors by the following relations:

εij =
1
2

(
∂V i

∂xj
+

∂V j

∂xi

)
, ωij =

1
2

(
∂V i

∂xj
− ∂V j

∂xi

)
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where V i is the displacement vector, V i = xi − xi
0, so that f i

j = δi
j − ∂V i

∂xj . The
evolution equations for εij and ωij read as

∂εij

∂t
=

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

∂ωij

∂t
=

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (7)

Using all above definitions, transforming Eqs. (2), (3), (5)-(7) to Lagrangian
coordinates assuming that ui, εij , ωij , ε0ij are small, and neglecting all terms of
order higher than the first one, we obtain the following system:

ρ00 (1 − trε0)
∂ui

∂t
=

∂σij

∂xj
0

+ (εjα + ωjα)
∂Σiα

∂xj
0

,

∂σ

∂t
= −ΣU0 − UT

0 Σ − trW0 Σ + λ trW0 I + 2μ W 0 − λ trε0 trW0 I−

2μ trε0 W0 − 2λ tr (ε0U0) I − 2λ trW0 ε0 − 4μ ε0W0 − 4μ W0ε0 (8)

∂ωij

∂t
=

1
2

(
∂ui

∂xj
0

− ∂uj

∂xi
0

)

,
∂εij

∂t
=

1
2

(
∂ui

∂xj
0

+
∂uj

∂xi
0

)

Here U0 =
[

∂ui

∂xj
0

]
is the Lagrangian velocity gradient, W0 = 1

2

(
U0 + UT

0

)
. The

initial Almansi strain tensor can be expressed as ε0 = 1
2μ

(
Σ − λ

3λ+2μI trΣ
)
.

3 Properties of Wavefields in Prestressed Media

It is obvious that system (8) and conventional linear elasticity equations for
isotropic media are different. Coefficients of equations (8) depend on the values of
initial stress tensor and their spatial derivatives. It turns out that this difference
drastically changes the character of elastic waves and leads to their anisotropy
and dispersion. To prove this fact one can consider the second order equations
system for velocities which can be derived from (8) by the differentiating velocity
equations with respect to t and exclusion of stress derivatives with the use of
equation for s:

ρ0
∂2ui

∂t2
= Cijkl

∂2ul

∂xj
0∂xk

0

+ Bijk
∂uj

∂xk
0

(9)

where Bijk = ∂Σik
/

∂xj
0. Moduli Cijkl depend on the initial stress Σik. It is

obvious that the prestressed state results in the anisotropy of the medium. More-
over, the term containing first derivatives of the velocities in (9) can result in
attenuation and dispersion of the waves.
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On Fig. 1 one can see the plane waves velocity distribution for unidirectionally
stretched medium with Σ11 = ρV 2

p /50, Σij = 0 (ij �= 11) (left) and compressed
medium with Σ11 = ρV 2

p /50, Σij = 0 (ij �= 11) (right) with parameters Vp =
3000m/s, V s = 2000m/s, ρ00 = 2000 kg/m3 . Dots correspond to the wave
velocity distribution in the unstressed medium. The anisotropy in longitudinal
and shear wave propagation is clearly can be seen in both cases.

Fig. 1. Velocity distribution for the stretched (left) and compressed (right) media.

4 Finite Difference Staggered Grid Numerical Method

As a numerical tool for solving differential equations (8) the staggered grid finite
difference method has been developed, which is similar to proposed in [7] and has
the second order accuracy in space and time. Below we denote spacial coordinates
as x1=x1

0, x2= x2
0 and do not distinguish upper and inferior indices. On Figs. 1

and 2 the definition of staggered grid is presented and the finite difference method
for (8) reads as

ρ0
un+1

i − un
i

τ
= Dxj

σ
n+1/2
ij +

(
ε

n+1/2
jα + ω

n+1/2
jα

)
Dxj

Σ
n+1/2
ij

σ
n+1/2
ij − σ

n−1/2
ij

τ
= CijklDxl

un
k

ε
n+1/2
ij − ε

n−1/2
ij

τ
=

Dxi
un

j + Dxj
un

i

2
,

ω
n+1/2
ij − ω

n−1/2
ij

τ
=

Dxi
un

j − Dxj
un

i

2
Here Dxi

are the difference approximation of spatial derivatives:

Dx1(x1, x2)ui =
1
h1

[
ui(x1 + h1 .2, x2 + h2/.2) + ui(x1 + h1/.2, x2 − h2/.2)

2

−ui(x1 − h1/.2, x2 + h2/.2) + ui(x1 − h1/.2, x2 − h2/.2)
2

] ≈ ∂ui

∂x1
(x1, x2)



Finite-Difference Simulation of Wave Propagation 287

Fig. 2. Staggered grid definition. The density and velocities are related to circles.
Stress, strain, rotation tensors and elastic moduli are related to squares.

Fig. 3. The structure of finite differences. At the midpoint between circles or squares
(solid) a mean value (dashed) of corresponding variables is used.

Dx2(x1, x2)ui =
1
h2

[
ui(x1 − h1/.2, x2 + h2/.2) + ui(x1 + h1/.2, x2 + h2/.2)

2

−ui(x1 − h1/.2, x2 − h2/.2) + ui(x1 + h1/.2, x2 − h2/.2)
2

] ≈ ∂ui

∂x2
(x1, x2)

The stability condition for this method in the two-dimensional case is similar
to that formulated in [7]: τ ≤ h

maxVpα
, h =

√
h2
1 + h2

2, where Vpα is the maximal
speed of longidudinal waves (Fig. 1).
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5 Wave Propagation in the Unidirectionally Prestressed
Media

Consider a numerical test problem aimed to demonstrate an influence of the
initial stress on the wave field generated by the Ricker wavelet. The computa-
tional domain (x1, x2) ∈ [0, L] × [0, L] is a square, in which the initial stress is
given as Σ11 = P (x2) , Σij = 0, (ij �= 11), where P (x2) is the linear func-
tion of x2: P (x2) = C

10

(
1 − 2x2

L

)
. It is obvious that the above stress field

Fig. 4. The snapshot of the vertical stress component. correspond to the unstressed
elastic medium. It is clearly seen the dependence of wave velocities on the spacial
direction.

Fig. 5. Seismograms recorded by receivers in the upper region. Red lines correspond
to the prestressed medium, black lines correspond to the unstressed medium (Color
figure online).
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satisfies equilibrium equations. The maximal tensile stress Σ11 = C/10 is on
the bottom of the computational domain and the maximal compression with
Σ11 = −C/10 is on the top of the domain. The parameters of the medium
are Vp = 3000m/s, V s = 2000m/s, ρ00 = 2000 kg/m3, and C = ρ00V

2
p . The

source of elastic waves with 60 Hz dominant frequency is located in the centre
of the domain. On Fig. 4 the snapshot of x2 stress component σ22 is presented.
It obvious that the wave velocities decrease towards to the bottom and increase
towards to the top of computational domain. This effect is caused by the effect
of compression of the upper part of the domain and tension of the lower part. On
Fig. 5 the comparison of seismograms recorded by receivers on the top boundary
of the domain for unstressed and prestressed medium is presented. One can see
that the difference is significant.

6 Conclusions

The method of derivation of the governing equations for the small amplitude
wave propagation in the initially prestressed medium is proposed. Governing
equation for elastic waves in prestressed medium are derived in the case of
quadratic dependence of internal energy on the strain tensor. It is proved that
the initial stress can have a significant influence on the character of wave prop-
agation.
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Abstract. A numerical-analytical algorithm for modeling of seismic and
acoustic-gravity waves propagation is applied to a heterogeneous “Earth-
Atmosphere” model. Seismic wave propagation in an elastic half-space
is described by a system of first-order dynamic equations of elasticity
theory. The propagation of acoustic-gravity waves in the atmosphere is
described by the linearized Navier-Stokes equations with the wind. The
algorithm is based on the integral Laguerre transform with respect to
time, the finite integral Fourier transform with respect to a spatial coor-
dinate combined with a finite difference method for the reduced problem.

Keywords: Seismic waves · Acoustic-gravity waves · Navier-stokes
equations · Laguerre transform · Finite difference method

1 Introduction

In the numerical modeling of seismic wave fields in an elastic medium, it is
typically assumed that the medium borders on vacuum, and boundary conditions
are specified on a free surface. Specifically, at the boundary seismic waves are
assumed to be absolutely reflected, and the generation of acoustic-gravity waves
by elastic waves in the atmosphere and their interaction at the boundary are
ignored.

In the last decade, some theoretical and experimental investigations have
shown that there is a striking correlation between waves in the lithosphere and
atmosphere. Paper [1] describes the effect of acoustoseismic induction of an
acoustic wave produced by a vibrator. Owing to refraction in the atmosphere, the
wave excites intensive surface seismic waves at a distance of tens of kilometers
from the source. The lithospheric seismic waves produced by earthquakes and
explosions generate atmospheric acoustic-gravitational waves of high intensity
in the upper layers of the atmosphere and of small density in the ionosphere.

Papers [2,3] deal with to theoretical investigations of wave processes at
the boundary between an elastic half-space and an isothermal homogeneous
atmosphere. In these papers, the properties of the surface Stoneley-Scholte and
modified Lamb waves are studied.
c© Springer International Publishing Switzerland 2015
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In this paper, an efficient numerical algorithm to simulate and investigate the
propagation of seismic and acoustic-gravitational waves in a spatially inhomo-
geneous “Atmosphere-Earth” model is proposed. A peculiarity of the algorithm
is a combination of integral transforms with a finite-difference method. A simi-
lar approach to solving the problem for a vertically inhomogeneous model in a
cylindrical system of coordinates with no wind in the atmosphere was considered
in [4]. In the problem statement, the initial system is written down as a first order
hyperbolic system in terms of the velocity vector and stress tensor in a 3D Carte-
sian system of coordinates. The medium parameters (densities and velocities of
longitudinal and transverse waves) are assumed to be functions of only two coor-
dinates, and the medium is assumed to be homogeneous in the third coordinate.
This problem statement is called a 2.5D one. The algorithm is based on the inte-
gral Laguerre transform with respect to the temporal coordinate. This method
can be considered to be an analog to the well-known spectral method based on
the Fourier transform, where, instead of the frequency ω, we have a parameter
p(the degree of the Laguerre polynomials). The integral Laguerre transform with
respect to time (in contrast to the Fourier transform) makes possible to reduce
the initial problem to solving a system of equations in which the parameter is
present only in the right-hand side of the equations and has a recurrence rela-
tion. This method for solving the dynamic problems of elasticity theory was first
considered in [5,6] and then developed in problems of viscoelasticity [7,8] and
porous media [9]. The above-mentioned papers concern the peculiarities of this
method and the advantages of the integral Laguerre transform over the difference
methods and the Fourier transform with respect to time.

2 Problem Statement

The system of equations for the propagation of acoustic-gravitational waves in
the inhomogeneous non-ionized isothermal atmosphere in the Cartesian system
of coordinates (x, y, z) with the wind directed along the horizontal axis x and
the vertical stratification along the axis z has the following form:

∂ ux

∂ t
+ vx

∂ ux

∂ x
= − 1

ρ0

∂P

∂x
− uz

∂ vx

∂ z
, (1)

∂ uy

∂ t
+ vx

∂ uy

∂ x
= − 1

ρ0

∂P

∂y
, (2)

∂ uz

∂ t
+ vx

∂ uz

∂ x
= − 1

ρ0

∂P

∂z
− ρg

ρ0
, (3)

∂ P

∂ t
+ vx

∂ P

∂ x
= c20

[
∂ρ

∂ t
+ vx

∂ ρ

∂ x
+ uz

∂ρ0
∂ z

]
− uz

∂P0

∂ z
(4)

∂ ρ

∂ t
+ vx

∂ ρ

∂ x
= −ρ0

[
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

]
− uz

∂ρ0
∂z

+ F (x, y, z, t). (5)
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Here g is the acceleration of gravity, ρ0(z) is the reference atmosphere den-
sity, c0(z) is the sound speed, vx(z) is the wind speed along the axis x,−→u = (ux, uy, uz) is the velocity vector of the air particles displacement, P and ρ
are the pressure and density perturbations, respectively, generated by the wave
propagating from the source of mass F (x, y, z, t) = δ(r−r0)f(t). In this case f(t)
is a given time signal in the source. Assume that the axis z is directed upwards.
Zero subscripts for the medium physical parameters show their values for the
reference atmosphere. The atmospheric pressure P0 and the density ρ0 for the
reference atmosphere in a homogeneous gravitational field are

∂P0

∂ z
= −ρ0g, ρ0(z) = ρ1 exp(−z/H),

where H is the height of an isothermal homogeneous atmosphere, and ρ1 is the
density of the atmosphere at the Earth’s surface, that is, at z = 0.

The seismic waves propagation in an elastic medium is described by a well-
known system of first-order equations of elasticity theory as the following rela-
tion between the displacement velocity vector components and the stress vector
components:

∂ ui

∂ t
=

1
ρ0

∂σik

∂xk
+ Fif(t), (6)

∂σik

∂t
= μ

(
∂uk

∂xi
+

∂ui

∂xk

)
+ λδikdiv−→u . (7)

Here δij is the Kronecker symbol, λ(x1, x2, x3) and μ(x1, x2, x3) are the elastic
parameters of the medium, ρ0(x1, x2, x3) is the density, −→u = (u1, u2, u3) is the
displacement velocity vector, and σi j are the stress vector components. The
equality

−→
F (x, y, z) = F1

−→e x + F2
−→e y + F3

−→e z describes the distribution of a
source located in space, and f(t) is a given time signal in the source.

The combined system of equations for the propagation of seismic and
acoustic-gravitational waves in the Cartesian system of coordinates (x, y, z) =
(x1, x2, x3) can be written down as

∂ ui

∂ t
=

1
ρ0

∂σik

∂xk
+ Fif(t) − Katm

[
vx

∂ ui

∂ x1
+

ρg

ρ0
ez − uz

∂ vx

∂ x3
ex

]
, (8)

∂σik

∂t
= μ

(
∂uk

∂xi
+

∂ui

∂xk

)
+ λδikdiv−→u − δikKatm

[
vx

∂ σik

∂ x1
+ ρ0guz

]
, (9)

Katm

[
∂ρ

∂ t
+ vx

∂ρ

∂ x
= −ρ0div−→u − uz

∂ρ0
∂ z

]
. (10)

Here δij is the Kronecker symbol, ρ0(x, z) is the density, λ(x, z) and μ(x, z)
are the elastic parameters of the medium, −→u = (u1, u2, u3) is the displacement
velocity vector, and σij are the stress tensor components.

−→
F (x, y, z) = F1

−→e x +
F2

−→e y + F3
−→e z describes the distribution of a source located in space, and f(t)

is a given time signal in the source. The medium is assumed to be homogeneous
along the y axis.
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System (1)-(5) for the atmosphere is obtained from system (8)-(10) at σ11 =
σ22 = σ33 = −P , μ = 0, λ = c20ρ0, σ12 = σ13 = σ23 = 0, Katm = 1. Let us set
Katm = 0 in system (9)-(10), and obtain the system of equations (6)-(7) for the
propagation of seismic waves in an elastic medium.

In our problem, the atmosphere-elastic half-space interface is assumed to be
the plane z = x3 = 0. In this case, the condition of contact of the two media at
z = 0 is written down as

uz|z=−0 = uz|z=+0 ;
∂σzz

∂t

∣
∣
∣
∣
z=−0

=
(

∂σzz

∂t
+ ρ0guz

)∣
∣
∣
∣
z=+0

;

σxz|z=−0 = σyz|z=−0 = 0. (11)

The problem is solved with the following zero initial data:

ui|t=0 = σij |t=0 = P |t=0 = ρ|t=0 = 0, i = 1, 2, 3 j = 1, 2, 3. (12)

All the functions of the wave field components are assumed to be sufficiently
smooth so that the transformations presented below are valid.

3 The Solution Algorithm

At the first step, we use the finite cosine-sine Fourier transform with respect to
the spatial coordinate y where the medium is assumed to be homogeneous. For
each component of the system, we introduce the corresponding transform [10]:

−→
W (x, z, n, t) =

a∫

0

−→
W (x, y, z, t)

{
cos(kny)
sin(kny)

}
d(y), n = 0, 1, 2, ..., N (13)

with the corresponding inversion formula

−→
W (x, y, z, t) =

1
π

−→
W (x, 0, z, t) +

2
π

N∑

n=1

−→
W (x, n, z, t) cos(kny) (14)

or
−→
W (x, y, z, t) =

2
π

N∑

n=1

−→
W (x, n, z, t) sin(kny), (15)

where kn = nπ
a .

At rather a large distance a , consider a wave field up to the time t < T ,
where T is a minimum propagation time of a longitudinal wave to the boundary
r = a. As a result of this transformation, we obtain N + 1 independent 2D
unsteady problems.

At the second step, we apply to the thus obtained N+1 independent problems
the integral Laguerre transform with respect to time

−→
W p(x, n, z) =

∞∫

0

−→
W (x, n, z, t)(ht)− α

2 lαp (ht)d(ht), p = 0, 1, 2, ... (16)
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with the inversion formula

−→
W (x, n, z, t) = (ht)

α
2

∞∑

p=0

p!
(p + α)!

−→
W p(x, n, z)lαp (ht), (17)

where lαp (ht) are the orthogonal Laguerre functions.
The Laguerre functions lαp (ht) can be expressed in terms of the classical

standard Laguerre polynomials Lα
p (ht) (see paper [11]). Here we select an integer

parameter α ≥ 1 to satisfy the initial data and introduce the shift parameter
h > 0. Then we have the following representation:

lαp (ht) = (ht)
α
2 e− ht

2 Lα
p (ht).

We take the finite cosine-sine Fourier transform with respect to the coordinate
x, similar to the previous transform with respect to the coordinate y with the
corresponding inversion formulas:

−→
W p(x, n, zi, p) =

1
π

−→
W 0(n, zi, p) +

2
π

M∑

m=1

−→
W (m,n, zi, p) cos(kmx) (18)

or
−→
W (x, n, zi, p) =

2
π

M∑

m=1

−→
W (m,n, zi, p) sin(kmx), (19)

where km = mπ
b . It should be noted that in this case the medium is

inhomogeneous.
The finite difference approximation for the system of linear algebraic equa-

tions with respect to z was applied using the staggered grid method [12] providing
second order accuracy approximation. This scheme is used for the FD approx-
imation within the computation domains in the atmosphere and in the elastic
half-space, the fitting conditions at the interface being exactly satisfied. As a
result of the above transformations, we obtain N + 1 systems of linear algebraic
equations, where N is the number of harmonics in the Fourier transform with
respect to the coordinate y.

The sought for solution vector
−→
W is represented as follows:

−→
W (p) = (

−→
V 0(p),

−→
V 1(p), ...,

−→
V K(p))T ,

−→
V i = (ρ̄p(m = 0, ...,M ; zi), σ̄p

xx(m = 0, ...,M ; zi), ūp
x(m = 0, ...,M ; zi), ...)T .

Then for every n-th harmonic (n = 0, ..., N) the system of linear algebraic equa-
tions can be written in the vector form as

(A +
h

2
E)

−→
W (p) =

−→
F (p − 1). (20)

A sequence of wave field components in the solution vector
−→
V is chosen to

minimize the number of diagonals in matrix A. The main diagonal of the matrix
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has the components of this system multiplied by the parameter h(the Laguerre
transform parameter). By changing the parameter h, the conditioning of the
matrix can be considerably improved. Solving the system of linear algebraic
equations (20) determines the spectral values for all the wave field components−→
W (m,n, p). Then, using the inversion formulas for the Fourier transform, (14),
(15), (18) and (19), and the Laguerre transform, (16), we obtain a solution to
the initial problem (8)-(12). In the analytical Fourier and Laguerre transforms,
when determining functions by their spectra, inversion formulas in the form of
infinite sums are used. A necessary condition in the numerical implementation is
to determine the number of terms of the summable series to construct a solution
with a given accuracy. For instance, the number of harmonics in the inversion
formulas of the Fourier transform (14), (15), (18) and (19) depends on a minimal
spatial wavelength in the medium and the size of the spatial calculation domain
of the field given by the finite limits of the integral transform. In addition, the
convergence rate of a summable series depends on the smoothness of functions of
the wave field. The number of the Laguerre harmonics for determining functions
by formula (17) depends on a signal given in the source f(t), the parameter h,
and the time interval of the wave field. Papers [5–8] consider in detail the way
of determining the required number of harmonics and choosing an optimal value
of the parameter h.

The iterative conjugate gradient method [13,14] has turned out to be the
most efficient for solving the system of linear algebraic equations (20). In this
case, the entire matrix need not be stored in computer memory (which is good
for large matrices). Another advantage of this method is the fast convergence to
the problem solution if the matrix of a system is well-conditioned. Our matrix
has this property owing to the parameter h. By specifying the values of h, we
can greatly accelerate the convergence of the iterative process. An optimal value
of h is chosen by minimizing the number of the Laguerre harmonics in inversion
formula (17) and decreasing the number of iterations needed for finding a solution
for each of the harmonics.

4 Results

Figures 1 and 2 show the results of numerical calculations of the waves fields
propagation in the form of snapshots at a fixed time for the two models of media
with wind in the atmosphere and without it. The wind speed was set equal to 50
m/sec in order to obtain the main physical effects of wave propagation without
carrying out calculations at considerable distances.

Figure 1 presents a snapshot of the wave field for ux(x, y, z) in the plane XZ
at the time t = 50 sec. This model of the medium consists of a homogeneous elas-
tic layer and an atmospheric layer separated by a plane boundary. The physical
characteristics of the layers are as follows:

1. the atmosphere: sound speed cp = 340 m/sec. Density versus coordinate z
calculated by the formula ρ0(z) = ρ1 exp(−z/H), where ρ1 = 1.225 ∗ 10−3

g/cm3, H = 6700 m;
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2. the elastic layer: longitudinal wave velocity: cp = 400 m/sec, transverse wave
velocity: cs = 300 m/sec, density: ρ0 = 1.5 g/cm3.

A bounded domain, (x, y, z) = (42 km, 40 km, 39 km), was used for the calcula-
tions. A wave field from a point source (a pressure center) located in the elastic
medium at a depth of 1/4 of the length of a longitudinal wave with the coordi-
nates (x0, y0, z0) = (21 km, 20 km, –0.09 km) was simulated. The time signal in
the source was given in the form:

f(t) = exp

(
−2πfo(t − t0)2

γ2

)
sin(2πf0(t − t0)), (21)

where γ = 4, f0 = 1 Hz, t0 = 1.5 sec.
The Fig. 1 shows the wave fields for the horizontal component of the dis-

placement velocity ux in the plane XZ at y = y0 = 20 km: without wind (left),
with wind speed in the atmosphere of 50 m/sec (right). The elastic medium-
atmosphere interface is shown by the solid line. This Figure demonstrates that
in the elastic medium, in addition to the spherical longitudinal wave P and the
conic transverse wave S, there also propagates a “non-ray” spherical wave S∗,
and then there follows a surface Stoneley-Scholte wave. An acoustic-gravitational
wave refracted at the Earth-atmosphere interface propagates in the atmosphere.
At the boundary, this wave generates the corresponding longitudinal and trans-
verse waves in the elastic medium.

Fig. 1. A snapshot at t = 50 sec for the velocity component ux in the plane (XZ)
Without wind (left), with wind (right) (wind speed: 50 m/sec)

Figure 2 present snapshots of the wave field when the seismic waves velocity
in the elastic medium is less than the sound speed in the atmosphere. In this
model, the physical characteristics of the elastic medium and the atmosphere
are as follows:
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1. the atmosphere: sound speed cp = 340 m/sec. Density versus coordinate z
calculated by the formula ρ0(z) = ρ1 exp(−z/H), where ρ1 = 1.225 ∗ 10−3

g/cm3, H = 6700 m;
2. the elastic layer: longitudinal wave velocity cp = 300 m/sec, transverse wave

velocity cs = 200 m/sec, density ρ0 = 1.2 g/cm3.

A bounded domain, (x, y, z) = (35 km, 30 km, 30 km), was used for the calcula-
tions. A wave field from a point source (a pressure center) located in the elastic
medium at a depth of 1/4 of the length of a longitudinal wave with the coordi-
nates (x0, y0, z0) = (15 km, 15 km, −0.06 km) was simulated. The time signal
in the source was given by formula (21).

Fig. 2. A snapshot at t = 45 sec for the velocity component ux in the plane (XZ)
Without wind (left), with wind (right) (wind speed: 50 m/sec)

The Fig. 2 shows wave fields for the horizontal component of the displacement
velocity ux in the plane XZ at y = y0 = 15 km: without wind (left), with wind
speed in the atmosphere of 50 m/sec (right). The elastic medium-atmosphere
interface is shown by the solid line. This Figure shows that in the atmosphere,
in addition to the conical longitudinal wave P and the conical transverse wave S,
there also propagates a “non-ray” spherical wave P ∗, and then there follows a
surface Stoneley-Scholte wave.

The results of the numerical simulation have revealed some new peculiarities
of wave propagation with wind in the atmosphere. Specifically, the influence
of the wind on the propagation velocity of the surface Stoneley waves in an
elastic medium has been demonstrated. The numerical results have also shown
that the velocity of these waves increases downwind and, hence, it decreases
upwind by the quantity equal to the wind speed. The same influence of the
wind is on a non-ray spherical exchange acoustic-gravitaty wave propagating in
the atmosphere from a source located in a solid medium. Another evidence of
the wind influence that has been detected is that the surface wave changes in
amplitude along its front. This manifests itself as an increase in the amplitude
in that part of the wavefront that propagates downwind and a decrease in the
wavefront propagating upwind but with conservation of the total wave energy.
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5 Conclusions

The above-proposed approach to the statement and solution of the problem
makes possible to simulate the effects of the wave field propagation in a unified
mathematical Earth-Atmosphere model and the study the exchange waves at
their boundary. The numerical simulation of these processes makes possible to
investigate the peculiarities of the wind effects on the propagation of acoustic-
gravity atmospheric waves and the surface Stoneley waves.

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (project 14-05-00867).
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Abstract. An extrapolation algorithm is considered for solving linear
fractional differential equations in this paper, which is based on the direct
discretization of the fractional differential operator. Numerical results
show that the approximate solutions of this numerical method has the
expected asymptotic expansions.

1 Introduction

We consider the Richardson extrapolation algorithms for solving the following
fractional order differential equation

C
0 Dα

t y(t) = βy(t) + f(t), 0 ≤ t ≤ 1, (1)
y(0) = y0, (2)

where β < 0 and f is a given function on [0, 1].
Extrapolation can be used to accelerate the convergence of a given sequence,

[1,2,13]. Its applicability depends on the fact that a given sequence of the approx-
imate solutions of the problem possesses an asymptotic expansion. Diethelm [3]
introduced an algorithm for solving the above linear differential equation of frac-
tional order, with 0 < α < 1, Diethelm and Walz [12] proved that the approx-
imate solution of the numerical algorithm in [3] has an asymptotic expansion.
See [5–11] for the numerical methods of the general nonlinear fractional differ-
ential equations.

Recently, Yan, Pal and Ford [14] extended the numerical method in [3] and
obtained a high order numerical method for solving (1) and (2) and proved that
the approximate solution has an asymptotic expansion. In this paper, we give
some numerical results to show that the approximate solutions of the proposed
numerical methods in this paper have the expected asymptotic expansions.

The paper is organized as follows: in Sect. 2, we introduce the numerical
method for solving (1) and (2) and discuss how to approximate the starting values
and the starting integrals appeared in the numerical method. In Sect. 3, we give
some numerical examples to show that the approximate solutions of the proposed
numerical methods in this paper have the expected asymptotic expansions.
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2 Higher Order Numerical Method

In this section we will consider a higher order numerical method for solving (1)
and (2). It is well-known that, when 0 < α < 1, (1) and (2) is equivalent to,
with 0 < α < 1,

R
0 Dα

t [y(t) − y0] = βy(t) + f(t), 0 ≤ t ≤ 1, (3)

where R
0 Dα

t y(t) denotes the Riemann-Liouville fractional derivative defined by,
with 0 < α < 1,

R
0 Dα

t y(t) =
1

Γ (1 − α)
d

dt

∫ t

0

(t − u)−αy(u) dτ. (4)

By using Hadamard finite-part integral, R
0 Dα

t can be written into

R
0 Dα

t y(t) =
1

Γ (−α)

∮ t

0

(t − u)−1−αy(u) du. (5)

Here the integral
∮

denotes a Hadamard finite-part integral [3].
Yan, Pal and Ford [14] extended the numerical method in Diethelm and

Walz [12] and obtained a high order numerical method for solving (1) and (2)
for 0 < α < 1. Let M be a fixed positive integer and let 0 = t0 < t1 < t2 < · · · <
t2j < t2j+1 < · · · < t2M = 1 be a partition of [0, 1] and h the step size. At the
nodes t2j = 2j

2M , the Eqs. (1) and (2) satisfy

R
0 Dα

t [y(t2j) − y0] = βy(t2j) + f(t2j), j = 1, 2, . . . ,M,

and at the nodes t2j+1 = 2j+1
2M , the Eqs. (1) and (2) satisfy

R
0 Dα

t [y(t2j+1) − y0] = βy(t2j+1) + f(t2j+1), j = 0, 1, 2, . . . ,M − 1. (6)

Note that

R
0 Dα

t y(t2j) =
1

Γ (−α)

∮ t2j

0
(t2j − τ)−1−αy(τ) dτ =

t−α
2j

Γ (−α)

∮ 1

0
w−1−αy(t2j − t2jw) dw. (7)

For every j, we denote g(w) = y(t2j − t2jw) and approximate the integral∮ 1

0
w−1−αg(w) dw by

∮ 1

0
w−1−αg2(w) dw, where g2(w) is the piecewise quadratic

interpolation polynomials on the nodes wl = l/2j, l = 0, 1, 2, . . . , 2j. More
precisely, we have, for k = 1, 2, . . . , j,

g2(w) =
(w − w2k−1)(w − w2k)

(w2k−2 − w2k−1)(w2k−2 − w2k)
g(w2k−2)

+
(w − w2k−2)(w − w2k)

(w2k−1 − w2k−2)(w2k−1 − w2k)
g(w2k−1)

+
(w − w2k−2)(w − w2k−1)

(w2k − w2k−2)(w2k − w2k−1)
g(w2k), for w ∈ [w2k−2, w2k].



Numerical Solutions of Fractional Differential Equations by Extrapolation 301

Thus

R
0 Dα

t y(t2j) =
t−α
2j

Γ (−α)

∮ 1

0

w−1−αy(t2j − t2jw) dw

=
t−α
2j

Γ (−α)

( j∑

k=1

∮ w2k

w2k−2

w−1−αg2(w) dw + R2j(g)
)

=
t−α
2j

Γ (−α)

( 2j∑

k=0

αk,2jy(t2j−k) + R2j(g)
)

where R2j(g) is the remainder term and αk,2j , k = 0, 1, 2, . . . , 2j are weights
given by

(−α)(−α + 1)(−α + 2)(2j)−ααl,2j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−α(α + 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,
1
2 (F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,
1
2F2(j), for l = 2j.

Here

F0(k) =(2k − 1)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 1) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1),

F1(k) =(2k − 2)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 2) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1),

and

F2(k) =(2k − 2)(2k − 1)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

−
(
(2k − 2) + (2k − 1)

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1).

Hence (3) satisfies for j = 1, 2, . . . ,M ,

y(t2j) =
1

α0,2j − tα
2jΓ (−α)β

[
t2jΓ (−α)f(t2j) −

2j∑
k=1

αk,2jy(t2j−k) + y0

2j∑
k=0

αk,2j − R2j(g)
]
. (8)
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At the nodes t2j+1 = 2j+1
2M , j = 0, 1, 2, . . . ,M − 1, we have

R
0 Dα

t y(t2j+1) =
1

Γ (−α)

∮ t2j+1

0

(t2j+1 − τ)−1−αy(τ) dτ

=
1

Γ (−α)

∮ t1

0

(t2j+1 − τ)−1−αy(τ) dτ

+
t−α
2j+1

Γ (−α)

∮ 2j
2j+1

0

w−1−αy(t2j+1 − t2j+1w) dw.

