
Lorentz Breaking Effective Field Theory Models
for Matter and Gravity: Theory and
Observational Constraints

Stefano Liberati and David Mattingly

Abstract A number of different approaches to quantum gravity are at least partly
phenomenologically characterized by their treatment of Lorentz symmetry, in par-
ticular whether the symmetry is exact or modified/broken at the smallest scales.
For example, string theory generally preserves Lorentz symmetry while analog
gravity and Lifshitz models break it at microscopic scales. In models with broken
Lorentz symmetry, there are a vast number of constraints on departures from Lorentz
invariance that can be established with low-energy experiments by employing the
techniques of effective field theory in both the matter and gravitational sectors. We
shall review here the low-energy effective field theory approach to Lorentz breaking
in these sectors, and present various constraints provided by available observations.

1 Introduction

Our understanding of the observed laws of nature is currently based on two different
theories: the Standard Model (SM) of particle physics, and general relativity (GR).
However, in spite of their phenomenological successes, SM and GR leave many
fundamental theoretical questions unanswered. First of all, part of the success of
the SM has been the recognition that symmetry breaking is an important part of
modern physics and that what appear to be multiple forces at low energies can often
be described in a unified manner. The prime example of this is the Glashow–Salam–
Weinberg theory of electroweak interactions. Since such unification is possible, and
since many physicists feel that our understanding of the fundamental laws of nature
would be deeper and more accomplished if we are able to reduce the number of
degrees of freedom in a theory, much effort has been spent trying to construct unified
theories in which not only all the subnuclear forces are seen as different aspects of a
unique interaction but also gravity is included in a consistent manner as merely part
of the overall structure.
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Another important reason why we seek for a new theory of gravity comes directly
from the gravity side. We know that GR fails to be a predictive theory in some
regimes. Indeed, many solutions of Einstein’s equations are singular in some region,
and GR is not able to make any prediction in those regions of space-time. Moreover,
there are honest classical solutions of the Einstein’s equations that contain closed
time-like curves, which would allow traveling back and forth in time with the asso-
ciated causal paradoxes. Finally, the problem of black hole evaporation considered
just within the framework of semiclassical gravity clashes with quantum mechanical
unitary evolution.

This long list of puzzles spurred intense research toward a quantum theory of
gravity that started almost immediately after Einstein’s proposal of GR and which
is still one of the most active areas of theoretical physics. The quantum gravity
(QG) problem is not only conceptually and technically challenging but has also
been an almost metaphysical pursuit for several decades, in that most progress has
been on the theoretical side and the experimental aspect has been (for good rea-
sons) neglected. Indeed, we expect QG effects at experimentally/observationally
accessible energies to be extremely small, due to suppression by the Planck scale
Mpl ≡ √

h̄c/GN  1.22 × 1019 GeV/c2. In this sense it has been considered (and
it is still considered by many) that only ultrahigh-precision (or Planck scale energy)
experiments would be able to test QG models.

It was however realized (mainly over the course of the past decade) that the
situation is not quite as bleak as it appears. In fact, quantum gravitational models
beyond GR have shown that there can be several of what we term low-energy “relic
signatures” of quantum gravitational effects which would lead to deviations from the
standard theory predictions (SM plus GR) in specific regimes. Some of these new
phenomena, which comprise what is often termed “QG phenomenology,” include:

• Quantum decoherence and state collapse [1]
• QG imprint on initial cosmological perturbations [2]
• Cosmological variation of couplings [3, 4]
• TeV black holes, related to extra dimensions [5]
• Violation of discrete symmetries [6]
• Violation of space-time symmetries [7]

In this chapter we will focus upon the phenomenology of violations of space-time
symmetries, and in particular of local Lorentz invariance (LLI), a pillar both of quan-
tum field theory as well as GR (LLI is a crucial part of the Einstein’s equivalence
principle on which metric theories of gravity are based).

2 A Brief History of Lorentz Breaking

Contrary to the common perception, explorations of the possible breakdown of LLI
have a long standing history. It is however undeniable that the past 20 years have
witnessed a striking acceleration in the development both of theoretical ideas as
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well as of phenomenological tests previously unimagined. We shall here present an
admittedly incomplete review of these developments.

2.1 Early Works

The possibility that Lorentz invariance violation (LV) could play a role in physics
dates back at least 60 years [8–13] and in the 1970s and 1980s there was
already a well-established literature investigating the possible phenomenological
consequences of LV (see, e.g., [14–19]).

The relative scarcity of these studies in the field was due to the general expec-
tation that new effects would only appear in particle interactions where the particle
energies were of the order of the Planck scale, as only at those energies would the
natural QG suppression by powers of the Planck scale be overcome. However, it
was only in the 1990s that it was clearly realized that there are special situations in
which new effects, even if highly suppressed, can have observational consequences.
These situations were termed “windows on QG.”

2.2 The Dawn of QG Phenomenology

At first glance, it appears hopeless to search for effects suppressed by the Planck
scale. Even the most energetic particles ever detected (ultrahigh-energy cosmic rays
(UHECR), see, e.g., [20, 21]) have E � 1011 GeV ∼ 10−8Mpl . However, tiny
corrections can be magnified into an observational effect if the physics in ques-
tion involves not just the Planck scale and the energy scale of the particle, but also
another scale such as the mass of a light particle or a cosmological travel time. In
these situations observables can be constructed that leverage the scales against one
another to create an actually measurable effect at achievable energies (i.e., anything
from the energies in tabletop optical experiments to cosmic rays. See, e.g., [7, 22]
for an extensive review).

A partial list of these windows on QG includes:

• Sidereal signal variations as a laboratory apparatus such as an optical cavity
moves with respect to a preferred frame or direction

• Cumulative effects: long baseline dispersion and vacuum birefringence (e.g., of
signals from gamma-ray bursts (GRBs), active galactic nuclei (AGN), and
pulsars)

• Anomalous (normally forbidden) threshold reactions allowed by LV terms
(e.g., photon decay, vacuum Čerenkov (VC) effect)

• Shifting of existing threshold reactions (e.g., photon annihilation from blazars,
ultrahigh-energy (UHE) protons pion production)

• Lorentz violation induced decays not characterized by a threshold (e.g., decay of
a particle from one helicity to the other or photon splitting)
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• Maximum attainable particle velocities different from c (e.g., synchrotron peak
from supernova remnants)

• Dynamical effects of LV background fields (e.g., gravitational coupling and
additional wave modes)

It is rare one can assign a definitive “paternity” to a field, and our so-called QG
phenomenology is no exception. However, among the papers commonly accepted
as seminal we can cite the one by Kostelecký and Samuel [23] that already in 1989
envisaged, within a string field theory framework, the possibility of nonzero vacuum
expectation values (VEV) for some Lorentz breaking operators. This work led later
on to the development of a systematic extension of the SM (what was later on called
“minimal Standard Model extension,” mSME) incorporating all possible Lorentz
breaking and power counting renormalizable operators (i.e., of mass dimension ≤ 4)
by Colladay and Kostelecký [24]. This provided a framework for computing, in
effective field theory (EFT), the observable consequences for many experiments and
led to much experimental work setting limits on the LV parameters in the Lagrangian
(see, e.g., [25] for a review).

Another seminal paper was that of Amelino-Camelia and collaborators [26]
which highlighted the possibility to cast observational constraints on Planck-
suppressed violations of Lorentz invariance in the photon dispersion relation by
examining the propagation of light from remote astrophysical sources like GRBs
and AGN. Finally, we also mention the influential papers by Coleman and Glashow
[27–29] which brought the subject of systematic tests of Lorentz violation to the
attention of the broader community of particle physicists.

Let us stress that this is necessarily an incomplete account of the literature that
investigated departures from special relativity. Several papers appeared in the same
period and some of them anticipated many important results, see, for example, [30,
31]; unfortunately at the time of their appearance they were hardly noticed (and seen
by many as too “exotic”).

In the first decade after 2000 the field reached a concrete maturity and many
papers pursued both a systematization of the various frameworks and the available
constraints (see ,e.g., [32–34]). In this sense another crucial contribution was the
development of an EFT approach also for higher order (mass dimension greater
than four), naively non-power counting renormalizable, operators 1. This was first
done for rotationally invariant dimension-five operators in quantum electrodynamics
(QED) [38] by Myers and Pospelov which was later on extended to larger sections of
the SM by Bolokhov and Pospelov [39] and dimension-six operators by Mattingly
[40]. The general set of higher-dimension operators for free photons and fermions
has been recently cataloged by Kostelecky and Mewes [41, 42].

1 Anisotropic scaling [35–37] techniques were recently recognized to be the most appropriate way
of handling higher-order operators in Lorentz breaking theories and in this case the highest-order
operators are indeed crucial in making the theory power counting renormalizable. This is why we
shall adopt sometimes the expression “naively non-renormalizable.”
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Why did all this attention to Lorentz breaking frameworks and observations
develop in the late 1990s and in the first decade of the new century? The answer
is twofold as it is related to important developments coming from experiments and
observation as well as from theoretical investigations. Observationally, there were
a number of puzzling observations related to gravity that spawned a correspond-
ing growth in the zoo of QG models/scenarios with a low-energy phenomenology.
For example, in cosmology these are the years of the striking realization that our
universe is undergoing an accelerated expansion phase [43, 44] which apparently
requires a new exotic cosmological fluid, called dark energy, which violates the
strong energy condition (to be added to the already well known, and still mysterious,
dark matter component).

Also in the same period high-energy astrophysics provided some new obser-
vational puzzles directly related to Lorentz symmetry, first with the apparent
absence of the Greisen–Zatsepin–Kuzmin (GZK) cutoff [45, 46], a suppression
of the high-energy tail of the UHECR spectrum due to UHECR interaction with
cosmic microwave background (CMB) photons, as claimed by the Japanese exper-
iment AGASA [47], and later on with the so-called TeV-gamma rays crisis, that
is, the apparent detection of a reduced absorption of TeV gamma rays emitted by
AGN [48]. Both these “crises” later on subsided or at least alternative, more ortho-
dox explanations for them were advanced. However, their existence undoubtedly
boosted the research in the field at that time.

It is perhaps this past “training” that made several collaborations within the QG
phenomenology community strongly emphasize the apparent incompatibility of the
recent CERN–LNGS based experiment OPERA [49] measurement of superluminal
propagation of muonic neutrinos with Lorentz violating EFT (see, e.g., [50–53]).
There is now evidence that the OPERA measurement might be flawed due to
unaccounted experimental errors and furthermore has been refuted by a similar mea-
surement of the ICARUS collaboration [54]. Nonetheless, this claim propelled a
new burst of activity in Lorentz breaking phenomenology which might still provide
useful insights for future searches.

Parallel to these exciting developments on the experimental/observational side,
theoretical investigations provided new motivations for Lorentz breaking searches
and constraints. Indeed, specific hints of LV arose from various approaches to QG.
Among the many examples are the abovementioned string theory tensor VEVs [23]
and space-time foam models [26, 55–58], then semiclassical spin-network calcu-
lations in Loop QG [59], noncommutative geometry [60–62], some brane-world
backgrounds [63].

More recently, it cannot be omitted the role associated with the development
of Lorentz breaking theories of gravity from early studies [64–68] to more
systematic approaches such as Einstein-aether [69–71] and Hořava–Lifshitz [36]
gravity. Finally, there was the vigorous development over the same time of the so-
called condensed matter analogues of “emergent gravity” [72], which showed how
approximate LLI can arise from a fundamental Galilean theory.

Many of these approaches yield a low energy description of Lorentz violation in
terms of EFT, and so before we delve into the specific operators that people have
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considered we remark on some generic aspects of embedding phenomenologically
acceptable Lorentz violation in a low-energy EFT.

3 Modified Dispersion Relations and Their Naturalness

We will concentrate here on the free field modifications to EFT from LV and hence
talk primarily about modifications to dispersion relations. This restriction is not as
limiting as it might seem. For example, the necessary LV interaction terms generated
when one wants to maintain gauge covariance in an LV theory [24] are controlled by
the same LV coefficients that control the free theory, so no new LV coefficients are
introduced. Since most experimental work is sensitive to free field behavior, con-
straints on those coefficients are generated from the phenomenology of the free part
of the Lagrangian rather than the interaction part. One can of course add other LV
interaction terms by hand—such terms have not been as extensively studied in the
literature and so we will not focus on them here. There is one caveat: When one
sees constraints in the literature from modified particle decay mechanisms there is
usually an assumption that the interactions of the SM hold with only small modifica-
tions if any. This is reasonable, as if there is only a tiny modification to the free field
equations then by the argument above about how gauge generated LV interaction
terms are controlled by the same coefficients as the free field part, the corresponding
modifications to the interaction terms would also be small. This would, in general,
modify the rate of various reactions but the rate difference, given the constraints
detailed below, would be unobservable.

