


Gravity: Where Do We Stand?



The logo of the SIGRAV School “Gravity: Where Do We Stand?” has been
composed from a number of pictures from internet and the Group of Experimental
Gravitation at IAPS-INAF. It is meant to symbolize various facets in gravitational

physics research. Roberto Peron thanks Andrea Reale for his help in putting
together the material.



Roberto Peron • Monica Colpi • Vittorio Gorini
Ugo Moschella

Editors

Gravity: Where Do We
Stand?



Editors
Roberto Peron
Istituto di Astrofisica e Planetologia Spaziali
Istituto Nazionale di Astrofisica
Roma
Italy

Monica Colpi
Dipartimento di Fisica G. Occhialini
Università degli Studi di Milano-Bicocca
Milano
Italy

Vittorio Gorini
Dipartimento di Scienza e Alta Tecnologia
Università degli Studi dell’Insubria
Como
Italy

Ugo Moschella
Dipartimento di Scienza e Alta Tecnologia
Università degli Studi dell’Insubria
Como
Italy

ISBN 978-3-319-20223-5 ISBN 978-3-319-20224-2 (eBook)
DOI 10.1007/978-3-319-20224-2

Library of Congress Control Number: 2015949236

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



In Memoriam

Stefano Braccini (1964–2011) Stefano
Braccini sadly left us in February 2011,
at a time when he was working hard on
the Advanced Virgo project, studying and
imagining how to achieve the best possi-
ble sensitivity and secure the beginning of
Gravitational Wave Astronomy.

Stefano graduated in Physics in 1992,
with supervisors Carlo Bradaschia and
Jean-Yves Vinet, with a thesis work on
the effect of diffused light in the Virgo
arms and in the central area. Subsequently
he studied as Perfezionando at the Scuola

Normale under the supervision of Adalberto Giazotto, until the discussion of his PhD thesis in
1996. During that time he dedicated himself to the development of the Seismic Superattenuator,
a characteristic feature of the Virgo interferometer that allowed then unprecedented performance
in the 10 and 100 Hz detection band. Following the thesis work, Stefano took the responsibility
of completing the design of the full mirror suspension and following the construction of the nine
Superattenuators, ensuring the coordination of the Rome and Pisa groups. He then worked on the
commissioning of the interferometer, engaging a never-ending battle against noise. High-quality
data were collected in 2009, demonstrating the fitness of Virgo for listening to the sky for years.
This paved the way toward the second generation of interferometers whose development Stefano
devoted many efforts to, and several of his thoughts are now integrated in the design.

Stefano took the leadership of the Pisa Virgo group in 2007, leading with enthusiasm the efforts
on the detector and on the data analysis side, with special attention to rotating neutron star signals.
He also dedicated much energy to the Istituto Nazionale di Fisica Nucleare (INFN), of which he
was a researcher and then senior researcher. In particular, acting as referee for astroparticle exper-
iments he was rapidly appreciated for his interest and passion for many other fields of physics
research. We will remember Stefano for his achievements and his scientific and human integrity,
his generosity. One way he would have liked is that we work harder than ever toward the detection
of gravitational waves.

Francesco Fidecaro Università di Pisa, Pisa, Italy
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vi In Memoriam

Angioletta Coradini (1946–2011) Angioletta Coradini was an
astrophysicist and a planetary scientist. Born in Rovereto on July
1st, 1946 she graduated in Physics from Rome University in
1970; she started her career as a planetary scientist during the
pioneering times of lunar samples and from then on she devoted
her whole life and tremendous energy to Planetary Science and,
later, to Solar System Space science and exploration.

The range of her scientific interests and activities in Planetary
Sciences was broad and spanned from her early study in the sta-
tistical classification of lunar samples to theoretical problems in
the field of Solar System formation and evolution; such as mod-

elling of processes of grain accretion for planetesimals growth in gaseous disks, formation of giant
planets and their satellites, and models of the thermal evolution of solid bodies in the Solar System.
She published more than 200 scientific papers, many of them reference works in their respective
fields.

At the end of the 1980s, her personal Space Era started, and she directed her interest and energy
to the field of Space Science and instrument design: a fleet of imaging spectrometers built under
her responsibility are evidence of her dedication and still are flying the empty spaces of the Solar
System on board spacecraft to Mars, to Venus, to the comets, to the icy realm of Jupiter and beyond.

Angioletta formed a generation of planetary scientists, inspired and led her younger colleagues
with her energy and optimism, and promoted the development of a Planetary Science community
in Italy from scratch with her enthusiasm and her charisma. She was a generous and warm person,
always ready to forget many animated discussions with the breaking of her infectious smile.

As an enthusiastic and a passionate scientist, Angioletta was deeply curious of science and of
the world in general, and did not stop at the questions and puzzles posed by her field, but was
always ready to be diverted and interested by something for her completely new and unknown, a
new challenge to respond to, a new book to study.

This is why we want to remember her in this book: the SIGRAV School at Villa Olmo delved
in scientific topics far from her field, but she sponsored and promoted it with all her energy and
passion. To Angioletta we devote this effort and this book.

Priscilla Cerroni Istituto di Astrofisica e Planetologia Spaziali (IAPS-INAF), Roma, Italy
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Simeone Peron (1935–2012) Simeone Peron, here with his son Roberto



Preface

The SIGRAV (Italian Society of Relativity and Gravitation) Graduate School in
Contemporary Relativity and Gravitational Physics has become a traditional meet-
ing point in Italy for research in the field of general relativity and gravitational
physics. The 2009 (VIIIth) edition of this School—Gravity: Where Do We Stand?—
has been envisaged as an exploration path of gravitation, seen as a pervasive
phenomenon acting at all scales, from the microscopic (the realm of a still-to-
be-discovered satisfactory quantum theory of gravitation) to laboratory and Solar
System experiments, up to astrophysical phenomena and cosmological scenarios.
Each step of this path turns out to be full of insight, full of ideas, full of dis-
coveries. This is not by chance for at least three reasons. First, as stated above,
gravitation seems to play a major role in a whole range of important phenomena,
from the build-up of spacetime itself (an oxymoron, we may say) to the formation
and evolution of astrophysical structures, up to the very origin and evolution of the
universe. Second, we have had, for almost a century, an amazing theory (general rel-
ativity) whose structure, and especially consequences, we are still exploring. Third,
today we have at our disposal an ever-increasing amount of experimental data, from
various techniques, and we can confidently speak about precision tests.

The School was attended by more than 50 students from all over the world and the
lecturers, all outstanding scientists, were able to cover a substantial part of current
research areas, from foundations to frontiers. The days of the School—also thanks
to the beautiful venue of Villa Olmo, on Lake Como—have been nice and relaxed.
As is customary for the school, after the end of this edition we started working on the
preparation of the related book. This took a considerable amount of time, also due
to new chapters which we have added to meet the suggestions by the book referees
(whom we thank for their advice). All contributions were fully updated to the time
the book went to print and we are finally able to offer the text to the attention of the
reader.

This is also the place to remember two persons who are not among us anymore.
Stefano Braccini has been a passionate and competent lecturer, and as such con-
tributed to the success of the School. The news of his untimely passing filled us with

ix



x Preface

dismay. Angioletta Coradini, at that time Director of Istituto di Fisica dello Spazio
Interplanetario (IFSI-INAF), was a passionate supporter of the School. All of us
miss such a great person, as well as a first-class scientist. On paper . . . The reader
can find a remembrance of them by Francesco Fidecaro and Priscilla Cerroni.

The school was made possible thanks to the support of SIGRAV, the University of
Insubria, the Department of Physics and Mathematics of the Insubria University, the
National Institute of Nuclear Physics (INFN) and Galileian Plus S.r.l. (for which we
warmly thank Massimiliano Chersich). We are grateful to the secretarial conference
staff of the Center Alessandro Volta, in particular to Chiara Stefanetti and Francesca
Gamba for their assistance, precious help and kindness.

Roberto Peron
Monica Colpi

Vittorio Gorini
Ugo Moschella
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Introduction

Roberto Peron

Bastò questa fuggevole impressione a farmi vedere la situazione in modo nuovo: se era vero
che lo spazio con qualcosa dentro è diverso dallo spazio vuoto perché la materia vi provoca
una curvatura o tensione che obbliga tutte le linee in esso contenute a tendersi o curvarsi
allora la linea che ognuno di noi seguiva era una retta nel solo modo in cui una retta può
essere retta cioé deformandosi di quanto la limpida armonia del vuoto generale è deformata
dall’ingombro della materia, ossia attorcigliandosi tutto in giro a questo gnocco o porro o
escrescenza che è l’universo nel mezzo dello spazio.

. . .

Questa era però ancora un’immagine schematica, come se avessimo a che fare con un solido
dalle pareti lisce, una compenetrazione di poliedri, un aggregato di cristalli; in realtà lo
spazio in cui ci muovevamo era tutto merlato e traforato, con guglie e pinnacoli che si
irradiavano da ogni parte, con cupole e balaustre e peristili, con bifore e trifore e rosoni, e
noi mentre ci sembrava di piombar giù dritto in realtà scorrevamo sul bordo di modanature
e fregi invisibili, come formiche che per attraversare una città seguono percorsi tracciati non
sul selciato delle vie ma lungo le pareti e i soffitti e le cornici e i lampadari.

Italo Calvino, Le Cosmicomiche, La forma dello spazio

Why another book on gravitation? Well, why continue speaking and reasoning on
gravitation? Of course, gravitation is amongst the four known fundamental interac-
tions of nature. Of course, gravitation shapes in many ways the world around us,
from planets to stars to the dynamics of the universe as a whole. In fact, these are
good reasons to continue to speak and investigate on this phenomenon (and worth
more than a book). I think, however, there is a more subtle hint we can follow. It
relates to the superb idea — started with the work of Gauss and Riemann on dif-
ferential geometry and achieved by Einstein in his general theory of relativity —
that gravitation is not exactly like the other fundamental interactions, but instead the
result of a characteristic of spacetime itself. This finding is not granted and, in fact,
related empirical evidence (think about the Equivalence Principle) has been under
heavy empirical scrutiny for many decades. Yet, the experimental corpus that has
been accumulated in favour of this view is impressive; and we are left with a tool

R. Peron (�)
Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF),
Via Fosso del Cavaliere 100, Roma, Italy
e-mail: roberto.peron@iaps.inaf.it
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2 R. Peron

which provides us with something very deep on those (remember Kant) concepts
which shape the world and the way we see it.

This book comes from an attempt of putting together in a consistent way impor-
tant pieces of knowledge in the current development of research in what can be
called “gravitation physics”, both from the theoretical and experimental points of
view. The focus of this path, however, has been shifted to issues which can be termed
as “foundational” or that can be related, in any case, to fundamental questions. This
was in fact was the initial idea behind the organization of the 2009 Villa Olmo
SIGRAV School “Gravity: Where do we stand?”, and that, with some adjustments,
is presented here.

The chapter by Clifford Will, Gravity: Newtonian, Post-Newtonian and General
Relativistic, opens the stage, providing a very thorough introduction to gravitational
theory from the theoretical point of view, stressing along the way the manifold points
of contact with empirical evidence given by experiments, both in the Solar System
and in the astrophysical context. Going from Newtonian gravity to general relativity
and from various fields of application (and approximations) of Einsteinian theory
to real-world situations, a wide view of our knowledge on gravitational machinery
is offered. Of particular interest is the discussion of the motion of extended fluid
bodies (Newtonian hydrodynamics) and the derivation of post-Minkowskian and
post-Newtonian theories by iteration of the so-called relaxed Einstein field equa-
tion. It is also striking the possibility of applying these approximation schemes to
situations where apparently these should not work properly, in relatively strong-
field systems such as the compact binaries. The overall sensation is of walking in an
extremely rich garden: at every step, at every angle, new species appear, while the
general pattern of the garden itself is present everywhere .

A series of chapters follows, in which gravitational phenomena are explored in
the environment most directly available to us for exploration: the Earth and (in
selected cases) the Solar System. This is the realm to the so-called weak-field condi-
tion, in which the gravitational source masses (and the related gravitational effects)
are so small that a basic, linear approximation of the exact theory suffices in taking
into account the observable gravitational phenomenology. This regime is nearest
to our everyday experience. Yet we could have surprises. An example could be
the presence of the so-called gravitomagnetic phenomena, analogous to the most
familiar ones in electromagnetism. Another is the need, in very precise metrological
applications, to take into account at least the most direct relativistic effects, such as
time dilation.

Valerio Iafolla, in his chapter The Newtonian Gravity and Some of Its Classical
Tests, offers us a tour exploring the phenomenology of gravitational phenomena
around us, in (as is customary to say) a laboratory environment. This field of
research has a long history, starting with Galileo’s hints and experiments and pro-
ceeding along the centuries up to present times. Indeed, the very basic questions
(present in the title of this chapter) are as valid now as they were centuries ago:
Why does gravitation seem so different with respect to the other known interactions
of nature? What precisely is the magnitude of the gravitational interactions? Is grav-
itation really a long-range interaction? These questions are after all very simple, yet
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pertain to aspects so fundamental that each generation of scientists has something
to say (and to do) about them. A common feature of the experiments designed to
answer to these questions is that they deal with the measurement of very small accel-
erations in a rather noisy environment. A technique is described which makes use of
advanced devices based on the concept of an “accelerometer”: a test mass attached
to a frame, and whose motion is precisely sensed. This instrument, in a variety
of configurations, is applied to build experiments to give an answer to the above-
mentioned questions. Different types of acceleration-sensitive devices are at the core
of experiments designed to test the Equivalence Principle in its weak formulation,
to measure the Newtonian gravitational constant, to verify the behaviour of gravita-
tional attraction at laboratory scales. The range of applications of these instruments
and techniques extends to geophysical uses and to interplanetary missions.

Extending the scale of gravitational investigations to the size of planetary bod-
ies, the general relativistic phenomenology starts appearing. This is not by chance:
thinking in terms of distances, a rough measure of the relativistic signal is given
by the Schwarzschild radius GM/c2, with M the mass of the main body produc-
ing spacetime curvature. A back-of-the-envelope calculation shows that bodies of
mass comparable at least to the terrrestrial planets are necessary to produce a sig-
nal detectable with current metrology. For the Earth, this number amounts to a few
centimeters. Nowadays, thanks to laser tracking, it is possible to follow the motion
of objects around Earth with this level of precision. The chapter by Roberto Peron,
Fundamental Physics with the LAGEOS Satellites, describes the experiments made
possible by this technique and by the availability of satellites which are the closest
man-made realizations to the ideal concept of a test mass. In these experiments, the
data at our disposal are so precise that the biggest effort is to develop a modelization
of comparable quality. Indeed, the motion of these objects is extremely sensitive
to changes in the Earth-system environment (which is the main reason for their
development). Putting together these high-quality data and state-of-the-art dynam-
ical models and orbit determination software allows filtering out this “noise” and
revealing a perhaps unsuspected relativistic world, with several effects in action.
Amongst them, the already cited gravitomagnetic phenomena, and a smaller real-
ization of one of the basic tests of general relativity, that is the pericentre precession
(with the Earth taking the place of the Sun).

Nature gave us a wonderful instance where to verify the machinery of gravi-
tation: the Earth–Moon system. Indeed, the Sun–Earth–Moon triad constitutes a
paradigmatic example of a three-body system, which shows considerable com-
plexity even at the Newtonian level (and in fact it has been an important hint
to centuries of developments in mechanics, celestial mechanics and theoretical
physics). Since the Apollo 11 mission, retroreflector arrays are present on the Moon
surface. These arrays are used as reference points for laser ranging and are rou-
tinely tracked by stations on Earth. In fact, this technique provides an uninterrupted
time series of measurements lasting more than forty years. Manuele Martini and
Simone Dell’Agnello, in the chapter Probing Gravity with Next Generation Lunar
Laser Ranging, describe the current activity in this field of research, which along
the years saw many important results in fundamental physics and geophysics. An
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important goal is the development of a new generation of retroreflectors, capable
of complying with the advanced capabilities of ground stations such as APOLLO.
In particular, a facility to characterize the retroreflectors on the thermal and optical
sides is described.

The chapter by Vyacheslav Turyshev, Space-based Tests of Relativistic Grav-
itation, shifts our attention to the wide arena of Solar System dynamics. This is
the place where evidence has been first found for general relativistic dynamics;
think about the well-known secular precession of Mercury’s orbit around the Sun
and the deflection of starlight passing near the Sun (both involving the mass of
our star curving spacetime in a sensible way). With the advent of the space age,
we started to send spacecraft around in the Solar System. This means exploring
gravitation too: each spacecraft can be considered to be with a very good approx-
imation a test mass, and its motion — accurately tracked — contains information
on the gravitational dynamics. In practice, almost every deep-space mission has
implied “piggyback” experiments using radiometric tracking of spacecraft. Most
important results have been obtained in the past decades, and others are expected
in the near future. Advanced technologies, such as laser tracking over interplane-
tary distances, promise to extend this task even further, which we may call “Solar
System gravitational surveying and mapping”.

Evidence for the relativistic dynamics of the gravitational field is provided not
only at the “local” scale of the Solar System but also in a “more astrophysical”
context. Indeed, we expect to find traces of this dynamics at all accessible scales,
given the importance of gravitation in the formation and evolution of astrophysical
structures till the grand arena of cosmology. Two of these traces are particularly
significant: the quest for gravitational waves and the study of compact objects.

Gravitational waves are currently a universally accepted consequence of general
relativity theory, and a manifestation of gravitation being a field phenomenon, that
is something extended in space(time). Indirect evidence for them came from the
PSR1913+16 system, whose orbital evolution is compatible with the loss of energy
due to gravitational wave emission. After Joseph Weber’s pioneering attempts at
measuring gravitational waves in the 1960s, this search has never stopped, with more
and more sensitive devices. Stefano Braccini and Francesco Fidecaro, in the chapter
The Detection of Gravitational Waves, carefully describe this search, starting from
the mathematical description of their generation and propagation. The statistical
characterization of possible sources is extremely important, since this knowledge
is useful to constrain event detection probabilities. The big challenge is of course
the smallness of the signal to be detected; for this reason, in recent years the focus
has shifted more and more from resonant bars to interferometric detectors, whose
features (especially their wide sensitivity band) seem promising in view of actual
detections. The story of gravitational waves search is the story of fight against noise.
When this fight will be won (soon, we hope), as is commonly said, a new window
will be open for our observation of the universe.

Compact objects are a wide class of astrophysical entities. Among them, radio
pulsars (neutron stars emitting collimated beams of radio waves) are particularly
interesting for gravitational physics. Some of them constitute, in effect, very stable
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clocks and the study of the emitted signal can be used to constrain several of their
dynamic features. In their chapter, The Role of Binary Pulsars in Testing Gravity
Theories, Andrea Possenti and Marta Burgay concentrate on a particular class of
radio pulsars, the so-called relativistic binary pulsars, and show how a careful anal-
ysis of the times of arrival of the radio pulses reveals several properties of these
systems. The analyses can be carried out in the usual post-Newtonian framework
or, when the two objects of the system are close enough, in the post-Keplerian one.
The impressive constraints obtained from these analyses once more highlight the
“special” role of general relativity among possible theories of gravitation.

The conspicuous amount of evidence gathered in the last decades may induce
one to think the scene is very clear and no big issues are on the horizon. In fact,
it is quite the opposite. The challenges come from many fronts. First of all, there
are many “darks”: dark matter, dark energy, with all the related issues. As analo-
gous cases in the past, this could imply at least two alternatives: there is something
missing in the counts, or we do not understand correctly the basic laws. Given the
possible amount of “missing matter”, it is legitimate to ask ourselves whether we
fully understand general relativity and its consequences. A basic question could be:
what is the behaviour of gravitation at very large distances? Surprises can appear:
indeed, as of today, there is a lack of precise experimental knowledge. There is then
the question on the behaviour of gravitation at extreme conditions and, more in gen-
eral, its desirable reconciling with quantum principles. We do not currently have at
our disposal a quantum theory of gravitation at the same time self-consistent and
capable of providing definite answers to precise experimental setups.

Given the mathematical complexity of general relativity equations, the link
between formal solutions and the results of experiments is in general quite tricky,
once left the trivial cases. In other words, the development of a consistent relativis-
tic metrology is something achieved only in part and needs constant improvements
to keep the pace of experimental results. Luca Lusanna, in his chapter Non-inertial
Frames in Special and General Relativity, faces this delicate issue. A theory of
global non-inertial frames in special and general relativity is introduced and used
to treat asymptotically Minkowskian spacetimes. The very interesting possibility is
suggested that dark matter and dark energy could be effects related to the choice of
the coordinate system.

The problems one has to face in interpreting astrophysical data are discussed
from a peculiar point of view by Antonaldo Diaferio and Garry W. Angus, in their
chapter, The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutri-
nos. The galactic dynamics phenomenology seems to call for an acceleration scale
below which a modification of Newtonian dynamics would be necessary: this is the
objective of the MOdified Newtonian Dynamics (MOND). This theory, with a min-
imum of basic hyphotheses, seems to neatly explain the features of galactic rotation
curves as well as other important features. The basic principles justifying this sce-
nario are possibly still to be unveiled, but this is another indication that progress is
certainly welcome in the way we understand gravitation.

Another aspect currently under theoretical and experimental scrutiny is repre-
sented by the low-energy consequences of gravitation at the quantum level. In this
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respect, several theories predict some type of violation of Lorentz symmetry. Ste-
fano Liberati and David Mattingly, in their chapter Lorentz Breaking Effective Field
Theory Models for Matter and Gravity: Theory and Observational Constraints,
thoroughly explore this issue in the context of the Standard Model Extension.
By applying techniques of effective field theory, they review several constraints
provided by current observations.

In the background, there is of course the quest for a quantum theory of grav-
itation in its full shape, which would be a fundamental step in the unification of
all known interactions in nature. Several attempts have been made over the years,
with many challenges to overcome, not least being able to answer to definite exper-
imental questions. Among them, one of the most crossed paths is string theory.
Ignations Antoniadis, in his chapter Possible Low Energy Manifestations of Strings
and Gravity, provides a discussion of the basic motivations of such a theory and
briefly introduces its perturbative version. The definitely innovative view of space-
time it offers opens the way to observational attempts, both in particle colliders and
in experiments dedicated to the search for new short-range forces.
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Foundations and Solar System Tests



Gravity: Newtonian, Post-Newtonian,
and General Relativistic

Clifford M. Will

Abstract We present a pedagogical introduction to gravitational theory, with the
main focus on weak gravitational fields. We begin with a thorough survey of Newto-
nian gravitational theory. After a brief introduction to general relativity, we develop
the post-Minkowskian formulation of the field equations, which is ideally suited
to studying weak-field gravity. We then discuss applications of this formulation,
including post-Newtonian theory, the parametrized post-Newtonian framework, and
gravitational radiation.

1 Introduction

General relativity is a theory of “gravity as geometry.” It provides a remarkable
new conception of the nature of gravity, totally at odds with the idea of gravity
as conceived by Isaac Newton. It makes predictions of remarkable new and exotic
phenomena: black holes, space-time singularities, the expanding universe.

But, as we approach the centenary of the 1915 publication of the full theory, we
have learned that there is a wealth of important physical and astrophysical phenom-
ena in which general relativity is important, but for which the full, exact theory is not
needed. These phenomena range from the dynamics of the solar system, where many
important experimental tests of general relativity have been carried out, to binary
pulsar systems, to the dynamics of stars in galactic cores containing supermassive
black holes, to the inspiral of binary systems of neutron stars or black holes, which
will be important sources of detectable gravitational waves. These are situations
where the gravitational potentials are small (in units of c2) and speeds are low (in
units of c). These cases lend themselves to methods that forego any attempt to find
exact solutions of Einstein’s equations, but instead attempt to develop systematic
approximations to solutions of the equations.

Among these methods are the “post-Minkowskian” and “post-Newtonian”
approximations that will be the main topic of this chapter. In post-Minkowskian
theory, the strength of the gravitational field is measured by the gravitational con-
stant G, and the Einstein field equations are formally expanded in powers of G.

C. M. Will (�)
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e-mail: cmw@physics.ufl.edu
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At zeroth post-Minkowskian order there is no field, and one deals with Minkowski
space-time. At first post-Minkowskian order, the gravitational field appears as a cor-
rection of order G to the Minkowski metric, and the (linearized) field equations are
integrated to obtain this correction. The correction is refined by terms of orderG2 in
the second post-Minkowskian approximation, and the process is continued until the
desired degree of accuracy is achieved. When augmented by an assumption of slow
motions, the method is known as post-Newtonian theory. A slow-motion assump-
tion is natural, as the virial theorem requires that kinetic energies be comparable to
gravitational potentials, so that weak fields, characterized by (potentials)/c2 � 1,
go hand in hand with slow motions, (v/c)2 � 1.

These methods have proven in recent years to be very powerful, and unreasonably
effective in describing important relativistic phenomena. Because the methods can
be carried out to higher orders in the approximation, they can handle situations
where the fields are not so weak or the motions not so low. For example, high-
order calculations in post-Newtonian theory of the late inspiral of a compact binary
system have proven to agree remarkably well with results from numerical relativity,
in regimes where the two techniques overlap.

Accordingly, this chapter is designed as a pedagogical introduction to these
methods. Because they yield Newtonian gravity as the first-order approximation,
we begin with a fairly lengthy exposition of Newtonian theory (Sect. 2), one that
goes beyond the simplest undergraduate level of “inverse square law” –“elliptical
orbit” concepts. After a brief introduction to general relativity (Sect. 3), we
describe the post-Minkowskian approach (Sect. 4). This is an exact reformulation of
Einstein’s equations that nicely lends itself to a systematic sequence of approx-
imations. Including slow motions yields post-Newtonian theory, along with the
parametrized post-Newtonian (PPN) formalism, used to discuss alternative theories
of gravity and their experimental tests (Sect. 5). Finally, we discuss the use of these
methods to analyze gravitational radiation (Sect. 6).

Because this chapter is meant to be pedagogical, we shall not provide extensive
references to the primary literature, but will instead give a bibliography and sugges-
tions for further reading at the end. This chapter is based in part on a forthcoming
book, Gravity: Newtonian, post-Newtonian, Relativistic, coauthored by Eric Pois-
son. I am grateful to my coauthor and to Cambridge University Press for permission
to use portions of the book draft in this chapter.

2 Newtonian Gravity

The gravitational theory of Newton is an extremely good representation of gravity
for a host of situations of practical and astronomical interest. It accurately describes
the structure of the Earth and the tides raised on it by the Moon and Sun. It gives
a detailed account of the orbital motion of the Moon around the Earth, and of the
planets around the Sun. Of course, it is now well-established that Newtonian theory
is not an exact description of the laws of gravitation. But apart from specialized
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situations requiring very high precision, such as the orbit of Mercury, timing in
the Global Positioning System, or very long baseline radio interferometry (VLBI),
Newtonian gravity rules the solar system.

For the overwhelming majority of stars in the universe, Newtonian gravity also
rules. The structure and evolution of the Sun and other “main sequence” stars can
be completely and accurately treated using Newtonian gravity. Only for extremely
compact stellar objects, such as neutron stars and, of course, black holes, is general
relativity important. Newtonian gravity is also perfectly capable of handling the
structure and evolution of galaxies and clusters of galaxies, and can even be used
in the context of an expanding universe, as long as the relevant distance scales are
shorter than the Hubble scale.

Generally speaking, the criterion that we use to decide whether to employ
Newtonian gravity or general relativity is the magnitude of the quantity

ε ∼ GM

c2r
∼ v2

c2
, (1)

where G is the Newtonian gravitational constant, c is the speed of light, and where
M , r , and v represent the characteristic mass, separation or size, and velocity within
the system under consideration. The smaller this factor, the better is Newtonian
gravity as an approximation.

2.1 The Equations of Newtonian Gravity

Most undergraduate textbooks begin their treatment of Newtonian gravity with
Newton’s second law and the inverse-square law of gravitation:

mIa = F ,

F = −GmGM
r2

n . (2)

In the first equation, F is the force acting on a body of inertial mass mI situated at
position r, and a = d2r/dt2 is its acceleration. In the second equation, the force
is assumed to be gravitational in nature, and to originate from a gravitating mass
M situated at the origin of the coordinate system. The force law involves mG, the
passive gravitational mass of the first body at r, while M is the active gravitational
mass of the second body. The force is attractive, it varies inversely with the square
of the distance r := |r| = (x2 + y2 + z2)1/2, and it points in the direction opposite
to the unit vector n := r/r .

An alternative form of the force law is obtained by writing it as the gradient of a
potential U = GM/r , so that

F = mG∇U . (3)
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If the inertial and passive gravitational masses of the body are equal to each other,
mI = mG, then the acceleration of the body is given by a = ∇U , and its magni-
tude is a = GM/r2. Under this circumstance, the acceleration is independent of
the mass of the body. This statement is known as the weak equivalence principle
(WEP), and it was a central element in Einstein’s thinking en route to the concepts
of curved space-time and general relativity. Newton himself deemed this principle
so important that he opened his 1687 magnum opus The Principia with a discussion
of it and the experiments he had performed to test it. Twentieth-century experiments
have shown that the two types of mass are equal (or more precisely that the ratio
mG/mI is independent of the composition of the material) to a few parts in 1013 for
a wide variety of materials. The chapter, “The Newtonian Gravity and Some of Its
Classical Tests (Equivalence Principle, Measure of G, 1/r2” by V. Iafolla, discusses
these experiments in more detail).

In order to consider the motion of extended bodies made up of continuous matter
(solid, fluid, or gas), allowing the bodies to be of arbitrary size, shape, and consti-
tution, and possibly to evolve in time according to their own internal dynamics, it is
necessary to generalize the primitive Eq. (2) to a form that applies to a continuous
distribution of matter.

To do this, we characterize the matter distribution by a mass-density field ρ(t, x),
a pressure field p(t, x), and a velocity field v(t, x); these quantities depend on time t
and position x within the fluid. The equations that govern the behavior of the matter
are the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 , (4)

which expresses conservation of mass, and Euler’s equation,

ρ
dv
dt

= ρ∇U − ∇p , (5)

which is the generalization of Eq. (2) to continuous matter; here

d

dt
:= ∂

∂t
+ v · ∇, (6)

is the convective time derivative associated with the motion of fluid elements. The
equation that governs the behavior of the gravitational field is Poisson’s equation

∇2U = −4πGρ , (7)

where

∇2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (8)

is the familiar Laplacian operator. Using the Green function for the Laplacian, we
can convert this to an integral

U (t, x) = G
∫
ρ(t, x′)
|x − x′| d

3x′ . (9)
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The integral can be evaluated as soon as the density field ρ(t, x′) is specified, regard-
less of whether ρ is a proper solution to the remaining fluid equations. As such,
Eq. (9) gives U as a functional of any arbitrary function ρ. The potential, however,
will be physically meaningful only when ρ itself is physically meaningful, which
means that it must be a proper solution to the continuity and Euler equations.

To complete the formulation of the theory we must impose a relationship between
the pressure and the density of the fluid. This relationship, known as the equation of
state, takes the general form of

p = p(ρ, T , · · · ) , (10)

in which the pressure is expressed as a function of the density, temperature, and
possibly other relevant variables such as chemical composition. The equation of
state encodes information about the microphysics that characterizes the fluid, and
this information must be provided as an input in most applications of the theory.

A complete description of a physical situation involving gravity and a distribution
of matter will be obtained by integrating Eqs. (4), (5), and (7) simultaneously and
self-consistently. The solutions must be subjected to suitable boundary conditions,
which will be part of the specification of the problem. All of Newtonian gravity is
contained in these equations, and all associated phenomena follow as consequences
of these equations.

The equations of hydrodynamics give rise to a number of important global con-
servation laws. These refer to global quantities, defined by integrals over the entire
fluid system, that are constant in time whenever the system is isolated, that is, when-
ever the system is not affected by forces external to it or by flows of matter out of it.
The equation of continuity (4) leads to some useful properties of such integrals. For
an arbitrary function f (t, x), use of the equation of continuity and an integration by
parts leads to

d

dt

∫
ρ(t, x)f (t, x) d3x =

∫
ρ
df

dt
d3x , (11)

where, as before, d/dt is the convective (or Lagrangian) time derivative and where
the volume of integration is fixed in space and contains all the matter.

For the integral F (t, x) := ∫
ρ(t, x′)f (t, x, x′) d3x′,

∂F

∂t
=
∫
ρ′
(
∂f

∂t
+ v′ · ∇′f

)
d3x′ . (12)

The Lagrangian time derivative acting on F is dF/dt = ∂F/∂t + v · ∇F , and from
Eq. (12) and the definition of F (t, x) we find that this can be expressed as

dF

dt
=
∫
ρ′ df
dt
d3x′ , (13)

with
df

dt
:= ∂f

∂t
+ v · ∇f + v′ · ∇′f, (14)
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denoting a generalized Lagrangian derivative.
With these results it is straightforward, using the equation of continuity and the

Euler equation, to show that the following are constant in time:

Mass : M :=
∫
ρ(t, x) d3x, (15a)

Momentum : P :=
∫
ρ(t, x)v(t, x) d3x, (15b)

Angular Momentum : J :=
∫
ρ x × v d3x, (15c)

Energy : E := T (t) +Ω(t) + Eint(t). (15d)

In addition, the center of mass, defined by

R := 1

M

∫
ρ(t, x)x d3x, (16)

is a linear function of time. Finally, one can prove the virial theorems

1

2

d2I jk

dt2
= 2T jk +Ωjk + Pδjk, (17a)

1

2

d2I

dt2
= 2T +Ω + 3P, (17b)

where

T (t) := 1

2

∫
ρv2 d3x, (18a)

T jk(t) := 1

2

∫
ρvjvk d3x, (18b)

Ω(t) := −1

2

∫
ρU d3x = −1

2
G

∫
ρρ′

|x − x′| d
3x′d3x, (18c)

Ωjk(t) := −1

2
G

∫
ρρ′ (x − x

′)j (x − x′)k
|x − x′|3 d3x′d3x, (18d)

Eint(t) :=
∫
ε d3x, (18e)

P (t) :=
∫
p d3x, (18f)

I jk(t) :=
∫
ρxjxkd3x, (18g)

I (t) :=
∫
ρr2d3x, (18h)

where ε is the energy density, subject to the first law of thermodynamics for perfect
or isentropic fluids, d(εV) + pdV = 0, where the element of volume evolves with
the fluid flow according to V−1dV/dt = ∇ · v.
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2.2 Spherical and Nonspherical Bodies

In spherical symmetry, Poisson’s equation (7) takes the form

1

r2

∂

∂r

(
r2 ∂U

∂r

)
= −4πGρ(t, r) . (19)

Defining the mass contained inside a sphere of radius r as

m(t, r) :=
∫ r

0
4πρ(t, r ′)r ′2 dr ′ , (20)

we rewrite Poisson’s equation in the form

∂U

∂r
= −Gm(t, r)

r2
. (21)

If R is the radius at which ρ = 0, then, definingM = m(R) (a constant by virtue of
the continuity equation), we can write the solution of Eq. (21) that is continuous at
r = R and vanishes at infinity in the form

U (t, r) = Gm(t, r)

r
+ 4πG

∫ R

r

ρ(t, r ′)r ′ dr ′ . (22)

Outside the body, U = GM/r , a constant in time.
To describe the potential of nonspherical bodies, we return to Eq. (9), and, for a

field point outside the body (|x′| < |x|), we carry out a Taylor expansion of |x −
x′|−1:

1

|x − x′| =
1

r
− x′j ∂j

(
1

r

)
+ 1

2
x′jk∂jk

(
1

r

)
− · · ·

=
∞∑
�=0

(−1)�

�! x′L∂L
(

1

r

)
, (23)

where we introduce a condensed notation in which an expression like xjkn stands for
the product xjxkxn, and ∂jkn stands for ∂j ∂k∂n. We adopt the Einstein summation
convention and sum over repeated indices in an expression like x′jk∂jkr−1. In the
second line, we introduce a multi-index notation, in which an uppercase index such
as L represents a collection of � individual indices. Thus, xL stands for xj1j2···j� ,
∂L stands for ∂j1j2···j� , and xL∂L involves a summation over all � pairs of repeated
indices. Substituting Eq. (23) into Eq. (9) gives

Uext(t, x) = G
∞∑
�=0

(−1)�

�! I 〈L〉∂〈L〉
(

1

r

)
, (24)

with

I 〈L〉(t) :=
∫
ρ(t, x′)x′〈L〉 d3x′, (25)
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defining a set of STF multipole moments for the mass distribution. The STF label
denotes symmetric, trace-free: an object A〈ijkl...〉 is symmetric on all its indices and,
for any pair of indices, δijA〈ijkl...〉 = 0. The gradients of r−1 generate STF tensors.
Using the fact that

∂j r = nj , (26a)

∂jnk = ∂knj = 1

r

(
δjk − njnk

)
, (26b)

it is straightforward to show that

∂j r
−1 = −nj r−2 , (27a)

∂jkr
−1 = (

3njnk − δjk
)
r−3 , (27b)

∂jknr
−1 = −

[
15njnknn − 3

(
nj δkn + nkδjn + nnδjk

)]
r−4 . (27c)

We define the STF tensors

n〈jk〉 := njnk − 1

3
δjk , (28a)

n〈jkn〉 := njnknn − 1

5

(
δjknn + δjnnk + δknnj ) , (28b)

and more generally,

n〈L〉 :=
[�/2]∑
p=0

(−1)p
(2�− 2p − 1)!!

(2�− 1)!!
[
δ2P nL−2P + sym(q)

]
, (29)

where δ2P stands for a product of p Kronecker deltas (with indices running from j1
to j2p), nL−2P stands for a product of �−2p unit vectors (with indices running from
j2p+1 to j�), and “sym(q)” denotes all distinct terms arising from permuting indices;
the total number of terms within the square brackets is equal to q := �!/[(� −
2p)!(2p)!!]. Then, we have

∂Lr
−1 = ∂〈L〉r−1 = (−1)�(2�− 1)!! n〈L〉

r�+1
. (30)

The fact that ∂Lr−1 is trace-free follows trivially from the fact that ∇2r−1 = 0.
There is a close connection between n〈L〉 and the spherical harmonics. For a

chosen unit vector e,

e〈L〉n〈L〉 = �!
(2�− 1)!!P�( cos θ ) , (31)

where cos θ = e · n. In addition,

n〈L〉 := N�
�∑

m=−�
Y〈L〉
�m Y�m(θ, φ) , N� = 4π�!

(2�+ 1)!! , (32)
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where Y〈L〉
�m is a set of constant, complex STF tensors that satisfy Y〈L〉

�,−m =
(−1)mY∗〈L〉

�m . For � = 1, for example, Eq. (32) embodies the well-known relation
between (x ± iy)/r and z/r and the �=1 spherical harmonics.

There will be occasions when we need to calculate the average of a quantity
ψ(θ, φ) over the surface of a sphere:

〈〈ψ〉〉 := 1

4π

∫
ψ(θ, φ) dΩ . (33)

Of particular interest are the spherical average of products njnknn · · · of radial vec-
tors. These are easily computed using the fact that the average of the STF tensor
n〈jkn···〉 must be zero; this property follows directly from Eq. (32) and the identity∫
Y�m(θ, φ) dΩ = 0 (unless � = 0). In this way we obtain, for example,

〈〈njnk〉〉 = 1

3
δjk , (34a)

〈〈njnknnnp〉〉 = 1

15

(
δjkδnp + δjnδkp + δjpδkn) , (34b)

and so on. The general expression for such angular averages can be shown to be
given by

〈〈nL〉〉 = 1

(�+ 1)!!
[
δL + sym(q)

]
, (35)

when � is an even number, and 〈〈nL〉〉 = 0 when � is odd; we use the same notation
as in Eq. (29), in which δL stands for a product of �/2 Kronecker deltas, and sym(q)
denotes all distinct terms obtained by permuting indices; the total number of terms
within the square brackets is equal to q = (�− 1)!!.

2.3 Motion of Extended Fluid Bodies

We consider a fluid system that is broken up into a number N of separated and iso-
lated bodies, with the size of each body R assumed to be small compared to the
interbody distance r . Each body is assigned a label A = 1, 2, · · · , N , and each
body occupies a volume VA bounded by a closed surface SA. The mass density ρ
is assumed to be equal to ρA inside VA, and zero in the vacuum region between
bodies. The fluid dynamics inside each body is governed by the continuity and
Euler equations (4) and (5) and the gravitational potential U is given everywhere
by Eq. (9).

We define the total mass of body A along with its center-of-mass position,
velocity, and acceleration by

mA :=
∫
A

ρ(t, x) d3x , (36a)
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rA(t) := 1

mA

∫
A

ρ(t, x) x d3x , (36b)

vA(t) := 1

mA

∫
A

ρ(t, x) v d3x , (36c)

aA(t) := 1

mA

∫
A

ρ(t, x)
dv
dt
d3x , (36d)

where the domain of integration is a region of space that extends slightly beyond
the volume VA; it is sufficiently small that it contains no other body, but sufficiently
large that it continues to contain body A as it moves about in a small interval of time
dt . It is easy to show that mA is time-independent: dmA/dt = 0 and that

vA = drA
dt
, aA = dvA

dt
. (37)

In addition to these variables, we introduce

I
〈L〉
A (t) :=

∫
A

ρ(t, x) (x − rA)〈L〉 d3x , (38)

the STF multipole moments of body A, which refer to its center-of-mass position
rA(t); notice that the dipole moment I jA = ∫

A
ρ(x−rA)j d3x vanishes automatically.

Integrating the Euler equation (5) over body A, and noting that
∫
A
∇pd3x = 0

and
∫
A
ρ∇UAd3x = 0, we obtain

mAaA =
∑
B 
=A

∫
A

ρ(t, x)
∫
B

ρ(t, x′)
|x − x′| d

3x d3x′ . (39)

Defining

x = rA + x̄ ,

x′ = rB + x̄′ ,
rAB = rA − rB , (40)

and carrying out a Taylor expansion in both x̄ and x̄′, assuming both are small
compared to rAB , we obtain, after some rearrangement of terms,

a
j
A = G

∑
B 
=A

{
−mBn

j
AB

r2
AB

+
∞∑
�=2

1

�!
[
(−1)�I 〈L〉B + mB

mA
I
〈L〉
A

]
∂AjL

(
1

rAB

)

+ 1

mA

∞∑
�=2

∞∑
�′=2

(−1)�
′

�!�′! I
〈L〉
A I

〈L′〉
B ∂AjLL′

(
1

rAB

)}
, (41)
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where nAB := rAB/rAB is a unit vector that points from body B to body A. This
expression implies that

∑
A mAaA = 0, a statement that reflects Newton’s third law

or the conservation of total momentum.
The multipole moments of a perfectly spherical body vanish, I 〈L〉A = 0 for � 
=

0, and when all the bodies are spherical, Eq. (41) reduces to the familiar set of
“point-mass” equations of motion,

a
j
A = −

∑
B 
=A

GmBn
j
AB

r2
AB

. (42)

When the bodies are not spherical, the motion of body A is affected by the distor-
tion of the gravitational potential caused by the deformation of the other bodies; this
influence is described by the terms in Eq. (41) that involve I 〈L〉B . It is affected also by
the nonspherical coupling of its own mass distribution to the monopole field of each
external body; this influence is described by the terms in Eq. (41) that are linear in
I
〈L〉
A . And finally, it is affected by the coupling between its own multipole moments

and those of the remaining bodies, as described by the last line in Eq. (41). This
last effect is analogous to the dipole–dipole coupling in electrodynamics, except
for the fact that there is no dipole moment in gravitation; the leading effect comes
from a quadrupole–quadrupole interaction. The presence of terms involving I 〈L〉A in
the equations of motion imply that the motion of a body can depend on its inter-
nal structure, by virtue of its finite size and the nonspherical coupling of its mass
distribution to the external gravitational field. This observation does not constitute
a violation of the WEP; such a violation would imply a dependence on internal
structure that would be present even when the bodies have a negligible size.

Because each multipole moment I 〈L〉A scales as mAR�A, each term in the sum
scales as

GmAmB

r2
AB

(
RA

rAB

)�(
RB

rAB

)�′
,

and the assumption that RA � rAB implies that each term gets progressively
smaller; the equation is exact, but it is most useful as a starting point for an approx-
imation scheme. For many applications involving a small ratio RA/rAB , the sums
can be safely truncated after just a few terms. For other applications, however, a
large number of terms may be required. An example is the motion of a satellite
in a low Earth orbit, which is sensitive to many of Earth’s multipole moments; in
geodesy projects such as the Gravity Recovery and Climate Experiment (GRACE)
and the CHAllenging Mini-satellite Payload (CHAMP), Earth’s multipole moments
up to � ∼ 360 have been measured.

We now specialize to a system of two bodies. The total mass of the binary system
is m := m1 + m2. We define the relative separation r := r1 − r2, and work in
barycentric coordinates where

R := (m1/m) r1 + (m2/m)r2 = 0 ,

r1 = (m2/m)r ,
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r2 = −(m1/m)r . (43)

Defining r := |r|, n := r/r , v := dr/dt = v1 − v2, and a := dv/dt = a1 − a2, we
obtain the effective one-body equation of motion

aj = −Gmn
j

r2
+Gm

∞∑
�=2

1

�!
[
I
〈L〉
1

m1
+ (−1)�

I
〈L〉
2

m2

]
∂jL

(
1

r

)

+Gm
∞∑
�=2

∞∑
�′=2

(−1)�
′

�!�′!
I
〈L〉
1

m1

I
〈L′〉
2

m2
∂jLL′

(
1

r

)
. (44)

Specializing further, we assume that only body 2 has significant multipole moments,
and that it is symmetric about an axis aligned with the unit vector e. It is
straightforward to show that

I
〈L〉
2 = −m2R

�
2 (J�)2 e

〈L〉
2 , (45)

where J� is a dimensionless multipole moment, defined by

J� := −
√

4π

2�+ 1

1

MR�
Y〈L〉
�0 I〈L〉 . (46)

We inserted the label “2” on all quantities (such as mass, radius, symmetry axis, and
multipole moments) to indicate that they belong to body 2. Equation (44) can then
be written as

a = Gm

r2

[
−n +

∞∑
�=2

(J�)2

(
R2

r

)� (
n
dP�+1

dμ
− e2

dP�

dμ

)]
, (47)

where P�(μ) is the Legendre polynomial of μ = n · e2. Note that the acceleration
has a radial piece ∝ n and a piece parallel to the companion’s symmetry axis e2.

