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Abstract. The exponential growth of data first presented challenges to cutting-
edge businesses such as Goggle, Yahoo, Amazon, Microsoft, Facebook, and
Twitter. Data volumes to be processed by cloud applications are growing much
faster than computing power. This growth demands new strategies for pro-
cessing and analyzing information. Hadoop MapReduce has become a powerful
computation model that addresses those problems. MapReduce is a program-
ming model that enables easy development of scalable parallel applications to
process vast amounts of data on large clusters. Through a simple interface with
two functions, map and reduce, this model facilitates parallel implementation of
many real world tasks such as data processing for search engines and machine
learning. Earlier versions of Hadoop MapReduce had several performance
problems like connection between map to reduce task, data overload and slow
processing. In this paper, we propose a modified MapReduce architecture –

MapReduce Agent (MRA) – that resolves those performance problems. MRA
can reduce completion time, improve system utilization, and give better per-
formance. MRA employs multi-connection which resolves error recovery with a
Q-chained load balancing system. In this paper, we also discuss various appli-
cations and implementations of the MapReduce programming model in cloud
environments.

1 Introduction

Cloud computing is the delivery of computing services over the Internet. Cloud ser-
vices allow individuals and businesses to use software and hardware that are managed
by third parties at remote locations. Examples of cloud services include online file
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storage, social networking sites, webmail, and online business applications. The cloud
computing model allows access information and computer resources from anywhere
where a network connection is available. To make full use of big data, tens of terabytes
(TBs) or tens of petabytes (PBs) of data need to be handled. To process vast amounts of
data Hadoop MapReduce is the basic technologies for big data processing in cloud
environments. Google proposed MapReduce. The MapReduce framework simplifies
the development of large-scale distributed applications on clusters of commodity
machines. MapReduce is typically applied to large batch-oriented computations that are
concerned primarily with time to job completion. The Google MapReduce framework
[1] and open-source Hadoop system reinforce this usage model through a batch-pro-
cessing implementation strategy: the entire output of each map and reduce task is
materialized to a local file before it can be consumed by the next stage. Materialization
allows for a simple and elegant checkpoint/restart fault tolerance mechanism that is
critical in large deployments, which have a high probability of slowdowns or failures at
worker nodes and traditional MapReduce have some limitation like performance
problem, connection problem etc.

To solve the above discussed problems we propose a modified MapReduce
architecture that is MapReduce Agent (MRA). MRA provides several important
advantages to the MapReduce framework. We highlight the potential benefits first:

• In the MapReduce framework, data is transmitted from the map to the reduce stage.
So there may be connection problem. To solve this problem MRA creates iSCSI [2]
Multi-Connection and Error Recovery Method [3] to avoid drastic reduction of
transmission rate from TCP congestion control mechanism and guarantee fast
retransmission of corruptive packet without TCP re-establishment.

• For fault tolerance and workload, MRA creates Q-chained cluster. A Q-chained
cluster [3] is able to balance the workload fully among data connections in the event
of packet losses due to bad channel characteristics.

• In Cloud computing environment a popular data processing engine for big data is
Hadoop MapReduce due to ease-of-use, scalability, and failover properties.

The rest of this paper is organized as follows. Overview of the big data, cloud com-
puting, iSCSI protocol, Hadoop MapReduce architecture and pipelining mechanism [5]
are described in Sect. 2. In Sect. 3, we describe our research motivations. We describe
our proposed model of MapReduce Agent briefly in Sect. 4. We evaluate the perfor-
mance and discuss results in Sect. 5. Finally in Sect. 6, we provide the conclusion of
this paper.

2 Background

In this section, besides the iSCSI protocol we review the big data implementation in the
cloud environment, MapReduce programming model and describe the salient features
of Hadoop, a popular open-source implementation of MapReduce.
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2.1 Cloud Computing

Cloud computing is an emerging technology for large scale data analysis, providing
scalability to thousands of computers, in addition to fault tolerance and cost effec-
tiveness. Generally, a cloud computing environment is a large-scale distributed net-
work system implemented based on a number of servers in data centers. The cloud
services are generally classified based on a layer concept. In the upper layers of this
paradigm, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) are stacked.

Infrastructure as a Service (IaaS): IaaS is built on top of the data center layer. IaaS
enables the provision of storage, hardware, servers and networking components. The
client typically pays on a per-use basis. The examples of IaaS are Amazon EC2 (Elastic
Cloud Computing) and S3 (Simple Storage Service).