For every j, we denote g(w) = y(t2j+1 − t2j+1w) and approximate the inte-

gral
∮ 2j

2j+1
0 w−1−αg(w) dw by

∮ 2j
2j+1
0 w−1−αg2(w) dw, where g2(w) is the piecewise

quadratic interpolation polynomials on the nodes wl = l
2j+1 , l = 0, 1, 2, . . . , 2j.

We then get

R
0 Dα

t y(t2j+1) =
1

Γ (−α)

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ

+
t−α
2j+1

Γ (−α)

( j∑

k=1

∮ w2k

w2k−2

w−1−αg2(w) dw + R2j+1(g)
)

=
1

Γ (−α)

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ

+
t−α
2j+1

Γ (−α)

( 2j∑

k=0

αk,2j+1y(t2j+1−k) + R2j+1(g)
)

where R2j+1(g) is the remainder term and αk,2j+1 = αk,2j , k = 0, 1, 2, . . . , 2j.
Hence

y(t2j+1) =
1

α0,2j+1 − tα
2j+1Γ (−α)β

[
tα
2j+1Γ (−α)f(t2j+1) −

2j∑

k=1

αk,2j+1y(t2j+1−k)

+ y0

2j∑

k=0

αk,2j+1 − R2j+1(g) − tα
2j+1

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ
]
. (9)

Here α0,l − tαl Γ (−α)β < 0, l = 2j, 2j + 1, which follow from Γ (−α) < 0, β < 0
and α0,2j+1 = α0,2j < 0.

Let y2j ≈ y(t2j) and y2j+1 ≈ y(t2j+1) denote the approximate solutions of
y(t2j) and y(t2j+1), respectively. We define the following numerical methods for
solving (1) and (2), with j = 1, 2, . . . ,M ,

y2j =
1

α0,2j − tα2jΓ (−α)β

[
t2jΓ (−α)f(t2j)−

2j∑

k=1

αk,2jy2j−k +y0

2j∑

k=0

αk,2j

]
, (10)
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and, with j = 1, 2, . . . ,M − 1,

y2j+1 =
1

α0,2j+1 − tα2j+1Γ (−α)β

[
tα2j+1Γ (−α)f(t2j+1) −

2j∑

k=1

αk,2j+1y2j+1−k

+ y0

2j∑

k=0

αk,2j+1 − tα2j+1

∫ t1

0

(t2j+1 − τ)−1−αy(τ) dτ
]
. (11)

Yan, Pal and Ford [14] proved the following Theorem.

Theorem 1 (Theorem 2.1 in [14]). Let 0 < α < 1 and M be a positive
integer. Let 0 = t0 < t1 < t2 < · · · < t2j < t2j+1 < · · · < t2M = 1 be
a partition of [0, 1] and h the step size. Let y(t2j), y(t2j+1), y2j and y2j+1 be
the exact and the approximate solutions of (8)–(11), respectively. Assume that
y ∈ Cm+2[0, 1], m ≥ 3. Further assume that we can approximate the starting
value y1 and the starting integral

∫ t1
0

(t2j+1−τ)−1−αy(τ) dτ in (11) by using some
numerical methods and obtain the required accuracy. Then there exist coefficients
cμ = cμ(α) and c∗

μ = c∗
μ(α) such that the sequence {yl}, l = 0, 1, 2, . . . , 2M

possesses an asymptotic expansion of the form

y(t2M ) − y2M =

m+1∑

μ=3

cμ(2M)α−μ +

μ∗∑

μ=2

c∗
μ(2M)−2μ + o((2M)α−m−1), for M → ∞,

that is,

y(t2M ) − y2M =
m+1∑

μ=3

cμhμ−α +
μ∗
∑

μ=2

c∗
μh2μ + o(hm+1−α), for h → 0,

where μ∗ is the integer satisfying 2μ∗ < m + 1 − α < 2(μ∗ + 1), and cμ and c∗
μ

are certain coefficients that depend on y.

3 Numerical Simulations

Example 1. Consider the following example in [9], with 0 < α < 1,

C
0 Dα

t y(t) + y(t) = 0, t ∈ [0, 1], (12)
y(0) = 1. (13)

It is well known that the exact solution is

y(t) = Eα(−tα),

where

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)

is the Mittag-Leffler function of order α. Here the given function f is smooth
and f = 0 (Table 1).
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Table 1. Errors for Eqs. (12) and (13) with α = 0.3, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 1.1296e-003

1/20 2.0412e-004 5.3779e-006

1/40 3.6454e-005 4.5025e-007 2.7527e-008

1/80 6.4759e-006 3.8539e-008 1.3800e-009

1/160 1.1475e-006 3.3431e-009 6.9354e-011

1/320 2.0310e-007 2.9225e-010 3.5604e-012

Table 2. Orders (“EOC ”) for Eqs. (12) and (13) with α = 0.3, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.46

1/40 2.49 3.58

1/80 2.49 3.55 4.32

1/160 2.5 3.53 4.31

1/320 2.5 3.52 4.28

Choose the step size h = 1/10. In Table 2, we displayed the errors of the
algorithms (10) and (11) at t = 1 and of the first two extrapolation steps in the
Romberg tableau with α = 0.3. We observe that the first column (the errors
of the basic algorithm without extrapolation) converges as h3−α. The second
column (errors using one extrapolation step)converges as h4−α, and the last
column (two extrapolation steps) converges as h4. We also consider other values
of α ∈ (0, 1). We observe that when α is close to 1, the convergence seems to be
even a bit faster. But when α is close to 0, the convergence is a bit slower than
expected which is consistent with the numerical observation in [12] for the lower
order method.

Example 2. Consider the following example in [4], with 0 < α < 1,

C
0 Dα

t y(t) + y(t) = t4 − 1
2
t3 − 3

Γ (4 − α)
t3−α +

24
Γ (5 − α)

t4−α, t ∈ [0, 1], (14)

y(0) = 0, (15)

whose exact solution is given by y(t) = t4 − 1
2 t3.

Choose the step size h = 1/10. In Table 3, we displayed the errors of the
algorithms (10) and (11) at t = 1 and of the first two extrapolation steps in the
Romberg tableau with α = 0.3. We observe that the first column converges as
h3−α. The second column converges as h4−α and the last column converges as
h4. We also consider other values of α ∈ (0, 1). We observe that when α is close
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Table 3. Errors for Eqs. (12)–(15) with α = 0.3, taken at t = 1.

Step size Error of the method 1st extra. error 2nd extra. error

1/10 1.4571e-004

1/20 2.3118e-005 8.2097e-007

1/40 3.6127e-006 6.5021e-008 2.0039e-009

1/80 5.6030e-007 5.1186e-009 1.2514e-010

1/160 8.6565e-008 4.0106e-010 7.8051e-012

1/320 1.3348e-008 3.1315e-011 4.9268e-013

Table 4. Orders (“EOC”) for Eqs. (12)–(15) with α = 0.3, taken at t = 1.

Step size The method 1st extrapolation 2nd extrapolation

1/10

1/20 2.66

1/40 2.68 3.66

1/80 2.69 3.67 4.00

1/160 2.70 3.67 4.00

1/320 2.70 3.68 3.98

to 1, the convergence seems to be even a bit faster. But when α is close to 0, the
convergence is a bit slower than expected which is consistent with the numerical
observation in [12] for the lower order method (Table 4).

Acknowledgements. We wish to express our sincere gratitude to Professor Neville.
J. Ford for his encouragement, discussions and valuable criticism during the research
of this work.
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Abstract. Finite difference methods for solving two-sided space-
fractional partial differential equations are studied. The space-fractional
derivatives are the left-handed and right-handed Riemann-Liouville frac-
tional derivatives which are expressed by using Hadamard finite-part
integrals. The Hadamard finite-part integrals are approximated by using
piecewise quadratic interpolation polynomials and a numerical approxi-
mation scheme of the space-fractional derivative with convergence order
O(Δx3−α), 1 < α < 2 is obtained. A shifted implicit finite difference
method is introduced for solving two-sided space-fractional partial differ-
ential equation and we prove that the order of convergence of the finite
difference method is O(Δt + Δxmin(3−α,β)), 1 < α < 2, β > 0, where
Δt, Δx denote the time and space step sizes, respectively. Numerical
examples are presented and compared with the exact analytical solution
for its order of convergence.

1 Introduction

Consider the following two-sided space-fractional partial differential equation,
with 1 < α < 2, t > 0,

ut(t, x) = C+(t, x) R
0 Dα

x u(t, x), +C−(t, x) R
x Dα

1 u(t, x) + f(t, x), 0 < x < 1, (1)

u(t, 0) = ϕ1(t), u(t, 1) = ϕ2(t), (2)

u(0, x) = u0(x), 0 < x < 1. (3)

Here the function f(t, x) is a source/sink term. The functions C+(t, x) ≥ 0 and
C−(t, x) ≥ 0 may be interpreted as transport related coefficients. The addition
of a classical advective term −ν(t, x)∂u(t,x)

∂x in (1) does not impact the analysis
performed in this paper, and has been omitted to simplify the notation [6]. The
left-handed fractional derivative R

0 Dα
x f(x) and right-handed fractional derivative

R
x Dα

1 f(x) in (1) are Riemann-Liouville fractional derivatives of order α.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 307–314, 2015.
DOI: 10.1007/978-3-319-20239-6 33
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Let us review some numerical methods for solving space-fractional partial
differential equation. There are many different numerical methods for solving
space-fractional partial differential equations in literature, see [8–20].

In this paper, we will use the idea in Diethelm, [2] to define a finite difference
method for solving (1)–(3), see our recent works for this method [3–5,7]. We
first express the fractional derivative by using Hadamard finite-part integral,
i.e., with 1 < α < 2,

R
0 Dα

x f(x) =
1

Γ (2 − α)

∫ x

0

(x − ξ)1−αf ′′(ξ) dξ =
1

Γ (−α)

∮ x

0

(x − ξ)−α−1f(ξ) dξ,

where
∮ x

0
denotes the Hadamard finite-part integral [2]. We approximate f(ξ) by

using piecewise quadratic interpolation polynomials and obtain an approxima-
tion scheme of Riemann-Liouville fractional derivative. Similarly we can approx-
imate the right-handed Riemann-Liouville fractional derivative R

x Dα
1 f(x). Based

on these approximate schemes, we define a shifted finite difference method for
solving (1)–(3). We proved that the convergence order of the numerical method
is O(Δt + Δxmin(3−α,β)), 1 < α < 2, β > 0.

The paper is organized as follows. In Sect. 2, we consider the implicit shifted
finite difference method for solving (1)–(3) where the Hadamard integral of the
space-fractional derivative is approximated by using piecewise quadratic inter-
polation polynomials. In Sect. 3, we give two numerical examples. The numerical
experiments are consistent with the theoretical results.

2 Numerical Method

In this section, we will introduce a new finite difference method for solving (1)–(3).
For simplicity, we assume C+(t, x) = C−(t, x) = 1 and ϕ1(t) = ϕ2(t) = 0.

Lemma 1. Let 1 < α < 2 and let M = 2m where m is a fixed positive integer.
Let 0 = x0 < x1 < x2 < · · · < x2j < x2j+1 < · · · < xM = 1 be a partition of
[0, 1]. Assume that f(x) is a sufficiently smooth function. Then we have, with
j = 1, 2, . . . ,m,

R
0 Dα

x f(x)
∣
∣
∣
x=x2j

=
x−α
2j

Γ (−α)

( 2j∑

l=0

αl,2jf(x2j−l) + R2j(f)
)

= Δx−α

2j∑

l=0

wl,2jf(x2j−l) +
x−α
2j

Γ (−α)
R2j(f), (4)

and, with j = 1, 2, . . . ,m − 1,

R
0 Dα

x f(x)
∣
∣
∣
x=x2j+1

=
1

Γ (−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ

+
x−α
2j+1

Γ (−α)

( 2j∑

l=0

αl,2j+1f(x2j+1−l) + R2j+1(f)
)
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=
1

Γ (−α)

∫ x1

0

(x2j+1 − ξ)−1−αf(ξ) dξ + Δx−α

2j∑

l=0

wl,2j+1f(x2j+1−l)

+
x−α
2j+1

Γ (−α)
R2j+1(f), (5)

where

(−α)(−α + 1)(−α + 2)(2j)−ααl,2j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−α(α + 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,
1
2 (F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,
1
2F2(j), for l = 2j,

F0(k) =(2k − 1)(2k)
(
(2k)−α − (2(k − 1))−α

)
(−α + 1)(−α + 2)

− (
(2k − 1) + 2k

)(
(2k)−α+1 − (2(k − 1))−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2(k − 1))−α+2

)
(−α)(−α + 1), (6)

F1(k) =(2k − 2)(2k)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

− (
(2k − 2) + 2k

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1), (7)

F2(k) =(2k − 2)(2k − 1)
(
(2k)−α − (2k − 2)−α

)
(−α + 1)(−α + 2)

− (
(2k − 2) + (2k − 1)

)(
(2k)−α+1 − (2k − 2)−α+1

)
(−α)(−α + 2)

+
(
(2k)−α+2 − (2k − 2)−α+2

)
(−α)(−α + 1). (8)

Further we have, with l = 0, 1, 2, . . . , 2j,

Γ (3 − α)wl,2j = (−α)(−α + 1)(−α + 2)(2j)−ααl,2j , (9)

and
αl,2j+1 = αl,2j , wl,2j+1 = wl,2j . (10)

The remainder term Rl(f) satisfy, for every f ∈ C3(0, 1),

|Rl(f)| ≤ CΔx3−α‖f ′′′‖∞, l = 2, 3, 4, . . . ,M, withM = 2m. (11)

Similarly we can consider the approximation of right-handed fractional deriv-
ative R

x Dα
1 f(x) at x = xl, l = 0, 1, 2, . . . , 2m − 2. Using the same argument



310 K. Pal et al.

as for the approximation of R
0 Dα

x f(x) at x = xl, we can show that, with
j = 0, 1, 2, . . . , m-1,

R
x Dα

1 f(x)
∣
∣
∣
x=x2j

= Δx−α

M−2j∑

l=0

wl,M−2jf(x2j+l) +
x−α
2j

Γ (−α)
R2j(f), (12)

and, with j = 0, 1, 2, . . . ,m − 2,

R
x Dα

1 f(x)
∣
∣
∣
x=x2j+1

=
1

Γ (−α)

∫ xM

xM−1

(ξ − x2j+1)−1−αu(ξ, tn+1) dξ

+ Δx−α

M−(2j+1)−1∑

l=0

wl,M−(2j+1)f(x2j+1+l) +
x−α
2j+1

Γ (−α)
R2j+1(f). (13)

Discretizing ut(tn+1, xl) by using backward Euler method and discretizing
R
0 Dα

x u(tn+1, xl) and R
x Dα

1 u(tn+1, xl) by using (4)–(5) and (12)–(13), respectively,
we get, with un

j = u(tn, xj), fn
j = f(tn, xj)

Δt−1(un+1
2j − un

2j

)
= Δx−α

( 2j∑

k=0

wk,2j+1u
n+1
2j+1−k +

M−(2j−1)−1∑

k=0

wk,M−(2j−1)u
n+1
2j−1+k

)

+ fn+1
2j + Sn+1

2j + σn+1
2j + τn+1

2j , j = 1, 2, . . . , m − 1, (14)

Δt−1(un+1
2j+1 − un

2j+1

)
= Δx−α

( 2j+2∑

k=0

wk,2j+2u
n+1
2j+2−k +

M−2j∑

k=0

wk,M−2ju
n+1
2j+k

)

+ fn+1
2j+1 + σn+1

2j+1 + τn+1
2j+1, j = 0, 1, 2, . . . , m − 1, (15)

where the truncation errors τn+1
l = O(Δt + Δx3−α), l = 1, 2, . . . , Ṁ − 1, [2] and

Sn+1
2j =

1
Γ (−α)

∫ x1

0

(x2j+1 − ξ)−1−αu(ξ, tn+1) dξ

+
1

Γ (−α)

∫ xM

xM−1

(ξ − x2j+1)−1−αu(ξ, tn+1) dξ, (16)

and

σn+1
2j = −

(
R
0 Dα

x u(tn+1, x2j+1) − R
0 Dα

x u(tn+1, x2j)
)

−
(

R
x Dα

1 u(tn+1, x2j−1) − R
x Dα

1 u(tn+1, x2j)
)
,

σn+1
2j+1= −

(
R
0 Dα

x u(tn+1, x2j+2) − R
0 Dα

x u(tn+1, x2j+1)
)

−
(

R
x Dα

1 u(tn+1, x2j) − R
x Dα

1 u(tn+1, x2j+1)
)
.

Let Un
2j ≈ u(tn, x2j) and Un

2j+1 ≈ u(tn, x2j+1) denote the approximate solu-
tions of u(tn, x2j) and u(tn, x2j+1), respectively. We define the following implicit
shifted numerical method for solving (1)–(3).
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Δt−1(Un+1
2j − Un

2j

)
= Δx−α

( 2j∑

k=0

wk,2j+1U
n+1
2j+1−k +

M−(2j−1)−1∑

k=0

wk,M−(2j−1)u
n+1
2j−1+k

)

+ fn+1
2j + Qn+1

2j , j = 1, 2, . . . , m − 1, (17)

Δt−1(Un+1
2j+1 − Un

2j+1

)
= Δx−α

( 2j+2∑

k=0

wk,2j+2U
n+1
2j+2−k +

M−2j∑

k=0

wk,M−2jU
n+1
2j+k

)

+ fn+1
2j+1, j = 0, 1, 2, . . . , m − 1, (18)

where Qn+1
2j is the approximation of Sn+1

2j .

Theorem 1. Let 1 < α < 2 and let u(tn+1, xl) and Un+1
l , l = 1, 2, . . . ,M − 1

be the solutions of (14)–(15) and (17)–(18), respectively. Assume that u(t, x)
satisfies the Lipschitz conditions, with some β > 0,

∣
∣
∣ R
0 Dα

x u(t, x) − R
0 Dα

x u(t, y)
∣
∣
∣ ≤ Cα|x − y|β , (19)

∣
∣
∣ R

x Dα
1 u(t, x) − R

x Dα
1 u(t, y)

∣
∣
∣ ≤ Cα|x − y|β . (20)

We have

max
1≤l≤M−1

|u(tn+1, xl) − Un+1
l | ≤ C(Δt + Δxmin(β,3−α)).

3 Numerical Simulations

In this section, we will consider two examples.

Example 1. Consider [1]

ut(t, x) = R
0 Dα

x u(t, x) + f(t, x), 0 < x < 1, t > 0 (21)

u(t, 0) = 0, u(t, 1) = e−t, (22)

u(0, x) = x3, 0 < x < 1, (23)

where

f(t, x) = −e−tx3 − e−t Γ (4)
Γ (4 − α)

x3−α.

The exact solution is u(t, x) = e−tx3. In our numerical simulations, we will
choose α = 1.8 as in [1].

In Table 1, we will compute numerically the convergence orders of the differ-
ent numerical methods. By Theorem 1, we have

‖e(t)‖ ≤ C(Δt + Δxγ), with γ = min(3 − α, β),
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where ‖e(t)‖ denotes the L2 norm of the error at time t. We choose Δt = 2−10

sufficiently small and the different space step size hl = Δx = 2−l, l = 3, 4, 5, 6, 7.
For the shifted implicit method proposed in Meerschaert and Tadjeran [6],

we have,

‖e(t)‖ ≈ C(Δt + Δx).

In Table 1, we choose α = 1.8 and list the convergence orders for the Diethelm’s
method and Meerschaert and Tadjeran’s method, respectively. Here we call the
shifted implicit method in this paper as Diethelm’s method. We observe that
the convergence order of the Diethelm’s method is γ ≈ 1. This is as expected
because of the Lipschitz assumptions for the exact solutions.

Table 1. The convergence orders in Example 1 for α = 1.8

Δt Δx Conv. order (Diethelm) Conv. order (Grunwald)

2−10 2−3

2−10 2−4 0.8439 0.8390

2−10 2−5 0.9372 0.9220

2−10 2−6 0.9818 0.9618

2−10 2−7 1.0030 0.9816

Example 2. Consider [6]

ut(t, x) = c+(t, x) R
0 Dα

x u(t, x) + c−(t, x) R
x Dα

1 u(t, x) + f(t, x), 0 < x < 2, t > 0
(24)

u(t, 0) = u(t, 2) = 0, (25)

u(0, x) = 4x2(2 − x)2, 0 < x < 2, (26)

where

c+(t, x) = Γ (1.2)x1.8 and c−(t, x) = Γ (1.2)(2 − x)1.8

f(t, x) = −32e−t
(
x2 + (2 − x)2 − 2.5(x3 + (2 − x)3) +

25
22

(x4 + (2 − x)4)
)
.

The exact solution is u(t, x) = 4e−tx2(2 − x)2. In our numerical simulations,
we will choose α = 1.8 as in [6].

In Table 2, we will compute numerically the convergence orders of the dif-
ferent numerical methods. As in Example 1, we choose α = 1.8 and list the
convergence orders for the Diethelm’s method and Meerschaert and Tadjeran’s
method, respectively. We observe that the convergence order of the Diethelm’s
method is γ ≈ 1. This is as expected because of the Lipschitz assumptions for
the exact solutions.
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Table 2. The convergence orders in Example 2 for α = 1.8

Δt Δx Conv. order (Diethelm) Conv. order (Grunwald)

2−10 2−3

2−10 2−4 0.9982 1.4690

2−10 2−5 1.0340 1.1946

2−10 2−6 1.0701 1.0674

2−10 2−7 1.0250 1.0248
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Abstract. We consider a class of boundary value problems for fractional
integro-differential equations. Using an integral equation reformulation
of the boundary value problem, we first study the regularity of the exact
solution. Based on the obtained regularity properties and spline colloca-
tion techniques, the numerical solution of the boundary value problem
by suitable non-polynomial approximations is discussed. Optimal global
convergence estimates are derived and a super-convergence result for a
special choice of grid and collocation parameters is given. A numerical
illustration is also presented.

1 Introduction

In this paper we consider the numerical solution of a class of boundary value
problems for linear fractional integro-differential equations of the form

(Dα
∗ y)(t) + h(t)y(t) +

∫ t

0

K(t, s)y(s)ds = f(t), 0 ≤ t ≤ b, 0 < α < 1, (1.1)

γ0y(0) + γ1y(b1) = γ, 0 < b1 ≤ b, γ0, γ1, γ ∈ R := (−∞,∞), (1.2)

where Dα
∗ y is the Caputo fractional derivative of y and h, f,K are some given

continuous functions: h, f ∈ C[0, b], K ∈ C(Δ),Δ = {(t, s) : 0 ≤ s ≤ t ≤ b}.
The Caputo differential operator Dα

∗ of order α ∈ (0, 1) is defined by (see, e.g.,
[1])

(Dα
∗ y)(t) := (Dα[y − y(0)])(t), t > 0.

Here Dαy is the Riemann–Liouville fractional derivative of y :

(Dαy)(t) :=
d

dt
(J1−αy)(t), 0 < α < 1, t > 0,

with Jβ , the Riemann–Liouville integral operator, defined by the formula

(Jβy)(t) :=
1

Γ (β)

∫ t

0

(t − s)β−1 y(s) ds, t > 0, β > 0. (1.3)

where Γ is the Euler gamma function.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 315–322, 2015.
DOI: 10.1007/978-3-319-20239-6 34
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It is well known (see, e.g., [2]) that Jβ , β > 0, is linear, bounded and compact
as an operator from L∞(0, b) into C[0, b], and we have for any y ∈ L∞(0, b) that
(see, e.g. [3])

Jβy ∈ C[0, b], (Jβy)(0) = 0, β > 0, (1.4)

DδJβy = Dδ
∗J

βy = Jβ−δy, 0 < δ ≤ β. (1.5)

Fractional differential equations arise in various areas of science and engineer-
ing. In the last few decades theory and numerical analysis of fractional differential
equations have received an increasing attention (see, e.g. [1,3–5]). Some recent
results about the numerical solution of fractional differential equations can be
found in [1,6–12].

In the present paper, the numerical solution of (1.1)-(1.2) by piecewise poly-
nomial collocation techniques is considered. We use an integral equation refor-
mulation of the problem and special non-uniform grids reflecting the possible
singular behavior of the exact solution. Our aim is to study the attainable order
of the proposed algorithms in a situation where the higher order (usual) deriv-
atives of h(t) and f(t) may be unbounded at t = 0. Our approach is based on
some ideas and results of [10]. In particular, the case where (1.1)-(1.2) is an
initial value problem (γ1 = 0) or a terminal (boundary) value problem (γ0 = 0,
see [7,8]) is under consideration.

2 Smoothness of the Solution

In order to characterize the behavior of higher order derivatives of a solution of
equation (1.1), we introduce a weighted space of smooth functions Cq,ν(0, b] (cf.,
e.g., [2,13]). For given q ∈ N and −∞ < ν < 1, by Cq,ν(0, b] we denote the set of
continuous functions y : [0, b] → R which are q times continuously differentiable
in (0, b] and such that for all t ∈ (0, b] and i = 1, . . . , q the following estimates
hold:

∣
∣y(i)(t)

∣
∣ ≤ c

⎧
⎨

⎩

1 if i < 1 − ν ,
1 + | log t| if i = 1 − ν ,
t1−ν−i if i > 1 − ν .

Here c = c(y) is a positive constant. Clearly,

Cq[0, b] ⊂ Cq,ν(0, b] ⊂ Cm,μ(0, b] ⊂ C[0, b], q ≥ m ≥ 1, ν ≤ μ < 1. (2.1)

Note that a function of the form y(t) = g1(t) tμ + g2(t) is included in Cq,ν(0, b]
if μ ≥ 1 − ν > 0 and gj ∈ Cq[0, b] , j = 1, 2.

In what follows we use an integral equation reformulation of (1.1)-(1.2). Let
y ∈ C[0, b] be such that Dα

∗ y ∈ C[0, b]. Introduce a new unknown function
z := Dα

∗ y. Then (see [1,3])

y(t) = (Jαz)(t) + c, (2.2)

where c is an arbitrary constant. The function (2.2) satisfies the boundary con-
ditions (1.2) if and only if (see (1.4))

c(γ0 + γ1) = γ − γ1(Jαz)(b1).
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In the sequel we assume that γ0 + γ1 �= 0. Therefore

c =
γ

γ0 + γ1
− γ1

γ0 + γ1
(Jαz)(b1). (2.3)

Thus, the function (2.2) satisfies the conditions (1.2) if and only if

y(t) = (Jαz)(t) +
γ

γ0 + γ1
− γ1

γ0 + γ1
(Jαz)(b1), 0 ≤ t ≤ b. (2.4)

Substituting (2.4) into (1.1) and using (1.5), we obtain for z an operator equation
of the form

z = Tz + g, (2.5)

with an operator T , defined by formula

(Tz)(t) = − h(t)

Γ (α)

∫ t

0

(t − s)α−1z(s)ds − 1

Γ (α)

∫ t

0

K(t, s)

∫ s

0

(s − τ)α−1z(τ)dτds

+
γ1

Γ (α)(γ0 + γ1)

[
h(t) +

∫ t

0

K(t, s)ds

] ∫ b1

0

(b1 − s)α−1z(s)ds (2.6)

and

g(t) = f(t) − γ

γ0 + γ1

(
h(t) +

∫ t

0

K(t, s)ds

)
, 0 ≤ t ≤ b. (2.7)

We observe that equation (2.5) is a linear weakly singular Fredholm integral
equation of the second kind with respect to z.

The existence and regularity of a solution to (1.1)-(1.2) is described by the
following lemma which can be proved similarly to Theorem 2.1 in [10].

Lemma 1. Assume that K ∈ Cq(Δ) and h, f ∈ Cq,μ(0, b], where q ∈ N and
−∞ < μ < 1. Moreover, assume that γ0 + γ1 �= 0 and the boundary value
problem (1.1)-(1.2) with f = 0 and γ = 0 has in C[0, b] only the trivial solution
y = 0.

Then problem (1.1)-(1.2) possesses a unique solution y ∈ C[0, b] such that
Dα

∗ y ∈ Cq,ν(0, b], where 0 < α < 1 and

ν := max{μ, 1 − α}.

3 Numerical Method

Let N ∈ N and let ΠN := {t0, . . . , tN} be a partition (a graded grid) of the
interval [0, b] with the grid points

tj := b

(
j

N

)r

, j = 0, 1, . . . , N , (3.1)

where the grading exponent r ∈ R, r ≥ 1. If r = 1, then the grid points (3.1)
are distributed uniformly; for r > 1 the points (3.1) are more densely clustered
near the left endpoint of the interval [0, b].
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For given integer k ≥ 0 by S
(−1)
k (ΠN ) is denoted the standard space of

piecewise polynomial functions :

S
(−1)
k (ΠN ) :=

{
v : v

∣
∣
(tj−1,tj)

∈ πk, j = 1, . . . , N
}
.

Here v
∣
∣
(tj−1,tj)

is the restriction of v : [0, b] → R onto the subinterval (tj−1, tj)
⊂ [0, b] and πk denotes the set of polynomials of degree not exceeding k. Note
that the elements of S

(−1)
k (ΠN ) may have jump discontinuities at the interior

points t1, . . . , tN−1 of the grid ΠN .
In every interval [tj−1, tj ], j = 1, . . . , N , we define m ∈ N collocation points

tj1, . . . , tjm by formula

tjk := tj−1 + ηk(tj − tj−1) , k = 1, . . . , m, j = 1, . . . , N, (3.2)

where η1 . . . , ηm are some fixed (collocation) parameters which do not depend
on j and N and satisfy

0 ≤ η1 < η2 < . . . < ηm ≤ 1 . (3.3)

We look for an approximate solution yN to (1.1)-(1.2) in the form (cf. (2.4))

yN (t) = (JαzN )(t) +
γ

γ0 + γ1
− γ1

γ0 + γ1
(JαzN )(b1), 0 ≤ t ≤ b, (3.4)

where zN ∈ S
(−1)
m−1(ΠN ) (m,N ∈ N) is determined by the following collocation

conditions:

zN (tjk) = (TzN )(tjk) + g(tjk), k = 1, . . . , m, j = 1, . . . , N. (3.5)

Here T, g and tjk are defined by (2.6), (2.7) and (3.2), respectively. If η1 = 0,
then by zN (tj1) we denote the right limit limt→tj−1,t>tj−1 zN (t). If ηm = 1,
then zN (tjm) denotes the left limit limt→tj ,t<tj zN (t). Conditions (3.5) have an
operator equation representation

zN = PNTzN + PNg (3.6)

with an interpolation operator PN = PN,m : C[0, T ] → S
(−1)
m−1(ΠN ) defined for

any v ∈ C[0, b] by the following conditions:

PNv ∈ S
(−1)
m−1(ΠN ), (PNv)(tjk) = v(tjk), k = 1, . . . , m, j = 1, . . . , N. (3.7)

The collocation conditions (3.5) form a system of equations whose exact form
is determined by the choice of a basis in S

(−1)
m−1(ΠN ). If η1 > 0 or ηm < 1 then

we can use the Lagrange fundamental polynomial representation:

zN (t) =
N∑

λ=1

m∑

μ=1

cλμϕλμ(t) , t ∈ [0, b] , (3.8)
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where ϕλμ(t) := 0 for t �∈ [tλ−1, tλ] and

ϕλμ(t) :=
m∏

i=1,i �=μ

t − tλi

tλμ − tλi
for t ∈ [tλ−1, tλ], μ = 1, . . . , m, λ = 1, . . . , N.

Then zN ∈ S
(−1)
m−1(ΠN ) and zN (tjk) = cjk, k = 1, . . . , m, j = 1, . . . , N . Searching

the solution of (3.5) in the form (3.8), we obtain a system of linear algebraic
equations with respect to the coefficients cjk = zN (tjk):

cjk =
N∑

λ=1

m∑

μ=1

(Tϕλμ)(tjk)cλμ + g(tjk), k = 1, . . . , m, j = 1, . . . , N. (3.9)

Note that this algorithm can be used also in the case if in (3.3) η1 = 0 and
ηm = 1. In this case we have tjm = tj+1,1 = tj , cjm = cj+1,1 = zN (tj) (j =
1, . . . , N − 1), and hence in the system (3.9) there are (m − 1)N + 1 equations
and unknowns.

4 Convergence Estimates

In this section we formulate two theorems about the convergence and conver-
gence order of the proposed algorithms.