2.4 Newtonian Orbital Dynamics

Kepler’s problem is the determination of the motion of two bodies subjected to their
mutual gravitational attraction, under the assumption that each body can be taken to
be spherically symmetric. This is the simplest problem of celestial mechanics, but
also one of the most relevant, because the motion of any planet around the Sun can,
to a good first approximation, be calculated while ignoring the effects of the other
planets. It is also a problem that can be solved exactly and completely, in terms of
simple equations. In this case, dropping all terms involving multipole moments in
Eq. (44), we obtain

a = −Gm
r2

n . (48)
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Fig. 1 Keplerian orbit in
space

Because the potential is static and spherically symmetric, the equation of motion
admits a conserved energy and angular momentum, given by

E = 1

2
μv2 − Gμm

r
,

L = μr × v , (49)

where μ := m1m2/(m1 +m2) is the reduced mass. The constancy of L implies that
the motion lies in a plane perpendicular to L.

In order to write down the general solution of the Kepler problem, we introduce
coordinates (X, Y,Z), with the X − Y plane called the reference plane. This is
arbitrary, and is often dictated by convention or convenience. For example, in the
description of planetary motion in the solar system, the reference plane is chosen
to coincide with Earth’s own orbital plane (called the ecliptic); in the description
of satellites orbiting the Earth, the reference plane is Earth’s equatorial plane; for
binary star systems, the reference plane is the plane of the sky. In each case, the
direction of the X-axis is selected by convention.

The situation is represented in Fig. 1, which shows the orbit plane crossing the
reference plane at an angle ι called the inclination; this is the angle between the
z-direction of the orbit frame and the Z-direction of the reference frame. The line of
intersection between the two planes is known as the line of nodes, and the point at
which the orbit cuts the reference plane from below is the ascending node. The angle
Ω between the X-direction and the line of nodes is the longitude of the ascending
node. The diagram also shows ω, the longitude of pericenter, defined as the angle
between the line of nodes and the direction to the pericenter, the point of minimum
r , as measured in the orbit plane.

Elementary methods show that the solution to the Keplerian two-body problem
is given by

r = rn , (50)
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where
r = p

1 + e cos f
, (51)

where e is the eccentricity, and p is the semi-latus rectum, related to the angular
momentum per unit reduced mass h by h := |r × v| = √

Gmp. The radial unit
vector n, along with the unit vector ĥ := h/h normal to the orbit plane, and the
third vector λ perpendicular to them both, are given by

n = [
cosΩ cos (ω + f ) − cos ι sinΩ sin (ω + f )

]
eX

+ [
sinΩ cos (ω + f ) + cos ι cosΩ sin (ω + f )

]
eY

+ sin ι sin (ω + f ) eZ , (52a)

λ = [− cosΩ sin (ω + f ) − cos ι sinΩ cos (ω + f )
]

eX
+ [− sinΩ sin (ω + f ) + cos ι cosΩ cos (ω + f )

]
eY

+ sin ι cos (ω + f ) eZ , (52b)

h = sin ι sinΩ eX − sin ι cosΩ eY + cos ι eZ . (52c)

The relation between the angle f , known as the true anomaly, and time is given by
integrating the equation

df

dt
= h

r2
. (53)

The total listing of orbital elements therefore consists of the size and shape elements
p and e, the orientational elements ι, Ω , and ω, and the time element T arising
from the constant of integration from Eq. (53); the total number of elements is six,
corresponding precisely to the number of initial conditions (x(0), v(0)) required to
select a unique solution to Kepler’s problem.

The semimajor axis a is defined by

a := 1

2
(rmin + rmax) = p

1 − e2
, (54)

and the orbital period P is given by

P = 2πa3/2(Gm)−1/2 . (55)

Other useful orbital quantities expressed in this language include

v = ṙn + (h/r)λ ,

ṙ = (he/p) sin f ,

E = −Gμm/2a . (56)

The constancy of p is directly tied to conservation of angular momentum h, and the
constancy of a := p/(1 − e2) is tied to conservation of energy (so that constancy
of e is also assured). In addition, the appearance of T as an integration constant
was expected from the fact that the gravitational potential Gm/r does not depend
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explicitly on time. The constancy of ι andΩ is related to the spherical symmetry of
the problem, which fixed the direction of L and the orbital plane.

The constancy of ω is a very important property of a Keplerian orbit: it ensures
that the orientation of the orbit within its plane stays fixed, that the position of the
pericenter does not move, and when the orbit is bound, that the orbit retraces itself
after each orbital cycle. The constancy of ω is the result of a hidden, dynamical
symmetry of Kepler’s problem, associated with the specific 1/r nature of the grav-
itational potential; the symmetry does not exist for other potentials. The symmetry
gives rise to a conservation statement for the Runge–Lenz vector, defined by

A := v × h
Gm

− n . (57)

A short computation using a = −Gmn/r2 shows that

dA
dt

= 0, (58)

and the manipulations do indeed reveal that constancy of A relies on the specific
form of the gravitational acceleration. The Runge–Lenz vector can be evaluated
explicitly by making use of the Keplerian results obtained previously. The result is

A = e(cosω ex + sinω ey
) := eeP , (59)

where ex points along the line of nodes, and ey and ĥ complete the basis vectors
for the orbital plane; it reveals that the vector A points in the fixed direction of the
pericenter eP . The vector has a length e, and constancy of A implies that ω is a con-
stant of the motion. This same dynamical symmetry is also responsible for the high
degree of degeneracy in the quantum-mechanical energy levels of the nonrelativistic
hydrogen atom. However, any deviation from a pure 1/r potential will generically
cause a variation in the angle ω and a splitting of energy levels in hydrogen. There
is also a similar dynamical symmetry for the spherical harmonic oscillator potential
∝ r2, both classical and quantum.

Five of the orbital elements that we have described can be expressed directly in
terms of the variables x and v of the orbit. A simple calculation shows

p = h2

Gm
, (60a)

e = |A| , (60b)

cos ι = = h · eZ
h

, (60c)

sin ι sinΩ = h · eX
h

, (60d)

sin ι sinω = A · eZ
e

. (60e)
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2.5 Osculating Orbit Elements and the Perturbed Kepler Problem

In the real world, the Kepler two-body problem does not apply because one or more
of the bodies may not be spherically symmetric, because of the presence of other
bodies or mass in the system, or because of relativistic effects. Let us assume that
the relative acceleration a := a1 − a2 between two bodies is given by

a = −Gm
r2

n + f , (61)

where f is a perturbing force per unit mass, which may depend on r, v, and time.
The solution of this equation is no longer a conic section of the Kepler problem.
However, whatever the solution is, at any given time t0, for r(t0), v(t0), there exists
a Keplerian orbit with orbit elements e0, a0, ω0, Ω0, ι0, and T0 that corresponds
to those values, as we constructed in the previous section. In other words, there is
a Keplerian orbit that is tangent to the orbit in question at the time t0, commonly
called the osculating orbit.

However, because of the perturbing acceleration, at a later time, the orbit will
not be the same Keplerian orbit, but will be tangent to a new osculating orbit, with
new elements e′, a′, and so on. The idea then is to study a general orbit with the
perturbing acceleration f by finding the sequence of osculating orbits parametrized
by e(t), a(t), and so on. If the perturbing acceleration is small in a suitable sense,
then since the orbit elements of the original Kepler motion are constants, we might
hope that the osculating orbit elements will vary slowly with time.

Mathematically, this approach is identical to the method of “variation of param-
eters” used to solve differential equations, such as the harmonic oscillator with a
slowly varying frequency.

In this case, we replace our Keplerian solution for the motion with the following
definitions:

r := rn , (62a)

r := p

1 + e cos f
, (62b)

v := he sin f

p
n + h

r
λ , (62c)

p := a(1 − e2) , (62d)

h2 := Gmp , (62e)

where the unit vectors n and λ are given by Eq. (52).
We first decompose f as

f = R n + S λ+W ĥ , (63)

in terms of components R, S, and W .
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The effect of the perturbing acceleration f on the vectors h and A can be
calculated by appealing directly to their definitions. We find that

dh
dt

= r × f = −rW λ+ rS ĥ , (64)

and

Gm
dA
dt

= f × h + v × (r × f) = 2hS n − (
hR+ rṙS) λ− rṙW ĥ . (65)

These equations imply that
dh

dt
= rS , (66)

and therefore, that S produces a change in the magnitude of the angular-momentum
vector, while W produces a change in its direction. Similarly, both R and S produce
a change in A’s magnitude, as well as a change of direction orthogonal to ĥ.

We can now systematically develop equations for the variations with time of
the osculating orbit elements. For example, since h · eZ = h cos ι, then ḣ · eZ =
ḣ cos ι − sin ι(dι/dt) = rS cos ι − rW cos (ω + f ) sin ι, with the result that
dι/dt = (rW/h) cos (ω + f ). Similarly, since h · eY = −h sin ι cosΩ , then
taking the derivative of both sides and substituting our previous results for ḣ, ḣ
and dι/dt , we obtain sin ιΩ̇ = (rW/h) sin (ω + f ). To obtain ė, we note that
eė = A · Ȧ, and use the fact that A = n cos f − λ sin f . For ȧ, we use the definition
h2 = Gma(1− e2), from which ȧ/a = 2ḣ/h+ 2eė/(1− e2). For ω̇, we use the fact
that A · eZ = e sin ι sinω, combined with previous results for ė and dι/dt . The final
equations for the osculating orbit elements are

da

dt
= 2a2

h

(
S p
r
+Re sin f

)
, (67a)

de

dt
= 1 − e2

h

(
Ra sin f + S

er
(ap − r2)

)
, (67b)

dω

dt
= −R p

eh
cos f + S p + r

eh
sin f −W r

h
cot ι sin (ω + f ) , (67c)

sin ι
dΩ

dt
= W r

h
sin (ω + f ) , (67d)

dι

dt
= W r

h
cos (ω + f ) . (67e)

Notice that the orbit elements a and e are affected only by components of f in the
plane of the orbit, while the elementsΩ and ι are affected only by the component out
of the plane. The pericenter change has both, but this is because of the combination
of intrinsic, in-plane perturbations (the first two terms) with the perturbation of the
line of nodes from which ω is measured (the third term).

We are missing an equation for the variation of T , the time of pericenter passage,
which determines the true anomaly f via Eq. (53). If one is engaged in real-life orbit
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determinations, such as navigating a spacecraft, timing a binary pulsar’s orbit, or
developing ephemerides, then the variation of T is an important quantity. However,
if one is interested in elucidating physical effects on an orbit, it is more practical to
close the system of equations by providing an expression for df/dt , from which the
true anomaly can be obtained directly. Because f is the angle between the (varying)
pericenter and the position vector n, we have that cos f = n · eP , and this can
immediately be differentiated with respect to time. After some simplification, we
find

df

dt
= h

r2
−
(
dω

dt
+ cos ι

dΩ

dt

)
, (68)

which shows that df/dt differs from the usual Keplerian expression by a term
dω/dt + cos ι dΩ/dt which possesses a direct geometrical meaning. We recall
that ω is the angle from the (varying) pericenter to the (varying) line of nodes,
as measured in the orbital plane, while Ω is the angle from the line of nodes to
the (fixed) X-direction, as measured in the reference X-Y plane. The combination
dω + cos ι dΩ can then be seen to describe the change in the direction to the peri-
center relative to the X-direction, as measured entirely in the orbital plane. The
non-Keplerian terms in Eq. (68) therefore appear because the true anomaly f is
now measured relative to a varying set of directions. In fact, it is common to discuss
the variations in the combined orbit “element”

d� := dω + cos ι dΩ . (69)

The formalism of osculating orbital elements, in the formulation of Eqs. (67) and
(68), is exactly equivalent to the original formulation of the equations of motion
in Eq. (61); no approximations have been introduced in the transcription. The use-
fulness of the formalism, however, is most immediate when the perturbing force
is small, so that the changes in the orbital elements are small. In such a context,
one can achieve a very good approximation of the orbital dynamics by inserting the
constant, zeroth-order values on the right-hand side of the equations, and integrat-
ing with respect to t to get the first-order changes. In such applications, it is usually
convenient to use f as an independent variable instead of t , and in this approximate
context, one can neglect the non-Keplerian terms on the right-hand side of Eq. (68).
The system of osculating equations become

dp

df
 2

p3

Gm

1

(1 + e cos f )3
S, (70a)

de

df
 p2

Gm

[
sin f

(1 + e cos f )2
R+ 2 cos f + e(1 + cos2 f )

(1 + e cos f )3
S
]
, (70b)

dι

df
 p2

Gm

cos (ω + f )

(1 + e cos f )3
W, (70c)

sin ι
dΩ

df
 p2

Gm

sin (ω + f )

(1 + e cos f )3
W, (70d)
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dω

df
 1

e

p2

Gm

[
− cos f

(1 + e cos f )2
R+ 2 + e cos f

(1 + e cos f )3
sin f S

− e cot ι
sin (ω + f )

(1 + e cos f )3
W
]
, (70e)

with

dt

df

√
p3

Gm

1

(1 + e cos f )2
(71)

providing the temporal information.

2.6 Non-Keplerian Behavior: Worked Examples

In this section, we work out some real-world examples to illustrate the use of
osculating orbit elements and other non-Keplerian effects.

Perturbations by a Third Body

Consider a two-body system in the presence of a distant third body. We assume that
the effect of the third body can be treated as a perturbation of the Keplerian two-
body orbit of the primary bodies. From the N-body equation of motion (42), we
write down the equation of motion of the two primary bodies,

a1 = −Gm2r12

r3
12

−Gm3r13

r3
13

,

a2 = Gm1r12

r3
12

−Gm3r23

r3
23

. (72)

We now assume that r12 � r23, so that we can expand

ri13

r3
13

≈ ri23

r3
23

−
∞∑
�=1

1

�! r
L
12∂

〈iL〉
(

1

r23

)
. (73)

The relative acceleration a := a1 − a2 can then be written

a = −Gmr
r3

−Gm3

R3
[r − 3N(N · r)] +O(m3r

2/R4) , (74)

where we define R := |r23|, and N := r23/|r23|, and where we have kept only
the � = 1 term in the sequence. The first term on the right-hand side of Eq. (74)
is the normal Newtonian acceleration for the effective one-body problem. As long
as (m3/m)(r/R)3 � 1, we can treat the second term in Eq. (74) as a disturbing
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acceleration of a Keplerian orbit. From Eq. (74), we obtain the components of the
disturbing acceleration

R = −A[1 − 3(N · n)2] ,

S = 3A(N · n)(N · λ) ,

W = 3A(N · n)(N · ĥ) , (75)

where A = Gm3r/R
3.

We now focus on a specific example: the orbit of a planet like Mercury, perturbed
by an outer planet, such as Jupiter. Let Mercury be in an orbit with osculating orbit
elements a, e, and ω; we will assume that the orbit lies on the reference plane (the
ecliptic in this case), so that i = 0 and Ω is not defined and can be put equal to
zero. The orbit is then described by Eqs. (62a–62e). For simplicity, assume that
the perturbing planet is in a circular orbit in the same reference plane, with R =
constant, and

N = ex cosF + ey sinF , (76)

where F is its eccentric anomaly, with constant dF/dt = (Gm/R3)1/2. Using
Eqs. (52a) and (52b), we show that N · n = cos (f − F + ω), N · λ = − sin (f −
F + ω), and N · ĥ = 0. We are interested in the perihelion advance of our planet,
so working to first order in small perturbations, we combine Eqs. (70d), (70e), and
(69) to obtain

d�

df
= − r2

h2e

[
pR cos f − (p + r)S sin f

]

= Gm3p
4

h2R3e

{
cos f

(1 + e cos f )3
[1 − 3 cos2 (f − F + ω)]

−3
(2 + e cos f ) sin f

(1 + e cos f )4
cos (f − F + ω) sin (f − F + ω)

}
. (77)

In first-order perturbation theory, we can set the orbit elements equal to constants on
the right-hand side and then integrate with respect to f to obtain� (f ). But to keep
things simple, we will further assume that the perturbing planet is far enough away
that it barely moves during one orbit of our Mercury, that is, that dF/dt � df/dt ,
which follows from (m3/m)(r/R)3 � 1. Hence we set F = constant in (77). We
will also expand in powers of the eccentricity e. The solution for� (f ) will therefore
be proportional to sines and cosines of multiples of f , indicating that the osculating
perihelion angle moves back and forth during the orbit as a result of the external
perturbation.

Notice that, in the expansion of Eq. (77) in eccentricity, the leading term will
be proportional to 1/e, which might be worrisome in the limit e → 0. However,
it can be shown that the actual orbital displacements resulting from a change in �
are proportional to eδ� , so those observable displacements are well-behaved in the
small-eccentricity limit.
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Table 1 Planetary contribu-
tions to Mercury’s perihelion
advance (in arcseconds per
century)

Planet Advance

Venus 277.8

Earth 90.0

Mars 2.5

Jupiter 153.6

Saturn 7.3

Total 531.2

Discrepancy 42.9

Modern measured value 42.98 ± 0.04

General relativity prediction 42.98

But an important question is, after one orbit of Mercury, does the osculating
perihelion angle return to its original value, that is, is it purely periodic, or does it
suffer a secular change over each orbit? To explore this, we integrate Eq. (77) over
f from zero to 2π , with the result that the net change Δ� over one orbit is given
by

Δ� = 3π
m3

m

(p
R

)3 1

(1 − e2)5/2
[5 cos2 (F − ω) − 2] . (78)

The secular perihelion advance itself varies as the distant planet orbits the Sun, but
if we average over all positions of the distant planet using 〈cos2 (F − ω)〉 = 1/2,
we obtain

Δ� = 3π

2

m3

m

( a
R

)3
(1 − e2)1/2 . (79)

Inserting standard orbit elements for Mercury and Jupiter, we see that Δ� =
1.79×10−6. The smallness of this effect is what justifies working only at first order
in perturbation theory. It is customary to express the perihelion advance as a rate in
units of arcseconds (as) per century, so using the fact that 1 radian = 2.063 × 105

as, and that Mercury’s orbital period is 0.24 years, we obtain d�/dt = 154 as per
century. This is very close to the accurately computed value shown in Table 1. How-
ever, for perturbations of Mercury’s orbit by the Earth, we get 69.2 as per century,
quite a bit off from the accurate value of 90. But in this case r/R ≈ 0.38, so that it
is necessary to include the higher-order terms from the expansion in Eq. (74). Also,
whereas holding Jupiter’s position fixed while integrating over Mercury’s orbit and
then averaging over Jupiter’s position might have been a good approximation since
Jupiter’s period is 40 times longer than Mercury’s, it is not a good approximation in
the case of Earth, whose period is only four times longer. Nevertheless, the method
of osculating orbit elements allows us to incorporate such details systematically in a
straightforward manner, leading to the accurately calculated planetary perturbations
listed in Table 1. Still, the total effect of the planetary perturbations on Mercury’s
orbit falls well short of the observed perihelion advance of 574 as per century. In a
later section, we will return to this question once we have obtained the equations of
motion including relativistic terms.
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Orbits Around a Nonspherical Body

We now consider a two-body problem where one of the bodies has nonzero multi-
pole moments, typically caused by rotation. This could mean, for example, Mercury
orbiting the oblate, rotating Sun, a satellite orbiting the Earth with all its multipole
moments, or a neutron star orbiting a massive, rotating normal star. In this case, we
can use Eq. (47), here restricted to � = 2:

a = −Gm
r2

[
n − 3

2
(J2)2

R2
2

r2

(
5n(e · n)2 − 2e(e · n) − n

)]
, (80)

where R2, (J2)2, and e are the radius, dimensionless quadrupole moment and
symmetry axis direction of the central body. Hence

R = 1

2
A[3(e · n)2 − 1] ,

S = −A(e · λ)(e · n) ,

W = −A(e · ĥ)(e · n) , (81)

where A = 3(Gm/r2)(J2)2(R2/r)2. We choose e to be along the z-axis, and con-
sider an orbit with osculating elements a, e, ω, ι, and Ω . Then from Eq. (52), we
have e ·n = sin ι sin (f +ω), e ·λ = sin ι cos (f +ω), and e · ĥ = cos ι. Working in
first-order perturbation theory, we integrate Eqs. (70a–70e), over 2π and obtain the
secular changes in the orbit elements, Δa = Δe = Δι = 0, while

Δ� = 3π (J2)2

(
R2

p

)2 (
1 − 3

2
sin2 ι

)
, (82a)

ΔΩ = −3π (J2)2

(
R2

p

)2

cos ι . (82b)

Notice that, even in the case of zero inclination, where e ·n = 0, and thus S = W =
0, the quadrupole moment still induces a perihelion advance because it modifies the
radial dependence of the acceleration from a pure 1/r2 behavior. For inclined orbits,
the deviation from spherical symmetry induces advances in both the perihelion and
the node. In the latter case, the effect is merely a precession of the orbital angular
momentum h = r× v around the symmetry axis e, as can be obtained directly from
Eq. (80),

dh
dt

= −3
Gm

r2
(J2)2

R2
2

r2
(r × e)(e · n) . (83)

From this, we see that e · dh/dt = 0, so that h precesses around the e axis, inducing
a rotation of the node.

For Mercury, the perihelion advance induced by the Sun’s J2 is negligible. Insert-
ing the relevant orbit elements and the value (J2)� = 2.2 × 10−7, we obtain
d�/dt = 0.03 as/century, below the experimental uncertainties (see Table 1). It
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was not always so. In fact, it is extremely difficult to measure J2 for the Sun because
at planetary distances, its effects are too small to be measured. The best way is to
send a spacecraft relatively close to the Sun, well inside the orbit of Mercury and to
determine precisely how J2 affects its orbit; despite a number of proposals for such
a mission, none has come to pass to date.

During the 1960s, Robert Dicke and Mark Goldenberg, attempted to infer a value
of J2 by measuring the visual shape of the Sun. They claimed a J2 of order of
2.5×10−5, over 100 times larger than the number quoted above. Later observations
of the visible shape of the Sun by Henry Hill and others, along with analyses to try
to understand how temperature differences across the Sun might contaminate the
observations of apparent shape, did not fully resolve this controversy. The resolution
came with the advance of “helioseismology.” This was the discovery that the Sun
actually vibrates in a superposition of thousands of normal modes with an array of
frequencies, as reflected in the behavior of Doppler-shifted solar spectral lines. The
specific pattern of frequencies proves to depend on how much differential rotation
is present in the Sun. Through a systematic program of ground-based and space-
based observations of the Sun, it was possible to determine the angular velocity
profile over much of the solar interior. The conclusion was that the interior does not
rotate much faster than the surface, and the solar models built from that information
resulted in the value J2 = 2.2 × 10−7, which is more or less what one would infer
from a Sun that rotates uniformly at its observed surface rate. The bottom line is
that, as far as Mercury and general relativity are concerned, the solar quadrupole
moment does not play a role.

However, J2 for the Earth does play an important role in the motion of satellites.
Using (J2)⊕ = 1.08 × 10−3, and assuming a satellite in a circular orbit with semi-
major axis a, with orbital period P = 2π (a3/Gm)1/2 = 83.91(a/R)3/2 minutes,
we can show that the secular rate of advance of the node is given by

dΩ

dt
= 3639

(
R

a

)7/2

cos ι oyr−1 , (84)

where R is the Earth’s radius. Thus, for example, the orbit of the laser geodynamics
satellite LAGEOS I, with a = 1.93R⊕ and ι = 109o.8 will precess at a rate of
−123◦ per year. Suppression of this enormous Newtonian effect in order to detect
the possible effect of general relativistic frame-dragging (∼ 30 milliarcseconds per
year) is a major challenge. The chapter “Fundamental Physics with the LAGEOS
Satellites” by R. Peron, addresses how this suppression has been carried out in
analysing data from the LAGEOS I and II satellites.

3 General Relativity

3.1 Mathematics of Curved Space-Time

The foundation of general relativity is the space-time metric gαβ , which connects
the arbitrary coordinates xα = (ct, xj ) used to label events in space-time to physical
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measurements of time and length made by clocks and rods, via the invariant interval

ds2 = gαβ dxαdxβ . (85)

Under a change of coordinates described by xα = f α(x′μ), where f α are functions
of the new coordinates x′μ, the coordinate displacements change according to

dxα = ∂f α

∂x′μ
dx′μ , (86)

and the space-time interval becomes

ds2 = gαβ ∂f
α

∂x′μ
∂f β

∂x′ν
dx′μdx′ν . (87)

This expression shows that the metric is replaced by

g′μν = gαβ
∂f α

∂x′μ
∂f β

∂x′ν
(88)

in the new coordinate system, so that ds2 = g′μν dx′μdx′ν . The coordinate dis-
placements change, and the metric also changes, but ds2 remains the same during a
coordinate transformation. In this way, for example, the proper time dτ = √−ds2/c

between two events as measured by an atomic clock is the same, regardless of the
coordinates used to label the space-time events.

It can be shown that, in the neighborhood of any event P in space-time (and more
generally along any world line), one can always find a coordinate system in which

g′μν |P = ημν , (∂ ′γ g′μν)|P = 0 , (89)

where ημν = diag(−1, 1, 1, 1) is the Minkowski metric of special relativity. This
corresponds to the local freely falling frame, in which freely moving particles move
on straight lines and the laws of nongravitational physics take on their standard
special-relativistic, Lorentz invariant forms. This embodies the Einstein equivalence
principle, the foundation of the geometrical formulation of gravity.

A coordinate system xα can be used to define a set of basis vectors eα , such that
a vector describing the displacement from one event in space-time to a neighboring
event is given by

dx = eα dxα . (90)

An arbitrary vector A can then be expressed as

A = Aαeα (91)

in terms of the basis vectors and its components Aα .
The inner product between dx and itself is the space-time invariant ds2. We have

ds2 = dx · dx = (eα · eβ ) dxαdxβ , and comparing this with Eq. (85) reveals that

gαβ = eα · eβ . (92)
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If A is a vector field in space-time, its derivative with respect to coordinate xβ is

∂βA = (∂βA
α)eα + Aα(∂βeα), (93)

in which the first term accounts for the variation of the components, while the second
accounts for the variation of the basis vectors. We define

∂βeα := Γ μαβ eμ, (94)

which states the obvious fact that a change in basis vector induced by a coordinate
displacement is itself a vector that can be decomposed in terms of basis vectors.
Equation (94) provides a definition for the quantities Γ μαβ , which are known as

Christoffel symbols. Because ∂βeα = ∂2x/∂xα∂xβ = ∂αeβ , we have that

Γ
μ
βα = Γ μαβ ; (95)

the Christoffel symbols are symmetric in their lower indices.
With Eq. (94), our previous expression for ∂βA becomes ∂βA = (∇βAμ)eμ,

where
∇βAμ := ∂βAμ + Γ μαβAα (96)

is known as the covariant derivative of the vector components Aμ.
Differentiating the relation gαβ = eα ·eβ with respect to xγ , substituting Eq. (94)

and doing some further algebra, we can show that

Γ
μ
αβ = 1

2
gμν

(
∂αgνβ + ∂βgνα − ∂νgαβ

)
. (97)

The generalization of the covariant derivative to a tensor is:

∇βAμν = ∂βAμν + Γ μαβAαν + Γ ναβAμα . (98)

This rule can easily be extended to tensors with an arbitrary number of indices; there
is one Christoffel symbol per tensorial index.

Defining Aμ := gμνAν , we can “lower” indices on vectors and tensors; using the
inverse of the metric, identified as gμν , we can raise indices. Then we can show that

∇βAμ = ∂βAμ − Γ αμβAα , (99)

and furthermore that
∇γ gαβ = 0 . (100)

We now examine a timelike world line xα = rα(τ ) in a curved space-time, param-
eterized by proper time τ , the time measured by a clock moving on this world line.
The world line’s tangent vector is uα = drα/dτ , and this satisfies the normalization
condition

gαβu
αuβ = −c2 . (101)
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On this world line, let there exist a vector field A(τ ); we wish to evaluate the
derivative of this vector with respect to τ :

dA
dτ

=
(
dAμ

dτ
+ Γ μαβAαuβ

)
eμ . (102)

The quantity within brackets is the covariant derivative of the component Aμ along
the world line. We denote this

DAμ

dτ
:= dAμ

dτ
+ Γ μαβAαuβ , (103)

so that dA/dτ = (DAμ/dτ )eμ. When the vector field A is defined also in a neigh-
borhood of the world line (and not just directly on the world line), it becomes a
function of all the space-time coordinates xα (instead of just proper time τ ); then
dAμ/dτ = uβ∂βA

μ and the covariant derivative can be expressed as DAμ/dτ =
uβ∇βAμ.

The vector A is parallel-transported along the world line when it stays constant
in both direction and magnitude. The mathematical statement of this is dA/dτ = 0,
or

DAμ

dτ
= 0 (parallel transport). (104)

A timelike world line rα(τ ) is a geodesic of the curved space-time when its own
tangent vector u is parallel-transported along the world line. A geodesic, defined in
this way, is everywhere locally straight. The mathematical statement of the geodesic
equation is

Duμ

dτ
= 0 , (105)

or
duμ

dτ
+ Γ μαβuαuβ = 0 , (106)

or
d2rμ

dτ 2
+ Γ μαβ

drα

dτ

drβ

dτ
= 0 . (107)

This last form is a system of second-order differential equations for the functions
rμ(τ ). Given initial conditions rμ(0) and uμ(0) at some initial time τ = 0, these
equations admit a unique solution.

It is useful to note that the geodesic equation (107) can also be obtained on the
basis of a variational principle, in which the action functional is the elapsed proper
time

∫ 2
1 dτ along a parameterized curve rα(τ ) linking the fixed events 1 and 2. If

we write the particle action as

S = −mc2
∫ 2

1
dτ = −mc

∫ 2

1

√
−gαβ dr

α

dt

drβ

dt
dt , (108)

then its extremization with respect to world line variations returns the geodesic
equation.
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The symmetry of the Christoffel symbols in the lower indices implies that the
action of two covariant derivatives on a scalar field f is independent of their order:

∇α∇βf − ∇β∇αf = 0 . (109)

The same is not true, however, when the covariant derivatives act on a vector field
Aμ; in this case

∇α∇βAμ −∇β∇αAμ = RμναβAν , (110)

and the operations do not commute. This equation defines the Riemann curvature
tensor Rμναβ . A lengthy evaluation of the left-hand side of Eq. (110) shows that the
Riemann tensor is given explicitly by

Rαβγ δ = ∂γ Γ αβδ − ∂δΓ αβγ + Γ αμγ Γ μβδ − Γ αμδΓ μβγ . (111)

The Riemann tensor is evidently antisymmetric in its last two indices. It also pos-
sesses additional symmetries that are not immediately revealed by Eqs. (110) and
(111). The symmetries are

Rαβδγ = −Rαβγ δ ,
Rβαγ δ = −Rαβγ δ ,
Rμαβγ + Rμγαβ + Rμβγα = 0 . (112)

An additional symmetry,
Rγδαβ = +Rαβγ δ , (113)

is an immediate consequence of the preceding ones. By virtue of these symmetries,
the Riemann tensor possesses 20 independent components in a four-dimensional
space-time.

Another important set of identities satisfied by the Riemann tensor is

∇αRμνβγ +∇γ Rμναβ +∇βRμνγα = 0 . (114)

These are known as the Bianchi identities, and play a fundamental role in Einstein’s
general relativity.

The Riemann tensor is important as a measure of geodesic deviation. Given
a family of nearby geodesics parametrized by τ and a deviation vector ξ that
joins neighboring geodesics, one can show that the relative acceleration between
geodesics is given by

D2ξα

dτ 2
= −Rαβγ δuβξγ uδ . (115)

Other curvature tensors can be defined from the Riemann tensor. By contracting the
first and third indices of the Riemann tensor, we obtain the Ricci tensor

Rαβ := Rμαμβ . (116)
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The symmetries of the Riemann tensor imply that Rβα = Rαβ , and the Ricci tensor
possesses ten independent components. By contracting its indices, we obtain the
Ricci scalar

R := Rμμ = gαβRαβ . (117)

Closely related to the Ricci tensor is the Einstein tensor

Gαβ := Rαβ − 1

2
gαβR , (118)

which is also symmetric in its indices: Gβα = Gαβ . The Einstein tensor possesses
ten independent components, and its trace is given byG := gαβGαβ = −R, because
gαβgαβ = δαα = 4.

The Bianchi identities of Eq. (114) give rise to

∇βGαβ = 0 (119)

after two contractions of their indices. Equation (119) is known as the contracted
Bianchi identities.

3.2 Physics in Curved Spacetime

The physical laws of the standard model of particles and fields are normally formu-
lated in the Lorentz invariant language of special relativity. For example, Maxwell’s
equations have the form ∂βFαβ = μ0j

α
e , and ∂αFβγ + ∂γ Fαβ + ∂βFγα = 0, where

Fαβ is the antisymmetric field tensor, jαe is the electric current vector, and μ0 is the
permeability of vacuum. A freely moving neutral particle moves with unchanging
four-velocity, in other words duα/dτ = uβ∂βuα = 0.

Since all the fundamental laws of physics are derivable from an action, then, by
virtue of the Lorentz invariance of the matter action, the laws imply a conservation
statement for the energy-momentum tensor T αβ := −2(−η)−1/2δLM/δηαβ given
by ∂βT αβ = 0.

The Einstein equivalence principle tells us that these laws are now to be regarded
as being valid in a local freely falling frame, where the Minkowski metric ηαβ =
gαβ |P , is the transformed version of the space-time metric. To find the laws in a form
valid in any frame or coordinate system, one only has to transform back. As a result
of this transformation, ηαβ → gαβ , and ∂α → ∇α . Thus, in curved space-time, the
laws mentioned above take the form

Maxwell′s equations : ∇βFαβ = μ0j
α
e ,

∇αFβγ + ∇γ Fαβ + ∇βFγα = 0 ,(120a)

Geodesic equation : Duα/dτ = uβ∇βuα = 0 , (120b)

Energy − momentum conservation : ∇βT αβ = 0 , (120c)
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with T αβ := −2(−g)−1/2δLM/δgαβ .
For most astrophysical applications, we will be more interested in a phenomeno-

logical description of hydrodynamics than in the underlying fundamental laws. In
a manner similar to Newtonian theory, we define a perfect fluid with the proper
mass density ρ, proper density of internal (thermodynamic) energy ε, proper den-
sity of total energy μ = ρc2 + ε, and pressure p. The densities are all measured
in a freely falling frame that is momentarily comoving with a selected fluid ele-
ment; the four-velocity of this frame is denoted uα , and the mass current is
jα = ρuα . Transforming from the local inertial frame, we can show that the fluid’s
energy-momentum tensor T αβ , is given by

T αβ = (μ+ p)uαuβ/c2 + pgαβ . (121)

The statement of mass conservation now takes the form of

∇αjα = 1√−g ∂α
(√−gjα) = 0 . (122)

Substitution of jα = ρuα into Eq. (122) yields

dρ

dτ
+ ρ∇αuα = 0 . (123)

Since ∇αuα = V−1dV/dτ , this equation implies d(ρV)/dτ = 0 as expected.
Alternatively, Eq. (122) implies that

∂ρ∗

∂t
+∇ · (ρ∗v) = 0 , (124)

where
ρ∗ := ρ√−gu0 (125)

is sometimes called the conserved density. Because it satisfies a continuity equation
exactly parallel to Eq. (4), the results gathered in Eqs. (11)–(14) now apply to the
analogous integrals using ρ∗.

Substitution of Eq. (121) into Eq. (120c) produces

dμ

dτ
+ (μ+ p)∇βuβ = 0 (126)

and

(μ+ p)
Duα

dτ
+ c2(gαβ + uαuβ/c2)∇βp = 0 . (127)

The first equation gives rise to

ρ
dε

dτ
− (ε + p)

dρ

dτ
= 0 , (128)

which can be easily seen to be equivalent to the local first law of thermodynamics
d(εV)+pdV = 0. The second equation is the curved-space-time version of Euler’s
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equation. In the first term, we recognizeDuα/dτ = uβ∇βuα as the covariant accel-
eration of a selected fluid element, which would be zero if the fluid element were
moving on a geodesic of the curved space-time. This, however, is prevented by the
pressure forces acting within the fluid; the fluid element is not moving freely in the
gravitational field.

3.3 Einstein Field Equations

The Einstein field equations relate the curvature of space-time to the distribution of
matter within space-time. They read

Gαβ = 8πG

c4
T αβ, (129)

with the Einstein curvature tensor of Eq. (118) on the left-hand side, and the total
energy-momentum tensor of all forms of matter and non-gravitational fields on the
right-hand side. Taking into account the symmetries of the Einstein and energy-
momentum tensors, the Einstein field equations are a set of ten second-order, partial
differential equations for the metric tensor gαβ . The equations are all coupled, and
they are highly nonlinear in the metric and its first derivatives; they are, however,
linear in the second derivatives of the metric tensor.

A naive counting of the number of equations might suggest that given suitable
initial and boundary conditions for the metric, the solution to the Einstein field equa-
tions should be unique. This suggestion, however, is false, as the freedom to perform
coordinate transformations must be retained; two metrics gαβ and g′μν related to
each other by a coordinate transformation should both be valid solutions to the field
equations. This freedom is guaranteed by the contracted Bianchi identities,

∇βGαβ = 0 , (130)

which reveal that of the ten field equations, only six are truly independent from each
other. The Bianchi identities, together with the field equations, are compatible with
the local statement of energy-momentum conservation

∇βT αβ = 0 . (131)

The equations of general relativity can be derived from an action principle. The total
action S involves a gravitational piece given by the Hilbert action

Sgrav = c3

16πG

∫
R dV, (132)

where R is the Ricci scalar and dV = √−g d4x is the invariant volume element, as
well as a matter piece given by

SM =
∫

LM dV, (133)
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where LM is the Lagrangian density for all the matter (and field) variables. The
Einstein tensor results from the functional variation of the gravitational action:

δSgrav

δgαβ
= − c3

16πG
Gαβ . (134)

The energy-momentum tensor, on the other hand, is defined by

δSM

δgαβ
= 1

2c
T αβ . (135)

The Einstein field equations then follow from the requirement that δ(Sgrav+SM ) = 0
under an arbitrary variation of the metric tensor.

4 Post-Minkowskian and Post-Newtonian Theory

In this section, we specialize the formalism of general relativity to a description of
weak gravitational fields, such as those inside and near the Sun, those inside and near
white dwarfs, and those near (but not too near) neutron stars or black holes. This
approximation should, of course, reproduce the predictions of Newtonian theory,
but we wish to go beyond this and formulate a method of approximation that can be
pushed systematically to higher and higher order and generate increasingly accurate
descriptions of a weak gravitational field. The foundation for this approach is “post-
Minkowskian theory.”

4.1 Landau–Lifshitz Formulation of the Field Equations

The post-Minkowskian approach is based on the Landau and Lifshitz formulation of
the Einstein equations. In this framework, the main variables are not the components
of the metric tensor gαβ , but those of the “gothic inverse metric density”

gαβ := √−ggαβ, (136)

where gαβ is the inverse metric and g the metric determinant. Knowledge of the
gothic metric is sufficient to determine the metric itself: note first that det[gαβ ] = g,
so that g can be directly obtained from the gothic metric; then Eq. (136) gives gαβ ,
which can be inverted to give gαβ .

In the Landau–Lifshitz formulation, the left-hand side of the field equations is
built from

Hαμβν := gαβgμν − gανgβμ. (137)



40 C. M. Will

This tensor density is readily seen to possess the same symmetries as the Riemann
tensor,

Hμαβν = −Hαμβν, Hαμνβ = −Hαμβν, Hβναμ = Hαμβν . (138)

It turns out that Hμαβν satisfies the remarkable identity

∂μνH
αμβν = (−g)

(
2Gαβ + 16πG

c4
t
αβ
LL

)
, (139)

where Gαβ is the Einstein tensor, and

(−g)tαβLL := c4

16πG

{
∂λg

αβ∂μg
λμ − ∂λgαλ∂μgβμ + 1

2
gαβgλμ∂ρg

λν∂νg
μρ

− gαλgμν∂ρgβν∂λgμρ − gβλgμν∂ρgαν∂λgμρ + gλμgνρ∂νgαλ∂ρgβμ

+ 1

8

(
2gαλgβμ − gαβgλμ)(2gνρgστ − gρσ gντ )∂λgντ ∂μgρσ

}
(140)

is the Landau–Lifshitz pseudotensor, which (very loosely speaking) represents the
distribution of gravitational-field energy. It is called a pseudotensor because it con-
tains ordinary derivatives of the metric, and does not by itself transform as a tensor
under general coordinate transformations. The full Eq. (139), of course, is generally
covariant, although it is not written in a manifestly covariant form. Equation (139)
is valid for any space-time.

We now impose Einstein’s equations, Gαβ = 8πGT αβ/c4, to obtain

∂μνH
αμβν = 16πG

c4
(−g)

(
T αβ + tαβLL

)
, (141)

which is therefore equivalent to Einstein’s equations, combining as it does Einstein’s
equations and an identity.

By virtue of the antisymmetry of Hαμβν in the last pair of indices, we have that
the equation

∂βμνH
αμβν = 0 (142)

holds as a trivial identity. This, together with Eq. (141), implies that

∂β

[
(−g)

(
T αβ + tαβLL

)] = 0 . (143)

These are conservation equations for the total energy-momentum pseudotensor
(which includes a contribution from the matter and another contribution from
the gravitational field), expressed in terms of a partial-derivative operator. These
equations are strictly equivalent to the usual expression of energy-momentum con-
servation, ∇βT αβ = 0, which involves only the matter’s energy-momentum tensor
and a covariant-derivative operator.

This is an exact reformulation of the standard form of the theory. No approxima-
tions are involved, and no restrictions are placed on the choice of coordinates. It has
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to be acknowledged, however, that the usefulness of the formalism is largely limited
to situations in which (i) the coordinates xα = (ct, xj ) are modest deformations of
the Lorentzian coordinates of flat space-time, and (ii) gαβ deviates only moderately
from the Minkowski metric ηαβ .

Because they involve a partial-derivative operator, the differential identities of
Eq. (143) can immediately be turned into integral identities. We consider a three-
dimensional region V , a fixed (time-independent) domain of the spatial coordinates
xj , bounded by a two-dimensional surface S. We assume that V contains at least
some of the matter (so that T αβ is nonzero somewhere within V ), but that S does
not intersect any of the matter (so that T αβ = 0 everywhere on S).

We formally define a total momentum four-vector Pα[V ] associated with the
region V by the three-dimensional integral

Pα[V ] := 1

c

∫
V

(−g)
(
T α0 + tα0

LL

)
d3x . (144)

This total momentum includes a contribution from the matter’s momentum density
c−1T α0, and a contribution from the gravitational field represented by c−1tα0

LL.
The momentum four-vector can be broken down into a time component P 0[V ]

and a spatial three-vector P j [V ]. The time component can be used to define an
energy E[V ] := cP 0[V ] associated with the region V ,

E[V ] :=
∫
V

(−g)
(
T 00 + t00

LL

)
d3x , (145)

and a corresponding massM[V ] := E[V ]/c2. The three-momentum is given by

P j [V ] := 1

c

∫
V

(−g)
(
T j0 + tj0

LL

)
d3x . (146)

The total angular-momentum four-tensor Jαβ [V ] is defined by

Jαβ [V ] := 1

c

∫
V

[
xα (−g)

(
T β0 + tβ0

LL

)− xβ (−g)
(
T α0 + tα0

LL

)]
d3x, (147)

:= 2

c

∫
V

x[α (−g)
(
T β]0 + tβ]0

LL

)
d3x , (148)

and we note that this tensor is antisymmetric in its indices. The interpretation of
Jαβ [V ] is easier to extract once it is decomposed into time and spatial compo-
nents. The antisymmetry of the tensor implies that J 00[V ] = 0. The time-space
components can be expressed in the form

c−1J 0j [V ] = P j [V ]t −M[V ]Rj [V ], (149)

where

Rj [V ] := 1

M[V ]c2

∫
V

(−g)
(
T 00 + t00

LL

)
xj d3x (150)
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represents the position of the center-of-mass of the region V . Equation (149) reveals
that, if c−1J 0j [V ] is constant, it fixes the location of the center-of-mass at t = 0.
The spatial components of the angular-momentum tensor are

J jk[V ] = 1

c

∫
V

[
xj (−g)

(
T k0 + tk0LL

)− xk (−g)
(
T j0 + tj0

LL

)]
d3x, (151)

and this is best recognized in its equivalent angular-momentum vectorial form as

Jj [V ] := 1

2
εjpqJ

pq [V ] = 1

c

∫
V

εjpqx
p (−g)

(
T qo + tq0

LL

)
d3x , (152)

where εjpq is the completely antisymmetric permutation symbol.
To obtain the conservation statements satisfied by Pα[V ], we differentiate its

defining expression with respect to x0 and use the local conservation identity of
Eq. (143). Starting with Eq. (144), we get

d

dx0
Pα[V ] = 1

c

∫
V

∂0

[
(−g)

(
T α0+tα0

LL

)]
d3x = −1

c

∫
V

∂k

[
(−g)

(
T αk+tαkLL

)]
d3x .