Platform as a Service (PaaS): PaaS offers an advanced integrated environment for
building, testing and deploying custom applications. The examples of PaaS are Google
App Engine, Microsoft Azure, and Amazon MapReduce/Simple Storage Service.

Software as a Service (SaaS): SaaS supports a software distribution with specific
requirements. In this layer, the users can access an application and information
remotely via the Internet and pay only for that they use. Salesforce is one of the
pioneers in providing this service model. Microsoft’s Live Mesh also allows sharing
files and folders across multiple devices simultaneously.

2.2 Big Data Management System

Big data includes structured data, semi-structured (XML or HTML tagged text) and
unstructured (PDF’s, e-mails, and documents) data. Structured data are those data
formatted for use in a database management system. Semi-structured and unstructured
data include all types of unformatted data including multimedia and social media
content. Hadoop, used to process unstructured and semi-structured big data, uses the
MapReduce paradigm to locate all relevant data then select only the data directly
answering the query. NoSQL, MongoDB, and TerraStore process structured big data.

2.3 Hadoop Architecture

Hadoop [4] includes Hadoop MapReduce, an implementation of MapReduce designed
for large clusters, and the Hadoop Distributed File System (HDFS), a file system
optimized for batch-oriented workloads such as MapReduce. In most Hadoop jobs,
HDFS is used to store both the input to the map step and the output of the reduce
step. Note that HDFS is not used to store intermediate results (e.g., the output of the
map step): these are kept on each node’s local file system.

A Hadoop installation consists of a single master node and many worker nodes.
The master, called the Job-Tracker, is responsible for accepting jobs from clients,
dividing those jobs into tasks, and assigning those tasks to be executed by worker
nodes.
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2.4 Map Task Execution

Each map task is assigned a portion of the input file called a split. By default, a split
contains a single HDFS block (64 MB by default) [4], so the total number of file blocks
determines the number of map tasks. The execution of a map task is divided into two
phases (Fig. 1).

• The map phase reads the task’s split from HDFS, parses it into records (key/value
pairs), and applies the map function to each record.

• After the map function has been applied to each input record, the commit phase
registers the final output with the TaskTracker, which then informs the JobTracker
that the task has finished executing.

2.5 Reduce Task Execution

The execution of a reduce task is divided into three phases (Fig. 2).

• The shuffle phase fetches the reduce task’s input data. Each reduce task is assigned a
partition of the key range produced by the map step, so the reduce task must fetch
the content of this partition from every map task’s output.

• The sort phase groups records with the same key together.
• The reduce phase applies the user-defined reduce function to each key and corre-

sponding list of values.

2.6 Pipelining Mechanism

In pipelining version of Hadoop [5], they developed the Hadoop online prototype (HOP)
that can be used to support continuous queries: MapReduce jobs that run continuously.
They also proposed a technique known as online aggregation which can provide initial

Fig. 1. Map function interface

Fig. 2. Reduce function interface.
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estimates of results several orders of magnitude faster than the final results. Finally the
pipelining can reduce job completion time by up to 25 % in some scenarios.

2.7 iSCSI Protocol

iSCSI (Internet Small Computer System Interface) is a transport protocol that works on
top of TCP [2]. iSCSI transports SCSI packets over TCP/IP. iSCSI client-server model
describes clients as iSCSI initiator and data transfer direction is defined with regard to
the initiator. Outbound or outgoing transfers are transfer from initiator to the target.

3 Motivations

When a company needs to store and access more data it has multiple choices. One
option would be to buy a bigger machine with more CPU, RAM, disk space, etc. This
is known as scaling vertically. Of course, there is a limit to the size of single machine
that are available and at internet scale this approach is not viable. Another option is
cloud computing, here we can store more data. In Cloud computing environment a
popular data processing engine for big data is Hadoop MapReduce.

In Cloud computing environment various cloud clients store and process data in a
wireless network that has important matter to think about total performance during data
sending and receiving. As we know that in wireless network there bandwidth is narrow
so during packet exchange time there is huge data overheads. So data sending and
receiving parameters needs tuning to be optimized unnecessary packet exchange. Our
proposed method is offering to remove unnecessary packet exchange of an iSCSI
protocol and to reduce a network overhead.