Theorem 1. Let m ∈ N and assume that the collocation points (3.2) with
grid points (3.1) and arbitrary parameters η1, . . . , ηm satisfying (3.3) are used.
Assume that h, f ∈ C[0, b] and K ∈ C(Δ). Moreover, assume that γ0 + γ1 �= 0
and the problem (1.1)-(1.2) with f = 0 and γ = 0 has in C[0, b] only the trivial
solution y = 0.

Then (1.1)-(1.2) has a unique solution y ∈ C[0, b] such that Dα
∗ y ∈ C[0, b].

Moreover, there exists an integer N0 such that for all N ≥ N0 equation (3.6)
possesses a unique solution zN ∈ S

(−1)
m−1(ΠN ) and

‖y − yN‖∞ → 0 as N → ∞ (4.1)

where yN is defined by (3.4).
If, in addition, K ∈ Cm(Δ) and h, f ∈ Cm,μ(0, b] with −∞ < μ < 1, then

for all N ≥ N0 and r ≥ 1 (given by (3.1)) the following error estimate holds:

‖y − yN‖∞ ≤ c

{
N−r(1−ν) for 1 ≤ r < m

1−ν ,

N−m for r ≥ m
1−ν .

(4.2)

Here c is a constant which is independent of N , ν = max{μ, 1 − α}, 0 < α < 1
and

‖v‖∞ := sup
0<t<b

|v(t)|, v ∈ L∞(0, b).
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It follows from Theorem 1 that in the case of sufficiently smooth h, f and
K, using sufficiently large values of the grid parameter r, for method (3.4), (3.6)
by every choice of collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1 a convergence
of order O(N−m) can be expected. The following result shows that by a careful
choice of parameters η1, . . . , ηm it is possible to establish a faster convergence of
this method.

Theorem 2. Let the following conditions be fulfilled:
(i) PN = PN,m (N,m ∈ N) is defined by (3.7) where the interpolation nodes
(3.2) with grid points (3.1) and parameters (3.3) are used;
(ii) the assumptions of Lemma 1 hold with q := m + 1;
(iii) the quadrature approximation

∫ 1

0

F (x) dx ≈
m∑

k=1

wk F (ηk), (4.3)

with the knots {ηk} satisfying (3.3) and appropriate weights {wk} is exact for
all polynomials of degree m.

Then (1.1)-(1.2) has a unique solution y ∈ C[0, b] such that Dα
∗ y ∈ Cq,ν(0, b].

There exists an integer N0 such that, for N ≥ N0, equation (3.6) possesses a
unique solution zN ∈ S

(−1)
m−1(ΠN ), determining by (3.4) a unique approximation

yN to y, the solution of (1.1)-(1.2), and the following error estimate holds:

‖y − yN‖∞ ≤ c

{
N−r(1+α−ν) for 1 ≤ r < m+α

1+α−ν ,

N−m−α for r ≥ m+α
1+α−ν .

(4.4)

Here 0 < α < 1, ν = max{μ, 1 − α}, r ∈ [1,∞) is the grading exponent of the
grid (see (3.1)) and c is a positive constant not depending on N .

The proofs of Theorems 1 and 2 are based on Lemma 1 and are similar to
the corresponding proofs of Theorems 4.1 and 4.2 in [10].

5 Numerical Illustration

We consider the following boundary value problem:

(D
1
2∗ y)(t) + h(t)y(t) +

∫ t

0

K(t, s)y(s)ds = f(t), y(0) + y(1) = 2, 0 ≤ t ≤ 2,

(5.1)
where K(t, s) := 1 for 0 ≤ s ≤ t ≤ 2 and

h(t) := t
1
2 , f(t) :=

5Γ ( 74 )
2Γ ( 94 )

t
1
4 + 2 t

5
4 +

8
7
t
7
4 , 0 ≤ t ≤ 2.

This is a special problem of (1.1)-(1.2) with α = 1
2 , b = 2, b1 = 1, γ0 = γ1 = 1 and

γ = 2. Clearly, h, f ∈ Cq,μ(0, 2] with μ = 3
4 and arbitrary q ∈ N. To solve (5.1)
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by (3.4)-(3.6) we set z := D
1
2∗ y. For z we have equation (2.5) with T and g given

by (2.6) and (2.7), respectively. Approximations zN ∈ S
(−1)
m−1(ΠN ) for m = 2 and

N ∈ N to the solution z of equation (2.5) on the interval [0, 2] are found by
(3.5) using m = 2 and (3.2) with η1 = (3 − √

3)/6, η2 = 1 − η1, the knots of
the Gaussian quadrature formula (4.3). Actually, zN (tjk) = cjk (k = 1, 2, j =
1, . . . , N) and zN (t) for t ∈ [0, 2] are determined by (3.9) and (3.8), respectively.
After that the approximate solution yN for the boundary value problem (5.1)
has been found by formula (3.4).

Table 1. Numerical results for the problem (5.1).

r = 1 r = 2 r = 10/3 r = 5

N εN �N εN �N εN �N εN �N

16 1.81 · 10−2 1.64 2.28 · 10−3 3.04 4.99 · 10−4 6.54 8.75 · 10−4 5.45

32 1.08 · 10−2 1.67 8.23 · 10−4 2.77 7.14 · 10−5 5.57 1.50 · 10−4 5.82

64 6.45 · 10−3 1.68 2.85 · 10−4 2.89 1.23 · 10−5 5.84 2.53 · 10−5 5.95

128 3.85 · 10−3 1.68 1.01 · 10−4 2.81 1.97 · 10−6 6.22 4.31 · 10−6 5.87

256 2.29 · 10−3 1.68 3.57 · 10−5 2.85 2.83 · 10−7 6.97 7.51 · 10−7 5.73

512 1.36 · 10−3 1.68 1.26 · 10−5 2.83 6.53 · 10−8 4.34 1.35 · 10−7 5.55

1024 8.09 · 10−4 1.68 4.45 · 10−6 2.83 1.54 · 10−8 4.24 2.37 · 10−8 5.71

2048 4.81 · 10−4 1.68 1.58 · 10−6 2.83 2.51 · 10−9 6.13 4.23 · 10−9 5.61

1.68 2.83 5.66 5.66

In Table 1 some results of numerical experiments for different values of the
parameters N and r are presented. The errors εN in Table 1 are calculated as
follows:

εN := max
j=1,...,N

max
k=0,...,10

|y(τjk) − yN (τjk)| , (5.2)

where τjk := tj−1 +k(tj − tj−1)/10, k = 0, . . . , 10, j = 1, . . . , N (the grid points
tj and collocation points tjk are determined by (3.1) and (3.2), respectively). In
(5.2) we have taken into account that the exact solution of (5.1) is

y(t) = 2 t
3
4 , t ∈ [0, 2],

and thus

z(t) = (D
1
2∗ y)(t) =

5Γ ( 74 )
2Γ ( 94 )

t
1
4 , t ∈ [0, 2].

The ratios
�N :=

εN/2

εN
,

characterizing the observed convergence rate, are also presented.
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Since α = 1
2 , μ = 3

4 and ν = max{μ, 1 − α} = 3
4 we obtain from Theorem 2

(see (4.4)) that, for sufficiently large N ,

εN ≤ c

{
N−0.75r if 1 ≤ r < 10

3 ,
N−2.5 if r ≥ 10

3 .
(5.3)

Due to (5.3) the ratios �N for r = 1, r = 2 and r ≥ 10
3 ought to be approxima-

tively 20.75 ≈ 1.68, 21.5 ≈ 2.83 and 22.5 ≈ 5.66, respectively. These values are
given in the last row of Table 1. As we can see from Table 1 the estimate (4.4)
expresses well enough the actual rate of convergence of yN to y.
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Abstract. We present a rational spectral collocation method for pricing
American vanilla and butterfly spread options. Due to the early exer-
cise possibilities, free boundary conditions are associated with both of
these PDEs. The problem is first reformulated as a variational inequal-
ity. Then, by adding a penalty term, the resulting variational inequal-
ity is transformed into a nonlinear advection-diffusion-reaction equation
on fixed boundaries. This nonlinear PDE is discretised in asset (space)
direction by means of rational interpolation using suitable barycentric
weights and transformed Chebyshev points. This gives a system of stiff
nonlinear ODEs which is then integrated using an implicit fourth-order
Lobatto time-integration method. We carried out extensive comparisons
with other results obtained by using some existing methods found in
literature and observed that our approach is very competitive.

Keywords: American options · Butterfly spread options · Rational
spectral collocation method

1 Introduction

Among a huge variety of financial derivative securities traded in exchange mar-
kets such as call or put on dividend paying stocks, foreign currency options,
callable bonds and others, American options are the most traded ones [8].
The fact that the American options give their owner the right (but not the
obligation) to exercise or exit the contract early makes these options the most
attractive to investors as compared to other derivatives of similar types. How-
ever they are more difficult to price than the European options which can only
be exercised at expiration. In this paper, we consider a financial market model
M =

(
Ω,F ,P, (Fτ )τ≥0 , (Sτ )τ≥0

)
where Ω is the set of all possible outcomes

of the experiment known as the sample space, F is the set of all events, i.e.,
permissible combinations of outcomes, P is a map F −→ [0, 1] which assigns a
probability to each event, Fτ is a natural filtration and Sτ a risky underlying
asset price process. The triplet (Ω,F ,P) is defined as a probability space.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 323–331, 2015.
DOI: 10.1007/978-3-319-20239-6 35
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Let Bτ be a P-Brownian motion, σ > 0 the volatility of the underlying
asset, r > 0 a risk-free interest rate and δ ≥ 0 a continuous dividend yield.
Without loss of generality, we assume that both the risk-free interest rate and
the dividend yield are constants. Then under the equivalent martingale measure
Q, the dynamics of the Black-Scholes model satisfies the stochastic differential
equation

dSτ = (r − δ)Sτdτ + σSτdBτ . (1)

Using Ito’s formula and appropriate boundary and the final conditions along with
t = T − τ , we obtain the following free boundary-values problem for American
put options

Vt = LBSV, Sf (t) ≤ S < ∞, 0 ≤ t ≤ T,

V (S, 0) = max(E − S, 0),

lim
S→∞

V (S, t) = 0,

V (Sf (t), t) = E − Sf (t),

∂V

∂S
(Sf (t), t) = −1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where T the expiry time, and

LBS ≡ 1
2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r.

The problem (2) can be formulated as a linear complementarity problem [9]:

Vt − LBSV ≥ 0,

V (S, t) − V ∗(S) ≥ 0,

(Vt − LBSV )(V (S, t) − V ∗(S)) = 0,

V (S, 0) = max(E − S, 0),

lim
S→∞

V (S, t) = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

where V is the value of the option and V ∗ denotes its exercise value. In next
section, we proposed a spectral discretisation based on a penalty approach to
solve the American vanilla and butterfly spread option problems.

The rest of this paper is organised as follows. In Sect. 2, we describe the
spacial approximations using rational spectral collocation method. Discretisation
of associated nonlinear PDEs is discussed in Sect. 3. Finally, in Sect. 4, we present
and discuss some comparative numerical results.
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2 Spectral Collocation Approximation

We first transform the variational inequality (3) into a nonlinear partial differ-
ential equation on a fixed domain by adding a penalty term. This gives

∂Vε

∂τ
= LBSVε +

1
ε

[Vε(S, t) − V ∗
ε (S)]+ , Sm ≤ S ≤ SM , 0 ≤ t ≤ T,

Vε(S, 0) = V ∗
ε (S) = max(E − S, 0),

(Vt − LBSV )(V (S, t) − V ∗(S)) = 0,

Vε(Sm, t) = E, Vε(SM , t) = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

where 0 < ε � 1 is the penalty constant and [Vε(S, t) − V ∗
ε (S)]+ =

max(Vε(S, t) − V ∗
ε (S), 0) is the penalty term. To the best of our knowledge,

most of the schemes used to value American options using the penalty term are
finite difference, finite element and finite volume methods. However, our method
in this paper is based on a rational spectral collocation (RSC) method which is
described as follows. In RSC method (in barycentric form) we approximate the
unknown solution u(x, t) at the nodes xj as

ũ(x) =
N∑

j=0

ũ(xj)L
(ω)
j (x) ∈ R(ω)

N , (5)

where x0, x1 . . . xN are the collocation points and the set ω = [ω0, . . . , ωN ]T ,
ωj 	= 0 consists of the barycentric weights ωj = 1/

∏
j �=j(xj − xi), to which we

associate the linear space, denoted by R(ω)
N and spanned by the function

L
(ω)
j (x) =

ωj

x − xj

/
N∑

k=0

ωk

x − xk
, j = 0, . . . , N, (6)

which satisfies the Langrange property L
(ω)
j (xi) = δij .

The next step is to construct conformal mappings to obtain high resolution
of non-smooth initial conditions. We may note that in the most common pseudo-
spectral Chebyshev method, the interpolation points in the interval [−1, 1] are
the Chebyshev-Gauss-Lobatto (CGL) collocation points yj = cos (jπ/N) for
j = 0, . . . , N . The CGL points are clustered near the boundaries of [−1, 1],
which in present case need to be accumulated in the vicinity of the region where
the solution changes rapidly. To do so, we use the conformal map g derived in [1]:

x = g(y) = β +
1
α

tan [λ(y − μ)] , λ =
γ + δ

2
, μ =

γ − δ

γ + δ
, (7)

where γ = tan−1[α(1 + β)], δ = tan−1[α(1 − β)]. Here, β and α determine
the location and the magnitude of the region of rapid change(s), respectively.
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Fig. 1. Function g(x) and its inverse g−1(x) for one region of rapid changes (left figure)
and for three regions of rapid changes (right figure).

The conformal map g is constructed from its inverse as y = g−1(x). Figure 1
(left) represents the function g and its inverse g−1 for α = 20 and β = 0.0. In
the case of multiple regions of singularity, it is possible to combine single point of
singularity maps in order to accommodate more points around these regions, see
Fig. 1 (right). We address such problems with a single conformal map involving
two parameters αk and βk. The construction of these maps with R singularities
is done through the inverse map g−1 as

y(x) = g−1(x) = μ +
1
λ

R∑

k=1

tan−1[αk(x − βk)], (8)

where λ and μ satisfy g−1(−1) = −1 and g−1(1) = 1. Finally, we compute
g(y) = x pointwise by solving the nonlinear equation

R∑

k=1

tan−1[αk(x − βk)] = λ(y − μ). (9)

3 Discretisation of the Nonlinear PDE

To discretise the PDE in asset direction by means of rational Chebyshev col-
location method, let x = g(yj) be the transformed Chebyshev points. Then we
transform x ∈ [−1, 1] into S ∈ [Sm, SM ] that better suits the option problems
at hand as x = (2S − (SM − Sm))/(SM + Sm). Now writing Vε(S, t) = u(x, t),
the PDE (4) together with its initial and boundary conditions yields

ut = 1
2σ2S2

(
2

SM−Sm

)2

uxx + (r − δ)S
(

2
SM−Sm

)
ux + ru + 1

ε

[
u − u0

]+
,

u(x, 0) = max(E − S, 0), −1 ≤ x ≤ 1, Sm ≤ S ≤ SM ,

u(−1, t) = E − Sm, u(1, t) = 0, 0 ≤ t ≤ T.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10)
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The rational collocation method can be obtained by replacing the solution u in
(10) with

ũ(x) =
N∑

j=0

ũjL
(ω)
j (x), (11)

and collocating at N − 1 points x1, . . . , xN−1. This yields

ũi,t = p(xi)
∑N

j=0 ũjL
(ω)′′

j (xi) + q(xi)
∑N

j=0 ũjL
(ω)′

j (xi) + rũi + f(ũi),

ũ0 = ũ(−1, t), ũN = ũ(1, t),

⎫
⎬

⎭
(12)

where

p(xi) =
1

2
σ2S2

i

(
2

SM − Sm

)2

, q(xi) = (r−δ)Si

(
2

SM − Sm

)
, f(ũi) =

1

ε

[
ũi − ũ0

i

]+
.

Above expression (12) can be written as

dũ
dt

=
(
PD(2) + QD(1) − rI

)
ũ + g, (13)

where

ũ = [ũ1, ũ2 . . . , ũN−1]T ,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij = L

(ω)′

j (xi); i, j = 1, 2, . . . , N−1,

D(2) =
(
D

(2)
ij

)
, D

(2)
ij = L

(ω)′′

j (xi); i, j = 1, 2, . . . , N−1, (14)

P = diag(p(xi)), Q = diag(q(xi)); i = 1, 2, . . . , N−1,

g =
[
f(ui) +

(
p(xi)D

(2)
i0 + q(xi)D

(1)
i0 + rIi0

)
ũ0

+
(
p(xi)D

(2)
iN + q(xi)D

(1)
iN + rIiN

)
ũN

]T

,

with i = 1, 2, . . . , N −1 and I is a (N + 1) × (N + 1) identity matrix. Above
system (13) is then solved using a fourth-order Lobatto method ([6]).

4 Numerical Results and Discussions

We present numerical results of our rational collocation method to price Amer-
ican vanilla put and butterfly spread options for the realistic parameters. In all
numerical experiments, unless otherwise indicated, we choose the grid stretching
parameter as α = 20 and truncate the computational domain in such a way that
Sm = 0 and SM = 200.
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4.1 Results for American Put Options

In order to illustrate the utility of our RSC method, two experiments are per-
formed. As a benchmark, we take the value of the options obtained by using the
penalty method in [5] with 50000 time and space grid points. The first experi-
ment checks the behaviour of the method with respect to the penalty parameter
ε. Table 1 shows the results of American put options obtained by using the set
of parameters r = 0.05, σ = 0.2, δ = 0, E = 100, T = 0.5. We vary the value
of the penalty parameter ε, and for each fixed number of spacial nodes we then
compute the error of the American put options, the ratio between two consecu-
tive errors and evaluate the number of time steps of the adaptive Lobatto time
integrator (with both absolute and relative error tolerances as 10−5). We observe
that the error is nearly independent of the spacial mesh points and is of order
O(ε). We obtain very satisfactory results for a small number of grid points. For
instance, for ε = 10−5 and N = 50 an error of order 10−4 is obtained. Similar
results were obtained in [4,7] but they required to use a larger number of mesh
points.

Table 1. Results of the rational spectral collocation method with respect to the penalty
term for valuing American put options.

ε Nodes Error Ratio Time steps

10−3 50 1.61E-3 7.1200 64

10−4 50 5.88E-4 2.7395 190

10−5 50 4.79E-4 1.2285 627

10−3 100 1.20E-3 9.5250 100

10−4 100 1.36E-4 8.8438 209

10−5 100 3.09E-5 4.4014 706

10−3 200 1.19E-3 9.6912 102

10−4 200 1.46E-4 8.1322 215

10−5 200 4.28E-5 3.4092 713

Now we investigate the spacial convergence of the rational spectral collocation
(RSC) method and compare with the convergence of some existing methods
which we recompute in order to use the same set of parameters. To ensure that
errors in numerical results are dominated by spacial rather than temporal errors
we impose (here as well as for the case of butterfly spread options) the absolute
and relative error tolerances of the implicit fourth-order Lobatto method and
the penalty term to be 10−8. From Table 2, we observe that our RSC has higher
order of convergence compared to the existing methods. Our method produces a
satisfactory error of order 10−3 with only 20 grid points, whereas other methods
require almost 16 times more points, to obtain a similar error. In Table 2 as
well as in Tables 3-5, the columns with headings as Method A, Method B and
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Table 2. Comparison of the rational spectral collocation (RSC) method with other
existing methods for valuing American put options.

Method A Method B Method C RSC

N V (E) Error V (E) Error V (E) Error V (E) Error

20 2.953828 1.70E-0 4.215878 4.39E-1 4.222097 4.34E-1 4.651765 3.92E-3

40 4.221527 4.34E-1 4.550680 1.05E-1 4.555841 9.98E-2 4.654778 9.05E-4

80 4.555846 9.98E-2 4.627469 2.82E-2 4.630338 2.53E-2 4.655634 4.92E-5

160 4.630491 2.52E-2 4.647740 7.91E-3 4.649266 6.38E-3 4.655679 4.80E-6

320 4.649285 6.36E-3 4.653227 2.42E-3 4.654034 1.61E-3 4.655684 4.96E-7

Method C represent the results obtained by our computation for the penalty
method of Forsyth and Vetzal [5], the Crank-Nicolson method based on the
Brennan and Schwartz approach [2] and the projected successive overrelaxation
(PSOR) method of Cryer [3], respectively.

4.2 Results for American Butterfly Spread Options

A more challenging problem is the valuation of the American butterfly options.
A butterfly option has the payoff

V (S, 0) = max(S−E1, 0)−2max(S−E2, 0)+max(S−E3, 0), E2 = (E1+E3)/2,
(15)

and the boundary conditions

V (S, t) = 0 as S → 0; V (S, t) = 0 as S → ∞. (16)

Like the previous case, we compute the benchmark solution in a similar manner.
The grid stretching parameter is taken to be α = 50. Other parameters used in
this case are r = 0.05, σ = 0.2, δ = 0, E1 = 90, E2 = 100, E3 = 110, T = 0.5.
Rapid convergence of the RSC is observed while valuing these options at strike
prices E1, E2 and E3 as illustrated in Tables 3, 4 and 5, respectively. Our RSC
approach shows very accurate results obtained with few grid points. For example,
at the strike price E2 an accuracy of order 10−2 is attained with only 20 points
in the case of RSC method which cannot be achieved in the case of the penalty
method of Forsyth [5] with even 320 points.

We have also experimented (but not reported in this paper due to space
limitations) that the numerical values of the Greeks for these options are free
of spurious oscillations around the strike price(s) that are typically present in
numerical solution of the American style options, in particular while computing
Γ, due to the discontinuity of the second order derivative in the optimal exercise
price.

Currently, we are investigating our proposed approach to solve other types
of financial options, in particular, multi-asset American options and American
options under jump diffusion processes.
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Table 3. Comparison of the convergence of the rational spectral collocation (RSC)
method with other existing methods for valuing American butterfly spread options at
strike price E1.

Method A Method B Method C RSC

N V (E1) Error V (E1) Error V (E1) Error V (E1) Error

20 3.850580 1.40E-0 4.644988 6.08E-1 4.800868 4.52E-1 5.212192 4.09E-2

40 4.219791 1.03E-0 5.000685 2.52E-1 5.161263 9.19E-2 5.255192 2.05E-3

80 4.743739 5.09E-1 5.077096 1.76E-1 5.233733 1.94E-2 5.253491 3.55E-4

160 5.166896 8.62E-2 5.105809 1.47E-1 5.255290 2.15E-3 5.253196 5.49E-5

320 5.169988 8.32E-2 5.134745 1.18E-1 5.251017 2.12E-3 5.253147 4.90E-6

Table 4. Comparison of the convergence of the rational spectral collocation (RSC)
method with other existing methods for valuing American butterfly spread options at
strike price E2.

Method A Method B Method C RSC

N V (E2) Error V (E2) Error V (E2) Error V (E2) Error

20 3.977636 6.01E-0 9.302053 6.89E-1 9.871566 1.19E-1 9.955600 3.55E-2

40 8.653698 1.34E-0 9.512456 4.78E-1 9.913464 7.76E-2 9.994326 3.26E-3

80 8.679782 1.31E-0 9.822351 1.69E-1 9.957679 3.34E-2 9.991326 2.59E-4

160 9.478241 5.13E-1 9.875372 1.16E-1 9.976355 1.47E-2 9.991026 4.06E-5

320 9.648192 3.43E-1 9.967679 2.34E-2 9.997890 6.82E-3 9.991062 4.64E-6

Table 5. Comparison of the convergence of the rational spectral collocation (RSC)
method with other existing methods for valuing American butterfly spread options at
strike price E3.

Method A Method B Method C RSC

N V (E3) Error V (E3) Error V (E3) Error V (E3) Error

20 1.758169 3.14E-0 4.454015 4.45E-1 4.600968 2.98E-1 4.811230 8.73E-2

40 4.535713 3.63E-1 4.686623 2.12E-1 4.832751 6.58E-2 4.897053 1.51E-3

80 4.722869 1.76E-1 4.745747 1.52E-1 4.882757 1.58E-2 4.898053 5.05E-4

160 4.715394 1.83E-1 4.771779 1.27E-1 4.890226 8.33E-3 4.898503 5.51E-5

320 4.848402 5.02E-2 4.806425 9.21E-2 4.893375 5.18E-3 4.898553 5.10E-6
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Abstract. In this work, the exact solution of the Riemann problem for
first-order nonlinear partial equation with non-convex state function in
QT = {(x, t)|x ∈ I = (−∞, ∞) , t ∈ [0, T )} ⊂ R2 is found. Here

F ∈ C2(QT ) and F
′′
(u) change their signs, that is F (u) has convex

and concave parts. In particular, the state function F (u) = −cos u on[
π
2
, 3π

2

]
and

[
π
2
, 5π

2

]
is discussed. For this, when it is necessary, the auxil-

iary problem which is equivalent to the main problem is introduced. The
solution of the proposed problem permits constructing the weak solu-
tion of the main problem that conserves the entropy condition. In some
cases, depending on the nature of the investigated problem a convex or a
concave hull is constructed. Thus, the exact solutions are found by using
these functions.

Keywords: First order nonlinear partial differential equations · Rie-
mann problem · Characteristics · Weak solution · Shock wave · Convex
and concave hull

1 Introduction

Many solutions of the problems of mechanics, particularly of gas dynamics are
reduced to investigate the discontinuous solution of the nonlinear equations of
the first-order hyperbolic type. It is known that properties of the discontinuous
solutions of the nonlinear equations have some properties which are absent in
discontinuous solutions of the linear equations. Relevant results in the theory of
nonlinear equation of hyperbolic type have been obtained by O.A. Oleinik, A.N.
Tikhonov, A.A. Samarskii, P. Lax and I.M. Gelfand. The case when F ′′(u) ≤ 0
or F ′′(u) ≥ 0 have been investigate in [2,3,5–9] in detail.

2 The Problem with a Convex State Function

As usual, let R2 be an Euclidean space in the plane (x, t). Here x and t are
spatial and time variables, respectively. Let us denote QT = {(x, t)|x ∈ I =
(−∞, ∞) , t ∈ [0, T )} ⊂ R2 and in QT we consider the following problem
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 332–339, 2015.
DOI: 10.1007/978-3-319-20239-6 36
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∂u

∂t
+

∂F (u)
∂x

= 0, (1)

u (x, 0) =
{

u1, x < 0
u2, x > 0.

(2)

Here F ∈ C2(QT ), is given function and F
′′

changes its sign, i.e. F (u) has
convex and concave parts. The problem (1), (2) particularly, describes the math-
ematical models of the process of displacement of oil by water in porous medium
and traffic flow on highway, [1–4,10,11].

In this paper the problem (1), (2) is investigated for the case F (u) = cos u if
u ∈ [π

2 , 3π
2 ] and u ∈ [π

2 , 5π
2 ] respectively and u1, u2 are constants.

As seen from an admissibility condition of jump, when F
′′
(u) < 0 and u1 <

u2 jump occurs immediately beginning from the origin of coordinates in the
solution.

Firstly we will study the case u1 = 3π
2 , u2 = π

2 . At this stage, due to
the entropy condition which is not fulfilled we can’t extract the solution of the
problem (1), (2) in shock wave form.

According to the nature of the characteristics method we must seam the
three lines u = u1, u = u2 and u = G

(
x
t

)
together retaining of continuity of the

solution. Here G is an inverse function of the sinu on the [π
2 , 3π

2 ]. Therefore for
the solution we get
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Fig. 1. The graph of the u(x, t) when u1 = 3π
2

, u2 = π
2
,

u (x, t) =

⎧
⎨

⎩

3π
2 , x

t < −1
π − arcsin

(
x
t

)
, −1 < x

t < 1
π
2 , x

t > 1
(3)

The graph of this solution is given in Fig. 1.
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It is easy to show that the function given by (3) is the generalized solution
of the problem (1), (2). For this aim we must prove that the following integral
equality

∫ ∫

D

{ϕt(x, t)u(x, t) − ϕx cos u(x, t)}dxdt +
∫ a

−a

u0(x, t)ϕ(x, 0)dx = 0

is valid for any compactly supported continuously differentiable test functions
ϕ (x, t) with respect to both variables x, t vanishing outside of some bounded
domain D such that D = {(−a, a) × ([0, T )} ⊂ QT .

Taking account of (3) from the last equality can be rewritten as
∫ T

0

∫ a

−a

{u (x, t) ϕt (x, t) − cos u (x, t) ϕx} dxdt +
∫ a

−a

u0 (x, t) ϕ (x, 0) dx

=
∫ T

0

∫ −t

−a

3π

2
ϕt (x, t) dxdt +

∫ T

0

∫ t

−t

(
π − arcsin

(x

t

))
ϕt (x, t) dxdt

−
∫ T

0

∫ t

−t

cos
(
π − arcsin

(x

t

) )
ϕx dxdt

+
∫ T

0

∫ a

t

π

2
ϕt (x, t) dxdt +

∫ 0

−a

3π

2
ϕ (x, 0) dx +

∫ a

0

π

2
ϕ (x, 0) dx.

By interchanging the order of integration we get

−3π

2

∫ −T

−a

ϕ (x, 0) dx +
3π

2

∫ 0

−T

ϕ (x,−x) dx

−3π

2

∫ 0

−T

ϕ (x, 0) dx −
∫ 0

−T

(π − arcsin (−1) ) ϕ (x,−x) dx

−
∫ 0

−T

∫ T

−x

ϕ (x, t)
x

t2
√

1 − (
x
t

)2
dtdx −

∫ T

0

(π − arcsin (1) ) ϕ (x, x) dx

−
∫ T

0

∫ T

x

ϕ (x, t)
x

t2
√

1 − (
x
t

)2
dtdx

∫ T

0

∫ t

−t

ϕ (x, t)
x

t2
√

1 − (
x
t

)2
dxdt +

π

2

∫ T

−a

ϕ (x, x) dx − π

2

∫ 0

−T

ϕ (x, 0) dx
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−π

2

∫ a

T

ϕ (x, 0) dx +
3π

2

∫ −T

−a

ϕ (x, 0) dx +
3π

2

∫ 0

−T

ϕ (x, 0) dx = 0.

Now we consider the case u1 = π
2 , u2 = 3π

2 . Since the entropy condition takes
place in this case the shock arises in solution. According to [1,10] the following
auxiliary problem is introduced.

∂w

∂t
− cos

(
∂w

∂x

)
= 0. (4)

The initial condition for (4) is

w (x, 0) = w0(x). (5)

Here the function w0(x) is any continuously differentiable solution of the equa-
tion

dw0(x)
dx

= u0(x).

The problem (4), (5) is called auxiliary problem. It is easy to prove that
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x

t

Fig. 2. The graph of the u(x, t) when u1 = π
2
, u2 = 3π

2
,

u(x, t) =
∂w(x, t)

∂x
. (6)

The solution of this auxiliary problem (4), (5) is, [1,10]

w(x, t) =
{

w−, ξ < 0
w+, ξ > 0.
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Here

w− = (cos u1 − u1sin u1) t +
π

2
x, w+ = (cos u2 − u2sin u2) t +

3π

2
x

and ξ = x − t sin u. From w− = w+ we obtain w = x
t = −2. Therefore for the

solution of the auxiliary problem we have

w(x, t) =
{

w−, x
t < −2,

w+, x
t > −2.

(7)

With regard to (6) the physical genuine solution of the main problem (1), (2)
is found. The graph of this solution is given in Fig. 2. As it is seen from Fig. 2
the shock available in the wave’s initial profile is moved with speed w to left side
of coordinate axis.

3 The Problem Without Convexity of State Function

In this section we will study the problem (1), (2) when u ∈ [
π
2 , 5π

2

]
.

Case 1. Firstly the (1) is investigated with

u (x, 0) =
{

5π
2 , x < 0,
π
2 , x > 0

initial condition.
As in [3,4,10] we use the convex hull of the function F (u) = − cos u on

interval
[

π
2 , 5π

2

]
graph which is shown in Fig. 3.
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As seen from Fig. 3 that the convex hull of the function F (u) = − cos u con-
sists of the part of the graph lying between points A1

(
π
2 , 0

)
and B1(u2,− cos u2),

and of the straight line B1C1. In order to obtain the value of u2 we will use tan-
gent line leaving from point C1

(
5π
2 , 0

)
to graph of F (u) = − cos u

g (u2) ≡ u2 − 5π

2
+ cot u2 = 0.