Converting this to a surface integral, and recalling our previous assumption that S
does not intersect the matter distribution, so that T αβ = 0 on S, we arrive at

Ṗ α[V ] = −
∮
S

(−g)tαkLL dSk , (153)

in which an overdot indicates differentiation with respect to t := x0/c. The rate
of change of Pα[V ] is therefore expressed as a flux integral over S, and the flux is
measured by the Landau–Lifshitz pseudotensor.

Equation (153) gives rise to the individual statement about the total energy,

Ė[V ] = −c
∮
S

(−g)t0kLL dSk . (154)

Similar conservation statements can be derived for linear momentum, angular
momentum, and the center-of-mass.

In the limit in which V is taken to include all of three-dimensional space,
Pα[V ] is known to coincide with the Arnowitt–Deser–Misner four-momentum of an
asymptotically flat space-time, and its physical interpretation as a measure of total
momentum is robust. This statement is true whenever the coordinates xα coincide
with a Lorentzian system at infinity; the coordinates do not have to be Lorentzian
(and indeed, they could not be) at finite spatial distances.

4.2 The Relaxed Einstein Equations

It is advantageous at this stage to impose the four conditions

∂βg
αβ = 0 (155)
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on the gothic inverse metric. These are known as the harmonic coordinate condi-
tions. It is also useful to introduce the potentials

hαβ := ηαβ − gαβ , (156)

where ηαβ := diag(−1, 1, 1, 1) is the Minkowski metric expressed in Lorentzian
coordinates. In terms of these potentials, the harmonic coordinate conditions read

∂βh
αβ = 0 , (157)

and in this context they are usually referred to as the harmonic gauge conditions.
The introduction of the potentials hαβ and the imposition of the harmonic gauge

conditions simplify the appearance of the Einstein field equations. It is easy to verify
that the left-hand side becomes

∂μνH
αμβν = −�hαβ + hμν∂μνhαβ − ∂μhαν∂νhβμ , (158)

where � := ημν∂μν is the flat-space-time wave operator. Isolating the wave operator
on the left-hand side, and putting everything else on the right-hand side gives us the
formal wave equation

�hαβ = −16πG

c4
ταβ (159)

for the potentials hαβ , where

ταβ := (−g)
(
T αβ [m, g] + tαβLL[h] + tαβH [h]

)
(160)

is the effective energy-momentum pseudotensor for the wave equation. We have
introduced

(−g)tαβH := c4

16πG

(
∂μh

αν∂νh
βμ − hμν∂μνhαβ

)
(161)

as an additional (harmonic-gauge) contribution to the effective energy-momentum
pseudotensor. The harmonic conditions slightly simplify the form of the Landau–
Lifshitz pseudotensor, as can be seen from Eq. (140).

In our expression for ταβ , we have indicated that the matter’s energy-momentum
tensor T αβ is a functional of matter variables m, in addition to being a functional
of the metric tensor gαβ (which is obtained from the gravitational potentials). As
an example, when the matter consists of a number of isolated fluid bodies, m
collectively denotes fluid variables such as the mass density ρ, pressure p, and
velocity field uα . We have also indicated that the Landau–Lifshitz and harmonic
pseudotensors are functionals of hαβ .

The imposition of the gauge conditions (157) is equivalent to imposing the
conservation equations

∂βτ
αβ = 0 . (162)

It is easy to verify that (−g)tαβH is separately conserved, in that it satisfies the

equation ∂β [(−g)tαβH ] = 0 automatically.
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The wave equation of Eq. (159) is the main starting point of post-Minkowskian
theory. It is worth emphasizing the fact that this equation, together with Eq. (157)
or (162) are an exact formulation of the Einstein field equations; no approximations
have been introduced at this stage.

For a metric gαβ to satisfy the complete set of Einstein field equations, it is
necessary for the potentials hαβ to satisfy both the wave equation and the gauge
condition/conservation statement; it is the union of Eqs. (159) and (157) or (162)
that is equivalent to the original form of the Einstein field equations, Gαβ =
(8πG/c4)T αβ . The two sets of equations play different roles, however. The wave
equation (159) determines the gravitational potentials hαβ [m] (and therefore the
metric) as functions of the harmonic coordinates xα , in terms of the matter vari-
ables m; these, however, remain undetermined until we also invoke the conservation
Eq. (162). It is this equation that determines the behavior of the matter variables in
a curved space-time whose metric is extracted from hαβ [m]. Solving both sets of
equations amounts to integrating the full set of Einstein field equations, and this
procedure simultaneously determines the metric and the matter variables.

One is entirely free to solve the wave equation (159) without also enforcing
the gauge condition of Eq. (157) or the conservation statement of Eq. (162). Solv-
ing the wave equation independently of the gauge condition/conservation statement
amounts to integrating only a subset of the Einstein field equations, and the out-
come of this procedure is ten gravitational potentials hαβ [m] that are expressed as
functionals of undetermined matter variables m. The metric obtained from these
potentials is also a functional of m, and it is not yet a solution to the Einstein
field equations; it becomes a solution only when the gauge condition/conservation
statement is imposed as an additional condition on the matter variables. The wave
equation (Eq. (159)), taken by itself independently of Eq. (157), is known as the
relaxed Einstein field equation.

4.3 Solution of the Wave Equation

The wave equation (159) admits the immediate formal solution

hαβ (t, x) = 4G

c4

∫
ταβ (t − |x − x′|/c, x′)

|x − x′| d3x′. (163)

This is the retarded solution to the wave equation, and the domain of integration
extends over C(x), the past light cone of the field point x = (ct, x) (see Fig. 2).

To evaluate the integral, we partition the integration domain into two pieces, the
near-zone domain N (x) and the wave-zone domain W(x). We place the boundary of
the near/wave zones at an arbitrarily selected radius R, with R imagined to be of the
same order of magnitude as λc ∼ c tc, the characteristic wavelength of the radiation
emitted by the source, where tc is the characteristic time scale for noticeable changes
to occur within the source. For slowly moving sources, λc ∼ crc/vc � rc, where rc
and vc are the characteristic size and internal velocity of the material source.



Gravity: Newtonian, Post-Newtonian, and General Relativistic 45

Fig. 2 Integration domains
for the retarded solution of the
wave equation

Thus, the near zone is the region of three-dimensional space in which r := |x|
is small compared with a characteristic wavelength λc, while the wave zone is the
region in which r is large compared with this length scale. The potential behaves
very differently in the two zones: in the near zone, the difference between t − r/c
and t is small (the field retardation is unimportant), and derivatives with respect
to x0 = ct are small compared with spatial derivatives; in the wave zone, the
difference between t − r/c and t is large, and x0-derivatives are comparable to
spatial derivatives. These properties are shared by all generic solutions to the wave
equation.

In space-time, this sphere of radius R traces a near-zone world tube, D. We let
N (x) be the intersection between C(x) and the near zone D, formally defined as the
spatial region such that r ′ := |x′| < R. Similarly, we let W(x) be the intersection
between C(x) and the wave zone, formally defined as the spatial region such that
r ′ > R, or C(x) −N (x). We write Eq. (163) as

hαβ (x) = hαβN (x) + hαβW (x) . (164)

In electromagnetism, there is generally no contribution from the wave zone integra-
tion, because the source—the charges and currents—are confined to the near zone.
But because of the nonlinearity of gravity, gravity itself acts as a source, so that, even
though T αβ may be confined to the near zone, tαβLL and tαβH are not. Special integra-
tion techniques must be used to carry out the integrals over W , but for most physical
systems of interest, the wave-zone integrals generate higher-order corrections to the
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Fig. 3 Near-zone integration,
far-zone field point

dominant terms, which come from the near-zone integrals. In this chapter, we will
henceforth concern ourselves only with calculating hαβN (x).

We first evaluate hαβN (x) when the field point x is situated in the wave zone, that
is, when r � R. Knowing that x′ lies within the near zone, we treat it as a small
vector, and we Taylor-expand the variable |x − x′| in hαβN (x) about x′ = 0, with the
result

h
αβ

N (t, x) = 4G

c4

∞∑
�=0

(−1)�

�! ∂L

[
1

r

∫
M
ταβ (τ, x′)x′L d3x′

]
, (165)

where
τ := t − r/c (166)

is a retarded-time variable. Notice that the temporal dependence of the source func-
tion no longer involves x′, the variable of integration. The integration domain has
therefore become a surface of constant time (the constant being equal to τ = t−r/c)
bounded externally by the sphere r ′ = R. This domain is denoted by M in
Eq. (165), and is illustrated in Fig. 3. The partial derivatives ∂L operate both on
1/r and on the r embedded in τ .

Equation (165) is valid everywhere within the wave zone. It simplifies when
r → ∞, that is, when hαβN is evaluated in the far-away wave zone. In this limit, we

retain only the dominant, r−1 term in hαβN , and we approximate Eq. (165) by

h
αβ

N = 4G

rc4

∞∑
�=0

(−1)�

�!
∫
M
∂Lτ

αβ (τ, x′)x′L d3x′ +O(r−2) . (167)

The dependence of ταβ on xj is contained in τ = t − r/c, so, using the fact for
any function f (τ ) that ∂jf = −c−1∂j r(df/dτ ) = −c−1nj (df/dτ ), we find that
Eq. (167) becomes

h
αβ

N (t, x) = 4G

rc4

∞∑
�=0

1

�!c� nL
(
d

dτ

)� ∫
M
ταβ (τ, x′)x′L d3x′ +O(r−2) . (168)
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This is a multipole expansion for the potential hαβN , in which each �-pole moment∫
M ταβxL d3x is differentiated �-times with respect to τ . Notice that nLx′L =
nj1nj2 · · · nj�x′j1x′j2 · · · x′j� = (n · x′)�.

We next evaluate hαβN (x) when x is situated in the near zone, that is, when r =
|x| < R. In this situation, both x and x′ lie within the near zone, and |x − x′| can
be treated as a small quantity. To evaluate the integral, we simply Taylor-expand the
time-dependence of the source with the result

h
αβ

N (t, x) = 4G

c4

∞∑
�=0

(−1)�

�!c�
(
∂

∂t

)� ∫
M
ταβ (t, x′)|x − x′|�−1 d3x′, (169)

which is valid everywhere within the near zone. Notice that once more, the domain
of integration is M, a surface of constant time bounded externally by the sphere
r ′ = R, but here evaluated at the unretarded time t .

4.4 Iteration of the Relaxed Field Equations

We have cast the solution of the wave equation(Eq. (159)) as a retarded integral,
but we really cannot call it a “solution”, because hαβ appears inside the integral. In
order to construct solutions for a particular choice of matter variables, we proceed
by successive approximations, or iterations.

In the zeroth iteration of the relaxed field equations, we set hαβ0 = 0 and imme-
diately get g0

αβ = ηαβ , the metric of Minkowski space-time. From this, we construct

T αβ [m, g] = T αβ [m, η], tαβLL[h] = tαβLL[h0] = 0, and tαβH [h] = tαβH [h0] = 0. From

all this, we obtain ταβ0 = T αβ [m, η]; this is the energy-momentum tensor of the
matter variables m, and in the zeroth iteration these live in Minkowski space-time.

In the first iteration of the relaxed field equations, we solve the wave equation
�hαβ = −(16πG/c4)ταβ0 for hαβ1 . Because the source ταβ0 is known from the zeroth
iteration, the wave equation can be integrated without difficulty (at least in prin-
ciple), and this returns the potentials hαβ1 as functionals of the matter variables
m, which are yet to be determined. From the potentials, we form the metric g1

αβ

and construct ταβ1 , an improved version of the effective energy-momentum pseu-
dotensor. This involves the material contribution T αβ [m, g1], as well as the field
contributions tαβLL[h1] and tαβH [h1].

In the second iteration of the relaxed field equations, we solve the wave equation
�hαβ = −(16πG/c4)ταβ1 for hαβ2 , an improved version of the gravitational poten-

tials. Because the source ταβ1 is known from the first iteration, the wave equation can

once more be integrated, and hαβ2 are again functionals of the undetermined matter

variables m. From the new potentials, we form the metric g2
αβ and construct ταβ2 , the

latest version of the effective energy-momentum pseudotensor. The stage is ready
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for the next iteration. One continues iterating until the desired precision is reached
for determining the equations of motion for the matter and the resulting space-time
metric.

5 Post-Newtonian Theory

Post-Newtonian theory can be considered as a special case of post-Minkowski the-
ory in which one (a) imposes a slow-motion condition on top of the weak-field
condition and (b) focusses on the near zone. Because the main physical applications
of interest will be gravitationally self-interacting systems, such as binary systems,
we know from Newton’s equations that U ∼ v2, and from the equations of structure
that p/ρ ∼ U . In units of c2, these are all small quantities for weak fields, and thus
we assign a dimensionless parameter ε to characterize this smallness, so that

ε ∼ U

c2
∼ v2

c2
∼ p

ρc2
. (170)

In addition, since, in the near zone, quantities vary by virtue of their motion, one
can also argue that a partial time derivative ∂/∂t is of order v compared to a spatial
gradient, and thus that ∂/∂x0 ∼ (v/c)∇, or

∂/∂x0

∂/∂xj
∼ ε1/2 . (171)

This approximation modifies to a certain extent how one treats the different iter-
ations of the relaxed Einstein equations. For example, in the first iteration, with
τ 00 = T 00[m, η], we find

h00
1 = 4G

c4

∫
T 00[m, η]

|x − x′| d
3x′ . (172)

But the special-relativistic T 00 ∼ ρc2[1 + O(v/c)2], and hence h00
1 has the

schematic form

h00
1 ∼ 4U/c2 +O(v2U/c4) ∼ ε + ε2 . (173)

At the second iteration, contributions of hαβ1 to τ 00 will induce contributions of order

h00
2 ∼ 4G

c4

∫
T 00[m, η]h00

1

|x − x′| d3x′ ∼ G2

c4

(m
r

)2 ∼ U2

c4
∼ ε2 , (174)

which are of the same order as the O(v/c)2 corrections to the first iteration. Thus,
to obtain the metric to the first post-Newtonian order, one must iterate the relaxed
equations twice, as well as retain suitable (v/c)2 correction terms. We will make the
requirements more explicit shortly.
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5.1 General Structure of the Fields

It is instructive to examine the general structure of the fields hαβN in the near zone.
The first few terms in the expansion look like

h
αβ

N (t, x) = 4G

c4

[∫
M
ταβ (t, x′)
|x − x′| d

3x′ − 1

c

∂

∂t

∫
M
ταβ (t, x′) d3x′

+ 1

2c2

∂2

∂t2

∫
M
ταβ (t, x′)|x − x′| d3x′ − . . .

]
. (175)

Taking into account the conservation equation ∂βταβ = 0, we can convert cer-
tain terms into surface integrals that either vanish in the absence of gravitational
radiation, or that can be shown to contribute very small, higher-order corrections.
To simplify the notation somewhat, it is useful to define N := h00, Ki := h0i ,
Bij := hij , and B := δij hij . Then

NN = 4G

c2

[∫
M
c−2τ 00(t, x′)

|x − x′| d3x′ + 1

2c2

∂2

∂t2

∫
M
c−2τ 00(t, x′)|x − x′|d3x′

− 1

6c3

(3)

Ikk(t) + 1

24c4

∂4

∂t4

∫
M
c−2τ 00(t, x′)|x − x′|3d3x′

− 1

120c5

{
(4xkl + 2r2δkl)

(5)

Ikl(t) −4xk
(5)

Ikll(t) +
(5)

Ikkll(t)
}

+h00
∂M +O(c−6)

]
, (176a)

KiN = 4G

c3

[∫
M
c−1τ 0i(t, x′)
|x − x′| d3x′ + 1

2c2

∂2

∂t2

∫
M
c−1τ 0i(t, x′)|x − x′|d3x′

+ 1

18c3

{
3xk

(4)

I ik(t) −
(4)

I ikk(t) +2εmik
(3)

J mk(t)
}

+h0i
∂M +O(c−4)

]
, (176b)

B
ij

N = 4G

c4

[∫
M
τ ij (t, x′)
|x − x′| d

3x′ − 1

2c

(3)

I ij (t) + 1

2c2

∂2

∂t2

∫
M
τ ij (t, x′)|x − x′|d3x′

− 1

36c3

{
3r2

(5)

I ij (t) −2xk
(5)

I ijk(t) −8xkεmk(i
(4)

J m|j )(t) +6
(3)

Mijkk(t)

}

+hij
∂M +O(c−4)

]
, (176c)
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where

IQ ≡
∫
M
c−2τ 00xQd3x , (177a)

J iQ ≡ εiab
∫
M
c−1τ 0bxaQd3x , (177b)

MijQ ≡
∫
M
τ ij xQd3x , (177c)

and where hαβ
∂M denote the surface terms, which will not be displayed here. The

notation (n) over quantities such as Ijk denotes the number of time derivatives. In
obtaining these forms, we have made good use of a number of identities that follow
from the conservation statement ∂βταβ = 0, namely,

τ 0j = ∂0
(
τ 00xj

)+ ∂k(τ 0kxj
)
, (178a)

τ jk = 1

2
∂00

(
τ 00xjxk

)+ 1

2
∂p
(
τ jpxk + τ kpxj − ∂qτpqxj xk

)
, (178b)

τ jkxn = 1

2
∂0
(
τ 0j xkxn + τ 0kxj xn − τ 0nxj xk

)

+1

2
∂p
(
τ jpxkxn + τ kpxjxn − τnpxjxk) . (178c)

The first term in N clearly leads off with the Newtonian potential/c2, of order ε.
Embedded within that term are corrections of order ε and higher, both from (v/c)2

corrections and from contributions from higher iterations of the relaxed equations.
The second term in N is known as a superpotential; because of the two time deriva-
tives, it clearly leads off at order (v/c)2 compared to the Newtonian term, and is
thus already a post-Newtonian correction (and higher). (The superpotential itself
is of order mc2r , but since ∂/∂t ∼ v/r , the result is of order (v/c)2 compared to
the first term.) Notice that there was no term involving a single time derivative. By
virtue of the fact that ∂0τ

00 = −∂kτ 0k , that term in fact is converted purely to a
surface term within h00

∂M, and contributes only at a very high post-Newtonian order
via a flux of gravitational radiation.

The third term in N contains three time derivatives, and one might be tempted
to give it the name of a (post)3/2-Newtonian correction. However, it can be shown
that, because this term depends only on time, it can always be absorbed to lowest
order into a redefinition of time, and hence removed by a coordinate transformation.
Alternatively, since the leading contribution of N to the equations of motion arises
from a gradient, this term will make no contribution to leading order.

The fourth term is called a superduperpotential term, and because of the four
time derivatives, contributes at second post-Newtonian (2PN) order and higher.

The fifth term looks schematically like mc2(∂/∂ct)5r4 ∼ c2(v/c)5(m/r) ∼ ε5×
Term 1. This a 2.5PN correction, and represents the leading effects of gravitational
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radiation reaction. Because it involves an odd number of time derivatives, it is asym-
metric under the transformation t → −t ; as such, it represents the effects of an
irreversible, dissipative process, the loss of energy into gravitational waves.

The other field components have a similar structure:Ki leads at order ε3/2, while
Bij and B lead at order ε2.

We now need to establish the order in ε to which each of these components must
be calculated to reach a desired post-Newtonian order. To do this, we return to the
expression for the action for a test particle moving in the space-time of a metric gαβ ,
Eq. (108), and express it in terms of separated time and space components, namely

S = −mc2
∫ 2

1

√
−g00 − 2g0j

vj

c
− gij v

j vk

c2
dt . (179)

Newtonian gravity is clearly given by the approximations g00 ≈ −1+2U/c2, g0i ≈
0, and gij ≈ δij , in other words, by evaluating the action to order ε. Post-Newtonian
gravity is then given by evaluating the action to order ε2, which requires evaluating
the metric coefficients to the following orders of approximation:

g00 to O(ε2) ,

g0i to O(ε3/2) ,

gij to O(ε) . (180)

The orders needed to descend because of the additional factors of v/c in the action.
From this, we can generalize to the requirement that to work to nPN order, we must
determine the metric components to the orders

g00 to O(εn+1) ,

g0i to O(εn+
1
2 ) ,

gij to O(εn) . (181)

To determine the order to which we must then determine the components of the
field, we must expand in powers of ε the relation between the physical metric gαβ

and the fields using Eq. (136), The result is

g00 = −(1 − 1

2
N + 3

8
N2 − 5

16
N3) + 1

2
B(1 − 1

2
N ) + 1

2
KjKj

+O(ε4) , (182a)

g0i = −Ki(1 − 1

2
N ) +O(ε7/2) , (182b)

gij = δij (1 + 1

2
N − 1

8
N2) + Bij − 1

2
Bδij +O(ε3) , (182c)

(−g) = 1 +N − B +O(ε3) . (182d)

This expansion is sufficient to determine the metric through 2.5PN order.
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5.2 The Post-Newtonian Limit of General Relativity

To illustrate the use of the post-Minkowskian framework, we will derive the post-
Newtonian limit of general relativity. In going to post-Newtonian order, we wish to
express the density in terms of ρ∗ instead of ρ, because the former density satisfies
a continuity equation to all orders. This makes a number of calculations simpler.

The Newtonian limit is trivial: inserting the zeroth iteration of the relaxed equa-
tions, hαβ0 = 0 in the source terms, it is clear that τ 00

0 = ρ∗c2, and thus that the first
iteration of the equations yields N1 = 4U/c2, and g00 = −1+ 2U/c2, g0i = 0, and
gij = δij , where U is the “Newtonian” potential derived from ∇2U = −4πGρ∗.
From the first iteration, we also obtain expressions for Ki and Bij , but these are not
needed for the Newtonian limit of gαβ ; we will return to these shortly. Notice that
in determining N , we also get the bonus that gij = δij (1 + 2U/c2); this also is not
needed for the Newtonian limit, but will be needed in order to obtain (−g) for the
next iteration.

Using the definition (125), together with the approximations u0/c ≈ 1+v2/2c2+
U/c2, and −g ≈ 1 + 4U/c2 we find to the order needed for the next iteration that

ρ∗ = ρ
(

1 + v2

2c2
+ 3U

c2

)
. (183)

Substituting these results into Eq. (121), and carefully evaluating the contributions
of tαβLL and tαβH needed to this order, we obtain the first iterated version of ταβ , given
to the required post-Newtonian order by

τ 00
1 = ρ∗c2

(
1 + v2

2c2
+ 3U

c2
+ Π
c2

)
− 7

8πG
∇U · ∇U , (184a)

τ 0i
1 = ρ∗cvi , (184b)

τ ii1 = ρ∗v2 + 3p − 1

8πG
∇U · ∇U , (184c)

where Π := ε/ρ∗ is the internal energy per unit mass within the fluid.
Recalling the identity

∇U · ∇U = 1

2
∇2U2 + 4πGρ∗U , (185)

we substitute Eqs. (184) into (176) and keep all contributions needed for the metric
through 1.5PN order. The result is

N2 = 4U

c2
+ 1

c4

(
7U2 + 2Φ1 − 2Φ2 + 4Φ3 + 2Ẍ

)

− 2G

3c5

(3)

Ikk(t) +O(ε3) , (186a)

Ki2 = 4Ui

c3
+O(ε5/2) , (186b)
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B2 = 1

c4

(
U2 + 4Φ1 − 2Φ2 + 12Φ4

)
− 2G

c5

(3)

Ikk(t) +O(ε3) , (186c)

where we define the auxiliary gravitational potentials

Ui := G
∫
ρ∗(t, x′)vi(t, x′)

|x − x′| d3x′ ,

Φ1 := G
∫
ρ∗(t, x′)v′2

|x − x′| d
3x′ ,

Φ2 := G
∫
ρ∗(t, x′)U (t, x′)

|x − x′| d3x′ ,

Φ3 := G
∫
ρ∗(t, x′)Π (t, x′)

|x − x′| d3x′ ,

Φ4 := G
∫
p(t, x′)
|x − x′|d

3x′ ,

X := G
∫
ρ∗(t, x′)|x − x′|d3x′ . (187)

Substituting these results into Eq. (182), we obtain finally the metric for general
relativity through 1.5PN order,

g00 = −1 + 2

c2
U + 2

c4

(
Ψ − U2

)
− 4G

3c5

(3)

Ikk(t) +O(ε3) , (188a)

g0i = − 4

c3
Ui +O(ε5/2) , (188b)

gij = δij
(

1 + 2

c2
U

)
+O(ε2) , (188c)

where

Ψ = 3

2
Φ1 −Φ2 +Φ3 + 3Φ4 + 1

2
Ẍ . (189)

By making a coordinate transformation

t = t ′ − 2G

3c5
Ïkk(t) , (190)

we can eliminate the O(G/c5) term from g00 to lowest order, indicating that the
term is purely a gauge or coordinate artifact. The leading nontrivial odd-order terms
in g00 will occur at O(ε7/2), corresponding to 2.5PN order.

Calculating the Christoffel symbols from the metric (188), inserting them into
the energy-momentum conservation equation ∇βT αβ = 0, one obtains the post-
Newtonian Euler equation of hydrodynamics,

ρ∗ dv
j

dt
= ρ∗∂jU − ∂jp
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+ 1

c2

[(
1

2
v2 + U +Π + p

ρ∗

)
∂jp − vj ∂tp

]

+ 1

c2
ρ∗
[
(v2 − 4U )∂jU − vj (3∂tU + 4vk∂kU

)

+ 4∂tUj + 4vk
(
∂kUj − ∂jUk

)+ ∂jΨ
]

+O(c−4). (191)

The post-Newtonian Euler equation, together with an equation of state p(ρ) can be
solved consistently, leading to a solution for the space-time metric, valid to post-
Newtonian order.

5.3 Non-Newtonian Behavior: Worked Examples

Using the post-Newtonian metric derived above, we can work out some important
examples of the effects of relativistic gravity. For simplicity, we will specialize to
a single, spherically symmetric body of mass M at rest in our chosen coordinate
system. This is a good approximation for studying the motion of a planet or a ray of
light in the solar system. In this case, the metric of Eq. (188) reduces to

g00 = −1 + 2
GM

c2r
− 2

(
GM

c2r

)2

, (192a)

g0i = 0 , (192b)

gij = δij
(

1 + 2
GM

c2r

)
, (192c)

where

M :=
∫
ρ∗

[
1 + 1

c2

(
3

2
v2 − U +Π + 3

p

ρ∗

)]
d3x

= m+ 1

c2
[3T + 2Ω + Eint + 3P ]

= m+ 1

c2
[T +Ω + Eint] , (193)

where m = ∫
ρ∗d3x is the total conserved or baryonic mass of the body, and T ,

Ω and Eint are the internal kinetic, gravitational, and thermal energy of the body,
defined as in Eq. (18) (but using ρ∗ instead of the Newtonian ρ). We have used the
Newtonian virial theorem (17b) in the static limit to simplify the post-Newtonian
corrections to the mass. Note that the final answer, not surprisingly, is the total of
rest mass and the mass equivalent of the internal energies.

The geodesic equation (107) can be rewritten using coordinate time as the param-
eter; this is a useful step because the motion of planets or light is normally referred
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to an external “time” coordinate, such as atomic time measured on Earth, not proper
time along the particle’s world line. The result is

d2ri

dt2
+
(
Γ iαβ − Γ 0

αβ

vi

c

)
vαvβ = 0 , (194)

where vα := (c, vi). Evaluating the Christoffel symbols to post-Newtonian order
using Eq. (192), we obtain the equation of motion for a test body

d2r
dt2

= −GM
r2

n + GM
c2r2

{
n
[

4
GM

r
− v2

]
+ 4ṙv

}
, (195)

where ṙ = n · v.
This equation of motion is ready-to-use for analysis of perturbed orbit elements,

since it is in the form of the Newtonian two-body acceleration plus a disturbing
acceleration. The relevant components of the disturbing acceleration (Eq. (63)) are
given by

R = GM

c2r2

[
4
GM

r
− v2 + 4ṙ2

]
,

S = 4
GM

c2r2
ṙv · λ ,

W = 0 . (196)

From the orbit element perturbation equations (67) we immediately conclude that
the inclination ι and angle of nodes Ω are constants, consistent with the motion
staying in a fixed plane. We can choose this plane to be the X− Y plane to simplify
matters. We now substitute the osculating orbit formulae for the variables that appear
in R and S, such as r = p/(1+e cos f ), obtained from Eq. (62). In the perturbation
equations (67), we convert from d/dt to d/df using the relation df/dt = (h/r2),
valid to first order in perturbation theory (see Eq. (68)) . Integrating over one orbit,
we find the net change in the orbit elements,

Δa = 0 , (197a)

Δe = 0 , (197b)

Δ� = 6πGM

c2p
. (197c)

The first two results express the fact that energy and angular momentum are
conserved to post-Newtonian order. The second is the famous advance of the
pericenter.

Einstein derived this for a test particle in a geodesic around a point object of
mass M , using an approximate solution of his equations equivalent to Eq. (192).
The same result, to 1PN order is obtained from the Schwarzschild geometry. It turns
out that it also applies to an arbitrary binary system of masses m1 and m2; in this
case, M = m1 + m2. Since the mass of Mercury is only one 6 millionth of that of
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the Sun, its contribution is negligible, and it can be treated as a massless test particle
moving on a geodesic of a fixed space-time. This cannot be done for a binary star
system because both masses move about the common center of mass; nevertheless,
the answer for Δ� is the same, and depends only on the total mass.

The advance per orbit can be converted to a rate of advance by dividing by the
orbital period. We can also eliminate the semimajor axis appearing in p by using
Kepler’s third law, a = (GM)1/3(P/2π )2/3, where P is the orbital period, valid
here because the effect is already of 1PN order. The result is

d�

dt
= 3

1 − e2

2π

P

(
GM/c3

P/2π

)2/3

= 716.25
1

1 − e2

(
M

M�

)2/3(
P

1 day

)−5/3

as yr−1 . (198)

Note that GM/c3 is the light-crossing time of half the Schwarzschild radius cor-
responding to mass M , which is generally much smaller than the orbital period.
Substituting the values for Mercury, e = 0.2056, P = 87.97 days, we obtain 42.98
as per century; as we saw in Table 1, the modern difference between the measured
advance and that predicted by Newtonian N -body perturbations is 42.98 ± 0.04 as
per century.

The discovery of binary pulsar systems with total masses of order 2–3 solar
masses, and with orbital periods as small as fractions of a day resulted in the obser-
vation of huge periastron advances of several degrees per year. But in these systems,
the relativistic periastron advance played an interesting role. In the solar system,
GM for the Sun is known to high precision from the measured orbital period and
orbital radius of the Earth, combined with Kepler’s third law. By contrast, the masses
of the neutron stars in these binary systems are not known, apart from the general
expectation that they should be around the Chandrasekhar limit, 1.4M�, based on
models of how such systems might have formed. In the famous Hulse–Taylor binary
pulsar 1913+16, the first such system to be discovered, it was possible to mea-
sure the pericenter advance, the eccentricity and the orbital period very accurately;
the current values are ω̇ = 4.226595(5) deg yr−1, P = 0.322997448930(4) day,
e = 0.6171338(4), where the number in parentheses denotes the error in the
final digit. Assuming that there is no other source of periastron advance, we can
turn Eq. (198) around and use it to measure the total mass of the system. The
result is M = 2.828296(5)M�. This is a remarkably accurate measurement of
an astrophysical quantity, and general relativity played a central role in the analy-
sis. The recently discovered “double pulsar” J0737-3039A/B, in which both stars
were observed as pulsars, has e = 0.0877775(9), P = 0.10225156248(5) day,
and ω̇ = 16.8995(7) deg yr−1, so the total mass is 2.5871(2)M�. The relativistic
advance is so large in these systems that we could easily see the evolving orienta-
tion of the orbit month by month with the naked eye, that is if we could see pulsars
with the naked eye! For further details on binary pulsars, see the chapter, “The Role
of Binary Pulsars in Testing Gravity Theories” by A. Possenti and M. Burgay.
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The motion of light near the sun can also be analyzed, either by considering
the equation for a null geodesic, or equivalently by taking the vi → cNi limit of
Eq. (195). The result is

d2r
dt2

= −GM
r2

[n − 2N(N · n)] . (199)

This equation can be integrated by setting N equal to the unperturbed direction of
the light ray to obtain the deflection of a light ray that passes close to the sun, given
by

δθ = 4GM�
c2d

= 1.7504
R�
d

as , (200)

where d is the distance of closest approach of the ray.
The first successful measurement of the bending of light by the Sun was carried

out by British astronomer Arthur Stanley Eddington and colleagues during the total
solar eclipse of May 29, 1919. It was a differential measurement: photographs of the
stars near the Sun taken during the eclipse were compared with photographs of the
same stars taken at night from the same locations later in the year, and the changes
in angles between pairs of stars were carefully measured. Eddington’s announce-
ment in November 1919 of the measurement of the bending helped make Einstein
an international celebrity. However, the experiments of Eddington and his cowork-
ers had only 30 % accuracy, and succeeding eclipse measurements were not much
better. The results were scattered between one half and twice the Einstein prediction,
and the accuracies were low.

However, the advent of radio astronomy, and in particular the development of
radio interferometry, and later of very-long-baseline radio interferometry (VLBI),
produced greatly improved determinations of the deflection. These techniques now
have the capability of measuring angular separations and changes in angles to accu-
racies of 10–100 microarcseconds. Early measurements took advantage of the fact
that a few strong quasistellar radio sources (quasars) pass very close to the Sun (as
seen from the Earth), including the group 3C273, 3C279, and 3C48, and the group
0111+02, 0119+11, and 0116+08. As the Earth moves in its orbit, changing the lines
of sight of the quasars relative to the Sun, the angular separation δθ between pairs of
quasars varies. A number of measurements of this kind over the period 1969–1975
yielded results in agreement with general relativity at a few parts in 103. In recent
years, transcontinental and intercontinental VLBI observations of quasars and radio
galaxies have been made primarily to monitor the Earth’s rotation and to establish
a highly accurate “reference” frame for astronomy and navigation. These measure-
ments are sensitive to the deflection of light over almost the entire celestial sphere.
A 2004 analysis of almost 2 million VLBI observations of 541 radio sources, made
by 87 VLBI sites over a 20-year period verified Einstein’s prediction to a few parts
in 104. Analysis of observations made by the Hipparcos optical astrometry satellite
yielded a test at the level of 0.3 %, and a future orbiting observatory called GAIA
has the capability of testing the deflection to parts per million.

The deflection of light has become a cornerstone of the empirical edifice that
supports general relativity. But in 1979, the phenomenon became much more than
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that. That year, astronomers Dennis Walsh, Robert Carswell, and Ray Weymann
discovered the “double quasar” Q0957+561, which consisted of two quasar images
about 6 as apart, with almost the same redshift (z = 1.41) and very similar spectra.
Given that quasars are thought to be among the most distant objects in the universe,
the probability of finding two so close together was low. It was soon realized that
there was just one quasar but that intervening matter in the form of a galaxy or
cluster of galaxies was bending the light from the quasar and producing two separate
images.

Since then, over 60 lensed quasars have been discovered. But more importantly,
gravitational lensing has become a major tool in efforts to map the distribution of
mass around galaxies and clusters, in the search for dark matter, dark energy, and
compact objects, and in the search for extrasolar planets. Major subtopics in lens-
ing have been developed to cover different astronomical realms: microlensing for
the search for dim compact objects and extrasolar planets, the use of luminous arcs
in the effort to map the distribution of mass and dark matter, and weak/statistical
lensing in the effort to measure the properties of dark energy. Lensing has to be
taken into account in interpreting certain aspects of the cosmic microwave back-
ground radiation, and in extracting information from the gravitational-wave signal
from sources at large redshift.

Equation (199) can also be used to derive the Shapiro time delay, a retardation of
the propagation of light past a massive object. For light emitted at time te at xe and
received by an observer at tO at xO , the propagation time is given by

c(tO − te) = |xO − xe| + 2GM

c2
ln

[
(rO + xO · n)(re − xe · n)

d2

]
. (201)

For a ray that propagates in a round-trip from the Earth to a planet or spacecraft on
the far side of the Sun, the total delay can be as large as 200 μs.

Radio astronomer Irwin I. Shapiro discovered that this effect was a prediction
of general relativity in 1964, and called it the “fourth” test of relativity. Shapiro
and colleagues then carried out the first measurement of the time delay in 1967, by
bouncing radar signals off the surface of Mercury. Later experiments involved radar
echos from Venus and tracking of the Mars exploration spacecraft, Mariners 6, 7,
and 9, and the Viking landers and orbiters.

The most recent measurement of the Shapiro delay involved tracking the Cassini
spacecraft while it was on its way to Saturn. Several circumstances made this mis-
sion particularly favorable. One was the ability to do tracking measurements using
both X-band (7175 MHz) and Ka-band (34316 MHz) radar, thereby significantly
reducing the dispersive effects of the solar corona. In addition, during the 2002
superior conjunction of Cassini, the spacecraft was at 8.43 astronomical units from
the Sun, and the distance of closest approach of the radar signals to the Sun was
only 1.6R�. The result was a test in agreement with general relativity to two parts
in 105. This and other solar system tests are discussed in the chapter, “Space-based
Tests of Relativistic Gravitation” by V. Turyshev.

The Shapiro delay now figures in range of astrophysical phenomena. It has been
measured in a number of binary pulsar systems, most notably in the double pulsar
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J0737-3039A/B, where the orbit is seen almost edge-on, and the pulsed radio signals
from each pulsar pass close to the other once per orbit. Analyses of the spectra and
time variations of high-energy emissions (X-rays) from accretion disks around black
holes must take into account both the strong bending of light and the Shapiro delay,
but now using full general relativity, not just the post-Newtonian limit.

5.4 The Parametrized Post-Newtonian Formalism

An important application of the post-Newtonian limit of general relativity has been
its extension to encompass a range of alternative metric theories of gravity. In many
cases, such as the scalar-tensor theory of Jordan, Brans, and Dicke and generaliza-
tions thereof, the post-Newtonian limit has a form quite similar to that of general
relativity, except that the coefficients in front of some terms are different, and a few
additional post-Newtonian potentials may be present.

This is a very fortunate circumstance, because the post-Newtonian limit is suffi-
cient to describe the solar system and the experimental tests one can perform there,
and to a limited degree can also describe binary pulsar systems. Therefore, if we
simply replace the numerical coefficients in the post-Newtonian limit of general
relativity with arbitrary parameters, and add a few new potentials with their own
parameters, we will have a framework that encompasses a wide range of alternative
theories, and that can be used to calculate a wide range of testable phenomena.

This framework is called the parametrized post-Newtonian (PPN) framework.
Eddington was the first to consider such a framework. In his classic 1922 textbook,
The Mathematical Theory of Relativity, he parametrized the post-Newtonian limit
of the Schwarzschild metric (in isotropic coordinates) in the form

ds2 = −
[

1 − 2α
GM

c2r
+ 2β

(
GM

c2r

)2
]
c2dt2+

[
1 + 2γ

GM

c2r

]
(dx2+dy2+dz2) ,

(202)
where α = β = γ = 1 in general relativity. Actually, the α parameter is redundant,
since it can always be absorbed into GM , which is by definition the Kepler-
measured mass, or into Newton’s constant G as measured in a Cavendish-type
experiment. The modern version of the PPN framework was developed by Kenneth
Nordtvedt, Jr. in 1968, using a collection of N point masses as the physical system
rather than a single mass; later, Will generalized the framework to post-Newtonian
hydrodynamics, and in 1972 Nordtvedt and Will unified the two approaches into the
PPN framework used today.

In a gauge that parallels the harmonic gauge of general relativity, the PPN metric
has the form

g00 = −1 + 2

c2
U + 2

c4

(
Ψ − βU2

)
+O(ε3) , (203a)

g0i = − 1

c3

[
2(1 + γ ) + 1

2
α1

]
Ui +O(ε5/2) , (203b)
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gij = δij
(

1 + 2

c2
γU

)
+O(ε2) , (203c)

where

Ψ := 1

2
(2γ + 1 + α3)Φ1 − (2β − 1 − ζ2 − ξ )Φ2 + (1 + ζ3)Φ3

+ [
3(γ + ζ4) − ζ1

]
Φ4 + 1

2
(ζ1 − 2ξ )Φ5 − ξΦW + 1

2
(1 + α2)Ẍ . (204)

The potentials

Φ5 := G
∫
ρ∗′∇′U (t, x′) · x − x′

|x − x′|d
3x′ ,

ΦW := G2
∫ ∫

ρ∗′ρ∗′′
(x − x′)j
|x − x′|3

(
(x′ − x′′)j
|x − x′′| − (x − x′′)j

|x′ − x′′|
)
d3x′d3x′′ ,(205)

do not appear in the post-Newtonian limit of general relativity in this gauge.
The choice of parameters is made in part so that the values in general relativity

are particularly simple, but more importantly so that specific meanings or implica-
tions can be attached to them. These heuristic meanings are summarized in Table 2.
The parameters γ and β are directly related to Eddington’s original parameters.
Roughly speaking, γ measures the amount of curvature of space generated by a
body, compared to what general relativity would predict; specifically, a calcula-
tion of the Riemann curvature tensor of the three-dimensional subspace defined by
dt = 0 gives a result proportional to γGM/c2r3. Roughly speaking, β measures
how nonlinear gravity is, in that it multiplies the U2 term in g00. This is very rough,
because it is a coordinate-dependent statement. In general relativity for example,
the Schwarzschild metric has no (GM/c2r)2 term in Schwarzschild coordinates;
the post-Newtonian limit of the Schwarzschild geometry takes the Eddington form
of Eq. (202) with γ = β = 1 only in isotropic coordinates. The lesson is that these
interpretations of the PPN parameters must be considered heuristic at best.

The parameters αi are linked to violations of local Lorentz invariance in grav-
itational physics, which some theories predict. Suppose that all three parameters
vanish in a given theory. Then the PPN metric in the above form is valid in any cho-
sen coordinate system, with all velocities defined relative to that system. However, if
any of them is nonzero, then the theory in question singles out a preferred universal
rest frame (in most cases, it is the frame in which the cosmic background radia-
tion is isotropic), and the PPN metric above is valid only when written in that rest
coordinate system. To obtain the metric in a different frame, such as the barycentric
frame of the solar system, one must perform what is called a post-Galilean trans-
formation of the metric: this is a low-velocity Lorentz transformation evaluated to
the appropriate post-Newtonian order, together with a post-Newtonian gauge trans-
formation to put the final metric in a simple form. Such a transformation generates
additional terms in the metric that depend explicitly on the velocity of the coordinate
system relative to the preferred frame, and on the PPN parameters αi . Theories of
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Table 2 The PPN parameters and their significance (note that α3 has been shown twice to indicate
that it is a measure of two effects)

Para-
meter

What it measures relative
to GR

GR value Semiconservative
theories

Fully conservative
theories

γ How much space-curvature
produced by unit rest
mass?

1 γ γ

β How much “nonlinearity”
in the superposition of
gravity?

1 β β

ξ Preferred-location effects? 0 ξ ξ

α1 Preferred-frame 0 α1 0

α2 effects? 0 α2 0

α3 0 0 0

α3 Is total 0 0 0

ζ1 momentum 0 0 0

ζ2 conserved? 0 0 0

ζ3 0 0 0

ζ4 0 0 0

PPN parametrized post-Newtonian, GR general relativity

this type predict preferred-frame effects, many of which have been tested, leading
to strong upper bounds on these parameters. The ζi parameters indicate whether
the theory admits conservation laws for energy and momentum of the kind defined
by Eq. (144); any theory that is based on an action predicts that these parameters
vanish.

A number of well-known relativistic effects can now be expressed in terms of
these PPN parameters (compare with Eqs. (198), (200), and (201)):
Perihelion advance:

d�

dt
=
(

2 + 2γ − β
3

)
3

1 − e2

2π

P

(
GM/c3

P/2π

)2/3

=
(

2 + 2γ − β
3

)
× 42.98 arcsec/100 yr , (206)

where P and e are the period and eccentricity of the orbit; the second line is the
value for Mercury.
Deflection of light:

Δθ =
(

1 + γ
2

)
4GM

c2d

=
(

1 + γ
2

)
× 1.7504

R�
d

as . (207)
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Shapiro time delay:

c(tO − te) = |xO − xe| +
(

1 + γ
2

)
2GM

c2
ln

[
(rO + xO · n)(re − xe · n)

d2

]
. (208)

Nordtvedt effect:

mG −mI
mI

=
(

4β − γ − 3 − 10

3
ξ − α1 − 2

3
α2 − 2

3
ζ1 − 1

3
ζ2

) |Eg|
mIc2

, (209)

where mG and mI are the gravitational and inertial masses of a body such as the
Earth or Moon, and Eg is its gravitational binding energy. A nonzero Nordtvedt
effect would cause the Earth and Moon to fall with a different acceleration toward
the Sun. This effect does not occur in general relativity, a result of the Strong Equiv-
alence Principle, satisfied by that theory. The chapter “Probing Gravity with Next
Generation Lunar Laser Ranging” by S. Dell’Agnello et al., discusses how lunar
laser ranging has set a strong bound on this effect.
Precession of a gyroscope:

ΩFD = −1

2

(
1 + γ + α1

4

) G

r3c2
[J − 3n(n · J)]

= 1

2

(
1 + γ + α1

4

)
× 0.041 arcsec yr−1 ,

ΩGeo = −1

2
(1 + 2γ )v × Gmn

r2c2

= 1

3
(1 + 2γ ) × 6.6 arcsec yr−1 , (210)

where ΩFD and ΩGeo are the precession angular velocities caused by the dragging
of inertial frames (Lense–Thirring effect), and by the geodetic effect, a combination
of Thomas precession and precession induced by spatial curvature; J is the angular
momentum of the Earth, and v, n, and r are the velocity, direction, and distance
of the gyroscope. The second line in each case is the corresponding value for a
gyroscope in polar Earth orbit at about 650 km altitude.