Turning back to the issues of modified dispersion relations in LV EFT, one has to
first recognize that calculations of a specific dispersion modification from a specific
QG theory are in general problematic and that cases where one can do so [55] are the
exception rather than the norm. A more reasonable approach is to, therefore, sim-
ply consider a generic momentum expansion of a dispersion relation in a specified
observer’s frame of

E2 = p2 +m2 +
∞∑
N=1

η
(N )
α1α2...αN

pα1pα2 ...pαN , (1)

where the low energy speed of light c = 1 and each η(N ) is an arbitrary rank N tensor
with mass dimension 2 −N and the αi indices run over space-time coordinates.

Let us note that this ansatz assumes that the propagating mass eigenstates are also
eigenstates of the Lorentz violating physics. This does not need to be the case, and
having the eigenstates of Lorentz violation not match the mass eigenstates can be
useful when trying to analyze the effects of Lorentz violation on neutrinos. However,
since such a mismatch in other sectors would introduce oscillations and other unseen
effects for particles other than neutrinos, that is, those particles we are primarily
concerned about, we shall not consider such possibilities outside of the neutrino
sector.
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The η(N )’s can be mapped on to coefficients in a corresponding Lagrangian,
although we note for the reader that in a generic Lagrangian there are many other
coefficients that do not influence free field dispersions (c.f. [41]). Needless to say,
as N increases, there are a multitude of possible dispersions for even low N as the
number of components of η(N ) scales as 4N . Testing all such possible combina-
tions can be done, of course, and would be the most systematic way to evaluate the
possibility of Lorentz violation.

One can, however, simplify the possible set of dispersions by making various
assumptions such as Charge/parity/time-reversal (CPT) invariance, rotational invari-
ance, etc. Rotational invariance is one of the most common assumptions made, for
three reasons 2. The first is that it dramatically reduces the number of possible dis-
persion terms while still preserving interesting phenomenology. Second, in many
instances rotational invariance is more stringently tested than boost invariance so it
provides a good model for testing boost invariance alone. Finally, many QG mod-
els out there that do not predict exact Lorentz invariance still preserve rotational
invariance. (See [34] for further discussion about this assumption.)

With rotational invariance in mind in some frame, a common assumption for the
dispersion relation is then

E2 = p2 +m2 +
∞∑
N=1

η̃Np
N , (2)

where p is the magnitude of the three-momentum. This type of expansion assumes
high-energy particles and that the corrections are small, so anywhere E would have
appeared on the right-hand side of (2) it is replaced by p. In general one can allow
the LV parameters η̃N to depend on the particle type, and indeed it turns out that
they must sometimes be different but related in certain ways for photon polarization
states, and for particle and antiparticle states, if the framework of EFT is adopted.
The lowest-order LV terms (p, p2, p3, p4) have been the terms that have generated
the most attention (c.f. [7, 73] and references therein)3.

3.1 The Naturalness Problem

From an EFT point of view the only relevant operators should be the lowest order
ones, that is, those of mass @@dimension 3, 4 corresponding to terms of order

2 A notable exception to this assumption is the SME and associated tests. Rotational invariance is
not assumed in the program of the SME as it considers all terms at each mass dimension.
3 We disregard here the possible appearance of dissipative terms [74] in the dispersion relation,
as this would correspond to a theory with unitarity loss and to a more radical departure from
standard physics than that envisaged in the framework discussed herein (albeit a priori such dissi-
pative scenarios are logically consistent and even plausible within some quantum/emergent gravity
frameworks).
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p and p2 in the dispersion relation. Situations in which higher-order operators
contribute to the dispersion as much as the lowest order ones at some energy are
only possible at the cost of a severe, indeed arbitrary, fine-tuning of the coeffi-
cients η̃N (which we discuss below). However, as we shall see current observational
constraints are incredibly tight on dimension-three operators and very severe on
dimension four ones. This is kind of obvious, given that these operators would end
up modifying the dispersion relation of elementary particles at easily achievable
energies. Dimension 3 operators would dominate as p → 0 while the dimen-
sion four ones would generically induce a species dependent, constant shift in the
limit speed for elementary particles. Hence, one is left with two less than perfect
approaches.

First, one can assume the standard EFT hierarchy, stop testing at operators of
mass dimension three and four, and, due to the tightness of limits, argue that Lorentz
invariance is likely an exact symmetry of nature and that QG/emergent models that
do not respect the symmetry should be discounted. Or, one can avoid assumptions
about whether any additional new physics comes into play between everyday ener-
gies and the QG scale and so not assume a particular hierarchy between operators of
various mass dimension. This is the approach many phenomenologists take: Simply
start at the lowest-dimension operators, derive constraints, and work upward in N
as far as one can observationally go without imposing any necessary hierarchy.

Not assuming a necessary hierarchy (3) and simply constraining the coefficients
η̃N at each order is perfectly good phenomenologically, and we will take that
approach going forward, but it is important that the reader understand why it is the-
oretically unnatural. The reason such a hierarchy is unnatural is simple: In EFT,
radiative corrections will generically allow the percolation of higher-dimension
Lorentz violating terms into the lower-dimension terms due to the interactions of
particles [75, 76].

In EFT, loop integrals will be naturally cutoff at the EFT breaking scale, if such
scale is as well the Lorentz breaking scale the two will effectively cancel leading to
unsuppressed, coupling dependent, contributions to the base dimension four kinetic
terms that generate the usual propagators. Hence, radiative corrections will not allow
a dispersion relation with only p3 or p4 Lorentz breaking terms but will automat-
ically induce extra unsuppressed LV terms in p and p2 which will be naturally
dominant. One could argue that renormalization group (RG) effects might naturally
suppress the sizes of these coefficients at low energies. As we shall see, in spe-
cific models where the RG flow has been calculated, the running of LV coefficients
is only logarithmic and so there is no indication that RG flow will actually drive
coefficients to zero quickly in the infrared.

Several ideas have been advanced in order to resolve such a “natural-
ness problem” (see, e.g., [34]). While it would be cumbersome to review all
the proposals here, we point out two of the more prominent ideas, both of
which involve introducing a new scale into the problem in addition to the
Lorentz violating scale. If there are two scales M and μ involved, there can
be a hierarchy of LV coefficients different than the naive one, for example,
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η̃1 = η1
μ2

M
, η̃2 = η2

μ

M
, η̃3 = η3

1

M
(3)

or

η̃2 = η2
μ2

M2
, η̃4 = η4

1

M2
, (4)

where M is the QG scale, usually taken to be the Planck scale, μ is some other far
lower-energy scale, and ηN is a de-dimensionalized coefficient usually assumed to
be O(1). The exact hierarchy, whether it involves terms of every mass dimension as
in (3), or only even dimension as in (4) (which can be accomplished up to N = 4
by imposing CPT) is model dependent. We now briefly describe two ideas that have
been put forward that would generate such scales.

3.1.1 A New Symmetry

Most of the aforementioned proposals implicitly assume that the Lorentz breaking
scale is the Planck scale. One then needs the EFT scale (which can be naively iden-
tified with what we called previously μ) to be different from the Planck scale and
actually sufficiently small so that the lowest order “induced” coefficients can be sup-
pressed by suitable small ratios of the kind μp/Mq where p, q are some positive
powers.

A possible solution in this direction can be provided by introducing what is com-
monly called a “custodial symmetry” — a symmetry other than Lorentz that forbids
lower-dimension operators and is broken at the low-scale μ. The most plausible
candidate for this role is supersymmetry (SUSY) [77, 78]. SUSY is by definition a
symmetry relating fermions to bosons, that is, matter with interaction carriers. As
a matter of fact, SUSY is intimately related to Lorentz invariance. Indeed, it can be
shown that the composition of at least two SUSY transformations induces space-
time translations. However, SUSY can still be an exact symmetry even in presence
of LV and can actually serve as a custodial symmetry preventing certain operators
to appear in LV field theories.

The effect of SUSY on LV is to prevent dimension ≤ 4, renormalizable LV
operators to be present in the Lagrangian. Moreover, it has been demonstrated [77,
78] that the RG equations for supersymmetric QED plus the addition of rotationally
invariant dimension-five operators [38] do not generate lower-dimensional operators
if SUSY is unbroken. However, this is not the case for our low-energy world, of
which SUSY is definitely not a symmetry.

The effect of soft SUSY breaking was also investigated in [77, 78]. It was found
there that, as expected, when SUSY is broken the renormalizable operators are gen-
erated. In particular, dimension κ ones arise from the percolation of dimension κ+2
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LV operators4. The effect of SUSY soft breaking is, however, to introduce a suppres-
sion of orderm2

s /MPl (κ = 3) or (ms/MPl)2 (κ = 4), wherems  1 TeV is the scale
of SUSY soft breaking. Although, given present constraints, the theory with κ = 3
needs a lot of fine-tuning to be viable, since the SUSY-breaking-induced suppres-
sion is not enough powerful to kill linear modifications in the dispersion relation of
electrons, if κ = 4 then the induced dimension-four terms are suppressed enough,
provided ms < 100 TeV. Current lower bounds from the Large Hadron Collider are
at most around 950 GeV for the most simple models of SUSY [79] (the so called
constrained minimal supersymmetric standard model, CMSSM).

Finally, it is also interesting to note that the analogue model of gravity can be
used as a particular implementation of the abovementioned mechanism for avoiding
the so called naturalness problem via a custodial symmetry. This was indeed the
case of multi-Bose–Einstein condensate (or multi-BEC) [80, 81].

3.1.2 Gravitational Confinement of Lorentz Violation

The alternative to an extra symmetry is to turn the problem upside down and posit
that the Lorentz breaking scale (the M appearing in the above dispersion rela-
tions) is not set by the Planck scale, but is instead the lower-scale μ. If one does
this and begins with a theory which has higher-order Lorentz violating operators
only in the gravitational sector, then one can hope that the gravitational coupling
GN ∼ M−2

Pl will suppress the “percolation” to the matter sector where the con-
straints are strongest. Matter Lorentz violating terms will all possess factors of the
order (μ/MPl)2 which can become strong suppression factors if μ � MPl. This is
the idea underlying the work presented in [82] which applies it to the special case
of Hořava–Lifshitz gravity. There it was shown that indeed a workable low-energy
limit of the theory can be derived through this mechanism which apparently is fully
compatible with existing constraints on Lorentz breaking operators in the matter
sector. In our opinion, this new route deserves further attention and should be more
deeply explored in the future.

4 Dynamical Frameworks I: Rotationally Invariant CPT Even
Standard Model Extension with Mass Dimension 5 and 6
Operators

We now turn from theoretical considerations about naturalness and retreat to the
phenomenological approach of “constrain everything as best as one can do observa-
tionally.” There are various systematic frameworks and approaches for this. The

4 We consider here only κ = 3, 4, for which these relationships have been demonstrated.
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SME contains all possible Lorentz violating tensors that can be coupled to SM
fields without changing the field content or violating gauge symmetry. The SME
can be split into the ‘mSME” [23] of Kostelecky et. al., which contains only
renormalizable operators, and the full SME, which contains the infinite tower of
non-renormalizable higher-mass dimension operators. As one can imagine, there
are dozens of possible operators even for the renormalizable case, and the number
of operators up to mass dimension six is in the hundreds. Many of the operators can
be constrained by similar methods, so for the purposes of this introduction we will
concentrate on the most well-studied sector of the SME, that of rotationally invari-
ant QED. In particular, we will concentrate on the interactions of photons, electrons,
and protons.

Usually when defining a field theory, one starts with the renormalizable operators
and proceeds in increasing mass dimension. Here we start with higher-mass dimen-
sion and work backwards for purely pedagogical reasons—many of the reactions
and constraints we describe in detail for the higher-dimension operators will also be
useful for setting constraints on various lower-dimension operators. The first mass
dimension we explore is mass dimension six, as this is the highest-mass dimension
where all the operators have been classified and significantly studied. We break the
operators into CPT even and odd classes as a different set of observations can be
used to constraint CPT odd operators.