Since g (π) g
(
3π
2

)
< 0 this equation has one root on the interval

[
π, 3π

2

]
.

Using the Newton iteration method the mentioned root is found by

un+1 = un +
g (un)
g′ (un)

, (n = 0, 1, 2, . . . .)

equation as u1 = 3.36, here g(u) = −u + 5π
2 − cot u and g′(u) = −1 + 1

sin2u
=

cot2u.
Therefore the generalized solution of the problem is

u(x, t) =

⎧
⎨

⎩

5π
2 , x < Kt
π − arcsin x

t , Kt < x < t
π
2 , t < x,

(8)

here F ′(u) = sin 3.36 = −0.2167 = K. The graph of this solution is shown in
Fig. 4.

Case 2. In this section we will investigate the equation (1) with

u (x, 0) =
{

π
2 , x < 0
5π
2 , x > 0

initial condition. For this we use concave hull of the function F (u) = −cos u on
the interval

[
π
2 , 5π

2

]
, (Fig. 5).
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.
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The concave hull of the function F (u) = − cos u consists of the straight
line AB and of the part of the graph F (u) = − cos u lying between points
B (u1,−cos u1) and C

(
5π
2 , 0

)
.

Since the graph of the convex and concave hulls of function −cos u is
symmetrical on the interval

[
π
2 , 5π

2

]
the value of u1 is found from equation

u1 − 3π
2 = 3π

2 − u2 as u1
∼= 1.93π.

In this case obtained root is relatively symmetrical to point
(
3π
2 , 0

)
. Then

sin u2
∼= sin 1.93π = −0.217 = K and the tangent line leaving from point

(
5π
2 , 0

)

is x = f
′
(u) |u= 5π

2
.t = sin 5π

2 t = t. Similarly as shown above the shock occurs
at both lines ξ = x − Kt and ξ = x − t. In addition to this, this shock takes
place from π

2 to u2. Finally the solution is present as

u(x, t) =

⎧
⎨

⎩

π
2 , x < Kt,
2π + arcsin x

t , Kt < x < t,
5π
2 , t < x

and graph of which is given in Fig. 6.
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4 Conclusion

1. The exact solutions of the Riemann problem for first order partial equation
with state function F (u) = − cos u on the intervals

[
π
2 , 3π

2

]
and

[
π
2 , 5π

2

]
are

found.
2. In order to obtain the location of the shock point the special auxiliary problem
having some advantages over main problem is introduced.
3. It is proved that the obtained solutions are weak solutions of the investigated
problem.
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as an Orthotropic Cosserat Continuum
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Abstract. Based on the equations of the dynamics of a piecewise-
homogeneous elastic material, parallel computational algorithms are
developed to simulate the process of stress and strain wave propaga-
tion in a medium consisting of a large number of blocks, interacting
through compliant interlayers. For the description of waves in a block
medium with thick interlayers the orthotropic couple-stress continuum
theory, taking into account the symmetry of elastic properties relative
to the coordinate planes, can be applied. By comparing the elastic wave
velocities in the framework of piecewise-homogeneous model and contin-
uum model, the simple method is obtained to estimate mechanical para-
meters of an orthotropic Cosserat continuum, modeling a block medium.
In two-dimensional formulation of the orthotropic model, the computa-
tional algorithm and the program system are worked out for the analysis
of propagation of elastic waves. The comparison showed good qualita-
tive agreement between the results of computations of waves, caused by
localized impulses, by the model of a block medium with compliant inter-
layers and the model of an orthotropic Cosserat continuum.

Keywords: Dynamics · Elasticity · Block medium · Cosserat
continuum · Shock-capturing method · Parallel computational algorithm

1 Introduction

The model of a block medium with compliant interlayers can be used to esti-
mate the deformation and strength characteristics of a masonry. Wave processes
in soils and rocks with layered and block structure can be analyzed with the
help of this model. Various approximations of the model are applied to the
analysis of such processes, in particular, the approximation of absolutely rigid
blocks and elastic interlayers [1]. In a more simple variant, a block medium is
replaced by a discrete lattice, in which the dimensions of blocks do not mat-
ter [2]. In this paper, we consider the case of elastic blocks and interlayers. On
the basis of developed algorithms, in the plane formulation computations for
a large number of blocks were performed, showing anisotropy of a block medium
even at sufficiently thin interlayers. Obtained results serve as justification of
a hypothesis, that the processes of wave propagation in a multiblock medium
c© Springer International Publishing Switzerland 2015
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can be approximately described by the equations of an orthotropic Cosserat
continuum. These equations take into account the asymmetry of stress tensor,
associated with the rotational motion of blocks, and the couple stresses, caused
by the curvature of a regular block structure due to the inhomogeneity of the
field of rotations.

2 A Block Medium

Let’s consider the plane strain state of a block medium, consisting of rectangu-
lar elastic blocks with sides h1, h2, parallel to the axes x1, x2 of a Cartesian
coordinate system, and interlayers with thicknesses δ1, δ2. Blocks are numbered
by pairs of indices k1, k2, taking the values from 1 to N1 and from 1 to N2,
respectively. The motion of each block is described by the system of equations
of a homogeneous isotropic elastic medium:

ρ v̇1 = σ11,1 + σ12,2, ρ v̇2 = σ12,1 + σ22,2, σ̇12 = ρ c22 (v2,1 + v1,2),
σ̇11 = ρ c21 (v1,1 + v2,2) − 2 ρ c22 v2,2, σ̇22 = ρ c21 (v1,1 + v2,2) − 2 ρ c22 v1,1.

(1)

Here ρ is the density, c1 and c2 are the velocities of longitudinal and transverse
elastic waves, dot over the symbol and indices after a comma denote partial
derivatives with respect to time and spatial variables. The system is written
relative to the projections of the velocity vector vk and the components of the
stress tensor σjk.

Elastic interlayer between neighboring blocks in the horizontal direction with
the indices (k1, k2) and (k1+1, k2) is described by the ordinary differential equa-
tions, taking into account its mass and the longitudinal and transverse stiffnesses:

ρ′ v̇
+
1 + v̇−

1

2
=

σ+
11 − σ−

11

δ1
,

σ̇+
11 + σ̇−

11

2
= ρ′c′ 2

1

v+
1 − v−

1

δ1
,

ρ′ v̇
+
2 + v̇−

2

2
=

σ+
12 − σ−

12

δ1
,

σ̇12 + σ̇−
12

2
= ρ′c′ 2

2

v+
2 − v−

2

δ1
,

(2)

where ρ′, c′
1 and c′

2 are the density and the velocities of longitudinal and trans-
verse waves in the interlayer. The interlayer between blocks in the vertical direc-
tion with the indices (k1, k2) and (k1, k2 + 1) is described by the equations:

ρ′ v̇
+
2 + v̇−

2

2
=

σ+
22 − σ−

22

δ2
,

σ̇+
22 + σ̇−

22

2
= ρ′c′ 2

1

v+
2 − v−

2

δ2
,

ρ′ v̇
+
1 + v̇−

1

2
=

σ+
12 − σ−

12

δ2
,

σ̇+
12 + σ̇−

12

2
= ρ′c′ 2

2

v+
1 − v−

1

δ2
.

(3)

The quantities with superscripts ± are related to the boundaries of interacting
blocks. It can be shown that these equations are thermodynamically consistent
with the system of Eqs. (1), i.e. for a regular block structure the integral energy
conservation law is fulfilled, in which kinetic and potential energies are the sums
of kinetic and potential energies of blocks and interlayers separately.
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For numerical solution of the system of Eqs. (1) – (3) under given initial data
and boundary conditions, the parallel computational algorithm is worked out [3].
In this algorithm the method of two-cyclic splitting with respect to the spatial
variables is realized. This method preserves the second order of approximation,
if second-order schemes are applied for the solution of one-dimensional sys-
tems. One-dimensional systems in blocks are solved on the basis of the Godunov
gap decay scheme with an uniform grid and a maximum permissible time step
according to the Courant–Friedrichs–Lewy condition. A piecewise-linear ENO–
reconstruction is used to improve the accuracy of solution. The Eqs. (2) and (3),
playing the role of internal boundary conditions at the stages of two-cyclic split-
ting, are solved by means of the nondissipative finite-difference scheme, con-
structed by the Ivanov method.

Computer programs are implemented in Fortran using the MPI (Message
Passing Interface) technology. The parallelization of computations is performed
by means of the domain decomposition: each processor of a cluster makes com-
putations for a chain of blocks in the direction of the x1 axis with data exchange
between neighboring processors in the boundary meshes of the upper and lower
boundaries of the chain of blocks.

Created programs are used to solve a series of problems on the propagation
of elastic waves, caused by the action of short-term and long-term concentrated
loads on a block medium. In Figs. 1 and 2 one can see the results of computations
for the problem, in which the boundary effects on a block medium are absent and
the initial data for velocities correspond to the rotation of central block around
the center of mass with given angular velocity ω0:

vk1k2
1 = −ω0(x2 − h2/2), vk1k2

2 = ω0(x1 − h1/2). (4)

Initial stresses are equal to zero. Initial velocities in all blocks, except the central
one, are zero, too. Blocks are square with the side of 0.1 m and interlayers have
the same thickness in both directions. A block rock mass consists of 200 × 200
blocks, each of which has a grid with 10×10 nodes. The parameters of materials
are taken close to the parameters of a masonry: ρ = 3700, ρ′ = 1200 kg/m3,

Fig. 1. Instant rotation of the central block. Level curves of the angular velocity ω̄
depending on the thickness of interlayers: (a) δ = 0.1 mm, (b) δ = 1 mm, (c) δ = 5 mm
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a b c

Fig. 2. Instant rotation of the central block. Level curves of the tangential stress σ̄21

depending on the thickness of interlayers: (a) δ = 0.1 mm, (b) δ = 1 mm, (c) δ = 5 mm

c1 = 3500, c2 = 2100, c′
1 = 1500, c′

2 = 360m/s. Computations were performed
for interlayers of different thickness δ = 0.1, 1 and 5mm on time intervals of
varying duration t = 2.4, 2.5 and 3.1ms, during which the head fronts of waves
pass approximately equal distances.

For visualization of numerical solution the angular velocities of blocks and the
tangential stresses, averaged over the parallel lateral sides, were calculated. Level
curves of these values are represented in Figs. 1 and 2, respectively. A comparison
of results for different thicknesses of interlayers shows that the wave fields may
differ essentially. In the case of thin interlayers the wave fronts are almost circu-
lar, their velocities are close to the velocities of longitudinal and transverse waves
in blocks (Figs. 1a and 2a). The form of fronts becomes elliptical, if interlayers
become thicker (Figs. 1b, 2b and Figs. 1c, 2c).

Computations show that the velocities of waves in the direction of semiaxes of
ellipses are much lower than the average velocities of longitudinal and transverse
waves in a block medium along the coordinate directions. This applies especially
to the transverse waves. The block-averaged amplitudes of the head longitudinal
and transverse waves are small in comparison with the amplitudes of waves with
elliptical fronts, which are caused by oscillatory motions of the blocks as rigid
bodies. These are so-called pendulum waves. Velocities of pendulum waves slow
down, if interlayers become thicker. The characteristic oscillations, caused by
the rotational motion of blocks, appear behind the fronts of these waves.

3 An Orthotropic Couple-Stress Medium

For averaged description of the deformation processes in a multiblock medium
with interlayers it is possible to use the model of the Cosserat continuum in
the approximation of an orthotropic material with planes of elastic symmetry,
parallel to the coordinate planes. In the plane strain state the complete system
of equations has the form:
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ρ0 v̇1 = σ11,1 + σ12,2, ρ0 v̇2 = σ21,1 + σ22,2,
j0 ω̇3 = μ31,1 + μ32,2 + σ21 − σ12,
σ̇11 = a1v1,1 + b1v2,2, σ̇22 = a1v2,2 + b1v1,1,
σ̇33 = b1 (v1,1 + v2,2),
σ̇21 = a2(v2,1 − ω3) + b2(v1,2 + ω3),
σ̇12 = a2(v1,2 + ω3) + b2(v2,1 − ω3),
μ̇31 = α2 ω3,1, μ̇32 = α2 ω3,2.

(5)

Here v1 and v2 are the projections of the linear velocity vector, ω3 is the nonzero
projection of the angular velocity vector, σij and μij are the components of the
asymmetric tensors of stresses and couple stresses, respectively. The symbol j0
denotes the inertial characteristic of a material, which is equal to the product
of the moment of inertia of a block and the number of blocks in a unit volume.
The quantities a1, a2, b1, b2, α2 are the elasticity parameters of a material.

The system (5) can be represented in the matrix form

A
∂U

∂t
= B1 ∂U

∂x1
+ B2 ∂U

∂x2
+ Q U (6)

relative to the vector–function U = (v1, v2, ω3, σ11, σ22, σ33, σ21, σ12, μ31, μ32)
with constant matrices–coefficients A, B1, B2 and Q. Matrices are written by
Eqs. (5). The characteristic equation det (n1B

1 + n2B
2 − c A) = 0 has six non-

trivial roots c = ±c′′
1 , ±c′′

2 and ±c′′
3 , that define three velocities of weak shock

waves, propagating in the direction of the unit vector (n1, n2), – velocities of
longitudinal waves, transverse waves and waves of rotational motion:

c′′
1 =

√
λ1

ρ0
, c′′

2 =

√
λ2

ρ0
, c′′

3 =
√

α2

j0
, (7)

where λ1;2 =
a1 + a2

2
±

√(
a1 − a2

2

)2

(n2
1 − n2

2)2 + (b1 + b2)2 n2
1 n2

2, and the

triple zero root, corresponding to the contact discontinuities.
The state of a simple shear in the plane x1x2 with constant shear rate χ̇,

where v1 = 0, v2 = χ̇x1, and ω3 depends only on time, is described by the
equation

j0 ω̈3 = −(a2 − b2)(ω3 − χ̇). (8)

The general solution of this equation: ω3 = χ̇ + C1 cos 2πν0t + C2 sin 2πν0t (C1

and C2 are the constants of integration) indicates to the oscillatory nature of
rotation of the blocks under shear. The oscillation frequency ν0, calculated by
the formula: ν0 =

√
(a2 − b2)/j0, is a phenomenological parameter of a material.

On the basis of exact solutions and using numerical computations, in [4,5] it was
shown that for an isotropic couple-stress medium this frequency is the resonance
frequency: by means of applying a periodic external load with such frequency it
is possible to excite the resonance of rotational motion of particles in a couple-
stress medium.
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The problem of determining the coefficients of the system of Eq. (5) by given
parameters of materials and sizes of blocks and interlayers belongs to the class
of inverse problems, and it has no trivial solution, although some of these coef-
ficients one can find by simple ways. In particular, the coefficients a1 and a2

are calculated by the formulas ai = ρ0 c′′ 2
i via the average density of a block

medium and the velocities of longitudinal and transverse pendulum waves in the
direction of the coordinate axes, received with the help of numerical results in
the framework of the model of a block medium.

For a medium with square blocks, elongated in the direction of the x3 axis,
and interlayers of uniform thickness in both directions:

ρ0 = ρ′ + (ρ − ρ′)
h2

(h + δ)2
, j0 = ρ

h4

6(h + δ)2
. (9)

The coefficient b1 is determined by a1 for a given Poisson’s ratio η = b1/(a1+b1),
it is equal to 0.3 in computations. The coefficient α2 = j0 c′′ 2

3 is calculated via
the velocity of waves of rotational motion for blocks, which is approximately
equal to 0.95 c′′

2 .
Sum of the coefficients b1 and b2, characterizing the anisotropy of a medium,

is estimated by the curvature of the wave fronts on the basis of formulas (7).
Such estimate is possible, when the sign of the sum b1 + b2 is known in advance,
because the velocities c′′

1 and c′′
2 are independent of this sign, and the permissible

range of the coefficients a1 + a2 > b1 + b2 > −a1/2 + a2 (where the conditions
on the strong convexity of a quadratic potential of stresses are fulfilled) includes
both positive and negative values. Figure 3 shows typical velocity hodographs of
longitudinal and transverse waves, which are calculated for δ = 0.1, 1 and 5mm
by means of mechanical parameters of a block medium. Curves 1 correspond to
b1 + b2 = 0, curves 3 – to b1 + b2 = a1 − a2 (the case of an isotropic medium),
curves 5 correspond to the limiting value b1 + b2 = a1 + a2, curves 2 and 4 – to
the intermediate values b1 + b2 = (a1 − a2)/2 and b1 + b2 = a1. Analysis of the
wave fields in Figs. 1 and 2 shows that for the parameters of a block medium,

a b c

Fig. 3. Fronts of longitudinal and transverse waves in an orthotropic medium for dif-
ferent values of the parameter b1 + b2: (a) δ = 0.1 mm, (b) δ = 1 mm, (c) δ = 5 mm
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being under consideration, the hodographs of velocities lie between the curves 2
and 3, approaching the curve 3 if the thickness of interlayers tends to zero.

Selected from these considerations coefficients of the system of equations of
the dynamics of an orthotropic couple-stress medium for materials of blocks and
interlayers, whose parameters were used in solving problems for a block medium,
are represented in the Table 1.

Table 1. Mechanical parameters of the couple-stress medium

δ, ρ0, J0, a1, b1, a2, b2, α2, c′′
1 , c′′

2 , c′′
3 , ν0

mm kg/m3 kg/m GPa GPa GPa GPa MN m/s m/s m/s KHz

0.1 3690 6.15 44.5 19.1 14.8 6.77 22.2 3470 2000 1900 5.74

1.0 3650 6.05 38.6 16.5 6.46 4.05 9.60 3250 1330 1260 3.17

5.0 3470 5.59 23.8 10.2 2.33 0.53 3.39 2620 820 780 2.85

Numerical solution of boundary-value problems for the system of Eq. (5) is
carried out by means of the procedure of two-cyclic splitting with respect to spa-
tial variables. Parallel version of the algorithm is implemented on multiprocessor
computers of the cluster architecture. Program codes are written in Fortran using
the basic procedures of the MPI library. A detailed description of the numerical
algorithm and the structure of computer programs by example of equations of
an isotropic Cosserat continuum one can find in [5,6].

For comparison with computations based on the model of a block medium
with compliant interlayers, results of which are shown in Figs. 1 and 2, the same
problem was solved numerically in the framework of the theory of orthotropic
couple-stress continuum. More coarser finite-difference grid of 1000×1000 square
meshes with respect to spatial variables was used. Computations were performed
on 100 processors of the MVS-100k cluster of the Joint Supercomputer Center
of RAS (Moscow). As compared with the problem for a block medium, such
problem for an orthotropic continuum is about eight times less computationally

a b c

Fig. 4. Instant rotation of the central particle of an orthotropic Cosserat continuum.
Level curves of the angular velocity ω3: (a) δ = 0.1 mm, (b) δ = 1 mm, (c) δ = 5 mm
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a b c

Fig. 5. Instant rotation of the central particle of an orthotropic Cosserat continuum.
Level curves of the tangential stress σ21: (a) δ = 0.1 mm, (b) δ = 1 mm, (c) δ = 5 mm

intensive because of reduction of the dimension of a spatial grid and increase of
the time step, maximum permissible by stability condition. Results of computa-
tions for the problem with free boundaries of a body and with initial localized
rotation of a central mesh of finite-difference grid under t = 0 are represented
in Figs. 4 and 5. Obtained wave patterns of angular velocity ω3 and tangential
stress σ21 are qualitatively similar to wave patterns, shown in Figs. 1 and 2.
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Abstract. Numerical algorithm for solving dynamic problems of the
theory of viscoelastic medium of Kelvin–Voigt is worked out on the basis
of Ivanov’s method of constructing finite difference schemes with pre-
scribed dissipative properties. In one-dimensional problem the results of
computations are compared with the exact solution, describing the pro-
pagation of plane monochromatic waves. When solving two-dimensional
problems, the total approximation method based on the splitting of the
system with respect to the spatial variables is applied. The algorithm is
tested on solving the problem of traveling surface waves. For illustration
of the method, the numerical solution of Lamb’s problem about instan-
taneous action of concentrated force on the boundary of a half-plane is
represented in viscoelastic formulation.

Keywords: Viscoelasticity · Wave motion · Dissipative difference
scheme · Computational algorithm

1 Introduction

Mathematical model of Kelvin–Voigt is one of two basic models of the mechanics
of viscoelastic materials. Alternative Maxwell’s model is used to describe sols –
elastic fine particles suspended in a viscous liquid. Deformation of these materials
consists of elastic and viscous parts. Under the influence of prolonged constant
stresses the phenomenon of creep can be observed – irreversible strains increase
monotonically and infinitely in time. The system of dynamic equations of the
Maxwell viscoelastic medium refers to the hyperbolic type. This determines the
choice of numerical methods for solving wave problems based on it.

The Kelvin–Voigt model describes gels – porous elastic skeletons, filled by
viscous fluid. In this case stresses (but not strains) are the sum of elastic and
viscous components. Deformation of these materials under constant load is limi-
ted – it grows only up to a certain limit. This is an argument in favor of the
applicability of the Kelvin–Voigt equations to analysis of the stress-strain state
of geomaterials (soils, grounds and fractured rocks).

The system of equations of the dynamics of the Kelvin–Voigt medium is not
a hyperbolic system, so the choice of reliable numerical methods is not trivial.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 348–355, 2015.
DOI: 10.1007/978-3-319-20239-6 38
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When solving the problems of wave propagation, the methods based on integral
transforms on time are effective [1]. Slow wave motions of a viscoelastic medium
are analyzed using the finite element approximation in combination with the
discontinuous Galerkin method [2,3], whose indisputable advantage is the ability
to consider the domains of complex shape.

The method for constructing dissipative difference schemes with a predeter-
mined artificial energy dissipation for the solution of boundary value problems
of the linear dynamic elasticity was proposed by Ivanov [4]. This method proved
to be effective for a wide range of problems, including boundary value problems
in the theory of plates and shells. In the present paper, the Ivanov method is
applied to the model of the Kelvin–Voigt viscoelastic medium.

2 One-Dimensional Model

The system of equations of one-dimensional motions of the Kelvin–Voigt visco-
elastic medium for longitudinal waves can be written in the following dimension-
less form:

∂v

∂t
=

∂σ

∂x
,

∂s

∂t
=

∂v

∂x
, σ = s + η

∂v

∂x
. (1)

Here v is the velocity of particles, σ and s are the full stress and its elastic part,
η is the dimensionless parameter of viscosity.

Under numerical solution of boundary value problems for the system of
Eq. (1), according to the Ivanov method, the extended system is considered:

∂v

∂t
=

∂σ′

∂x
,

∂s

∂t
=

∂v′

∂x
, σ = s + η

∂v′

∂x
, (2)

where v′ and σ′ are the auxiliary functions, which are not equal to v and σ in
general case. Multiplying the first equation of (2) by v, the second one – by s,
and summing the results, one can obtain the equation

1
2

∂

∂t
(v2 +s2) = v

∂σ′

∂x
+s

∂v′

∂x
= (v−v′)

∂σ′

∂x
+(σ −σ′)

∂v′

∂x
+

∂(v′σ′)
∂x

−η

(
∂v′

∂x

)2

,

which is reduced to the equation of the energy change for (1), if v = v′ and
σ = σ′. Closing equations to the system (2) are written as

(
v − v′

σ − σ′

)
= −D

∂

∂x

(
σ′

v′

)
, (3)

where D is the given positively semidefinite matrix of the dimension 2 × 2.
For the system (2), (3) the energy equation holds. Additional dissipative term

appears in this equation as compared with the similar equation for (1). This term
is a non-negative quadratic form with respect to spatial derivatives of σ′ and v′,
which coefficients are the elements of matrix D. Using this equation, it is easy to
obtain a priori estimates, which allow us to prove the uniqueness and continuous
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dependence on the initial data of the solutions of boundary value problems with
dissipative boundary conditions for the extended system.

In fact, when constructing the difference scheme, these calculations are
repeated at a discrete level. Let τ and h be the steps of a uniform grid in time
and in spatial variable. The discrete analog of (2) can be written as a system of
difference equations:

vj − vj
τ

=
σj+1/2 − σj−1/2

h
,

sj − sj
τ

=
vj+1/2 − vj−1/2

h
,

σj =
sj + sj

2
+ η

vj+1/2 − vj−1/2

h
.

(4)

Here the quantities with integer indices j = 1, ..., n approximate the basic func-
tions at lower and upper sides of the space-time grid mesh, and the quantities
with half-integer indices approximate the auxiliary functions at lateral sides of
the mesh.

Discrete analog of the equation of energy is obtained by multiplying the first
and second equations of (4) by (vj + vj)/2 and (sj + sj)/2, respectively. So, the
equations approximating (3) have the next form:

(
vj + vj − vj+1/2 − vj−1/2

2σj − σj+1/2 − σj−1/2

)

= − 2
h

D

(
σj+1/2 − σj−1/2

vj+1/2 − vj−1/2

)

. (5)

Using the method of a priori estimates, one can obtain the rigorous proof of
stepwise stability for difference scheme in the mean-square norm, if dissipative
boundary conditions are formulated at the boundary of computational domain
in terms of v, σ, which guarantee the fulfillment of inequalities

(
Δv Δσ

)
1/2

≤ 0,
(
Δv Δσ

)
n+1/2

≥ 0 (6)

for the differences Δv = v̂ − v, Δσ = σ̂ − σ of arbitrary pairs of functions v, σ
and v̂, σ̂, satisfying these conditions.

The scheme (4), (5) approximates the system (1) only if the coefficients of
matrix D are small: D = O(h). For simplicity, we choose as D a diagonal matrix
of the special form:

D =
(

α 0
0 β

)
, α = β =

h − τ

2
≥ 0.

Ivanov showed [4], that for the hyperbolic system of linear elasticity this choice
corresponds to the Godunov gap decay scheme. In this case, in view of (4), the
system of equations (5) is transformed to the next one:

vj+1/2 + vj−1/2

2
− σj+1/2 − σj−1/2

2
= vj ,

σj+1/2 + σj−1/2

2
−

(
1 +

2 η

h

)
vj+1/2 − vj−1/2

2
= sj .

(7)
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To construct efficient algorithm of numerical implementation of this scheme, we
choose resolving equations for the system (7) in the following form:

vj+1/2 − σj+1/2 = vj − Xj , vj−1/2 + σj−1/2 = vj + Yj .

Unknown values Xj and Yj can be determined from a comparison of these equa-
tions with the equations (7)

Xj = Yj = sj + η
vj+1/2 − vj−1/2

h
.

The resolving equations are a generalization of the relationships on charac-
teristics of the equations of a non-viscous elastic medium. For the interior cells of
computational domain, they lead to the following system of difference equations:

vj−1/2 =
vj + vj−1

2
+

sj − sj−1

2
+ η

vj+1/2 − 2 vj−1/2 + vj−3/2

2h
,

σj−1/2 =
sj + sj−1

2
+

vj − vj−1

2
+ η

vj+1/2 − vj−3/2

2h
.

(8)

The first equation of (8) allows to calculate the values vj−1/2 using the tridiagonal
matrix algorithm. To do this, the boundary conditions are set, the main of which
are the kinematic conditions for velocities v1/2 = v0

1/2, vn+1/2 = v0
n+1/2 and the

dynamic conditions for stresses σ1/2 = σ0
1/2, σn+1/2 = σ0

n+1/2, satisfying the
inequalities (6). Also there are allowed the mixed boundary conditions of vari-
ous types on different boundaries. Under numerical implementation the dynamic
conditions are rewritten in terms of velocities using the resolving equations.

Note that the initial data of the problem are also formulated in terms of
velocities and total stresses. The initial values of sj , which are necessary to orga-
nize the computational process, are determined by virtue of the third equation
of (1). With the help of the second equation of (8) and the boundary conditions
the values σj−1/2 for all j = 1, ..., n + 1 are calculated after realization of the
tridiagonal matrix algorithm. This is a predictor step of the difference scheme.
A corrector step is performed by the formulas (4).

3 Governing Equations in Plane Case

Two-dimensional equations are written in terms of projections of the velocity
vector vj on the axes of a Cartesian coordinate system and of the components
of symmetric tensors of total stresses σjk and elastic stresses sjk. The closed
system of equations is reduced to the matrix form:

A
∂U

∂t
= B1 ∂V

∂x1
+ B2 ∂V

∂x2
, V = U + C1 ∂V

∂x1
+ C2 ∂V

∂x2
, (9)

U =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

v1
v2
s11
s22
s12

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, V =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

v1
v2
σ11

σ22

σ12

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, A =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

ρ 0 0 0 0
0 ρ 0 0 0
0 0 a1 a2 0
0 0 a2 a1 0
0 0 0 0 a3

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, B1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

,
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B2 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, C1 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0 0 0 0 0
0 0 0 0 0
α1 0 0 0 0
α2 0 0 0 0
0 α3 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, C2 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

0 0 0 0 0
0 0 0 0 0
0 α2 0 0 0
0 α1 0 0 0
α3 0 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Here ρ is the density, the coefficients

a1 =
3κ + 4μ

4μ(3κ + μ)
, a2 = − 3κ − 2μ

4μ(3κ + μ)
, a3 =

1
μ

, α1 =
4η

3
, α2 = −2η

3
, α3 = η

are expressed in terms of the phenomenological parameters of a medium – the
isothermic bulk modulus κ, the shear modulus μ and the coefficient of viscosity η.
Matrices A, B1 and B2 are symmetric. Matrix A is positive definite under natural
constraints on the parameters: ρ > 0, κ > 0, μ > 0 and η ≥ 0. For the system (9)
the energy equation

1
2

∂

∂t
UAU =

1
2

∂

∂x1
V B1V +

1
2

∂

∂x2
V B2V −

∥
∥
∥
∥

∂V

∂x1

∂V

∂x2

∥
∥
∥
∥ D0

∥
∥
∥
∥
∥
∥
∥
∥

∂V

∂x1

∂V

∂x2

∥
∥
∥
∥
∥
∥
∥
∥

holds, where D0 is the symmetric and positively semidefinite matrix which is
the product of blocky matrices (asterisk denotes the transposition):

D0 =
∥
∥
∥
∥

C1 0
0 C2

∥
∥
∥
∥

∗ ∥
∥
∥
∥

B1 B2

B1 B2

∥
∥
∥
∥ .

The nonzero coefficients of this matrix are:

D0
11 = D0

77 = α1, D0
17 = D0

71 = α2, D0
22 = D0

66 = D0
26 = D0

62 = α3.

Sequential construction of the difference scheme with specified dissipative
properties for the solution of two-dimensional system by analogy with one-
dimensional one leads to a special class of implicit schemes, for numerical imple-
mentation of which it is difficult to find effective algorithms. Therefore numerical
solution of boundary value problems for the system (9) was carried out by the
procedure of splitting with respect to spatial variables. Along with classical ver-
sion of the splitting method (method of weak approximation), two-cyclic version
of splitting was used, in which at each time interval (t, t + Δt) the next series
of one-dimensional problems is solved:

A
∂U

∂t

(1)

= B1 ∂V

∂x1

(1)

, V (1) = U (1) + C1 ∂V

∂x1

(1)

+ C2 ∂V

∂x2

(0)

,

A
∂U

∂t

(2)

= B2 ∂V

∂x2

(2)

, V (2) = U (2) + C1 ∂V

∂x1

(1)

+ C2 ∂V

∂x2

(2)

,

A
∂U

∂t

(3)

= B2 ∂V

∂x2

(3)

, V (3) = U (3) + C1 ∂V

∂x1

(2)

+ C2 ∂V

∂x2

(3)

,
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A
∂U

∂t

(4)

= B1 ∂V

∂x1

(4)

, V (4) = U (4) + C1 ∂V

∂x1

(4)

+ C2 ∂V

∂x2

(3)

.

The vector–function V (0) is taken from the previous time step, and at t = 0
it is taken from the initial data of the problem. The initial data for systems of
equations at splitting stages and the solution, related to the new time layer, are
determined by the formulas:

U (1)(t) = U(t), U (2)(t) = U (1)(t+Δt/2), U (3)(t+Δt/2) = U (2)(t+Δt/2),

U (4)(t + Δt/2) = U (3)(t + Δt), U(t + Δt) = U (4)(t + Δt).