A wide range of experiments have led to tight bounds on the PPN parameters, all
consistent with general relativity. The current values are listed in Table 3.

Gravity Probe B

On May 4, 2011, NASA announced the long-awaited results of Gravity Probe B
(GP-B). Over 47 years and 750 million $ in the making, GP-B was an orbiting
physics experiment, designed to measure the frame-dragging and geodetic effects of
Eq. (210). Josef Lense and Hans Thirring first pointed out the existence of the frame-
dragging phenomenon in 1918, but it was not until the 1960s that George Pugh in
the Defense Department and Leonard Schiff at Stanford independently pursued the
idea of measuring it with gyroscopes.
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Table 3 Current limits on the PPN parameters

Parameter Effect Limit Remarks

γ − 1 (i) Time delay 2.3 × 10−5 Cassini tracking

(ii) Light deflection 4 × 10−4 VLBI

β − 1 (i) Perihelion shift 3 × 10−3 Assumes J2 = 10−7 from

helioseismology

(ii) Nordtvedt effect 2.3 × 10−4 η = 4β − γ − 3 assumed

ξ Earth tides 10−3 Gravimeter data

α1 Orbital polarization 10−4 Lunar laser ranging

4 × 10−5 PSR J1738+0333

α2 Solar spin precession 4 × 10−7 Alignment of Sun and ecliptic

α3 Pulsar acceleration 2 × 10−20 Pulsar Ṗ statistics

ηa Nordtvedt effect 9 × 10−4 Lunar laser ranging

ζ1 – 2 × 10−2 Combined PPN bounds

ζ2 Binary motion 4 × 10−5 P̈p for PSR 1913+16

ζ3 Newton’s 3rd law 10−8 Lunar acceleration

ζ4 – – Not independent
aHereη = 4β − γ − 3 − 10ξ/3 − α1 − 2α2/3 − 2ζ1/3 − ζ2/3
PPN parametrized post-Newtonian, VLBI very-long-baseline radio interferometry

GP-B started officially in late 1963 when NASA funded the initial research and
development (R&D) work that identified the new technologies needed to make such
a difficult measurement possible. Francis Everitt became Principal Investigator of
GP-B in 1981, and the project moved to the mission design phase in 1984. Follow-
ing a major review of the program by a National Academy of Sciences committee
in 1994, GP-B was approved for flight development, and began to collaborate with
the Lockheed-Martin and Marshall Space Flight Center. The satellite launched on
April 20, 2004 for a planned 16-month mission, but another five years of data anal-
ysis were needed to tease out the effects of relativity from a background of other
disturbances of the gyros1.

There were four gyroscopes aboard the GP-B satellite, launched into a polar orbit
with an altitude of 640 km above the Earth’s surface. Each gyroscope was a fused
silica rotor, about the size of a ping-pong ball, machined to be spherical and homo-
geneous to tolerances better than a part per million, and coated with a thin film
of niobium. The gyroscope assembly, which sat in a dewar of 2440 l of superfluid
helium, was held at 1.8 K. At this temperature, niobium is a superconductor, and the
supercurrents in the niobium of each spinning rotor produce a “London” magnetic
moment parallel to its spin axis. Extremely sensitive magnetometers (superconduct-
ing quantum interference devices, or SQUIDs) attached to the gyroscope housing

1 From 1998 to 2011, CMW chaired the NASA Science Advisory Committee for GP-B.
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were capable of detecting minute changes in the orientation of the gyros’ magnetic
moments and hence the precessions predicted by general relativity.

At the start of the mission, the four gyros were aligned to spin along the sym-
metry axis of the spacecraft. This was also the optical axis of a telescope directly
mounted on the end of the structure housing the rotors. Spacecraft thrusters oriented
the telescope to point precisely toward the star IM Pegasi (HR 8703) in our galaxy
(except when the Earth intervened, once per orbit). In order to average out numerous
unwanted torques on the gyros, the spacecraft rotated about its axis once every 78 s.

Almost every aspect of the spacecraft, its subsystems, and the science instrumen-
tation performed extremely well, some far better than expected. Still, success relied
on figuring out the sources of error. In particular, having an accurate calibration of
the electronic readout from the SQUID magnetometers with respect to the tilt of the
gyros was essential. The plan for calibrating the SQUIDs was to exploit the aber-
ration of starlight, which causes a precisely calculable misalignment between the
rotors and the telescope as the latter shifts its pointing toward the guide star by up to
20 as to compensate for the orbital motion of the spacecraft and the Earth. However,
three important, but unexpected, phenomena were discovered during the experiment
that affected the accuracy of the results.

First, because each rotor is not exactly spherical, its principal axis rotates around
its spin axis with a period of several hours, with a fixed angle between the two axes.
This is the familiar “polhode” motion of a spinning top. In fact, this polhoding was
essential in the calibration process because it led to modulations of the SQUID out-
put via the residual trapped magnetic flux on each rotor (about 1 % of the London
moment). But the polhode period and angle of each rotor were observed to decrease
monotonically with time, implying the presence of some damping mechanism, and
this significantly complicated the calibration analysis. In addition, each rotor was
found to make occasional, seemingly random “jumps” in its orientation—some as
large as 100 milliarcseconds. Some rotors displayed more frequent jumps than oth-
ers. Without being able to continuously monitor the rotors’ orientation, the GP-B
team could not fully exploit the calibrating effect of the stellar aberration in their
analysis. Finally, during a planned 40-day, end-of-mission calibration phase, the
team discovered that when the spacecraft was deliberately pointed away from the
guide star by a large angle, the misalignment induced much larger torques on the
rotors than expected. From this, they inferred that even the very small misalign-
ments that occurred during the science phase of the mission induced torques that
were probably several hundred times larger than the designers had estimated.

What ensued during the data analysis phase following the mission was worthy of
a detective novel. The critical clue came from the calibration tests. Here, they took
advantage of the residual trapped magnetic flux on the gyroscope. (The designers
used superconducting lead shielding to suppress stray fields before they cooled the
niobium coated gyroscopes, but no shielding is ever perfect.) This flux adds a peri-
odic modulation to the SQUID output, which the team used to figure out the phase
and polhode angle of each rotor throughout the mission. This helped them to con-
clude that interactions between random patches of electrostatic potential fixed to the
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Table 4 Final results of
Gravity Probe B

Effect (mas/yr) Measured Predicted

Geodetic precession 6602 ± 18 6606

Frame-dragging 37.2 ± 7.2 39.2

surface of each rotor, and similar patches on the inner surface of its spherical hous-
ing, were causing the extraneous torques. In principle, the rolling spacecraft should
have suppressed these effects, but they were larger than expected.

Fortunately, the patches are fixed on the various surfaces, and so it was possi-
ble to build a parametrized model of the patches on both surfaces using multipole
expansions, and to calculate the torques induced by those interactions when the spin
and spacecraft axes are misaligned, as a function of the parameters. One predic-
tion of the model was that the induced torque should be perpendicular to the plane
formed by the two axes, and this was clearly seen in the data. Another prediction of
the model was that, when the slowing decreasing polhode period crosses an integer
multiple of the spacecraft roll period, the torques fail to average over the roll period,
whereupon the spin axis precesses about its initial direction in an opening Cornu
spiral, then migrates to a new direction along a closing Cornu spiral. This is known
as a loxodromic path, familiar to navigators as a path of fixed bearing on the Earth’s
surface. Detailed observation of the orientation of the rotors during such “resonant
jumps” showed just such loxodromic behavior. In the end, every jump of every rotor
could be identified by its “mode number,” the integer relating its polhode period to
the spacecraft roll period.

The original goal of GP-B was to measure the frame-dragging precession with
an accuracy of 1 %, but the problems discovered over the course of the mission
dashed the initial optimism that this was possible. Although the GP-B team was
able to model the effects of the patches, they had to pay the price of the increase
in error that comes from using a model with so many parameters. The experiment
uncertainty quoted in the final result—roughly 20 % for frame dragging—is almost
totally dominated by those errors (see Table 4). Nevertheless, after the model was
applied to each rotor, all four gyros showed consistent relativistic precessions. Gyro
2 was particularly “unlucky”—it had the largest uncertainties because it suffered the
most resonant jumps. Numerous cross-checks were carried out, including estimating
the relativity effect during different segments of the 12-month science phase (vari-
ous events, including computer reboots and a massive solar storm in January 2005,
caused brief interruptions in data-taking), increasing and decreasing the number of
parameters in the torque model, and so on.

The most serious competition for the results from GP-B comes from the
LAGEOS experiment, in which laser ranging accurately tracked the paths of two
laser geodynamics satellites orbiting the Earth. Relativistic frame dragging induces
a small precession (around 30 milliarcseconds per year) of the orbital plane of each
satellite in the direction of the Earth’s rotation. However, the competing Newto-
nian effect of the Earth’s nonspherical shape (Eq. (84)) had to be subtracted to very
high precision using a model of the Earth’s gravity field. The first published result
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from LAGEOS in 1996 quoted an error for the frame-dragging measurement of 20–
30 %, though this result was likely too optimistic given the quality of the gravity
models available at the time. Later, the GRACE geodesy mission offered dramat-
ically improved Earth gravity models, and the analysis of the LAGEOS satellites
has finally yielded tests at a quoted level of approximately 10 %. In the chapter
“Fundamental Physics with the LAGEOS Satellites” by R. Peron, the LAGEOS
measurements are described in more detail.

5.5 Gravitational Radiation Reaction

We return to general relativity, and focus our attention on the odd-post-Newtonian-
order terms in NN , KiN , and BijN . We have already argued that the 1.5PN term
proportional to d3Ikk(t)/dt3 in NN is a pure coordinate artifact to lowest order.
However, the next odd-order terms in these potentials are of 2.5PN order and are
nontrivial. They are responsible for the loss of energy, momentum, and angular
momentum in a dynamical system as the result of the radiation of gravitational
waves. After some work, it can be shown that these terms generate an additional
radiation-reaction force to the post-Newtonian Euler equation of hydrodynamics
(191), given by

ρ∗ dv
j

dt
= ρ∗∂jU − ∂jp +O(c−2) +O(c−4)

+ c−5f
j
RR +O(c−6) , (211)

where

f
j
RR = G

c5

[
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(3)
Ipq ∂jpqX + 2

(
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) (3)

Ijk +2

3

(
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) (3)
Ipp

+ 2ρ∗
(4)

Ijk vk + 3

5
ρ∗

(5)

I〈jk〉 xk − 2

15
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(5)

Ijpp +2

3
ρ∗εpjq

(4)
J pq

]
. (212)

The O(c−2) symbol represents the post-Newtonian terms shown in Eq. (191), and
the O(c−4) symbol represents 2PN terms not shown here. The radiation reaction
force is itself coordinate dependent; one can change the coordinates by 2.5PN-order
corrections so that the 1PN and 2PN terms are unaffected, but the radiation-reaction
force is transformed into the simple form

f
j
RR = − 2G

5c5
ρ∗

(5)

I〈jk〉 xk . (213)

This is known as the Burke–Thorne gauge.
The Newtonian, 1PN, and 2PN contributions to the equations of motion are con-

servative, in that they enforce the conservation of total energy, momentum, and
angular momentum for an isolated system. The energy is given by

E = T +Ω + Eint +O(c−2) +O(c−4) , (214)
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where T , Ω , and Eint are defined just as in Eq. (18), but using ρ∗. Now, however,
including the radiation reaction force, one finds that

dE

dt
=
∫
ρ∗vjf jRRd

3x = − 2G

5c5

(5)

I〈jk〉
∫
ρ∗xkvj d3x = − G

5c5

(5)

I〈jk〉 İjk . (215)

However this last expression can be written as

dE

dt
= − G

5c5

(3)

I〈jk〉
(3)

I〈jk〉 + d
dt

G

c5 (. . . ) . (216)

But because E is only well-defined to even post-Newtonian orders, the time-
derivative term on the right-hand side of Eq. (216) can be moved to the left-hand
side and absorbed into a modified energy that has been corrected by meaningless
2.5PN order terms. The final result is

dE

dt
= − G

5c5

(3)

I〈jk〉
(3)

I〈jk〉 . (217)

We will see this exactly equals the energy loss as measured in the far zone. Similar
arguments can be made for the effects of radiation reaction on linear momentum
and angular momentum.

6 Far-zone Fields and Gravitational Radiation

6.1 The Quadrupole Formula

We now turn to the faraway wave-zone regime of our formal solution hαβN (t, x) of
the relaxed Einstein’s equation, given by Eq. (168). We first notice that this has the
general form of h ∼ r−1f (τ ), where τ = t − r/c. As a consequence, it is simple
to deduce that ∂jh = −(nj/c)ḣ + O(r−2). Combining this fact with the harmonic
gauge condition ∂βhαβ = 0, we can show that

ḣ0j = nkḣjk +O(r−2) ,

ḣ00 = njnkḣjk +O(r−2) , (218)

and consequently, in the faraway wave zone, a knowledge of hjk is enough to deter-
mine the other components of the field, modulo terms that are constant in time. For
gravitational waves, of course, this is all one needs.

The leading � = 0 term in the expression (168) for hjk is given by

h
jk

N = 4G

c4r

∫
M
τ jk(τ, x′)d3x′ +O(r−2) . (219)
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Making use of the identity (178b), and discarding the surface term, we can rewrite
this in the form

h
jk

N = 2G

c4r
Ïjk(τ ) +O(r−2) , (220)

where Ijk is given by Eq. (177a), evaluated at the retarded time τ = t − r/c.
This is the famous “quadrupole formula” of general relativity, that gives the

gravitational waveform in terms of two time derivatives of the source quadrupole
moment. During the middle 1970s, there was considerable debate over the validity
of the derivation of this formula, largely because of the fact that the effective source
ταβ extends over all space-time. The questions raised included the possibility that
higher moments of the effective source ταβ could diverge if the integrals were taken
to infinity, or that various surface integrals, such as the one involved in going from
Eqs. (219) to (220), could actually fail to vanish. Ultimately, these concerns were
laid to rest. One approach involved recalling that the formal solution is actually
given by Eq. (164). Since hαβN is an integral over a finite spatial volume—the near
zone—it is by definition finite. Furthermore, it could be shown that the integration
over the far zone hαβW was likewise finite. In addition, any dependence of each inte-
gral on the arbitrarily chosen radius R of the boundary between the two zones was
shown to cancel term-by-term, order-by-order, in the sum hαβN + hαβW . Similar argu-
ments were applied to the near-zone expressions for the fields, used in the equations
of motion.

The field hjk in the faraway wave zone is a central ingredient in determining the
response of a gravitational wave detector. From the equation of geodesic deviation
(115), one can show that the relative acceleration of a pair of freely moving masses
that are nearly at rest in a local freely falling frame is given by

d2ξj

dt2
= 1

2
ḧ
jk
T T ξk , (221)

where ξj is the physically measured displacement between the two bodies, and t is
proper time as measured at the origin of the local frame. The subscript “TT” denotes
the transverse-traceless part, given by

h
jk
T T := hlm

(
P
j
l P

k
m − 1

2
P jkPlm

)
, (222)

where P ij is a projection tensor, given by

P ij := δij − ninj . (223)

Gravitational-wave detection is covered in the chapter “The Detection of Gravita-
tional Waves” by S. Braccini and F. Fidecaro.

The field hjk also determines the energy flux radiated to infinity, as expressed by
Eq. (154). Examining the expression for ταβ (Eq. (160)) in the faraway zone, and
making use of Eq. (218), it is straightforward to show that

τ 0k
LL = nkτ 00

LL +O(r−3) . (224)
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This is not surprising, since for a field propagating in a null direction, the energy
flux should be the energy density times a unit vector. Substituting this into Eq. (154),
with dSk = r2nkdΩ and taking the surface to infinity, we obtain

Ė = −c
∮
∞

(−g)τ 00
LLr

2dΩ . (225)

After some algebra using Eq. (218), it is also possible to show that

(−g)τ 00
LL = c2

32πG
ḣ
jk
T T ḣ

jk
T T +O(r−3) . (226)

Using the fact that P ikP
k
j = P ij , and P ii = 2, together with Eq. (220), we obtain

Ė = − G

2c5

(3)

I lm
(3)
Ipq 〈〈PlpPmq − 1

2
PlmPpq〉〉 , (227)

where 〈〈. . . 〉〉 denote the angular average, defined in Eq. (33). Making use of
Eq. (34), we arrive finally at

dE

dt
= − G

5c5

(3)

I〈jk〉
(3)

I〈jk〉 , (228)

which is precisely the same as Eq. (217) for the energy lost as a consequence of
radiation reaction forces.

6.2 Energy Flux and Inspiraling Compact Binaries

For a binary star system, Ijk is given to lowest order by

Ijk = μrj rk , (229)

where μ = m1m2/(m1 +m2) is the reduced mass, and r(t) = x1 − x2. Calculating
the three time derivatives, and using the Newtonian equation of motion in place of
dv/dt , we obtain

dE

dt
= − 8G3

15c5
η2

(m
r

)4 (
12v2 − 11ṙ2

)
, (230)

where η := μ/m. Notice that the fractional change in energy over one orbital period,
ΔE/E ∼ (dE/dt)(P/E), can be written, using the fact that P ∼ r3/2/(Gm)1/2,
and that E ∼ μv2 ∼ Gμm/r , in the schematic form

ΔE

E
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(
r
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)
8G3

15c5
η2
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r

)4 Gm
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∼ η

(
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c2r

)5/2

, (231)
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indicating clearly that radiation damping is a 2.5PN-order effect. Using our Keple-
rian orbit formulae from Sect. 2, and averaging the energy loss over one orbit of the
binary system, we obtain the average rate of energy loss,

dE

dt
= −32G4

5c5
η2

(m
a

)5
F (e) , (232)

where a is the semimajor axis, e is the eccentricity, and F (e) is given by

F (e) := 1 + 73
24e

2 + 37
96e

4

(1 − e2)7/2
. (233)

It is useful to express these results in terms of the dimensionless variable x, given
by

x :=
(

2π

P

Gm

c3

)2/3

. (234)

The quantity in parentheses is the ratio of the light travel time across a distance
given by Gm/c2 to the orbit period; it is easy to see that x = Gm/ac2 ∼ (v/c)2. In
terms of x, we obtain

dE

dt
= −32c5

5G
η2x5F (e) . (235)

Since E ∝ a−1 and P ∝ a3/2, we have that 2P−1dP/dt = −3E−1dE/dt . Thus
we can obtain an expression for the rate of decrease of the orbital period,

dP

dt
= −96

5
ηx5/2F (e) . (236)

This prediction of the damping of an orbit caused by gravitational radiation reaction
has been confirmed spectacularly, first using the Hulse–Taylor binary pulsar PSR
1913+16, discovered in 1974, and later in a number of similar binary pulsar systems,
notably the “double pulsar,” J0737-3039, discovered in 2003. For more on binary
pulsar observations, see the chapter “The Role of Binary Pulsars in Testing Gravity
Theories” by A. Possenti and M. Burgay.

The Hulse–Taylor binary and the double-pulsar binary are destined to have their
orbits shrink to such a state that the two stars will merge to form a black hole,
on a timescale that is short compared to the age of the galaxy. If systems such
as this exist in the final stage of inspiral and merger today within several hundred
megaparsecs, the waves they emit should be detectable by the advanced ground-
based laser interferometers in the LIGO-Virgo-Geo network. In a similar vein, the
waves emitted during the inspiral and merger of a pair of supermassive black holes
should be detectable by a space-based interferometer such as LISA, out to very large
redshifts.

However, in order to enhance the detection confidence, and to extract useful
astrophysical information from the detected wave trains, it has been shown that
predictions for the motion and gravitational wave field will be needed that go far
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beyond the lowest, Newtonian, and post-Newtonian approximations that we have
discussed in this chapter. With this motivation, many groups have calculated the
higher-order corrections, mainly using techniques based on the post-Minkowskian
formalism presented here. The equations of motion for spinless binaries are now
known through 3.5PN order, and the effects of spin have also been calculated to
rather high post-Newtonian order. Similarly, the gravitational waveform and energy
flux have been calculated through 3.5PN order beyond the quadrupole formula
shown here; again many effects of spin have also been calculated. Work has also
begun on the extraordinarily difficult 4PN contributions to both the motion and
the waveform. To illustrate what these results look like, we quote here the energy
flux, expressed as an expansion in powers of the variable x, for spinless binaries in
circular orbits, through 3.5PN order:

dE

dt
= −32c5
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η2x5

{
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η − 94403
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− 214745
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η − 193385

3024
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πx7/2 +O(c−8)

}
, (237)

where C = 0.577 . . . is the Euler constant. The first term in this sequence is the
leading quadrupole term of Eq. (235). Results like these will play a key role in the
development of gravitational wave astronomy.
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The Newtonian Gravity and Some
of Its Classical Tests

Valerio A. Iafolla

Dedicated to Franco Fuligni, who has been a dear friend and
colleague, in memory of time spent together working at the main
part of the activities described in this chapter.

Abstract In this chapter, the historical evolution of the concept of gravitation,
with its connections to the observations of natural phenomena and to the related
experiments, is presented. It starts with a brief description of the first stage of the
experiments and continues giving details on the work related to it. The smallness
of the gravitational effects to be detected, along with the spurious effects (presence
of Earth’s gravity and environmental noise) that make the measurement difficult
and the techniques most suitable for their detection are shown. In the last part of
this chapter, some gravitational experiments performed in space and on ground are
described.

1 Introduction

The studies related to gravitation, and the sequence of theories that have been devel-
oped to explain the physical phenomena observed in nature or produced in the
laboratory are a good example of how the scientific process enables us to elaborate
the concepts and the general relationships that allow us to understand an enormous
variety of experiences and to make them accessible to mathematical methods.

In this chapter, we present a review of the techniques concerning classical exper-
iments related to gravitation that, together with the observation of events in nature
and from a priori hypotheses, lead to the evolution of the concept of gravitation
toward more and more complex theories that are able to explain all these physical
phenomena and to foresee new ones.
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In the first section, we give a brief presentation of the historical evolution of the
concept of gravitation, with its connections to the observations of natural phenom-
ena and the earlier experiments to test the assumptions made; also presented are the
experiments conducted by Galileo Galilei (GG) to support his a priori assumptions
concerning the universality of free fall, in connection to his idea of the scientific
method.

In the second section, we go into the details of the work related to experimental
gravitation. We discuss the small size of the effects to be detected, along with the
spurious effects (presence of Earth’s gravity and environmental noise) that make
their measurement difficult. The techniques most suitable for the detection of the
gravitational signals are described, along with their maximization, in order to avoid
the noise that would prevent the measurement itself. In this section, we also present
a survey of possible sites on which to run experiments of gravitation in the most
profitable mode (underground laboratories, free-fall systems, on board satellites).

In the third section, the techniques adopted to calibrate apparatus for the
gravitational experiments are described, taking as reference the calibration of an
accelerometer for space use.

In the following final three sections are described three main experiments to test
gravitational theories.

In the fourth section, we describe an experimental test of the weak equiva-
lence principle (WEP). This experiment, named General Relativity Accuracy Test
(GReAT), aims to obtain an accuracy of 5 x 10−15 in free-fall conditions from
stratospheric altitude.

In the fifth section, we describe the measurement of G—the universal constant of
gravitation. G is the oldest known constant of nature; it was introduced at the end of
the 1600s by Newton in his law of gravitation, but it was measured for the first time
only in 1798 by Henry Cavendish, and it remains still now the least well-known
constant of nature, due to the very high difficulty of this measurement.

In the sixth section, the radio science experiments (RSE) are described. These
are intended for the European Space Agency (ESA) cornerstone mission denomi-
nated “BepiColombo” for the exploration of Mercury. The RSE will use tracking
techniques to measure the position and velocity of the satellite orbiting around Mer-
cury; these measurements, together with the measure of the perturbing acceleration
noise performed with a high precise accelerometer, are used in a high accurate orbit
determination of the satellite with a simultaneous evaluation of gravitational field
parameters, useful to determine the internal structure of the planet, its rotational
state, and to test the theories of gravitation.

2 Historical Part

In the past, the concept of gravitation was assimilated to the idea of Aristotle
(384−322 BC) in which each of the four elements (Earth, Water, Air, and Fire),
already introduced by Empedocles, tends to return to its natural place when it is
moved far away from it. In particular, “the land” with its qualities of cold and dry,
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representative of the modern concept of solid, tends toward the center of the uni-
verse, which is also the point where the Earth seen as a planet is placed. There is
no doubt that many of the Aristotelian concepts such as the concept of cosmos, of
the movement, fate, time, space, etc. . . have a close connection with the modern
concepts, in particular, bringing back to cosmology and to gravitation the power to
regulate everything.

In particular, in Aristotle’s discussion the movement of things is well differenti-
ated from the movement of planets and stars that move in an unchanging aether that
pervades the cosmos.

The Aristotelian concept of the cosmos and the elements that compose it, together
with their interactions persisted for several millennia, in particular the Ptolemaic
structure (Ptolemy (100–175 AD)) of the geocentric solar system, as he expressed it
in the Almagest, stood out until the work of Copernicus (1473–1543) did not bring
away the Earth out of its position at the center of the universe. To the dissemination
of this new revolutionary idea of the cosmos contributed Galileo (1564–1642) with
his astronomical observations, and through his writings (Dialogue Concerning the
Two Chief World Systems, and Discourses and Mathematical Demonstrations Relat-
ing to Two New Sciences [21]), giving a substantial input to the subsequent work
of Isaac Newton (1642–1727) who, with his laws of motion and that of universal
gravitation, determined one of the greatest works in the unification of concepts that
physicists already knew but had not related to each other. A non-exhaustive list of
physical aspects explained as solutions of his famous equations could be as follows:

• Copernican ideas
• Kepler’s Laws
• Universality of free fall
• Quadratic proportionality between space and time for the free-fall bodies
• Ballistics problem
• Tides

In particular, he translated the observation about the universality of free fall of
bodies made by Galilei in the equivalence between inertial and gravitational mass,
leaving to Albert Einstein (1879–1955) the task to formulate his principle of equiv-
alence between a gravitational field and an accelerated reference frame, which has
at its basis the principle of equivalence of Newton.

In this simple summary of the way toward an understanding of the ideas of the
world around us, we should not miss the salient aspects of the processes that led to
the formulation of theories of gravitation, which, starting from the classical New-
tonian ideas have been evolving toward Einstein’s General Relativity (currently the
most accepted theory) and the alternatives to it, as well as attempts to formulate
quantum theories of gravitation and theories of unification of the gravitational force
to the other three known forces of nature. The process has been a trend at jumps
caused by so many insights that can come out only by having a base consisting
of information from previous work done by a large group of scientists. Galileo’s
insight expressed in his phrase “I fell in opinion that if the resistance of medium
will be removed totally all the bodies fall down with equal speed,” is a process anal-
ogous to that made by Newton in its observation of the fall of his famous apple and
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not dissimilar from what must have happened in the mind of Einstein in transform-
ing the gravitational force in a deformation of space-time, determined by the masses
themselves.

In the following section, we include a brief description of the research on univer-
sality of free fall of bodies made by Galilei, starting from his a priori intuition and
then passing to the description of his forgotten experiment aimed at experimental
verification of his intuition, performed with the use of pendulums (and not throwing
two bodies from the tower of Pisa).

2.1 Galilei and the Universality of the Free Fall

This section shows the original work done by Galilei in relation to his intuition
of the universality of free fall of bodies and the subsequent experimental work,
aimed at verifying this intuition (see also Refs. [1, 2]). In particular, it describes the
experiment conducted using two pendulums of different materials and observing
the free fall of these masses along the trajectory of oscillation, in what could be the
first experiment of “zero,” or comparison of two physical systems (two pendulums)
in the history of science. This experiment was subsequently repeated by Newton
and Bessel. The historical value of the pages herein reported is to give importance
to Galilei and his scientific method, by removing a historical error, inherent in the
scientific community that attributes to him, as evidence of his insight, the experiment
of falling bodies from the tower of Pisa, but he clearly indicates that it is not feasible.
What has been said is completely clarified by the following three excerpts taken
from its original work “Discourses and Mathematical Demonstrations Concerning
Two New Sciences,” in particular, they are taken from the English edition, translated
by H. Crew and A. De Salvio [21].

In the first phrase, there is a clear definition of the hypotheses with respect to the
universality of free fall and the Galilean idea about the scientific method to be used
for testing the hypotheses (Figs. 1, 2, and 3).

Simple estimates allow us to affirm that the verification of the universality of free
fall of bodies, as performed by Galilei in his experiment with pendulums, made in
terms of equivalence of inertial and gravitational mass, led to an accuracy of one
part in 103.

Fig. 1 Statement of the universality of free fall of all bodies



The Newtonian Gravity and Some of Its Classical Tests 77

Fig. 2 Exclusion of the possibility of execution of the verification of the universality of the bodies
by means of free fall, if in the presence of air

Fig. 3 Description of the experiment performed by means of pendulums

3 Experimental Gravitation

In this section are reported considerations related to the difficulties encountered
in carrying out tests on gravitation; emphasized the smallness of the signals to be
detected and the problems introduced by the presence of the Earth’s gravity and
to the vibrational and thermal noise, which act on the measurement equipment. In
particular, the problem of vibrational noise is dramatic because it acts on the test
mass in a manner indistinguishable from gravitational effects, just because of the
equivalence of inertial and gravitational mass. From the above it is obvious that an
experiment to measure the gravitational effects is equally suitable for the measure-
ment of accelerations acting on the reference in which the experiment is installed.
For further information on this topic see [3–9].
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The basic concept of an experiment on gravitation to be carried out in the labo-
ratory is the measurement of the effect produced by a source mass on a test mass,
determining the force which it undergoes in a reference rigidly connected with the
source mass. In the case of a source mass MT equal to 1 kg, placed at a distance
of 1 m with respect to the test mass of the same weight, they attract each other
with a force equal to 6.67 × 10−11 N, corresponding at an acceleration equal to
6.67 × 10−11 m/s2, in the case the test mass is a free mass; in these conditions,
the relative displacement of the test mass would be proportional to the accelera-
tion which acts on it and to the time squared. In a time of the order of 1 s, this
displacement would be equal to 3.335 × 10−11 m.

In general, the specific measure of the gravity effect is made through the mea-
surement of the displacement of the test mass, and this would suggest that, while
waiting for a sufficiently long time, the mass shift becomes large enough to be eas-
ily measurable. The difficulty of this type of experiment lies in the fact that it is not
easy to put a test mass in the condition of a free mass, since on any ground labo-
ratory there is the presence of Earth’s gravity, notably by equal to about 9.8 m/s2,
therefore far superior to the acceleration to be measured. The second problem is
related to the need to carry out the measures with respect to a fixed reference and,
as well known, is not easy to refer a free mass with respect to a fixed reference.
As we shall see, these problems are solved by connecting the mass to the reference
with springs extremely soft, so as to constitute a harmonic oscillator of very low
frequency, such as to allow large displacements of the test mass and the simultane-
ous maintenance of the reference. The mass can be suspended by means of a spring
so to have the main degree of freedom with a low frequency, and used for the mea-
surement of the gravity, while another degree of freedom, with a higher frequency,
that acts against the gravity, so as to cancel its effects. These systems give an idea
of how it can be solved the problem of the presence of gravity, but remains open
the one tied to the smallness of the signals to be detected. In the following para-
graph, the methods and techniques used for the detection of signals are shown; in
particular, the procedures to maximize the signal to be detected with respect to accel-
eration or gravitational force acting on the experimental apparatus are described.
Then it follows the description of techniques to reduce and/or circumvent the noise
which disturbs the measurement itself and a review of the characteristics of lab-
oratories and systems that allow these measurements in conditions of micro- and
pico-gravity. Much of the general descriptions of the detection techniques presented
here are closely related to the development activities of the accelerometer called
Italian Spring Accelerometer (ISA), performed by the “Experimental Gravitation”
team of the IAPS/INAF. The name of the indicated accelerometer is suggested by
the fact that its proof mass is connected to its reference frame by means of a soft
mechanical spring so to constitute a mechanical oscillator with a single degree of
freedom, and therefore able to detect a single component of an acceleration or of a
gravitational effect.
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3.1 Techniques of Signals Detection

The main constituent parts of each single-axis accelerometer that will be more
deeply described in the following section (and in Refs. [10, 11]) are as follows:

• The mechanical oscillator
• The actuation and control
• The signal detection

3.1.1 Mechanical Oscillator

A common problem to different fields of physics, disregarding whether the exper-
iments are carried out in ground-based laboratories or in space-borne enclosures,
consists in the detection of small forces or accelerations that act on the proof mass
of a harmonic oscillator, producing exceedingly small displacements. When it is
possible, harmonic oscillators having a very low resonance frequency are used to
magnify this effect (a free mass is the ideal tool); this displacement magnification
is in spite of the frequency range of the instrument. The oscillator can be regarded
as a test mass connected to the reference frame through a spring with low elastic
constant; the accelerations acting on the system can be regarded as inertial accelera-
tions acting on the test mass in the reference frame of the experimental apparatus. To
detect these accelerations, it is necessary to measure the consequent displacement
of the proof mass with respect to the reference frame (Fig. 4).

In principle, a single test mass can be used to detect the three components of a
gravitational force acting directly on the proof mass or a linear acceleration acting
on its reference frame, but in the ISA concept there are three different test masses,
one for each axis.

Figure 4 shows the mechanical part of the accelerometer. It consists of a central
plate, in which the proof mass is connected to an external rigid frame by means of

Fig. 4 Accelerometer mechanical structure
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an elastic element (flexural or torsional) constituting a harmonic oscillator. Usually
the sensitivity axis is perpendicular to the face of the proof mass.

Four additional plates are connected on the opposite sides of the central one
and electrically separated by insulating washers, forming plain capacitors. A couple
of these capacitors provide the reading of the signal. The other couple has more
than one function. It could be used to (i) lower the electromechanical frequency
of the oscillator; (ii) bring the capacitive bridge to its equilibrium position, by the
application of a constant voltage, as an actuator; and (iii) excite the mechanical
oscillator with known electrical signals.

The harmonic mechanical oscillator is described by the equation:

I ϑ̈ + ηt ϑ̇ + κtϑ = M, (1)

where kt represents the elastic constant, I is the proof mass moment of inertia, ηt
is its dissipation coefficient, and M is the magnitude of the external torque. The
formula for the evaluation of the mechanical resonance frequency is as follows:

f0 = 1

2π

√
κt

I
. (2)

As we will see, one important characteristic of the mechanical oscillator, besides its
resonance frequency, is represented by its mechanical quality factor, connected to
the oscillator Brownian noise.

3.1.2 Pickup and Actuation Systems

Figure 5 shows the electric scheme of the accelerometer. It can be divided into two
sections: The first one for the control, where the capacitors are with direct current
bias and the second one for the detection of the signal.

Fig. 5 Schematic drawing of the accelerometer electric scheme
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The bridge is biased at a frequency fp = 10 kHz so that accelerations at fre-
quency fs , acting on the proof mass, cause an unbalance of the capacitive bridge
and a modulation of the bias voltage: At the output of the capacitive bridge the sig-
nal is seen in frequency at the two side bands, f± = fp ± fs . The transfer of the
signal to a high frequency allows the amplifier to work at a frequency of 10 kHz
where its temperature noise is lower, avoiding its 1/f noise. The transducer must
have a high electromechanical transducer factor β (ratio between the mechanical
energy of the oscillator and the electric power to be measured) and the amplifier
must have a temperature noise lower than the energy in the transducer, due to the
signal to be measured.

3.1.3 Electrical Lowering of the Frequency of the Mechanical Oscillator

By applying a constant voltage V across one of the control capacitors, a torque is
produced that, for small ϑ , is given by

M = −1

2
V 2

(
−C0

d0

b

2
+ C0

d2
0

(
b

2

)2

ϑ

)
, (3)

where b is the distance between the center of mass (COM) of the central plate and
the rotation axis, ϑ is the rotation angle, C0 is the capacity of the capacitor, when
the plate is in its equilibrium position, V is the voltage on it, and d0 is the distance
between the two faces of the planar capacitors. The term depending on ϑ has the
effect of a negative elastic constant that reduces the torsion elastic constant of the
oscillator, causing a lowering of the system resonance frequency. The new frequency
is given by

ω2 =
k − V 2C0

d0
2

(
b
2

)2

I
= ω0

2
(

1 − 4β

5

)
, (4)

where we have introduced the electromechanical transducer factor β:

β = C0V
2

5
4mω0

2d0
2

. (5)

The simultaneous application of the constant voltage on two opposite capacitors
gives a factor of 2 in the previous formula and allows maintaining the proof mass in
its equilibrium position. We must say that this procedure, essential to increase the
accelerometer sensitivity, reduces its frequency band.

3.1.4 Electrical Variation of the Equilibrium Conditions of the Capacitive
Bridge

The term in Eq. (3), that does not depend on ϑ , represents a constant torque that
changes the position of the proof mass and therefore the four capacitors capacitance
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values. Simple evaluations indicate that the value of the capacitor on which the
constant voltage V is applied and that of the adjacent capacitor, increase according
to the equation:

C(V ) = C0

(
1 + 1

2

C0V
2b2

4ktd0
2 − V 2C0b2

)
= C0

(
1 + 1

2

4β
5

1 − 4β
5

)
. (6)

On the other hand, the capacitors capacity decreases. It is clear that if we want to
have a low frequency and get large variations of capacity, we need to have high val-
ues of β. We must notice that if β = 1, the frequency becomes zero, two capacities
go to infinity and two to zero (this in principle). This means that the system becomes
unstable; the attraction force, determined by the electric field between the two faces
of the capacitor, is equal to or larger than the elastic restoring force.

3.1.5 Electromechanical Actuator

To characterize the system, it is useful to have the possibility to excite it at known
frequencies. This possibility is obtained using the control capacitors as an actuator.
Superimposing an alternate voltage v = v0 cos (2πfet) to the constant voltage V,
from Eq. (3) we can see that, besides the terms seen before, a torque M1 results at
frequency fe given by:

M1 = C0

d0

b

2
vV . (7)

At 2 fe, the torque is equal to:

M2 = b

2

C

d0
v2. (8)

Terms causing small variations of the elastic constant are not considered. Such an
actuator could be used to calibrate using an electrical signal.

3.1.6 Electromechanical Detection System

The two opposite sensing capacitors, C1 and C2, with the fixed external capacitors,
Ca and Cb, inserted in a bridge configuration, provide the extraction of the signal.
The bridge is driven by the transformer with an alternate voltage:

Vp = Vpo cos (2πfpt). (9)

The mechanical signal causes the variation of the capacity of the two detector capac-
itors and the subsequent modulation of the residual output voltage at the signal
frequency. This signal is seen as an unbalance of the bridge. The output of the
capacitive bridge is sent to a low-noise amplifier, characterized by input impedance
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Table 1 List of elements
appearing in the electric
scheme

α · x Voltage generator associated with signal

vb Generator associated with Brownian noise

en Generator associated with amplifier noise

in Current generator associated with amplifier noise

Zi Amplifier input impedance

Vrs Voltage generator associated with loss capacitors

Zi with very high value, an equivalent generator of voltage noise en, and an equiv-
alent generator of current noise in. A list of the elements that appear in the scheme
of Fig. 5, with their meaning, are shown in Table 1.

Now, we analyze the different contributions to the noise of the system, starting
with an indication on the signal level, represented in the scheme with the α · x
generator.

3.1.7 Signal Level

The residual voltage at the output of the capacitance bridge, in the case Zi >>
1/(2πfpC), C being the capacity between the points A and B of Fig. 5, is:

VAB = VCD
(

C1(ϑ)

C1(ϑ) + C2(ϑ)
− Ca

Ca + Cb
)

. (10)

Considering that

C1(ϑ) ≈ Co + Co
d1
bϑ C2(ϑ) ≈ Co − Co

d2
bϑ, (11)

if the distance between the two faces of the capacitors is d1 ≈ d2 = d, we have:

vs = αbθs . (12)

This formula establishes the relationship between the amplitude value of the
mechanical signal at frequency fs and the value of the signal at the bridge output,
at frequency fp + fs or fp − fs .

The transducer factor between output voltage and the central mass angle of
deflection is:

α = VCD

2d
. (13)

The transducer factor represents the maximum value of the electrical field inside
each single detection capacitor.

For the following evaluations, we will refer to the middle shifts of the harmonic
oscillator COM and not to its rotations (θsb = xs). In our scheme, Eq. (1) can be
written in the following way:

5

4
mẍ + ηt

b2
ẋ + kt

b2
x = F . (14)



84 Valerio A. Iafolla

If we set:

mr = 5

4
m, η = ηt

b2
, k = kt

b2
, (15)

we have:

mrẍ + ηẋ + kx = F . (16)

With this assumption, the mechanical quality factor becomes:

Qm
−1 = η

mrωo
. (17)

The accelerometer works at frequencies lower than the resonance frequency of the
mechanical oscillator and at these frequencies, the transfer function between the
acceleration of the sensitive mass and its displacements is:

x(ω) ≈ θs(ω)b ≈ a(ω)/ωo
2. (18)

3.1.8 Brownian Noise Associated with the Harmonic Oscillator

The dissipation of the mechanical oscillator is associated with a generator of
Brownian noise that causes acceleration in the unit band, equal to:

ab
2(ω) = F 2(ω)

mr2
= 4kbT η

mr2
= 4kbT ωo
mrQm

. (19)

In this equation, kb is the Boltzmann constant, T is the thermodynamic temperature
of the oscillator, ωo is its resonance frequency,Qm is the mechanical quality factor,
mr is its mass, and η is the dissipation factor (given in Eq. 15). It is clear that in
order to have a low level of Brownian noise, we need to have a mechanical system
with a high mechanical quality factor.

3.1.9 Preamplifier Noise

As we underlined before, an equivalent voltage noise generator and an equivalent
current noise generator can model the amplifier noise contribution (see Ref. [12]):

{
en

2 = 4kbTnZn

in
2 = 4kbTn/Zn,

(20)

where Zn is the noise impedance, and Tn is the noise temperature of the amplifier.

Zn = en/in. (21)
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From the previous assumptions we have:

Tn = enin

4kb
. (22)

This noise generators act in two different ways: (a) They directly produce a voltage
at the input of the ideal amplifier; (b) They produce a fluctuation of charge across
the detection capacitors and a consequent acceleration in the harmonic oscillator.

3.1.10 Total System Noise

If Q is the total quality factor of the system, including the dissipations in the mechan-
ical oscillator and the thermal noise associated with the transducer loss, given by the
equation:

1

Q
= 1

Qm
+ 1

Qde
, (23)

then the total noise in the acceleration, from the point of view of the mechanical
oscillator, can be expressed by the formula:

at
2(ω) ≈ 4kbωo

mr

[
T

Q
+ Tn 4ZnCωo

β

]
 f, (24)

where  f = 1/ t is the inverse of the acquisition time for each single measure-
ment.

The factor β, with the new positions, is given by:

β = α2C

mrωo2
. (25)

The electrical dissipation is represented by:

1

Qde
= 4

ωo

!p

tgδ

β
, (26)

where tgδ is the angle of loss of the electrical part of the transducer.

3.2 Techniques to Circumvent the Noise

In this section, the information on the methodologies commonly used in experimen-
tal gravitation in order to circumvent the various types of noise otherwise limiting
the accuracy of measurements are given (see also Ref. [13]). We begin with a
description of the noise present in the various laboratories or sites, mostly located
in underground locations or at the bottom of a borehole or in a very deep seabed,
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and away in general from population centers, so as to avoid anthropogenic noise. It
follows the description of the technique according to which low-frequency signals
that have to be detected are transferred to a higher frequency, making less trouble-
some the effects due to thermal variations and to “aging.” It presented a brief review
of methods to implement the damping of mechanical vibrations, where this is pos-
sible (i.e., for signals with a frequency higher than a few Hz). We continue with
the description of the cryogenic techniques useful for the reduction of the Brownian
noise, to improve some particular physical parameters of the experimental systems
(mechanical quality factor, coefficient of thermal stability, and temperature stabi-
lization), and to implement preamplifiers for the pickup signals with a very low
noise. Systems for the rejection of the common mode noise are also described. These
systems are useful in the case in which the gravitational signal (or the inertial accel-
eration) can be seen as a differential mode. Finally, the section concludes by giving
information about the techniques of the so-called quantum nondemolition (QND) or
back-action evading (BAE), pushing the measurements of gravitation “beyond” the
quantum limit.

3.2.1 Choice of the Laboratory

The execution of an experiment in the field of gravitation undoubtedly requires per-
forming measurements in a laboratory chosen so as to ensure an environment with
minimal noise ( [14, 15]). The types of environmental noise are as follows:

• Vibrational noise induced by the local seismicity
• Thermal noise determined by the temperature variations which induce changes

in buoyancy of the experiment and a consequent variation of its response to grav-
itational and inertial forces (mainly determined by the modulation of the local
gravity acceleration)

• Thermal noise due to temperature variations that cause a spurious signal in the
response of the experimental apparatus

• Noise due to variations in the environmental pressure which determine effects
in the experimental apparatus positioning, with consequent modulation of the
signals (also in this case the main effect is in the modulation of local gravity
acceleration), and directly on the test mass, by means of buoyancy force.

The plot of the spectral density of the acceleration noise that the geophysicists
consider as the minimum (possible) noise that can be measured in the quietest lab-
oratory on ground (particular sites in which the anthropic and thermal noise are at
their minimum) is shown in Fig. 6. This means that any experiment on gravitation
will be subject to a microseismic noise whose effects must be overcome.