In the pipelining mechanism of Hadoop MapReduce a naïve implementation is
used to send data directly from map to reduce tasks using TCP [5]. When a client
submits a new job to Hadoop, the JobTracker assigns the map and reduce tasks
associated with the job to the available TaskTracker slots. In the modified Hadoop
system each reduce task contacts every map task upon initiation of the job and opens a
TCP socket, which will be used to send the output of the map function. The drawback
of this solution is that TCP congestion during data transmission cab occur. In this case,
TCP connections are being disconnected and after that data must be retransmitted,
which takes a long time. To solve this problem, we propose MRA that can send data
without retransmission using iSCSI multi-connection and also manages load balancing
of data because iSCSI protocol works over TCP. Another motivation is that the iSCSI
protocol is based on block I/O and Hadoop’s map task also assigns HDFS blocks for
the input process.

4 Proposed Model: MapReduce Agent

In cloud computing environments a popular data processing engine for big data is
Hadoop-MapReduce due to its ease-of-use, scalability, and failover properties. But
traditional MapReduce sometimes has poor performance due to connection problems
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and slow processing. To resolve those problems and improve the limitations of Hadoop
MapReduce, we create MRA, which can improve the performance. Traditional Ma-
pReduce implementations also provides a poor interface for interactive data analysis,
because they do not emit any output until the map task has been executed to
completion. After producing the output of the map function, MRA creates multi-
connections with the reducer rapidly (Fig. 3).

If one connection falls or a data overload problem occurs then the rest of job will
distributed to other connections. Our Q-Chained cluster load balancer does this job [3].
So that the reducer can continue its work, which reduces the job completion time
(Fig. 4).

Fig. 3. Proposed MapReduce mechanism to process data in cloud environment.

Input Data

Mapper Mapper Mapper

MRA

Multi-
Connection

Q-chained
cluster

Reducer Reducer Reducer

Output Data

Fig. 4. Map Reduce Agent Architecture (MRA).
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4.1 Multi-Connection and Error Recovery Method of ISCSI

In order to alleviate the degradation of the iSCSI-based remote transfer service caused
by TCP congestion control, we propose the MRA Multi-Connection and Error
Recovery method for one session, which uses multiple connections for each session. As
mentioned in [3], in a single TCP network connection when congestion occurs by a
timeout or the reception of duplicate ACKs (Acknowledgement) then one half of the
current window size is saved in sstresh (slow start window). Additionally, if the
congestion is indicated by a timeout, cwnd (congestion window) is set to one segment.
This may cause a significant degradation in online MapReduce performance. On the
other hand in the Multi-Connection case, if TCP congestion occurs within a connec-
tion, the takeover mechanism selects another TCP connection.

The general overview of the proposed Multi-Connection and Error Recovery based
on iSCSI protocol scheme, which has been designed for iSCSI based transfer system.
When the mapper (worker) is in active mode or connected mode for reduce job that
time session is started. This session is indicated to be a collection of multiple TCP
connection. If packet losses occur due to bad channel characteristics in any connection,
our proposed scheme will pick out Q-Chained Cluster’s balanced redistribute data by
the other active connections.

We use a filter mechanism to control parameter. Figure 5 shows the parameter filter
module, which checks the network status, and calculates the channel number, which is
best suited for network resource. The filter also filters the parameter of iSCSI initiator
and target. In iSCSI remote storage systems there are also device commands and iSCSI
commands. The filter module checks the commands and network status of both initiator
and target. If the command parameter carries the device command then it sends to the
iSCSI device directly and if the command parameter is iSCSI command related like
NOP IN, NOP OUT [7] then it does not need to send them to the device controller.

This way we can reduce the network overhead and increase the iSCSI remote
storage system performance. The parameter controller measures the Round-Trip Time
(RTT) in TCP two-way handshake to determine the appropriate number of TCP con-
nections for a specific destination.

Fig. 5. Overview of Multi-connection and Error Recovery Method of iSCSI [3].
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4.1.1 TCP Two Way Handshaking
With RTT we can measure TCP two-way handshaking between the initiator and the
target, it can be more efficient at avoiding filtering and inflation of packets than ICMP
probes. The multi-TCP connections controller negotiates the number of connections
between the initiator and the target for data transmission, according to Eq. (2) using
parameter (RTT), which was collected by the parameter collector.

As given: p is a packet drop rate. T bps: the maximum sending rate for a TCP
connection. B (bytes): TCP connection sending packets with a fairly constant RTT of
R seconds. Given the packet drop rate p, the minimum Round-trip time R, and the
maximum packet size B, we can use the Eq. (1) to calculate the maximum arrival rate
from a conformant TCP connection.

