Benchmarking Internet of Things Solutions

Ashok Joshil(‘g), Raghunath Nambiarz, and Michael Breyl

! Oracle, Redwood shores, USA
{ashok. joshi,michael. brey}@oracle. com
2 Cisco, San Francisco, USA
rnambiar@cisco. com

Abstract. The Internet of Things (IoT) is the network of physical objects
accessed through the Internet, as defined by technology analysts and visionaries.
These objects contain embedded technology allowing them to interact with the
external environment. In other words, when objects can sense and communicate,
it changes how and where decisions are made, and who makes them. In the
coming years, the Internet of Things is expected to be much larger than the
internet and world-wide web that we know today.

1 Introduction

The Internet of Things (IoT) promises to revolutionize various aspects of our lives.
Until recently, most of the internet activity has involved human interaction in one way
or another, such as web browser-based interaction, e-commerce, smart-phone apps and
so on. Recently, there has been a lot of interest in connecting devices of various sorts to
the internet in order to create the “internet of things” for delivering dramatic benefits
relative to existing solutions. For example, network-enabled home health-care moni-
toring devices hold the promise of improving the quality of healthcare while reducing
costs. Connected energy monitoring systems enable more efficient utilization of energy
resources and reduce global warming. Traffic management systems aim to reduce
congestion and decrease automobile accidents. It is clear that such systems can deliver
tremendous value and benefits over traditional solutions.

IoT has fueled massive investment and growth across the entire spectrum of
industry and public sectors. Companies such as Oracle [1], Cisco [2], Intel [3],
Microsoft [4] and others, are investing heavily in IoT initiatives in order to address the
computing and infrastructure requirements of this market.

Though the IoT industry is still in its infancy, based on the number and variety of
solutions being proposed, it seems clear that IoT solutions will play a very significant
role in the coming years. Although there has been a lot of IoT marketing and promo-
tional activity from small and large vendors alike, there is a paucity of proposals to
measure the performance of such systems. At best, some of the proposals [5, 6, 7] either
measure the performance of a specific component and extrapolate the results to a broader

This paper proposes an approach to benchmarking the server-side components of a complete
Internet of Things solution.

© Springer International Publishing Switzerland 2015
T. Rabl et al. (Eds.): WBDB 2014, LNCS 8991, pp. 29-36, 2015.
DOI: 10.1007/978-3-319-20233-4_4



30 A. Joshi et al.

IoT solution [5], or propose a very broad and comprehensive benchmark framework that
encompasses performance, public policy and socio-economic considerations [7].

In contrast, our approach is much more specific and focuses exclusively on the
performance metrics of an IoT system (in particular, on the server-side components of
an IoT solution) using a representative workload. We believe that a systematic
approach to performance benchmarking of IoT systems will help users evaluate
alternative approaches, and ultimately accelerate adoption; in other words, our
approach is workload and solution-centric. A well-crafted performance benchmark also
serves as a catalyst for vendors to improve the performance as well as the overall
usability of the solution, which should benefit the IoT consumer as well.

In the rest of the paper, we describe the components of a typical IoT solution, then
describe a representative use-case, followed by a straw-man description of a benchmark
intended to measure the performance (throughput, latency, etc.) of such a system.
Admittedly, this is a straw-man proposal; we explore how this benchmark might be
applicable to other use-cases (with modifications) and also describe some of the lim-
itations of our proposal and areas for future work. Significant additional work is
necessary in order to create one or more formal benchmarks for IoT systems.

2 IoT Solution Architecture Components

Although the scale of IoT solutions is enormous in comparison to current internet
usage, in this paper, we address only the essential architecture of an IoT solution in the
context of benchmarking the server components. The following discussion presents a
simplified view of the system as a small number of distinct, essential components.
These architecture components and their relationships are illustrated in Fig. 1 and
described below in more detail.

-

Small edge
device Gateway Event NoSQL MapReduce
device processing system System
engine A
Large edge ~_‘/_’
device \ 4
RDBMS,
analytics,
reporting

Fig. 1 Essential components of a typical IoT architecture.

At the “device” edge of the network, we have edge devices and software that
controls the devices. Quite often, the devices are relatively inexpensive and have
limited computing and network capabilities (small edge devices) — temperature sensors
in office buildings, various sensors in a vehicle, blood pressure and blood glucose



Benchmarking Internet of Things Solutions 31

monitors are all examples of such devices. Mobile phones, computers in vehicles are
also examples of edge devices which have better computing and local storage capa-
bilities than small edge devices. Small edge devices are primarily intended to capture
and send information from the object being monitored, to the central repository; sec-
ondarily, they may also receive data to make appropriate changes (e.g. a building
temperature sensor might receive a directive to shutdown the air conditioning system in
the event of a fire). More capable edge devices like mobile phones (large edge devices)
typically provide a richer set of capabilities beyond simple monitoring, and can have
bi-directional exchange of information with the central data repository.