From this figure, it results that the minimum obtainable noise in the quietest
on ground laboratories is in a frequency band in the range 10−4 – 3 × 10−2 Hz,
where the environmental rms noise due to the Earth seismicity, is less than
10−10 m

s2 per octave ≡ 1√
2
× 10−10 m

s2 /
√

Hz. This value is very low and would
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Fig. 6 Plot of the spectral density of the acceleration noise components x, y, and z that the geo-
physicists take as the minimum noise possible to measure in the quietest laboratory (particular sites
in which the anthropic and thermal noise are at their minimum)

allow the execution of a good test in gravitation; in particular, relying on the pos-
sibility of integrating the measurements for a long time in the case of experiments
in which we should reveal sinusoidal signals with a frequency within the indicated
band and in stable conditions. Obviously, it is clear that a laboratory which is useful
to perform tests of gravitation is also a suitable place for geophysical measurements
intended to determine the specific frequencies of the earthquakes, especially those
of large intensity that excite the free oscillations of the Earth and whose determi-
nations provide information on its internal structure. Of course, in the laboratories
where such low levels of seismic noise are measured, also the thermal variations as
well as those of the atmospheric pressure need to be highly contained. The exper-
imental data collected over the years by our group in term of acceleration noise,
temperature, and pressure recorded at several sites in Italy are shown below. These
values give a good indication about the real possibility of being able to operate in
a laboratory where the noise level is really low and to run good measurements of
gravitational signals.

Seismic noise measurement at the underground LNGS/INFN laboratory (Gran
Sasso, L’Aquila)

In the following are shown some geophysical measurements performed by our
team with one of our accelerometer prototypes installed in the Gran Sasso under-
ground laboratory of the Istituto Nazionale di Fisica Nucleare (INFN). The spectral
density of the horizontal component of the seismic noise measured is shown in
Fig. 7. The plot has been produced using two files containing data collected with
different sampling times; the values are in complete agreement with data recorded
by classical geophysical instruments (Fig. 8).

Figure 8 shows the horizontal component of the solid tide of the Earth, recorded
by the accelerometer used as an inclinometer, in the Gran Sasso laboratory. The
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Fig. 7 Spectral density of the seismic noise (horizontal component)

Fig. 8 Experimental Earth tides, compared with the theoretical ones, measured at the Gran Sasso
laboratory, L’Aquila

data have been collected during the month of August, a period when people are on
holidays and the induced anthropic seismic noise reaches its minimum.

Figure 9 shows an earthquake event located close to Japan and recorded at the
Gran Sasso laboratory by the ISA accelerometer.

Finally, as shown in Fig. 10, the power spectral density of seismic noise measured
at the Gran Sasso laboratory in a very quiet period, when its level is lower than
10−9g⊕/

√
Hz at frequency of 4 × 10−2 Hz.
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Fig. 9 Earthquake event 980503 recorded at the Gran Sasso laboratory by the ISA accelerometer

Fig. 10 Power spectral density of the seismic noise measured at the Gran Sasso laboratory, at the
level of 10−9g⊕/

√
Hz
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3.2.2 Transfer of Signal in a Frequency Range Where Noise Is Lower

One of the techniques used to circumvent the environmental noise is to transfer the
frequency of the signal in areas where the ambient noise is lower; examples of this
are shown below:

Direct Transfer of the Signal

• Experiment to test the universality of free fall performed with pendulums: The
signal, otherwise, in continuous, is transferred to the oscillation frequency of the
pendulum.

• Experiments to test the WEP in free fall in the gravitational field of the Sun: The
signal is transferred from the continuous to the period of revolution of the Earth.

• Space experiments to test the WEP in the field of the Earth: The signal is
transferred from the continuous to the orbital frequency of the satellite.

Transfer of the Caused Effect

• Polarization of high-frequency transducers in order to transfer the signal around
the frequencies of polarization such to avoid the 1/f noise of the amplifiers.

Direct Production of the Signal at a Frequency Where the Environmental Noise Is
Lower

• Measurement of G where the mass sources can be made to rotate at a suitable
frequency in order to produce a signal in the area of minimum environmental
noise.

3.2.3 Suspension Systems and Mechanical Insulation

The possibility to isolate an experiment relative to gravitation from the vibrational
noise induced by the environment is given by the condition of being able to put the
experiment in a suitable environment capable of reducing such noise. The vibra-
tional noise propagates through the medium interposed between the noise source
and the experiment. Therefore, the technique for the isolation must necessarily
provide the insertion, between the source of noise and the system, of a suitable insu-
lating system. The basic concept of these dampers is in the response of a mechanical
oscillator able to provide an attenuation of 40 dB/dec for noise frequencies above
the resonance frequency of the system itself. Assuming we can make a resonant fre-
quency of the order of 1 Hz, and in the case in which the signal to be detected is
at a frequency of 100 Hz, the attenuation of the signal will be 80 dB, that is, equal
to a factor of 100. It is therefore clear that a good attenuator must have a resonance
frequency as low as possible, so as to have the highest attenuation. The problem
associated with the implementation of these dampers is precisely in the realization
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of low-frequency damping. As mentioned above, the basic element of the dampers
is the mechanical oscillator which is realized with a spring or a spring system, with
low spring constant K, interposed between the “laboratory” and the experiment that
determines its mass M. In most cases, the experiment is under the action of gravity
and for the equilibrium condition the following equation must be valid:

K · x = M · g. (27)

From this equation it follows that, if an attenuator of frequency equal to 1 Hz is
implemented, the mechanical spring must be able to compress or stretch, in an
elastic way, by an amount equal to about:

 x = g

ω2
= 25 cm. (28)

This simple example shows that it is not easy to set the mechanical frequency of the
attenuator below 1 Hz; the problem can be solved using nonmechanical springs
such as pneumatic systems, using multiple attenuation (more oscillators in cas-
cade) whose transfer function provides a much higher attenuation of 40 dB/dec,
adding elements that introduce negative elastic constants (e.g., electric fields) which
determine the lowering of the frequency of the system. This approach leaves to the
original spring the task of supporting the mass in the field of the Earth’s gravity. It
should be noted that, to avoid that the disturbances can reach the experiment through
the gas present in the environment, the experiment must generally be placed under
vacuum conditions in a suitable chamber. In a practical case of isolation of a cryo-
genic gravitational antenna, cooled to liquid helium temperatures, its operation was
ensured by isolating the antenna also from the noise introduced by the boiling of
liquid helium; this last damping stage ensured an attenuation equal to 135 dB at the
resonance frequency of the antenna, equal to 1790 Hz, allowing to appreciate its
thermal noise (energy equal to 1 KT), at a temperature of 1.5 K.

3.2.4 Cryogenic Techniques

The temperature can act under several different ways; a first list can be the following:

• Thermal contraction of the sizes of the experimental apparatus, causing a vari-
ation of the gravitational signal and/or response to the same solicitation, with
noise signals.

• By varying the structure of the laboratory and with it the support plane of the
experimental apparatus and also the local component of the gravity acceleration
viewed from the apparatus.

• Change of the properties of the experimental system (pickup systems, values
of the preamplifier, electrical frequency of voltage bias of the transducers and
propriety of the demodulation systems).
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• Introducing noise directly through the force fluctuations associated with the
dissipation of the mechanical oscillator, whose mass is the experimental test
mass.

To avoid the indicated problems, many experiments of gravitation make use of the
cryogenic techniques for the reduction of different kind of noise; in particular, the
lowering of the thermodynamic temperature means that there is a drastic reduc-
tion of the Brownian noise directly linked to it, see the Formula _19, Sect. 2.1. As
already said, the cryogenic techniques are useful, together with the reduction of the
Brownian noise, also for the improvement of particular physical parameters of the
experimental systems:

• Increasing the mechanical quality factor: Most physical systems when cooled
show an increase in their quality factor, the lowering of the temperature makes
it to “crystallize” the structure of the materials, resulting in a reduction of
dissipation in their vibrational modes.

• Stabilization of the temperature: The temperature stabilization has a direct con-
sequence in the stabilization of the structure of the experimental apparatus itself,
avoiding that some effects of noise, once modulated by the thermal contractions
of the structure, to produce a change of the frequency of the signal to be detected
(in the case of use of cryogenic liquids this thermal stability is determined by the
temperature of evaporation of cryogenic liquids themselves).

• Increase of coefficients of thermal stability of the systems: Even in this case, the
majority of the physical systems once cooled show an increase of their thermal
stability, and this effect gives a benefit to the experiment, being added to the
previous effect.

In the case of a Weber-type gravitational resonant antenna, the problem is to cool a
cylinder several tons heavy at temperatures lower than those of liquid helium, using
dilution chiller.

3.2.5 Low-Noise Amplifiers

In modern experiments of gravitation, a fundamental role is played by the preampli-
fier to which is delegated the task of amplifying the weak signals that are present at
the output of the transducer, so as to make possible their further amplification and
therefore their possible demodulation, conversion, and acquisition; all this without
the introduction of electronic noise in excess with respect to the signal to detect.
These so demanding benefits are obtained using the best devices offered by technol-
ogy (as Field Effect Transistor (FET) and Superconducting Quantum Interference
Device (SQUID)) and in optimal condition of impedance matching, and by making
them work to the thermodynamic temperature at which their voltage and current
noise are to a minimum.

The experimental measurements (carried out at the IAPS laboratories) of the
electronic noise, reported in acceleration, for two special electronic devices cooled
to a temperature of 120 K are shown in Table 2.
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Table 2 Summary of noise values, reported in acceleration, for two active components using FET
technology and cooled down to 120 K, obtained in no-adapted and adapted condition and for a
superconducting transformer in air

FET 120 K Values estimated from measured
data No-adapted g/

√
Hz

120 K Values estimated from measured
data Adapted g/

√
Hz

2N4416 1e-13 4.9e-15

BF817 4.5e-14 1e-15

These evaluations, arising from real measurements performed on the active ele-
ments, indicate the possibility to reach a quite high sensitivity in acceleration, using
the BF817, with appropriate impedance adaptation and increasing the transducer
electrical field at 105 V/m.

3.2.6 Common Mode Rejection (CMR)

The CMR is indicated as a solution in many experiments of gravitation: The grav-
itational signal to be detected acts simultaneously on two test masses, and the
experiments are carried out looking at the gravity gradient signal; the high level
of common mode noise, acting on the two test masses, is rejected making the dif-
ference between the two signals. Obtaining high level of rejection is connected to
the fact that the two responses are equal for the two detectors, and it is clear that
the higher the CMR the more performing is the apparatus. Usually the apparatus
can be constituted by two different mechanical and electronic systems, in this case
they must be equal; otherwise, there is the possibility to adjust their parameters
in order to equalize their response, or evaluating experimentally a coefficient that
makes their answer equal. The requirement is that the evaluated parameter must be
useful at the appropriate frequencies where there is the signal, and this parameter
must remain fixed over the entire duration of the experiment. In some experiments,
the apparatus is able to perform a “self-rejection” in the sense that in the same mode
as in the previous case the gravitational signal to be detected acts on two different
test masses; again, the result of the experiment is connected to the gravity gradient
between the two test masses, but the system is sensitive directly to the gravity gra-
dient and makes the self-rejection of the noise common mode (a torsion balance is
an example of this kind of device). In this case, there is no possibility to “calibrate
the system” for this factor, but at the same time it is possible to adjust the appara-
tus mechanically. One major advantage is the fact that it makes the self-rejection of
noise and the signal to be amplified is not so high as if also noise must be amplified,
eliminating the problem of amplifier saturation.

As an example of these techniques and to explain also what we mean with “zero
experiment” for the Galileo’s pendulums experiments, we can assimilate this at a
differential experiment; the simultaneity of the observation for the two pendulums
eliminates the majority of the thermal effect variations and environmental conditions
in general, and makes the measurement of time unique.
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Fig. 11 Difference of seismic signals recorded by two ISA elements arranged with their sensitive
axes parallel

As shown in Fig. 11, the results of an experimental activity concerning the CMR,
performed at the IAPS/INAF laboratory. It shows the difference of signal recorded
by two ISA accelerometer elements arranged with their sensitive axes parallel. It is
possible to see that the level of the residual signal is equal to 10−10g/

√
Hz in a fre-

quency band in the range 10−3 – 1 Hz; this level is obtained adjusting the parameters
for the comparison of the two accelerometers answer so to obtain a CMR bigger than
104. In the same time, this low level gives us the indication that each accelerometer
has a level of intrinsic noise less than 7 × 10−10g/

√
Hz, well below the sensitivity

required for the accelerometer in the case of the BepiColombo mission to Mercury,
in about the entire frequency band.

This characterization has been performed in our laboratory; new calibrations are
planned to be performed in another laboratory, where a less level of seismic noise
can allow reaching a low level of residual noise in the entire interesting frequency
band.

3.2.7 Quantum Nondemolition and Back-Action Evading

The need to push the sensitivity of experiments of gravitation, in particular of exper-
iments for the detection of gravitational waves, beyond the limit imposed by the
quantum theory for a linear transducer and by the instrumental performance, has
prompted the search for new schemes of measurement on the basis of which it is
possible, at least in principle, to measure repeatedly a dynamic variable of the sys-
tem (harmonic oscillator), with arbitrary precision. These schemes, called QND or
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BAE, are based on the possibility of measuring a dynamic variable, without the dis-
turbance exerted by the measuring system on the physical system under observation,
disrupting the physical variable under measurement (see Ref. [16]). Sufficient con-
dition in order to say that an observable is a QND observable is that it is a constant
of motion in the absence of external forces. In some cases, the schemes allow only
the determination of the modulus of the force, while in others they also allow the
determination of its dependence over time; the first case is connected to the deter-
mination of the quantum number N of the harmonic oscillator, while the second
is connected to the measurement of the real part X1 or the imaginary part X2, of
the complex amplitude of its state of oscillation. For this last case, in the proposed
schemes the oscillator under test is coupled to the apparatus of measurement in such
a way that their Hamiltonian of interaction contains only the QND variable under
observation, ĥ, and some variable of the measuring system, q̂.

In its simplest form it can be written as

ĤI = kĥq̂, (29)

where k represents the intensity of the coupling.
A simple possibility would appear to be the direct measurement of X̂1 (or X̂2)

for which the request is a Hamiltonian of the type:

Ĥ I = kX̂1q̂ = k
(
x̂cos (ω0t)− p̂

m ω0
sin (ω0t)

)
q̂, (30)

which presents difficulties in the implementation, either by the modulated form that
its coefficient k must have, either for the impossibility to implement a transducer of
momentum.

In practice, it is possible to achieve a measure of X̂1, using a position transducer
with coupling coefficient modulated at the frequency of the oscillator, together with
a mechanical low-pass filter:

Ĥ I = k cos (ω0t) x̂ q̂ = kq̂

2

(
X̂1 + X̂1cos(2ω0t)+ X̂2 sin(2ω0t)

)
. (31)

The low-pass filter has the function to filter away the component at 2ω0, leaving
only the component at zero frequency, X̂1. To avoid having to detect the signal at
zero frequency, it is introduced a new modulation of the interaction at frequency ωe,
precisely to the frequency of an electrical oscillator (LC) at the frequency ωe, which
also acts as a filter. The new Hamiltonian thus becomes:

Ĥ I = k cos (ω0t) cos (ωet) x̂ q̂. (32)

The modulation ωe transfers the signal relative to X̂1 previously in continuous at
this frequency, plus contamination of X̂2 at frequency ωe ∓ ω0.

It is therefore clear as it works this so-constructed Hamiltonian of interaction,
one can sample the signal relative to the X̂1 component, while having only a
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residual component of the disturbance in X̂2. Through this nonlinear interaction,
introduced by the electric field present in the capacitive transducer, it is possible to
observe a physical variable, causing the effect that the perturbation introduced by
the interaction disturbs only the component not observed.

It can be shown that, if τ is the electric oscillator relaxation time, the minimum
energy detectable in an optimized time of integration it is equal to (Thorne):

Es = h̄ω0√
2ω0τ

, (33)

where Es is the energy deposited by a classical force acting on a harmonic oscil-
lator initially at rest. In a scheme used for the experimental activities in IAPS, the
coupling was carried out by biasing the pickup capacitive bridge using simulta-
neously two “pump” voltages at frequency ωe + ω0 and ωe − ω0 which operate
simultaneously a parametric down-conversion and an up-conversion of the signal,
providing a signal coherent conversion from mechanical to electrical frequency. The
biggest problem is the maintenance of the relative stability between the electrical
and mechanical frequency of the system so to ensure long-term measurement stabil-
ity; a beat shuffles the components X̂1 and X̂2 canceling the effect of noise reduction
of the system. The problem can be solved by using a different detection scheme,
which leads to a quadratic type of detector (Braginsky and Unruh). In essence, in
this last scheme, we observe the variation of energy of a harmonic oscillator due
to the action of a force of short duration; the change is associated with the initial
condition of the oscillator; the bigger it is, the more excited is the oscillator (eigen-
state E0). The possibility of being able to perform measurements with precision in
energy (in principle indefinitely big) is due to the fact that the phase of the oscil-
lator remains almost indefinite, thus guaranteeing the uncertainty principle. It can,
in principle, measure the variation of a single quantum of energy of the harmonic
oscillator, compared to ∓√

N as suggested by standard techniques (where N is the
number of quanta).

In a possible scheme, used by our group, a capacitive sensor biased in continuous
provides a voltage Vu = kx that is used to bias a pickup capacitive bridge for the
same mechanical oscillator. The output of this second system will then be (quadratic
detector):

V = Vu

d
x = k

d
x2, (34)

where d is the distance between the two faces of the second transducer. For this
system, the Hamiltonian of interaction will be:

Ĥ I = k

d
x̂

2
q

[
X̂1

2
+ X̂2

2
+
(
X̂1

2
− X̂2

2)
cos (2ω0t) (35)

+
(
X̂1X̂2 + X̂2X̂1

)
sin (2ω0t)

]
.

In the last equation, q̂ is the charge in the capacitor.
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As in the previous case, a low-pass filter will enable to detect only the energy
E0 = X̂2

1 − X̂2. The sensitivity for this scheme can be written in term of energy
limit: The amplifier limit value kTn = √

e2
n + i2n come to kTn = h̄ωa , where ωa is

the operation frequency of the amplifier.
Also in this case it can be shown that the minimum detectable energy will be

given by a formula analogous to the previous case:

Es = h̄ω0√
2ω0τ

. (36)

3.2.8 Facility for Micro- and Pico-gravity Experiments

In this section, it made the description of the main facilities for microgravity exper-
iments, implemented in different parts of the world; the section ends with the
description of the facility “GiZero,” considered on behalf of ASI, which should
allow the execution of experiments in conditions of pico-gravity, including the
GReAT experiment, which is described in a later section of this chapter.

Drop Towers A large number of drop towers were implemented in several parts
of the world (Spain, USA, etc.); as an example, we illustrate the drop tower at the
University of Bremen, Germany, which is by far the most representative in this area.

The Bremen drop tower is 146 m high and the free fall of the capsule occurs
inside a tube in which it is made the vacuum, for a height of 110 m. The duration
of the free fall is of 4.7 s and the residual acceleration that is obtained is 10−6 g,
after that the transients introduced at the stage of release are damped. The system
of deceleration is implemented with a 10 m high container filled with polystyrene
balls. A catapult system can launch the capsule from the bottom of the tower; the
capsule in “free fall” reaches the top of the tower and then falls, in a time of the
order of 9.5 s. In this case, the recovery system is positioned after the passage of the
capsule.

Japan Microgravity Center (JAMIC) This structure is located in Kamisunagawa,
north of Japan, and it is implemented in an old mine whose entrance is constituted by
a vertical borehole about 710 m deep. Inside this borehole, an evacuated capsule is
dropped, simultaneously a platform is released inside of it on which the experiments
are arranged. Thrusters, external to the capsule, compensate the resistance of the
medium during the 490 m fall. The braking is obtained with a pneumatic system, by
dropping the capsule for 200 m inside an appropriate tube. The residual acceleration
on the platform is 10 μg and the fall time about 10 s.

Aircraft in Parabolic Flight (Ilyushin 76-MDK) In this case, the experiment is
housed in an aircraft capable of taking a parabolic flight during which the gravity is
cancelled. The time of free fall is about 20 s, during which residual accelerations of
the order of 10−2 g are obtained.
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Another category of facility to obtain the microgravity conditions is represented
by the sounding rockets; among many, here we mention two of them:

Suborbital Rockets (Consort Mission—Maser) In these “facilities,” the experi-
ment is allocated aboard a suborbital rocket-type Starfire. In a time of the order of
1.2 min the rocket—that receive the thrust from the propulsor—reaches the maxi-
mum altitude of about 300 km, and then free fall for a distance of about 80 km from
the starting point. The time in which there are the microgravity conditions is about
8.3 min, with residual accelerations of the order of 10−5 g. The space available for
the experiments is a cylinder with a diameter of 0.44 m and a length of 3.65 m.

Orbital Rockets (Maxus—Wolna) In this case, the probe reaches 800–1200 km
of height, with residual accelerations in its return to the ground of the order of
10−2 – 10−4 g, for a time of the order of 14 min.

Space Shuttle This type of “facility” is very well known and does not need a
description. In this case, the shuttle orbits at a height of the order of 300 km and
allows conditions of residual acceleration for times of the order of the week. The
accelerations to which the experiment is subject during launch and reentry are
extremely reduced.

Orbiting Stations In this case, the experiment is brought aboard the station with
the use of a rocket and the conditions of microgravity may extend from 1 week to
several months. The presence of a crew on board means that the experiment can be
followed throughout its execution.

Drag-Free Satellites A satellite in orbit around the Earth is actually a system in
free fall, whose free-fall time is enormously long. It is clear the big interest of the
scientific community dealing with gravitation, for space activities and in particular
for those involving the so-called drag-free satellites. Onboard accelerometers mea-
sure the accelerations that disturb their dynamics and give the appropriate signal to
a set of thrusters that compensate for the measured effect. For these systems, the
residual accelerations are of the order of 10−12 g.

The comparison between the different facilities for micro- and pico-gravity must
be made taking into account the conditions of microgravity that have been reached,
for the time span in which these conditions are kept, for the volume, mass, and
power available for the experiments and to the transient acceleration to which the
experiments are subject at the times of release and recovery. A particular interest
is in the possibility of being able to perform the measurements of the dynamics
of the capsule, so as to be able to assess and remove the inertial effects. Below it
is described the GiZero facility which should be able to ensure the conditions of
microgravity comparable with those of a drag-free satellite, although for shorter
times, but with the advantage of being able to perform a large number of tests, so to
have the chance to adjust, whenever needed, the parameters of the experiment.
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Fig. 12 The GiZero structure

3.2.9 Ballooning Facility for Microgravity (GiZero)

The GiZero facility (Refs. [17–20]) has been implemented to perform experiments
in free fall from stratospheric (i.e., at an altitude of about 40 km) balloon; its level of
residual acceleration will be less than 10−12g/

√
Hz, and the conditions of free fall

maintained for a time longer than 20 s (Fig. 12).
The facility, shown in Fig. 12, is composed of a vacuum capsule that shields from

drag a platform containing the experiment which free falls inside it. The facility
provides a new opportunity to perform scientific and technological experiments that
need very low residual acceleration conditions. In particular, it seems a good tool to
test new apparatus developed for space and to perform precise fundamental physics
experiments.

Precisely it is composed by three parts: An external fairing that provides a
good aerodynamics, an internal vacuum chamber where the platform containing
the experiments falls, and a recovery system. In the structure, the following parts
are also allocated: the power supply, the telemetry, an on-board computer, the atti-
tude and control system, the pressure vessel, and a global positioning system (GPS)
receiver.
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Fig. 13 Mission profile

The free-fall condition is determined by the time during which the internal plat-
form, in free fall inside the capsule, reaches the bottom of it. This time it depends
on the aerodynamic line of fairing.

Figure 13 shows the mission profile for GiZero. Table 3 shows the value of the
main figures of GiZero and its performance.

In about 3 h the capsule is lifted at 42 km. The oscillations of the gondola are
controlled and it is released in an almost steady state. With a delay of a few seconds,
the platform is released inside it and free falls under vacuum conditions until it
reaches the bottom of the capsule, slowed by the atmospheric drag. In 20÷ 25 s
of free-fall, the capsule covers a distance of about 1960÷ 3060 m , respectively. At
this point, an automatic system catches the platform. The capsule continues its free
fall until it reaches an altitude of 20 km where a parachute system will be activated
to recover it. After the splash down the capsule is recovered; suitably refurbished, it
can be used again for another mission.
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Table 3 GiZero characteris-
tics and performance

Capsule

Total length 6.5 m

External diameter 1.1 m

Total weight 1000 kg

Payload

External diameter (max) 0.7 m

Weight (max) 60 kg

Performances

Free-fall time 20–25 s

Ascent time ≈ 3 h

Maximum speed ≈mach 1

Maximum load at the parachute opening 4 g

Splash down speed 7 m/s

The platform in free fall is not an inertial system. Gravitational and inertial accel-
erations act all over it; the formula to evaluate these different contributions is the
following:

g(�r, t) = −�∇V (�r, t) − �! ∧ ( �! ∧ �r) − 2 �! ∧ �v − �̇! ∧ �r − �α(t). (37)

In this formula, V (�r, t) represents the gravitational potential, �! and
−→̇
! are the plat-

form angular velocity and angular acceleration, respectively, �r is the distance of the
considered point on the platform between a reference origin, �v is the velocity of
the considered point, and �α(t) is the linear acceleration that acts on the platform.
The acceleration terms are respectively: gravitational, centrifugal, Coriolis, a term
depending on the variation of angular velocity and linear one. During the free-fall
condition, the gravitational effects that can be observed on the reference system of
the platform are only gravity gradients (Fig. 14).

Figure 14 shows the main contributions at the residual noise on the platform,
during the free fall, in terms of gradients of acceleration, evaluated with a numerical
simulation.

Curve labeled “1” (in green) shows the spectral density of the gravity gradient of
the Earth. The curve labeled “2” (in red) is the contribution of masses placed on the
capsule. The curve labeled “3” (yellow) is the inertial gradient, which arises from
the vibrations of the capsule wall, transmitted to the platform through the resid-
ual gas present in the capsule. The curve labeled “4” (blue) indicates the level of
10−2EU/

√
Hz, where 1 Eötvös Units (EU) is equal to 10−9 s−2. For two points on

the platform distant half a meter from each other, the same plot gives the differ-
ential acceleration in unit of g, multiplying the scale for the factor 5 × 10−11. The
gravitational effects can be reduced taking out the low-frequency components (if the
structure of the capsule is not complicated) and the inertial effects, coming from the
vibrations of the capsule walls, can be easily reduced increasing the vacuum level
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Fig. 14 Power Spectral Density (PSD) of the contributions at the residual gradient of acceleration
on the experimental platform

in it. In this numerical evaluation, the CMR has not been considered and the vac-
uum value is set to Pi = 10−4 m bar . To these terms it is necessary to add this
noise term a continuous component equal to!2 and a component due to the preces-
sion velocity. If  I/I indicates the percentage difference in the principal moments
of inertia of the platform, the precession velocity during the free fall is given
by: !p =  I

I
!. Experimental tests indicate the possibility to obtain values of

! = 10−3 rad/s. Taking  I/I=10−2 as a possible value, a continuous component
equal to !2 = 10−6s−2 = 103EU and a component !p2 = 10−10s−2 = 10−1EU
at the precession frequency act on the platform.

In the following, we give a list of experiments which can be carried out with
GiZero:

Test and Calibration of High Sensitivity Space-Borne Gravity Gradiometers The
calibration is one of the main problems in the development of such instruments due
to the presence of Earth’s gravity and vibrational noise present in laboratory on-
ground. The gravity gradients of the capsule could be used for inferring calibration
signals and additional gauge masses could be placed along the capsule.

Fundamental Gravity Experiments Adding a cryogenic part, the facility allows per-
forming experiments to test the WEP. The experiment consists on the measurement
of differential accelerations acting on two test masses of different materials (e.g.,
aluminum and gold) free falling in the Earth’s gravitational field. The falling test
masses are part of a “differential detector” with zero baseline (the two centers
of mass are coincident). Sensitivities of about 1.5 × 10−13g/

√
Hz (at the liquid

nitrogen temperature of 77 K) and 1.5× 10−14g/
√

Hz (at the liquid helium temper-
ature of 4 K) can be reached for these experiments. The rejection factor for inertial
accelerations must be considered.

The detector is spun about a horizontal axis at a frequency of1 Hz in order to
modulate the gravity signals during the free fall. The estimated accuracies, within
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95 % confidence level, in testing the WEP in a 25 s integration time are 5 × 10−14,
at the temperature of liquid nitrogen, and 5 × 10−15, at the temperature of liquid
helium. For more details, we refer to Sect. 4

General Microgravity Experiments In a multi-payload configuration the system
allows to perform experiments in material science, biology, and fluid mechanics,
being able to accommodate up to five payloads with a total weight of 500 kg.

4 Calibration of the Apparatus for Measurements
of Gravitation and Acceleration

As already told, the difficulties to calibrate an apparatus for gravitational mea-
surements on-ground are mainly due to the presence of environmental noise and
Earth’s gravity; in this section, the activities devoted to the on-ground test of a high-
sensitivity accelerometer of ISA kind will be described; these operations can be
envisaged as examples for more general experiments in gravitation.

We start remembering that for the accelerometer here considered, of the ISA
kind, the frequency band is (3 × 10−5 ÷ 10−1 Hz). Any calibration must be per-
formed trying to circumvent the unavoidable seismic noise, or forcing it at a level of
excitation well above it. A first way to calibrate one instrument is by means of the
measurements of all the fundamental parameters that determine its characteristic in
terms of sensitivity and to evaluate it by means of calculation. In Sect. 2.1 of this
chapter, we had already introduced a formula that makes a compendium of all the
main noise elements of both electrical and mechanical nature for every single axis
of the accelerometer; as shown in Tables 4 and 5, the main mechanical and elec-
trical parameters experimentally measured for one of the three ISA accelerometer
elements (we remember that ISA is a three-axis accelerometer implemented using
three different elements with sensitive axes orthogonal to each other).

Let us recall that the mechanical quality factor Qm is tightly tied up to the vac-
uum conditions in which the sensor is located, being strongly dependent on the

Table 4 Mechanical parameters of the oscillators

M Proof mass 0.22 kg

I Inertia 4 × 10−4 kg/m2

fo Mechanical resonance frequency 3.5 Hz

Qm Mechanical quality factor (environment vacuum) 0.3− 10−4

kt Elastic constant of torsion 1.9 × 10−1 N m

G Module of rigidity 2.6 × 1010

L Arms length 45 × 10−3 m

B Ray of proof mass (for a circular proof mass shape) 43 × 10−3 m
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Table 5 Electrical parameters of the accelerometer

C1 = C2 = C3 = C4 Detection capacitor 300 pF

tgδC1 Angle of electrical loss in C1 4 × 10−4

Ca = Cb External fixed capacitor 300 pF

tgδCa Angle of electrical loss in Ca 3 × 10−4

vn Equivalent voltage noise generator 3 × 10−9V/
√

Hz

in Equivalent current noise generator 7×10-15A/
√

Hz

Tn Amplifier noise temperature 0.38 K

Zi Amplifier input impedance 8 × 105 !

A Amplification 50

α Transducer factor 105 V/m

β Electromechanical transducer factor 3 × 10−2

gas trapped in the gap between the faces of the plain capacitors. The two values
indicated in Table 4 forQm are related to the pressure of 103 and 10−4 mbar.

From the values reported in Tables 4 and 5, it is possible to evaluate the sensitivity
of the accelerometer; this gives a value equal to 3.3 × 10−12g⊕/

√
Hz in vacuum

and 3 × 10−10g⊕/
√

Hz at atmospheric pressure (limits due to the Brownian noise).
For the BepiColombo ISA accelerometer, we chose a Qm equal to 100, so that the
resulting sensitivity is 10−9m/s2/

√
Hz.

4.1 Ground Testing and Calibration

The analysis of the noise sources and the theoretical evaluation of the performance
of the accelerometer are not satisfactory and, consequently, direct experimental
tests are necessary. A prototype of accelerometer already implemented as shown
in Fig. 15. The main parts of this instrument are the three mechanical units (with
their own preamplifiers) arranged in order that their sensitive axes are perpendicular
to each other. In the same box, the microcontroller and all the electronics for power
supply, demodulation of signal, and acquisition of data are also included.

For on-ground calibrations, the base is equipped with three support points; two
of them are electronically controlled with micrometer screws. By adjusting these
screws, the gravity acceleration can be set parallel to a sensitive axis (e.g., z) and
perpendicular to the other two axes (x, y). In these conditions, the unit with sensitive
axis along the vertical is subjected to acceleration equal to 1 g⊕; the other two
units are sensitive to a component of g⊕ depending on the angles ϑx , ϑy , from the
horizontal plane. For small variations of ϑx , ϑy , their value in radians corresponds
to the acceleration in g⊕ to which the unit is subject (Fig. 16).
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Fig. 15 Prototype of ISA accelerometer

4.2 Measurement of Transducer Factor and Linearity

The calibration of each single unit of the accelerometer is performed applying to it
a known component of the gravity acceleration by varying the proper angle (ϑx , ϑy)
and by reading the related output. In this case, the connection between the input
acceleration and output voltage is direct and enables an evaluation of the transducer
factor. To perform an evaluation also of the system linearity, the micrometer screws
are replaced with a piezoelectric, able to give a very small change of the angle.
Figure 16 shows the output of a single unit of the accelerometer, excited with DC
accelerations, step by step. The x-axis represents the acceleration measured by the
accelerometer, while the y-axis represents the voltage given to the piezoelectric. It
also represents the inclination in radians (multiplied by a conversion factor equal to
2 × 10−8 rad/V). The plot shows the linearity of the accelerometer response, for a
wide range of accelerations.
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Fig. 16 Output of the accelerometer excited with DC accelerations

4.3 Measurement of the Electromechanical Actuation Factor

In Sect. 2, we introduced the formula concerning the electromechanical actuator.
Biasing one of the control capacitors with a constant voltage V, and superimposing
an alternate voltage v = v0 cos (ωet), a torque equal to M1 = C0

d0

b
2vV = αatt .v at

frequency fe will arise. From the experimental measurement of the parameters that
appear in the formula, it is possible to evaluate the actuation factor αatt. Another
possibility is to measure it experimentally. The measure is performed applying to
the accelerometer elements to be calibrated a well-known torque by changing the
component of gravity acting on them, by means of a piezoelectric system and mea-
suring the voltage necessary to produce the same torque. We have to remember that
in this case the torque is given byM1 = C0

d0

b
2V

2 = αattV .

4.4 Measurement of the Accelerometer Transfer Function
(Resonance Frequency and Mechanical Quality Factor)

Usually an instrument for gravitational measurements (and especially an accelerom-
eter) is implemented in order to have a flat transfer function in its frequency band;
remembering that this transfer function is primarily related to the mechanical har-
monic oscillator, while the whole electronics actuation and transducer element give
a contribution flat in frequency, this characteristic is obtained using the instrument at
frequencies well below the mechanical frequency of the harmonic oscillator, where
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Fig. 17 Transfer function of the accelerometer

the transfer function is flat. The measurement of the transfer function can be per-
formed in two ways: exciting the system using the electromechanical actuator with
a constant amplitude voltage swept in the frequency range where the transfer func-
tion must be evaluated, or exciting the system with a direct acceleration, using the
micrometer screw controlled by the piezoelectric so to change the component of g⊕
acting on the specific element with sensitive axis initially in the horizontal plane.

Figure 17 shows the transfer function of one single axis of the accelerometer. In
this case, Qm is kept low avoiding to make a high vacuum, so to allow the use of
a dynamic signal analyzer, which does not work correctly if Qm is high. As it can
be seen, above the fundamental frequency, equal to 3.5 Hz, the system has a second
harmonic at 16.6 Hz.

From the previous arguments, it follows that the parameters necessary to char-
acterize the transfer function are the mechanical frequency, the mechanical quality
factor, and the response of the system at zero frequency. The correct determination
of the transfer function is evaluated with a precise determination of these param-
eters. The measurement of the mechanical frequency and high mechanical Q (100
in this case) is performed placing the accelerometer in a vacuum chamber, excit-
ing the mechanical oscillator at its resonance at high level and looking at its free
exponential decay.
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4.5 Measurement of the Intrinsic Noise of the System

The test and calibration previously described, give information on the linearity and
level of the output in response to an input excitation, but they did not give infor-
mation on the sensitivity of the instrument. We stated that, due to the impossibility
to filter the seismic noise at low frequencies, the evaluation of the sensitivity of the
system and of its intrinsic noise is quite difficult. The only possibility to perform
such a calibration is to find a place where the seismic noise is very low in itself and
perform measurements with two elements with their sensitive axes aligned so that
the seismic noise can be regarded as a true signal and their difference, representing
the differential acceleration acting on the system, can be regarded as an upper limit
for the sensitivity of each single axis.

Results of such kind of measurements have been already presented in Sect. 2.2.
In Fig. 11, the difference of the signals recorded by two ISA’s elements, arranged
with their sensitive axes parallel is shown.

4.6 Measurement of the ISA Thermal Stability

One of the main characteristics for the gravitational measurement apparatus and
accelerometers is their thermal stability. In the ISA accelerometer type developed for
the BepiColombo mission, due to the high thermal temperature variations inside the
Mercury Planetary Orbiter (MPO) satellite, especially at half of the sidereal period
of Mercury around the Sun, equal to 44 days, the immunity of the accelerometer to
the thermal variations must be very high; ISA thermal stability is 5×10−7 m/s2/◦C.
The instability figure means that, a temperature change of one degree, on the elec-
tronics or mechanical parts, produces a spurious accelerometer output equivalent to
an accuracy of 5 × 10−7 m/s2. To reduce this effect down to the required accuracy,
it is necessary to reduce the thermal variations at the level of 2×10−2◦C. The atten-
uation of the thermal variations can be obtained using an active control loop or a
passive one. The advantage of the active control resides in the possibility to atten-
uate the temperature variations at very low frequency, but this requires additional
power dissipation. The passive control method consists in the employment of a sys-
tem with a very large time constant for its thermal inertial, in order to have a system
with a very low cutoff frequency, ensuring the required thermal attenuation inside
the measurement frequency band. The calibration of this parameter is performed
inserting the device into a thermo-vacuum chamber in order to change its tempera-
ture and control the corresponding signal at the output of the accelerometer due to
the change in temperature.
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5 Test of the WEP—GReAT

The universality of free fall, postulated by G. Galilei [13] and expressed in terms
of equality between inertial and gravitational mass by I. Newton [2], is at the basis
of Einstein’s General Relativity, in terms of the local identity of the gravitational
field with a non-inertial reference frame and it is also indicated as WEP, to be dis-
tinguished from the strong equivalence principle, which states the covariance of all
the laws of nature with respect to all continuous coordinate transformations. The L.
Schiff hypothesis implies that every theory that satisfies WEP is a metric theory, and
vice versa, that is, every metric theory satisfies WEP [33, 35]. On the basis of such
a hypothesis, a WEP experiment allows to test the viability of the metric theories
as opposed to the nonmetric ones. No experimental deviation from the equivalence
has yet been found, even by experiments of very high sensitivity. Every WEP exper-
iment is essentially the test of the universality of the free fall of bodies, as it was
described in the famous experiment that G. Galilei performed and already shown in
Sect. 1.1.

The accuracy of a WEP experiment can be expressed in terms of the Eötvös
parameter η which denotes the ratio between the differential acceleration that acts
on two test masses of different material, divided by the mean acceleration acting on
them:  a = η · a.

The difficulty of such an experiment, as already expressed by G. Galilei itself, is
due to the drag acceleration acting on the free-fall bodies.

A better accuracy can be achieved by comparing the oscillation of two pendu-
lums and by considering that the two masses are in free fall along the tangent to the
trajectory of their respective oscillation. For such kind of experiments (G. Galilei, I.
Newton, and F. Bessel) [16], an accuracy η < 10−3 can be achieved. The use of a
torsion balance (R. von Eötvös) allows obtaining η < 10−8. In such an experiment,
the inertia is determined by the centrifugal force originated by the rotation of the
Earth, and the gravitational acceleration is the g component necessary for compen-
sating it. A possible WEP violation causes a rotation of the torsion balance. The
difficulty of such an experiment relies on the fact that the violation signal occurs at
zero frequency. The effect can be detected by exchanging the position of the two
masses. By using a torsion balance, and by locking it on the gravitational field of
Sun at equilibrium with the inertia of the Earth that rotates around it, the (possi-
ble) violation signal would be modulated by the rotation of the Earth around its
axis with a 24 h sidereal period. The accuracy of such kind of experiments is (R.H.
Dicke and V.B. Braginsky) η = 10−11. Better results can be achieved by means
of space experiments, whenever a satellite is in “free-fall” around the Earth. The
conceptual arrangement is always the same: A very sensitive system detects the
position of the two test masses, and in order to avoid the effects of the gravitational
gradient, the two centers of mass have to be coincident. The sensitivity of the sys-
tem is increased by holding the two masses by a very soft spring, by which a small
acceleration acting on them causes a large displacement that can be easily detected
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Table 6 Performance comparison between ongoing space WEP experiments and GReAT

Name Accuracy Type Funding institution(s)

STEP 10−18 Drag-free satellite NASA

GG 10−17 Drag-free satellite INFN/ASI

MICROSCOPE 10−15 Drag-free satellite CNES/ESA

GReAT 5 × 10−15 Drag-shielded capsule ASI/NASA

(under ideal conditions they ought to be free). In the last decades, several experi-
ments were set up to test the validity of WEP (for a review see [36]). Apart from
Lunar laser ranging and free-fall experiments, the majority of them were performed
on-ground, where several sources of noise (among them seismic noise) ultimately
limit their accuracy. For this reason, the environment offered by space is suitable
for substantial improvements. According to the international proposal of Satellite
Test of the Equivalence Principle (STEP) [37], it seems possible to attain an accu-
racy η ≈ 10−18. In such a case, the system works at liquid He temperature (4.2
K), and uses a drag-free satellite. An Italian non-cryogenic satellite named GG [19]
is under study, with a target accuracy η ≈ 10−17 and a French experiment named
MICROSCOPE is under development to be flown in the next years [34]. Of course,
space experiments are very costly and need a rather long time to be developed. The
GReAT experiment that will be described in this section has the advantage of com-
bining the relative low-noise environment given by free fall, with the repeatability,
resulting in a competitive performance with respect to other ongoing projects (see
Refs. [22–27]). It aims at reaching an accuracy of five parts in 1015. In Fig. 18,
the improvement provided by GReAT (two orders of magnitude) is shown in terms
of the Eötvös ratio η, while in Table 6 its performance is compared with those of
ongoing space experiments.

5.1 Generality of the GReAT Experiment

On-ground and in-space tests had already verified the WEP validity with an accu-
racy of 5 × 10−13. In spite of so high accuracy, grand unification and quantum
gravity theories impose a violation of this symmetry at higher level, demanding for
a more accurate experiment. GReAT aims to obtain an accuracy better than 5 parts
in 10−15; this accuracy is intermediate between the accuracy obtained with the past
experiments and what is predicted for the future space experiments (STEP: 10−18,
GG: 10−17, and MICROSCOPE: 10−15).

The accuracy of ground-based tests of the WEP is limited by the Earth’s seismic
noise and by the small strength of the gravitational signal source. Increase of signal
strength and isolation from external noise are essential ingredients to improve the
experimental accuracy. By performing the experiment in free fall under the action
of the Earth’s gravity acceleration, the signal is three orders of magnitude stronger



The Newtonian Gravity and Some of Its Classical Tests 111

Fig. 18 Tests of WEP in terms of Eötvös ratio η (from [36], modified)

than that in the field of the Sun, used by ground-based experiments (Eötvös type),
and by using the drag-shielded free-fall technique of GiZero (this facility has been
introduced in the Sect. 2.2), the vibrational acceleration noise can be reduced at a
level under 10−12 g. The vertical free fall, compared with the orbital free fall (“drag-
free” satellite), has the drawback of having a much shorter duration—that means
short integration time—but it has the advantages of being much less expensive and
offers the possibility to be repeated at intervals of a few months, allowing to adjust
the experimental set-up, if necessary. The experiment will be repeated with different
material pairs for the test masses of the detector; and the first flight will be carried
out with test masses of the same material in order to exclude any possible spurious
signal that can mimic a WEP violation. See also Refs. [28–30, 32].

A system of two masses of different material represents the main part of a differ-
ential accelerometer which is cooled down to the temperature of liquid helium and
spun up to a maximum rate of 0.5 Hz about the horizontal axis during a free fall. The
free fall is performed inside the GiZero evacuated capsule, released from an altitude
of about 40 Km. We have to remember that the experiment is also cooled down
using liquid helium (4.2 K). The possible WEP violation signal will be detected at
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Table 7 List of the main parts constituting the facility for the free fall

Helium balloon

Gondola attached to the balloon with the mechanism to release the capsule and other house-
keeping equipment

Shielding capsule with a large vacuum chamber

Liquid helium, evacuated cryostat

Instrument package which houses the detector inside the high vacuum chamber

Spin/release mechanism for spinning the instrument package and releasing it into the capsule at
the start of the fall

Differential acceleration detector

Two video cameras at the top of the capsule for monitoring the motion of the instrument package
falling inside the capsule for post-flight

Telemetry system for the downlink from the capsule to the ground

Transonic parachute for decelerating the capsule at the end of the fall

the spin frequency, while the gravity gradients (due to the capsule mass and to the
Earth’s mass) produce components at twice the spin frequency. The strength of the
gravity gradient components is proportional to the distance between the centers of
mass of the two proof masses. The components at the spin frequency can be fur-
ther canceled out by keeping the spin axis of the detector as close as possible to the
horizontal plane.

When compared to future proposed satellite experiments (which could reach
higher accuracy) and to classic on-ground experiments, GReAT results as a good
compromise, potentially able to improve by two orders of magnitude the accuracy
of the test.

In Table 7, it is reported a list of the main parts constituting the GiZero facility,
specialized for this particular experiment, while in its general structure and in the
profile mission it remains the same as the one already described in Sect. 2.2.

