
Chapter 26
A Model-Based Methodology to Generate
Code for Timer Units

Marco Marazza, Francesco Menichelli, Mauro Olivieri,
Orlando Ferrante and Alberto Ferrari

Abstract In this paper we present a model-based methodology and a tool-chain sup-

porting pseudo-automated code generation for different Timer Units, which represent

a new approach in this field. Programmable Timer Units are timing co-processors

used to elaborate complex high-resolution timing functions subject to hard real-

time constraints. Verification at the different design stages, as required per safety

standards’ certification, is becoming a major concern for Timer Units code devel-

opment life-cycle. Enabling correct-by-construction code generation, our method-

ology supports code development, integration and testing across all design phases.

We show how high-level functional models derived from functional requirements

can be mapped onto the target architecture and how architecture-specific code can

be generated. Our methodology is then applied to an automotive reference example.

Keywords Embedded Systems ⋅ Code generation ⋅ Timer unit

M. Marazza (✉) ⋅ F. Menichelli ⋅ M. Olivieri

Department of Information Engineering, Electronics and Telecommunications (DIET),

Sapienza University of Rome, Via Eudossiana, 18, 00184 Roma, Italy

e-mail: marazza@diet.uniroma1.it; marco.marazza@utsce.utc.com

F. Menichelli

e-mail: menichelli@diet.uniroma1.it

M. Olivieri

e-mail: olivieri@diet.uniroma1.it

M. Marazza ⋅ O. Ferrante ⋅ A. Ferrari

Advanced Laboratory on Embedded Systems (ALES), Via Barberini, 50, 00187 Roma, Italy

O. Ferrante

e-mail: orlando.ferrante@utsce.utc.com

A. Ferrari

e-mail: alberto.ferrari@utsce.utc.com

© Springer International Publishing Switzerland 2016

A. De Gloria (ed.), Applications in Electronics Pervading Industry,
Environment and Society, Lecture Notes in Electrical Engineering 351,

DOI 10.1007/978-3-319-20227-3_26

203

204 M. Marazza et al.

26.1 Introduction

An increasing number of today’s industrial applications demand accurate control of

timing synchronization. Typical examples come from the automotive domain: cylin-

der spark timing, fuel injection timing and fuel mixture control must be precisely

controlled to achieve the highest gain in terms of fuel economy, unwanted emissions

and engine performance, while guaranteeing low energy consumption [9]. In these

cases even the use of low-latency software interrupts might not achieve the required

high time resolution. Moreover, the great number and the concurrent nature of these

timing functions exaggeratedly increases the workload of the Electronic Control

Unit’s (ECU) processor. To help delivering hard real-time functions, programmable

Timer Units can be integrated into the ECU architecture. These co-processors are

provided with custom hardware and software to reduce the amount of I/O process-

ing on single- or multi-core CPUs [8]. Examples of programmable Timer Units can

be found in [4, 6]. Each programmable Timer Unit is provided with its own pro-

gramming language: while the ETPU [4] is provided with a customized high-level

assembly programming model, the GTM [6] is provided with a C-like compiler

prototyped in LLVM [7]. Despite high-level languages have been developed, still

Timer Units’ programming models differ significantly and require a great amount of

time to develop and debug the code. In this paper we propose a methodology to add

a model-based programming layer. The benefits of such an approach are manifold:

(1) the programmer would be provided with a single programming environment for

many Timer Units; (2) a model-based environment typically allows simulating the

models to check whether they fulfill functional requirements; (3) many tools in the

market supporting model-based design provide automatic code generation, thus sav-

ing code development time considerably and enable automatic test generation [3];

(4) many formal analysis techniques (e.g. [3, 10]) can be successfully addressed on

functional models, thus reducing the risk of generating unspecified or bugged source

code. To the best of the author’s knowledge this approach has not been addressed yet

for Timer Units and represents an opportunity to improve code development and

verification for Timer Units.

26.2 Reference Example

As a reference example we consider a function controlling the cylinder ignition

timing of an internal combustion engine [5]. This function controls the generation

of spark pulses that feed a spark plug actuator. Spark pulses must be synchronized

to specific angular positions of the rotating shaft of the engine. Our reference igni-

tion function consists of generating a main spark pulse, followed by a sequence of

multi-spark pulses at each complete engine cycle (720
◦
). Generally, the properties

of these I/O functions (i.e. the angular value at which the main pulse must start for a

specific cylinder, etc.) are parametrized and can be changed at run-time by the appli-

26 A Model-Based Methodology to Generate Code for Timer Units 205

Main Spark Pulse Multi-Spark Pulses

Dwell Time
Off

Time
On

Time

Start Angle Spark Angle

Min Dwell
Time

Max Dwell
Time

Fig. 26.1 Specification of the ignition function

cation running on the ECU. Figure 26.1 represents the specification of the ignition

function. The Dwell Time is a function parameter set by the application running on

the ECU and indicating the required active time of the main spark pulse. Start Angle
is the required shaft’s angular position at which the main spark pulse must switch

to active and End Angle is the required angle for the opposite transition of the main

spark pulse. Since the ignition function must guarantee that the spark pulse ends at

the correct engine angle irrespective to engine acceleration or deceleration, it also

has two additional parameters: Minimum Dwell (time) and Maximum Dwell (time).