A large series of methodological computations showed, that the obtained
difference scheme is stable under the fulfillment of conditions of stability for
one-dimensional schemes at the stages of splitting, or under a little more strict
conditions, where an additional energy dissipation suppresses the influence of the
terms with derivatives in transverse direction in the formulas for recalculation
of vector V via U , taken from previous stages.

4 Numerical Results

When testing the algorithm and the program, the exact solution of the form
V = V̄ exp(i ω t−λ x1− i l x2) is used, which describes the monochromatic wave,
damped in depth, traveling with the constant velocity c = ω/l along the axis
x2 on the boundary of viscoelastic half-plane x1 ≥ 0. The solution changes
qualitatively depending on that, how this velocity correlates to the velocities of
longitudinal and transverse elastic waves c1 =

√
(κ + 4μ/3)/ρ and c2 =

√
μ/ρ.

In supersonic regimes the degree of damping of the wave is essentially less than
in corresponding subsonic regimes.

Numerical solution of the problem is constructed on the basis of two-
dimensional system of dimensionless equations, obtained with the help of for-
mulas:

x′
j = xj/a, t′ = cp t/a, v′

j = vj/cp, σ′
jk = σjk/(ρ c21), s′

jk = sjk/(ρ c21),

where a is the spatial scale of the problem, the ratio of elastic longitudinal and
transverse waves is c1 = 2 c2, the dimensionless viscosity η/(ρ a c1) = 0.001.
In Fig. 1a the surface of normal stress σ11 is shown in the case of supersonic
longitudinal wave moving with the velocity c = 1.5 c1. In Fig. 1b the case of sub-
sonic wave with the velocity c = c1/2 is represented. A posteriori analysis of the
error of numerical solution for different ratios of grid steps in time and spatial
variables showed, that the scheme corresponds to the first order of approxima-
tion, however, the procedure of reconstruction of the solution at the stages of
splitting leads to a significant increase in accuracy.
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a b

Fig. 1. The surface of normal stress σ11 in the problem of traveling wave: (a) supersonic
wave with c = 1.5 c1, (b) subsonic wave with c = c1/2

a b

Fig. 2. The surface of normal stress σ11 (a) and the surface of tangential stress σ12

(b) in the Lamb problem
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Figure 2 shows the surfaces of normal and tangential stresses in the Lamb
problem of instantaneous action of a concentrated load, normal to the boundary
of a viscoelastic half-plane. Computations were performed for the same values
of parameters. The time in the figures corresponds to the time of arrival of
a head longitudinal wave at the boundary of computational domain. Obtained
spatial patterns allow to estimate visually the ratio of amplitudes of longitudinal,
transverse, conical and surface waves, which take the more flat and more smooth
form with the increasing of viscosity.

Note in conclusion, that the objective point of this research is to develop
a reliable numerical algorithm for computation of the granular flows with stag-
nant zones in moving stream based on the original mathematical model, pro-
posed in [5–7]. The finite difference scheme, constructed by the Ivanov method,
has an important advantage because of it is implicit in the predictor step and
explicit in the corrector step. So, it allows reasonably apply the nonlinear proce-
dures of the solution correction, such as the Wilkins correction of stresses, when
calculating the problems taking into account plastic deformations and different
resistance of a material to tension and compression.
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Abstract. This work is devoted to finding a solution of Riemann prob-
lem for the first order nonlinear partial equation which describes the
traffic flow on highway. When ρ� > ρr, the solution is presented as a
piecewise continuous function, where ρ� and ρr are the densities of cars
on the left and right side of the intersection respectively. On the con-
trary case, a shock of which the location is unknown beforehand arises
in the solution. In this case, a special auxiliary problem is introduced, the
solution of which makes it possible to write the exact solution showing
the locations of shock. For the realization of the proposed method, the
parameters of the flow are also found.

Keywords: Traffic flow equation · Shock · Characteristics · Weak
solution

1 Introduction

As known, to study the flow of vehicles on a highway is one of today’s most
contemporary problems. To solve the problem of traffic congestion, it is not
enough to intervene at the level of instrumentality. It is essential to the creation
of mathematical models to solve such problems. First and considerable researches
in this field have been worked through in [1,4–6].

Let ρ(x, t) and q(x, t) denote vehicle density per unit length and number
of vehicles passing through any highway section per unit time, respectively. In
this instance,

∫ b

a
ρ(x, t1)dx and

∫ b

a
ρ(x, t2)dx refer to the numbers of vehicles on

any [a, b] section of the highway at times t = t1 and t = t2. Since the integrals∫ t2
t1

q(a, s)ds and
∫ t2

t1
q(b, s)ds denote the number of vehicles entering into the

highway at the point a and leaving at the point b at the time period Δt = t2−t1,
respectively, the following balance equation is valid

∫ b

a

ρ(x, t2)dx −
∫ b

a

ρ(x, t1)dx =
∫ t2

t1

q(a, s)ds −
∫ t2

t1

q(b, s)ds. (1)

c© Springer International Publishing Switzerland 2015
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Applying the mean value theorem to Eq. (1), we get

∂ρ(x, t)
∂t

+
∂q(x, t)

∂x
= 0. (2)

To investigate the flow dynamics, it is necessary to know the functional rela-
tion of the function q with the local density ρ in Eq. (2). In the process of
derivation of the Eq. (2), the physical assumptions below are made

1. The vehicle flux on the highway is sufficiently dense.
2. No vehicles enter into and leave the highway in the region where the vehicles

density is high.
3. Driving reflexes are not considered.

2 Finding the Flow Parameters

First, let us formulate the speed of vehicles on the highway. However, the creation
of this formula can be obtained based on theoretical and experimental data. To
express the speed of a vehicle these formulas can be considered as the first
approach.

In the considering interval [a, b], let us suppose that the vehicles are aligned
bumper to bumper. In addition, according to the kinematic theory, the flow
speed is as follows

v =
q

ρ
. (3)

The connection between the speed of vehicle and density is found as

v(ρ) = vmax − vmaxρ

ρmax
(4)

from the equation of the line passing through the points A(0, vmax) and
B(ρmax, 0). Taking Eq. (3) into account we get

q = Q(ρ) = ρv(ρ) = vmax

(
ρ − ρ2

ρmax

)
. (5)

The actual observed number of vehicles on the highway indicate that it is

ρmax = 225
vehicle

mil
, ρj = 80

vehicle

mil
, qmax = 1500

vehicle

mil

in a single-lane roads. These numbers for a single-lane highway are accepted as
a first approximation. The number of vehicles in a highway can be expressed
as the product of these numbers with the number of lanes. According to the
observations on the highway, the maximum flow value in low speeds are v =
qmax

ρmax
= 20 mil

hour , [6].
Dispersion speed of the wave is

c(ρ) = Q′(ρ) = v(ρ) + ρv′(ρ). (6)
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Since v′(ρ) < 0, the speed c(ρ) is less than the speed of the moving vehicles.
Since the wave propagates in the opposite direction of the traffic flow, it informs
the drivers that there is a problem ahead. The speed c(ρ) is equal to the slope
of curves Q(ρ), thus the wave propagates forward if ρ < ρj , and backwards if
ρ > ρj . If ρ = ρj , in other words ρ = ρj takes the maximum value, the wave
remains stationary relative to the road.

3 Simulation Model and Its Solution

To analyze the dynamics of traffic flow, we will investigate the equation

∂ρ(x, t)
∂t

+
∂Q(x, t)

∂x
= 0 (7)

with following initial condition

ρ(x, t) =
{

ρ�, x < 0,
ρr, x > 0 (8)

where the numbers ρ� and ρr denote the values of the density ρ at the behind
and in front of the jump. Let us assume ρ� > ρr, firstly.

Using the method of characteristics for the solution of the problem (7) and (8)
we get

ρ(x, t) =
{

ρ�, ξ < 0,
ρr, ξ > 0.

(9)

Here, ξ is the equation of characteristics, and can be written as

ξ = x − Q′(ρ)t. (10)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ(x,t)

x

ρ=ρ
r

ρ
l
=0

Fig. 1. Initial condition when ρ� > ρr

As known from the general theory, when ρ� > ρr multi-valuable state does
not occur in the solution, Fig. 1. Since ρ� > ρr and ρr ≤ ρ ≤ ρ�, all automodel
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Fig. 2. Characteristics of the Equation (7)

solutions of the Eq. (7) remaining between the lines x = ρrt and x = ρ�t are
lines crossing the origin, that is, ξ = 0, Fig. 2

x = ρ�t, x = ρrt.

To express a physically meaningful solution of the problem (7) and (8), It is
necessary to combine the line

x = vmax

(
1 − 2

ρmax
ρ

)
t (11)

with the lines ρ = ρr and ρ = ρ� so that the initial condition is satisfied and the
solution is continuous. Therefore we get

1. if ξ < 0, then ρ = ρ� and

x

t
< vmax

(
1 − 2

ρmax
ρ�

)
,

2. if ξ > 0, then ρ = ρr and

x

t
> vmax

(
1 − 2

ρmax
ρr

)
.

3. When ξ = 0, using the Eq. (11) we have

ρ = −ρmax

vmax

x

2t
+

ρmax

2
.

Taking these expressions into account, we get the solution of the problem as
follows

ρ(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ�,
x
t < vmax

(
1 − 2

ρmax
ρ�

)
,

−ρmax
vmax

x
2t + ρmax

2 , vmax

(
1 − 2

ρmax
ρ�

)
< x

t < vmax

(
1 − 2

ρmax
ρr

)
,

ρr,
x
t > vmax

(
1 − 2

ρmax
ρr

)
.

(12)
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Fig. 3. Graphs of the solution (12)

The graph of the solution defined by the expression (12) is shown in Fig. 3.
Now, we will investigate the case where the initial distribution of vehicles are

as shown in Fig. 4, where ρ� < ρr. In this case, instead of solving the problem
(7) and (8), we need to solve the following problem as in [2,3]

∂u(x, t)
∂t

+ Q

(
∂u(x, t)

∂x

)
= 0 (13)

u(x, 0) =
{

ρ�x, x < 0,
ρrx, x > 0.

(14)

The problem (13) and (14) is called the auxiliary problem. The solution becomes

u(x, t) =
{

u−, ξ < 0,
u+, ξ > 0.

(15)

The problem (13) and (14) was examined in [2,3], and it was proven that the
expression ρ(x, t) = ∂u(x,t)

∂x is the solution of the problem (7) and (8). Here,

u− = −vmax

ρmax
ρ2� t + ρ�

[
x − vmax

(
1 − 2ρ�

ρmax

)]
t (16)

and

u+ = −vmax

ρmax
ρ2rt + ρr

[
x − vmax

(
1 − 2ρr

ρmax

)]
t. (17)

The characteristics of the problem corresponding to this situation are shown
in Fig. 4. According to the general theory, in this case a jump occurs in the
solution. Location of the jump is found from the equation as follows

x

t
= vmax − vmax

ρmax
(ρ� + ρr) ≡ U (18)
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Fig. 4. Initial distribution of vehicles and characteristics when ρ� < ρr

using the equality u− = u+. Taking the expression (18) into account, the solution
of the problem (7) and (8) is written as

ρ(x, t) =

⎧
⎨

⎩

ρ�,
x
t < U

ρr,
x
t > U.

(19)

The graphs of the solution in this case are shown in Fig. 5.
The traffic lights can be regulated using this results. To this end, it is sufficient

to establish the graphs of the family of characteristics on the (x, t) plane. They
are constant density lines such that, their c(ρ) slopes determine the constant
values of ρ(x, t) taken on these lines. Let us apply the above theory to the green
light problem on the traffic. We let ρ� = ρmax and ρr = 0. This case physically
refers to the traffic stop as the traffic light turns red at the point x = 0. As
shown, the vehicles density has a jump at the point x = 0. The distribution of
the vehicles (initial state) is shown in Fig. 4.

As the traffic light turns green from red, we are required to determine the
dynamic distribution of vehicles. According to the general theory,

dx

dt
= c(ρ) = Q′(ρ) = vmax

(
1 − 2

ρmax
ρ

)

and remains constant on characteristics. The slope of a characteristic that inter-
sects the x axis at any point x = x0 > 0 in the positive direction is given as

dx

dt
= c(ρ) = Q′(ρ) = vmax

(
1 − 2ρ

ρmax

)
= vmax.

The equation of the family of characteristics is given as x = vmaxt + x0. On
the other hand, the slope of the characteristics that intersects the x axis at any
point in the negative x axis direction is
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Fig. 5. Graphs of the solution (19)

dx

dt
= c(ρ) = Q′(ρ) = vmax

(
1 − 2ρ

ρmax

)
= −vmax.

It is obvious that, the equation of the family of these characteristics is written
as x = −vmaxt + x0.
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Fig. 6. Family of the characteristics for determining traffic lights

The characteristics settled in the domain −vmaxt < x < vmaxt should have
a common point, so dx

dt = x
t . In this case, the equation of the family of charac-

teristics is as shown in Fig. 6.
The traffic flow dynamic that flows slowly across the traffic lights can be seen

in Fig. 6.
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4 Conclusion

The advantages of the proposed model are listed below:
1. The vehicle density at any point on the highway is specified.
2. Average vehicle speed is determined to estimate the maximum flow of vehicles
on the highway.
3. The traffic lights are managed to avoid possible traffic congestion.
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Abstract. In this work we consider the coupled linear system of equa-
tions for temperature and displacements which describes the thermoelas-
tic behaviour of the body. For numerical solution we approximate our
system using finite element method. As model problem for simulation
we consider the thermomechanical state of the ceramic substrates with
metallization, which are used for the manufacturing of light-emitting
diode modules. The results of numerical simulation of the 3D problem
in the complex geometric area are presented.

1 Introduction

Many applied problems of mathematical modeling are connected with the cal-
culation of the stress-strain state of solids. In many cases, the deformation is
caused by thermal expansion. The thermoelasticity models are used for their
research.

Basic mathematical models include heat conduction equation and Lame ther-
moelasticity equation for displacements [1–4]. The fundamental point is that the
system is tied up, the equation for displacement comprises volumetric force pro-
portional to the temperature gradient and the temperature equation includes a
term that describes the compressibility of the medium.

In this work we consider the coupled linear system of equations for temperature
and displacements which describes the thermoelastic behavior of the body. For
numerical solution we approximate our system using finite element method [5–10].

As model problem we consider simulation of the thermomechanical state of
the ceramic substrates with metallization, which are used for the manufacturing
of light-emitting diode (LED) modules. The results of numerical simulation of
the 3D problem in the complex geometric area are presented. Calculations are
performed using the North-Eastern Federal University computational cluster
Arian Kuzmin.

2 Problem Statement

Under mechanical and thermal effects in an elastic body displacement u, strain ε
and stress σ occur in an elastic body. Let T be the constant absolute temperature
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 364–370, 2015.
DOI: 10.1007/978-3-319-20239-6 40
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at which body is in initial state of equilibrium, and θ be temperature increment.
External forces that impact the body are treated as mechanical effects, whereas
for the thermal influences one realizes heat exchange processes between the body
surface and environment, and release or absorption of heat by the sources inside
the body.

Mathematical model of thermoelastic state is defined by coupled system of
equations for displacement u and temperature increment θ in domain Ω [1–4]:

−div (k grad θ) = f. (1)

−μΔu − (λ + μ) grad divu + α grad θ = 0, (2)

Here μ, λ are Lame constants, k is heat conduction coefficient, c is strain-free
volumetric heat capacity, α = αT (3λ+2μ), where αT is linear thermal expansion
coefficient, ε is strain tensor:

ε =
1
2
(∇u + (∇u)T ),

and σ is stress tensor:
σ = λ∇uI + 2με.

Here I defines unit tensor.
Also Eqs. (1) and (2) are supplemented with appropriate boundary condi-

tions:

σn = 0, x ∈ Γu
N , u = u0, x ∈ Γu

D,

−k
∂θ

∂n
= 0, x ∈ ΓT

N , θ = θ0, x ∈ ΓT
D ,

where ∂Ω = Γu
D + Γu

N = Γ θ
D + Γ θ

R.

3 Approximation by Space

For numerical solution, we rewrite Eqs. (1) and (2) in weak form, using integra-
tion by parts to eliminate second derivatives [5–10].

Let H = L2 (Ω) be the Hilbert space for temperature increment with follow-
ing scalar product and norm:

(u, v) =
∫

Ω

u(x) v(x) dx, ||u|| = (u, u)1/2,

and H = (L2 (Ω))d be space for displacement, where Ω ∈ R
d, d = 2, 3.

Then letting test functions q and v vanish on the appropriate Dirichlet bound-
aries Γ θ

D and Γu
D , respectively, where solutions are known, we receive following

variational problem: find θ ∈ Vθ and u ∈ Vu such that
∫

Ω
(k grad θ, grad q)dx +

∫
Ω

f q dx ∀q ∈ V̂θ = 0, (3)
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∫
Ω

σ(u) ε(v)dx +
∫

Ω
α( grad θ,v)dx = 0 ∀v ∈ V̂u, (4)

where test spaces V̂θ and V̂u are defined by

V̂θ = {q ∈ H1(Ω) : q(x) = 0, x ∈ Γ θ
D},

V̂u = {v ∈ Hd(Ω) : v(x) = 0, x ∈ Γu
D},

and the trial spaces Vθ and Vu are shifted from test spaces by the Dirichlet
boundary conditions:

V̂θ = {q ∈ H1(Ω) : q(x) = θ0, x ∈ Γ θ
D},

V̂u = {v ∈ Hd(Ω) : v(x) = u0, x ∈ Γu
D}.

Further, we define the following bilinear and linear forms on the defined
spaces

b(θ, q) =
∫

Ω

(k grad θ, grad q)dx, l(q) = (f, q) =
∫

Ω

f q dx,

a(u,v) =
∫

Ω

σ(u) ε(v)dx, g(θ,v) =
∫

Ω

α( grad θ, v)dx.

Then problem becomes: find θ ∈ Vθ and u ∈ Vu that satisfy the following
relations

b(θ, q) + l(q) = 0 ∀q ∈ V̂θ, (5)

a(u,v) + g(θ,v) = 0 ∀v ∈ V̂u. (6)

Note that these parts of problem are solved successively. First, we find dis-
tribution of temperature field from (5). And then we use it for calculation of
displacement in (6).

4 Numerical Results

The object of research is ceramic substrates with metallization, which are used
for the manufacturing of LED modules. During the creation process these sub-
strates are subjected to significant heating, thereby an elastically-stressed state
occurs, which leads to cracking of the substrate in some cases.

One of the ways of improvement is the minimization of the elastic stresses
in the ceramic substrate with metallization. To find solution of this problem we
need calculate elastic stress state of ceramic substrates under the influence of
thermal stress raises.

The substrate has the length of 130 mm, the width of 72 mm and the thickness
of 0.635 mm and 0.03 mm for ceramic and metal layers, respectively. On both
sides it has technological holes of 1 mm and 1.5 mm diameter. Also the ceramic
side has deepening of 0.2 mm with width of 0.1 mm. The full geometry of the
object is shown in Fig. 1.
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Fig. 1. Ceramic substrate geometry

To verify the model with the experimental data we use the temperature
distribution along the middle line of the substrate. The boundary conditions for
heating and cooling the substrate are modeled by appropriate Robin boundary
conditions corresponding to convection with ambient air and metal rails. In this
case the heat flux is modeled as convection with strongly heated air. These
boundary conditions can be represented as following equations:

k
∂θ

∂n
= βi(θ − θi), x ∈ Γi, i = 1, 2, 3, 4, (7)

where k is coefficient of thermal conductivity, βi is heat transfer coefficient
with air when i = 1, 4 and with metal when i = 2, 3, θi is difference between

Γ1

Γ4

Γ4Γ4

Γ2 Γ3

Ω1

Ω2

Fig. 2. Boundaries and domains in a slice
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temperature of i-th boundary and initial temperature of substrate. Respective
boundaries of heat flux Γ1, convection with rails Γ2, Γ3 and air Γ4, also ceramic
layer Ω1 and metal layer Ω2 domains represented in Fig. 2.

For the following values: k = 20W/(m·K) for ceramic and k = 400W/(m·K)
for metallization, β1,4 = 5W/(m2·K), β2,3 = 400W/(m2·K), θ1 = 270C0, θ2 =
90C0, θ3 = 75C0 and θ4 = 95C0, temperature distribution along the midline
was obtained, which agrees with field experiments. In Fig. 3 a comparison of the
temperature along the midline for the model and experiment is shown.

Fig. 3. Temperature distribution along the middle line (experiment, model)

Fig. 4. Computational domain
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In this work the simulation is performed using the first-degree polynomial
approximation for temperature and first-degree for displacement. To solve the aris-
ing system of linear equations a standard direct method of ILU-factorization is
used. A collection of free software FEniCS [11] is used for the numerical solution,
and open-source application Paraview is used for visualization of the results.

For numerical modeling of thermoelasticity problem for ceramic substrate
with metallization three grids containing about 250 000, 450 000 and 1 000 000
cells are used. These grids were made in Netgen mesh generator program. As for
example, the finest grid with more than million cells is shown in Fig. 4. As results
of numerical computation temperature distribution across the substrate (Fig. 5)
and von Mizes stress distribution in technological hole (Fig. 6) are presented.

Fig. 5. Temperature distribution

Fig. 6. Mizes stress distribution in technological hole
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Table 1. Dependence of computation time (in seconds) from number of processes for
different grids

Grid size Number of processes

1 2 4 8 16 32

250 000 119 87 53 44 49 53

450 000 199 133 87 70 78 86

1 000 000 433 347 206 181 161 160

To illustrate the effectiveness of parallelization on a cluster, a series of compu-
tational experiments on three grids with different amounts of running processes
are made. The results of gained dependence of computation time from number
of processes are given in Table 1.

Table 1 shows the effectiveness of parallelization on different amount of run-
ning processes. Note that the effectiveness is evident for all presented grids. More-
over, for each grid we have optimal number of running processes. For instance,
the first and second grids have the fastest computation when 8 processes are
used. And for the third grid it is optimal to use 16 processes, as further growth
of the computational resources does not gain any acceleration.
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Abstract. This paper presents a fast direct solver for 3D discretized
linear systems using the supernodal multifrontal method together with
low-rank approximations. For linear systems arising from certain par-
tial differential equations (PDEs) such as elliptic equations, during the
Gaussian elimination of the matrices with Nested Dissection ordering, the
fill-in of L and U factors loses its sparsity and contains dense blocks with
low-rank property. Off-diagonal blocks can be efficiently approximated
with low-rank matrices; diagonal blocks approximated with semisepara-
ble structures called hierarchically semiseparable (HSS) representations.
Matrix operations in the multifrontal method are performed in low-rank
arithmetic. We present efficient way to organize the HSS structured oper-
ations along the elimination. To compress dense blocks into low-rank or
HSS structures, we use effective cross approximation (CA) approach.
We also use idea of adaptive balancing between robust arithmetic for
computing the small dense blocks and low-rank matrix operations for
handling with compressed ones while performing the Gaussian elimina-
tion. This new proposed solver can be essentially parallelized both on
architecture with shared and distributed memory and can be used as
effective preconditioner. To check efficient of our solver we compare it
with Intel MKL PARDISO - the high performance direct solver. Mem-
ory and performance tests demonstrate up to 3 times performance and
memory gain for the 3D problems with more than 106 unknowns. There-
fore, proposed multifrontal HSS solver can solve large problems, which
cannot be resolved by direct solvers because of large memory consump-
tions.

1 Introduction

Solving systems of linear algebraic equations (SLAE) is one of the fundamental
important problems in computational mathematic. Usually these SLAEs arise
from discretization of partial differential equations (PDEs). The common prop-
erty of them is the high sparsity. Lets we have a system

Ax = b, (1)

where A ∈ RN×N is the result of descritization a PDF. High sparsity means that
number of nonzero elements is about O(N). There are two basic ways to solve
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 371–378, 2015.
DOI: 10.1007/978-3-319-20239-6 41
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such systems: iterative methods and direct ones. Iterative methods are based on
sequential multiplying matrix A on some vector and on the using precondition
technique. These methods are very efficient in memory usage. But they may
diverge or convergence can be very slow if preconditioner is not so good.

Directs methods are reliable and efficient for many right hand sides, but very
expensive because of matrix loss of sparsity during factorization process. Redus-
ing fill-in of L(U) factors can be done by using reordering technique: permute
columns and rows of initial matrix A before factorization process. Nested Dis-
section (ND) approach is one of the effective well known reordering algorithms
[1]. In this algorithm, the matrix A is associated with mesh which is recursively
divided by small sets of mesh points (separators). However, some preconditioned
iterative methods (such as Multigrid ones) are faster for many 3D problems.

Nowadays new popular approaches of additional decreasing memory of direct
solvers are based on low-rank properties. During the factorization process of
matrix A, raised from some PDEs (such as elliptic equations), certain off-
diagonal blocks of Shur complements and L(U) factors are dense and can be
well approximated by low-rank blocks [2]. The diagonal blocks also have dense
structure and can be effective compressed into HSS format. This format and
HSS matrix arithmetic was proposed by Hackbusch [3]. Modern multifrontal
HSS algorithms of solving sparse SLAEs are based on ND technique and low-
rank/HSS approximation [5–8]. They are efficient and compatible with iterative
solvers for 3D problems. For example, on 3D parallelepipedal mesh with n nodes
in each direction and by using 7-point discretization stencil the number of oper-
ations P to compute L(U) factors (without reordering) is O(n7) and number
of non-zero elements Q is O(n5). Reordering technique reduces these numbers
down to P = O(n4) and Q = O(n3).

In this paper we propose algorithm based on ND and low-rank/HSS tech-
niques. High quality is based on the proposed features, i.e.:

– Using adopt low-rank approximation while Gauss elimination process;
– Applying CA algorithm to compress dense blocks of Shur-complement ;
– Using memory saving algorithm of factorization diagonal blocks, which are

written in HSS format [9];
– Improve accuracy of solution by using iterative refinement technique.

2 Description of the Algorithm

There are three stages of the algorithm: reordering, factorization and solving.
To simplify the understanding let consider the matrix A as the result of finite
difference approximation the Laplace equation on the parallelepepidal mesh n1×
n2 × n3 with 7-point stencil. So the pattern of A is 7-diagonal (Fig. 1, left);
L-factor is banded with width n1n2 (Fig. 1, right).

Reordering technique is based on row and column permutation of the
initial matrix A. The details of ND reordering are described in [1]. As result of
reordering we have matrices Â = PAP t and L̂L̂t = Â with some complicated
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321 nnn
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321 nnn

21nn

21nn

21nn

Fig. 1. Pattern matrix A for the 7-point stencil in 3D domain (left) and for it L-factor
(right).

structure, but the number of non-zero elements in L̂ less than in L (Fig. 3, left).
So, the solution the system (1) equivalent the solution of the next one:

⎧
⎪⎪⎨

⎪⎪⎩

b̂ = Pb

Â = PAP t

Âx̂ = b̂
x = P tx̂

. (2)

Let me note that permutation matrix P is the permutation vector with
size N .

The second stage is the factorization of Â. It based on multi-level algorithm
which are discribed in details in papers [6,7]. To improve the performance, the
columns of Schur complement and L-factors are incorporated into panels. Dur-
ing Gauss elimination process these panels become wider, denser and can be
effectively approximated by low-rank technique.

Definition 1. Matrix F ∈ Rm×n can be low-rank approximated if there are two
matrices U ∈ Rm×k and V ∈ Rn×k which satisfied the condition:

‖UV t − F‖
‖F‖ < ε, (3)

for some ε. In practice, k is very small. The rankε of a matrix F is the minimum
k, such that (3) is true.

One of the important issue of Gauss elimination process is making decision
“Should be the block of Shur complement approximated or not?”. Well-known
way is using switching level parameter [6,7]. In our approach we use more flexible
criteria when the compress coefficient is estimated for each block.

Definition 2. The compressing coefficient is CC = k(m + n)/mn, where the
(m + n)k elements need to store U and V ; mn to store F .
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If CC ≥ 1, so dense block F does not change; if CC < 1 then low-rank
approximation is using instead of F and matrix-vector multiplications are per-
formed in low-rank arithmetic. To compress F , the CA approach is using. It is
faster than well-known truncated SVD and rank revealing QR factorization [4].

The diagonal blocks cannot be approximated by low-rank matrices because
they are well-conditioned. The technique of HSS approximation is very efficient
for such blocks. The main idea of HSS approximation of some dense matrix F
is representative it in 2 × 2 blocks, where off-diagonal blocks can be low-rank
approximated (Fig. 2, left).

ttUBU 336

tUBU 2111D

2DttUBU 112

tUBU 5444D

5D
ttUBU 445

tUBU 633

tUBU 21111F

22FttUBU 112

Fig. 2. HSS format of matrix F (2-level – left image and 3-level – right one).

The diagonal blocks can be divided on two diagonal and two off-diagonal sub-
blocks, which can be low-rank approximated as well (Fig. 2, right). This process
is performed recursively while compression coefficient less than 1.

Low-rank/HSS compression is performed on the fly during factorization
process. I.e. to handle with the panel Ai of matrix Â Shur complement Fi is
computed, compressed and factorized either in dense or low-rank/HSS arith-
metic. As result, the pattern of L-factor of matrix Â has the structure which is
presented on Fig. 3 (right). In fact it is not LLt decomposition of matrix Â, but
can be considered as decomposition L̃L̃t of some matrix Ã.

The solving stage consist of Forward step (solve L̃y = b) and Backward step
(solve L̃tx = y). Before Forward step, right hand side (rhs) should be permuted
by reordering matrix P : b′ = Pb. Solution vector should be reordered come back
after Backward step : x = P tx′.

Matrix L̃ has block structure, so to inverse L̃ the matrix-vector operation
are performed. If block has low-rank/HSS structure, so its arithmetic is used; if
block is dense, so standard dense operations are performed.

To improve quality of solution the iterative refinement process is performed:

x0 = Ã−1b
r0 = b − Âx0

while ||ri||
||b|| < ε do

ri = b − Âxi

δxi = Ã−1ri

xi+1 = xi + δxi



Multifrontal Hierarchically Solver for 3D Discretized Elliptic Equations 375

Let me note, that this process can be diverge because of poor quality of
low-rank/HSS approximation.

Fig. 3. Pattern matrix L̂ after ND reordering (left) and L̃ after HSS/Low-rank approx-
imation (right).

The current version of programm has been implemented and tested for the
acoustic problem in 3D parallelepipedal computational domain. The Helmholtz
equation is approximated on the parallelepipedal grid by finite difference app-
roach. The second order approximation on 7-point stencil is used. On the all
external faces we set Perfect Matching Layer (PML) boundary condition, so our
matrix in SLAE is complex symmetric (non-Hermitian).

3 Numerical Experiments

We performed testing to check the correctness, performance and memory con-
sumption of program implementation for proposed algorithm. In the first exam-
ple we show the correlation between the relative residual ‖f − Ax‖/‖f‖ with
internal low-rank accuracy εin. The second and third tests show the mem-
ory consumption and performance dependence on low-rank accuracy εin. At
the fourth example we investigate the behavior of memory and performance
consumption while increasing the size of problem. In each tests we compare
proposed HSS solver with high performance Intel MKL PARDISO direct solver
which is optimized on multi-core systems with shared memory. All computa-
tional were performed on server Intel(R) Xeon(R) CPU E5-2690 v2 3.0 GHz,
(Sandy Bridge) with 512 GB RAM. To make clear experiments we try to avoid
impact of OMP parallelization of all MKL functions by switching off threading
(set OMP NUM TREADS=1).

The first three test were computed in homogenius media on 141 × 141 × 141
mesh with the size domain 1000 m × 1000m × 1000m. The wave velocity is
1500m/s, frequency ν = 12Hz. Th PML layer has ten points in each direction.
Internal accuracy is varied from 10−4 to 10−15.
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The first example demonstrates the strong dependence of residual ‖f −
Ax‖/‖f‖ on the εin (Fig. 4, bold line). If this accuracy increased up to 10−15,
the residual of HSS archives the similar quality like PARDISO solver (Fig. 4,
thin line).

The second test shows that the memory gain against PARDISO is increasing
linearly (in log scale) while decreasing the low-rank accuracy (Fig. 5). It achives
up to 2.5 for εin = 10−4. Let me note that number of non-zero elements in
L-factor of PARDISO for this task (number of unknowns is 2.8 ∗ 106 ∼ 141 ×
141 × 141) is 3.5 ∗ 109 elements.