To perform the GReAT experiment, it is necessary that the balloon reaches its
floating altitude so to move at the speed of the local wind, that is, the capsule will
be at relative speed equal to zero with respect to the local wind; if its vertical pro-
file is constant, the capsule and the instrument package in free fall would move
laterally during the fall with the same initial lateral velocity and hence maintain
the same lateral distance with respect to each other. We have to note that also the
Coriolis acceleration on the capsule and on the falling package are the same and,
consequently, they do not alter their relative position. However, if the wind vertical
profile changes, the capsule will experience a lateral force that will change its lateral
speed while the instrument package will not experience such a force. A diameter of
1.5 m is large enough to guarantee that the instrument package does not touch the
walls of the capsule, with a lateral wind gradient up to 50 knots over the 4.3 km
of vertical drop. If the balloon is launched during the periodically occurring wind
reversal times the vertical wind gradient is much smaller than the value indicated
above.
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Fig. 19 Numerical evaluation of the gravity gradient due to the mass of the capsule (line-1) and
the signal on the rotating accelerometer during the free-fall plus a possible signal of WEP violation
with η ≈ 10−15

Due to the low relative velocity of the experimental package and to the high
level of vacuum (< 10−6 m bar) present inside the capsule, a disturbance from the
capsule wall to the free-floating detector produces on it a residual acceleration less
than 10−12g/

√
Hz. The free-falling capsule reduces the acceleration noise to val-

ues unmatched by any other Earth-based drop facility and comparable to values
achieved on board drag-free satellites [De Bra]. This acceleration noise acts in the
same mode on the two test masses (common-mode noise) and it can be rejected by
the common-mode rejection factor (CMRF) of the differential accelerometer. For
a conservative value of 104 for the CMRF, the influence of these accelerations on
the differential measurement is made negligible. It is also important to note that the
acceleration noise components produced by the residual gas are proportional to the
pressure inside the chamber. This means that the pressure can be reduced in suc-
cessive flights if, for any unanticipated reasons, its influence on the measurement
proves to be greater than estimated. It is, in fact, well within the state-of-the-art to
obtain pressures at room temperature as low as 10−8 m bar in large volumes.

Figure 19 shows a numerical evaluation of the spectral density of the gravity
gradient Γzx (z and x are the vertical and horizontal axis, respectively) from two
point 1 μm apart along the central axis of the GiZero capsule and originated by the
capsule mass distribution (green line); the red line represents a numerical evaluation
of the gravity gradient that acts on the differential accelerometer when it falls along
the capsule axis, while rotating at 1 Hz around the y-axis. The peak at 2 Hz is the
possible signal due to WEP violation at level of η = 10−15. It is important to stress
that the rotation clearly allows to separate the gravity gradient effects and a possible
WEP violation effect.
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Several prototypes of accelerometers have been implemented and tested in labo-
ratory conditions; the experimental activities were focused in the development of a
mechanical oscillator with high quality factor, low noise electronics, and very high
stability versus temperature variations. A prototype of accelerometer with sensi-
tivity equal to 3.3 × 10−12g/

√
Hz, evaluated measuring separately its parameters,

was implemented and tested in laboratory for a long time period. A value close to
10−10g/

√
Hz due to the seismic noise was obtained in a quite environmental place.

A sensitivity of 4 × 10−14g/
√

Hz can be obtained for the same prototype, increas-
ing the mechanical quality factor and using a low noise temperature preamplifier
matched to the capacitive transducer. A cryogenic version could reach a sensitivity
equal to 5.7 × 10−15g/

√
Hz. In this section, we want to focus our attention on the

description of experimental activities required to obtain the experiment goal.
An outline of the mechanical structure of a prototype of differential accelerome-

ter is shown in Fig. 20. Two sensing masses of different materials are connected to
a rigid frame by means of a couple of flexural elements so that their two centers of
mass are made coincident. Acceleration acting on them can give a rotation around
the common rotation axis passing through the center of the flexural elements. Such a
rotation can be detected by means of two capacitive bridges that in principle work as
described in Sect. 2. Each bridge is composed of two sensing capacitors (the faces
of each sensing mass and two fixed faces) and two external fixed capacitors. The
capacitive bridges are biased at 10 kHz in order to transfer the signal from low to
high frequency and to allow the preamplifier get rid of its 1/f noise. The differential
value is attained by subtracting the two signals. A precise mechanical machining
determines the coincidence of the two centers of mass. A possible difference in the
position of the two centers of mass, as well as the gravity gradient between two such
points, produce a signal at two times the rotation frequency, as previously explained.

The design of the differential acceleration detectors capitalizes on the experi-
ence gained in experimental activities and on several numerical simulations. The
two sensing masses (1 and 2) consist of solid hollow right cylinders with spher-
ical ellipsoid of inertia so as to cancel the second-order gravity-gradient torque
(quadrupole moments). The design of the proposed capacitive detector can accom-
modate a variety of sensing masses with different dimensions and materials. The
differential detector must be designed as much as possible in a way that allows
modifications from one flight to the next, based on the experience gained from the
previous flight. The centers of mass of the sensing masses have been made as close
as possible, as allowed from the technical point of view, in order to minimize the
effect of gravity-gradient forces, rotational motion, and linear accelerations upon
the differential output signal. The prototype implemented at IAPS/INAF has the
two sensing masses of the same material (e.g., aluminum-aluminum). This proto-
type could be flown in a test balloon flight so to characterize the noise environment
during the free fall.

The two sensing masses are constrained by the flexural springs to rotate about
a common axis and their resonant frequencies are electrostatically controlled for
frequency matching. The lower is the resonant frequency of the two oscillators, the
more sensitive is the detector, but with a smaller dynamic range. On the other hand,
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Fig. 20 Outline of a differential accelerometer prototype built at IAPS/INAF

the higher the resonant frequency, the larger the dynamic range and the shorter the
time constant of the transient oscillations. The value of the resonant frequency stems
from a trade-off between sensitivity on one side and fast transient response and large
dynamic range (and also tolerance of centrifugal forces) on the other side. A value
of the resonant frequency in the range 2–5 Hz strikes a balance between the above
competing requirements. Once the instrument is built with a specific mechanical
resonant frequency, this frequency can be lowered by supplying a constant volt-
age to the feedback capacitor fixed plates. All the other modal frequencies of the
instrument are at least two orders of magnitude higher than the controlled flexu-
ral frequency. This wide frequency separation allows most of the signal energy to
excite the degree of freedom of interest. The sensing masses of this detector are not
subject to electrostatic charging because they are grounded to the instrument’s case
through the flexural springs. A high Q factor is obtained by means of liquid helium
refrigeration and by eliminating dissipation sources, that is, the flexural springs, the
instrument’s case and the capacitor moving plates are machined from the same block
of material. We have to remember that this differential accelerometer is using for the
pickup system and for the preamplifier the same techniques as described in Sect. 2.1
and Sect. 2.2.
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5.2 Intrinsic Noise of the Differential Accelerometer

Taking into account what has been shown in previous section and in the case of the
matched preamplifier, the formula to evaluate the acceleration spectral density of
acceleration noise for one single accelerometer, in the case where ωs < ω0, can be
written as

Sa=

(
ω0k

meff

(
4T

Q
+ 2TA

ω0

ωs + ωP
))1/2

ms−2/
√

Hz. (38)

The two terms in inner parentheses correspond to the Brownian noise and to the
preamplifier noise, respectively; ω0 is the detector resonant frequency, ωS is the
signal frequency, ωP is the pumping frequency of the bridge, k is the Boltzmann’s
constant, T is the temperature of the sensing masses, TA is the preamplifier noise
temperature, Q is the quality factor, and meff is the effective mass of the sensing
element. The effective mass is linked to the real mass m, and it simply converts
a translational degree of freedom in a rotational one. For this detector prototype,
meff ≈ 1.8m.

Clearly, from Eq. 38, the sensitivity of the detector increases by decreasing the
resonant frequency and the temperature, and by increasing the effective mass of the
sensing mass and the Q factor. Liquid helium refrigeration will be used to provide
low Brownian noise, high thermal stability, low thermal gradients, and a high Q
factor which are necessary to attain the desired instrument sensitivity.

5.3 Damping of the Transient Induced by the Release
of the Experiment

At the time of release of the package, each accelerometer is subject to an accel-
eration of 1 g that excites the mechanical oscillators. Due to the high mechanical
quality factor, which is necessary to keep the Brownian noise at a low level, and
to the low resonance frequency of the mechanical oscillators, the two oscillators
remain excited for a very long time, which is not tolerable in this kind of experi-
ment. We describe the experimental activity concerning the possibility to damp the
transient in a few seconds introducing an extra damping provoked by a resistance
R coupled to the mechanical oscillator by means of a control capacitor biased at a
DC voltage V0. It is worth reminding that the decay of the proof mass oscillations
is driven by the total quality factor of the electromechanical system which is as
follows:

1

Qt
= 1

Qm
+ 1

Qe
with

1

Qe
= β ω0RC

1 + (ω0RC)2
, (39)

where β is the electromechanical coupling factor given by
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Fig. 21 Decaying amplitude of the oscillator after an excitation of the accelerometer, with a
resistance coupled and decoupled to the mechanical part

β = CE2

mω0
2
, (40)

that is, the ratio of the electrical energy to the mechanical energy.
Figure 21 shows the decaying amplitude of the oscillator after an excitation of

the accelerometer with the resistance coupled and decoupled using the switch. The
accelerometer has a resonant frequency of 18.5 Hz and an (undamped) quality factor
Qm = 2900. The coupling of a resistance R = 50106 ! trough an electromechan-
ical coupling β = 0.01, obtained with a voltage V0 = 1400 V, reduces the value of
the total quality factor at Qt = 441. The flight instrumentation will have a much
lower resonance frequency and higher value of the capacitance C with a consequent
higher electromechanical coupling and a total quality factor close to unity, enabling
a damping of the initial transient in a few seconds. It is very important to note (see
the plot) that the switching on and off of the resistance does not introduce new
transients of electrical origin.

5.4 Common-Mode Rejection

During the free fall, the differential accelerometer is under the action of resid-
ual accelerations that act as common mode. As an example we indicate the noise
induced by the vibrations of the capsule’s walls that propagate trough the residual
gas present in it, or the sinusoidal noise due to the precession of the experiment
platform. The CMRF quantifies the ability of the device to perform such a rejection.
A theoretical evaluation has indicated in 104, the required value for this parameter.
To perform an experimental estimate of this parameter, we built a rotating system
whose axis could be tilted away from the vertical, see Fig. 22. The accelerometer
is mounted onto the system with its sensitive axis orthogonal to the spin axis. The
spin axis is tilted of 10−3 rad, so that each accelerometer element is under the com-
mon action of a component of g equal to 10−3 g; this value is made variable at
0.15 Hz, rotating the device at this frequency. To evaluate the CMRF, the two single
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Fig. 22 Experimental arrangement for the measurement of the CMRF

Fig. 23 Detection system for the measurement of the CMRF

accelerometers output are detected separately. In Fig. 23, it is possible to see the
detection system. The capacitor detectors of the two single accelerometers, S1 and
S2, are connected in a bridge configuration using a single couple of fixed capacitor
and biased at 10 kHz trough a transformer. In Fig. 24a, the two separate sinusoidal
output of the accelerometer (with amplitude of 10−3 g) and their difference are
shown, while in Fig. 24b the difference in a more expanded scale is shown.

The spectra of the signal presented in the previous plots are shown in Fig. 25.
In this case, it is possible to see that at the rotation frequency the attenuation, or
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Fig. 24 a Sinusoidal output of the two accelerometers in the time domain and their difference. b
Sinusoidal output of the two accelerometers in the time domain and their difference

Fig. 25 Spectra of the signal plotted in the previous plot
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Table 8 Characteristics of IFSI precursor accelerometers and WEP detector requirements

Item Characteristics of IFSI proto-
type accelerometers

Requirements for WEP detector

Temperature Ambient Liquid He

Q factor 1000a > 105

Resonant frequency, ω0 4 Hz 2–5 Hz

Sensing mass 0.2 kg > 1 kg

Amplifier noise temperature 10 K ≤ 100 mK

Frequency range Wide band 10−5 – 1 Hz Monochromatic signal at 0.5 Hz

External acceleration noise seismic ≤ 10−12g
/√

Hz(
10−8 − 10−10g/

√
Hz

)

Common-mode rejection, χ 10−4 ≤ 10−4

Linearity range 106 ≥ 106

Acceleration noise (differen-
tial) spectral density

10−10g/
√

Hz ≤ 10−14g/
√

Hz

aThe Q factor is artificially kept low to prevent saturations by using a low vacuum inside the
instrument

CMRF, is equal to 104. This value is obtained adjusting the amplitude and phase of
one of the two outputs. The adjustment of the phase is at level of 4.4 × 10−3s.

Table 8 compares the characteristics of the precursor accelerometers to the
requirements of the differential accelerometer for the proposed WEP test.

Following the experimental results and aware of the strong improvements that
refrigeration brings to temperature stability and Q factor, we are confident that the
experience developed with the precursor accelerometer will enable us to develop
a differential accelerometer of the characteristics required to carry out the free-fall
WEP test.

5.5 Experiment Error Budget

Error sources are both internal and external to the detector. The most important
internal sources are: the amplifier noise, the thermal noise (Braginsky 1974; Gif-
fard 1976), and the viscous drag due to residual gas inside the capacitors (Worden
et al. 1990). The most important external noise sources are: the force and torque due
to Earth’s gravity gradient; the Earth’s magnetic field interaction with the ferrous
impurities in the sensing masses; and similarly paramagnetism of the proof masses
coupled to the magnetic moment of the capsule-fixed electrical equipment. The pro-
posed experimental technique is such that the hypothetical WEP-violating signal
has either a frequency well separated from narrow-band noise sources or a strength
much larger than the broad-band noise sources.
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Table 9 Error budget for the WEP test

Noise source Maximum differential
acceleration

Frequency content

Brownian noise 1 × 10−14g/
√

Hz white

Amplifier noise 4 × 10−15g/
√

Hz white

Capsule’s vibrations 10−17g/
√

Hz white

Drag in capsule 6 × 10−17 g 1/tfall

Proof masses magnetic disturbances < 10−17 g fS

Radiometer effect 2 × 10−16 g fS

Earth’s gravity gradient torques 10−16 g 10−12 g fS 2fS

Higher order gravitational coupling to capsule mass < 10−16 g fS , 2fS , 3fS ,. . .

Others < 10−17 g Various

Error sum (rms), tint = 20 s 2.4 × 10−15 g fS

tfall free-fall time, tint integration time, fS signal frequency

Table 9 provides a summary of the most important noise sources and their fre-
quency content for an instrument with a quality factor Q> 105. Our error analysis
shows that a proposed detector that meets the characteristics specified here will be
capable to carry out a test of the WEP with an accuracy of five parts in 1015, with
95 % confidence level, in a 20 s integration time.

5.6 Release System Overview

The release mechanism is designed to reduce the spurious components of the spin
velocity about the other axes to less than 0.1 deg/s. A (non-cryogenic) prototype
of the spin/release mechanism (see Fig. 26) was built at the Harvard-Smithsonian
Center for Astrophysics (CfA) and has already achieved the desired accuracy at
release on tests carried out in the laboratory on a mock-up of the instrument package.

5.7 Instrument Package

The instrument package, with a mass of 20 kg, will be virtually an autonomous
system during the experiment duration. It will be in free fall within the vacuum
chamber, relying only on internal power. Its only connection to the outside world
will be an infrared link to the on-board data system. Up to the point of release,
the package relies on external power for heating and for operating its electronics.
A small vacuum chamber contains the detector, and it is held at a higher vacuum
(10−11 m Bar) than the cryostat in which it resides. A superconducting magnetic
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Fig. 26 Picture of spin/release prototype system in the CfA laboratory

shield, within the small vacuum chamber, surrounds the detector in order to atten-
uate the effects of external magnetic fields on the instrument. A small conical trap,
made from a wire net at the bottom of the cryostat captures the instrument package
at the end of free fall. The instrument package will wedge itself into the trap and will
become more tightly bound along with each bounce (parachute snap, etc.). Since the
net is flexible, it further isolates the instrument chamber from impulse loads.

5.8 Balloon Launch Facility and Launch Campaign

The drop system can be operated from any balloon launch facility that enables the
operations of a drop system. A possibility is to use a launch base close to the coast
so to have chance to recover the capsule in water. Past experiences demonstrated
the possibility to lunch and recover a capsule of 3500 kg after its released at strato-
spheric altitude and using a parachute to decelerate it from Mach= 0.8. Once the
experiment is operational, we envision a series of balloon launches separated by
time intervals of a few months. One possibility is to follow the wind time rever-
sal which occurs twice per year and schedule one or two launches for each wind
reversal period. The times between launches will be devoted to data analysis, refur-
bishment of the flight hardware, and correction of any problem which may occur.
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Each launch (or couple of launches) will capitalize on the experience gained dur-
ing the previous launch(es) and, if necessary, it will be possible to improve the
experiment performance.

Among the ongoing experiments to test the WEP, GReAT offers an improve-
ment in accuracy with respect to current limits on Eötvös ratio η with moderate
cost and has the advantage of reusability. Its development is based on a well-
established expertise on acceleration sensors and an overall design study conceived
for a strong isolation of detector with respect to all the main sources of noise. The
experimental activity and the simulations performed so far show that a hypothetical
WEP-violating signal greater than the accuracy level could be neatly distinguished.

6 Measurement of the Newton’s Gravitational Constant G
Using a One-Axis Gravity Gradiometer

Every theory of gravitation can be expressed in terms of a set of equations by which
it is possible to evaluate the motion of a test particle in the gravitational field of a
system of masses. In spite of the simplicity of this requirement, the large amount of
theories alternative to general relativity (GR) indicates the complexity of the prob-
lem. One of the basic criteria to test the different theories consists in the verification
of the hypothesis made upon the nature of the gravitational constant G. In GR, the
components of the Ricci tensor are connected to the energy–momentum tensor by
the equation (Einstein equation):

Rij − R
2
gij = −kTij, (41)

where k is a coupling constant, to be determined through the experimental verifi-
cations. In the approximation of weak field and in the static case, it follows the
connection between k and G: k= 8πG. In this equation, the speed of light is take as
unity; in the more general form: k= 8πG/c4. From the above indication, it clearly
appears the importance of a precise measurement of G in the formulation of an
expression for the gravitational field connected to the experimental values. We can
assert that in the Einstein equation, G establishes a relation between the space curva-
ture and the energy–momentum density. Recent experiments for the determination
of G provided values with an accuracy  G ∼= 10−4, but they differ from each other
more than a factor 40 with respect to their relative errors. These discrepancies are
an apparent proof of systematic errors in the different methods and of the difficulty
of the measurement. Accredited values are:

CODATA value: 6.6726 × 10−11m3Kg−1s−2

German PTB results: 6.7154 × 10−11m3Kg−1s−2

The difficulties of the measurement are connected with the smallness of the grav-
itational effects, to the presence of spurious effects, such as electromagnetic and
thermal, and to the necessity of obtaining the necessary metrological precision.
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In the following, a list of different methods and experiments to measure the
gravitational constant is provided.

• Torsional balance; Henry Cavendish (1798) performed the first laboratory mea-
surements of this quantity.

• Measurement of the oscillation period of a pendulum; Luther and Towler (1982).
• Compensated torsional balances. An electrostatic force nulls the effects of a

source mass; Fitzgerald and Armstrong.
• Michaelis et al. have used a torsion balance whose mass is suspended inside

mercury.
• Perturbation of the free fall (acceleration) of a body (test mass), produced by

another mass M. The motion is monitored by means of a laser. In this case, there
is not the elastic force of a spring that usually introduces systematic errors. The
perturbing mass is arranged in order to decrease or increase the acceleration of
the test mass; in this way, the common mode effects will be eliminated. This
experiment is analogous to the experiments involving satellite tracking, but the
possibility to measure M enables to determine separately the value of G.

The method described here consists in the measurement of the gravitational effects
by means of a torsional oscillator that makes up a single-axis gravity gradiometer
for offline components of the gravity gradient tensor. The gradient at frequency 2fr
is produced by a system of two masses rotating at a frequency fr . The advantage of
such a system resides in the possibility to produce the signal at a frequency in which
the seismic noise is low, avoiding the thermal effects and effects depending on time,
for DC signals.

6.1 Description of the Experimental Apparatus

As we told, the measure of the gravitational constant G presented here has been
made using a single-axis gravity gradiometer. The gravitational effect produced by
a system of two masses, rotating at a frequency fr , excites a torsional mechanical
oscillator at frequency 2fr . Such a torsional oscillator is essentially a single-axis
gravity gradiometer able to detect the out-of-diagonal components of the gravity
gradient tensor. The low mechanical oscillator frequency, together with the high
sensitive capacitive bridge detection system, enables the detection of a gravitational
signal with precision better than one part in 104. Such a precision, that we experi-
mentally obtained, can be translated into the same precision in the measurement of
G, at the condition to determine the physical parameters of the whole system with
the same relative error. This experiment has strong analogy with the experiments
involving the classic torsion balance, but it differs for some extremely important
peculiarities which make it particularly interesting: The oscillator system is in neu-
tral equilibrium under the action of the Earth’s gravity field, so that it can be installed
in any place, independently from the local vertical; it can be used also in absence of
gravity (free fall and space experiment); the capacitive bridge pickup system enables
to obtain a high transducer factor to convert the mechanical signal into an electric
one, avoiding the preamplifier noise (Figs. 27–29).
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Fig. 27 Scheme of the experimental apparatus

Fig. 28 Block scheme of the whole experimental system

Fig. 29 Mechanical oscillator; the points c.m.1 and c.m.2 identify the COM of the two sides of
the proof mass, while the points p.r.1 and p.r.2 indicate the geometrical center position of the two
detector capacitors
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The scheme of the experimental apparatus used to perform the measurements
is shown in Fig. 27. It consists of a rotor which produces the gravitational exci-
tations, and of a torsional oscillator sensitive to the gradient produced by these
excitations. More specifically, a rotation of the rotor around the ar axis, parallel to
the z-axis, produces a gravity gradient that acts on the torsional harmonic oscillator,
determining its rotation around the ag axis, lying along the two torsional arms.

In Fig. 28, the block scheme of the whole experimental system is shown. The
gravity gradient produced by the rotor forces the torsional oscillator whose displace-
ments are detected by means of a capacitive transducer. The transducer is biased at a
frequency fp = 10 KHz by means of an AC generator, so that the signal is seen like
a modulation of this bias frequency. After the AC amplifier, the signal is demodu-
lated using a reference frequency coming from the same generator, then converted
and read-out.

Figure 29 shows the details of the torsional oscillator. A test mass is connected
to an external reference frame by means of two torsional arms. The torsion axis is
also the symmetry axis of the test mass and divides it in two sides. The oscillator
is sensitive to a gradient of force which produces a consequent momentum. The
gravity gradient produces a rotation of the test mass around its arms and is balanced
by the torsion momentum of the arms themselves.

As already described in Sect. 2, the harmonic oscillator is described by the
following equation:

I ϑ̈ + ηt ϑ̇ + κtϑ = �M, (42)

where κt represents the elastic constant of torsion, I is the momentum of inertia of
the test mass, and ηt is the coefficient of dissipation. The formula connecting these
parameters to the mechanical resonance frequency is the following:

f0 = 1

2π

√
κt

I
. (43)

We have to remember that the elastic torsional constant is given by the following
formula:

κt = 2GIp
l
, (44)

where G represents the rigidity modulus, Ip is the inertial polar momentum, and l
is the length of the torsional element. G is related to the torsional modulus by the
relation μ = πG/2. For arms having a rectangular section, indicating with a their
width and by h their thickness, one has

Ip = a∗h
12

(
a2 + h2

)
. (45)

From the above formulas follows that a low frequency is obtained making thin and
long arms and a big momentum of inertia. Manufacturing limitations do not permit
to produce oscillators with frequency below some Hz. Another important parameter
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Fig. 30 Scheme for the signal detection

which characterizes the oscillator is its mechanical merit factor, connected to the
Brownian noise. This parameter is given by Q= ω0 · I/ηt and it is connected to the
decay constant of the oscillations: ϑ(t) = ϑ0e

−t/τv cos (ω0t + ϕ), where τv = 2I
ηt

represents the time after which the oscillations are reduced of a factor equal to 1/e.
Clearly, the oscillator transfer function is that of a usual second-order system. In
our case, the excitations are at a frequency lower than the resonance frequency,
where the transfer function is flat. The relation between the momentum acting on
the oscillator and the angular displacements is given by ϑ ≈ M

Iω0
2 . The physical

characteristics of the oscillator made in aluminum (Al 5056) are the following:
M = 2.2638[kg]; I = 4.24 × 10−2[kgm2]; Ip = 2.6 × 10−12[m4]; G = 2.6 ×

1010 [Nw/m2]; ω0 = 8.2[rad/s]; f0 = 1.01[Hz]; kt = ω0
2 × I = 1.7

[
N×m

rad

]
.

The signal is detected by means of a capacitive bridge transducer as described in
Sect. 2.3; in particular, for this experiment, the pickup scheme has shown in Fig. 30.

The output signal at frequency fr , due to the bridge unbalance, is seen like a
modulation of the bias voltage. A high transducer factor α, between the displace-
ment of the test mass and voltage at the output of bridge is obtained by means of
high values of the driving voltage Vp. The bridge’s attenuation avoids this high volt-
age to be present at the input of the amplifier. An alternative configuration to that
indicated is obtained using the two capacitors C1, C3 to detect the signal. In this
case, the system is able to perform a rejection of the flexural oscillation produced
by linear accelerations which act perpendicular to the faces of the test mass and do
not transfer a momentum on it. The output signal of the capacitive bridge is sent to a
low-noise amplifier, working at 10 kHz, where its noise is low. After this, the signal
is demodulated and read-out.

The remaining two capacitors, C3, C4, are used to control the system: A constant
voltage applied across it produces a momentum able to produce a change in the
equilibrium position of the sensing mass and a consequent change of the bridge
balance conditions. Applying a suitable voltage it is possible to bring the bridge
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Fig. 31 Scheme of the rotor for the generation of the gravitational signal

to the equilibrium. High bridge attenuation is essential to avoid the amplifier driven
voltage and for the reduction of the noise introduced by the driven voltage generator.

In this preliminary measurement, the rotor is made by suspending a system of
two masses by means of a wire at a pivot point; an electrical engine produces the
desired rotation. The schematic view of the system is shown in Fig. 31.

Two cylindrical masses, whose dimensions are Φ = 18 cm, height= 11.5 cm, are
placed in a distance of 30 cm apart and connected by means of a rigid structure.

The fundamental frequency of the gravity gradient produced by this system is
two times the rotation one, to avoid the possible noise present at this frequency.

6.2 Estimation of the Gravitational Gradient

In this section, the numerical evaluations of the gravitational effects produced by
the rotor on the gradiometer are reported. The evaluations are performed in two
different ways: concentrated masses and distributed masses.

The first evaluation considers the source masses and the two sides (each one at
the opposite side of the torsional arms axis) of the test masses, as concentrated in
their COM (see Figs. 32 and 33).

Figure 33 shows the momentum (as a function of time) acting on the torsional
oscillator, numerically evaluated. The signal is not perfectly sinusoidal; it shows
a pronounced maximum when one of the source masses is over one of the test
masses, while the minimum, after a quarter of the period of rotation Trot, is not
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Fig. 32 Scheme for the evaluation of the gravitational gradient in the case of concentrated masses
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Fig. 33 Signal in the time domain evaluated numerically for concentrated masses

so pronounced. Figure 34 shows the fast Fourier transform (FFT) of the signal,
renormalized in order to give the amplitude of the different harmonic components.

The momentum acting on the torsional oscillator, obtained with a numerical
evaluation for distributed masses is shown in Fig. 35. The numerical evaluation is
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Fig. 34 The FFT of the gravitational momentum (concentrated masses); notice the different
harmonic components

repeated several times increasing each time the number of elements for the source
and test masses. The asymptotic value for the evaluated momentum, as a function of
the number of elements considered, gives the sought-for value. The error assigned
to this evaluation is taken as the difference between this asymptotic value and the
last value obtained. The FFT of the considered signal is shown in Fig. 36.

6.3 Signals and Noise Analysis

The voltage at the output of the capacitive bridge, in the case of Zi >> 1/(2πfpC)
(C is the equivalent capacity between the point AB), is given by the formula:

VAB = VCD
(

C1(ϑ)

C1(ϑ) + C2(ϑ)
− Ca

Ca + Cb
)

. (46)

Taking into account that C1(ϑ) ≈ Co + Co
d1
bϑ C2(ϑ) ≈ Co − Co

d2
bϑ , we obtain,

in the case that the distances between the faces of the capacitors are d1 ≈ d2 =
d : vs = αbθs . In this formula, b represents the distance between the rotation axis
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Fig. 35 Numerical evaluation of the gravitational momentum for finite elements evaluation

and the midpoint of the detector capacitors. This expression establishes a relation
between the mechanical signal at frequency fs and the amplitude of the bridge out-
put signal at the frequencies fp+fs and fp−fs , where α = nQeVpo

2d is the transducer
factor between the output voltage and deflection angle of the test mass. It represents
also the maximum value of the electrical field inside every detection capacitor.

Concerning the total momentum noise, it can be expressed by the following
formula:

Mt
2(ω) ≈ 4kbωo

mr

[
T

Qt
+ Tn 2ZnCωo

β

]
I 2

b2
 f, (47)

obtained from some of the considerations described in Sect. 2, where instead of the
linear oscillator a flexural one is considered.

6.4 Seismic Noise and Vibrational Noise Rejection

As it will be seen in the results of the performed experimental measurements, the
limit in the precision of the experiment is determined by the value of the seismic
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Fig. 36 The FFT of the gravitational momentum for finite elements evaluation

noise that acts on the harmonic oscillator around the frequencies of the selected
gravitational signal.

The measurements are usually performed with the harmonic oscillator lying in
a horizontal plane with its sensitive axis parallel to the vertical direction. It is clear
that the system performs a rejection of the seismic noise part, not changing the
momentum of the system.

The execution of these measurements requires, in every case, a place in which
seismic noise is low. The preliminary measurements have been performed in the
Experimental Gravitation Laboratory of our IAPS-INAF.

6.5 Thermal Noise

The symmetry of the instrument and the choice of the electric and mechanic com-
ponents with which it has been built, make it stable under temperature variations.
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Generally, the measurements are performed in an environment in which the vari-
ations of temperature are sufficiently low and a thermal control system is used.
In particular, the effects of the temperature variations effect should be avoided
near the frequencies of the gravitational signal. Usually such frequencies are of the
order of the tenth of Hz. At these frequencies, the environmental thermal variations
are reduced and the time thermal constant of the system contributes to a further
reduction of their effects.

Variations of temperature over longer periods can give rise to some problems (as
big signals at the output of the bridge, with consequent saturation of the amplifier).

6.6 Integration

The particularity of this experiment resides in the fact that the gravitational signal to
be detected is periodic with a good stability in frequency; this fact allows performing
a long integration, with a consequent reduction of the seismic and thermal environ-
mental noise and of the intrinsic noise of the instrument. The limit in the integration
time is determined by the frequency stability of the gravitational signal and by the
stability of the read-out system. Besides, as already said, all the effects that produce
signal variation with time (also at low frequency) that can determine the saturation
of the instrument must be eliminated or reduced. Preliminary estimates point out the
necessity to perform measurements for time periods of the order of 104 s.

6.7 Calibration and Metrological Errors

The metrological errors are those caused by the not perfect determination of the
quantities involved in the theoretical evaluation of the effect, but for which it is
possible, at the beginning, to establish the entity of their weight.

The calibration of the system is performed by exciting it with a known accelera-
tion. Such acceleration is produced using small test masses which are set on one side
of the harmonic oscillator test mass so that to produce, under the action of the terres-
trial gravity, a known momentum. We have to remember that the harmonic oscillator
is always in neutral equilibrium in presence of gravity. This method introduces an
error in the measurement of the mass, which is done with a balance calibrated in a
different position and at different times and therefore, with a different value of g act-
ing on it. There is also an error in the evaluation of the position of the small masses
with respect to the torsional arms. The following issues are also to be considered:
nonlinearity of the signal and possible presence of high-order terms, stability of the
calibration with time. The source and oscillator masses must be known with high
precision in their geometric structure, homogeneity and density. Their shape has,
moreover, to be simple, possibly spherical, so that to easily be manageable and to
allow the estimate of the gravitational acceleration produced by it. The structure of
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the source masses has to be such (cylindrical or spherical) not to introduce multi-
pole moments of higher order, so that to facilitate the theoretical calculation of the
gravitational effect produced by them. It must be remembered that the procedure
adopted by us foresees a numerical calculation with the automatic insertion of the
higher order multipoles.

6.8 Systematic Errors

This type of error is connected to effects on the measure which are not easily pre-
dictable. Among these errors those due to wrong evaluations of the experimental
quantities, values measured under different environment conditions (pressure and
temperature) and in different positions (measure of the masses with different local
g values) can be considered. Such errors are responsible for the variety of estimates
of G done in different experiments, with differences that exceed of a factor 40 the
pointed out precision.

6.9 Estimation of the Sensitivity

From the results of the experimental measurements the signal-to-noise ratio is of
the order of 10−4; such value also points out the precision that can be obtained from
the measure: The seismic noise being predominant in comparison to the intrinsic
one due to the experimental apparatus, being possible, in principle, to reduce the
metrological errors to a very low level.

6.10 Experimental Measurements

In this section, the experimental measurements of the system parameters are
reported.

6.10.1 Measurement of the Mechanical Parameters

The measurement of the resonance frequency of the system is done by setting the
torsional oscillator in the same position that will be used during the measurements
of the gravitational effects. The local vertical is perpendicular to the face of the
oscillator test mass. In this way, the torsional arms are stressed in traction and they
suffer a small deformation. This deformation is such that the fundamental frequency
is not only given by a torsion of the arms but also from their traction. This condition
determines an increase of the system frequency. In the sensitivity calculations, the
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Fig. 37 a Transfer function of the system (amplitude). b Transfer function of the system (phase)

experimentally measured frequency value is used. The experimental measurement
is performed by exciting the system with a mechanical solicitation; the signal is
read-out with the capacitive bridge; after the amplifier, the signal is sent to a spec-
trum analyzer. A more refined measure is performed by setting the oscillator under
vacuum so that to increase its mechanical quality factor, but leaving it low enough
so as to be able to excite it with an electric signal; the same one, together with the
response of the system, is sent to a spectrum analyzer. The system transfer function
in amplitude and phase is shown in Fig. 37a and 37b.

The experimental frequency is f0sper = 1.01Hz. The measurement of the
mechanical quality factor is performed with the torsional oscillator in the same posi-
tion as in the case of the measurement of the frequency, in this case the analyzer is
used for visualizing the signal in the time domain. A mechanical solicitation pro-
duces the oscillation to the resonance of the system, whose free decay provides the
value of the decay constant (value connected to the factorQm).

6.10.2 Measure of the Transfer Function in Environmental Conditions

Considering the fact that the experimental measurements are performed at envi-
ronment pressure (condition in which the harmonic oscillator behaves as an over-
damped system, because of the presence of gas trapped between the faces of the
detection capacitors), some measurements of characterization of the system have
been performed under these conditions (Fig. 38a and 38b).

Also for these measurements, the two control capacitors are used, with which
the mechanical system is excited with an electric signal whose frequency is made
to vary in the range required for the transfer function measurement. The transfer
function in amplitude and phase measured experimentally is shown in Fig. 38a
and 38b.
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Fig. 38 a Transfer function of the system in environmental conditions (amplitude). b Transfer
function of the system in environmental conditions (phase)

Fig. 39 a Characterization of the amplifier: gain versus frequency. b Characterization of the ampli-
fier: phase versus frequency. c Noise introduced by the preamplifier. Green: 4pF/44MOhm; Red:
Zi= 22pF/44MOhm

6.10.3 Measurement of the Electrical Parameters

In this section, the characterization of the amplifier is reported. The amplification
as a function of frequency is shown in Fig. 39a, while the phase between the input
signal and the output of the amplifier is shown in Fig. 39b.
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Fig. 40 Configuration for the calibration of the system

Fig. 41 a Output signal versus the momentum. b Difference between the slopes shown in the
previous figure, this result shows the nonlinearity of the system

In Fig. 39c, the spectral density of the amplifier noise with its input impedance
close to two different impedances, whose values are reported in the picture caption,
is reported. From the plot it is possible to infer the values of the voltage and current
of the amplifier at 10 kHz: en = 50 nV/sqrt(Hz), in = 18 fA/sqrt(Hz).

6.10.4 Measurement of the Transducer Factor

The transducer factor of the system represents the relationship among the momen-
tum applied to it and the output voltage of the system. The momentum is applied by
placing some small calibration masses (weight of 80 mg) in a suitable position so
that to determine a known momenta (Fig. 40).

The calibration configuration is shown in Fig. 40. The calibration masses were
placed in the points A and B, where xa ≈ xb ≈ 121 ± 2mm.

The output signal versus the momentum corresponding to the number of calibra-
tion masses arranged in A and B is shown in Fig. 41a. In the same figure, it is also
shown the linear fit of the data.
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Fig. 42 The FFT of the seismic noise recorded in the laboratory, in absence of the gravitational
signal (rotor in steady position)

As shown in Fig. 41b, the difference between the two precedent slopes, indicating
the nonlinearity of the system. The obtained transducer factor is: α = M

V
= 1.58 ×

10−4N×m
V

.
The nonlinearity produces a maximum displacement between the two curves

equal to 0.06/7.5, equivalent to 1.6 %. To increase the precision it is necessary to
use a transducer factor function of the output values. To avoid the effects depending
on the variation of g, the weighting of the calibration masses must be performed in
the place where the experiment is executed.

6.10.5 Measurement of the Seismic Noise

The value of the seismic noise, particularly at the frequencies to which the grav-
itational signal is produced, is one of the main effects that limit the measurement
precision.

The FFT of the noise recorded for a period of 1 h in absence of gravitational
signal is shown in Fig. 42. In the frequency band of interest, the differential noise
seen by the oscillator is under 10−9 N m.

6.10.6 Measurement of the Gravitational Effect

The measurements of the gravitational effects are performed by setting the torsional
accelerometer inside a metallic box. The centers of mass of the two sides of the proof
mass were made close as much as possible to the upper wall of the box, so that to
maximize the produced gravitational effect. The metallic box assures the electric
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Fig. 43 In red, it is shown the gravitational signal produced by the rotation of the masses. In green,
it is shown the same signal after a detrend

insulation of the system. Outside the box it is positioned the rotor, composed of two
masses of the same weight (29 kg each). The frequency of the gravitational signal
produced in this way is two times the rotation frequency, to avoid noise effects
induced by the rotation of the system.

For a further check some tests are performed using a simulacrum of the masses,
of the same volume but of 1 kg in mass. The low-noise amplifier is set inside the
box, while the rest of the electronics is set in a separate box. An important issue
is the equilibrium of the capacitive bridge that handles the reduction of the output
bridge for the driven voltage. The equilibrium is obtained with two variable ceramic
capacitors. The experimental results are shown in the following plots that respec-
tively represent: Figure 43 shows the time slope of the signal; Fig. 44 is a detail
of the previous plot in which the gravitational signal is visible, superimposed to the
same signal filtered at high frequency, it shows the sinusoidal form of the fundamen-
tal frequency of the gravitational signal; Fig. 45 is the fast Fourier transform (FFT)
of the signal shown in Fig. 44 that emphasizes the different harmonics; Fig. 46 is
analogous of Fig. 45 but in a log-log scale; a comparison of the FFT of the signals
produced by the rotor with masses of 29 kg and using a simulacrum with masses of
1 kg is shown in Fig. 47.

6.10.7 Evaluation of G

Taking into account the peak value of the first harmonic from the simulation and
the value obtained with the experimental measurements, we deduced a value for

the gravitational constant equal to G= 8.2 × 10−11 Nm2

kg2 . This value differs by
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Fig. 44 Detail of the previous plot where it is possible to see the gravitational signal (green),
superimposed to the same signal filtered at high frequency (cyan)

Fig. 45 FFT of the gravitational signal showing the harmonics of the gravitational signal

about 160 % with respect to the CODATA value. The difference among the two
values is substantial, but it is compatible with the error that can be attributed
to our measurement; this error, keeping track of the various relative errors, is in
fact of the order of  G

G
= 20/100. The experimental error has a value equal to

 G
G

= 0.195 = 19.5/100.
Such a deviation is substantial besides with the error relative associate to the

same measurement. Of course, with these first evaluations we do not certainly claim
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Fig. 46 FFT of the signal in a log-log scale

Fig. 47 Comparison between the FFT of the signal produced by the action of the rotor with the
source masses (red) and the signal obtained by using the simulacrum with mass equal to 1 kg
(green)

to point out a value of G, but rather to describe a method and a new tool for the
measurement of G. The tool and the described procedure seem to be very promis-
ing for future refined measures of G. Compared with the classical torsion balances
the proposed instrument seems unfavorable, since its frequency is higher than with
respect to the first one; but it must be remembered that the proposed instrument is
excited in a frequency zone where the rotational seismic noise takes on its lower
level. A last consideration for this apparatus is in its possibility to be used in free
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fall and therefore on-board a satellite, unlike the torsion balances in which gravity is
essential to determine the tension of the suspension thread of the test mass. The pro-
posed instrument, by its nature, performs the rejection of the common mode noise;
in the laboratory, it is subject to a very low differential seismic noise and it is, there-
fore, possible to use it for the characterization of the electronic noise of the signal of
pickup systems at the levels of maximum sensitivity. In this respect, it is necessary
to consider that the system has a very low frequency and therefore its transducer
factor is higher compared to the accelerometer that uses a harmonic oscillator with
resonance frequency of the order of 3 Hz. From what results from a first investi-
gation, the instrument can be considered as a new tool for geophysics; in fact with
it, it is possible to perform measurements of rotation of the plan on which it is set.
Measurements executed in this way seem to be complementary to the gravimetric
and clinometric measurements. The activity seems very promising, but it emerges
clearly that subsequent refined measurements require big efforts, either financial and
of time.

7 Space Experiments Using Satellite Tracking: ISA
for BepiColombo

In this section, we describe a different class of experiments consisting in the use
of tracking techniques to measure the position and velocity of a satellite; these
measurements are used in a high precise orbit determination of the satellite with
a simultaneous evaluation of gravitational field parameters, useful to determine the
structure of the planets, their rotational state and to test the theories of gravitation.
In particular, we focus on the Radio Science Experiment (RSE) conceived for the
ESA Cornerstone mission to Mercury named BepiColombo, giving major attention
to the use of an accelerometer that enables to measure the acceleration acting in the
specific position where it is installed inside the satellite. This allows us to refer the
precise orbit determination (POD) with respect to this point, that can be regarded as
a free-fall point, if the linear acceleration acting on it and measured simultaneously
by the accelerometer and the tracking system are removed. See also Ref. [24, 26].

BepiColombo is the first ESA interplanetary mission direct to a planet (Mercury)
close to the Sun; the mission is especially challenging because Mercury’s orbit is so
close to our star, and difficult to reach due to the enormous gravity of the Sun. Only
the NASA missions Mariner 10 and MESSENGER have visited Mercury so far.

The BepiColombo mission, consisting of two orbiters, will be launched in July
2016 with an Ariane 5 rocket from ESA Spaceport in Kourou, French Guiana, and it
will arrive at Mercury in 2024 (Fig. 48). In its journey, the spacecraft will use several
gravity assists around Earth, Venus, and Mercury in combination with solar elec-
tric and traditional chemical rocket propulsion. During the voyage to Mercury, the
two orbiters and a transfer module, consisting of electric propulsion and traditional
chemical rocket units, will form one single composite spacecraft.
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Fig. 48 Artist impression of the Bepi Colombo spacecraft

Once in orbit, the two spacecrafts will start their specific mission with obser-
vations and measurements for at least one Earth year, with a possible extension of
another year.

Mercury Planetary Orbiter The MPO is a three-axis stabilized spacecraft with a
400 × 1500 km polar orbit for coverage of the whole planet. The on-board payload
is devoted to experiments in remote sensing and radio science, among other things.
The main payloads of the MPO are:

• Wide-angle and narrow-angle camera used to map the planet surface and for the
Libration experiment. The cameras require a relative pointing error ≤ 10 μrad/s
and an attitude determination better than 3 μrad (post-flight).

• IR spectrometer, UV spectrometer, X-ray spectrometer, γ -ray spectrometer, neu-
tron spectrometer, to study the rock composition of the planet, to detect the
presence of ice under the surface of the planet, for the atmosphere composition,
and the Sun activity.

• Accelerometer to detect the inertial accelerations acting on the MPO.
• Ka-band transponder to detect the MPO and Mercury positions referred to the

Earth.

The last two instruments are used for global mapping of Mercury gravity and for
tests of fundamental aspects of the GR theory.

Mercury Magnetospheric Orbiter (MMO) MMO will be released from the MPO
in a 400 × 12,000 km polar orbit; the spin-stabilized spacecraft will rotate at 15
rpm. The magnetospheric payloads are magnetometer, ion spectrometer, ion/electron
analyzer, wave analyzer, cold plasma detector, energetic particle detector.

The Mercury magnetic field and its interactions with the wind of particles coming
from the Sun will be observed. The vicinity of the Sun gives rise to a magnetosphere
with important differences with respect to the Earth one.
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7.1 Radio Science Experiments

The RSE are aiming at four scientific goals, to be achieved by means of four
different measurements.

The scientific goals are as follows:

1. Measure the rotation state of Mercury, so allowing to accurately constrain the
size and physical state of the core of the planet.

2. Measure the global structure of the gravity field of Mercury, so allowing to
accurately constraining its internal structure.

3. Measure the local gravitational anomalies of Mercury, so allowing to accurately
constrain the structure of the mantle and the crust/mantle interface.