Depending on the number and capability of edge devices in the deployed topology,
edge devices (such as sensors) connect to a gateway device, organized as a multi-level
hierarchy, with a set of small devices being served by a gateway device. The gateway
device with sufficient computing, storage and network connectivity is essentially a
“concentrator” that can process data and exchange information between the small
devices and the data center. A gateway device communicates with a relatively small set
of edge devices (typically less than one hundred) on one side and the data center on the
other. For example, a set-top box (gateway device) might serve as the connectivity
“hub” for all the sensors and devices in a home. Or a laptop/desktop-class device might
serve as the connectivity hub for sensors on a set of machines and robots on a factory
floor. A gateway device is connected to the edge devices on one side, and to the data
center (or other gateway devices in a multi-stage hierarchy) on the other side and
enables efficient communication and data exchange between edge devices and the rest
of the system. Note that in a large system, there might be multiple gateway stages, in
order to simplify data management and communication in the system.

A large edge device may either be connected directly to the central repository, or
indirectly through an intermediate gateway device, depending on the specific appli-
cation scenario. For example, a mobile phone might connect directly with the data
center, without any intermediate gateway device.

The other major component in the hierarchy is obviously the network. The network
is not only responsible for communication, but it also facilitates or enforces attributes
such as security, privacy, reliability, availability and high performance.

Mobile edge devices pose an interesting challenge since they may occasionally be
out of range of a network connection. For example, an edge device mounted on a
delivery truck may occasionally lose network connectivity when the truck enters a
tunnel or is in a remote area. In order to avoid data loss while the device is discon-
nected from the network, it is necessary to temporarily store new data in the (large)
edge device and send that information to the data center when connectivity is restored.
Even in cases where temporary loss of network connectivity is not an issue, it may still
be valuable to store some data locally on the edge device or gateway device and only
synchronize it periodically with the data center, in order to minimize costs associated
with network usage, since these costs can add up quickly, especially at IoT scale.
Oracle Database Mobile Server [8] is an example of a technology that is well suited for
data synchronization between edge device repositories and the data center. Light-
weight, embeddable databases such as SQLite [9], Oracle Berkeley DB [10] and Java
DB [11] are well suited for reliable, device-local data management.



32 A. Joshi et al.

Finally, the data center (centralized or distributed) receives data from the edge
devices and processes it in various ways, depending on the application. Broadly
speaking, data center processing can be classified into event processing, high throughput
data capture, device management, data aggregation, data analytics and reporting.

We will use the term event processing to describe the processing that is required to
respond to an event as quickly as possible. For example, if a sensor in a building sends
information about a potential fire, then it is necessary to respond to that message as
quickly as possible. Event processing typically involves various lookups (e.g. look up
the location of the device, determine location of the closest emergency responders) as
well as generating appropriate responses (e.g. send a message back to the sensor to
switch on the sprinkler system, send an alert to first responders). Note that of all the
messages being received from the edge devices, only a small fraction need an immediate
response as described above. However, all the messages must be examined by the event
processing engine in order to determine whether an immediate response is required.

Messages from edge and gateway devices need to be captured persistently in order
to enable further analytics. Though message sizes are generally small, typically varying
from few tens of bytes, to a few kilobytes, the sheer volume of devices involved and the
rate of data capture usually implies that a scalable, persistent store to capture the data is
required. Depending on the nature of data and the application, a NoSQL database
system or a distributed file system such as HDFS might be used. For example, data
related to medical information (e.g. blood pressure, heart rate and blood glucose
readings) for patient monitoring might need to be stored in a NoSQL database for
reliability and regulatory reasons. On the other hand, a distributed file system such as
HDFS might be sufficient to store messages containing information from office
building room temperature sensors.

A scalable database system (e.g. a NoSQL system) is also typically required to
manage information about the edge and gateway devices. Such information typically
includes the ID and owner of the device, location, model number and other details,
software patch version etc. Occasionally, it is necessary to send updates or new
information to the devices, for example, to deliver software upgrades, or change
configuration settings. In an IoT environment, it is very likely that such information
needs to be managed for hundreds of thousands to millions of edge devices; a NoSQL
repository is ideally suited for this purpose.