4.1 The Model

A list of CPT even, rotationally invariant mass dimension five- and six-LV terms
was computed in [40] through the same procedure used by Myers and Pospelov
for dimension-five LV (see below), and this has been extended to nonrotationally
invariant operators in [41, 42]. With rotation invariance all LV tensors must reduce
to suitable products of a time-like vector field, usually denoted by uα . This is usually
taken to be unit, so that in the frame of the observer whose world line is tangent to
uα , uα has components (1, 0, 0, 0). This allows us to express constraints solely in
terms of the numerical coefficient involved in any uα-matter interaction term. Of
course, the actual direction of uα is technically arbitrary. However, the common
choice, which we make here, is to define uα to be aligned with the rest frame of
the cosmic microwave background. In terms of uα the known mass dimension-six
fermion operators are

− i

M2
Pl

ψ(u ·D)3(u · γ )(α(6)
L PL + α(6)

R PR)ψ (5)

− i

M2
Pl

ψ(u ·D)�(u · γ )(α̃(6)
L PL + α̃(6)

R PR)ψ ,

where PR,L are the usual left- and right-spin projectors PR,L = (1 ± γ 5)/2 and D
is the gauge covariant derivative. All the coefficients α are dimensionless because
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we factorize suitable powers of the Planck mass out explicitly. In addition there is a
CPT even dimension-five term [40]

− 1

MPl
ψ(u ·D)2(α(5)

L PL + α(5)
R PR)ψ . (6)

The known photon operator is

− 1

2M2
Pl

β(6)
γ F

μνuμu
σ (u · ∂)Fσν . (7)

From these operators, the dispersion relations of fermions and photons can be
computed, yielding

E2 − p2 −m2 = α
(6)
R E

3

M2
Pl

(E + sp) + α
(6)
L E

3

M2
Pl

(E − sp) + m

MPl
(α(5)
R + α(5)

L )p2

+ α(5)
R α

(5)
L

p4

M2
Pl

(8)

ω2 − k2 = β(6) k
4

M2
Pl

,

wherem is the electron mass and s = σ ·p/|p| is the helicity of the fermions. The α̃
terms contribute asm2/M2

Pl, that is, are highly suppressed, and so will be neglected.
In general, a LV dispersion for a particle with a certain set of quantum numbers

(mass, spin, etc.) will be of the form E2 = p2+f (n)pn/Mn−2
Pl , and so we will often

refer to type “n” LV. For example, because the high-energy fermion states are almost
exactly chiral, we can further simplify the fermion dispersion relation Eq. (9) (with
R = +, L = −)

E2 = p2 +m2 + m

MPl
η(2)p2 + η(4)

±
p4

M2
Pl

, (9)

where η(n) is the dispersion coefficient of the LV pn term in the dispersion relation
for the fermion. We choose η as the coefficient as this nomenclature is common
in the literature. Similarly, ξ (n) will refer to the generic dispersion coefficient for a
photon (so in the case above ξ (4) = β(6)). As it is suppressed by a factor of order
m/MPl, we will drop the quadratic modification generated by the dimension-five
operator. Indeed this can be safely neglected, provided that E >

√
mMPl. Let us

stress however, that this is exactly an example of a dimension-four LV term with a
natural suppression, which for electron is of orderme/MPl ∼ 10−22. Therefore, any
limit larger than 10−22 placed on this term would not have to be considered as an
effective constraint (to date, the best constraint for a rotationally invariant electron
LV term of dimension four is O(10−16) [83]). Note that modulo this the CPT even
dimension-five operator for fermions has the same effect on the dispersion as the
CPT even dimension six in that it generates a p4 term, so we will generally just write
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constraints directly on η(6)
± . It may seem puzzling that in a CPT invariant theory we

distinguish between different fermion helicities in (9). However, although they are
CPT invariant, some of the LV terms displayed in Eq. (7) are odd under P and T.

CPT invariance allows us to determine a relationship between the LV coeffi-
cients of fermions and antifermions. Indeed, to obtain these we simply realize that,
by CPT, the dispersion relation of the antifermion is given by (9), with the replace-
ments s → −s and p→ −p. If q, q denote a charge fermion and antifermion, then
the relevant antifermion coefficient η(6)

q is such that η(6)
q± = η(6)

q∓ , where q± indicates
an antifermion of positive/negative helicity (and similarly for the q±). Let us antici-
pate that the same argument used above leads to the conclusions that for dispersion
relations with odd powers of “n” (e.g., p3-type dispersion relations) one obtains
η

(nodd )
q± = −η(nodd )

q∓ . Hence, for arbitrary “n” one would expect η(n)
q± = (−1)nη(n)

q∓ .
This different behavior between even and odd powers “n”-type dispersion relations
leads to quite distinct phenomenologies as we shall see later.

4.2 Constraints

4.2.1 Threshold Reactions

Threshold reactions with UHECR provide the only significant constraints on the
above operators. A threshold reaction is a reaction that does not occur above a cer-
tain energy scale, which we call the “threshold energy.” An interesting and useful
phenomenology of threshold reactions is introduced by LV in EFT; also, threshold
theorems can be rederived [33]. Sticking to the present case of rotational invari-
ance and monotonic dispersion relations (see [84] for a generalization to more
complex situations), the kinematics of threshold reactions yield a number of useful
phenomenological facts about these reactions [32]:

• Threshold configurations still correspond to head-on incoming particles and
parallel outgoing ones.

• The threshold energy of existing threshold reactions can shift, and upper thresh-
olds (i.e., maximal incoming momenta at which the reaction can happen in any
configuration) can appear.

• Pair production can occur with unequal outgoing momenta.
• New, normally forbidden reactions can be viable.

LV corrections are surprisingly important in threshold reactions because the LV term
(which as a first approximation can be considered as an additional energy-dependent
“mass”) should be compared not to the momentum of the involved particles, but
rather to the (invariant) mass of the heaviest particle in the interaction. Thus, an
estimate for the threshold energy is

pth 
(
m2Mn−2

Pl

η(n)

)1/n

, (10)
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Table 1 Values of pth,
according to Eq. (10), for
different particles involved in
the reaction: neutrinos, elec-
trons, and protons. Here we
assume η(n)  1

mν  0.1 eV me  0.5 MeV mp  1 GeV

n = 2 0.1 eV 0.5 MeV 1 GeV

n = 3 500 MeV 14 TeV 2 PeV

n = 4 33 TeV 74 PeV 3 EeV

where m is the mass of the heaviest particle involved in the reaction. Interesting
values for pth are discussed, for example, in [32] and given in Table 1. Reactions
involving neutrinos are the best candidate for observation of LV effects, whereas
electrons and positrons can provide results for n = 3 theories but cannot readily be
accelerated by astrophysical objects up to the required energy for n = 4. In this case
reactions of protons can be very effective, because cosmic rays can have measured
energies well above 3 EeV. We now discuss three threshold reactions are of particu-
lar use when constraining n = 4 LV.

LV-Allowed Threshold Reactions: γ -decay
The decay of a photon into an electron/positron pair is made possible by LV because
energy-momentum conservation may now allow otherwise forbidden reactions to
occur. Since the decay is a reaction described by the fundamental QED vertex, the
rate once above threshold will be quite fast. The threshold for this process is set by
the condition [34]

kth ≈
(

m2Mn−2
Pl

(F (η(n), ξ (n)))n−2

)1/n

, (11)

where F (η(n), ξ (n)) is a linear combination of η(n), ξ (n). Notably, the electron–
positron pair can be created with slightly different outgoing momenta (asymmetric
pair production). Furthermore, the decay rate is extremely fast above threshold [34]
and is of the order of (10 ns)−1 (n = 3) or (10−6 ns)−1 (n = 4) if the LV coefficients
are of O(1).

LV-Allowed Threshold Reactions: Vacuum Čerenkov
In the presence of LV, the process of VC radiation q± → q±γ , where q is a charged
fermion, can occur as this is just a rotated diagram of γ -decay. The threshold energy
of the reaction is roughly the same and so is also given by

Eth ≈
(

m2Mn−2
Pl

(F (η(n), ξ (n))n−2

)1/n

. (12)

Just above threshold this process is also an extremely efficient method of energy
loss. Note that while γ -decay destroys the incoming photon, the VC effect merely
is an energy loss process.
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LV-Modified Threshold Reactions: Photon Absorption
A process related to photon decay is photon absorption, γ γ → e+e−. Unlike photon
decay, this is allowed in Lorentz invariant QED and it plays a crucial role in making
our universe opaque to gamma rays above tens of TeVs.

If one of the photons has energy ω0, the threshold for the reaction occurs in
a head-on collision with the second photon having the momentum (equivalently
energy) kLI = m2/ω0. For example, if kLI = 10 TeV (the typical energy of
inverse Compton-generated photons in some AGN) the soft photon threshold ω0
is approximately 25 meV, corresponding to a wavelength of 50 μ.

In the presence of Lorentz violating dispersion relations the threshold for this
process is in general altered, and the process can even be forbidden. Moreover, as
firstly noticed by Kluźniak [85], in some cases there is an upper threshold beyond
which the process does not occur. Physically, this means that at sufficiently high
momentum the photon does not carry enough energy to create a pair and simul-
taneously conserve energy and momentum. Note also, that an upper threshold can
only be found in regions of the parameter space in which the γ -decay is forbidden,
because if a single photon is able to create a pair, then a fortiori two interacting
photons will do [32].

Let us exploit the abovementioned relation ηe
−
± = (−1)nηe

+
∓ between the

electron–positron coefficients, and assume that on average the initial state is unpo-
larized. In this case, using the energy-momentum conservation, the kinematics
equation governing pair production is the following [34]:

m2

kny (1 − y) =
4ωb
kn−1

+ ξ̃ − η̃
(
yn−1 + (−1)n (1 − y)n−1

)
, (13)

where ξ̃ ≡ ξ (n)/Mn−2 and η̃ ≡ η(n)/Mn−2 are respectively the photon’s and
electron’s LV coefficients divided by powers of M , 0 < y < 1 is the fraction of
momentum carried by either the electron or the positron with respect to the momen-
tum k of the incoming high-energy photon and ωb is the energy of the target photon.
The analysis is more complicated than simple one-particle initial-state decay or
radiative processes. In particular it becomes necessary to sort out whether the thresh-
olds are lower or upper ones and whether they occur with the equal or different pair
momenta.

4.2.2 Constraints from GZK Secondaries

One of the most interesting features related to the physics of UHECR is the GZK
cutoff [45,46], a suppression of the high-energy tail of the UHECR spectrum arising
from interactions with CMB photons, according to pγ → Δ+ → pπ0(nπ+). This
process has a (LI) threshold energy Eth  5 × 1019 (ωb/1.3 meV)−1 eV (ωb is the
target photon energy). Experimentally, the presence of a suppression of the UHECR
flux was claimed only recently [20, 21]. Although the cutoff could be also due to
the finite acceleration power of the UHECR sources, the fact that it occurs at the
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expected energy favors the GZK explanation. The results presented in [86] seemed
to further strengthen this hypothesis (but see further discussion below).

Rather surprisingly, significant limits on ξ = ξ (6) and η = η(6) for the pro-
ton can be derived by considering UHE photons generated as secondary products
of the GZK reaction [87, 88]. This can be used to further improve the constraints
on dimension-five LV operators and provide a first robust constraint of QED with
dimension-six CPT even LV operators.

These UHE photons originate because the GZK process leads to the production
of neutral pions that subsequently decay into photon pairs. These photons are mainly
absorbed by pair production onto the CMB and radio background. Thus, the fraction
of UHE photons in UHECRs is theoretically predicted to be less than 1 % at 1019 eV
[89]. Several experiments imposed limits on the presence of photons in the UHECR
spectrum. In particular, the photon fraction is less than 2.0, 5.1, 31, and 36 %
(95 % C.L) at E = 10, 20, 40, 100 EeV, respectively [90, 91].

However, we have just seen that pair production can be strongly affected by LV.
In particular, the (lower) threshold energy can be slightly shifted and in general an
upper threshold can be introduced [32]. If the upper threshold energy is lower than
1020 eV, then UHE photons are no longer attenuated by the CMB and can reach
the Earth, constituting a significant fraction of the total UHECR flux and thereby
violating experimental limits [87, 88, 92].

Moreover, it has been shown [88] that the γ -decay process can also imply a
significant constraint. Indeed, if some UHE photon (Eγ  1019 eV) is detected by
experiments (and the Pierre Auger Observatory (PAO) will be able to do so in few
years [90]), then γ -decay must be forbidden above 1019 eV.