To ensure that the ignition coil has been charged sufficiently to generate a reliable

spark after the pulse ends the spark pulse must remain active for at least a Minimum
Dwell time length. Conversely, the spark pulse must be shorter than Maximum Dwell
to ensure that the ignition coil being charged is not damaged by too much current and

heat. After the main spark pulse has been generated, a set of equidistant short spark

pulses can follow. This sequence is characterized by only three parameters: Number
of Multi-spark Pulses, Off Time and On Time, indicating the number, and inactive

time and active time lengths respectively.

26.3 Methodology

We propose a model-based methodology to automatically generate code for Timer

Units. The main steps are summarized in Fig. 26.2; in this Section we briefly review

each of the activities.

26.3.1 Functional Model

In our model-based methodology we start from the functional model M which is a

formal representation of a function of the system, implementing the specified func-

tional requirements. The benefit of implementing requirements by means of a formal

206 M. Marazza et al.

Refined Executable Functional
Model (SW-HW Composition)Target

Selection

Partitioning and
Mapping

Refined Executable
Functional Model

(HW-SW Composition)

Matching
Requirements

?N

Functional Requirements

Functional Modeling

Functional Simulation

Matching
Requirements

?N Y

Functional Specification
Mapping Function to
Target Architecture

Functional Simulation

SW Partition HW Partition

Automatic
Code

Generation

Automatic HW
Configuration

Generation

GP C Code HW
Configuration

Code Tailoring

Target-specific
C Code

To Target-specific
Compiler Tool-Chain

HW
Channels’

Model

Generation of
Code and Configuration

SW
Channels’

Model

Y

Executable Functional Model

Fig. 26.2 Illustration of the proposed methodology

model rely on the possibility of executing and refining it. The refinement level of the

model depends both on the designer’s expertise and on the purpose of the model in

the work-flow. As shown in the left-hand side of Fig. 26.2, the functional modeling

phase is often an iterative process, converging to the needs of the designer. The for-

mal nature of the functional model also opens the way to a set of formal verification

activities that can be leveraged (1) to verify the correctness of the model against its

(possibly formalized) requirements and (2) to generate test scenarios [3] that can be

applied on the design at subsequent phases of the development life-cycle (e.g. for

back-to-back testing).

26.3.2 Mapping Functions on the Target Architecture

The partitioning and mapping activity (central portion of Fig. 26.2) aims at the de-
composition of the function into a set of functional components and allocation of

each functional component to the proper architectural component(s) in the target

Timer Unit. The inputs of this activity are: the executable functional model provided

by the preceding modeling activity, the selection of the target Timer Unit, a library

of hardware channels’ models per each Timer Unit, and a library of channels’ control

software models per each Timer Unit. Timer Units’ configurable hardware channels

[4, 6], can be thought as a set of hardware-implemented services provided to the

software. Each library model is still a functional (possibly hierarchical) model, but

enriched with the hardware and software peculiarities of the specific Timer Unit.

Model libraries can be designed by the end user or could be provided by third par-

ties, e.g. by the Timer Unit vendor. To match the functional behavior, architectural

components are picked up from the hardware and software libraries pertaining to

the selected Timer Unit. Different Timer Units provide differing sets of services to

26 A Model-Based Methodology to Generate Code for Timer Units 207

their control software. Hence, mapping the same functional model on different ar-

chitectures can be reduced to a graph covering problem. The result of this activity is

a model C = H ⊗ S resulting from the composition (⊗) of a hardware library model

H and a software library model S and equivalent (≡) to the input functional model

M, (C ≡ M).

26.3.3 Automatic Generation of Target Code
and Configuration

Referring to the right-hand part of Fig. 26.2, the enriched model C = H ⊗ S is

used to generate both the configuration and the source code controlling the behavior

of each I/O hardware channel. The I/O hardware channel configuration is derived

straightforwardly from the hardware partition model H. In facts, H models the func-

tion performed by the hardware channel, which only depends on its configuration.

On the other side, the software partition model S is used to automatically generate

correct-by-construction source code. The generated target source code, along with

header files, have to be conform to the various Timer Units programming languages.