In performance tests we switch on the iterative refinement step to achieve
the high residual like in PARDISO (10−14). The number of right hand sides is
increased up to 500. Performance behavior of factorization step is decreasing as
well as memory behavior (Fig. 6, bold dashed line).

Factorization time is up to 3.5 times faster than PARDISO for the low accu-
racy (εin = 10−4, Fig. 6, thin dashed line). However, the total timing for the
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Table 1. Trend of increasing memory and factorization time on cube domain

Memory to store L-factors Factorization time

PARDISO O(n4.2) O(n6.2)

HSS O(n3.3) O(n4.2)

same εin is large than for bigger ones (εin = 10−5 . . . 10−6) because of increasing
number of iterations for the lowest accuracy.

To investigate the trend of time and memory increasing while increasing size
domain, we perform computing on mesh n×n×n with different n = 101 . . . 301.
The order of increasing time and memory both for PARDISO and HSS solvers
is presented in the Table 1.

As result, the memory behavior is better than in PARDISO (about 1 order),
the performance is better as well (about 2 order).

4 Conclusions

Algorithm of solving 3D discretized elliptic equations based on Nested Dissection
reordering and low-rank/HSS techniques has been developed and tested.

High performance of proposed algorithm is based on the using nowadays fea-
tures: adopt low-rank approximation, applying Cross Approximation algorithm,
using memory saving HSS-factorization algorithm and improve accuracy of solu-
tion by using iterative refinement technique.

Validation tests show high quality of program implementation. Memory and
performance tests demonstrate up to 3 times performance and memory gain for
the 3D problems with more than 106 unknowns in compare with PARDISO Intel
MKL.
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Abstract. The article describes the rare mesh scheme based on finite
element method, describes the methods of constructing such schemes are
described arrangements of nodes, describes methods of calculation tasks
based on rare mesh schemes, the problem of static, Numerical solutions of
different tasks based on rare mesh scheme circuit compares the results
with the known systems.

1 Introduction

Principles of construction and use of openwork patterns FEM presented in [1,2].
The basis of such schemes is an rare mesh of finite elements. At the same time
for an rare mesh hexagonal cell is broken down into five tetrahedra (Fig. 1), left
central tetrahedron remaining tetrahedra removed. The resulting rare mesh com-
pared with the traditional grid consisting of tetrahedra solid way to fill the entire
volume is five times smaller elements and almost half the nodes (Figs. 2, 3 and 4).

Fig. 1. Rare mesh element

2 Solving Static Problems Based Rare Scheme

Numerical implementation of solutions of static problems in elastic formulation is
based on the finite element approximation of the variational equation (principle
of virtual displacements)

∫

V

σijδεij dV =
∫

V

ρFiδuidV +
∫

Sp

PiδuidS, (1)

c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 379–384, 2015.
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Fig. 2. Rare pattern grid

Fig. 3. Elements rare mesh filling pattern

where V – the amount of elastic isotropic body, on some part of the boundary
surface is configured for load; - components of the stress tensor; σij – components
of the linear strain tensor; ui – components of the displacement vector; Fi and
Pi - components, respectively, mass and surface loads ρ – density. Displacement,
rotation angles are considered small deformation

εij =
1
2

(ui,j + uj,i), (2)

deformation associated with the stresses by Hooke’s law

σij = λδijεkk + 2μεij , (3)

where λ and μ – Lame parameters.
Discusses the implementation options rare FEM scheme based on linear quad-

rangular element. Distribution of displacements in the elements taken linear
strain and stress are considered permanent. Bulk and surface forces acting on
the tetrahedra removed and their surfaces are distributed among nodes of ele-
ments involved in the calculation. On uniform grids this delicate scheme has
second-order approximation.
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Fig. 4. The regular grid nodes involved in the calculations

As is customary in the FEM, will not use the tensor, and matrix- vector form
of the relations. Vector finite element nodal displacements denote

(u)T =
(
u1
1, u

2
1, u

3
1, u

1
2, u

2
2, u

3
2, u

1
3, u

2
3, u

3
3, u

1
4, u

2
4, u

3
4

)
, (4)

component vectors of linear strain and stress tensor (by symmetry we consider
only six components), respectively

(εεε)T = (ε11, ε22, ε33, γ12, γ23, γ31), (5)

(σσσ)T = (σ11, σ22, σ33, σ12, σ23, σ31), (6)

matrix of the elastic constants of an isotropic material

(C) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ + 2μ λ λ
λ λ + 2μ λ 0
λ λ λ + 2μ

μ 0 0
0 0 μ 0

0 0 μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

matrix differential operator

(B) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1
1 0 0 β1

2 0 0 β1
3 0 0 β1

4 0 0
0 β2

1 0 0 β2
2 0 0 β2

3 0 0 β2
4 0

0 0 β3
1 0 0 β3

2 0 0 β3
3 0 0 β3

4

β2
1 β1

1 0 β2
2 β1

2 0 β2
3 β1

3 0 β2
4 β1

4 0
0 β3

1 β2
1 0 β3

2 β2
2 0 β3

3 β2
3 0 β3

4 β2
4

β3
1 0 β1

1 β3
2 0 β1

2 β3
3 0 β1

3 β3
4 0 β1

4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)

where

βm
s =

1
D

∣
∣
∣
∣
xn
p − xn

4 xk
p − xk

4

xn
q − xn

4 xk
q − xk

4

∣
∣
∣
∣
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βm
4 = −βm

1 + βm
2 − βm

3 , m = 1, 2, 3, s = 1, 2, 3, index sequence mnk and spq
form a cyclic permutation of the sequence numbers 123,

D =

∣
∣
∣
∣
∣
∣
∣
∣

1 x1
1 x2

1 x3
1

1 x1
2 x2

2 x3
2

1 x1
3 x2

3 x3
3

1 x1
4 x2

4 x3
4

∣
∣
∣
∣
∣
∣
∣
∣

(x1
i , x

2
i , x

3
1) – coordinates of the i node of the final (i = 1, 2, 3, 4).

In matrix form the Cauchy (2), Hooke’s law (3) and the total potential energy
of a single element can be written as

(εεε) = (B)(u), (9)

(σσσ) = (C)(εεε) = (C)(B)(u), (10)

Π =
1
2
(u)T (K)(u) − (u)T (q), (11)

where (K) – stiffness matrix element

(K) =
∫

Vi

(B)T (C)(B)dV,

(q) – vector of nodal forces statically equivalent to the current element of the
distributed mass and surface forces.

Stationarity condition (1) energy functional leads to a system of linear alge-
braic equations of equilibrium of the body, which is modified by the boundary
conditions on the movement. Solving the resulting system with respect to dis-
placement or direct iterative method defined nodal displacements whole compu-
tational domain and the formulas (9) and (10) components are calculated strain
and stress tensors.

3 Solution of the Model Problem

We consider the problem of determining the elastic contact condition of a thick-
walled tube of finite length, compressing absolutely rigid plates parallel to the axis
of the tube. Inner radius of the tube - 5 cm, external radius of the tube - 10 cm,
length of the pipe - 60 cm, the offset of each rigid plate is squeezed at - 0.5 mm,
the modulus of elasticity of the material - 200 GPa, Poisson’s ratio - 0.3. Because
of the symmetry of the problem the design scheme is one-eighth of the pipe with
symmetry conditions on the respective planes (Fig. 5).

Contact problem solution implemented by planting nodes finite element mesh
beyond the plane of the junction, on the plane and iterative refinement to the
equilibrium conditions.

Figure 6 shows the convergence of the solution to the radial displacement
along the generator inside of the tube beneath the contact zone, with nested
grids. Opening 10 contains a grid of elements through the thickness of the pipe
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Fig. 5. Calculation scheme

elements 16 in the circumferential direction of elements 60 and along the pipe.
In two subsequent calculations the number of elements in each direction, respec-
tively, increased in two and four -fold compared to the initial mesh.

The solution obtained using the openwork scheme compared with the solu-
tion of a similar formulation obtained in the system ANSYS. The comparison
results in the radial displacement along the generatrix of the inner surface of
the tube, beneath the contact zone, for one embodiment, the calculations are
shown in Fig. 7. As can be seen, solutions give a good qualitative and quanti-
tative agreement with the exception of a small (1 item) zone of the edge effect
near the free end of the tube.

Fig. 6. Convergence solutions

The obtained results of model problems demonstrate the feasibility and effec-
tiveness of the use of openwork schemes for static elasticity problems.
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Fig. 7. Comparison of solutions

Conclusion

From the examples and descriptions of the method of construction and cal-
culations based on rare mesh scheme based on finite element method can be
concluded that the using of this scheme provides significant gains over time, and
the use of super rare mesh scheme winning time increases even almost doubled.
At the same time a significant loss of accuracy compared to other schemes not
observed. Thus the using of rare mesh circuit on models with a very large number
of constituent elements leads to a significant gain in time.
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Abstract. Among inverse problems for PDEs we distinguish coefficient
inverse problems, which are associated with the identification of the right-
hand side of an equation using some additional information. When con-
sidering time-dependent problems, the identification of the right-hand
side dependences on space and on time is usually separated into individ-
ual problems. We have linear inverse problems; this situation essentially
simplify their study. This work deals with the problem of determining in
a multidimensional parabolic equation the right-hand side that depends
on time only. To solve numerically a inverse problem we use standard
finite difference approximations in space. The computational algorithm
is based on a special decomposition, where the transition to a new time
level is implemented via solving two standard elliptic problems.

1 Introduction

In the theory and practice of inverse problems for partial differential equations
(PDEs), much attention is paid to the problem of the identification of coefficients
from some additional information [1,2]. Particular attention should be given to
inverse problems for PDEs [3,4]. In this case, a theoretical study includes the
fundamental questions of uniqueness of the solution and its stability from the
viewpoint of the theory of differential equations [4,5]. Many inverse problems
are formulated as non-classical problems for PDEs. To solve approximately these
problems, emphasis is on the development of stable computational algorithms
that take into account peculiarities of inverse problems [6,7].

Much attention is paid to the problem of determining the right-hand side,
lower and leading coefficients of a parabolic equation of second order, where,
in particular, the right-hand side and the coefficients depends on time only. An
additional condition is most often formulated as a specification of the solution
at an interior point or as the average value that results from integration over the
whole domain. The existence and uniqueness of the solution to such an inverse
problem and well-posedness of this problem in various functional classes are
examined, for example, in the book [5].

Numerical methods for solving problems of the identification of the right-
hand side, lower and leading coefficients for parabolic equations are considered
in many works. In view of the practical use, we highlight separately the studies
c© Springer International Publishing Switzerland 2015
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dealing with numerical solving inverse problems for multidimensional parabolic
equations [7,8]. Approximation in space is performed using the standard finite
differences or finite elements. In this paper, for a multidimensional parabolic
equation, we consider the problem of determining the right-hand side of an
equation that depends on time only. Non-classical problems at every time level
are solved on the basis of a special decomposition into two standard elliptic
problems.

2 Problem Formulation

For simplicity, we restrict ourselves to a 2D problem in a rectangle.
Let x = (x1, x2) and

Ω = {x | x = (x1, x2) , 0 < xα < lα, α = 1, 2}.

The direct problem is formulated as follows. We search u(x, t), 0 ≤ t ≤ T, T > 0
such that it is the solution of the parabolic equation of second order:

∂u

∂t
− div(k(x)gradu) = p(t)ψ(x, t), x ∈ Ω, 0 < t ≤ T. (1)

The boundary and initial conditions are also specified:

k(x)
∂u

∂n
= 0, x ∈ ∂Ω, 0 < t ≤ T, (2)

u(x, 0) = u0(x), x ∈ Ω, (3)

where n is the normal to Ω. The formulation (1)–(3) presents the direct problem,
where the right-hand side, coefficients of the equation as well as the boundary
and initial conditions are given.

Let us consider the inverse problem, where in Eq. (1), the coefficient p(t) is
unknown. An additional condition is often formulated as

∫

Ω

u(x, t)ω(x)dx = ϕ(t), 0 < t ≤ T, (4)

where ω(x) is a weight function. In particular, choosing ω(x) = δ(x−x∗) (x∗ ∈
Ω), where δ(x) is the Dirac δ-function, from (4), we get

u(x∗, t) = ϕ(t), 0 < t ≤ T. (5)

We assume that the above inverse problem of finding a pair of u(x, t), p(t)
from Eqs. (1)–(3) and additional conditions (4) or (5) is well-posed. The corre-
sponding conditions for existence and uniqueness of the solution are available
in the above-mentioned works. In the present work, we consider only numerical
techniques for solving these inverse problems omitting theoretical issues of the
convergence of an approximate solution to the exact one.
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3 Semi-discrete Problem

To solve numerically the parabolic problem, we introduce the uniform grid in
the domain Ω:

ω =
{
x | x = (x1, x2) , xα =

(
iα +

1
2

)
hα, iα = 0, 1, ..., Nα,

(Nα + 1)hα = lα, α = 1, 2
}

.

For grid functions, we define the Hilbert space H = L2 (ω), where the scalar
product and norm are given as follows:

(y, w) ≡
∑

x∈ω

y (x)w (x) h1h2, ‖y‖ ≡ (y, y)1/2
.

The difference operator for the diffusion transport D has the following addi-
tive representation:

D =
2∑

α=1

Dα, α = 1, 2, x ∈ ω, (6)

where Dα, α = 1, 2 are associated with the corresponding differential operator
in one spatial direction.

For all nodes except ajoining the boundary, and for sufficiently smooth dif-
fusion coefficients k(x), the grid operator D1 can be written as:

D1y = − 1
h2
1

k(x1 + 0.5h1, h2)(y(x1 + h1, h2) − y(x))

+
1
h2
1

k(x1 − 0.5h1, h2)(y(x) − y(x1 − h1, h2)),

x ∈ ω, x1 �= 0.5h1, x1 �= l1 − 0.5h1.

At the nodes ajoining the boundary, approximation should take into account
the boundary condition (2):

D1y = − 1
h2
1

k(x1 + 0.5h1, h2)(y(x1 + h1, h2) − y(x)),

x ∈ ω, x1 = 0.5h1,

D1y =
1
h2
1

k(x1 − 0.5h1, h2)(y(x) − y(x1 − h1, h2)),

x ∈ ω, x1 = l1 − 0.5h1.
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The grid operator D2 is constructed in a similarly way. Direct calculations yield
(see, e.g., [9,10]):

Dα = D∗
α ≥ 0, α = 1, 2.

This grid operator of diffusion approximates the corresponding differential
operator with an accuracy of O

(|h|2). As in the differential case, the difference
operator of diffusive transport (6) is self-adjoint and positive definite in H:

D = D∗ ≥ 0. (7)

In view of (7), we can obtain the corresponding a priori estimates for the solution
of the boundary value problem (1)–(3) in H that ensure the stability of the
solution with respect to the initial data and the right-hand side.

After discretization in space, from the problem (1)–(3), we arrive at the
Cauchy problem for the semi-discrete equation:

dy

dt
+ Dy = p(t)ψ(t), 0 < t ≤ T, (8)

y(0) = u0. (9)

For Cauchy problem (8), (9) we have

‖y(t)‖ ≤ ‖u0‖ +
∫ t

0

p(θ)‖ψ(θ)‖dθ. (10)

The a priori estimate (10) holds in the Banach space of grid functions L∞(ω),
where

‖ · ‖ = ‖ · ‖∞, ‖y‖∞ ≡ max
x∈ω

|y|.

This fact can be established on the basis of the maximum principle for grid func-
tions and the relevant comparison theorems [9] taking into account the diagonal
dominance of the matrix (operator) D.

4 Time-Stepping Techniques

Let us define a uniform grid in time tn = nτ, n = 0, 1, ..., N, τN = T and denote
yn = y(tn), tn = nτ . We start with discretization in time for the numerically
solving direct problem (8), (9). To solve numerically boundary value problems
for transient diffusion Eq. (1) we use unconditionally stable implicit scheme

yn+1 − yn

τ
+ Dyn+1 = pn+1ψn+1, n = 0, 1, ..., N − 1. (11)

The initial condition (9) yields
y0 = u0. (12)
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The difference solution of the problem (11), (12) satisfies the following level-wise
estimate in L∞(ω):

‖yn+1‖ ≤ ‖yn‖ + τpn+1‖ψn+1‖, n = 0, 1, ..., N − 1. (13)

The estimate (13) is a discrete analog of the estimate (11) for the solution of
the problem (8)–(10). To prove (13), we cam apply the maximum principle for
grid functions [9]. The second possibility to check the a priori estimate (13) is
associated with the use of the concept of the logarithmic norm.

5 Algorithm for Solving the Inverse Problem

For the fully discretized (both in space and in time) direct problem (1)–(3), we
can solve the inverse problem of the identification of the right-hand side p(t). We
restrict ourselves to the case, where an additional information on the solution is
defined (see (5)) at some interior node x∗ ∈ ω of the grid:

yn+1(x∗) = ϕn+1, n = 0, 1, ..., N − 1. (14)

For the approximate solution of the problem (11), (12), (14) at the new time
level yn+1, we introduce the following decomposition (see, e.,g., [7,8]):

yn+1(x) = vn+1(x) + pn+1wn+1(x), x ∈ ω. (15)

To find vn+1(x), we employ the equation

vn+1 − yn

τ
+ Dvn+1 = 0, n = 0, 1, ..., N − 1. (16)

The function wn+1(x) is determined from

1
τ

wn+1 + Dwn+1 = ψn+1, n = 0, 1, ..., N − 1. (17)

Using the decomposition (15)–(17), Eq. (11) holds automatically for any pn+1.
To evaluate pn+1, we apply the condition (14). The substitution of (15) into

(14) yields

pn+1 =
1

wn+1(x∗)
(ϕn+1 − vn+1(x∗)). (18)

The fundamental point of applicability of this algorithm is associated with the
condition wn+1(x∗) �= 0. The auxiliary function wn+1(x∗) is determined from
the grid elliptic Eq. (17). The property of having fixed sign for wn+1(x∗) is
followed, in particular, from

ψn+1(x) ≥ 0, x ∈ ω, ‖ψn+1‖ > 0, n = 0, 1, ..., N − 1.

Such constraints on the solution can be provided by the corresponding restric-
tions on the input data of the inverse problem.
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6 Numerical Examples

To demonstrate possibilities of the above schemes for solving the right-hand side
identification problem for the parabolic equation, we consider a model problem.
In the examples below, we consider the problem in the unit square (l1 = l2 = 1).
Suppose

k(x) = 1, ψ(x, t) = x1x2, u0(x) = 1, x ∈ Ω.

The problem is considered on the grid N1 = N2 = 51, the observation point is
located at the square centre (x∗ = (0.5, 0.5)). The coefficient p(t) is taken in the
form

p(t) =
{

1000t, 0 < t ≤ 0.5T,
0, 0.5T < t ≤ T.

The solution of the direct problem (1)–(3) at the observation point is depicted
in Fig. 1. The solution at the final time moment (T = 0.1) is presented in Fig. 2.

Fig. 1. The solution of the direct problem at the point of observation

The results of solving the inverse problem with various grids in time are shown
in Fig. 3. To study the influence of parameters of the computational algorithm,
we need to use the same input data. In our case, as the input data we use
the numerical solution of the direct problem obtained using a very fine grid in
time. The solution of the direct problem obtained with N = 1000 is employed
as the input data (the function ϕ(t) in the condition (5)). It is easy to see that
the approximate solution of the inverse problem converges with decreasing the
time step.
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Fig. 2. The solution of the direct problem at t = T

Fig. 3. The solution of the inverse problem
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Abstract. An open geothermal system consisting of injection and pro-
ductive wells is considered. Hot water from production well is used and
became cooler, and injection well returns the cold water into the aquifer.
To simulate this open geothermal system a three–dimensional nonsta-
tionar mathematical model of the geothermal system is developed tak-
ing into account the most important physical and technical parameters
of the wells to describe processes of heat transfer and thermal water
filtration in a aquifer. Results of numerical calculations, which, in par-
ticular, are used to determine an optimal parameters for a geothermal
system in North Caucasus, are presented. For example, a distance in the
productive layer between the point of hot water inflow and of cold water
injection point is considered.

1 Introduction

A geothermal system is a system used for heating that utilizes the earth as a
heat source. Geothermal systems simply take advantage of the relatively con-
stant temperature within the earth. For example, in North Caucasus the earth’s
temperature ranges 90–102◦C at a depth of 900 m throughout the year.

Geothermal systems have the potential for significant savings in energy costs
and for reducing of oil and natural gas consumption. However, some of these
systems also have the potential for adverse environmental effects if installed or
operated improperly or if they use inappropriate materials. It is also important to
ensure a long-term service and appropriate heat efficiency of these installations.

Let consider an open geothermal system consisting of injection and produc-
tive wells. Hot water from production well is used and became cooler, and injec-
tion well returns the cold water into the aquifer. This cold water is filtered in
porous soil towards the inflow of hot water of the production well. It is required
to describe propagation of the cold front in the productive layer of water, depend-
ing on the different thermal soil parameters and initial data defined filtration
rate in the productive layer, and to answer the question about the time of the
system effective operation (operation of a geothermal system is stopped when
the front of the cold water will reach the inflow of the production well).
c© Springer International Publishing Switzerland 2015
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In simulations of underground flow, Darcy’s law and law of mass conservation
(continuity equation) are used [1]. A convection-diffusion equation with domi-
nant diffusion is considered. A system of equations for temperature in aquifer
is solved using a finite difference method based on an approach of works of
A.A.Samarskii and P.N.Vabishevich [2].

Let note that the model and the numerical algorithms are convenient (with
some adaptations) to simulate different problems of heat and mass transfer, for
example, to find thermal fields of underground pipelines [3,4] and the problems
related to phase transitions in the soil around engineering constructions [5–7] in
permafrost.

2 Mathematical Model and a Method of Solving
the Problem

Let consider a mathematical model of a Underground Water Source (Geothermal
Open Loop) Heat Pump System. A geothermal open loop (GOL) consists of two
wells: an injection well and a production well (Fig. 1), which are inserted into
as aquifer Ω as the heat source and sink. Water is taken from the aquifer by a
productive well (Ω1), circulated to the individual pump, cooled, and returned
via an injection well (Ω2). Let injection well has a cold water with temperature
T1(t), production well has a hot water with temperature T2(t).

Fig. 1. A model of Geothermal Open Loop.

Let T (t, x, y, z) be temperature in the aquifer, p = p(t, x, y, z) — pressure
field. Thermal exchange is described by equation

∂T

∂t
+ b

(
∂T

∂x
u +

∂T

∂y
v +

∂T

∂z
w

)
= λ0ΔT, (1)
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here b =
σρcf

ρ0c0(1 − σ) + ρcfσ
, λ0 =

κ0

ρ0c0(1 − σ) + ρcfσ
, ρ0 and ρf are density of

aquifer soil and of water, c0 and cf are specific heats of aquifer soil and of water,
κ0 is thermal conductivity coefficient of soil, σ is porosity, (u, v, w) is vector of
velocity of water filtration in the soil.

This equation is necessary to be considered with the following system,
describing the water filtration:

∂u

∂t
= −1

ρ

∂p

∂x
− gσu

k
,

∂v

∂t
= −1

ρ

∂p

∂y
− gσv

k
,

∂w

∂t
= −1

ρ

∂p

∂z
− gσw

k
− g,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(2)

In simulations described by Eq. (1) and (2) it is necessary to estimate a
distance a between the injection and productive wells due to the temperature in
the productive well be appropriate for the considered system.

9.02E+06

9.01E+06

9.03E+06

9.04E+06

9.05E
+06

9.
06

E
+0

6

9.09E+06

9.1E+06

9.16E+06

9.2E+069.
36

E+0
6

8.99E+06
8.98E+068.

9E
+0

6

9.03E+06

9.04E+06

x

y

0

1000

2000

3000

4000

5000

6000

x

y

0 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

1000

2000

3000

4000

5000

(a) (b)

Fig. 2. (a) — density, (b) — velocity.

After transformation of system (2) we get Laplace equation for pressure

∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
= 0 (3)

with corresponding boundary conditions. Pressure may be computed by method
Fig. 2 shows pressure distribution in an aquifer.

Let consider an exact solutions, which satisfy equations of water filtration in
the aquifer. For the surfaces Ω1 and Ω2 let conside the given pressure

P (t, x, y, z)
∣
∣
∣
Ω1

= P1 − ρgz, (4)
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and
P (t, x, y, z)

∣
∣
∣
Ω2

= P2 − ρgz. (5)

Let find the solution in the form

p = b1(t)x − ρgz + b0(t), (6)

where b1(t) and b2(t) are unkown functions. Taking into consideration (4) and
(5) this function has the form

p = −P2 − P1

a
x − ρgz + P1. (7)

Then, for the velocity u we get an ordinary differential equation

du

dt
= −1

ρ

P1 − P2

a
− gσu

k
, (8)

with the zero boundary condition u(0) = 0. Then the solution of Eq. (8) has the
form

u =
k(P1 − P2)

ρgσa

(
1 − e− gσt

k

)
. (9)

Thus, a partial solution of system (2) has a solution (9) and v = w = 0.
We have to note, that when the time tends to infinity, the solution tends to the
stationary

u∗ =
k(P1 − P2)

ρgσa
, (10)

Naturally, the resulting partial solution does not satisfy all the boundary and
initial conditions of the problem, but suggests that over time the problem under
consideration is a stationary regime. So in the model we can use a steady-state
flow to describe convective transport terms in Eq. (1).

After finding the pressure field, a vector of velocity of filtered water is deter-
mined in the aquifer.

On the base of ideas in [2] a finite difference method is used with splitting by
the spatial variables in three-dimensional domain to solve the problem (1)–(5).
We construct an orthogonal grid, uniform, or condensing near the ground surface
or to the surfaces of Ω1 and Ω2. The original equation for each spatial direction
is approximated by an implicit central-difference scheme and a three-point sweep
method to solve a system of linear differential algebraic equations is used.

3 Numerical Results

Let a computational domain be a parallelepiped 6000 m·6000 m·50 m size (Fig. 1).
The choice of such large computational domain is related with decreasing the
influence of boundary conditions. Mesh size is 201·201·51 = 2060451 nodes. Injec-
tion well is in point (2600 m, 3000 m), productive — in (3400 m, 3000 m). The dis-
tance between the wells is 800 m. Soil thermal parameters correspond to Hankal
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geothermal fields in the North Caucasus. The initial temperature of water in
the aquifer at a depth of 950–1000 m is 95◦C, temperature of the injected water
is 55◦C.

Computations are carried out with 1 day time step for 50 years and for
various pressures difference.

We present the results of calculations for the differential pressure between
production and injection wells 420000Pa. Figure 2 shows a typical pressure
(a) and velocity (b) distribution in the aquifer.
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Fig. 3. Temperature in aquifer for years of exploitation, ◦C.

The transition of filtered water allow to compute temperature in the aquifer
and to determine how the a cold injection well influences to the productive well.
Figure 3 shows a temperature distribution in (x, y)-plane after 5, 15, 30, and 50
years of exploitation of the system.

Figure 4 is an average temperature in productive well during the time.



398 N.A. Vaganova and M.Yu. Filimonov

5.0 95.0 95.0 95.0 95.0
94.5

93.0

90.0

86.6

83.4

80.9

79.1

years

T
,C

0 5 10 15 20 25 30 35 40 45 50 55
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Fig. 4. Temperature in productive well during the time of exploitation, ◦C.

4 Conclusion

Computations alows to choose an optimal parameters of an open geothermal
systems, in particular to determine an appropriate distance between injection
and production wells depending on the operating conditions of the geothermal
system. Taking into consideration a geothermal gradient allows to increase time
of the system operation. Note that many researchers do not consider this fac-
tor in the simulation, although the results obtained, for example, in [8] are in
qualitative agreement with our results.
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Abstract. We present an 1D numerical model of heat, steam, and water
transfer across a wall consisting of several layers of different materials.
The model is the system of coupled diffusion equations for wall temper-
ature; vapor pressure, and water concentration in material pores, with
account of vapor condensation and water evaporation. The system of
nonlinear PDEs is solved numerically using the finite difference method.
The main objective of modeling is simulation of long-term behavior of
building wall moisture distribution under influence of seasonal variations
in atmospheric air temperature and humidity.

1 Introduction

Simultaneous heat, steam, and moisture transfer with condensation and evap-
oration in porous materials is of practical importance in applications in civil
engineering. The transport of water vapor across building walls and its possible
condensation increases the thermal conductivity of the porous materials and may
cause structural damage. Complexity of the phenomenon and the large variety
of conditions under which it can proceed cause the development of new models
and approaches to the problem in a lot of research works. In particular, we can
refer the works [1–9].

The main goal of this paper is not the development of original model of the
phenomenon, but the presentation of a sufficiently precious and stable numerical
algorithm for solution of the model of coupled heat, steam, and moisture diffu-
sion, invented by Fokin K.F. in his book [10]. The Fokin model is widely used in
civil engineering practice in Russia for estimation of long term thermal and mois-
ture behavior in building envelopes [11]. The model is phenomenological model
based on simple, intuitive physical principles. The diffusion flux of each compo-
nent is proportional to gradient of corresponding variable: temperature, partial
pressure of steam, and water concentration. All parameters of the model can be
measured experimentally. Evolution equation for each component is the diffusion
equation. Mutual coupling between equations is performed by the dependence
of diffusion coefficients on moisture, and trough the source terms related to the
phase transitions. Main difficult in numerical solution of the model is connected
with variability in time of regions of vapor condensation.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 400–407, 2015.
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2 Mathematical Formulation of the Model

Model parameters. For definiteness, in this paper we will consider three-ply
wall. The thickness of wall layers is denoted as d1, d2, and d3 [m] respectively.
Let the first layer is the external (outward building) and the third layer is the
internal (inward building) layer of the wall. We will consider the fluxes of heat
and moisture in the direction traversal to wall only, – the direction along x axis.
The point L0 = 0 is the outer edge of external layer, the points L1 = d1 and
L2 = L1 +d2 are the interface points between layers, and the point L3 = L2 +d3
is the outer edge of internal layer.

The material of each layer is characterized by following parameters: density –
ρ [kg/m3]; heat capacity – c [kJ/(kg·K)]; coefficients of thermal – λ [kJ/(h·m·K)];
vapor – μ [g/(h·m·Pa)]; and hydraulic – β [g/(h·m·%)], conductivity. The para-
meters ρ, c, and μ are supposed to be constant in considered range of temperature
T [K] and moisture volumetric concentration ω [%], while other parameters can
depend on ω. For given material the dependencies λ(ω) and β(ω) used in calcula-
tions are polynomial interpolations of experimental measurements. Under equi-
librium conditions at constant temperature the relation between air humidity ϕ
and moisture ω is determined from experimentally measured sorption isotherm
ω = o(ϕ).

The external layer of the wall contacts with atmospheric air, and the inter-
nal layer contacts with building interior air. The air temperature Tex(t), Tin(t),
and humidity ϕex(t), ϕin(t) are given function of time t [h]. Heat exchange
between wall and air is determined by coefficients αex and αin [kJ/(h·m2·K)].
Steam exchange at the wall borders is determined by coefficients γex and γin
[g/(h·m2·Pa)].

Heat conductivity. The transversely heat transfer in each wall layer is described
by the heat conduction equation for the material temperature T (t, x):

cρ
∂T (t, x)

∂t
=

∂

∂x

(
λ(ω)

∂T (t, x)
∂x

)
+ Q(T, ω). (1)

The source term Q takes into consideration the latent heat of vapor conden-
sation and water evaporation (the water-ice transitions are not included in the
model).

At the wall borders and layer interfaces there are imposed boundary and
conjugation conditions:

− λ(ω)
∂T (t, x)

∂x

∣
∣
∣
∣
x=L0

= αex (Tex(t) − T (t, x))
∣
∣
∣
∣
x=L0

; (2)

T (t, Li − 0) = T (t, Li + 0),

λ(ω)
∂T (t, x)

∂x

∣
∣
∣
∣
x=Li−0

= λ(ω)
∂T (t, x)

∂x

∣
∣
∣
∣
x=Li+0

, i = 1, 2; (3)
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− λ(ω)
∂T (t, x)

∂x

∣
∣
∣
∣
x=L3

= αin (T (t, x) − Tin(t))
∣
∣
∣
∣
x=L3

. (4)

Vapor and liquid water conductivity. It is supposed that the water in wall mate-
rial can be in three forms: water vapor (steam), and mobile liquid water in
material pores, and immobile absorbed water rigidly connected with material
skeleton. The concentration of absorbed water ω depends upon local air humid-
ity in pores ϕ(t, x) and assumed to be equal to equilibrium concentration o(ϕ).
If ϕ < 1, the material contains only steam and absorbed water, the mass of
absorbed water in unit volume of material is equal to 0.01ωρ.