In conclusion we show in Fig. 1 the overall picture of the constraints of QED
dimension-six LV operators, where the green dotted lines do not correspond to
real constraints, but to the ones that will be achieved when PAO will observe, as
expected, some UHE photon.

5 Dynamical Frameworks II: Rotationally Invariant CPT Odd
Standard Model Extension with Mass Dimension 5 Operators

5.1 The Model

Myers and Pospelov [38] found that there are essentially only three operators of
dimension five, quadratic in the fields, that can be added to the QED Lagrangian
that give rise to dispersion modifications of type n = 3.5 These extra-terms are the

5 Actually these criteria allow the addition of other (CPT even) terms, but these would not lead
to modified dispersion relations (they can be thought of as extra, Planck suppressed, interaction
terms) [39].
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Fig. 1 LV induced by dimension-six operators. The LV parameter space is shown. The allowed
regions are shaded grey. Green dotted lines represent values of (η, ξ ) for which the γ -decay thresh-
old kγ−dec  1019 eV. Solid, blue lines indicate pairs (η, ξ ) for which the pair production upper
threshold kup  1020 eV. Picture taken from [93]

following:

− ξ

2MPl
umFma(u ·D)(unF̃

na) + 1

2MPl
umψγm(ζ1 + ζ2γ5)(u ·D)2ψ , (14)

where F̃ is the dual of F and ξ , ζ1,2 are dimensionless parameters. All these terms
also violate CPT symmetry. More recently, this construction has been extended to
the whole SM [39, 41, 42].

From (14) the dispersion relations of the fields are modified as follows. For the
photon one has

ω2± = k2 ± ξ (3)

MPl
k3 , (15)

where ξ (3) = ξ and the + and − signs denote right and left circular polarization,
while for the fermion (with the + and − signs now denoting positive and negative
helicity states)

E2± = p2 +m2 + η(3)
±
p3

MPl
, (16)
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with η(3)
± = 2(ζ1 ± ζ2). For the antifermion, it can be shown by simple “hole inter-

pretation” arguments that the same dispersion relation holds, with η(3),af
± = −η(3),f

∓
where af and f superscripts denote respectively antifermion and fermion coeffi-
cients [34, 94]. Note that if CPT ends up being a fundamental symmetry of nature
without Lorentz symmetry it would forbid all of the above mentioned CPT odd
operators.

5.2 An Aside on Naturalness

With the specific dimension-five operators in hand, we can now return to a previ-
ously mentioned point, that RG flow does not significantly suppress the sizes of
operators at low energies. Let us consider the evolution of the dimension-five LV
parameters. Bolokhov and Pospelov [39] addressed the problem of calculating the
RG equations for QED and the SM extended with dimension 5 operators that violate
Lorentz symmetry. In the framework defined above, assuming that no extra physics
enters between the low energies at which we have modified dispersion relations and
the Planck scale at which the full theory is defined, the evolution equations for the
LV terms in Eq. (14) that produce modifications in the dispersion relations, can be
inferred as

dζ1

dt
= 25

12

α

π
ζ1 ,

dζ2

dt
= 25

12

α

π
ζ2− 5

12

α

π
ξ ,

dξ

dt
= 1

12

α

π
ζ2− 2

3

α

π
ξ , (17)

where α = e2/4π  1/137 (h̄ = 1) is the fine structure constant and t = ln (μ2/μ2
0)

with μ and μ0 two given energy scales. (Note that the above formulae are given
to lowest order in powers of the electric charge, which allows one to neglect the
running of the fine structure constant.)

These equations show that the running is only logarithmic and therefore low-
energy constraints are robust: O(1) parameters at the Planck scale are still O(1)
at lower energy. Moreover, they also show that η(3)

+ and η(3)
− cannot, in general, be

equal at all scales. Similar calculations in the context of the renormalizable SME
give equivalent results.

5.3 Constraints

We now detail some of the constraints that can be put on the CPT odd dimension-five
operators. For a thorough review of these constraints, see also [93].

5.3.1 Photon Time of Flight

Although photon time-of-flight constraints from high-energy photons propagat-
ing from cosmologically distant objects currently provide limits several orders of
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magnitude weaker than other constraints, they have been widely adopted in the
astrophysical community. They were one of the first to be proposed in the semi-
nal paper [26]. More importantly, given their purely kinematical nature, they may
be applied to a broad class of frameworks, even beyond EFT with LV.

In general, a photon dispersion relation in the form of (15) implies that photons
of different colors (wave vectors k1 and k2) travel at slightly different speeds. Let us
first ignore any birefringence effects, and just consider some coefficient ξ (n) that is
universal for all photons. Then, upon propagation on a cosmological distance d, the
effect of energy dependence of the photon group velocity produces a time delay

Δt (n) = n− 1

2

kn−2
2 − kn−2

1

Mn−2
Pl

ξ (n) d , (18)

which clearly increases with d and with the energy difference as long as n > 2.
The largest systematic error affecting this method is the uncertainty about whether
photons of different energy are produced simultaneously in the source.

One way to alleviate systematic uncertainties is to apply EFT which gives more
information than just a modified dispersion for photons. In particular, one knows that
the term generated by ξ (3), in an EFT context implies birefringence. Furthermore,
photon beams generally are not circularly polarized; thus, they are a superposition
of super and subluminal circularly polarized modes. Hence, one can remove any
systematic uncertainty relating to source dynamics or measured energy by measur-
ing the velocity difference between the two polarization states at a single energy,
corresponding to

Δt = 2|ξ (3)|k d/MPl . (19)

This bound would require that both polarizations be observed and that no spuri-
ous helicity-dependent mechanism (such as, for example, propagation through a
birefringent medium) affects the relative propagation of the two polarization states.

Note that one does not have to actually measure the actual polarization — a
double peak in the high-energy spectra of GRB’s with a separation that scaled lin-
early with distance would be a smoking gun for birefringent theories. However, if
the polarization states do not fully separate then extracting a signal becomes more
complicated. Since current time-of-flight constraints compare low- to high-energy
photons, birefringence destroys this. A GRB would not have low-energy photons
arriving first with high energy following (or vice versa). Instead the structure of the
burst for a birefringent theory would be high-energy photons first, low-energy pho-
tons following, and then more high-energy photons at the end. Therefore, the net
effect of this superposition may be to partially or completely erase the time-delay
effect as it is usually calculated.

In order to compute this modulating effect on a generic photon beam in a bire-
fringent theory, let us describe a beam of light by means of the associated electric
field, and let us assume that this beam has been generated with a Gaussian width

E = A
(
ei(Ω0t−k+(Ω0)z) e−(z−v+g t)2δΩ2

0 ê+ + ei(Ω0t−k−(Ω0)z) e−(z−v−g t)2δΩ2
0 ê−

)
,

(20)
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where Ω0 is the wave frequency, δΩ0 is the gaussian width of the wave, k±(Ω0)
is the “momentum” corresponding to the given frequency according to (15) and
ê± ≡ (ê1 ± iê2)/

√
2 are the helicity eigenstates. Note that by complex conjugation

ê∗+ = ê−. Also, note that k±(ω) = ω ∓ ξω2/MPl. Thus,

E = AeiΩ0(t−z) (eiξΩ2
0 /MPlz e−(z−v+g t)2δΩ2

0 ê+ + e−iξΩ2
0 /MPlz e−(z−v−g t)2δΩ2

0 ê−
)

.

(21)
The intensity of the wave beam can be computed as

E · E∗ = |A|2
(
e2iξΩ2

0 /MPlz + e−2iξΩ2
0 /MPlz

)
e
−δΩ2

0

(
(z−v+g t)2+(z−v−g t)2

)

= 2|A|2e−2δΩ2
0 (z−t)2

cos

(
2ξ
Ω0

MPl
Ω0z

)
e
−2ξ2 Ω

2
0

M2 (δΩ0t)2
. (22)

This shows that there is an effect even on a linearly-polarized beam. The effect is
a modulation of the wave intensity that depends quadratically on the energy and
linearly on the distance of propagation. In addition, for a Gaussian wave packet,
there is a shift of the packet center, that is controlled by the square of ξ (3)/MPl; and
hence, is strongly suppressed with respect to the cosinusoidal modulation. Hence,
by looking for modulation of the signal with energy and distance one can in prin-
ciple determine if the LV is birefringent from time-of-flight information even if the
photons arrive as part of one “burst.”

So far, the most robust constraints on ξ (3), derived from time-of-flight differ-
ences, have been obtained within the D-brane model (discussed in Sect. 9.1) from
a statistical analysis applied to the arrival times of sharp features in the intensity at
different energies from a large sample of GRBs with known redshifts [95], leading
to limits ξ (3) ≤ O(103). The importance of systematic uncertainties can be found
in [96], where the strongest limit f (3) < 47 is found by looking at a very strong flare
in the TeV band of the AGN Markarian 501. Finally, an extremely strong limit (for
this method at least) of ξ (3) < 0.8 has been obtained from the short, high-energy
GRB 090510 [97].

5.3.2 Photon Polarization

Since electromagnetic waves with opposite circular polarizations have slightly dif-
ferent group velocities in rotationally invariant EFT LV when CPT is violated, the
polarization vector of a linearly polarized plane wave with energy k rotates. During
the wave propagation over a distance d , the rotation angle for n = 3 dispersion
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modifications is [34] 6

θ (d) = ω+(k) − ω−(k)

2
d  ξ (3) k

2d

2MPl
. (24)

Observations of polarized light from a distant source can then lead to a constraint on
|ξ (3)| that, depending on the amount of available information—both on the observa-
tional and on the theoretical (i.e., astrophysical source modeling) side—can be cast
in two different ways [98]:

1. Because detectors have a finite-energy bandwidth, Eq. (24) is never probed in
real situations. Rather, if some net amount of polarization is measured in the band
k1 < E < k2, an order of magnitude constraint arises from the fact that if the
angle of polarization rotation (24) differed by more than π/2 over this band, the
detected polarization would fluctuate sufficiently for the net signal polarization
to be suppressed [94, 99]. From (24), this constraint is

ξ (3) � π MPl

(k2
2 − k2

1)d(z)
. (25)

This constraint requires that any intrinsic polarization (at source) not be com-
pletely washed out during signal propagation. It thus relies on the mere detection
of a polarized signal; there is no need to consider the observed polarization
degree. A more refined limit can be obtained by calculating the maximum
observable polarization degree, given the maximum intrinsic value [100]:

Π (ξ ) = Π (0)
√
〈cos (2θ )〉2

P + 〈sin (2θ )〉2
P , (26)

where Π (0) is the maximum intrinsic degree of polarization, θ is defined in
Eq. (24) and the average is weighted over the source spectrum and instrumental
efficiency, represented by the normalized weight function P(k) [99]. Conserva-
tively, one can setΠ (0) = 100 %, but a lower value may be justified on the basis
of source modeling. Using (26), one can then cast a constraint by requiringΠ (ξ )
to exceed the observed value.

2. Suppose that polarized light measured in a certain energy band has a position
angle θobs with respect to a fixed direction. At fixed energy, the polarization vec-
tor rotates by the angle (24) 7; if the position angle is measured by averaging over

6 Note that for an object located at cosmological distance (let z be its redshift), the distance d
becomes

d(z) = 1

H0

∫ z

0

1 + z′√
ΩΛ +Ωm(1 + z′)3

dz′ , (23)

where d(z) is not exactly the distance of the object as it includes a (1 + z)2 factor in the integrand
to take into account the redshift acting on the photon energies.
7 Faraday rotation is negligible at these energies.
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a certain energy range, the final net rotation 〈Δθ〉 is given by the superposition
of the polarization vectors of all the photons in that range:

tan (2 〈Δθ〉 ) = 〈sin (2θ )〉P
〈cos (2θ )〉P , (27)

where θ is given by (24). If the position angle at emission θi in the same energy
band is known from a model of the emitting source, a constraint can be set by
imposing

tan (2 〈Δθ〉 ) < tan (2θobs − 2θi) . (28)

Although this limit is tighter than those based on Eqs. (25) and (26), it clearly
hinges on assumptions about the nature of the source, which may introduce
significant uncertainties.