4. Measure the orbit of Mercury around the Sun and the propagation of elec-
tromagnetic waves between the Earth and Mercury, in order to improve the
determination of the parameterized post-Newtonian (PPN) parameters β and γ ,
and test GR to an unprecedented level of accuracy.

The measurements are as follows:

1. The range and range rate between the ground stations and the spacecraft, having
removed the effects of the plasma along the path by means of a multi-frequency
link in X and Ka band.

2. The non-gravitational perturbations acting on the spacecraft, by means of an on-
board accelerometer.

3. The absolute attitude of the spacecraft, by means of a star tracker.
4. The angular displacement, with respect to previous passages, of portions of the

Mercury surface, by means of pattern matching among camera images.

The scientific results can be obtained only by combining data from four different
pieces of equipment. Of the latter, only one (the accelerometer) is dedicated to these
experiments (although it could also be used to monitor the performance of the ion
propulsion).

The scientific goals of the RSE are an integral part of the BepiColombo science
value, making it a cornerstone mission, and requires to study and simulate these
experiments in a global way, with special attention to the exceptionally complex
spacecraft/instrument interfaces.

Mercury Centric Orbit Determination To obtain the goals 2 and 3, it is necessary to
determine the position of the spacecraft in a Mercury centric frame, with cm-level
accuracy, for the time span of the effective high-accuracy (multi-frequency) track-
ing. The solution has to be obtained in the context of the multi-arc method: The
orbit is split in several arcs, and for each arc the initial conditions are determined.
This allows us to absorb the systematic long-term effects of the unmodeled pertur-
bations, while the use of the accelerometer ensures medium-term (104 s) stability
of the dynamic model at the cm level. At the same time, global parameters such as
the Mercury gravitational potential coefficients are determined. This is conceptually
not too different from satellite geodesy around the Earth, but in practice a software
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ready to perform this class of experiments for gravimetry around Mercury has to be
used.

Mercury Orbit Anomalies For goal 4, the deviations of the orbit of Mercury from
existing models (JPL ephemerides) have to be determined, with cm accuracy. This
can be obtained by a linear propagation of small deviations, provided the time span
is not too long. The additional unknown parameters would then appear in the equa-
tion for observation (range and range rate). The solution for β and γ would then be
obtained by a fit of a number of these orbital anomalies.

Orbit Propagation Goal 1 requires also the knowledge of the Mercury centric
spacecraft position, but the accuracy required is at the level of a few meters. This
implies that the orbit can be propagated for a time span covering the gap between
two tracking sessions.

Integrated Radio Frequency System Range and range rate are the essential observ-
ables to be used for orbit reconstruction and therefore it is essential to devise a
radio system (both on-board and at the ground stations) capable to ensure the mea-
surement accuracy. An advanced Doppler system using multi-frequency links at X
and Ka band has been developed for the Cassini mission. The goal to which DSN
engineers are committed is for a frequency stability (Allan deviation) of 3 × 10−15

for an integration time between 1000 and 10,000 s. Such high frequency stability
is probably not necessary for achieving the scientific objectives of the RSE, whose
Allan deviation target is 10−14 for the same integration times. It is, however, impor-
tant to remark that a Cassini-like configuration allows us to achieve this goal in the
Mercury environment for a large range of operational conditions.

7.2 The ISA Accelerometer

The accelerometer selected for the BepiColombo mission—the ISA—has been
developed at IAPS/INAF and is now under development for space use by Thales
Alenia Space–Italia. A prototype with a sensitivity of 10−9ms−2/

√
Hz, one order

of magnitude better of what required for the RSE, in the required frequency band
(3 x 10−5 ÷10−1 Hz), has already been implemented and tested for a long time.

The implementation work of the ISA accelerometer has to take into account
several requirements and conditions, among them we can recall the following ones:

• Right sensitivity and frequency band of the accelerometer, taking into account
the satellite environment (temperature and vibrational noise).

• Thermal and mechanical interfaces with the MPO, including constraints on vibra-
tions, accommodation with respect to the MPO center of mass (COM) (position,
position accuracy, and stability), interface temperature excursion and short-term
stability, and the thermal design of the accelerometer, with the goal of minimizing
its mass.
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• Minimizing of the effects of any disturbances unlikely to be eliminated by
spacecraft design (small-amplitude, low-frequency vibrations).

• Identification of suitable calibration methods and strategies.

7.2.1 ISA and the Scientific Performance Requirements

The ISA accelerometer will not directly measure none of the physical quantities
connected with the previously cited goals. Hence, we are not able to link with a 1:1
correspondence the instrument performances with a given physical characteristic of
Mercury or to a parameter of GR. Anyway the benefits of an on-board accelerom-
eter have been well evidenced by the RSE simulations performed by Milani et al.
2003. The accelerometer role is just to measure the non-gravitational accelerations
produced on the MPO structure by the incoming solar visible radiation and by
the planet albedo (Mercury Environment Specification (Part I), SCI–PF/BC/TN01,
4 July 2002). These perturbing accelerations are then removed from the list of
unknowns (practically, some of the unknown parameters are replaced by the
accelerometer calibration coefficients), in such a way that the MPO spacecraft (i.e.,
the vertex of ISA at which all the measurements are referred) should be considered,
a posteriori, as a drag-free satellite falling—along a geodesic—in the pure gravita-
tional fields of Mercury and the Sun (and, to a lesser extent, of the other planets, in
particular of Jupiter).

This target is essential for an accurate orbit determination of the MPO around
Mercury and, as a consequence, of Mercury’s COM around the Sun. Consequently,
in the case of the gravimetry experiment, the Mercury gravitational anomalies are
well isolated with respect to any other perturbation which can act with similar
effects. The harmonic coefficients of Mercury gravity field are solved through a
global least squares fit, using all the data, together with the corrections to the orbit
of the planet, the initial conditions (state vector) for each orbital arc and, of course,
the accelerometer calibration constants. In particular, the accelerometer thermal sta-
bility with respect to the long-period thermal effects represents a strong requirement
for a full success of the RSE. From the simulation results, it is clear that the ther-
mal effect with a 44 days periodicity (at half of the sidereal period of Mercury
around the Sun) must be reduced, using an active control, at a level below 10−8

m/s2, considering a time variation of more than 9 h (connected to the minimum of
the ISA frequency band). It will be therefore possible to determine the coefficients
of the spherical harmonics of the planet gravity field, up to a degree l= 30, with a
signal-to-noise ratio still greater than 1 (and larger than 10 to the degree l= 20). Con-
cerning the GR experiment (Milani et al. 2003), the same thermal condition enables
the determination of the PPN parameter γ , at the level of 2× 10−6.

As shown in Fig. 49, the envelope of the total noise considered for the RSE,
coming from the accelerometer and the tracking, in terms of equivalent accelera-
tions. The red line represents the ISA noise, considered as white and at a level of
10−9m/s2/

√
Hz. The green line represents the thermal noise due to a possible white

noise at a level of 4◦C/
√

Hz, present at the mechanical interface between the MPO
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Fig. 49 Total noise considered for the RSE, coming from the accelerometer and the tracking, in
terms of equivalent accelerations

and ISA, attenuated by the passive thermal filter of ISA. The blue line represents
the total noise for the tracking expressed in acceleration. The black line represents
the total noise (quadratic sum of the previous ones). This plot is a good guideline
to set the limits of the vibrational noise allowed on the MPO. It is necessary to
remark that this limit has been obtained in case of a passive thermal control. In
the same hypothesis of thermal variations and using an active thermal control (now
the baseline), the attenuation to consider is 700. In this case, the green line is flat at
level of 2.8×10−9m/s2/

√
Hz at frequency below approximately 10−3 Hz; at higher

frequencies, the attenuation increase of 20 dB per decade.

7.2.2 Instrument System Description

The ISA instrument configuration is based on two units: The “ISA Detector Assem-
bly” (IDA) and the “ISA Control Electronics” (ICE) which interfaces electrically
the MPO as shoved in Figs. 50 and 51. The measurement concept is the same as
described in Sect. 2. As shown in Fig. 52, the general architecture of the instrument,
where it is possible to see the three sensors with the relative sections for biasing the
transducers and to pickup the signal, amplify, and read-out it after the demodula-
tion. Also indicated are the modules for accelerometer calibration, thermal control,
reference, processing and control.

Mechanical Arrangement

The implementation of the three-axis accelerometer is made by three elements
arranged with their centers of mass along the same axis (which, if possible, will
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Fig. 50 ISA experiment concept sketch

Fig. 51 ISA experiment high level block diagram

be made coincident with the MPO rotation axis). This choice allows avoiding the
inertial effects due to the nominal angular velocity and angular acceleration, equal
to zero for points lying along the rotation axis; the gravity gradient effects will be
minimized too, especially if the sensitive element with axis parallel to the rotation
one is positioned with its COM coincident with the spacecraft COM. The three
accelerometer elements with the sensitive axis of the central element aligned along
the satellite rotation axis (Z-axis) are shown in Fig. 53; the origin of the reference
frame is the spacecraft nominal COM.

In Sect. 2.2 of this chapter, the indications concerning the noise analysis for each
element of the accelerometer are reported. In Fig. 54, the drawing of the mechanical
oscillator with its dimensions is reported. In Fig. 55, the three mechanical elements
are shown in their new arrangement, installed inside a box necessary to guarantee
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Fig. 52 General functional instrument architecture

Fig. 53 Arrangement of the three sensitive axes

the alignment of the sensitive axes and the conditions for a proper thermal insulation
(Fig. 56).

In Fig. 56, the external aspect of the box, with the indication of the attach points
to the other external boxes is shown.
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Fig. 54 Dimensions of the new ISA mechanical oscillator prototype

Fig. 55 New ISA mechanical elements installed inside the box

Fig. 56 Box containing the three mechanical elements
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Fig. 57 Analog section of electronics prototype

Low Dissipation Electronics

The criteria used to implement the electronics for the accelerometer are the
following ones:

• Obtain the right sensitivity of the apparatus
• Be very compact
• Have the lowest level of power dissipation
• Be very stable with respect to temperature changes

A very stable reference is used by a modulator to generate an alternate voltage that
biases the capacitive bridge. The modulated signal is sent to a low-noise amplifier
followed by a demodulator; after the demodulation the signal is sent to an analog-
to-digital converter (A/D) that uses the same reference signal. A microcontroller
commands the demodulation, the averaging, the filtering and the other functionality
of the accelerometer.

The analog section of the electronics for one element of the accelerometer is
shown in Fig. 57. It has reference, modulator, low-noise amplifier and demodulator
(Fig. 58).

The digital section of the new ISA electronics is shown in Fig. 58. It consists of a
microcontroller that takes the three signals and makes some operation on them and
controls also the output system.
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Fig. 58 Digital section of the new ISA electronics of prototype

7.2.3 Instrument Operations Concept and Its Error Budget

The accelerometer continuously measures the three components of the acceleration
acting on the MPO as well as the inertial and gravitational gradient components
acting on its proof masses. The concept of the instrument operation is to detect all
the accelerations that perturb its pure gravitational orbit. In fact, the MPO in orbit
around Mercury is a not an inertial system; in every points on it (in particular, in the
COM of each proof mass) acts an acceleration given by the known formula_37, that
we report here for commodity:

g (�r, t) = −�∇V (�r, t) − �! ∧ ( �! ∧ �r) − 2 �! ∧ �v − �! ∧ �r − �α(t), (48)

where V (�r, t) is the gravitational potential, �! is the angular velocity, �r is the posi-
tion vector on the satellite from the reference origin to a point on the MPO (COM of
each proof mass), �v is its velocity vector, and �α (t) is any linear acceleration acting
on the MPO. The first three terms on the right-hand side can be easily recognized
as gravitational, centrifugal and Coriolis accelerations respectively. The last term
depends on the variation of the angular velocity. On the reference system of the
“free falling” MPO it is possible to measure also the acceleration gradients.

Inertial Effects These effects are related with the last four terms of the previous
formula_49. We can divide them in linear and angular accelerations.

Linear Accelerations Every point in the satellite is under the same action of linear
accelerations; these can be external to the satellite, as the solar radiation pressure,
and internal to the satellite as in the case of the motion of the mechanical parts
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(reaction wheels among them), fuel sloshing, and mechanical vibrations with high
mechanical merit factor. These accelerations are the main components that need to
be measured in order to reduce the effect of perturbations on the gravitational orbit
of the MPO. It is necessary to remember that ISA is not an absolute accelerometer
and so, it is not able to measure constant accelerations, and the reliability of its
output is only for measurements in its own dynamic range.

Angular Accelerations For the angular accelerations the effect on the satellite is
different on points at different distances from the rotation axis; to avoid these effects
the accelerometer must be installed with its COM very close to the MPO COM
(possibly coincident). Also in this case it is necessary to underline that ISA cannot
detect constant angular accelerations, but only terms varying with time and, clearly,
if the MPO COM is away from the COM of the ISA proof masses.

Coriolis Acceleration This effect arises only if there is a motion of the proof
masses. Recalling that the accelerometer is hard mounted on the MPO and each
proof mass con move only with one degree of freedom, the Coriolis acceleration,
acting perpendicularly to this direction has no effect on it.

Gravitational Effects The gravitational effects on the ISA proof masses can be
induced by a mass in the satellite and by a mass external to it. The gravitational
effects induced by the satellite mass are, in general, constant and so, they are not
detected by ISA. Gravitational effects induced by masses, which are in motion on
the satellite, produce effects that are variable with time and likely to be detected.
Such effects can be due to reaction wheels, fuel sloshing, level change of the fuel,
and so on. Gravitational effects induced by masses external to the satellite are mainly
due to Mercury and to the Sun.

Thermal Effects Thermal variations inside the MPO have very strong implications
on the performance of the accelerometer, acting directly on it and inducing pertur-
bations through the thermoelastic deformation of MPO structure. Recalling that the
accelerometer stability is 5 × 10−7m/s2/ ◦C, this means that to avoid the impact of
the thermal effects on it, the thermal variations must be less than 2 × 10−2◦C in the
frequency range of the accelerometer.

Inertial Effects Induced by the Thermal Variations ISA is not an absolute instru-
ment and cannot detect constant signals (gravitational and inertial), but depending
on the temperature change, inertial and gravitational constant effects can be “mod-
ulated” by the change of the COM position of the proof mass and by the change of
the sensitive axis direction.

Intrinsic Accelerometer Noise The last noise term that we like to mention here is the
intrinsic accelerometer noise. It is necessary to recall that this noise is flat in the ISA
frequency range, and at the level of 10−9m/s2/

√
Hz. In Table 10, we report a list
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Table 10 Signals and noise acting on the accelerometer

Effect Type Characteristic

Solar radiation pressure Signal Modulated at orbital frequency
and spin

Albedo and infrared emission from Mercury Signal Modulated at spin frequency

Attitude maneuvers and spacecraft buffeting Signal Random

Electromagnetic effects Signal Random + modulated at orbital
frequency

Orbiter spin rotation False signal Modulated at spin frequency

Changing of orbiter mass False signal Colored noise during maneuvers

Mercury gravity gradient on the accelerometer False signal Modulated at orbital frequency

Thermal variations in the instrument mounting
plate

Noise Colored noise, 1/f

Sinusoidal thermal variations Noise Modulated at orbital frequency

Differential heating of the MPO Signal Modulated at orbital frequency

Instrumental noise Noise White noise

of these effects, indicating their type and characteristic. The effects are divided into
three categories: Signal: all the inertial effects that produce a real displacement of
the MPO COM, measured by ISA. These measurements give useful information to
recover the MPO gravitational trajectory by tracking the MPO from the Earth. False
signal: gravitational effects inducing signals on the accelerometer, but not useful to
recover the gravitational trajectory of MPO, because the tracking takes them into
account. Noise: effects on the accelerometer not related to displacements of the
MPO COM.

7.3 ISA_BC On-Ground Calibration

In Sect. 2, we have already introduced the accelerometer on-ground calibration here
we only remember that for the ISA accelerometer proposed for BepiColombo the
sensitivity is 10−9m/s2/

√
Hz.

7.4 ISA_BC In-Cruise and In-Orbit Calibrations

The ISA in-cruise and in-orbit calibrations will be performed forcing each of its
three elements with a known acceleration signal using the respective actuators. The
actuators will be previously calibrated on ground. The electrical force corresponding
to a given voltage applied to the actuators is not connected with the mechanical fre-
quency but only to the distances between the two plates of the actuators capacitors.
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Table 11 Error budget for the pseudosinusoidal noise. Here, n represents the MPO mean motion
(∼= 7.52 × 10−4 rad/s), ω0 (ω0 ∝ n) and ω̇0

(
ω̇0 ∝ n2

)
are, respectively, the MPO angular rate and

angular acceleration,  �R0 and  �Rt (t) are the displacement errors (see the text), 2 ◦C represents
the amplitude of the thermal effect (that will be attenuated by a factor 700 by the ISA active ther-
mal control), finally  α represents the error (orbital period component) of the time-independent
misalignment angle of the accelerometer. The MPO orbital period P is about 8355 s. The last col-
umn gives the maximum percentage of error over one orbital period of the MPO with respect to
the requested accuracy A0 (with A0 = 10−9g⊕)

Type Due to Spectral content requirement on Error %
A0

Gravity-gradients n Orbital period P and 1 2 P  �R0; �Rt (t) 85

Apparent forces ω0; ω̇0 Orbital period P and 1 2 P

Thermal effects 2 ◦C Orbital period P  T 15

Components coupling Misalignment
angle

Orbital period P  α Negligible

Total 100

An appropriate electrical force applied on them enables to determine the transducer
factor and the ISA transfer function. A particular calibration can be performed by
using dedicated maneuvers of the MPO in order to determine the alignment of the
ISA sensitive axes with respect to the MPO body reference system and so with
respect to an inertial reference system.

7.5 ISA_BC Error Budget

In this section, we report schematically the error budget of ISA, with the purpose to
introduce the main parameters of interest and to deduce the requirements imposed
by the on board accelerometer to the MPO spacecraft. Such analysis has given
indications to the Prime in order to identify the best solution for the MPO atti-
tude control system. The ISA error budget can be estimated taking into account
separately the two kinds of noise:

I. Sinusoidal or pseudosinusoidal contributions
II. Random contributions

In Tables 11 and 12, we specify the contribution of each type of error with respect to
the accelerometer accuracy A0 = 10−9 g. The noise of the first kind is mainly due
to Mercury’s gravity gradients (i.e., its tidal forces) and to the apparent forces on the
rotating spacecraft, while the noise of the second kind is mainly due to the angular-
rate and angular-acceleration noise due to the MPO attitude control, necessary to
guarantee the spacecraft nadir pointing. The displacement �R = ( X, Y, X) of
each proof mass with respect to the spacecraft COM can be seen as the sum of four
different terms:

�R = �R0 + �R0 + �Rt (t) + �Rt (t), (49)
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Table 12 Error budget for the random noise. The vectors �R0 and �Rt (t) define, respectively, the ISA
position matrix and the MPO COM movements due to the HGA and fuel consumption. The quanti-
ties δω and δω̇ are due to the attitude control necessary to keep the MPO at its nominal angular rate
and nominal angular acceleration, 4◦C/

√
Hz represents the amplitude of the thermal effect (that

will be attenuated by a factor of 700 by the ISA active thermal control),  R̈t is the random accel-
eration noise arising from the error part of displacement of the COM as function of time, finally δα

represents the error (random component) of the misalignment angle of the accelerometer. The last
column gives the maximum percentage of error with respect to the requested level of noise A (with
A = 10−9g⊕/

√
Hz ), here assumed equal to the accelerometer sensitivity. The errors are assumed

not correlated

Type Due to Spectral
content

Requirement on Error %A

Apparent forces �R0; �Rt (t) Random δω; δω̇ 60

Thermal effects 4◦C/
√

Hz Random  T 30

Noise on the MPO Movements due to the HGA,
fuel sloshing, . . .

Random 10

MPO COM displacement Movements due to the HGA
and fuel consumption, . . .

Random  �Rt (t) 70

Components coupling Misalignment angle Random δα Negligible

ISA intrinsic noise Random Negligible

Total (not correlated noise) < 100

where �R0 represents the proof mass position in the MPO frame with respect to the
nominal position of the spacecraft COM,  �R0 represents the errors in knowledge
of such position. The spacecraft COM is not fixed in position in the MPO frame
because of the fuel consumption and sloshing and the high gain antenna (HGA)
movements. The �Rt (t) term accounts for such displacements that therefore impact
on the accelerometer measurements. The last term  �Rt (t) accounts for the error
in the knowledge of the MPO COM movements: the errors in the determination of
�Rt (t). In other words, �R0 and  �R0 define the time-independent part of the proof

masses positions with respect to the spacecraft COM, while, �Rt (t) and  �Rt (t) are
the time-dependent part of the proof masses positions with respect to the COM of
the spacecraft. The objective of this analysis is to determine the value of the main
parameters involved, so to keep the error budget for the pseudosinusoidal terms
below 10−8 m/s2 and that of the random contributions below 10−8m/s2/

√
Hz.

As we can see, the first kind of error is directly connected to the determination

of the ISA positions
(
 �R0 and �Rt

)
, imposing requirements on them, while the

second kind of error is connected directly to the ISA positions
(
 �R0 and �Rt

)
,

imposing requirements on these positions as well as in the attitude control errors
(δω, δω).

We define nominal effects or nominal noise the acceleration errors coming from
the sum of the gravity-gradients effects with those produced by the apparent forces.
The maximum disturbing accelerations produced by these nominal effects are func-
tion of the accelerometer proof masses displacements X, Y, and Z with respect
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to the MPO COM ( �R0 and �Rt (t) in Table 16). The 85 % impact for the maxi-
mum error from this nominal noise arises from the 15 % constraint for the thermal
effect. This is dictated by the thermal stability of the accelerometer to the tem-
perature variations (about 5 × 10−8g⊕/◦C) and to the thermal attenuation that we
are able to reach inside the accelerometer band, in particular in the low-frequency
part of the accelerometer bandwidth, that is, in the 10−4 ÷ 10−3 Hz band. The ISA
active thermal control guarantees attenuation by a factor of 700. As we can see from
Table 12, the thermal effect at the MPO orbital period has amplitude of about 2 ◦C;
we, therefore, obtain for the thermal disturbing acceleration:

Atherm.|orb. ∼= 2◦C × 5 × 10−8 g

◦C
× 1

700
= 1.4 × 10−10g, (50)

which is about 15 % of the requested accuracy. With regard to the misalignment
angle, estimated to be 1/3000 rad, its contribution to the error budget is neg-
ligible. Indeed, the maximum non-gravitational acceleration at the MPO orbital
period is due to the direct solar radiation pressure, and it has been estimated to be
asun ∼= 10−6m/s2 ; we, therefore, obtain:

Amis.ang.
∣∣
orb.

∼= 1 × 10−6m/s2 × 1

3000
= 3.3 × 10−10m/s2 (51)

that is about 3 % of the requested accuracy, and therefore negligible with respect to
the other contributions.

With regard to the results shown in Table 12, we assumed the random noise
sources not correlated and we add their contributions in a root-sum-square fashion.
The acceleration noise due to the thermal effects has been estimated as in the previ-
ous case, see Eq. (50). The random component of the misalignment angle is much
smaller than that estimated in Table 12, therefore its contribution to the error budget
is negligible.

7.5.1 Instrument Requirements to Spacecraft

In this section, the requirements imposed to the spacecraft and to other instruments,
connected to the use of ISA on board the MPO and to its level of precision inside
the frequency band are identified. In the following, it is reported a list of these
requirements on the basis of the accelerometer error budget previously reported.

ISA Noise Requirement Inside the Frequency Band

The total noise in terms of acceleration undergone by the ISA accelerometer must be
below the ISA required noise in the measurement frequency band (3 × 10−5÷10−1

Hz). In Fig. 59, the required noise as function of frequency is plotted.
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Fig. 59 ISA noise requirement in the measurement frequency range

Table 13 New values for ISA required noise

Frequency (Hz) 3 × 10−5 10−4 − 10−3 10−1

Acceleration values (m/s2/
√

Hz) 3 × 10−8 10−8 10−7

Table 14 Microvibration requirements inside the measurement frequency band: 3×10−5−10−1Hz

Frequency (Hz) 3 × 10−5 10−4 − 10−3 10−1

Acceleration values (m/s2/
√

Hz) 3 × 10−9 10−9 10−8

In Table 13, these values for the more important points, in order to reconstruct
the curve are summarized.

Vibrational Random Noise On-Board the MPO Inside the Frequency Band

The dynamical noise on board the MPO, induced by all the instruments present on
it, must be kept at 10 % of the ISA precision requirement: 10−9m/s2/

√
Hz in the

range 10−4 − 10−3 Hz, 10−8m/s2/
√

Hz at 10−1 Hz and 3 × 10−9m/s2/
√

Hz at
3 × 10−5Hz.

This kind of noise is mainly due to the HGA movements and to the propel-
lant sloshing, but also the noise introduced by other instrumentation with moving
mechanical parts must be considered. In Table 14, these values are summarized.
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Fig. 60 Out of band total noise

Micro-vibration Random Noise On-Board the MPO, Outside the Frequency Band
10−1 − 300 Hz

The dynamical noise on board the MPO must be below the ISA required precision
in the frequency band, and reduced at high frequencies so to avoid aliasing problems
during the acquisition phase, the saturation of the preamplifier and the saturation of
the A/D converter. In Fig. 60, the micro-vibration requirements in the amplitude of
peak noise that can be present on the MPO (m/s2) so to avoid aliasing noise and ISA
saturation, at the relevant frequencies are reported.

It is necessary to remember that the indicated values are valid when only one
peak of noise is present. When more than one peak is present it is necessary to take
in consideration the value at the different frequencies of their envelope.

MPO Thermal Requirements

The thermal variations induced by the MPO spacecraft on the mounting plate, where
ISA is installed, will be attenuated by its active control, providing their reduction at
a level such that the induced effects are reduced under the required precision inside
the frequency band. The main values to take into account to evaluate these effects
are:

ISA thermal instability, equal to 5 × 10−7m/s2/◦C.
ISA thermal attenuation factor provided by the active control, equal to 700.
In Table 15 the temperature requirements to the MPO at the sidereal and orbital

periods and random is reported.
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Table 15 MPO temperature
variations at the orbital period,
sidereal period, and random

Frequency T (◦C)

Mercury revolution period 25 peak-peak

MPO orbital period 4 ◦C peak-peak

Random noise 4◦C/
√

Hz

Table 16 Values for the
components of �R (in mm)
used for the evaluations

Axis (mm)
−→
R0  

−→
R0

−→
Rt (t)  

−→
Rt (t)

X 0 ± 4 30 ± 1

Y 0 ± 5.5 20 ± 2

Z 0 ± 11 40 ± 4

Requirements on ISA Positioning

Remembering the definition of the vector indicating the distance between the
instantaneous MPO COM and that of the ISA center of mass:

�R = �R0 + �R0 + �Rt (t) + �Rt (t)
given in terms of time-independent and time-dependent parts, we can write the
following requirements:

a. The accelerometer must be placed with its COM coincident with that of the MPO.
b. The three ISA elements com are aligned along an axis and this must be made

coincident with the MPO rotation axis.
c. A position away from the MPO COM is also possible but this implies more

stringent requirements on δω and δω̇.
d. For ISA installed with its com coincident with the MPO COM, the different

values for the components of �R are as reported in Table 16.

Different choices of these parameters are also possible but it is necessary to give
more stringent requirement on the MPO attitude control system.

MPO Attitude Control System Requirements

Starting from the values of �R0 and �Rt (t) reported in Table 16, we computed the
maximum allowable noise of MPO attitude and orbit control system (AOCS) due to
angular rate and angular acceleration.

In Figs. 61 and 62 are reported the values of δω and δω̇ as function of the out of
plane component of the distance, values enabling to reach the required ISA accuracy
in the frequency band 10−4 ÷ 10−3 Hz, when the other two components are fixed
(Xt = 30 mm, Yt = 20 mm).

In Figs. 63 and 64, the requirements for δω and δω̇ spectral density in the whole
measurement band (3 · 10−5 ÷ 10−1 Hz) in the condition of ISA com coincident
with the MPO COM and having fixed all the components of the �R vector are
reported. The green line represents ISA values, while the red one is the expected
AOCS spectral density noise derived in the hypothesis of white noise for the attitude
noise.
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Table 17 Values for δω and δω̇ necessary to guarantee the ISA accuracy in the frequency band
10−4 − 10−3 Hz

δω[rad/s/
√

Hz] 1.5 × 10−5

δω̇[rad/s2/
√

Hz] 1.8 × 10−8

In Table 17, the values for δω and δω̇ necessary to guarantee the ISA accuracy in
the frequency band 10−4 – 10−3 Hz are summarized.

ISA to Star Tracker and MPO Alignment

Because ISA’s measurements must be referred to an inertial frame, it is necessary
to control the alignments of the ISA sensing axes with respect to the star tracker
so to identify the inertial axes. Possible misalignments between these axes give an
error directly proportional to the amplitude to be measured. In presence of a sig-
nal with amplitude equal to the maximum signal allowed by the dynamic, equal
to 3000 × 10−8 m/s2, only a misalignment less than 1/3000 rad guarantees the
precision of 10−8 m/s2 as required.

Data Rate Requirement

The ISA data rate requirement is strongly connected to the MPO environmental
noise, in the condition of noise as previously indicated, in order to avoid aliasing
noise it is necessary to acquire data at 300 Hz and then send the data to Earth at 1.5
KBs in nominal mode.
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Fundamental Physics with the LAGEOS
Satellites

Roberto Peron

Abstract The space(time) around Earth is a good environment in order to perform
tests of gravitational theories. According to Einstein’s view of gravitational phenom-
ena, it is curved, mainly by the Earth mass–energy content. This (relatively) quiet
dynamical environment enables a good reconstruction of a satellite (test mass) orbit,
provided high-quality tracking data are available. This is the case of the LAGEOS
satellites, built and launched mainly for geodetic and geodynamical purposes, but
equally good for fundamental physics studies.
In this chapter a review will be presented of these studies, focusing on data, mod-
els and analysis strategies. Several recent and less recent results will be presented.
General relativity once more appears as a very precise and effective theory for the
gravitational phenomena.

1 Introduction

In dealing with gravitational phenomena, sometimes the geocentric point of view
can be useful and productive. Looking at the hierarchy of masses in the universe
(Earth, Solar System, Galaxy, . . . ) that this particular point of view gives us, the
Earth mass–energy content—for example expressed as the Schwarzschild radius
2GM⊕/c2 ∼ 1 cm—is the first one giving rise to interesting effects detectable
with current technologies. By “interesting effects” here we mean something going
beyond the physics described by the Newtonian framework. This is—as far as we
know—the realm of Einstein’s general relativity theory. After almost a century since
its development and after many decades of intense experimental effort, it appears
there is still room for further inquiry; this space is motivated by the appearance
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of more and more precise experimental techniques—as well as modeling tools—
and by the push from never–ceasing attempts aimed at disputing the theory or its
foundations1.

Among the ways to test gravitational dynamics one of the simplest is to fol-
low (track) the motion of an object orbiting in the gravitational field produced by
another, bigger one (the primary). The orbiting object should be as close as possible
to a point mass, in order not to perturb in a significant way the gravitational field of
the primary; it should be what is called a test mass. A suitable modelization (ana-
lytical or numerical) of this system gives a prediction for the resulting orbit which
can be compared with experimental tracking data. Such a scheme is rather general
and could be applied to a variety of experimental situations. We describe here a
particular such situation, given by the availability around the Earth of objects (satel-
lites) specifically designed to be, as much as possible, close to the ideal concept of
a test mass: the LAGEOS satellites [1]. These, as well as similar ones, have been
designed, built, and launched for geodetic and geodynamical purposes. The study
of their orbital motion, indeed, helps to characterize the fine details of the Earth
gravitational field (and therefore of its structure and composition) and to establish
and maintain a global reference frame with applications that range from astronomy
to navigation (see e.g., [2, 3]).

The LAGEOSs are target for laser pulses sent from ground stations, used to cal-
culate their instantaneous distance (range); the outstanding precision of this tracking
technique, named satellite laser ranging (SLR), allows a precise determination of
their orbits. This can be done with dedicated procedures and a fine modeling of
their dynamics, which is by itself an interesting topic. Along the years, the avail-
ability to the scientific community of the ranging data allowed a variety of studies.
Many of them, as said above, are related to geodesy and geophysics. At the same
time, however, it is possible to exploit the same data to perform fundamental physics
tests, by comparing the (measured and reconstructed) orbit with the ones predicted
by several, competing, gravitational theories. This very simple objective requires a
number of steps to be performed, which will be described in the following. It has to
be stressed that, in this quest, to better data better models must follow. This is espe-
cially true since the sought for signals often lie several orders of magnitude below
the “competitive” signals.

2 Gravitational Physics Opportunities

As mentioned above, along the years the LAGEOS satellites turned out to be very
good targets to be tracked. They materialize very finely (though not exactly) the
ideal concept of a test mass, which has to satisfy the following requirements [4]:

1 For a review of this very general issue see the chapter Gravity: Newtonian, post-Newtonian and
General Relativistic by Clifford Will in this book and [5].
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• No electric charge
• Gravitational bindig energy negligible with respect to rest mass–energy
• Angular momentum negligible
• Sufficiently small to neglect tidal effects

An ideal test mass follows a purely gravitational orbit (a geodesic in metric theories)
and is therefore an appropriate tool to study gravitational phenomena.

2.1 Relativistic Effects on Test Masses Around Earth

General relativity, in its weak-field and slow-motion limit2, provides an effective
description of the gravitational phenomena around the Earth. A formulation of the
relevant equations of motion in a geocentric non-inertial reference system (nonro-
tating with respect to the barycentric one) is given in [6], from which we quote the
relevant terms. The analyses here described are consistent with this formulation.

A test mass orbiting around the Earth is subject in its motion to three main rela-
tivistic effects. The biggest contribution comes from the gravitoelectric curvature of
space-time induced by the Earth mass–energy:

aSchw = GmE

c2r3

[(
4GmE
r

− v2
)

r + 4(v · r)v
]

. (1)

This is called Einstein or Schwarzschild precession [7,8]. The satellite, in its motion
around the Earth, follows the revolution of the latter in the space-time curved by
the Sun mass–energy; this (via parallel transport of the normal to the satellite orbit)
induces the de Sitter or geodetic precession [9]:

adS = 2Ω × v Ω ≈ −3

2
(VE − VS) × GMSXES

c2R3
ES

. (2)

In general relativity, unlike Newtonian physics, mass–energy currents also cause
effects, named gravitomagnetic (see [4]). In particular, Earth’s intrinsic angular
momentum curves space-time and induces a further effect on the satellite orbit,
called Lense–Thirring effect [10, 11] (also termed dragging of inertial frames in
a more general setting):

aLT = 2GmE

c2r3

[
3

r2
(r × v)(r · J) + v × J

]
. (3)

2 The weak-field condition considers the space-time curvature so small that the metric can be
written as gμν = ημν + hμν (Minkowski metric plus a “small” perturbation, |hμν | � 1). The
slow-motion condition requires v � c. Given the relative smallness of the masses at play, as well
as that of their speed when compared with that of light, this approximation of the theory is sufficient
for the purpose.
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In the notation we follow [6]. In particular, c is the speed of light, G the Newtonian
gravitational constant, mE and J are the Earth mass and angular momentum, r and
v the test mass position and velocity in the geocentric frame, MS is the Sun mass,
VE and VS are the Earth and Sun geocentric positions, XES is the geocentric Earth–
Sun vector, with distance RES. We notice that, while the effects described by Eqs. 1
and 3 depend only on the Earth mass–energy and angular momentum, the geodetic
precession of Eq. 2 involves also the Sun (relativistic three-body problem)3.

Using the methods of celestial mechanics (in particular first-order perturbation
theory), the secular4 effects of relativistic corrections in the satellite Keplerian ele-
ments can be evaluated (see e.g., [12]). It turns out that the Schwarzschild term is
mainly effective on the argument of perigee

ω̇Schw = 3(GM⊕)3/2

c2a5/2(1 − e2)
, (4)

the de Sitter one on the longitude of the ascending node

Ω̇dS = |Ω| cos ε (5)

(with ε obliquity of the ecliptic) and the Lense–Thirring one on both node

Ω̇LT = 2GJ⊕
c2a3(1 − e2)3/2

(6)

and perigee

ω̇LT = −6GJ⊕
c2a3(1 − e2)3/2

cos I . (7)

Numerical values can be found in Table 1. The dominant effect is the gravitoelectric
precession, analogous to Mercury perihelion precession in the field of the Sun, with
smaller contributions from geodetic and gravitomagnetic effects. It turns out that
the argument of perigee is a good observable to see in action the Schwarzschild
and Lense–Thirring secular precessions, having a secular part for both , while the
longitude of the node is a good observable for the Lense–Thirring and de Sitter
secular precessions.

Therefore, following GR, the secular behavior for the nodal rate is given by

ΔΩ̇rel = ΔΩ̇dS +ΔΩ̇LT, (8)

while the secular behavior for the pericenter rate is given by

Δω̇rel = Δω̇Schw +Δω̇LT. (9)

Given its higher orbital eccentricity (∼ 0.014 compared to ∼ 0.004) LAGEOS II is
in fact more suited than LAGEOS for performing such a measurement in the case
of pericenter.

3 This effect appears due to the chosen geocentric non-inertial reference system.
4 In first-order perturbation theory, two kinds of behavior for a given element can arise. The first is
a term ∝ sin t or cos t ; this is called periodic. The second is a term ∝ t (or higher powers); this is
called secular, since it tends to accumulate over time.
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Table 1 Rate (mas/year) and orbital shift (over 14 days) of the different types of secular relativistic
precession on LAGEOS and LAGEOS II longitude of ascending node and argument of pericenter
(1 mas/year = 1 milli-arc-second per year)

Precession Rate (mas/year) Shift (m)

LAGEOS Δω̇Schw 3278.77 7.49

ΔΩ̇LT 32.65 7.46 × 10−2

Δω̇LT 32.00 7.31 × 10−2

LAGEOS II Δω̇Schw 3351.95 7.60

ΔΩ̇LT 31.48 7.14 × 10−2

Δω̇LT −57.00 −1.29 × 10−1

Are the expected values compatible with the uncertainty associated to tracking
data? An estimate of the orbital shift due to each effect can be obtained for nearly cir-
cular orbits byΔx|14d  aΔα|14d ; here a is the semimajor axis of the orbit andΔα
is the precession (on node or perigee) integrated over the 14 days estimation period.
The values can be seen in the fourth column of Table 1: given a typical SLR normal
point (see Sect. 2.4) precision of  1 mm, we can notice that the Schwarzschild sig-
nal is well above the noise, while the gravitomagnetic and geodetic ones are barely
above it5.

2.1.1 Testing Inverse-Square Law

Tests for the inverse-square law behavior of gravitation, in the Newtonian limit,
form an important issue. On one side, they are useful to better characterize gravita-
tion itself, especially in the short- and intermediate-range. On another side, possible
violations of this behavior could be related to new interactions between bodies act-
ing at macroscopic distances (New Long Range Interaction—NLRI). In addition,
these NLRIs may be thought of as the residual of a cosmological primordial scalar
field related with the inflationary stage (dilaton scenario) [13].

Usually, this supplementary interaction is described by means of a Yukawa-like
potential with strength α and range λ and transmitted by a field of very small mass
μ = h̄/λc:

VYuk = −αG∞M⊕
r

e−r/λ, α = 1

G∞

(
K⊕
M⊕

Ks

ms

)
. (10)

HereG∞ represents the Newtonian gravitational constant,M⊕ and ms are the mass
of the primary body (the Earth) and the satellite, r is their separation, h̄ the reduced
Planck constant. The strength α depends both on the mass–energy content of the

5 In any case, the secular (systematic) character of the relativistic signal causes it to appear above
the noise upon integration in a sufficiently longer time.
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sources and their coupling strengths, K⊕ and Ks respectively. The suggestion in the
1980s of a possible “fifth force” [14] boosted further research on this supplementary
interaction (see also [15, 16] for reviews and [17] for recent results).

An adequate observable in order to test for such non-Newtonian behavior is the
pericenter of a binary system. A perturbative analysis of pericenter shift has been
performed in [18, 19]. By differentiating the potential, we obtain the radial acceler-
ation between the Earth and the satellite as produced by the long-range interaction:

RYuk = −αG∞M⊕
r2

(
1 + r

λ

)
e−r/λr̂. (11)

We can write the Gauss disturbing equation for the pericenter rate:

Δω̇Yuk = −
√

1 − e2

ena
RYuk cos f, (12)

where f represents the satellite true anomaly. Averaging Eq. (12) over a fast
variable, such as the mean anomaly, we obtain the corresponding secular effect pro-
duced by the hypothesized Yukawa interaction. The maximum secular effect is given
by:

< Δω̇Yuk >2π 8.29 · 1011α [mas/year] (13)

and it corresponds to the peak value at a range λ = 6082 km, very close to one Earth
radius.

2.2 Measurement Concept

Among the various techniques used to track satellites, SLR is one of the most
precise [20]. It uses the propagation of a collimated laser pulse to measure the instan-
taneous distance between a station on Earth and a satellite. At the ground station, a
definite laser pulse is generated and—through a tel escope— sent towards the satel-
lite, where it is reflected back in the same direction by optical elements called cube
corner retroreflectors (CCR); it then comes back to the same station, focused by the
telescope and detected by a proper sensing device (see Fig. 1). By precisely mea-
suring the start and stop times of the pulses with dedicated instruments, it is then
possible to recover the instantaneous station–satellite distance (range):

Δs = cΔt

2
. (14)

This is of course the basic concept of the measurement. In practice, things are made
more complex from having to take into account various phenomena, from the prop-
agation of the pulse in the atmosphere to instrumental biases due to (among other
things) laser stability, detector, timing device. A hint into the complexities of each
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Fig. 1 Matera laser station during a pass. (Photo by Franco Ambrico. Courtesy Giuseppe Bianco,
ASI-CGS)

single measurement can be found in [21]. Laser range observations from the vari-
ous stations on the globe are collected by the International Laser Ranging Service
(ILRS) [20] and are publicly available.

Presently, the two LAGEOS satellites are among the best tracked ones through
the SLR technique. LAGEOS, launched by NASA (1976), and LAGEOS II,
launched by NASA/ASI (1992), have been designed spherical in shape, with high
density and small area-to-mass ratio in order to minimize the effects of the nongrav-
itational perturbations [22]. Their radius is just 30 cm and their mass about 407 kg6.
Their aluminum surface is covered with 426 CCRs.

In our analyses, a multi-arc technique has been employed [23]. The time period
considered in the data analysis has been divided into shorter periods, called arcs,
15 days long. The arc length has been chosen as a compromise between the need
of small not modeled effects, not accumulating too much (arc not too long) and the
need to have a sufficient number of data and the accumulated unmodeled secular
relativistic effects being larger than the corresponding error in the SLR measure-
ments (arc not too short). For each arc the tracking data are reduced, resulting in an
estimate of the state vector (position and velocity) at the beginning of the arc and
selected parameters for the dynamics. A very precise orbit is therefore obtained for
each arc, which can be expressed in terms of Keplerian elements. The arcs have a

6 LAGEOS has an almost circular orbit, with an eccentricity eI  0.004, a semimajor axis aI 
12270 km, and an inclination over the Earth’s equator iI  109.8◦. The LAGEOS II corresponding
elements are: eII  0.014, aII  12162 km and iII  52.66◦.



174 R. Peron

1 day overlap; calculating the difference in elements at the middle of this overlap
provides time series of residuals which contain information on the part of dynamics
which has not been modeled (or has been mismodeled). The fundamental observable
being the range, strictly also the residuals, in their meaning of “observed minus cal-
culated,” are range. The elements difference method used in these analyses retains
the concept for the various Keplerian elements, as shown in [24]. Analysis of the
residuals time series allows recovering a posteriori the signature of effects which
have not been modeled, as it was purposely done for the relativistic part.

2.3 Analysis Strategy

The tracking data (two-way range, in our case) contain the information associated
with the satellite dynamics, as well as with the measurement procedure and the
observational “constraints” (i.e., station positions, reference frames). This informa-
tion has to be extracted in some way from the data. The problem is not trivial,
considering the relative magnitudes of the effects involved (see Table 2). A direct
comparison between the normal point (NP) precision (∼ 1 mm) and the average size
of orbit shift due to the relativistic effects shows that these effects could be recov-
ered once the satellite dynamics has been properly modeled (for a description of the
models employed see Sect. 3). The recovery of the information could be done with
a least-squares procedure, in which data are fit to a model by a proper estimation of
a set of selected parameters.

For the analyses here described, the NASA/GSFC software GEODYN II [25,26]
has been used. This software is dedicated to satellite orbit determination and pre-
diction, geodetic parameters estimation, tracking instruments calibration, and many
other applications in the field of space geodesy.

The orbit determination is based on the numerical integration of the equations of
motion of the satellite using the Cowell’s method. The integration procedure of the
Cowell’s method is a predictor–corrector one, with a fixed time step, and this method
has the great advantage of the ease of its implementation for any given number of
perturbing bodies or nongravitational disturbing effects.