This code has to be compiled in a later stage of the work-flow in order to be executed

in the target Timer Unit. This approach subsumes that a C or high level assembly

compiler is available to the developer, so that the automatically generated source

code can be effectively translated into the executable machine-code.

26.4 Application to the Reference Example

We applied our methodology by using the Matlab/Simulink/Stateflow tool, along

with the Embedded Coder Simulink Toolbox to automatically generate standard C

code from our models. Such code has then been modified by hand and compiled

with the specific Timer Unit’s compiler [1, 7]. This Section gives a short description

about how we accomplished the different phases of our methodology. The ignition

function has been modeled as a Simulink/Stateflow Extended Finite State Machine

(EFSM) by starting from the function specification. The formal model depicted in

Fig. 26.3 is a function F[u, x, f, k] that at each discrete time k maps the inputs vec-

tor u[k] and the current state vector x[k] to a vector of outputs y[k] and next-state

values x[k + 1]. All the input parameters are generated by a subsystem external to

the EFSM in Fig. 26.3 and can change at every time, as required by the application.

Figures 26.4 and 26.5 represent the execution of the ignition function in two corner

cases: in Fig. 26.4 End Angle arrives before Max Dwell, whereas in the example in

Fig. 26.5 Max Dwell occurs before End Angle. The waveform at the bottom of the

two figures indicates the time between Min Dwell and Max Dwell, where the End
Angle is expected to arrive. The function in Fig. 26.3 has been refined for the two

208 M. Marazza et al.

U
pd

at
eP

ar
am

s
cu

rr
en

t_
st

ar
t_

an
gl

e=
cu

rr
en

t_
st

ar
t_

an
gl

e+
tic

ks
_p

er
_e

ng
in

e_
cy

cl
e;

cu
rr

en
t_

en
d_

an
gl

e=
cu

rr
en

t_
en

d_
an

gl
e+

tic
ks

_p
er

_e
ng

in
e_

cy
cl

e;
sp

ar
k_

pu
ls

e=
0;

G
en

er
at

eM
ul

tiP
ul

se
s

m
ul

ti_
pu

ls
es

_c
ou

nt
=

0;
G

ur
an

te
eM

in
D

w
el

l
S

ee
kS

ta
rt

A
ng

le

S
ee

kE
nd

A
ng

le
O

rM
ax

D
w

el
l

ex
: c

ur
re

nt
_t

ic
ks

 =
 ti

m
e_

tic
ks

;

In
it

cu
rr

en
t_

st
ar

t_
an

gl
e=

st
ar

t_
an

gl
e;

cu
rr

en
t_

en
d_

an
gl

e=
en

d_
an

gl
e;

sp
ar

k_
pu

ls
e=

0;

M
ul

tiO
n

cu
rr

en
t_

m
ul

ti_
on

=
cu

rr
en

t_
m

ul
ti_

of
f+

on
_t

im
e;

ex
: c

ur
re

nt
_t

ic
ks

=
tim

e_
tic

ks
;

M
ul

tiO
ff

cu
rr

en
t_

m
ul

ti_
of

f=
cu

rr
en

t_
tic

ks
+

of
f_

tim
e;

m
ul

ti_
pu

ls
es

_c
ou

nt
=

m
ul

ti_
pu

ls
es

_c
ou

nt
+

1;

[m
ul

ti_
pu

ls
es

_c
ou

nt
>

=
nu

m
_m

ul
ti_

pu
ls

es
]

2

[a
ng

le
_t

ic
ks

>
=

cu
rr

en
t_

st
ar

t_
an

gl
e]

/s
pa

rk
_p

ul
se

=
1;

cu
rr

en
t_

st
ar

t_
tim

e=
tim

e_
tic

ks
;

cu
rr

en
t_

m
in

_d
w

el
l_

tim
e=

cu
rr

en
t_

st
ar

t_
tim

e+
m

in
_d

w
el

l;
cu

rr
en

t_
m

ax
_d

w
el

l_
tim

e=
cu

rr
en

t_
st

ar
t_

tim
e+

m
ax

_d
w

el
l;

[m
ul

ti_
pu

ls
es

_c
ou

nt
<

nu
m

_m
ul

ti_
pu

ls
es

]
1

[ti
m

e_
tic

ks
>

=
cu

rr
en

t_
m

ul
ti_

on
]

/s
pa

rk
_p

ul
se

=
0;

[ti
m

e_
tic

ks
>

=
cu

rr
en

t_
m

in
_d

w
el

l_
tim

e]

[ti
m

e_
tic

ks
>

=
cu

rr
en

t_
m

ul
ti_

of
f]