In the case of the Crab Nebula (CN), a (46 ± 10) % degree of linear polarization
in the 100 keV − 1 MeV band has recently been measured by the INTEGRAL
mission [101, 102]. This measurement uses all photons within the Spectrometer on
INTEGRAL (SPI) instrument energy band. However, the convolution of the instru-
mental sensitivity to polarization with the detected number counts as a function of
energy, P(k), is maximized and approximately constant within a narrower energy
band (150–300 keV) and falls steeply outside this range [103]. For this reason we
shall, conservatively, assume that most polarized photons are concentrated in this
band. Given dCrab = 1.9 kpc, k2 = 300 keV and k1 = 150 keV, Eq. (25) leads
to the order of magnitude estimate |ξ | � 2 × 10−9. A more accurate limit follows
from (26). In the case of the CN there is a robust understanding that photons in the
range of interest are produced via the synchrotron process, for which the maximum
degree of intrinsic linear polarization is about 70 % (see, e.g., [104]). Figure 2 illus-
trates the dependence of Π on ξ (see Eq. (26)) for the distance of the CN and for
Π (0) = 70 %. The requirement Π (ξ ) > 16% (taking account of a 3σ offset from
the best fit value 46 %) leads to the constraint (at 99 % confidence level)

|ξ | � 6 × 10−9 . (29)

It is interesting to notice that X-ray polarization measurements of the CN already
available in 1978 [105] set a constraint |ξ | � 5.4 × 10−6, only one order of
magnitude less stringent than that reported in [106].

Constraint (29) can be tightened by exploiting the current astrophysical under-
standing of the source. The CN is a cloud of relativistic particles and fields powered
by a rapidly rotating, strongly magnetized neutron star. Both the Hubble Space Tele-
scope and the Chandra X-ray satellite have imaged the system, revealing a jet and
torus that clearly identify the neutron star rotation axis [107]. The projection of this
axis on the sky lies at a position angle of 124.0◦ ± 0.1◦ (measured from north in
anticlockwise direction). The neutron star itself emits pulsed radiation at its rotation
frequency of 30 Hz. In the optical band these pulses are superimposed on a fainter
steady component with a linear polarization degree of 30 % and direction precisely
aligned with that of the rotation axis [108]. The direction of polarization measured
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Fig. 2 Constraint for the polarization degree. Dependence of Π on ξ for the distance of the CN
and photons in the 150–300 keV range, for a constant instrumental sensitivity P(k). Picture taken
from [98]

by INTEGRAL-SPI in the γ -rays is θobs = 123◦ ± 11◦ (1σ error) from the north,
thus also closely aligned with the jet direction and remarkably consistent with the
optical observations.

This compelling (theoretical and observational) evidence allows us to use
Eq. (28). Conservatively assuming θi−θobs = 33◦ (i.e., 3σ from θi, 99 % confidence
level), this translates into the limit

|ξ (3)| � 9 × 10−10 , (30)

and |ξ (3)| � 6 × 10−10 for a 2σ deviation (95 % confidence level).
Polarized light from GRBs has also been detected and given their cosmological

distribution they could be ideal sources for improving the abovementioned con-
straints from birefringence. Attempts in this sense were done in the past [94, 109]
(but later on the relevant observation [110] appeared controversial) but so far we
do not have sources for which the polarization is detected and the spectral red-
shift is precisely determined. In [111] this problem was circumvented by using
indirect methods (the same used to use GRBs as standard candles) for the esti-
mate of the redshift. This leads to a possibly less robust but striking constraints
|ξ (3)| � 2.4 × 10−14.
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Remarkably this constraint was recently further improved by using the
INTEGRAL-IBIS observation of the GRB 041219A, for which a luminosity dis-
tance of 85 Mpc (z ≈ 0.02) was derived thanks to the determination of the GRB’s
host galaxy. In this case a constraint |ξ (3)| � 1.1 × 10−14 was derived [112].8

5.3.3 Synchrotron Radiation

Synchrotron emission is strongly affected by LV, however for Planck scale LV and
observed energies, it is a relevant “window” only for CPT odd dimension-five LV
QED (and dimension-four LV QED, which we describe below). We shall work out
here the details of CPT-odd dimension-five QED (n = 3) for illustrative reasons, for
the lower-dimension case see [113].

In both LI and LV cases [34], most of the radiation from an electron of energy E
is emitted at a critical frequency

ωc = 3

2
eB
γ 3(E)

E
, (31)

where γ (E) = (1 − v2(E))−1/2, and v(E) is the electron group velocity.
However, in the LV case, and assuming specifically n = 3, the electron group

velocity is given by

v(E) = ∂E

∂p
=
(

1 − m2
e

2p2
+ η(3) p

M

)
. (32)

Therefore, v(E) can exceed 1 if η > 0 or it can be strictly less than 1 if η < 0. This
introduces a fundamental difference between particles with positive or negative LV
coefficient η.

If η is negative, the group velocity of the electrons is strictly less than the (low
energy) speed of light. This implies that, at sufficiently high energy, γ (E)− <

E/me, for all E. As a consequence, the critical frequency ω−c (γ,E) is always less
than a maximal frequency ωmax

c . Then, if synchrotron emission up to some maximal
frequency ωobs is observed, one can deduce that the LV coefficient for the corre-
sponding leptons cannot be more negative than the value for which ωmax

c = ωobs,
leading to the bound [34]

η(3) > −M
me

(
0.34 eB

me ωobs

)3/2

. (33)

8 The same paper also claims a strong constraint on the parameter ξ (4). Unfortunately, such a
claim is based on the erroneous assumption that the EFT order six operators responsible for this
term imply opposite signs for opposite helicities of the photon. We have instead seen that the CPT
evenness of the relevant dimension-six operators imply a helicity independent dispersion relation
for the photon (see Eq. (9)).
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Fig. 3 Comparison between observational data, the LI model and a LV one with η+ · η− < 0
(left) and η+ · η− > 0 (right). The values of the LV coefficients, reported in the insets, show the
salient features of the LV modified spectra. The leptons are injected according to the best fit values
p = 2.4, Ec = 2.5 PeV. The individual contribution of each lepton population is shown. Picture
taken from [115]

If η is instead positive the leptons can be superluminal. One can show that at energies
Ec � 8 TeV/η1/3, γ (E) begins to increase faster than E/me and reaches infinity at
a finite energy which corresponds to the threshold for soft VC emission. The critical
frequency is thus larger than the LI one and the spectrum shows a characteristic
bump due to the enhanced ωc.

How the synchrotron emission processes at work in the CN would appear in a
“LV world” has been studied in [114, 115]. There the role of LV in modifying the
characteristics of the Fermi mechanism (which is thought to be responsible for the
formation of the spectrum of energetic electrons in the CN [116]) and the contribu-
tions of VC and helicity decay (HD) were investigated for n = 3 LV. This procedure
requires fixing most of the model parameters using radio to soft X-rays observations,
which are basically unaffected by LV.

Given the dispersion relations (15) and (16), clearly only two configurations in
the LV parameter space are truly different: η+ · η− > 0 and η+ · η− < 0, where
η+ is assumed to be positive for definiteness. The configuration wherein both η±
are negative is the same as the (η+ · η− > 0, η+ > 0) case, whereas that whose
signs are scrambled is equivalent to the case (η+ ·η− < 0, η+ > 0). This is because
positron coefficients are related to electron coefficients through ηaf± = −ηf∓ [34].
Examples of spectra obtained for the two different cases are shown in Fig. 3.

A χ2 analysis has been performed to quantify the agreement between models
and data [115]. From this analysis, one can conclude that the LV parameters for
the leptons are both constrained, at 95 % confidence level, to be |η±| < 10−5, as
shown by the red vertical lines in Fig. 4. Although the best fit model is not the LI
one, a careful statistical analysis (performed with present-day data) shows that it is
statistically indistinguishable from the LI model at 95 % confidence level [115].
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5.3.4 Constraints from GZK Secondaries

The same reasoning that established constraints on the CPT even higher-dimension
sector from GZK secondaries can also be applied to further strengthen the available
constraints on CPT odd dimension-five LV QED. In this case the absence of relevant
UHE photon flux strengthens by (at most) two orders of magnitude the constraint on
the photon coefficient ξ (3) while an eventual detection of the expected flux of UHE
photons would constrain η(3) for the electron/positron at the level of |η(3)| � 10−16

(see [88, 93] for further details) by limiting the γ -decay process. Note however that
in this case, unlike the CPT even case, one cannot exclude that only one photon
helicity survives and hence a detailed flux reconstruction would be needed.

5.3.5 Summary of Constraints

Constraints on LV QED at n = 3 are summarized in Fig. 4 where also the con-
straints — coming from the observations of up to 80 TeV γ -rays from the CN [117]
(which imply no γ -decay for these photons neither VC at least up to 80 TeV
for the electrons producing them via inverse Compton scattering)—are plotted for
completeness.

5.4 Other Threshold Processes

Once one realizes the power of the VC effect it is natural to explore other threshold
processes that might yield useful constraints. The constraints in Fig. 4 are the best
available constraints. We detail below some other processes that have been used to
set constraints in the past.

5.4.1 Helicity Decay

A slightly different version of the VC process is that of HD, e∓ → e±γ . If
η+ 
= η−, an electron can flip its helicity by emitting a suitably polarized photon.
This reaction does not have a real threshold, but rather an effective one [34]—pHD =
(m2
eM/Δη)1/3, whereΔη = |η(3)

+ −η(3)
− |—at which the decay lifetime τHD changes

how it scales with Δη. For Δη ≈ O(1) this effective threshold is around 10 TeV.
Below threshold the lifetime τHD is given by τHD > Δη−3(p/10 TeV)−8 10−9s,
while above threshold τHD becomes independent of Δη [34] and is given by
τHD ≈ 10−10 × (10 Tev)/E s. It is more difficult, however, to use HD to set
constraints as we do not have polarization measurements of high-energy cosmic
rays and the flux above a certain energy scale is only halved in the case of HD,
rather than almost completely removed as in the VC effect. One therefore requires
more detailed knowledge of the source spectrum to properly apply HD constraints.
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Fig. 4 Summary of the constraints on LV QED at order n = 3. The red lines are related to the
constraints derived from the detection of polarized synchrotron radiation from the CN as discussed
in the text. For further reference the constraints that can be derived from the detection of 80 TeV
photons from the CN: the solid black lines symmetric w.r.t. the ξ axis are derived from the absence
of gamma decay, the dashed vertical line cutting the η axis at about 10−3 refers to the limit on the
VC effect coming from the inferred 80 TeV inverse Compton electrons are also shown. The dashed
vertical line on the negative side of the η axis is showing the first synchrotron-based constraint
derived in [114]

Nonetheless, HD can play a crucial role in lepton/antilepton propagation by basi-
cally leaving only a survival helicity state for each particle type. This mechanism,
for example, played a pivotal role in the reconstruction of the CN synchrotron
spectrum [115].

5.4.2 Photon Splitting and Lepton Pair Production

VC radiation is an effect that would ordinarily be forbidden, however one can also
look for modifications of normally allowed threshold reactions that are especially
relevant for high-energy astrophysics. It is rather obvious that once photon decay
and VC are allowed also the related reactions in which an outgoing lepton/antilepton
pair is replaced by two or more photons, γ → 2γ and γ → 3γ , etc., or the outgoing
photons are replaced by an electron-positron pair, e− → e−e−e+, are also allowed.
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LV-allowed Reactions: Photon Splitting
This is forbidden for ξ (n) < 0 while it is always allowed if ξ (n) > 0 [32]. When
allowed, the relevance of this process is simply related to its rate. The most relevant
cases are γ → γ γ and γ → 3γ , because processes with more photons in the final
state are suppressed by higher powers of the fine structure constant.

The γ → γ γ process is forbidden in QED because of kinematics and CP con-
servation. In LV EFT both the kinematics changes and CP is not necessarily a good
symmetry. However, we can argue that γ → γ γ is suppressed by an additional
power of the Planck mass with respect to γ → 3γ . In fact, in LI QED the matrix
element is zero due to the exact cancellation of fermionic and antifermionic loops.
In LV EFT this cancellation is not exact and the matrix element is expected to be
proportional to at least (ξE/MPl)p, p > 0, as it is induced by LV and must vanish
in the limitMPl → ∞.