T � 1:5 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3 � Bp

R � ffiffiffi

p
p ð1Þ

Equation (2) shows that the number of established TCP connections (N) used in Multi-
Connection iSCSI depends on RTT (Rt) measured by the parameter collector. The
minimumRTT can determine the number of connections to be opened as shown in Fig. 6.

However, while the use of concurrent connections increases throughput, it also
increases the packet drop rate. Therefore, it is important to obtain the optimal number
of connections to produce the expected throughput.

T � 1:5 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3 � Bp

R � ffiffiffi

p
p � N �W

Rt
ð2Þ

Where W is window size of each TCP connection. The received acknowledgement
from the initiator and the sent acknowledgement from target will be integrated with the
next request and the next acknowledgement response.

4.2 Q-Chained Cluster Load Balancer

Q-chained cluster is able to balance the workload fully among data connections in the
event of packet losses due to bad channel characteristics. When a congestion occurs in

Initiator Target

SYN m

mss q

SYN n
mss p

Fig. 6. Two-way handshaking of TCP Connection.
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a data connection, this module can do a better job of balancing the workload, which is
originated by congestion connection. It will be distributed among N-1 connections
instead of a single data connection. Figure 7 illustrates how the workload is balanced in
the event of congestion occurrence in a data connection (Data Connection 1 in this
example) with Q-chained cluster. For example, with the congestion occurre nce of
Data Connection 1, the primary data Q1 is no longer transmitted in the congested
connection for the TCP input rate to be throttled and thus its recovery data Q1 of Data
Connection 1 is passed to Data Connection 2 for conveying storage data. However,
instead of requiring Data Connection 2 to process all data both Q2 and Q1, Q-chained
cluster offloads 4/5ths of the transmission of Q2 by redirecting them to Q2 in Data
Connection 3. In turn, 3/5ths of the transmission of Q3 in Data Connection 3 are sent to
Q3. This dynamic reassignment of the workload results in an increase of 1/5th in the
workload of each remaining data connection.

5 Performance Evaluation

As per as [5] we also evaluate the effectiveness of online aggregation, we performed
two experiments on Amazon EC2 using different data sets and query workloads. In
their first experiment [5], the authors wrote a “Top-K” query using two MapReduce
jobs: the first job counts the frequency of each word and the second job selects the K
most frequent words. We ran this workload on 5.5 GB of Wikipedia article text stored
in HDFS, using a 128 MB block size. We used a 60-node EC2 cluster; each node was a
“high-CPU medium” EC2 instance with 1.7 GB of RAM and 2 virtual cores. A virtual
core is the equivalent of a 2007-era 2.5 Ghz Intel Xeon processor. A single EC2 node
executed the Hadoop Job- Tracker and the HDFS NameNode, while the remaining
nodes served as slaves for running the TaskTrackers and HDFS DataNodes.

A thorough performance comparison between pipelining, blocking and MRA is
beyond the scope of this paper. In this section, we instead demonstrate that MRA can
reduce job completion times in some configurations. We report performance using both
large (512 MB) and small (32 MB) HDFS block sizes using a single workload (a
wordcount job over randomly-generated text). Since the words were generated using a
uniform distribution, map-side combiners were ineffective for this workload. We
performed all experiments using relatively small clusters of Amazon EC2 nodes. We
also did not consider performance in an environment where multiple concurrent jobs
are executing simultaneously.

Fig. 7. Q-Chained load balancer.
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5.1 Performance Results of ISCSI Protocol for Multi-Connection

Experimental Methodology:

Our scheme’s throughput in different RTTs are measured for different numbers of
connections in Fig. 8. We see the slowness of the rising rate of throughput between 8
connections and 9 connections. This shows that reconstructing the data in turn influences
throughputs and the packet drop rates are increased when the number of TCP connec-
tions is 9 as the maximum use of concurrent connections between initiator and target.

Therefore, 8 is the maximum optimal number of connections from a performance
point of view. Multi-Connection iSCSI mechanism also works effectively because the
data transfer throughputs increase linearly when the round trip time is larger than 250 ms.

In Fig. 9, the performance comparison of Multi-Connection iSCSI and iSCSI at
different bit-error rates is shown. We see that for bit-error rates of over 5.0 × 10-7the
Multi-Connection iSCSI (2 connections) performs significantly better than the iSCSI
(1 connection), achieving a throughput improvement about 24 % in SCSI read.