Lastly, the data received from the devices needs to be aggregated and processed in
various ways to identify trends, opportunities for optimization as well as to generate
reports required for running the business. For example, data collected from vehicle brake
sensors might be correlated with GPS locations and time-of-day in order to optimize
delivery routes. Data from heart rate sensors and physical activity sensors might be used
in order to recommend an appropriate exercise regimen for heart disease patients.

3 Benchmarking IoT

IoT is rapidly emerging as the “next generation” technology, and promises to revolu-
tionize and improve various aspects of everyday life. There are literally hundreds of
commercial and open source organizations in this broad and somewhat amorphous space.



Benchmarking Internet of Things Solutions 33

Regardless of the kinds of solutions available, we believe that a systematic
approach to measurement and benchmarking such systems will provide significant
benefits to the user community and solution providers.

Attempting to define a comprehensive benchmark that deals with the various
components in the end-to-end solution is a daunting task; in the following paragraphs,
we describe a skeleton benchmark intended to address performance issues of some of
the server-side components. The suggestions and recommendations outlined below
have been derived from the authors’ real-world understanding and experience with
early deployments of IoT solutions. In the future, this work can be extended to define
additional benchmarks to address other aspects of an IoT solution.

The proposed “strawman” benchmark is intended to model and measure some of
the server-side components of a real-world scenario viz. to capture data from home
health-care monitoring systems for millions of patients. This involves capturing health-
related readings reliably and securely from large numbers of devices, responding
rapidly to abnormal events, and analyzing vast amounts of data in order to benefit the
patient community.

A reading from an edge device is typically short (tens of bytes) and contains
information like device ID, timestamp, geo-location (if appropriate) and measurements
of the variables that the sensor captures. For the purposes of a benchmark, a reading
is 96 bytes of data, with a 16 byte key (device ID) and five 16-byte fields of data. Let us
assume that each edge device (e.g. a heart rate monitor) captures a reading every
10 min. For a population of one million patients, this translates to a reading capture rate
of 1667 readings/sec and 160 KB/sec. As soon as the reading is available, the edge
device sends the data to the data center either directly or via intermediate gateway
devices.

An event processing system processes every incoming reading. A small percentage
(e.g. 1 percent) of the incoming readings will need a response immediately and every
reading needs to be saved in a secure, persistent repository. The event processing
system interprets the incoming reading and decides whether it requires an immediate
response. This decision is based on the reading itself as well as information about
the specific patient (this requires lookups in the patient database). For the purposes of
the benchmark, let us assume that the decision involves looking up a single database
that maintains per-patient information and a history of the recent three months’ worth
of heart-rate readings (about 13000 heart-rate readings, or 1.2 MB as well as the
patient’s recent medical history of 100 KB).

Regardless of whether they require an immediate response or not, all readings are
stored in the patient history repository. Based on the previous description, for a patient
population of one million patients, this translates to a repository that can manage
approximately 1.3 TB of patient data.

Periodically, a batch job reads the heart rate readings history for each patient and
consolidates multiple “similar” adjacent readings into a single reading. Since each
sensor measures the heart-rate of the patient every 10 min, it is possible that a series of
readings might have heart-rate readings that are within the normal range for the patient.
For example, while the patient is asleep, the heart-rate might stay relatively constant for
a significant interval of time. The batch job identifies such intervals and consolidates
multiple readings at taken at 10 min intervals into a single “average” reading for a



34 A. Joshi et al.

longer interval. For example, if the patient’s heart-rate doesn’t fluctuate by more than 3
heartbeats per minute between two subsequent readings, these two readings will be
“consolidated” into a single reading which has the average value of the two original
readings and the time interval will be changed to be a 20 min span. This consolidation
operation has the dual benefit of reducing the amount of storage required and also
simplifying the job of the physician by consolidating similar, adjacent readings into a
single reading over a larger interval. For the purposes of the benchmark definition, we
assume that 50 % of the readings are consolidated into a single reading. This translates
to a repository of 1.3 TB of patient data for a patient population of 1 million patients.

Operation Profiles. The message format and size, as well as the patient record size and
content have been described earlier. The various operation profiles are as follows:

e Incoming reading received by the event processing engine. For each reading, the
event processing engine looks up the related patient record. For 1 % of the messages
(selected randomly), it generates an alert. Every message is appended to the related
patient record. From a benchmarking perspective, this operation is intended to
model the data capture throughput and data retrieval throughput of the system.

e Consolidating similar, adjacent heart-rate readings. A background job reads each
patient reading, consolidates similar, adjacent heart-rate readings into a single
reading and updates the patient record appropriately. The choice of whether to
retain the readings that contributed to the consolidated reading or delete such
readings is left up to the implementers of the benchmark. The consolidation
operation should be able to consolidate 50 % of the readings within a 24 h window.
The batch job must retrieve every record in the database within the same period.
From a benchmarking perspective, this operation is intended to model the analytics
and batch-processing aspects of the system.