Therefore we have to deal only with γ → 3γ . This process has been studied
in [32, 118]. In particular, in [118] it was found that, if the “effective photon mass”
m2
γ ≡ ξEnγ /M

n−2
Pl � m2

e , then the splitting lifetime of a photon is approximately

τn=3  0.025 ξ−5f−1
(
50 TeV/Eγ

)14 s, where f is a phase space factor of order
1. This rate was rather higher than the one obtained via dimensional analysis in [32]
because, due to integration of loop factors, additional dimensionless contributions
proportional to m8

e enhance the splitting rate at low energy.
This analysis, however, does not apply for the most interesting case of UHE pho-

tons around 1019 eV given that at these energies m2
γ � m2

e if ξ (3) > 10−17 and

ξ (4) > 10−8. Hence the abovementioned loop contributions are at most logarithmic,
as the momentum circulating in the fermionic loop is much larger than me. More-
over, in this regime the splitting rate depends only on mγ , the only energy scale
present in the problem. One then expects the analysis proposed in [32] to be correct
and the splitting time scale to be negligible atEγ  1019 eV, which therefore makes
it not particularly competitive with other constraints.

Lepton Pair Production
The process e− → e−e−e+ is similar to VC radiation or HD with the final pho-
ton replaced by an electron-positron pair. Various combinations of helicities for the
different fermions can be considered individually. If we choose the particularly sim-
ple case (and the only one we shall consider here) where all electrons have the
same helicity and the positron has the opposite helicity, then the threshold energy
will depend on only one LV parameter. In [32] the threshold for this reaction was
derived for electron pair production, and it was found that the rate is a factor of
∼ 2.5 times higher than that for soft VC radiation. Therefore, since the rate for
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the reaction is high as well, constraints may be imposed using just the value of the
threshold energy. 9

6 Dynamical Frameworks III: Rotationally Invariant Minimal
Standard Model Extension in QED

6.1 The Model

The mSME, is the set of renormalizable operators that generate LV but maintain the
existing particle content of the SM and do not violate gauge invariance. A subset of
the mSME, the rotationally invariant LV operators are

−auμψγμψ − buμψγ5γ
μψ + 1

2
icuμuνψγ

μ
↔
Dν ψ + 1

2
iduμuνψγ5γ

μ
↔
Dν ψ

(34)
for fermions and

−1

4
(kF )uκηλμuνF

κλFμν + 1

4
kAFu

κεκαβγ A
αFβγ (35)

for photons. The dimension three, CPT odd kAF term generates an instability in the
theory and so we will set it to zero from here on out. The a term can be absorbed
by shifting the phase of the fermion field and so we will ignore it temporarily (we
shall return to this term when we deal with gravity). Note however that while the a
term can be absorbed in QED, it can be measured in matter sectors where the phase
of the fermion is important. For example, neutrinos can constrain differences in a
between species [42].

The corresponding high-energy (MPl � E � m) dispersion relations for QED
can be expressed as (see [7] and references therein for more details)

E2
el = m2

e + p2 + f (1)
e p + f (2)

e p
2 electrons (36)

E2
γ = (1 + f (2)

γ )p2 photons, (37)

where f (1)
e = −2bs, f (2)

e = −(c − ds), and f (2)
γ = kF /2 with s = ±1 the helicity

state of the fermion [7]. The antifermion dispersion relation is the same as (36) with
the replacement p→ −p, which will change only the f (1)

e term.

9 One could of course consider any lepton/antilepton pair as produced, for example, the reaction
e− → e−νν. While standard particle physics arguments imply that the rate will be roughly equiv-
alent to the e−e+ pair production case [119] given the same order of coefficients, and the threshold
will be slightly lower, the constraints are on a higher-dimensional parameter space and so less
useful.
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Note that the typical energy at which new phenomenology should start to appear
is quite low. In fact, taking for example f (2)

e ∼ O(1), one finds that the correspond-
ing extra term is comparable to the particle massm precisely at p  m. Even worse,
for the linear modification to the dispersion relation, we would have, in the case in
which f (1)

e  O(1), that pth ∼ m2/MPl ∼ 10−17 eV for electrons. (Notice that
this energy corresponds by chance to the present upper limit on the photon mass,
mγ � 10−18 eV [120].)

6.2 Constraints

In contrast to the higher-dimension operators, LV due to the mSME does not grow
with energy. Therefore, astrophysics with its higher energies does not necessarily
provide a tremendous advantage over laboratory and terrestrial experiments when
testing the mSME. We list below the best constraints currently available on the
QED sector of the mSME. For a recent listing of all the constraints as well as the
non-rotationally invariant case, see [73].

6.2.1 Spin Polarized Torsion Constraints on b for Electrons

Both spin polarized and unpolarized torsion balances can place limits on the
mSME. Spin polarized torsion balances place limits on the electron sector of the
mSME [121], while unpolarized torsion balances constrain the gravitational sec-
tor [122]. Spin polarized torsion balances constrain the electron sector, as the torsion
balances are constructed to have a large number of aligned electron spins (e.g.,
a simple magnet attached on a torsion fiber is a very crude spin polarized tor-
sion balance). Usually of course, the magnet design is optimized to search for LV.
For example, a vertical stack of an octagonally symmetric pattern of magnets con-
structed to have an overall spin polarization in the octagon’s plane has been used as
a torsion balance with a net electron spin polarization of 1023 electron spins [121].
The mSME coefficients give rise to an interaction potential for nonrelativistic elec-
trons which produces an orientation-dependent torque on the torsion balance which
is measured using the twist of the torsion fiber. The torsion balance in its sealed
vacuum chamber is mounted on a rotating turntable, which allows for very sensitive
detection of any anomalous torque as a function of the rotation frequency (and the
earth’s rotation and motion in the solar system). Current limits on b from torsion
balances are of the order of 10−27 GeV [121].

6.2.2 Accelerator Bounds on c for Electrons

Accelerator beams of various subatomic particles are produced with (roughly) time-
independent energies. Energy loss mechanisms such as the VC effect q → q + γ
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(see Sect. 4.2.1) for charged fermions are incompatible with a constant beam energy
as long as the energy loss rate is high enough. Limits can therefore be set on the
c coefficient for accelerated charged particles, as if c is too much larger than zero
then above the n = 2 threshold energy (12) radiative energy losses become signifi-
cant over the beam time. The large electron-positron (LEP) experiment accelerates
electrons and positrons to energies of roughly 100 GeV in the lab frame. The beam
energy is carefully measured and it is known that the beam does not lose any signif-
icant energy to VC radiation. Additionally, the synchrotron emission from the beam
has been measured. Since synchrotron emission is sensitive to the Lorentz factor of
the accelerated particles, the existence of synchrotron radiation of a certain spec-
trum given a source particle energy and path provides constraints on any LV present
(see Sect. 5.3.3). Using the characteristics of the LEP beam and the associated
synchrotron radiation spectrum limits c for electrons to be of order |c| < 10−15.

6.2.3 Astrophysical Inverse Compton Bounds on d for Electrons

The parameter d causes a spin-dependent change to the dispersion relation for a
fermion. As such, one of the helicity states for a fermion is always subluminal and
one cannot trivially apply simple astrophysical arguments based on the VC effect,
etc. without knowing the helicity of the measured fermion. However, there is a way
around this by considering the dynamics of sources of high-energy photons pro-
duced by inverse Compton scattering. We receive energies from the radio up to
80 TeV from astrophysical sources such as the CN [117]. The overall spectrum
of these sources is well understood and the high-energy emission is dominated by
inverse Compton scattering of accelerated electrons off of lower-energy photons. In
order to constrain d one cannot simply require the absence of VC radiation for the
electrons, as half of any population will still be present under the influence of a d
term and available to inverse Compton scatter. However, the magnetic field present
in the same sources causes the electrons to precess, thereby destroying any initial
polarization of the electrons. Therefore, as argued in [123] both helicities of elec-
trons must be present and stable if there is to be inverse Compton radiation. The VC
effect is therefore forbidden for both helicities, which allows one to put double-sided
constraints on d of the order of |d| < O(10−12) [123].10

6.2.4 Cosmic Ray and HESS Bounds on kF

Bounds on the fermion sector that use processes involving the fundamental QED
vertex implicitly assume that the photon sector is unmodified. The sector which is

10 Note that the bounds presented here are weaker by a factor of 10−3, as we have used the CMB
frame as the rest frame rather than the Sun-centered frame and therefore the strengths of the bounds
are weakened by the v/c of the Sun with respect to the CMB.
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the “unmodified” sector is arbitrary, in that the limiting speed of one of the sectors
can be defined to be the “speed of light.” When constraining photon coefficients, we
simply make the opposite assumption—we assume the fermion sector is unmodified
and constrain kF . Constraints on kF can be generated for protons and photons using
the same effects as above, that is, the necessary absence of VC and photon decay if
we see high-energy cosmic ray protons and TeV gamma rays. In [124] the authors
used the necessary absence of p→ p + γ and a Pierre Auger event in conjunction
with the excess of high-energy TeV gamma rays observed by the HESS telescope
(which forbids γ → p + p) to produce a two-sided bound on kF of −9 × 10−16 <

kf < 6 × 10−20.

7 Dynamical Frameworks IV: Gravity

7.1 The Model

The SME is constructed by coupling matter terms to non-zero LV tensors in vac-
uum. If we left the tensors as constants, without any sort of dynamics, then one
would break general covariance. It may be that for other reasons one may want to
change the underlying symmetry structure for gravity in just this way; such is the
case with Hořava–Lifshitz gravity [36]. Alternatively, if one wants to preserve gen-
eral covariance one can do so by promoting any LV tensors to dynamical fields.
Dynamical Lorentz breaking is also sometimes called “spontaneous Lorentz viola-
tion,” although this is a bit of a misnomer as there are models where there really is
no Lorentz invariant phase. There are many ways that a dynamical field can generate
a LV term in vacuum. If we restrict ourselves to rotational invariance, then it is nat-
ural to generate LV couplings by including in the action either a scalar or a timelike
vector field that takes a VEV. In the case of a scalar, one can use a shift symmetry
(φ(x) → φ(x) + φ0) to construct actions for which the derivative of the scalar takes
a nonzero value (c.f. [125]). In the vector case, one simply puts a potential for the
vector field such that the vector acquires a vev. We concentrate on the vector case
here as it is the simplest model that allows for rotationally invariant Lorentz viola-
tion [126]. Just as the SME is a derivative expansion in derivatives of matter fields,
one can treat the vector field in the same way. If we still denote the vector field by
uα then we can write the low-energy action for gravity and the vector as

S = SEH + S� = ∞
∞�πGæ

∫
d�§

√−g (R+L�) , (38)

where Lu is given by

Lu = −Zαβγ δ (∇αuγ )(∇βuδ) + V (u). (39)
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The tensor Zαβγ δ is defined as [71]11

Z
αβ
γ δ = c1gαβgγ δ + c2δ

α
γ δ
β
δ + c3δ

α
δ δ
β
γ − c4u

αuβgγ δ , (40)

where ci, i = 1, . . . , 4 are simple coefficients of the various kinetic terms and
V (u) is a potential term that generates a nonzero VEV for uα . An additional term,
Rabu

aub, is a combination of the above terms when integrated by parts, and hence
is not explicitly included here.

In general, such a theory possesses four additional degrees of freedom. One of the
vector components, however, will necessarily have a wrong sign for its kinetic term,
thereby generating a ghost excitation. This can be remedied, at least at low energies,
by choosing the potential V (u) = λ(u2 + 1), where λ is a Lagrange multiplier. This
fixes the norm of uα and removes the ghost excitation 12 so the excitations of the
vector all have positive norm (c.f. the discussions in [70] and [127]). With this form
of the potential, the vector theory is known as “Einstein-aether theory” [126]. We
will refer to the vector field as an “aether” field, vector field models that couple to
the SM Lagrangian are also sometimes nicknamed “bumblebee” models. In reality
of course the Lagrange multiplier is likely simply an approximation to a potential
that generates dynamics such that the ghost only has ultraviolet (UV) effects. For
the purposes of constraints, we will treat the Lagrange multiplier as “the” potential
term and so neglect any possible ghost excitation.

The matter couplings between aether and the SM field content are the same
as they were before, only now the field has dynamics so there can be position-
dependent violations of Lorentz symmetry. Interestingly, some of the couplings to
matter that are unobservable for a single fermion field can have relevant effects
when the aether varies. For example, the −auμψγμψ term in the mSME could be
removed by making a phase change for the fermion. However, once uα is dynam-
ical and varies with position, only a single component of the term can actually be
removed by a phase change [128]. This leads to a new type of term which requires
gravitational/position-dependent tests in the matter sector [128].

Additionally, just as constraints can be put on the coupling of matter fields to
the LV vector field, constraints can also be put on the ci coefficients themselves
by examining the relevant parameterized post-Newtonian (PPN) parameters and
comparing to known PPN limits from solar system and other observations.