Fig. 8. Throughput of Multi-Connection
iSCSI System. Y axis is containing through-
put easurement with Mbps & X axis is for
number of connections. 50, 100, 250 and
500 RTT are measured by ms.

Fig. 9. Throughput of Multi-Connection iSCSI
vs iSCSI at different error rates. Y axis is
throughput & X axis is for bit error rate.

Fig. 10. Q-Chained cluster load balancer vs No load balancer. MC: Multi Connection, Q-CC:
Q-Chained cluster NLB: No load balancer.
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Moreover, as bit-error rates go up, the figure shows that the rising rate of throughput is
getting higher at 33 % in 1.0 × 10-6, 39.3 % in 3.9 × 10-6and 44 % in 1.5 × 10-5.
Actually, Multi-Connection iSCSI can avoid the forceful reduction of transmission rate
efficiently from TCP congestion control using another TCP connection opened during a
service session, while iSCSI does not make any progress. Under statuses of low bit
error rates (< 5.0 × 10-7), we see little difference between Multi-Connection iSCSI and
iSCSI. At such low bit errors iSCSI is quite robust at handling these.

In Fig. 10, Multi-Connection iSCSI (8 connections) with Q-Chained cluster shows
average performance improvement of about 11.5 %. It can distribute the workload
among all remaining connections when packet losses occur in any connection. To
recall an example given earlier, with M = 6, when congestion occurs in a specific
connection, the workload of each connection increases by only 1/5. However, if Multi-
Connection iSCSI (proposed scheme) establishes a performance baseline without load
balancing, any connection, which is randomly selected from takeover mechanism, is
overwhelmed.

5.2 Experimental Results of TCP Two Way Handshaking

Comparing two way handshaking method with three way handshaking, we have
achieved better performance which is shown in Fig. 11.

5.3 Performance Results and Comparison on MapReduce

In the Hadoop map reduce architecture [4, 5]; their first task is to generate output which
is done by map task consume the output by reduce task. The whole thing makes the
process lengthy because reduce tasks have to wait for the output of the map tasks.
Using pipelining mechanism [5], they send output of map task immediately after
generation of per output to the reduce task so it takes less time than Hadoop Ma-
pReduce. During the transmission (TCP) if any problem occurred then they retransmit
again which takes more time and drastically reduces the performance of the MapRe-
duce mechanism (Figs. 12, 13, 14, 15, 16, 17).

Fig. 11. Comparison of data transmission, in between two-way handshaking and three-way
handshaking mode.
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Fig. 12. CDF of map and reduce task
completion times for a 10 GB wordcount
job using 20 map tasks and 20 reduce tasks
(512 MB block size). The total job runtimes
were 361 s for blocking.

Fig. 13. CDF of map and reduce task comple-
tion times for a 10 GB wordcount job using 20
map tasks and 20 reduce tasks (512 MB block
size). The total job runtimes were 290 s for
pipelining.

Fig. 14. CDF of map and reduce task completion times for a 10 GB wordcount job using 20
map tasks and 20 reduce tasks (512 MB block size). The total job runtimes were 240 s for MRA.

Fig. 15. CDF of map and reduce task
completion times for a 100 GB wordcount
job using 240 map tasks and 60 reduce tasks
(512 MB block size). The total job runtimes
were 48 min for blocking.

Fig. 16. CDF of map and reduce task comple-
tion times for a 100 GB wordcount job using
240 map tasks and 60 reduce tasks (512 MB
block size). The total job runtimes were 36 min
for pipelining.
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On the other hand our proposed mechanism (MRA) recovers the drawback by
using multi-connection and Q-chained load balancer method. In these circumstances
MRA may prove its better time of completion.

6 Conclusion

Cloud technology progress & increased use of the Internet are creating very large new
datasets with increasing value to businesses and processing power to analyze them
affordable. The Hadoop-MapReduce programming paradigm has a substantial base in
the big data community due to the cost-effectiveness on commodity Linux clusters and
in the cloud via data upload to cloud vendors, who have implemented Hadoop/HBase.

Finally we can say that our proposed model MRA resolves all the limitation of
Hadoop Map Reduce and it can reduce the time to job completion. Our modified
MapReduce architecture that can play an important role to process big data in cloud
environment efficiently.
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