/s
pa

rk
_p

ul
se

=
1;

[a
ng

le
_t

ic
ks

>
=

cu
rr

en
t_

en
d_

an
gl

e
||

tim
e_

tic
ks

>
=

cu
rr

en
t_

m
ax

_d
w

el
l_

tim
e]

/s
pa

rk
_p

ul
se

=
0;

Fi
g.
26
.3

I
g

n
it

io
n

f
u

n
c
ti

o
n

E
F

S
M

m
o

d
e
le

d
in

s
im

u
li

n
k

/s
ta

te
fl

o
w

26 A Model-Based Methodology to Generate Code for Timer Units 209

Fig. 26.4 Main spark pulse terminating at MaxAngle

Fig. 26.5 Main spark pulse terminating at MaxDwell

architectures in [4, 6]. The hardware channels and the related control software have

been modeled through the EFSM formalism. The composition of both the hardware

and the software machines represents the ignition function as implemented on the

two distinct architectures. The simulations of the refinements for the two architec-

tures give the same results as shown in Figs. 26.4 and 26.5. As defined in Sect. 26.3,

we exploited the software partition of the refined EFSM to generate the code specific

to the target Timer Unit. In this preliminary work we generated code for a standard

x86 platform and then manually tailored the resulting C code to match the program-

ming model of the specific Timer Unit [1, 7]. This step helped us filling a set of

tables of correspondences between I/O channel modes of the two Timer Units. The

correspondences can be used to map particular “patterns” in the functional model to

the corresponding library models of the channel mode or software code specific to

the target architecture.

26.5 Conclusion

In this paper we presented a model-based methodology along with the supporting

tool-chain for pseudo-automated code generation for different Timer Units, which

represents a new approach in this field. The benefits are manifold: code develop-

ers can spend their effort on the modeling of the desired function, independently

of the target Timer Unit; source code and hardware configuration can be generated

automatically from the model and model-based automatic test generation and verifi-

cation techniques can be exploited to test the design across its development phases.

Future work will be devoted to automation of those phases that still require manual

intervention.

210 M. Marazza et al.

References

1. ASH WARE: Compiler Reference Manual. v.2.01, 12 2011

2. Ferrante, O., Ferrari, A., Marazza, M.: Automatic Generation of Failure Scenarios for SoC.

ERTS, Toulouse, France, 5–7 Feb 2014

3. Ferrante, O., Ferrari, A., Marazza, M.: Model based generation of high coverage test suites

for embedded systems. In: Proceedings of the IEEE European Test Symposium, Paderborn,

Germany, 26–30 May 2014

4. Freescale: Enhanced Time Processing Unit (eTPU) Reference Manual. 05 2004

5. Freescale: Using the eTPU Spark Function. Application Note. 07 2009. http://www.freescale.

com/files/32bit/doc/app_note/AN3771.pdf

6. GTM-IP Specification revision. 06 2013. http://www.bosch-semiconductors.de/media/en/pdf_

1/ipmodules_1/timer/GTM-IP_Specification_v1551.pdf

7. Marazza., M., Cremona, F., Ceraolo Spurio, D., Demuth, C., Nastasi, C., Ferrari, A.: Towards

a Programming and Analysis Framework for Timer Units. In: JRWRTC, Sophia Antipolis,

France, 16–18 October 2013

8. Menichelli, F., Olivieri, M., Benini, L., Donno, M., Bisdounis, L.: A Simulation-Based Power-

Aware Architecture Exploration of a Multiprocessor System-on-Chip Design. DATE, pp. 312–

317 (2004)

9. Menichelli, F., Olivieri, M.: Static minimization of total energy consumption in memory sub-

system for scratchpad-based systems-on-chips. IEEE Trans. VLSI Syst. 17(2), 161–171 (2009)

10. Rodrigues, C.: A Case Study for Formal Verification of a Timing Coprocessor. IEEE, LATW

(2009)

http://www.freescale.com/files/32bit/doc/app_note/AN3771.pdf
http://www.freescale.com/files/32bit/doc/app_note/AN3771.pdf
http://www.bosch-semiconductors.de/media/en/pdf_1/ipmodules_1/timer/GTM-IP_Specification_v1551.pdf
http://www.bosch-semiconductors.de/media/en/pdf_1/ipmodules_1/timer/GTM-IP_Specification_v1551.pdf

	26 A Model-Based Methodology to Generate Code for Timer Units
	26.1 Introduction
	26.2 Reference Example
	26.3 Methodology
	26.3.1 Functional Model
	26.3.2 Mapping Functions on the Target Architecture
	26.3.3 Automatic Generation of Target Code and Configuration

	26.4 Application to the Reference Example
	26.5 Conclusion
	References