11 Note the index symmetry Zβαδγ = Zαβγ δ .
12 Note that one could have fixed the norm to be different than −1, however, one can simply scale
uα to have norm −1 and absorb the scaling into the coefficients.



400 S. Liberati and D. Mattingly

7.2 Constraints

7.2.1 Constraints on the Aether Kinetic Terms

Constraints from PPN Analysis
There are two primary methods to constrain the aether kinetic terms. First, one can
compute the PPN coefficients for the theory and compare to observational tests. The
only two nonvanishing PPN parameters are α1, α2 which describe preferred-frame
effects. α1 and α2 have been calculated [129] as

α1 = −8(c2
3 + c1c4)

2c1 − c2
1 + c2

3

, (41)

α2 = α1

2
− (c1 + 2c3 − c4)(2c1 + 3c2 + c3 + c4)

(c1 + c2 + c3)(2 − c1 − c4)
. (42)

Current constraints are α1 < 10−4 and α2 < 4 × 10−7 [130] and so from a PPN
analysis alone there is still a large two-dimensional region of parameter space that
remains consistent with available tests of GR.

Constraints from Gravity-Aether Wave Modes
The aether introduces three new excitations into the gravity sector (there are naively
four, but the unit constraint removes one). These excitations strongly couple to the
metric via the constraint. The combined aether-metric modes consist of the two
usual transverse traceless graviton modes, a vector mode, and a scalar mode [131].
Gravitational wave detectors can in principle test for polarizations [132], however,
there is an additional possibility to constrain the kinetic terms. The speeds of each of
the modes can differ from the speed of light. Hence if the speeds are less than unity,
high-energy cosmic rays will emit vacuum gravitational Čerenkov radiation [133].
If we denote the speeds of the spin-2, spin-1 and spin-0 modes by s2, s1, s0 then we
have [131]

s2
2 = (1 − c1 − c3)−1, (43)

s2
1 = 2c1 − c2

1 + c2
3

2(c1 + c4)(1 − c1 − c3)
, (44)

s2
0 = (c1 + c2 + c3)(2 − c1 − c4)

(c1 + c4)(1 − c1 − c3)(2 + 3c2 + c1 + c3)
. (45)

Requiring all these speeds to be greater than unity therefore places constraints on a
combination of the ci coefficients.

Combined Constraints
Even after imposing the above constraints there is still a large region of parameter
space allowed. To get an estimate of the size of the space, one can set α1 and α2
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equal to zero and solve the resulting equations for c2 and c4 in terms of c1 and c3. If
we define c+ = c1 + c3 and c− = c1 − c3 then the PPN and gravitational Čerenkov
constraints are all satisfied provided [71]

0 ≤ c+ ≤ 1 (46)

0 ≤ c− ≤ c+
3(1 − c+)

, (47)

which shows that the gravitational sector is only minimally constrained compared
to aether-matter couplings.

7.2.2 Gravitational Constraints on Aether-Matter Couplings

There are couplings between aether and matter that can only be strongly tested when
the aether is dynamical. The prime example is the coupling −auμψγμψ in the
mSME. As said, when gravity is neglected and we are dealing with an observation
that involves only one fermion field, then the auμ term can be absorbed by making
a phase transformation of the fermion ψ → eiau·xψ . This cannot be done when
u is a function of position, which would necessarily be the case if u is a dynam-
ical field strongly coupled to gravity (as we have done with the constraint above).
One can therefore use gravitational experiments to measure the position dependence
of uμ, similar to how redshift experiments measure the gravitational field. For a
larger overview of constraints, see [73,134]. We will concentrate here on a recently
applied method, that of atom interferometry [134].

Atom interferometry involves splitting of a beam of cold atoms such as Cs along
two beam arms and comparing the phase difference at a point of the Cs atoms that
travel along each beam. Since gravity and the matter sector of the mSME affect the
phase of the atomic wavefunctions, one can look for an anomalous sidereal pattern.
By orienting the interferometer vertically and horizontally, one can adjust the sen-
sitivity to the gravitational and matter sectors of the mSME. Since one can also use
other limits to control for any possible matter mSME effect on the signal, one can
thereby isolate solely gravitational effects. Hence, atom interferometers have been
used with great success on constraining the gravitational sector of the mSME.

Consider an interferometer that is constructed to measure phase shifts of atoms
moving vertically versus horizontally. There will be a contribution to the total phase
shiftΔφ that comes from the gravitational redshift, that is, someΔφred . In the New-
tonian limit where uμ is proportional to the timelike Killing vector, uμ is given by
uμ = (1 − U, 0, 0, 0) [135], where U is the Newtonian gravitational potential. If
we couple uμ to matter, one can easily see that the effect of the coupling via an
auμ or cuμuν term is to change the redshift by an additional amount proportional
to the gravitational potential, that is, the change in frequency of a wave is given by
Δω = (1+β)ΔU where β is an experimental parameter related to the fundamental
Lagrangian parameters (c.f. [136] for a discussion). The phase shift generated by
this extra gravitational redshift is then just Δφred = (1 + β)Δφ0, where Δφ0 is
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the expected gravitational redshift. Constraints on β therefore limit the fundamen-
tal Lagrangian parameters. β is limited to be zero within a few parts per billion,
which then generates fairly strong limits on position dependence of the a and c
couplings [134].

8 Neutrinos

While we have concentrated primarily on QED, we would be remiss to not men-
tion at least in passing the important role of neutrinos in tests of Lorentz violation.
More so than other particles, neutrinos are uniquely suited to test various aspects of
Lorentz symmetry. They are copiously produced in both terrestrial experiments and
astrophysical objects, so there are solar neutrinos at < 1 MeV, controlled beams of
neutrinos at roughly 10 GeV, atmospheric neutrinos up to 10 TeV, and (theoretically)
UHE neutrinos up to 1018 eV and above. Neutrinos are weakly interacting, so they
propagate over long distances which allows for detailed time of flight and threshold
reaction analyses. Neutrinos have a very small mass, which make threshold analyses
even more sensitive. Finally, neutrinos oscillate between flavor eigenstates, which
constrains interspecies Lorentz violation.

The problem, of course, is that neutrinos are rather difficult to detect. However,
thanks to the numerous ongoing neutrino experiments, many significant experimen-
tal results have been published that can be adapted to constraining Lorentz violation
in the neutrino sector. We now turn to the theoretical framework and current and
future constraints on the neutrino sector.

8.1 Neutrinos I: Species Dependent Lorentz Violation

8.1.1 The Model

Neutrinos come in three distinct flavors/masses, and there is a priori no reason to
believe that any Lorentz violating coefficients are the same for each species. It may
even be that any Lorentz violation is not diagonal in either basis. We make a couple
simplifying assumptions on this point — that the neutrinos are Dirac neutrinos and
that any Lorentz violation is diagonal in the mass basis. This is a reasonable starting
point, as one natural idea is that since any theory of QG must reduce to GR in the
infrared, any Lorentz violation induced by QG would be primarily controlled by the
charges that couple to gravity. However, this does not mean that the coefficients for
each mass eigenstate are the same. Indeed, one would expect that, due to RG effects,
even if the coefficients were the same for all eigenstates at one energy they would
not be the same for the large range of energies we can test in neutrino experiments.
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With these assumptions, the Lorentz violating terms (written in the mass basis) are
exactly those for the QED fermions,

−aiuμψiγ μψi − biuμψiγ5γ
μψi + 1

2
iciuμuνψiγ

μ
↔
∂ν ψi (48)

+1

2
idiuμuνψiγ5γ

μ
↔
∂ν ψi + 1

2MPl
umψiγm(ζi,1 + ζi,2γ5)(u · ∂)2ψi

− i

M2
Pl

ψi(u · ∂)3(u · γ )(α(6)
i,LPL + α(6)

i,RPR)ψi,

where i is the mass index. We have dropped the gauge covariant derivative above,
as it is irrelevant and couples in the flavor basis so merely would add needless com-
plication. Also note that we have included both right and left projection operators.
However, since SM interactions only produce left-handed neutrinos, the constraints
will primarily be on the corresponding left-handed operators and so we drop all PR
terms in our discussion of oscillations (although we will need to return to them when
we discuss neutrino splitting). Finally, in contrast to the QED case, we cannot drop
the ai term as this gives a contribution to the oscillation pattern.

The above terms and the usual Dirac Lagrangian for the neutrino yield a high-
energy neutrino dispersion relation of

E2
i = p2 +N2

i (49)

N2
i = m2

i + 2(ai + bi)p − (ci + di)p2 + mi

MPl
α

(5)
i,Lp

2

+2(ζi,1 − ζi,2)
p3

MPl
+ 2

α
(6)
i,Lp

4

M2
Pl

.

The tightest constraint on species dependence comes from neutrino flavor oscillation
measurements. Neutrino oscillations depend on the differences in E − p between
different neutrino eigenstates. In standard neutrino oscillations, this difference is
governed by the squared mass differences between the energy eigenstates. With
Lorentz violation and our assumption that the Lorentz violating eigenstates are the
mass eigenstates, oscillations are governed by the differences in the effective mass
squared. Therefore, neutrino oscillations do not probe any absolute Lorentz vio-
lation in the neutrino sector, but rather the differences in the dispersion relations
between different neutrino states.

Now let us consider a neutrino produced via a particle reaction in a definite flavor
eigenstate I with momentum p. The amplitude for this neutrino to be in a particular
mass eigenstate i is represented by the matrix UIi , where

∑
U

†
J iUIi = δIJ . The

amplitude for the neutrino to be observed in another flavor eigenstate J at some
distance L from the source, after some time T is then

AIJ =
∑
i

U
†
J ie

−i(ET−pL)UIi ≈
∑
I

U
†
J ie

−iLN2
i /(2E)UIi . (50)
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The transition probability can then be written as

PIJ = δIJ −
∑
i,j>i

4FIJ ij sin2

(
δN2
ijL

4E

)
+ 2GIJ ij sin2

(
δN2
ijL

2E

)
, (51)

with δN2
ij = N2

i − N2
j and FIJ ij and GIJ ij are functions of the mixing matrices.

With this formalism one can compare with existing neutrino oscillation experiments
that measure PIJ . Many of these experiments quote results on a deviation of the
neutrino speed from that of light, that is,

(
Δc

c

)LIV
ij

= E−2(δN2
ij − δm2

ij ) (52)

which can be easily translated into a constraint on the coefficients in the Lagrangian,
as we do below.

8.1.2 Constraints

We now turn to the constraints that can be put on the neutrino sector. For the renor-
malizable terms governed by ai, bi, ci , di and the non-renormalizable α(5)

i,L term that
contributes a similar term in the dispersion relation the best known limits come
from the miniBoone experiment [137]. They limit various combinations of coeffi-
cients at the 10−20 GeV level, which implies that the order of magnitude constraints
(assuming no cancellations) on these coefficients are

|ai |, |bi | � 10−20GeV, (53)

|ci |, |di | � 10−20,

α
(5)
i,L � 109,

where we have used the mass of the neutrino as approximately 0.1 eV and the
energy of the neutrinos in the miniBoone experiment as approximately 1 GeV (it is
actually slightly less). As one can see, both the renormalizable operators are very
tightly constrained, while the non-renormalizable operator is essentially free.

For the higher-dimension operators that contribute higher-order corrections to
the dispersion relation the best constraints to date come from the survival of atmo-
spheric muon neutrinos observed by the former IceCube detector AMANDA-II in
the energy range 100 GeV to 10 TeV [138]. AMANDA-II searched for a generic
LIV in the neutrino sector [139] and achieved (Δc/c)ij ≤ 2.8× 10−27 at 90 % con-
fidence level assuming maximal mixing for some of the combinations i, j . Using
the low end of the energy band (100 GeV) to be conservative, this yields order of
magnitude constraints on the Lorentz violating coefficients of

|ζi,1|, |ζi,2| � 10−10 (54)

|α(6)
i,L| � 107.
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Given that IceCube does not distinguish neutrinos from antineutrinos, the same con-
straints apply to the corresponding antiparticles. Of interest is that due to the strong
energy dependence of the dimension-six term, as more data is taken at the 10-TeV
range the constraint will drop below O(1) (at 10 TeV for the energy the constraint
is already α(6)

i,L < 0.1). The IceCube detector is expected to improve this constraint

to (Δc/c)ij ≤ 9 × 10−28 in the next few years [140]. We also note that the lack
of sidereal variations in the atmospheric neutrino flux also yields comparable con-
straints on some combinations of SME parameters [141], which can be translated
into the framework above. Finally, a nice summary of neutrino oscillation observa-
tions, with particular attention to LIV, can be found in [142]. For a comprehensive
listing of constraints on terms in the neutrino sector of the SME see [42, 73].