A key premise of most IoT systems is the ability to respond in a timely manner to
abnormal events. Secondly, the volume of readings and measurements from sensors
can be enormous. The ability to filter the “signal” from the “noise” is critical to efficient
operation of the system. These operation profiles attempt to capture these aspects in a
benchmark.

Performance and Price-Performance Metrics. The benchmark measures the
throughput of data capture (readings/sec) in the patient repository under the constraints
described earlier. Further, data capture, response generation and data consolidation jobs
must be run concurrently, since the system is intended to run 24X7. It is difficult to
propose a price-performance metric for the benchmark, since several necessary com-
ponents of the complete system are intentionally ignored in this proposal.

Other Considerations. This paper provides some recommendations for benchmarking
the event processing and data repository components of a IoT system intended to
capture and process data for a patient data monitoring system. It also suggests scaling
rules for such a benchmark.

Several variants of the above approach are possible, depending on the specific IoT
application being modeled. It may be necessary to vary some of the parameters as
follows:



Benchmarking Internet of Things Solutions 35

e The number of edge devices, typical size of a message from each device and the
frequency of sending a message from each edge device.
Event processing requirements.
Number of historical messages to be retained (in this proposal, we recommended
storing three months worth of readings).
Size of the device record (e.g. the size of each patient record, in this proposal).
Other parameters as relevant to a specific usage scenario.

From a benchmarking perspective, this proposal addresses the following essential
components:

e Data capture from multiple sources (edge or gateway devices) - this measures “raw”
data capture throughput.

e “Real-time” analysis of the input data for fast response to a subset of the incoming
data — this measures the performance of the event processing engine as well as the
throughput and latency of accessing reference data from the data store.

e Consolidation of the incoming data in order to conserve space — this measures batch
processing (as a proxy for analytics processing) performance of the system.

We believe that server-side data capture, real-time response, and batch processing
performance are common to a wide variety of other IoT usage scenarios such as climate
control, vehicle monitoring, traffic management and so on. With appropriate changes to
model a particular scenario, this proposal can be adapted to measure and benchmark the
performance of the server components of such scenarios.

4 Conclusion

Internet-of-Things (IoT) represents a broad class of emerging applications that prom-
ises to affect everyday life in various ways. The scale of IoT applications dwarfs the use
of the internet, as we know it today. Many commercial and open source players are
investing heavily in solutions intended to address specific aspects of IoT; some of the
larger players claim to provide a comprehensive, end-to-end solution.

For all these scenarios, we believe that a set of benchmarks, modeled on real-world
scenarios, will provide a valuable yardstick to compare the relative merits and costs of
such solutions and will have a significant beneficial impact on the IoT industry. In this
paper, we have attempted to provide some guidelines on how one might go about
designing such benchmarks. Significant additional work is needed in order to define
formal benchmarks; hopefully, this proposal will inspire some of that future work.

References

http://www.oracle.com/iot
http://www.cisco.com/web/solutions/trends/iot/overview.html
http://www.intel.com/iot
http://www.microsoft.com/windowsembedded/en-us/internet-of-things.aspx

b eSS


http://www.oracle.com/iot
http://www.cisco.com/web/solutions/trends/iot/overview.html
http://www.intel.com/iot
http://www.microsoft.com/windowsembedded/en-us/internet-of-things.aspx

36 A. Joshi et al.

. http://www.sys-con.com/node/3178162

. http://www.probe-it.eu/?page_id=1036

. http://www.probe-it.eu/wp-content/uploads/2012/10/Probe-it-benchmarking-framework.pdf

. http://www.oracle.com/technetwork/database/database-technologies/database-mobile-server/
overview/index.html

9. http://www.sqlite.org

10. http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/

index.html
11. http://www.oracle.com/technetwork/java/javadb/overview/index.html

0 J N D


http://www.sys-con.com/node/3178162
http://www.probe-it.eu/?page_id=1036
http://www.probe-it.eu/wp-content/uploads/2012/10/Probe-it-benchmarking-framework.pdf
http://www.oracle.com/technetwork/database/database-technologies/database-mobile-server/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/database-mobile-server/overview/index.html
http://www.sqlite.org
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html

	Benchmarking Internet of Things Solutions
	Abstract
	1 Introduction
	2 IoT Solution Architecture Components
	3 Benchmarking IoT
	4 Conclusion
	References