The air humidity ϕ is defined as ratio ϕ = e/E(T ), where e [Pa] is partial
pressure of water vapor, and E(T ) is pressure of saturated vapor at air temper-
ature T . For calculation of E we use the approximation formula:

E(T ) =

{
4.688(1.486 + T/100)12.3, T < 0,

288.58(1.098 + T/100)8.02, T ≥ 0.
(5)

The function ϕ(t, x) is supposed to be continuous function of both variables.
So, at every t one can define the subset Vt ⊆ (L0, L3), Vt = {x : ϕ(t, x) < 1},
and the complementary subset Wt = (L0, L1) \ Vt.

In subset Vt the moisture moves in the form of steam only, and its motion is
governed by the vapor conduction equation

ξ(ω)ρ
∂e(t, x)

∂t
= μ

∂2e(t, x)
∂x2

. (6)

(Thermo-diffusion of steam, that is the diffusion induced by temperature gradi-
ent, does not included in the model.) Here the parameter ξ defines the ‘vapor
capacity’ of material and can be estimated by the equation

ξ(ω) =
do(ϕ)
dϕ

. (7)

As noted above, Eq. (6) is defined in the subset Vt. If the point L0 and/or
L3 are the boundary points of Vt, then the boundary conditions of convective
exchange of steam between air in material pores and surrounding air are imposed
similar to (2), (4) with replaced T by e, λ by μ, and α by γ. If any of interface
points L1, L2 belongs to Vt, then the conjugation condition assuming continuity
of vapor pressure and flux is imposed similar to (3).

In subset Wt the material pores contain liquid water together with water
vapor, and it is supposed that between water and vapor there keeps up the
dynamic equilibrium. That is the partial pressure of vapor in Wt equals to pres-
sure of saturated vapor, e(t, x) ≡ E(T (t, x)) for all x ∈ Wt. To estimate the
volumetric concentration of liquid water w [%] we propose the following formula

w(t, x) = ω(t, x) − o(1), (8)

where o(1) is maximal concentration of absorbed water, corresponding to ϕ = 1.
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Diffusive motion of liquid water is described by equation

10ρ
∂w(t, x)

∂t
=

∂

∂x

(
β(ω)

∂w(t, x)
∂x

)
+ μ

∂2E(T )
∂x2

. (9)

Here numerical coefficient ‘10’ appears due to different dimensions of parameters
(kg in ρ, g in μ and β, and % in w). Second term in the right hand side cor-
responds to vapor condensation or water evaporation depending on its sign. To
avoid extra model complication the condition of water impermeability at border
points of Wt is accepted

∂w

∂x

∣
∣
∣
∣
∂Wt

= 0. (10)

If any of points L1, L2 is inner point of Wt, then there is imposed the condition
of continuity of water concentration and water flux, similar to (3). In the points,
separating subsets Vt and Wt, we suppose continuity of pressure e(t, x).

Latent heat of phase transition. The term ν = μ(∂2E(T )/∂x2) [g/(h·m3)] in
Eq. (9) represents the rate of change of water concentration due to water evap-
oration or vapor condensation, that is in result of phase transition. The phase
transitions are accompanied by release or absorption of latent heat, depending
on the sign of ν. The latent heat of phase transition is accounted in Eq. (1) via
the source term Q, numerical value of which is calculated with the formula

Q =

{
qLν, x ∈ Wt,

0, x ∈ Vt,
(11)

where qL is the specific heat of water vaporization (= 2.26 kJ/g).

3 Numerical Scheme

The system of Eqs. (1), (6), and (9), with all additional conditions listed above
is solved numerically with the help of the finite differences method. To approx-
imate the space derivatives with finite differences we define the uniform grid of
N nodes xk on the interval (L0, L3): xk = L0 + (k − 0.5)h, k = 1, 2, . . . , N ,
h = (L3 − L0)/N . The time derivative is approximated on the time grid
t0 = 0, t1, t2, . . . , tn, . . . , with variable time step τn = tn+1 − tn, n ≥ 0. Each
function f(t, x) is replaced its grid approximation fn

k = f(tn, xk). Below, for
brevity, we will drop the upper index denoting fn

k as fk, and fn+1
k as f̂k.

Finite difference equations. To derive the finite difference equations we use
implicit scheme and heat and mass balance method. The finite-difference coun-
terparts of Eqs. (1), (6), and (9) are the following

hckρk
T̂k − Tk

τ
= Λ̂−

k (T̂k−1 − T̂k) − Λ̂+
k (T̂k − T̂k+1) + Q̂k, k = 1, . . . , N. (12)
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hξ̂kρk
êk − ek

τ
= M−

k (êk−1 − êk) − M+
k (êk − êk+1), xk ∈ Vn. (13)

10hρk
ŵk − wk

τ
= B̂−

k (ŵk−1 − ŵk) − B̂+
k (ŵk − ŵk+1) + ν̂k, xk ∈ Wn. (14)

The coefficients Λ are calculated as follows

Λ−
1 =

2αexλ1

αexh + 2λ1
, Λ−

k =
2λk−1λk

h(λk−1 + λk)
, k = 2, . . . , N ;

Λ+
k =

2λkλk+1

h(λk + λk+1)
, k = 1, . . . , N − 1, Λ+

N =
2λNαin

2λN + αinh
. (15)

The coefficients M and B are calculated similar to Λ. The term ν is approximated
by second difference

νk = M−
k (Ek−1 − Ek) − M+

k (Ek − Ek+1), (16)

where Ek = E(Tk), if x ∈ Wn; Ek = ek, if x ∈ Vn; E0 = eex(tn), EN+1 = ein(tn).
Assuming that T0 = Tex(tn), TN+1 = Tin(tn); e0 = eex(tn), eN+1 = ein(tn),

one obtains the closed system of 2N algebraic equations with 2N unknowns.
First N unknowns are the values of temperature T̂k at grid nodes xk in time
moment tn+1. Other N unknowns are the values of steam partial pressure êk at
nodes xk ∈ Vn or the values of water concentration ŵk at nodes xk ∈ Wn.

Iterative solution. The system of finite-difference Eqs. (12), (13), (14) is the
non-linear system because of the scheme is implicit and the coefficients λ and β
depend on the system solution. To solve the non-linear system we use an iterative
procedure.

Using known solution at time tn we calculate the coefficients Λ and B (coef-
ficients M are constant) and substitute them in system (12), (13), (14). Solving
the resulting linear system we obtain first approximation to solution at moment
tn+1, {T

(1)
k , e

(1)
k , w

(1)
k }. Then the first approximation is used in the same way

to obtain second approximation {T
(2)
k , e

(2)
k , w

(2)
k }, and so on. The iterations

are ended when the relative difference between two successive approximations
becomes sufficiently small.

Designation of subset Wt. At initial time moment t0 all nodes xk, where initial
moisture concentration ωk is not less than maximal adsorption concentration,
ωk ≥ o(1), are included in subset W0. Further, the domain W is re-designated
after each successful time step. The nodes xk from Vn, where the vapor pressure
ek ≥ Ek pass from Vn in Wn+1, while the nodes xk from Wn, where wk < 0,
pass from Wn in Vn+1. There are no restrictions on shape and size of subset V
(and, therefore, of W ).

Choice the value of time step τ . To avoid possible numerical instability time
step τ is limited by some empirical maximal value τmax. Initial time step is
assigned less than τmax in several orders of magnitude. Time step with assigned
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value of τ is considered as successful, if (i) the number of iterations in solution
of system (12), (13), (14) is not exceed assigned maximal number of iterations,
and (ii) relative difference between solution at current time step and solution at
previous time step is sufficiently small. If current time step is not successful, the
value of τ is diminished by definite factor, and step is repeated until the time
step becomes successful. If the number of successive successful steps exceeds
assigned number, the value of τ increases by definite factor.

4 Numerical Example

As an example we consider a three-ply wall. The external layer of wall is a thin
stucco, and other two layers of equal thickness are concrete and mineral wool as
heat insulator. The main goal of our example is to demonstrate the difference
(well-known in construction practice) in heat and moisture behavior in two walls
consisting of these layers. First wall is ‘correct’ wall with layers order: stucco -
heat insulator - concrete; and second wall is ‘incorrect’ with layers order: stucco -
concrete - heat insulator.

In this paper we use some ‘typical’ values of material parameters, which can
be found in numerous literature. The accepted values of constant material para-
meters are presented in Table 1 (dimensions were specified in text above). Two
additional parameters k and λ0 are used for calculation of material coefficient of
thermal conductivity λ, λ = λ0 + kω.

Table 1. Material parameters.

Material d ρ c μ k λ0 o(1)

Concrete 0.2 2500 0.84 3 × 10−5 0.1 1.45 3.997

Mineral wool 0.2 125 0.84 3 × 10−4 0.001 0.06 1.875

Stucco 0.02 1800 0.84 9 × 10−5 0.07 0.7 1.184

Fig. 1. (a) – sorption isotherm o(ϕ), (b) – coefficient of water conductivity β(ω).
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Fig. 2. Space-time plot of temperature in ‘correct’ (a), and ‘incorrect’ (b) wall.

Fig. 3. Space-time plot of water concentration in ‘correct’ (a), and ‘incorrect’ (b) wall.

The graphs of the sorption isotherms and the coefficient β in dependence
on ω are shown in Fig. 1, where the experimental measurements, depicted by
markers, are connected via polynomial interpolations. In the building interior
the constant air temperature and humidity are supposed, Tin = 20 ◦C, ϕin = 0.6.
The temperature and humidity of external air simulate their seasonal variations
for Moscow region. The heat exchange coefficients αin = 31.4, αex = 85.8, and
the vapor exchange coefficients γin = 0.075, γex = 0.750.
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The initial time moment corresponds to the middle of July with average daily
air temperature of 19.3 ◦C. The initial temperature distribution in wall is linear
between 19.3 ◦C at outer and 20 ◦C at inner wall surface. The initial moisture
concentration is assigned for every wall layer. In our example it was 0.9×o(1) =
3.597 for stucco, 1.5 × o(1) = 1.775 for concrete, and 1.5 × o(1) = 2.813 for
mineral wool. That is, the wall is waterlogged and have to dry.

Figure 2 shows, that (as it should be expected) the fall of temperature in
winter time occurs mostly in the heat insulator layer. Hence, during winter the
concrete temperature is high in ‘correct’ wall, and low in ‘incorrect’ wall. The
vapor condensation proceeds in that regions, where the vapor pressure e becomes
higher than the pressure of saturated vapor E. Such a condition is mainly created
at low temperatures. Therefore, there are much more possibilities for condensa-
tion in ‘incorrect’ wall than in ‘correct’ wall. This is confirmed by Fig. 3.
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Abstract. A singularly perturbed initial-boundary value problem for a
parabolic equation known in applications as the reaction-diffusion equa-
tion is considered. An asymptotic expansion of the solution with moving
front is constructed. Using the asymptotic method of differential inequal-
ities we prove the existence and estimate the asymptotic expansion for
such solutions. The method is based on well-known comparison theorems
and formal asymptotics for the construction of upper and lower solutions
in singularly perturbed problems with internal and boundary layers.

Keywords: Singularly perturbed parabolic problems · Reaction-
diffusion equation · Internal layers · Fronts · Asymptotic methods ·
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1 Statement of the Problem

The purpose of the presented paper is to develop an effective numerical-
asymptotic approach to study solutions with internal transition layers – moving
fronts – in a mathematical model of reaction-diffusion type in the case of two
spatial dimensions. We demonstrate our method for the following problem.

Consider the equation

ε2Δu − ε
∂u

∂t
= f (u, x, y, ε) , y ∈ (0, a), x ∈ (−∞,+∞), t > 0 (1)

with the boundary and initial conditions

∂u

∂y

∣
∣
∣
∣
y=0;a

= 0, u(x, y, t, ε) = u(x+L, y, t, ε), u(x, y, t, ε)|t=0 = u0(x, y). (2)

In the Eq. (1), ε > 0 is small parameter, which is usually a consequence of the
parameters of the physical problem. It should be noted that the appearance of
the small parameter before the spatial derivatives is determined by the character-
istics of the physical system, while the small parameter before the time derivative
determines only the scale of the time, convenient for the further consideration.
Functions u0(x, y) and f(u, x, y, ε) are assumed to be sufficiently smooth and
L- periodic in the variable x.
c© Springer International Publishing Switzerland 2015
I. Dimov et al. (Eds.): FDM 2014, LNCS 9045, pp. 408–416, 2015.
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Stationary solutions of problem (1)–(2) with internal and boundary layers
have been thoroughly investigated (see [1] and the references therein). The gen-
eration of an internal layer from smooth initial functions has also been studied
(see [2,3]). Main purpose of this paper is to study the solution of moving front
type and to obtain equations for effective description of its dynamics. We also
prove the existence of a solution of such type and construct its asymptotics. The
results below extend [4], where the case of one spatial dimension was considered,
and the ideas in [5] are used for the proof of the existence of front type solutions.

Suppose the following conditions are satisfied.

(A1). (a) The function f(u, x, y, ε) is such that the reduced equation
f(u, x, y, 0) = 0 has exactly three roots u = ϕ(±)(x, y), u = ϕ(0)(x, y).
(b) Assume that ϕ(−)(x, y) < ϕ(0)(x, y) < ϕ(+)(x, y) for all (x, y) ∈ D̄ =
(−∞,+∞) × [0, a] and fu(ϕ(±)(x, y), x, y, 0) > 0, fu(ϕ(0)(x, y), x, y, 0) < 0.

It is known from [2,3] that under condition (A1) and some quite general con-
ditions for the initial function u0(x, y) at time of order tB (ε) = Bε |ln ε| the
solution of problem (1)–(2) quickly generates a thin internal transition layer
between the two levels ϕ(−)(x, y) and ϕ(+)(x, y) located in the neighborhood of
some curve C0

0 : y = h0 (x).

(A2). Assume that the initial function u0(x, y) has the form of a transition layer:
u0(x, y) = ϕ(−)(x, y) + O(ε) for (x, y) ∈ D

(−)
0 , u0(x, y) = ϕ(+)(x, y) + O(ε) for

(x, y) ∈ D
(+)
0 excluding a small neighborhood of the curve C0

0 : y = h0(x).

Our further purpose is to study the front type solution of (1)–(2) and describe
its dynamics.

Let us consider the following problem, where f(u, x, y, ε) satisfies the condi-
tion (A1) and x, y are parameters:

∂2p

∂ξ2
+ W

∂p

∂ξ
= f(p, x, y, 0); p(x, 0) = ϕ(0)(x, y), p(x,±∞) = ϕ(±)(x, y) (3)

This problem is well known (see, for example, [6]), and for every x, y there exists
a unique pair (W (x, y), p(ξ;x, y)) that satisfies problem (3) and the following
estimates are valid (C and σ are positive constants)

∣
∣
∣p (x, ξ) − ϕ(±) (x, y)

∣
∣
∣ ≤ Ceσ|ξ| for ξ → ±∞.

(A3). There exists a solution h(x, t) of the Cauchy problem

ht√
1 + h2

x

= W (x, h(x, t)), h(x, 0) = h0(x), h(x, t) = h(x + L, t), x ∈ (−∞; +∞).

Using this solution for fixed t we define the curve C(t) ÷ {y = h(x, t)} ∈ D̄ if
t ∈ [0;T ].
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2 Description of the Moving Front

We define the location of the internal layer at fixed t by curve Cλ(t) ÷
{y = h∗(x, t, ε)}, which is the intersection of the solution u(x, y, t, ε) and root
u = ϕ(0)(x, y). An asymptotic approximation of Cλ(t) will be constructed below.
We denote by D(+) and D(−) the domains located at two sides of curve Cλ(t).

2a. Formal asymptotic procedure.
To construct the formal asymptotics of the solution (1)–(2) we consider:

ε2Δu − ε
∂u

∂t
− f (u, x, y, ε) = 0, (x, y) ∈ D(±), t > 0,

u(x, y, t, ε) = u(x + L, y, t, ε), u(x, y, 0, ε) = u0(x, y, ε), (x, y) ∈ D(±)

u(x, h∗(x, t, ε), t, ε) = ϕ(0)(x, h∗(x, t, ε)),
∂u

∂y

∣
∣
∣
∣
y=0

= 0 (4)

and

u(x, h∗(x, t, ε), t, ε) = ϕ(0)(x, h∗(x, t, ε)),
∂u

∂y

∣
∣
∣
∣
y=a

= 0 (5)

To find the location of the internal transition layer Cλ (t) we introduce local
coordinates (r, l) in a neighborhood of some curve C0 (t) : {x = l, y = h(l, t)},
where r is the distance from C0 (t) along the normal to this curve, with the sign
“+” in the domain D(+) and with “–” in D(−), l is the coordinate of the point
on the curve C0(t) from which this normal is going. We have

x = l + r · n1 (l, t) , y = h (l, t) + r · n2 (l, t) , (6)

where n1(l, t) = −hl√
1+h2

l

, n2(l, t) = 1√
1+h2

l

are the components of the unit

normal vector to C0(t) at the point (l, h(l, t)). Note, that in these coordinates
the curve C0(t) is determined by r = 0. Further we will show, how to find C0(t).

Using these local coordinates we define the unknown curve Cλ(t) in the form
of a power series in ε:

r = λ∗ (l, t, ε) = ε · λ1 (l, t) + ε2 · λ2 (l, t) + ..., (7)

The asymptotics of (4), (5) can be constructed in the form including regular and
boundary functions

U (±)(x, y, t, ε) = ū(±)(x, y, ε) + P (±)(ρ(±), x, ε) + Q(±)(ξ, l, ε), (8)

where ξ = r−λ∗(l,t,ε)
ε , ρ(+) = a−y

ε , ρ(−) = y
ε , and the functions ū(±)(x, y, ε),

P (±)(ρ(±), x, ε), Q(±)(ξ, l, ε) are power series in ε, which can be find by the
standard method of boundary functions [1]. The functions Q(±) (ξ, l, ε) describe
the internal transition layer (moving front) near the curve Cλ (t), therefore they
depend on the variable t by means of ξ. The functions P (±)(ρ(±), x, ε) describe
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the solution near the boundaries y = 0, y = a. The regular series ū(±)(x, y)
in the domains D(−) and D(+), and also the boundary series P (±)

(
ρ(±), x, ε

)

near the boundaries of D are determined by the standard scheme [1]. Note that
the boundary series P (±)

(
ρ(±), x, ε

)
are significant only in a small area near

y = 0 and y = a, and rapidly exponentially decrease and do not influence the
behavior of the internal transition layer. By this reason we concentrate only on
the describing of the internal layer Q(±) (ξ, l, ε).

To define the terms of (7) and (8) we must write the asymptotic expansions
for the solutions of each problems (4) and (5) according standard scheme [1].
Terms of series (7), (8) will be defined in this process from the conditions of con-
tinuous matching for the functions U (−) (x, y, t, ε), U (+) (x, y, t, ε) - asymptotic
expansions in domains D(±) - and their normal derivatives on the curve Cλ(t)
(C1 - matching conditions):

(a) U (−) = U (+), (b) ε
∂U (−)

∂n
= ε

∂U (+)

∂n
on Cλ(t) (9)

Conditions (9) must be carried out consistently for zero and all higher degrees
of ε.

We briefly describe some details of this asymptotic procedure. Using the local
coordinates (6) and introducing the stretched variable ξ = r−λ∗(l,t,ε)

ε , we have
for the parabolic operator L̂u ≡ ε2Δu − ε∂u

∂t in the form

L̂u =
∂2u

∂ξ2
+ Vn

∂u

∂ξ
− ε

[
k

∂u

∂ξ
+

∂u

∂t

]
+ O

(
ε2

)
, (10)

where Vn = V0 + λ∗
t is the normal speed of the point on the curve Cλ(t) and

V0 ≡ ht√
1+h2

l

; k = k(l) is the local curvature of Cλ (t), λ∗(l, t, ε) is defined in (7).

We represent f(u, x, y, ε) in the form f(u, x, y, ε) = f̄ (±)(x, y, ε) +
Q(±)f(ξ, l, ε), where the functions f̄ (±)(x, y, ε) = f(ū(±)(x, y), x, y, ε) and

Q(±)f(ξ, l, ε) = f(ū(±)(x, y) + Q(±)(ξ, l, ε), x, y, ε) − f̄ (±)(x, y, ε)

are power series in ε, and the indices (±) correspond to the domains D(±). Sub-
stituting these functions and the operator ε2Δu − ε∂u

∂t in the form (10) into (4),
(5) and equating the terms depending on (x, y) and (ξ, l) separately, we obtain
the relations to determine the coefficients of the asymptotic expansions:

ε2Δū(±) − f̄ (±) (u, x, y, ε) = 0, (11)
(

∂2

∂ξ2
+ Vn

∂

∂ξ
− ε

(
∂

∂t
+ k

∂

∂ξ

)
+ O

(
ε2

)
)

Q(±) = Q(±)f (ξ, l, t, ε) . (12)

2b. Zero order functions (moving front).
At zero order we have for regular part f(u(±), x, y, 0) = 0. Thus according to

condition (A1) we can take u(±) (x, y) = ϕ(±) (x, y).
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The functions Q
(±)
0 (ξ, l) satisfy the following problem:

(
∂2

∂ξ2
+ V0

∂

∂ξ

)
Q

(±)
0 (ξ, l) = f

(
ϕ(±)(x, y) + Q

(±)
0 (ξ, l), x, y, 0

)
, (13)

Q
(±)
0 (0, l) = ϕ(0)(x, y) − ϕ(±)(x, y) for (x, y) ∈ Cλ(t); Q

(±)
0 (±∞, l) = 0.

We define the continuous function ũ(ξ) = ϕ(±)(x, y)+Q
(±)
0 (ξ, l) for (x, y) ∈ Cλt),

and rewrite (13) as

∂2ũ

∂ξ2
+ V0

∂ũ

∂ξ
= f (ũ, x, y, 0) ; ũ (±∞) = ϕ(±) (x, y) , ũ (0) = ϕ(0) (x, y) (14)

If the function f(u, x, y, ε) satisfies the condition (A1), thus problem (14)
has the unique solution ũ (ξ), and the estimate

∣
∣ũ (ξ) − ϕ(±) (x, y)

∣
∣ ≤ Meσ|ξ|

for ξ → ±∞ is valid, where M and σ are positive constants [6]. Note, that
condition (9a) is fulfilled by the definition of ũ (ξ). If we suppose V0 = W (x, y)
(see condition (A3)) and define the curve C0(t) according to condition (A3),
then the C(1) - matching conditions (9b) in zero order will be fulfilled also. So,
the location of the moving front in zero order approximation is the curve C0(t),
which satisfies the following Cauchy problem:

ht√
1 + h2

x

= W (x, h) , h (x, 0) = h0 (x) , h (x, t) = h (x + L, t) (15)

According to condition (A3), there exists such T > 0, that the solution h(x, t)
of (15) defines the curve C0(t) ÷ {y = h(x, t)} ∈ D̄ for t ∈ [0, T ].

2c. First order asymptotics.
Separating terms with ε1 in (11), we obtain for the regular functions ū

(±)
1

the equation fu(ϕ(±)(x, y), x, y, 0) · ū(±) + fε(ϕ(±)(x, y), x, y, 0) = 0, which has a
unique solution (see condition (A1)).

For the transition layer functions Q
(±)
1 we get the linear differential equations

(
∂2

∂ξ2
+ V0

∂

∂ξ
− fu (ũ(ξ), x, y, 0)

)
Q

(±)

1 = q1(ξ, l, t) ≡ ∂Q
(±)

0 (ξ, l)
∂t

+ (16)

+ (k − (λ1)t)
∂Q

(±)

0 (ξ, l)
∂ξ

+ f̃ε +
[
f̃r + f̃u · ∂ϕ(±)

∂r

]
(λ1 + ξ) +

(
f̃u − f̄u

)
ū
(±)
1

with the boundary conditions Q
(±)

1 (±∞, l) = 0,

Q
(±)
1 (0, l) =

[
−u

(±)
1 (x, y) + λ1(l, t)

(
∂ϕ(0)

∂n
− ∂ϕ(±)

∂n

)]∣
∣
∣
∣
(x,y)∈C0(t)

. (17)

In (16), (17) λ1(l, t) is the unknown first term of (7), k = k(l) is the local curva-
ture of C0(t); g̃ means the function depending on (ũ(ξ), (x, y) ∈ C0(t), t) and ḡ -
the function depending on

(
ϕ(±), (x, y) ∈ C0(t), t

)
.
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If we mark Φ(ξ, t) = ∂ũ
∂ξ , the solution of (16) with boundary conditions from

(17) can be written explicitly (function q1(ξ, l, t) defined in (16)):

Q
(±)
1 (ξ, l) =

Φ(ξ, t)
Φ(0, t)

Q
(±)
1 (0, l) − Φ(ξ, t)

ξ∫

0

e−V0η

Φ2(η, t)

±∞∫

η

Φ(τ, t)eV0τq1(τ, l, t)dτdη

(18)
Using the C(1) - matching condition (9) for Q

(±)

1 (ξ, l) we get

∂Q
(+)
1 (ξ, l)
∂ξ

− ∂Q
(−)
1 (ξ, l)
∂ξ

∣
∣
∣
∣
∣
ξ=0

=
∂ϕ(−)(x, y)

∂n
− ∂ϕ(+)(x, y)

∂n

∣
∣
∣
∣
(x,y)∈C0(t)

(19)

Substituting the derivatives ∂Q
(±)
1 (ξ,l)
∂ξ

∣
∣
∣
∣
ξ=0

, calculated from (18) into (19), we

obtain the linear Cauchy problem for λ1(l, t):

dλ1(l, t)
dt

− k(l) = B(l, t) · λ1(l, t) + R(l, t), λ1(l, 0) = 0, (20)

where B(l, t) and R(l, t) are known function, which do not depend of λ1(l, t) and
of its derivatives, k(l) is the local curvature of the curve C0(t).

Continuing this procedure for higher orders terms in ε and we get linear
problems for all Q

(±)
i (ξ, l), i = 2, 3, ... and also linear Cauchy problems of

type (20) for λi(l, t), i = 2, 3, ...
As a result, we obtain a nonlinear equation, which determines the location

of the moving front at zero order approximation, and linear equations for higher
order terms. Note that now we can estimate the location of the moving front
and adequately describe the front dynamics not from the original system (1)–(2),
but from problem (15) in zero order approximation in ε and from the problems
of type (20) at higher order approximations in ε. We present a comparison of
asymptotic and numerical results in Sect. 5.

3 Existence of Solution and the Main Theorem

The proof for the existence of a solution to (1)–(2) is based on the asymptotic
method of differential inequalities similarly to the case of one spatial dimension
(see [4]) with slight changes. Let define D

(+)
n and D

(−)
n the domains located at

two sides of curve Cn(t), where

Λn (l, t) =
n+1∑

i=1

εiλi(l, t), ξn =
r − Λn(l, t)

ε
, Cn(t) : r = Λn(l, t) (21)

Un(x, y, t, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=0

εi
(
ū
(+)
n (x, y) + Q

(+)
n (ξn, l, t)

)
, (x, y) ∈ D

(+)
n

n∑

i=0

εi
(
ū
(−)
n (x, y) + Q

(−)
n (ξn, l, t)

)
, (x, y) ∈ D

(−)
n

(22)
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We define upper and lower solution α(x, y, t, ε), β(x, y, t, ε) as follows:
(1) α(x, y, t, ε) ≤ β(x, y, t, ε), α, β(x, y, t, ε) = α, β(x + L, y, t, ε)

(2α) ε2Δα − ε
∂α

∂t
− f(α, x, y, ε) ≥ 0, (x, y) ∈ D̄, t ∈ (0, T ], ε ∈ (0, ε0]

(2β) ε2Δβ − ε
∂β

∂t
− f(β, x, y, ε) ≤ 0, (x, y) ∈ D̄, t ∈ (0, T ], ε ∈ (0, ε0]

(3) ∂α
∂y

∣
∣
∣
y=0

≥ 0, ∂α
∂y

∣
∣
∣
y=a

≤ 0; ∂β
∂y

∣
∣
∣
y=0

≤ 0, ∂β
∂y

∣
∣
∣
y=a

≥ 0. Suppose also

that initial function satisfies α (x, y, 0, ε) ≤ u0 (x, y, ε) ≤ β (x, y, 0, ε).
Now we can formulate the main result in the following theorem.

Theorem 1. Under the conditions (A1) − (A3) for sufficiently smooth initial
function and sufficiently small ε there exists the solution u(x, y, t, ε) of the prob-
lem (1)–(2) and satisfies
1. α(x, y, t, ε) ≤ u(x, y, t, ε) ≤ β(x, y, t, ε),
2. u(x, y, t, ε) = Un(x, y, t, ε) + O(εn+1) for (x, y) ∈ D̄, t ∈ (0, T ], ε ∈ (0, ε0].

Main ideas, how to prove this theorem you can see in [4]. We construct upper and
lower solutions by modification of (22)–(21), verify inequalities (1)–(3) from the
definitions of α (x, y, t, ε), β (x, y, t, ε) and control proper sign of the jump of first
normal derivative at the curve C̄(t) = Cn(t) − εn+1δ(t). Required calculations
can be done in the same way as in [4].

4 Examples

In this section we present an example, for which we can calculate some para-
meters of the front in zero order (e.g., normal speed) explicitly. Consider the
problem

ε2Δu − ε
∂u

∂t
=

(
u − ϕ0(x, y)

) · (
u2 − 1

)
, y ∈ (0, 1), x ∈ (−∞,+∞), t > 0

uy|y=0,y=1 = 0, u(x, y, t, ε) = u(x + 1, y, t, ε), u(x, y, t, ε)|t=0 = u0(x, y, ε),

where −1 < ϕ0(x, y) < 1 and u0(x, y, ε) satisfies condition (A2). Note, that in
this case ϕ(−)(x, y) = −1 and ϕ(+)(x, y) = 1, and if we mark ũ′

ξ = z, we can

write the problem (15) for the zero order function ũ(ξ) = ϕ(±)(x, y) + Q
(±)
0 (ξ, l)

in the form

z
dz

dũ
+ V0z = (ũ − ϕ0(x, y)) · (ũ2 − 1), ũ(±∞) = ±1. (23)

Solution of (23) exists, if there exists a separatrix going from the saddle point
(0;−1) to the saddle point (0;+1). If we find this separatrix in the form z =
A·(ũ2−1), A < 0, we obtain A = −1√

2
and A·V0 = −ϕ0(x, y) so V0 = ϕ0(x, y)·√2,

and Eq. (15) for the moving front at zero order of ε takes the form

ht√
1 + h2

x

= ϕ0(x, h) ·
√

2, h(x, 0) = h0(x), h(x, t) = h(x + 1, t).
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5 Numerical Experiment

The asymptotic approximation will be compared with the results of numeri-
cal solution of the problem (1)–(2). For this purpose we use a finite-difference
scheme for problem (1)–(2) and for the Eq. (15). Calculations are done in D,
representing a rectangle with the sides L = 1, a = 1, for ε = 0.01 and the
function f (u, x, y, ε) =

(
u2 − 1

) · (
u − ϕ0(x, y)

)
for some cases of ϕ0(x, y) and

the initial curve y = h0(x). Results are represented in Figs. 1, 2. Figure 1
shows sequent positions of the front (zero order asymptotics and the numerical
solution of full problem (1)–(2)) at different times for ϕ0(x, y) = 0.15 cos 4πx,
h0(x) = 0.5 − 0.15 sin 2πx. Figure 2 shows sequent positions of the front at dif-
ferent times for ϕ0(x, y) = 0.15 cos 4πx, h0(x) = 0.5 − 0.15 sin 2πx.

The analysis of the numerical calculations showed a good correspondence
between the above asymptotic descriptions of the front behavior by (15) and
numerical calculations for problem (1)–(2). Thus, the asymptotic approach allows
fully to describe the dynamics and the shape of the moving front, its width and
the time process of its formation, which is important for the effective estimate
of various parameters of the physical system. In addition, the combination of
asymptotic and numerical methods gives the possibility to speed up the process
of constructing approximate solutions with a suitable accuracy. As a result, we
have more efficient numerical calculations.