8.2 Neutrinos II: Species Independent Lorentz Violation

Neutrino oscillation depends on δNij and so if all the Lorentz violating terms are
species independent there is no contribution to the oscillation pattern from Lorentz
violation. Hence other methods must be used to constrain these terms. The model is
almost the same as above. The only differences are that all neutrinos have the same
Lorentz violating coefficients and therefore the ai term can be dropped as in QED.
Hence we proceed directly to the relevant constraints.

8.2.1 Constraints

Time-of-Flight
For pure time-of-flight constraints we have to date only two observations to rely
on, the supernova SN1987a neutrino burst and the ICARUS experiment. We deal
first with SN1987a, which was a unique event that generated the almost simultane-
ous (within a few hours) arrival of electronic antineutrinos and photons. Although
only few electronic antineutrinos at MeV energies were detected by the experiments
KamiokaII, IMB, and Baksan, it was enough to establish a constraint (Δc/c)TOF �
10−8 [143] or (Δc/c)TOF � 2 × 10−9 [144] by looking at the difference in arrival
time between antineutrinos and optical photons over a baseline distance of 1.5×105

light years. Further analyses of the time structure of the neutrino signal strengthened
this constraint down to ∼ 10−10 [145, 146].

The scarcity of the detected neutrino did not allow the reconstruction of the
full energy spectrum and of its time evolution; in this sense one should probably
consider constraints purely based on the difference in the arrival time with respect
to photons more conservative and robust. Adopting Δc/c � 10−8, the supernova
constraint implies the following order of magnitude constraints:
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|b| � 10−11GeV (55)

|c|, |di | � 10−8

α
(5)
L � 1021

|ζ1|, |ζ2| � 1013

|α(6)
L | � 1034.

Hence, time-of-flight constraints are quite tight for renormalizable operators but
leave the non-renormalizable operators effectively unconstrained. The Imaging Cos-
mic And Rare Underground Signals (ICARUS) experiment measured the time of
flight of neutrinos traveling from CERN to Gran Sasso in a repeat of the OPERA
experiment. ICARUS found that the arrival time was consistent with zero and within
approximately 10 ns of the expected light travel time [54]. The light travel time
between CERN and Gran Sasso is roughly 2.4 ms, so the Δc/c from ICARUS is
of the order of 10−5, consistent with previous measurements made by the MINOS
detector [147]. Therefore the SN1987A neutrinos remain the tightest constraint on
Lorentz violation from time-of-flight experiments.

Threshold Reactions
Threshold reactions also can be used to cast constraints on the neutrino sector.
Several processes are of interest: neutrino Čerenkov emission ν → γ ν, neutrino
splitting ν → ν νν, and neutrino electron/positron pair production ν → ν e−e+. Let
us consider for illustration the latter process as the others work similarly. Neglecting
possible LV modification in the electron/positron sector (on which we have seen we
have already strong constraints) the threshold energy for a dispersion modification
that scales as pn is

E2
th,(n) =

4m2
e

δ(n)
, (56)

with δ(n) = ξν(Eth/M)n−2.
The rate of this reaction was first computed in [51] for n = 2 but can be eas-

ily generated to arbitrary n [52]. The generic energy loss time-scale then reads
(dropping purely numerical factors)

τν−pair  m4
Z cos4 θw

g4E5

(
M

E

)3(n−2)

, (57)

where g is the weak coupling and θw is Weinberg’s angle. ICARUS found no
electron-positron pair creation from the CERN neutrino beam as it passed through
their detector [148], but the best constraint comes from the observation of upward-
going atmospheric neutrinos up to 400 TeV by the IceCube experiment. Since the
neutrinos propagated through the entire Earth to reach the IceCube detector the free
path of these particles is at least longer than the Earth radius. This measurement has
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been used to establish constraints on |ζ1|, |ζ2| < 30 while c, d are constrained at
the 10−12 level [52]. No effective constraint can be optioned for the dimension-six
operators, however in this case neutrino splitting (which has the further advantage
to be purely dependent on LV on the neutrinos sector) could be used on the “cos-
mogenic” neutrino flux. This is supposedly created via the decay of charged pions
produced by the aforementioned GZK effect. The neutrino splitting should modify
the spectrum of the UHE neutrinos by suppressing the flux at the highest energies
and enhancing it at the lowest ones. In [149] it was shown that future experiments
like ARIANNA [150] will achieve the required sensitivity to cast a constraint of
order |α(6)

L | � 10−4. Note however, that the rate for neutrino splitting computed
in [149] was recently recognized to be underestimated by a factor O(E/M)2 [119].
Hence, the future constraints here mentioned should be recomputed and one should
be able to strengthen the constraint by a few orders of magnitude.

9 Other Frameworks

Specifying which dynamical framework is employed is crucial when discussing the
phenomenology of Lorentz violations. The most robust and well-motivated frame-
work is that which we have been discussing, EFT. However, it is not the only one
and, in fact, there are reasonable arguments from holography that a QG theory
should not necessarily be a local field theory in the UV (cf. the discussion in [151]).
Hence Lorentz violation may enter into low-energy physics in novel ways. In addi-
tion, if one believes that the fundamental QG theory should not be Lorentz invariant,
then one might look for ways in which Lorentz violation might appear outside the
realm of EFT and so avoid many of the constraints that exist in the EFT framework.
For completeness, and because the EFT approach is nothing more than a highly
reasonable, but rather arbitrary “assumption,” it is worth studying and constrain-
ing additional models, given that they may evade the majority of the constraints
discussed in this review.

9.1 D-brane Models

Ellis et al. developed a model [56,58] in which modified dispersion relations derive
from the Liouville string approach to quantum space-time [152]. Liouville string
models [152] motivate corrections to the usual relativistic dispersion relations that
are first order in the particle energies and that correspond to a vacuum refractive
index η = 1 − (E/MPl)α , where α = 1. Models with quadratic dependencies of the
vacuum refractive index on energy, α = 2, have also been considered [63].

In particular, the D-particle realization of the Liouville string approach predicts
that only gauge bosons such as photons, and not charged matter particles such
as electrons, might have QG-modified dispersion relations. This difference occurs
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since excitations which are charged under the gauge group are represented by open
strings with their ends attached to the D-brane [153], and that only neutral excita-
tions are allowed to propagate in the bulk space transverse to the brane [154]. Thus,
if we consider photons and electrons, in this model the parameter η is forced to
be null, whereas ξ is free to vary. Even more importantly, the theory is CPT even,
implying that vacuum is not birefringent for photons (ξ+ = ξ−).

9.2 New Relativity Theories

Lorentz invariance of physical laws relies on only a few assumptions: the principle
of relativity, stating the equivalence of physical laws for non-accelerated observers,
isotropy (no preferred direction) and homogeneity (no preferred location) of space-
time, and a notion of precausality, requiring that the time ordering of co-local events
in one reference frame be preserved [155–162].

All the realizations of LV we have discussed so far explicitly violate the principle
of relativity by introducing a preferred reference frame. This may seem a high price
to pay to include QG effects in low-energy physics. For this reason, it is worth
exploring an alternative possibility that keeps the relativity principle but that relaxes
one or more of the above postulates.

For example, relaxing the space isotropy postulate leads to the so-called very
special relativity framework [163], which was later on understood to be described
by a Finslerian-type geometry [164–166]. In this example, however, the generators
of the new relativity group number fewer than the usual ten associated with Poincaré
invariance. Specifically, there is an explicit breaking of the O(3) group associated
with rotational invariance.

One may wonder whether there exist alternative relativity groups with the same
number of generators as special relativity. Currently, we know of no such generaliza-
tion in coordinate space. However, it has been suggested that, at least in momentum
space, such a generalization is possible, and it was termed “doubly” or “deformed”
(to stress the fact that it still has ten generators) special relativity (DSR). Even
though DSR aims at consistently including dynamics, a complete formulation capa-
ble of doing so is still missing, and present attempts face major problems. Thus, at
present DSR is only a kinematic idea.

Finally, we cannot omit the recent development of what one could perhaps con-
sider a spin-off of DSR that is relative locality, which is based on the idea that
the invariant arena for classical physics is a curved momentum space rather than
space-time (the latter being a derived concept) [167].

DSR and relative locality are still a subject of active research and debate (see,
e.g., [168–171]); nonetheless, they have not yet attained the level of maturity needed
to cast robust constraints13.

13 Note however, that some knowledge of DSR phenomenology can be obtained by considering
that, as in special relativity, any phenomenon that implies the existence of a preferred reference
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10 Discussion and Perspectives

As we have seen, for rotationally invariant QED, Lorentz symmetry is extremely
well tested with strong constraints all the way up to dimension-six operators. Lest
the reader get a false impression, we also should mention that many other sectors
of the SM, from neutrons to mesons both with and without rotation invariance also
have tight limits set on any possible deviation from Lorentz invariance.

There are two areas where there remains immediate work to be done. First, there
is one current caveat in regards to the dimension-six operator constraints that needs
to be resolved. As we have seen, the dimension-six constraints mostly rely on the
physics of the GZK feature of the UHECR spectrum. More specifically, UHECR
constraints rest upon the hypothesis, not in contrast with any previous experimental
evidence, that protons constitute the majority of UHECRs above 1019 eV. Recent
PAO [172] and Yakutsk [173] observations, however, showed hints of an increase of
the average mass composition with rising energies up to E ≈ 1019.6 eV, although
still with large uncertainties mainly due to the proton-air cross section at ultrahigh
energies. Hence, *experimental data suggest that heavy nuclei can possibly account
for a substantial fraction of UHECR arriving on Earth. Furthermore, the evidence for
correlations between UEHCR events and their potential extragalactic sources [86]—
such as AGN (mainly blazars)—has not improved with increasing statistics. This
might be interpreted as a further hint that a relevant part of the flux at very high
energies should be accounted for by heavy ions (mainly iron) which are much more
deviated by the extra- and intergalactic magnetic fields due to their larger charge
with respect to protons (an effect partially compensated by their shorter mean free
path at very high energies). If consequently one conservatively decides to momen-
tarily suspend his/her judgment about the evidence for a GZK feature, then he/she
would lose the constraints at n = 4 on the QED sector14 as well as very much
weaken the constraints on the hadronic one.

Assuming that current hints for a heavy composition at energies E ∼ 1019.6 eV
[172] may be confirmed in the future, that some UHECR is observed up to E ∼
1020 eV [175], and that the energy and momentum of the nucleus are the sum of
energies and momenta of its constituents (so that the parameter in the modified
dispersion relation of the nucleus is the same of the elementary nucleons) one could
place a first constraint on the absence of spontaneous decay for nuclei which could

frame is forbidden. Thus, the detection of such a phenomenon would imply the falsification of
both special and DSR. An example of such a process is the decay of a massless particle.
14 This is a somewhat harsh statement given that it was shown in [174] that a substantial (albeit
reduced) high-energy gamma-ray flux is still expected also in the case of mixed composition, so
that in principle the previously discussed line of reasoning based on the absence of upper threshold
for UHE gamma rays might still work.
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not spontaneously decay without LV.15 Such a constraint would place bounds on
subluminal protons, because in this case the energy of the emitted nucleon is low-
ered with respect to the LI case until it “compensates” the binding energy of the
nucleons in the initial nucleus in the energy-momentum conservation. A comple-
mentary constraint, an upper limit on superluminal protons, can be obtained from
the absence of VC emission. If UHECR are mainly iron at the highest energies the
constraint is given by ζp � 2 × 102 for nuclei observed at 1019.6 eV (and ζp � 4
for 1020 eV), while for helium it is ζp � 4 × 10−3 [176].

Second, the gravitational sector of Lorentz symmetry violation is currently less
constrained. A large region of the parameter space of Einstein-aether theory remains
unconstrained, while atom interferometry is starting to probe matter-tensor cou-
plings that are sensitive to the dynamics of the Lorentz violating tensors. Useful
modified gravity theories that also evade solar system tests, such as galileons [177],
or allow for better UV behavior, such as the aforementioned Hořava–Lifshitz grav-
ity, yield interesting Lorentz symmetry violating gravitational phenomenology.
Hence, fully exploring Lorentz violation in the gravitational sector is currently an
important area that requires further progress.

Acknowledgements We wish to thank Luca Maccione for useful insights, discussions, and
feedback on the manuscript preparation.
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