Fig. 1. Fig. 2.
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Abstract. A priori estimates for a new approach to constructing vec-
tor splitting schemes in mixed FEM for heat transfer problems are pre-
sented. Heat transfer problem is considered in the mixed weak formulation
approximated by Raviart-Thomas finite elements of lowest order on rec-
tangular meshes. The main idea of the considered approach is to develop
splitting schemes for the heat flux using well-known splitting scheme for
the scalar function of flux divergence. Based on flux decomposition into
discrete divergence-free and potential (orthogonal) components, a priori
estimates for 2D and 3D vector splitting schemes are presented. Special
attention is given to the additional smoothness requirements imposed on
the initial heat flux. The role of these requirements is illustrated by several
numerical examples.

Introduction

In this paper a priori estimates for splitting schemes in mixed FEM for heat
transfer are presented. Heat transfer problem is considered in the mixed weak
formulation or, in other words, as a system of first order ODE’s written in
terms “temperature - heat flux”. For space approximation mixed finite element
method [2] with Raviart-Thomas finite elements of lowest order on rectangular
meshes is implemented. For time discretization a new approach [1] is used for
constructing vector splitting schemes for the heat flux [3,4]. The main idea is to
use well-known schemes [5] for the scalar function of flux divergence. Actually,
any splitting scheme for the heat flux can be obtained using the approach devel-
oped (but sometimes one has to introduce additional fractional step variables).

It turns out that due to the connection between schemes for the flux and
schemes for the flux divergence, stability and accuracy for the scalar schemes for
flux divergence can be used to obtain corresponding results for splitting schemes
for the heat flux. First of all, since temperature within considered framework
depends only on the flux divergence, this approach almost immediately gives
the order of convergence and stability of temperature whenever we know these
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results for the underlying scheme for flux divergence. Second, it can be proved
that order of accuracy of a splitting scheme for the flux is the same as order of
accuracy of the underlying scheme for the flux divergence in non-commutative
case. The main problem is to get global stability results for the flux.

The crucial idea of getting a priori estimates is to decompose the heat flux
into two components - discrete divergence-free and discrete-potential compo-
nents. We present examples in 2D and 3D how this idea can be applied to the
stability analysis. The obtained a priori estimates impose additional smoothness
requirements on the initial heat flux which is computed through the initial tem-
perature. As it is shown by numerical examples these conditions are not satisfied
for some problems and this leads to conditional convergence issues. Therefore,
smoothing procedures should be applied either to the initial temperature or to
the initial heat flux.

The paper is organized as follows: in Sect. 1 statement of the problem is given
together with space approximation details. In Sect. 2 main idea of the proposed
approach and examples of splitting schemes for the heat flux are presented.
Next, in Sect. 3 a priori estimates for the proposed schemes in 2D and 3D are
given, as well as numerical examples which show that the additional smoothness
requirements should be imposed in order to guarantee convergence. In the end
we give a conclusion of the paper.

1 Problem Statement

Consider the following system of first order differential equations written in terms
“temperature - heat flux” which describes heat transfer process for t ∈ [0, tf ] and
x ∈ Ω ⊂ Rn, n = 2, 3:

{
cpρ

∂T
∂t + ∇T w = f
w = −λ∇T

x ∈ Ω, t ∈ [0, tf ].

Here T and w are the unknown functions of temperature and heat flux, cp, ρ and
λ are coefficients of heat capacity, density and heat conductivity respectively;
righthand side f corresponds to the heat sources in Ω. On the boundary of Ω
Dirichlet and Neumann boundary conditions are imposed, and for t = 0 initial
condition T = T 0(x) is also given, hence completing the statement of initial
boundary value problem. One can notice that the first equation is the energy
conservation law, the second one is constitutive equation (Fourier law) and gives
the connection between temperature and heat flux.

Standard technique allows one to obtain a mixed weak formulation of the
problem: { ∫

Ω
cpρ

∂T
∂t χ +

∫
Ω

divwχ =
∫

Ω
fχ,∀χ ∈ L2(Ω)∫

Ω
1
λw · u =

∫
Ω

T∇u − ∫
∂Ω

Tu · n,∀u ∈ Hdiv(Ω)
,

where unknown functions T and w are searched for in C1(0, tf ;L2(Ω)) and
C(0, tf ;Hdiv) respectively.

Now, consider a rectangular grid covering the domain Ω. Space approxima-
tion of the problem is implemented by mixed finite element method based on
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Raviart-Thomas finite elements of lowest order (for Hdiv) and piecewise constant
elements for scalar functions (for L2). One can proceed to the following system
of first-order ODE’s: {

M dTh

dt + BTwh = fh

Awh = BTh + gh
,

where M is a diagonal mass matrix for temperature, A - tridiagonal mass matrix
for heat flux (symmetric and positive-definite), B and BT are discrete operators
of gradient and divergence respectively; gh stands for inhomogeneous boundary
conditions (omitted further), fh approximates the differential righthand side f .
Now it is straightforward to write the implicit α-weighted scheme in the form:

{
(A + ατG)w

n+1−wn

τ + Gwn = BM−1(αFn+1 + (1 − α)Fn)
M Tn+1−Tn

τ + BT (αwn+1 + (1 − α)wn) = αFn+1 + (1 − α)Fn

where G = BM−1BT approximates the second space derivatives. To obtain the
first equation for the heat flux only one should “differentiate” on the mesh level
the Fourier law and rewrite then the first equation. Besides, initial heat flux is
obtained by solving Aw0 = BT 0. One can notice that temperature is computed
at each time step through the flux and in this sense can be called secondary
variable in the considered framework.

Now the question is how to factor the operator G. The possible ways are the
following:

1. Explicit factorization of the operator, e.g. alternating-triangular or SOR-type
factorizations (for vector equation for the heat flux [3]).

2. Uzawa-type algorithms (Arbogast et al. [7]).
3. A new approach [1,4] based on splitting schemes for the scalar function of

flux divergence.

Remark 1. Introducing new notations B = A−1/2BM−1/2, w = A−1/2w and
T = M1/2T we can simplify all equations avoiding explicit usage of A and
M . For example, A + ατG = A + ατBM−1BT becomes E + ατBBT in new
notations.

2 Constructing Splitting Schemes for the Heat
Flux: Examples

As already mentioned, the main idea of the proposed approach is to use well-
known scalar splitting schemes [5] for the flux divergence. Consider an example
of splitting scheme for the heat flux in 2D case (without righthand side):

w
n+1/2
y − wn

y

0.5τ
+ ByBTwn = 0

w
n+1/2
x − wn

x

0.5τ
+ BxBTwn+1/2 = 0
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wn+1
x − w

n+1/2
x

0.5τ
+ BxBTwn+1/2 = 0

wn+1
y − w

n+1/2
y

0.5τ
+ ByBTwn+1 = 0

Tn+1 − Tn

τ
+ BT wn+1 + wn

2
= 0

Here BTw = BT
x wx + BT

y wy.

Remark 2. 1. Actually, w
n+1/2
x = wn

x+wn+1
x

2 and third equation can be simplified.
2. To implement this scheme one has to invert only one-dimensional operators
with tridiagonal matrices along the mesh lines.

Now, if one introduces flux divergence ξ = BTw and applies operators BT
x and

BT
y to equation pairs 1-2 and 3-4 and sums them up, one can get the following

scheme for flux divergence ξ = BTw:

ξn+1/2 − ξn

0.5τ
+ Λxξn+1/2 + Λyξn = 0

ξn+1 − ξn+1/2

0.5τ
+ Λxξn+1/2 + Λyξn+1 = 0

with operators Λx = BT
x Bx and Λy = BT

y By approximating second space deriv-
atives. It is easy to recognize the classical alternating-direction scheme for flux
divergence ξ. One can also notice that equation for the temperature now takes
the form of

Tn+1 − Tn

τ
+

ξn+1 + ξn

2
= 0

and properties of the scheme for temperature are completely defined by the
properties of the scheme for flux divergence. Obviously, accuracy of temperature
computation is the same as for flux divergence and stability of the scheme for
flux divergence in any norm ‖ ξ ‖∗ is equivalent to stability of heat flux in the
seminorm ‖ BTw ‖∗. A bit more complicated but simple assertion is also valid
- the order of accuracy for heat flux is the same as order of accuracy for flux
divergence in non-commutative case ΛxΛy �= ΛyΛx. This fact can be illustrated
by taking locally one-dimensional scheme for flux divergence as an example. The
order of accuracy for heat flux will be 1, while for the underlying scheme it equals
2 in commutative case.

Remark 3. The main point in the proposed approach is that we can take any
splitting scheme for flux divergence and derive from it the corresponding splitting
scheme for heat flux. In the next section we’ll give the key idea of how the
connection between two schemes can be exploited for stability analysis.

In 3D case we can take, for example, scheme of Douglas and Gunn [6] of
second order as the underlying scheme for flux divergence. The corresponding
vector splitting schemes for heat flux can be written in the following form:
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w
n+1/2
y − wn

y

τ
+ ByBT

x wn
x + ByBT

y wn
x + ByBT

z wn
z = 0

w
n+1/2
z − wn

z

τ
+ BzB

T
x wn

x + BzB
T
y wn

x + BzB
T
z wn

z = 0

wn+1
x − wn

x

τ
+ BxBT

x
wn+1

x + wn
x

2
+ BxBT

y

w
n+1/2
y + wn

y

2
+ + BxBT

z
w

n+1/2
z + wn

z

2
= 0

wn+1
y − w

n+1/2
y

τ
+ ByBT

x
wn+1

x − wn
x

2
+ ByBT

y

wn+1
y − wn

y

2
+ + ByBT

z
w

n+1/2
z − wn

z

2
= 0

wn+1
z − w

n+1/2
z

τ
+ BzB

T
x

wn+1
x − wn

x

2
+ BzB

T
y

wn+1
y − wn

y

2
+ BzB

T
z

wn+1
z − wn

z

2
= 0

Tn+1 − Tn

τ
+BT wn+1 +wn

2
= 0

Analysis of this scheme can be performed the same way as for the scheme based on
alternating-direction scheme for flux divergence.

Remark 4. Uzawa-type schemes in 2D and 3D can be obtained using the devel-
oped approach by taking predictor-corrector scheme based on fully implicit
locally one-dimensional scheme as a predictor part.

3 A Priori Estimates and Smoothness Requirements

3.1 A Priori Estimates

Again, let us restrict ourselves to the presented example of splitting schemes
in 2D. An important point is that after fractional steps elimination in the schemes
for heat flux and flux divergence the connection between schemes is still valid,
i.e. applying divergence operator BT to the scheme for the flux

(E +
τ2

4

(
BxΛy

0

)
BT )

wn+1 − wn

τ
+ BBT wn+1 + wn

2
= 0

one can get the exactly the ADI scheme (with fractional steps eliminated) for
flux divergence:

(E +
τ2

4
ΛxΛy)

ξn+1 − ξn

τ
+ (Λx + Λy)

ξn+1 + ξn

2
= 0

The next step is to represent heat flux wn as a sum of two components: wn =
wn,0 +wn,1, where wn,0 ∈ KerBT (divergence kernel BTwn,0 = 0) and wn,1 ∈
ImB (orthogonal complement to the kernel = range of the gradient operator B).
Then one can obtain the following equations in the subspaces:

wn+1,1−wn,1

τ + BBT wn+1,1+wn,1

2 + (E − PrKerBT ) τ2

4

(
BxΛy

0

)
BT )w

n+1,1−wn,1

τ

= 0, in ImB
wn+1,0−wn,0

τ + τ2

4 PrKerBT

(
BxΛy

0

)
BT )w

n+1,1−wn,1

τ = 0, inKerBT



422 K. Voronin and Y. Laevsky

Since heat flux should satisfy Fourier law, the component w·,0 is completely
parasitic. As it follows from equations above it depends on the component from
ImB and therefore, all we need is to get stability estimates for the “regular”
component in the corresponding norms. First, introduce the discrete Hdiv norm
in the following way: ‖ w ‖H=‖ w ‖2 + ‖ BTw ‖2. Here ‖ · ‖2 is the usual mesh
L2-norm. Finally, after some tedious computations, one can get the following a
priori estimates for the presented 2D scheme:

Theorem 1 (commutative case, ΛxΛy = ΛyΛx). The following estimate is valid
for splitting scheme for flux (based on alternating-direction scheme for flux diver-
gence) in commutative case with C �= C(τ, h):

‖ wn ‖H≤ C ‖ w0 ‖H̃ ∀w0 ∈ H̃

where ‖ w ‖H̃=‖ w ‖H +τ2 ‖ ΛyBTw ‖Λx+Λy
.

Theorem 2 (non-commutative case, ΛxΛy �= ΛyΛx). The following estimate is
valid for splitting scheme for flux (based on alternating-direction scheme for flux
divergence) in non-commutative case with C �= C(τ, h):

‖ wn ‖H≤ C(1 +
τ

h
) ‖ w0 ‖H̃ ∀w0 ∈ H̃

where ‖ w ‖H̃=‖ w ‖H + ‖ ΛyBTw ‖Λx+Λy
+ ‖ (E + τ

2Λy)BTw0 ‖2.
Remark 5. For splitting schemes in 3D case similar a priori estimates can be
proved much along the lines it is done above.

As one can see the a priori estimates impose additional smoothness require-
ments (related to 4th derivatives) on the initial heat flux which is computed
from solving Aw0 = BT 0. The question arises whether this initial flux fulfill
the requirements in various situations (non-uniform meshes, non-constant coef-
ficients, different boundary conditions, etc.). Let us consider some numerical
examples illustrating the problem. In model problems the domain Ω = [0, 1]2

with Dirichlet boundary conditions for y-axis and Neumann boundary conditions
for x-axis.

3.2 Boundary Conditions

Consider two test solutions: T1(t, x, y) = cos 2πx · sin 2πy · e−t and T2(t, x, y) =
cos 2πx ·y sin 2πy ·e−t and uniform mesh, τ

h = const. Then we have the following
results in C and L2-norm of the heat flux (Table 1):

The reason for the lack of convergence for test 2 (order 0 in C-norm and 1/2
in L2-norm) is due to the bad approximation of Dirichlet boundary condition
and is in agreement with a priori estimates. On the Fig. 1 BTw0 is shown for test
1(blue line) and test 2 (red line) along one mesh line in y-direction. Obviously,
for test 2 derivatives of flux divergence contain negative powers of h. One of
possible ways to avoid this problem is to use integral (Sobolev) averaging for
initial temperature instead of using point-wise data.

Remark 6. If one takes the lumped mass matrix A, integral averaging doesn’t
help.



A New Approach to Constructing Splitting Schemes in Mixed FEM 423

Table 1. Comparison of test1 and test 2, Dirichlet+Neumann boundary cnd’s.

test 1 test 2

h ‖ w − wexact ‖C ‖ w − wexact ‖L2 ‖ w − wexact ‖C ‖ w − wexact ‖L2

1/32 3.5e-1 2.5e-1 3.1e+2 6.4e+2

1/64 5.9e-2 4.1e-2 3.1e+2 4.6e+1

1/128 1.3e-2 9.1e-3 4.1e+2 4.3e+1

Fig. 1. Heat flux divergence BTw0 along a mesh line in y-direction: test 1 (blue), test
2 (red) (Color figure online).

3.3 Non-Uniform Mesh

Now consider the same solution T1(t, x, y) = cos 2πx · sin 2πy · e−t (test 1 above)
with nonuniform mesh covering the computational domain. As in the previous
case, we are focusing only on the flux, since temperature always converges with
second order in both C and L2 norms. The nonuniform mesh is constructed in

the following way: hx = const, hy =
{

h1, if y ≤ 0.5
h2, else

Table 2. Convergence issues for nonuniform mesh experiments for test 1.

h τ/h2 = const τ/h = const

h1 h2 ‖ w − wexact ‖C ‖ w − wexact ‖L2 ‖ w − wexact ‖C ‖w−wexact ‖L2

1/30 1/36 1.8e+2 3.4e+1 1.8e+2 3.4e+1

1/60 1/72 6.0e+1 8.1e+0 1.8e+2 2.4e+1

1/120 1/144 2.0e+1 1.9e+0 2.4e+2 2.3e+1

For τ/h = const there is no convergence in C-norm and convergence of order
1/2 in L2-norm. It can be shown explicitly (at least for the lumped mass matrixA)
that in this case there is a term with τ2

h2 at the line, where space step changes, in
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the heat flux error. And, again, one can avoid the arising approximation problem
by using smoothing procedure for either initial flux or initial temperature. In the
next table results for using the same test and nonuniform mesh are shown but,
instead of computing initial flux by solving the equation, exact heat flux at time
moment t = 0 is used (Table 2).

Table 3. Nonuniform mesh experiments for test 2 with exact initial flux.

h ‖ T − Texact ‖C ‖ T − Texact ‖L2 ‖ w − wexact ‖C ‖ w − wexact ‖L2

1/30 1/36 3.4e-2 1.7e-2 8.5e-1 2.1e-1

1/60 1/72 7.4e-3 3.8e-3 2.1e-1 4.3e-2

1/120 1/144 1.8e-3 9.1e-4 6.4e-2 9.6e-3

As one can notice, accuracy for the heat flux is significantly better and the
order of convergence is about 2. Therefore, the main conclusion is that in order to
avoid lack of convergence one has to provide initial flux which is smooth enough.
Using exact initial flux do not improves temperature significantly, which also
indicates that approximation problems appear in the kernel of discrete divergence
operator BT (Table 3).

4 Conclusion

In the present paper a priori estimates for a new approach to constructing split-
ting schemes in mixed FEM for heat transfer problem are presented. The main
idea of the approach is to use well-known scalar splitting schemes for heat flux
divergence. Splitting schemes for flux obtained using the developed approach
inherit certain properties related to accuracy and stability from the underlying
scalar splitting schemes. For the example of vector splitting scheme in 2D case
a priori estimates are presented. It is shown by numerical examples that poor
approximation and lack of convergence for heat flux can occur in special cases
(nonuniform mesh, nonconstant coefficients, etc.) if the initial heat flux is not
smooth enough (while temperature is always computed well). Smoothing pro-
cedures (e.g., integral averaging) seem to be a promising way to overcome the
arising difficulties.
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Abstract. Interpolation formulas for the functions of one variable with
a boundary layer component are investigated. An interpolated function
corresponds to a solution of a singular perturbed problem. An application
of Lagrange interpolation on a uniform mesh leads to significant errors.
Two approaches for a interpolation of a function with a boundary layer
component are considered: a fitting of the interpolation formula to a
boundary layer component and the application of Lagrange interpolation
on Shishkin mesh. Numerical results are discussed.

Keywords: Function · Boundary layer · Lagrange interpolation ·
Shishkin mesh · Nonpolynomial interpolation

1 Introduction

We investigate the interpolation problem for a function with large gradients in
a boundary layer. We suppose that the interpolated function corresponds to a
solution of a singular perturbed boundary value problem:

εu′′(x) + a(x)u′(x) − b(x)u(x) = f(x), x ∈ (0, 1], u(0) = A, u(1) = B, (1)

where
a(x) ≥ α > 0, b(x) ≥ 0, ε ∈ (0, 1],

functions a, b, f are smooth enough. The derivatives of the function u(x) are
not ε-uniformly bounded [1], therefore an application of Lagrange interpolation
formulas [2] can lead to significant errors [3–5].

Let us a function u(x) be given at nodes of a mesh Ω :

Ω = {xn : xn = xn−1 + hn, x0 = 0, xN = 1, n = 1, 2, . . . , N},

un = u(xn), n = 0, 1, 2, . . . , N. We investigate interpolation formulas with m
interpolation nodes.

We consider two approaches to increase the accuracy of Lagrange interpola-
tion: the fitting of the formula to the boundary layer component and using the
mesh, which is dense in the boundary layer.

Through the paper C and Cj denote generic positive constants independent
of ε and mesh size.
c© Springer International Publishing Switzerland 2015
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2 The Fitting of the Interpolation Formula to a Boundary
Layer Component

Let us a function u(x) be smooth enough with the following representation:

u(x) = p(x) + γΦ(x), x ∈ [0, 1] (2)

Here Φ(x) is known function with large derivatives, the derivatives p(j)(x) are
bounded up to some order, the constant γ is not given.

The solution of the problem (1) has the representation (2). If we take Φ(x) =
exp(−a(0)ε−1x), γ = −εu′(0)/a(0), then for some constant C1 the estimate
|p′(x)| ≤ C1, x ∈ [0, 1] is correct [1]. The derivatives Φ(j)(x), j ≥ 1 are not
ε-uniformly bounded.

We investigate the problem of the interpolation on subintervals with m nodes
of the mesh Ω. We suppose that N/(2(m − 1)) is integer. Let us

[0, 1] =
N−m+1⋃

k=0, m−1

[xk, xk+m−1].

We use Lagrange polynomial Lk,m(u, x) with m interpolation nodes of the inter-
val [xk, xk+m−1]:

Lk,m(u, x) =
k+m−1∑

n=k

un

k+m−1∏

j=k
j �=n

x − xj

xn − xj
. (3)

According to [4], the application of the polynomial Lk,m(u, x) can lead to the
interpolation errors of the order O(1) if the function u(x) is the solution of the
problem (1).

In [6] the following modification of Lagrange interpolation was proposed:

LΦ,k,m(u, x) = Lk,m−1(u, x)+
[xk, xk+1, . . . , xk+m−1]u
[xk, xk+1, . . . , xk+m−1]Φ

[
Φ(x) − Lk,m−1(Φ, x)

]
,

x ∈ [xk, xk+m−1] (4)

where [xk, xk+1, . . . , xk+m−1]u is the divided difference for the function u(x)
(e.g., see [2]). The interpolation formula (4) is exact on a boundary layer com-
ponent Φ(x). We will notice that the mesh Ω may be uniform.

According to [2], for some s ∈ (xk, xk+m−1)

[xk, xk+1, . . . , xk+m−1]Φ = Φ(k−1)(s)/(k − 1)! .

Therefore, the expression (4) is correct if Φ(k−1)(x) �= 0, x ∈ (xk, xk+m−1).
According to [2],

Lk,m(u, x) = Lk,m−1(u, x) + [xk, xk+1, . . . , xk+m−1]u
k+m−2∏

j=k

(x − xj).
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Therefore, the interpolant (4) can be written in a form:

LΦ,k,m(u, x) = Lk,m(u, x) +
[xk, xk+1, . . . , xk+m−1]u
[xk, xk+1, . . . , xk+m−1]Φ

[
Φ(x) − Lk,m(Φ, x)

]
,

where x ∈ [xk, xk+m−1] and Lk,m(u, x) corresponds to (3).

3 Lagrange Interpolation on Shishkin Mesh

Now we investigate the accuracy of Lagrange interpolation on Shishkin mesh for
a function with the exponential boundary layer component. We suppose that a
function u(x) can be represented in a form:

u(x) = q(x) + Θ(x), x ∈ [0, 1] (5)

where for some constant C1

|q(j)(x)| ≤ C1, |Θ(j)(x)| ≤ C1

εj
e−αx/ε, 0 ≤ j ≤ m, (6)

where m is given integer, functions q(x) and Θ(x) are not known in the explicit
form. According to [7,8], the solution of the problem (1) can be represented in
the form (5) with conditions (6).

Let us Ω be Shishkin mesh [7] with steps:

hn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2σ

N
, 1 ≤ n ≤ N

2

2(1 − σ)
N

,
N

2
< n ≤ N

, σ = min
{1

2
,
mε

α
ln N

}
. (7)

Lemma 1. Suppose that a function u(x) can be represented in the form (5) with
conditions (6) and the mesh Ω corresponds to (7). Then for some constant C the
following estimates on each interval [xk, xk+m−1]

∣
∣
∣u(x) − Lk,m(u, x)

∣
∣
∣ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
lnm N

Nm
, ε <

α

2m ln N
, xk+m−1 ≤ σ,

C

Nm
, ε <

α

2m ln N
, xk ≥ σ,

C

Nm
min

{ 1
εm

, lnm N
}

, ε ≥ α

2m ln N

(8)

are satisfied.

Proof. We define h as a uniform step of the interval [xk, xk+m−1]. The following
estimate is known [2]:

|u(x) − Lk,m(u, x)| ≤ max
x∈[xk,xk+m−1]

|u(m)(x)|h
m

4m
. (9)
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We take into account the inequality h < 2/N and from (6), (9) obtain

|q(x) − Lk,m(q, x)| ≤ C12m

4mNm
. (10)

Now we estimate the interpolation error for the function Θ(x).
Let us σ < 1/2.
Consider the case xk+m−1 ≤ σ. We use relations (6), (7) and obtain

h =
2mε

α

ln N

N
, |Θ(m)(x)| ≤ C1

εm
.

Now we use the inequality (9) in the case of the function Θ(x) and obtain

|Θ(x) − Lk,m(Θ, x)| ≤ C1(2m)m

4mαm

lnm N

Nm
. (11)

Consider the case xk ≥ σ. We use (6), (7) and obtain

|Θ(x)| ≤ C1

Nm
.

Therefore,

|Θ(x) − Lk,m(Θ, x)| ≤ |Θ(x)| + |Lk,m(Θ, x)| ≤ C1

Nm
(1 + λk,m),

were λk,m is Lebeg’s constant [2] for the polynomial Lk,m(Θ, x). The mesh of
the interval [xk, xk+m−1] is uniform and according to [9] λk,m ≤ 2m−1. Then

|Θ(x) − Lk,m(Θ, x)| ≤ C1

Nm
(1 + 2m−1). (12)

Now we consider the last case σ = 1/2, when the mesh Ω is uniform. We use
relations (6), (7), (9) and obtain

|Θ(x) − Lk,m(Θ, x)| ≤ C1

4mεmNm
, ε ≥ α

2m ln N
.

Therefore,

|Θ(x) − Lk,m(Θ, x)| ≤ C1

4mNm
min

{ 1
εm

,
(2m ln N

α

)m}
. (13)

Using estimates (10)–(13), we obtain (8) for some constant C. The lemma is
proved. �

4 Numerical Results

Now we consider the function

u(x) = cos
πx

2
+ e−ε−1(x+x2/2), x ∈ [0, 1], ε > 0,
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which can be considered as the particular solution of the problem (1). We inves-
tigate numerically the interpolation formulas with four nodes on each inter-
val [xk, xk+3], k = 0, 3, 6, . . . , N − 3. We test piecewise-cubic interpolation and
piecewise-fitted interpolation (4).

We define the interpolation error of Lagrange polynomial as

ΔN,ε = max
k=0,3,...,N−3

max
j=1,2,3

|Lk,4(u, x̃k+j) − u(x̃k+j)|, (14)

where x̃k+j = (xk+j + xk+j−1)/2. Similarly as (14) we define the interpolation
error of the interpolant (4). Then we define the computed order of the accuracy:

CRN,ε = log2
ΔN,ε

Δ2N,ε
.

In tables e ± m means 10±m.
Table 1 presents ΔN,ε and CRN,ε of the piecewise-cubic interpolation in the

case of a uniform mesh Ω. If ε ≈ 1 the piecewise-cubic interpolation is of the
fourth order of the accuracy. For small values of ε the interpolation error is O(1).

Table 1. The errors and the accuracy orders of the piecewise-cubic interpolation on
the uniform meshes

ε N

24 48 96 192 384 768

1 4.43e − 7 2.89e − 8 1.84e − 9 1.16e − 10 7.31e − 12 4.58e − 13

3.94 3.97 3.98 3.99 3.99 3.98

10−1 4.04e − 4 2.85e − 5 1.88e − 6 1.21e − 7 7.64e − 9 4.80e − 10

3.82 3.92 3.96 3.98 3.99 3.99

10−2 2.03e − 1 7.14e − 2 1.28e − 2 1.44e − 3 1.23e − 4 8.99e − 6

1.51 2.48 3.15 3.55 3.77 3.88

10−3 3.12e − 1 3.12e − 1 3.07e − 1 2.44e − 1 1.08e − 1 2.41e − 2

0.00 0.02 0.33 1.17 2.16 2.94

10−4 3.12e − 1 3.12e − 1 3.12e − 1 3.12e − 1 3.12e − 1 3.11e − 1

0.00 0.00 0.00 0.00 0.00 0.18

10−5 3.12e − 1 3.12e − 1 3.12e − 1 3.12e − 1 3.12e − 1 3.12e − 1

0.00 0.00 0.00 0.00 0.00 0.00

Table 2 presents ΔN,ε and CRN,ε of the piecewise-fitted interpolation (4) with
m = 4 in the case of a uniform mesh Ω. Similarly as in the previous case, for
ε ≈ 1 the piecewise-fitted interpolation is of the fourth order of the accuracy.
For small values of ε the piecewise-fitted interpolation is of the third order of
the accuracy.
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Table 2. The errors and the accuracy orders of the piecewise-fitted interpolation (4)
with m = 4 on the uniform meshes

ε N

24 48 96 192 384 768

1 1.20e − 5 7.55e − 7 4.71e − 8 2.94e − 9 1.84e − 10 1.15e − 11

3.99 4.00 4.00 4.00 4.00 4.00

10−1 4.12e − 5 2.50e − 6 1.52e − 7 9.44e − 9 5.87e − 10 3.66e − 11

4.04 4.04 4.01 4.01 4.00 4.01

10−2 4.68e − 4 2.99e − 5 1.70e − 6 9.81e − 8 5.86e − 9 3.57e − 10

3.97 4.14 4.12 4.07 4.04 4.01

10−3 6.89e − 4 8.72e − 5 1.08e − 5 1.08e − 6 7.46e − 8 4.28e − 9

2.98 3.01 3.32 3.86 4.12 4.12

10−4 6.89e − 4 8.72e − 5 1.09e − 5 1.37e − 6 1.71e − 7 2.13e − 8

2.98 3.00 2.99 3.00 3.01 3.17

10−5 6.89e − 4 8.72e − 5 1.09e − 5 1.37e − 6 1.71e − 7 2.14e − 8

2.98 3.00 2.99 3.00 3.01 3.00

Table 3. The errors and the accuracy orders of the piecewise-cubic interpolation on
Shishkin meshes

ε N

24 48 96 192 384 768

1 4.43e − 7 2.89e − 8 1.84e − 9 1.16e − 10 7.31e − 12 4.58e − 13

3.94 3.97 3.98 3.99 3.99 3.98

10−1 4.04e − 4 2.85e − 5 1.88e − 6 1.21e − 7 7.64e − 9 4.80e − 10

3.82 3.92 3.96 3.98 3.99 3.99

10−2 1.34e − 2 2.94e − 3 4.84e − 4 6.46e − 5 7.44e − 6 7.73e − 7

2.19 2.60 2.90 3.11 3.26 3.37

10−3 1.37e − 2 3.03e − 3 5.03e − 4 6.76e − 5 7.82e − 6 8.14e − 7

2.17 2.59 2.89 3.11 3.26 3.36

10−4 1.37e − 2 3.00e − 3 5.05e − 4 6.79e − 5 7.86e − 6 8.20e − 7

2.17 2.58 2.89 3.11 3.26 3.36

10−5 1.37e − 2 3.04e − 3 5.05e − 4 6.79e − 5 7.86e − 6 8.19e − 7

2.17 2.58 2.89 3.11 3.26 3.36

MN 2.86 3.05 3.18 3.28 3.36 3.43
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Table 3 presents ΔN,ε and CRN,ε of the piecewise-cubic interpolation on
Shishkin mesh (7). In the bottom of the Table 3 the theoretical order of the
accuracy is presented as

MN = log2
( ln4 N

N4
:

ln4(2N)
(2N)4

)
.

According to the Table 3, CRN,ε approaches to MN if N increases and ε is
small. This result corresponds to the estimates (8) with m = 4.

5 Conclusion

The accuracy of Lagrange interpolation for a function with large gradients in
a boundary layer is investigated. It is shown that the application of Lagrange
interpolation on a uniform mesh leads to the significant errors for small values of
a parameter ε. The estimate of ε-uniform accuracy of Lagrange interpolation on
Shishkin mesh is obtained. The numerical comparison of Lagrange interpolation
on Shishkin mesh with the interpolation fitted to a boundary layer component
is carried out.
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