The result for a given perturbing acceleration ap is obtained by solving the equa-
tions of motion (in terms of the satellite position r) given its initial state vector
(position and velocity):

r̈ = −GM⊕
r2

r̂ + ap, (15)

where the effects of each perturbation are considered as corrections to the ideal two-
body Keplerian solution. The equations of motion for the satellite are integrated in
an inertial reference frame, which for GEODYN is the mean equinox and equator
of J2000.
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Table 2 Magnitude of the main disturbing effects on the LAGEOS II spacecraft. (Adapted
from [22])

Effect Estimate Magnitude (ms−2)

Earth’s monopole GM⊕
r2 2.69

Earth’s oblateness 3GM⊕
r2

(
R⊕
r

)2
C̄20 −1.1 × 10−3

Low-order geopotential harmonics 3GM⊕
r2

(
R⊕
r

)2
C̄22 5.4 × 10−6

High-order geopotential harmonics 19GM⊕
r2

(
R⊕
r

)18
C̄18,18 1.4 × 10−12

Moon perturbation 2
GM�
t3� r 2.2 × 10−12

Sun perturbation 2GM�
r3�
r 9.6 × 10−13

General relativistic correction GM⊕
r2

GM⊕
c2

1
r

9.8 × 10−10

Atmospheric drag 1
2CD

A
M
ρV 2 3.4 × 10−12

Solar radiation pressure CR
A
M
Φ�
c

3.2 × 10−9

Albedo radiation pressure CR
A
M
Φ�
c
A⊕

(
R⊕
r

)2
3.5 × 10−10

Thermal emission 4
9
A
M
Φ�
c
α ΔT
T0

2.8 × 10−11

Dynamic solid tide 3k2
GM�
r�

(
R⊕
r�

)2
R3⊕
r4 3.7 × 10−6

Dynamic ocean tide ∼ 0.1 of the dynamic solid tide 3.7 × 10−7

The orbit determination employs then the least-squares solution of the range
residuals:

Oi −Mi = −
∑
j

∂Mi

∂Pj
dPj + dOi, (16)

where Oi are the range observations, Mi their modeled values, dPj the corrections
to the vector P of parameters to be estimated, and dOi are the errors associated
with each observation. Concerning these errors, the dOi account for both the con-
tribution from the noise in the observations, as well as for the incompleteness of the
mathematical model included in the orbit determination software. The least-squares
algorithm seeks to minimize the residuals Oi −Mi by adjusting at the same time
the state vector at the epoch of arc and the parameters selected for estimation.

A basic choice of the analysis has been to use the residuals in order to recover
the relativistic effects. By construction, they provide a measure of the discrepancy
between experimental data and models; by purposely not including relativity into the
modeling set, the residuals time series is expected to contain signatures of relativity
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itself. The basic observable being distance, the residuals are strictly speaking on
station–satellite distances. Being interested in effects related to individuals orbital
elements, the method outlined in [24] has been employed, as said before, in order to
obtain derived residual time series for the various elements. This is the method that
has been used in the relativistic precessions measurements performed so far [27–34].

The strategy employed here could be considered as “minimal” or “conservative”
in the following sense. The precise modeling of the orbits requires complex models,
which depend on thousands of parameters (see Sect. 3). We underline that, while in
general geodetic and geophysical problems often the majority of model parameters
are estimated, in the analyses it has been chosen to estimate only few of them,
namely those most directly related to the particular orbit of the satellites; the other
parameters were selected as consider parameters, that is, ones which are already
known with sufficient accuracy from other sources.

This approach is in line with the strategy of recovering the sought-for signal
from the residuals, and considerably simplifies the mathematical structure of the
problem being solved, moreover strongly lowering the chance of estimation biases.
In particular, it has been chosen not to include the so-called empirical accelerations
in the set of models fitting the SLR data. These can bias the estimation procedure
and corrupt, in particular, the argument of perigee residuals [35].

2.4 LAGEOS Range Data Sets

The ranges so obained are called Fullrate ones, and are the basic product of SLR
observations. In the 1980s it has been introduced a more compact format, called
NP, which is the one commonly used. A NP is basically an “average” of the Fullrate
observations over a defined time period (bin)7. In the formation of NP for bin i, the
observation Oi nearest to the midpoint of the bin is located, and a fit residual FRi
(a residual from which systematic trends in the predictions have been removed) is
calculated. The NP is then calculated as:

NPi = Oi − FRi + FRi, (17)

where FRi denotes the mean value of FRi . The NP so calculated is characterized
by the fact that its random error is reduced to that of the mean of the bin. More
details can be found in [36].

The precision of the measurements is mainly related with the pulse width, which
is usually ≈ 1 · 10−10 s down to 3 · 10−11 s for the best laser ranging stations. In the
case of the two LAGEOS satellites, the NPs are characterized by a root mean square
(RMS) down to a few mm, that corresponds to an accuracy in the orbit reconstruc-
tion at a few cm level, when using the best dynamical models. In the preliminary
analyses a fit of the orbit of the satellites at a 1–2 cm (RMS) level in range has been
achieved8.

7 For the LAGEOSs the bin size amounts to 120 s.
8 In order to obtain a good reference orbit for the considered period, it has been performed a
preliminary data reduction of laser range data with a modeling setup slightly different from the
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3 Models

The procedures for determining the satellite orbit at a level comparable with the
quality of tracking data require models not only for satellite dynamics, but also for
measurement procedure and reference frame transformations.

The dynamics of LAGEOS satellites, seen at the level enabled by the accuracy of
SLR data, is rather complex. Several gravitational and nongravitational effects are
at work; estimates of their magnitude are provided in Table 2 (see [22, 37]).

The models included in GEODYN are devoted to describe not only the satellite
dynamics, but also the measurement procedure and the reference frame transfor-
mations. These models include: (i) the geopotential (both in its static and dynamic
part), (ii) lunisolar and planetary perturbations, (iii) solar radiation pressure and
Earth’s albedo, (iv) Rubincam and Yarkovsky-Schach effects (which need the satel-
lite spin-axis orientation in order to be modeled), (v) drag effects, (vi) SLR stations
coordinates, (vii) ocean loading, (viii) Earth orientation parameters and, (ix) mea-
surement procedure. Usually, the models implemented in the code also include
the general relativistic corrections in the so-called parameterized post-Newtonian
(PPN) formalism [38–41]. In the analyses we performed, in order to solve for the
relativistic secular precessions, we did not include such corrections in our setup.

The particular models used for the analyses here described are listed in Table 3.
For the relevant part, the conventions established by the International Earth Rotation
and Reference Systems Service (IERS)9, which constitute the general framework
for reference systems related issues and measurement models, have been followed
as much as possible. The reference version has been IERS Conventions (2003) [42].

3.1 Gravitational Perturbations

The deviations of the Earth’s gravitational field from the point mass one, due to
the inhomogeneous mass density distribution inside the Earth, are by far the most
important source of perturbations in the orbits of LAGEOS satellites. It is customary
in geodesy and geophysics to represent the gravitational potential by expanding it

nominal one of Table 3. In particular, the radiation coefficient CR has been estimated, together
with corrections to polar motion and length of day. Moreover, empirical acceleration components
in the three Gauss directions have been added. The combined estimate led to the reported 1–2 cm
level in range. Of course, this slight overestimation comes at the price of some aliasing: Therefore,
the results of the analysis could not be directly used for the relativity signal recovery.
9 IERS is the international organization in charge of maintaining the reference frames used in
astronomy, geodesy, and geophysics.
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Table 3 Modeling setup as included in a typical analysis of LAGEOS satellites range data

Model for Model type Reference

Geopotential (static) EIGEN-GRACE02S, EGM96 [43, 44]

Geopotential (time-varying, tides) Ray GOT99.2 [45]

Geopotential (time-varying, nontidal) IERS Conventions (2003) [42]

Third body JPL DE-403 [46]

Relativistic correctionsa PPN [6]

Direct solar radiation pressure Cannonball [25]

Earth albedo Knocke–Rubincam [47]

Station positions ITRF 2000 [48, 49]

Ocean loading Schernek and GOT99.2 tides [25, 45]

Earth rotation parameters IERS EOP C04 [50]
aIn fact, as explained in the text, these corrections have not been included in the modelization setup
used in the analysis

in spherical harmonics (real basis):

U (r) = GM⊕
r

[
1 +

∞∑
l=1

(
R⊕
r

)l l∑
m=0

P̄lm( sin θ)
(
C̄lm cos (mφ) + S̄lm sin (mφ)

)]
,

(18)
see, for example, [37, 51, 52]. Here r , θ , and φ represent the polar coordinates of
the point at which the potential U is evaluated, P̄lm are the associated Legendre
functions, M⊕ the Earth mass, and R⊕ the Earth mean equatorial radius. The nor-
malized coefficients C̄lm and S̄lm, with l called degree andm order, are functions of
the mass density distribution, and completely characterize the gravitational potential
outside the distribution itself. In practice, the series is truncated at some finite lmax:
the model is then sensitive to inhomogeneities at the scale of πR⊕/lmax. The lower
degree harmonics are related to the choice of the reference frame in which the poten-
tial itself is expressed. Of paramount importance are the so-called zonal harmonics,
that is, the ones with m = 0; they represent the part of the potential with rotational
symmetry, and play an important role in the error budget of the measurements. It
has to be noted that some care must be put in dealing with the permanent tide. In
GEODYN, a “tide-free” geopotential is modeled, that is, one in which both the per-
manent part and the related deformation of the Moon and Sun tidal perturbations
have been removed.

The Earth gravitational field, also seen in an “Earth fixed” frame, is not static:
It varies in time due to a series of phenomena, from tides to mass transport
in the Earth/atmosphere system at various scales. The tidal deformations of the
Earth—both solid and ocean—and its atmosphere, are of primary interest for the
measurement because of their combined periodic variations in the gravitational
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attraction of the planet on the satellite [53–60]. In particular, solid tides account for
about 90 % of the total response to the Moon and the Sun tidal disturbing potential.

A convenient way to describe these deformations is through the so-called Love
numbers (kf2,m  0.30, where f represents the frequency of the tidal wave), which
measure the ratio between the response of the real Earth and the theoretical response
of a perfect fluid sphere, and are determined with very high accuracy because of their
long-term effects on geodetic satellites, as in the case of the two LAGEOS [61, 62].

In particular, in the case of solid tides, the degree l = 2 terms, that is, those
due to the quadrupole tidal potential, are the most important to be considered. The
resultant quadrupole tidal potential is the sum of terms like the following ones,
where the summation has to be extended over all possible frequencies f (complex
basis):

U
f
T (r) = −GM

5rE

(
R⊕
rE

)2 ∑
m

k
f

2,m

[(
R⊕
d

)3

Y #2,m(d̂)

]f
Y2,m(r̂E). (19)

In this expression, M represents the mass of the perturbing body (the Moon or the
Sun), d its distance with respect to the Earth, and rE the distance between a given
mass element of the Earth and its center of mass.

Tidal effects are important to be considered in geophysics and geodynamics
because they influence the satellite orbits under three aspects:

1. Kinematic effect: because they produce periodic pulsations of the Earth and, as
a consequence, of the on-ground tracking stations

2. Dynamic effect: because they cause a time variation of the geopotential, that
affects the satellites orbit

3. Reference system effect: because they perturb the Earth rotation, thus affecting
the reference systems used in the orbit computation

Ocean tides are difficult to model because of the greater complexity of the involved
phenomena. Indeed, even if ocean tides account for about 10 % only of the total
response to the external potentials, their uncertainties are a factor of 10 larger than
those of solid tides.

The effect of third-body perturbations has been modeled as well, using the
well-established solar system ephemerides by JPL, DE-403 [46]. As discussed in
Sect. 2.1, the relativistic corrections are consistent with the formulation of [6]. In
line with the chosen strategy of recovering the relativistic effects a posteriori in the
residuals time series, in fact these corrections have not been included in the setup.

3.2 Nongravitational Perturbations

An important part of the satellites dynamics is represented by the effects caused
by nongravitational forces. These, of various origin, are caused by the interaction
of the satellite body with the near-Earth radiation and particle environment. Such
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forces are typically surface ones and depend, in a complex way, on the physical
properties of the satellite, as well as on its attitude. Even for very simple satellites as
the LAGEOS (spherical in shape, very dense, and passive), these effects are relevant
and, especially, very difficult to model. A wide literature is available on the subject,
see for example, [22, 63–65].

The biggest contribution is given by the push of radiation on the satellite surface
(radiation pressure), in particular direct visible radiation from the Sun; also reflected
visible radiation from the Earth (albedo) and infrared radiation emitted from the
Earth surface are important. They depend on the way this radiation is reflected–
diffused–absorbed by the satellite surface, and therefore on the optical properties of
this surface, primarily the CCRs.

The most important nongravitational effect is the direct solar radiation pressure.
The resultant acceleration, for a body of spherical shape, can be modeled as:

a� = −CR
A

m

Φ�
c

(
< D� >
D�

)2

ŝ, (20)

whereA is the cross-sectional area of the satellite,m its mass,Φ� the solar radiation
flux at 1 AU, c the speed of light, and CR (called radiation coefficient) summarizes
the optical properties of the satellite surface. The last squared term is due to the
modulation coming from the eccentricity of the Earth orbit around the Sun (D�
represents the Earth–Sun distance and< D� > its average value, that is, 1 AU) and
ŝ is the Sun unit vector direction. Equation (20) corresponds to the so-called can-
nonball model for the direct solar radiation pressure from the Sun, which represents
the simplest model for a spherical in shape satellite. The model expressed by Eq. 20
is rather good for the LAGEOS satellites, provided an estimate is done of the CR
parameter. Evidences have been provided that LAGEOS II optproperties could have
been changed since the launch time [66].

More subtle perturbing effects are due to the so-called thermal forces; these are
caused by an inhomogeneous temperature distribution of the body (due to its finite
thermal inertia), resulting in a thrust force due to emitted radiation. In particular,
thermal forces depend on the satellite spin vector, giving different contributions
on the orbit as a function of the spin orientation and rate. In the case of a rapidly
spinning satellite, a latitudinal distribution for the differential temperature across
the satellite surface can be assumed, and the consequent (net) recoil force will be
directed along the spin-axis direction, away from the “colder” pole [64, 67–71].
Conversely, if the assumption of a (comparatively) fast rotational motion of the spin
is avoided, a longitudinal temperature distribution arises. As a consequence, the
perturbing force due to the thermal thrust effect will tilt from the spin-axis direction
giving rise to additional “equatorial” components and more complicated equations
to be solved [72].

As soon as the rotational period is less than the thermal inertia, the diur-
nal thermal asymmetry is negligible and the rapid-spin case approximation could
be applied, as in the model developed by [67] or in the more complex model
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of [70]. Otherwise, the model developed by [72] must be used. Therefore, we
have a seasonal-like Yarkovsky–Schach effect in the former case of a rapidly spin-
ning satellite, and a diurnal-like Yarkovsky–Schach effect when the the fast rotation
approximation is no more valid.

The Yarkovsky–Rubincam effect [73–75], or Earth–Yarkovsky effect, is related
with the infrared radiation emitted by the Earth’s surface. The effect can be
explained in the following way: LAGEOS satellites CCRs have a significant ther-
mal inertia and since this thermal response time is shorter than the satellite orbital
period and larger than the spin period (nominal value of about 1 s at launch epoch),
the perturbation causes a temperature asymmetry between the hemisphere facing
the planet and the one opposite to it. We refer to [64] for further details.

In order to model—as accurately as possible—the perturbing thermal thrust
effects, and especially the Yarkovsky–Schach effect, a detailed description of the
evolution of the spin axis is crucial. Several authors have focused on this problem
and tried to explain the evolution of the LAGEOS satellites spin-axis, in either an
analytical [76–78] or a more empirical approach [79].

The most satisfactory approach comes from [76], in which the problem of the
rotation of the former LAGEOS satellite was theoretically developed. Subsequently,
an extension and improvement of the model appeared in [80], in which solutions
were also obtained for LAGEOS II. A refinement of the model described in [80] is
contained in [81]. Finally, based on the results of these works, LOSSAM (LAGEOS
Spin Axis Model) has been created to bring the problem of the rotation of both satel-
lites a significant step further (see [82, 83], and [65] for the final model). LOSSAM
combines the corrected mathematical theory with (past) observations of the rate and
orientation of the angular velocity of the two LAGEOS satellites. The independent
observations form a crucial element of this study.

However, in particular, because of the intrinsic difficulties in the modeling of
LAGEOS II spin-axis vector—especially because of the slow down of its rate [84,
85] and the lack of more recent observations of its rate and orientation [65] —and
also because of the passage from the fast rotation regime to the slow one during the
time span of the analysis [72, 86], a different approach has been followed. Indeed,
this perturbation was not included in the dynamical models but, as explained in [32],
its unmodeled effects on the pericenter of LAGEOS II were a posteriori removed
through the final least-squares best fit.

3.3 Empirical Accelerations

A modelization piece that is often used in precise orbit determination is given by the
so-called empirical accelerations. These are general acceleration terms added to the
equations of motion, and are aimed at modeling and/or absorbing small otherwise
unknown effects which may be relevant for the dynamics. They are usually decom-
posed in the three Gauss directions r̂ , t̂ , ŵ (radial, transverse, and out-of-plane), in
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the form
A(t) = A0 + A1 sinM + A2 cosM, (21)

where M represents the satellite mean anomaly,aiming thus at modeling constant
or once-per-revolution accelerations. This orbit modeling tool is useful when long
wavelengths orbit errors, including secular disturbing effects, need to be removed,
as well as for long-period resonances and also nongravitational perturbations that
are not included in the software dynamical model. Experience shows that, while
they are useful to improve the fit quality, they can easily bias the estimation of other
quantities (this is known as over-parameterization of the problem). We highlight
once more that, in order to avoid the orbit corruption, in particular of the satellite
argument of pericenter, their use has been avoided during the data reduction.

4 Data Reduction

In the analyses described here, more than 10 years of LAGEOS and LAGEOS II
laser tracking data, provided by ILRS [20], have been reduced using the GEODYN
II software [25]. The selected period has been divided into 15-days arcs. For each of
them, the data reduction provides an estimate of the initial conditions (state vector)
together with estimates of selected parameters. The models employed (see Table 3)
enabled a very good fit of the data, as can be seen in the statistics. In particular,
in Fig. 2, the post-fit weighted RMS and a histogram of the residuals in range are
shown. These plots are related to runs dedicated to analyse the LAGEOS II perigee
behavior (see [33]). The average RMS is somewhat higher than the “ideal” level that
could be expected based on data quality; this is due to the fact that in this analysis
no relativistic effects were inserted in the modelization set, thereby lowering the
overall accuracy. In this way, however, the residuals contain useful information,
which is indeed related to relativity itself. This can be seen in the histogram of the
residuals in range; their distribution appears close to but is not exactly Gaussian,
indicating that some information is still present in the residuals themselves. The
same reasoning applies also to the analysis reported in [31]; in that case, however,
only the gravitomagnetic contribution was taken out.

5 Zonal Harmonics Related Uncertainties and ombination
Formula for Lense–Thirring Measurements

Detailed error budget calculations show the importance of the zonal harmonics
uncertainties in the overall effectiveness of the analysis procedure in extracting the
relativistic signals. This is especially true in the case of Lense–Thirring measure-
ments employing the nodal residuals. In particular, the quadrupole coefficient C̄20
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Fig. 2 LAGEOS II post-fit weighted RMS (left) and residuals in range (right) computed for each
of the arcs in which it has been divided the analysed time period

has been found to be the major source of uncertainty. Its secular effect on the nodal
longitude is given by

Ω̇class = 3
√

5

2
n

(
R

a

)2 cos I

(1 − e2)2
C̄20, (22)

see for example, [87, 88]10. Therefore, the orbit of the satellite is subject to a clas-
sical precession whose value is much higher than the relativistic (gravitomagnetic)
one to be measured (see Table 4)11. Of course, what really matters is the unknown
part of this precession due to the uncertainty in the accepted value of C̄20; its value
based on two geopotential models is shown in Table 4. This precession actually
hides the relativistic one and must be handled in some way. To this aim, in [89],
a procedure based on the combination of orbital residuals from more than one
satellite, to get rid of this masking precession; see also [90].

The simplest case is that of two satellites, along with their two nodal longitudes.
Let us consider a single arc of orbit determination; the procedure allows obtaining a
residual for each orbital element, in particular for the nodal longitude: δΩ̇12. If the
modelization setup is accurate enough, this residual—that is, the difference between
the calculated and observed value—is mainly a function of two quantities, the clas-
sical quadrupole precession and the relativistic (Lense–Thirring) one, so that the

10 We use here the normalized coefficients C̄l0 instead of the non-normalized Cl0 or the Jl . We
remember that J2 = −C20 = −√

5C̄20.
11 We consider only the quadrupolar part of this classical precession.
12 In [24] it is shown that the residuals obtained with their method are in fact rates.
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Table 4 Values (in mas year−1) of the nodal precession for LAGEOS and LAGEOS II orbits due
to relativistic and classical gravitational effects

Effect LAGEOS LAGEOS II

Lense–Thirring 32.65 31.48

C̄20 (EGM96) 2.702 × 1010 − 4.982 × 1010

δC̄20 (EGM96) − 3.240 × 103 5.975 × 103

δC̄20 (EIGEN-GRACE02S) − 2.960 × 103 5.458 × 103

following equation can be reasonably13 considered to hold:

δΩ̇ = δΩ̇class + δΩ̇rel. (23)

Regarding the two terms on the right-hand side of the previous equation, these can
be expressed as follows. Following equation (22), the classical precession can be
written as Ω̇class = N20C̄20, with N20 function of Earth equatorial radius and satel-
lite orbit. Upon the assumption that the biggest uncertainty comes from C̄20, one
can write

δΩ̇class = ∂Ω̇class

∂C̄20
δC̄20 = N20δC̄20. (24)

In the same way, the relativistic precession can be written as Ω̇rel = Ω̇LTμ; here Ω̇LT
comes from Eq. (6), while μ is an empirical parameter14 measuring the actual value
of the relativistic effect (μ = 0 in Newtonian physics, μ = 1 in general relativity).
In writing Ω̇rel this way, we in fact parameterize the general relativistic prediction
with μ and assume that all the error is contained in this empirical parameter15; so:

δΩ̇rel = ∂Ω̇rel

∂μ
δμ = Ω̇LTδμ. (25)

The total uncertainty from Eq. (23) can therefore be written as

δΩ̇ = N20δC̄20 + Ω̇LTδμ. (26)

We see that each residual can be expressed as a function of two uncertainties, δC̄20
and δμ. As such, Eq. (26) is not useful. But adding a further observable (i.e., taking

13 In writing this equation, we neglect higher-degree multipoles and other sources of perturbation
for the node. We can safely do that since we assume them sufficiently well-modeled in the orbit
determination setup, in such a way that the neglected effects are small. How well this assumption
holds is determined by the measurement error budget.
14 In fact, in the post-Newtonian framework μ = (1 + γ )/2, with γ the PPN parameter
quantifying how much space curvature is produced by unit rest mass; see [5].
15 In fact, this equals to admit no a priori knowledge on the amplitude of Lense–Thirring effect.
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the nodal residuals of two satellites, as LAGEOS and LAGEOS II) one can construct
a system of two equations

{
δΩ̇ I = N I

20δC̄20 + Ω̇ I
LTδμ

δΩ̇ II = N II
20δC̄20 + Ω̇ II

LTδμ
(27)

which can be solved to obtain δμ:

δμ = N I
20δΩ̇

II −N II
20δΩ̇

I

N I
20Ω̇

II
LT −N II

20Ω̇
I
LT

. (28)

This δμ, together with δC̄20 is just the right one to account for the total residuals
δΩ̇ I and δΩ̇ II.

It is worth emphasizing two things. First, the solution given by Eq. (28) clearly
does not contain δC̄20, and so the expression overcomes the problem of the uncer-
tainty in C̄20, both static and time dependent. Second, δμ as expressed by Eq. (28)
is related to a single arc of orbit determination; so what one obtains is a time series
covering the period of analysis. The outcome can be seen in Fig. 3, in which the
relativistic parameter δμ from LAGEOS and LAGEOS II combined nodal residuals
is plotted as a function of time. Notice the cancellation of the nonseasonal, “anoma-
lous” change in Earth quadrupole (apparent in the nodal longitude residuals, see
Fig. 4), as reported in [31, 91].

6 A Review of Recent Measurements

The idea of using laser ranged satellites in order to test selected predictions of gen-
eral relativity theory dates back to the 1970s and 1980s. The test of Schwarzschild
precession has been discussed in [8]. The measurement of the Lense–Thirring effect
has been suggested by [92] and proposed by [93]. We review here some recent
results which come out from precise orbit determinations of LAGEOS and LAGEOS
II satellites. These analyses produced residuals time series of the satellites, Keple-
rian elements in the way discussed in Sect. 2.2. The expected relativistic signals,
both in longitude of ascending node and in argument of perigee, were of a secular
type, so they should appear as a secular trend upon time integration of the relevant
time series.

In [31], such an analysis has been performed on LAGEOS and LAGEOS II track-
ing data in order to detect the Lense–Thirring precession. Given the limitations due
to Earth’s gravitational quadrupole uncertainty, the node residuals of both satel-
lites have been combined as discussed in Sect. 5. The corresponding combined time
series have been fitted with a secular trend plus a number of periodic terms (in order
to account for mismodeling in some perturbations). They report a value of

μ = 0.984 ± 5 − 10%, (29)



186 R. Peron

Fig. 3 Relativistic effect from the combined nodal longitude residuals of LAGEOS and LAGEOS
II (squares). The average value is 1.056, to be compared with the general relativistic prediction
value, 1 (continuous line). MJD stands for “Modified Julian Day;” the considered time period for
the analysis starts 1993

Fig. 4 Nodal longitude residuals, LAGEOS (left) and LAGEOS II (right). The average values are
141.3 mas year−1 and − 167.3 mas year−1 for LAGEOS and LAGEOS II respectively

using the EIGEN-GRACE02S as a geopotential model16. See Fig. 5 for the related
fit.

16 The reported value has been obtained fitting the combined residuals with a secular trend plus
ten periodic terms.
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Fig. 5 Figure 14 of [31]. A combination of LAGEOS and LAGEOS II node residuals together with
their fit (secular trend plus ten periodic terms) is shown

In [32], a dedicated analysis has been performed, focused on the LAGEOS II
perigee behavior. In that case, the residuals being analyzed were directly those of the
Keplerian element: the combination was not necessary, since the overall magnitude
of the relativistic effects (Schwarzschild plus Lense-Thirring) is much bigger. A fit
value Δω̇meas = 3306.58 mas/year This value can be taken as an estimate of the
total relativistic perigee precession, given by

Δω̇rel  εSchwΔω̇Schw + εLTΔω̇LT. (30)

The slope estimate has small variations depending on the number of periodic effects
which are fitted together with the linear trend. The following conservative result for
the magnitude of the total relativistic effect has been reported, at the post-Newtonian
level:

εω = 1 + (0.28 ± 2.14) × 10−3, (31)

where εω = 1 in general relativity. Since the dominant contribution in Eq. 30 comes
from

εSchw = 2 + 2γ − β
3

, (32)
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Fig. 6 Figure 1 of [32]. The perigee residuals are shown together with their fit (secular trend plus
four periodic terms)

the estimate given by Eq. 31 is mainly a measurement of such a combination of γ
and β PPN parameters. A preliminary error budget for the measurement, taking into
account the various systematic errors, estimated the error to be at 2% level [18].
A complete error budget has been reported in [34]:

εω − 1 = [− 0.12 · 10−3 ± 2.10 · 10−3]± [
1.74 · 10−2], (33)

where in the first square bracket the result and statistical error from the best fit is
shown and in the second square bracket, the error budget due to the gravitational
and nongravitational systematic sources of error is represented (Fig. 6).

The measured value for the argument of perigee precession can also be used to
constrain a non-Newtonian contribution to the satellite dynamics, as discussed in
Sect. 2.1.1. Indeed, the absence of such a signal in the residuals time series allows
placing a strong constraint to the strength α at λ = a. In [32], the following upper
bound is shown:

|α|  |(1.0 ± 8.9)| × 10−12, (34)
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This result has been improved in [34]:

|α|  |(0.5 ± 8.0) ± 69| · 10−12. (35)

These results represent a huge improvement with respect to previous constraints at
this scale and are comparable with the lunar laser ranging results.

7 Conclusions

The near-Earth environment is a good place to test the gravitational interaction, at
least in the weak-field regime. Nonetheless, the general relativity theory, almost
a century after its development by Albert Einstein, has passed so far for all the
experimental testsand is continuously challenged by alternative theories motivated
by several unsolved problems, both theoretical and experimental. Verifying the
equation of motion of a test mass in a given gravitational field provides important
series of tests that can indeed be used to verify general relativity and place con-
straints on alternative theories, thanks also to theoretical instruments such as the
PPN formalism. Performing high-precision experiments along this way is nowa-
days possible thanks to the availability of a class of artificial satellites, the geodetic
ones, developed and launched mainly for geodetic and geophysical purposes. These
are tracked with a very powerful technique, SLR; the tracking data should contain
indeed signatures of the relativistic dynamics.

Extracting the small signals due to the curvature of space-time is not an easy
task; even the strongest effects are covered by much bigger signals due to classi-
cal (Newtonian) dynamics and to nongravitational sources of “noise.” The required
techniques of precise orbit determination have been discussed, as applied in particu-
lar to the LAGEOS and LAGEOS II data. The quality of data themselves, as well as
of the dynamical models, is such that the orbits can be reconstructed at the centime-
ter level. A subsequent study of the residuals, that is, the quantities representing the
difference between what is measured and what is predicted, revealed general rela-
tivity in action, especially with peculiar behavior related to the gravitoelectric and
gravitomagnetic fields, in the appropriate post-Newtonian approximation. An error
budget for the measurements can be developed, with the useful by-product of plac-
ing strong constraints on alternative theories of gravitation. Perhaps amazingly, once
more, the Einsteinian theory emerges as a very effective description of gravitational
phenomena.
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Probing Gravity with Next Generation Lunar
Laser Ranging

Manuele Martini and Simone Dell’Agnello

Abstract Lunar and satellite laser ranging (LLR/SLR) are consolidated techniques
which provide a precise, and at the same time, cost-effective method to determine
the orbits of the Moon and of satellites equipped with laser retroreflectors with
respect to the International Celestial Reference System. We describe the precision
tests of general relativity and of new theories of gravity that can be performed
with second-generation LLR payloads on the surface of the Moon (NASA/ASI
MoonLIGHT project), and with SLR/LLR payloads deployed on spacecraft in the
Earth–Moon system. A new wave of lunar exploration and lunar science started in
2007–2008 with the launch of three missions (Chang’e by China, Kaguya by Japan,
Chandrayaan by India), missions in preparation (LCROSS, LRO, GRAIL/LADEE
by NASA) and other proposed missions (like MAGIA in Italy). This research activ-
ity will be greatly enhanced by the future robotic deployment of a lunar geophysics
network (LGN) on the surface of the Moon. A scientific concept of the latter is the
International Lunar Network (ILN, see http://iln.arc.nasa.gov/). The LLR retrore-
flector payload developed by a US–Italy team described here and under space
qualification at the National Laboratories of Frascati (LNF) is the optimum can-
didate for the LGN, which will be populated in the future by any lunar landing
mission.

1 Lunar Laser Ranging

Lunar laser ranging (LLR) is mainly used to conduct high-precision measurements
of ranges between laser stations on Earth and a corner cube retroreflector (CCR)
array on the lunar surface. Over the years, LLR has benefited from a number of
improvements both in observing technology and data modeling, which led to the
current accuracy of postfit residuals of ∼2 cm.

Nowadays, LLR is a primary technique to study the Earth–Moon system and is
very important for gravitational physics, geodesy, and studies of the lunar interior.
LLR contributes to the realization of both the terrestrial and selenocentric reference
frames. The realization of a dynamical inertial reference frame, in contrast to the
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kinematically realized frame of very long baseline interferometry (VLBI), offers
new possibilities for mutual crosschecking and confirmation.

Since 1969, LLR has supplied many tests of general relativity (GR): LLR data
have been used to evaluate geodetic precession [1, 2], probe the weak and strong
equivalence principle, determine the parametrized post-Newtonian (PPN) parame-
ters, and address the time change of the gravitational constant G and 1/r2 deviations
of gravitational interactions. LLR has also provided important information on the
composition and origin of the Moon through measurement of its rotations and tides.
Future lunar missions will expand this broad scientific program.

Initially, the Apollo arrays contributed a negligible portion of the LLR error bud-
get. Today, the ranging accuracy of ground stations has improved by more than
two orders of magnitude: the new Apache Point Observatory Lunar Laser-ranging
Operation (APOLLO) station at Apache Point, USA, is capable of mm-level range
measurements; The Matera Laser Ranging Observatory (MLRO), at the Agenzia
Spaziale Italiana (ASI) “Centro di Geodesia Spaziale” in Matera, Italy, has restarted
LLR operations. Now, owing to lunar librations, the Apollo arrays dominate the
LLR error budget, which is a few cm.

2 The MoonLIGHT Program

LLR has for decades provided the best tests of a wide variety of gravitational phe-
nomena, probing the validity of Einstein’s theory of GR [3, 4]. The lunar orbit is
obviously influenced by the gravitational field of the Earth and the Sun, but is also
sensitive to the presence of many other solar system bodies.

In 2006, Istituto Nazionale di Fisica Nucleare (INFN) proposed the Moon Laser
Instrumentation for General Relativity High accuracy Tests (MoonLIGHT) techno-
logical experiment, which has the goal of reducing the error contribution of LLR
measurements by more than two orders of magnitude. In Table 1, the possible
improvements in the measurement of gravitational parameters achievable through
reaching the ranging precision of 1 mm or even 0.1 mm are reported.

The MoonLIGHT program [5] is the result of a collaboration between two
teams: the Lunar Laser Ranging Retroreflector Array for the twenty-first century
(LLRRA21) team in the USA, led by Douglas Currie of the University of Maryland
(UMD), and the Italian one led by National Institute of Nuclear Physics-National
Laboratories of Frascati (INFN-LNF). We are exploring improvements in both the
instrumentation and the modeling of the CCR.

To explain the MoonLIGHT experiment, we have to understand the limitations
of a multi-CCR array.

The main problem that affects the Apollo arrays consists of the lunar librations in
longitude, that result from the eccentricity of the Moon’s orbit around Earth [6–8].
Due to this phenomenon, the Apollo arrays are shifted so that one corner of the array
is more distant than the opposite corner. Because of the librations tilt, the arrays
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Table 1 Narrowing of parameter bounds due to gains in the accuracy of ranging measurements by
one or two orders of magnitude (reaching a precision of 1 mm or even 0.1 mm)

Gravitational First generation Second generation 2nd generation Time

measurement LLR precision LLR precision LLR precision scale

(∼ cm) (1 mm) (0.1 mm)

WEP
∣∣Δa
a

∣∣ < 1.4 × 10−13 10−14 10−15 Few years

SEP |η| < 4.4 × 10−4 3 × 10−5 3 × 10−6 Few years

β |β − 1| < 1.1 × 10−4 10−5 10−6 Few years
Ġ
G

∣∣∣ ĠG
∣∣∣ < 9 × 10−13yr−1 5 × 10−14 5 × 10−15 ∼ 5 years

Geodetic 6.4 × 10−3 6.4 × 10−4 6.4 × 10−5 Few years

precession
1
r2 deviation |α| < 3 × 10−11 10−12 10−13 ∼ 10 years

LLR Lunar laser ranging, WEP Weak equivalence principle, SEP Strong equivalence principle

increase the dimension of the pulse coming back to the Earth (Fig. 1). The broaden-
ing of the pulse will be greater proportionally to the array physical dimensions and
to the Moon–Earth distance increase. Therefore, for the largest array, from Apollo
15, the enlargement is about 30 cm, and for the Apollo 11 and Apollo 14 arrays, it is
about 15 cm. In agreement with this relationship, the pulse enlargement corresponds
to a flight time increase:

• ± 0.5 ns for Apollo 15;
• ± 0.25 ns for Apollo 11 and Apollo 14.

In order to solve this problem, LNF in collaboration with UMD, indicated a new
design of lunar CCR, named the second generation LLR, whose performance is
unaffected not only by lunar librations but also by the motion of the regolith due
to its large thermal cycle. The idea that we propose is to move from a multi-CCR
array to a series of single, larger CCRs, each with 10 cm of front face diameter
(Fig. 2, 3, 4).

Instead of having a single pulse spread by the array and the libration effect, we
will have single short pulses coming back with the same dimensions as the incoming
one (Fig. 1), with a final laser retroreflector array (LRA) ranging accuracy below
10 μm. When the new CCRs are placed on the lunar surface, it will make sense to
improve the station capabilities [9–12].

To summarize, in the past, LLR techniques have employed a large laser pulse
fired from the Earth station, larger than array dimensions, which dominated the mea-
surement uncertainty. Now there is a moderately-sized laser pulse, but still a large
array, so that the measurement uncertainty is dominated by the array; in the future,
with MoonLIGHT/LLRRA21, there will be a single CCR unaffected by librations.
The measurement uncertainty will then be dominated by the laser pulse, which could
be shortened through modern technology (Fig. 5).
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Fig. 1 Comparison between first and second generation laser retroreflector arrays (LRAs). The
librations tilt the arrays (left), but the individual large corner cube retroreflectors (CCRs) are unaf-
fected (right). So, by using the Moon Laser Instrumentation for General Relativity High accuracy
Tests (MoonLIGHT) payloads, we receive single short pulses instead of one broadened pulse

Fig. 2 Picture of Apollo, first generation and MoonLIGHT/LLRRA21, second generation CCR
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Fig. 3 Drawings of the MoonLIGHT CCR with its internal mounting rings, thermal shields, and
aluminum housing

Fig. 4 Inner conformal shield
of the MoonLIGHT CCR
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Fig. 5 The figure shows which contribution (between fired and retroreflected laser pulse size)
dominates the measurement uncertainty; the top horizontal stripe shows the situation in the past;
the middle stripe shows the current one and the bottom one the future possible situation with the
MoonLIGHT/LLRRA21 CCR

Opportunities for deployment of the MoonLIGHT/LLRRA21 payload will come
from the participation of INFN-LNF and UMD, through their national agency pro-
grams, to international missions to develop a lunar geophysical network (LGN) [13].

In order to improve the ranging measurement, we have to investigate the
technical and fabrication challenges of MoonLIGHT/LLRRA21, through ther-
mal/optical simulations and vacuum chamber tests performed at the INFN-LNF
Satellite/lunar/GNSS laser ranging and altimetry Characterization Facility (SCF).
Beyond the simulations, we have performed thermal and optical vacuum chamber
tests to further validate the design issues.

2.1 SCF_Lab

In 2004, INFN started to build the SCF_Lab in Frascati (Fig. 6. The main purpose of
this apparatus is the thermal and optical characterization of CCR arrays in simulated
space conditions.

In Fig. 6, the SCF apparatus is shown. It is a steel cryostat 2 m in length by 1 m
in diameter. The inner copper shield is painted with Aeroglaze Z306 black paint
(0.95 emissivity and low out-gassing properties) and is kept at T = 77 K with liquid
nitrogen. When the SCF is cold (∼ 80 K), the vacuum is typically in the 10−6 mbar
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Fig. 6 Drawing of the Satellite/lunar/GNSS laser ranging and altimetry Characterization Facility
(SCF) cryostat

range. Two distinct positioning systems at the top of the cryostat hold and move
the prototype in front of the Earth infrared simulator, the solar simulator (SS), the
infrared camera, and the laser, all located outside the SCF.

The experimental apparatus is described in great detail in [14, 15].

2.2 SCF Test of the MoonLIGHT CCR

The SCF-Test [14] is a new test procedure to characterize thermal and optical behav-
ior of laser retroreflectors in space for industrial and scientific applications. We
perform an SCF-Test on the MoonLIGHT CCR to evaluate the thermal and optical
performance in space environment, (Fig. 7).

The temperature of the housing has been controlled with resistive tape heaters.
For thermal measurements, we use both an infrared (IR) camera and temperature
probes, which give real time measurements. The IR camera, through a Germanium
window, can give thermograms of all the components of the CCR and its housing.
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Fig. 7 MoonLIGHT CCR inside the Satellite/lunar/GNSS laser ranging and altimetry Characteri-
zation Facility (SCF)

Instead, to measure the thermal gradient on the CCR surface, we glued three cali-
brated temperature sensors (silicon diode) along one of the back faces of the CCR,
at a separation of 35 mm.

In particular, we look at the temperature from the front face to the tip, studying
how the optical response (the far field diffraction pattern, FFDP) of the CCR changes
during the different thermal phases. Various configurations and designs of the CCR
and the housing have been tested in the SCF facility, with the solar simulator, the
temperature data recording with the infrared camera, and the measurement of the
FFDP. At the present time, we have a preliminary result indicating that the CCR has
a satisfactory performance.

The orientation of the CCR inside the housing is such that one physical edge
was parallel to the axis of the SCFs rotation positioning system. We simulated an
illumination of the Sun at lower elevations, so the CCR was rotated 30◦ clockwise
and 30◦ counterclockwise with respect to the SS. We report a total internal reflec-
tion breakthrough in one direction, but not in the other. Figures 8 and 9 show the
temperature variation of the housing and the intensity variation of the FFDP.
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Fig. 8 Temperature variation of the housing and relative far field diffraction pattern (FFDP)

Looking at Fig. 9, we conclude that the intensity decreases during the phase when
the CCR is not orthogonal to the SS, in particular when the Sun enters the housing
cavity during the breakthrough phase. This effect is due to a strong increase of the
“Tip-Face” thermal gradient during the test (Fig. 10). When the temperature of the
housing is allowed to vary, the intensity increases because the “Tip-Face” gradient
is reduced.

3 Analysis of LLR Data

3.1 Planetary Ephemeris Program (PEP)

In order to analyze LLR data we used the PEP software, developed by the CfA
(I. Shapiro et al.) starting from 1970s.

PEP was designed not only to generate ephemerides of the planets and the Moon,
but also to compare the model with observations [16, 17]. One of the early uses of
this software was the measurement of the geodetic precession of the Moon [1].
PEP can handle several observation types (LLR, radar ranging and doppler, optical
positional measurements, transponder measurements, pulsar timing data, and so on).
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Fig. 9 Intensity variation of the FFDP during the tests

Since we care primarily about LLR observations, we describe the components of
a range prediction, though most of the steps along the way are common to other
observables as well.

In particular, we are primarily concerned with LLR observations. For this pur-
pose, the software is able to calculate the residuals of the distances between
observed LLR data and computed data, derived from the expectations of GR and
of terrestrial and lunar geodesy. We have performed a very preliminary analysis of
LLR data from three stations: McDonald Observatory in Texas (USA), Grasse in
France, and APOLLO [18, 19] in New Mexico (USA). The latter station has been
providing the best quality data since 2006. On March 25, 2010, the Matera Laser
Ranging Observatory in Italy (MLRO, led by G. Bianco) recorded LLR echoes from
the array of Apollo 15.

The histograms in Fig. 11 show photon-by-photon data and are used to form a
single LLR “normal point” of the Apollo 15 array taken by the APOLLO station
(led by T. W. Murphy) on November 19, 2007. A normal point contains a lot of
information, for example, date of observation, atmospheric conditions, as well as
time of flight, data quality, and CCR arrays. The APOLLO instrumental accuracy
(in terms of laser, detector, timing electronics, and so on) shown by the fiducial
returns in Fig. 11 is given by a root mean square contribution of 120 ps (18 mm).
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Fig. 10 CCR temperature distribution at noon (orthogonal illumination) with conformal thermal
shield

From a comparison between the middle and the last plot we can see how the tilt
in the arrays affects the accuracy of the ranging measurements. The model param-
eter estimates are refined by minimizing the residual differences, in a weighted
least-squares sense, between observations (O) and model predictions (C, stands
for “Computed”), O-C. “Observed” is the round-trip time of flight. “Computed”
is modeled by the PEP software. PEP software has allowed placing constraints on
departures from standard physics. For example, it has been used to place limits on
the PPN parameters β and γ , the geodetic precession, and the variation of the grav-
itational constant, Ġ

G
. The equations of motion in a space-time with torsion [20, 21]

can be included in PEP and constrained with all LLR data, including the newest
APOLLO data (at the present time, the published constraints on space-time torsion
are calculated using LLR data from other stations).

3.2 Determination of the Geodetic Precession

With PEP, we are able to measure the possible relative deviation of geodetic preces-
sion from the GR value (deviation from zero) that is expressed withKGP parameter
(Fig. 12).

Here we show our first determination of theKGP parameter. We have used all the
data available to us from Apollo CCR arrays (Apollo 11, Apollo 14, and Apollo 15).
The results are reported in two tables, one until 2003, with data acquired by the old
ILRS stations (Table 2) and one with data from 2007 to 2009 acquired by the new
APOLLO station (Table 4). Results described in the tables are obtained by fixing
Ġ
G

= 0 and β = γ = 1, that is, their value in GR.
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Fig. 11 Example run of Apollo 15. In the plot, the top panel shows a 40 ns window of observed
round trip time minus the predicted range. Background noise and detector dark current appear
as scattered dots, while the lunar return is in the middle. The middle panel shows a histogram
of the lunar returns, while the bottom panel shows the local “fiducial” CCR return, fitted by the
red Gaussian. The lunar return is additionally spread by the tilted reflector array modeled by the
superimposed magenta trapezoidal shape

Using APOLLO LLR data, the estimated value is consistent with the value
obtained using old stations (see Table 3).
The nominal errors returned by the fit are significantly smaller than the value of
KGP , and smaller than the best published values. Therefore, we want to use the data
to understand and estimate independently the size of the error budget.

We have also performed a fit using every single old station (CERGA: Centre
d’Etudes et de Recherches Godynamiques et Astronomiques, MLR2: McDonald
Laser Ranging Station, TEXL: Texas Laser Ranging , MAUI: Hawaii Laser Ranging
Station). The results are shown in Table 4:
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Fig. 12 KGP is the relative deviation of geodetic precession from the general relativity (GR) value

Table 2 Estimates of geodetic precession, KGP , with the data set from MLRS, MLR2, and
CERGA stations

Parameter GR initial value Final value

KGP 0 0.009

GR General relativity, CERGA Centre d’Etudes et de Recherches Godynamiques et
Astronomiques, MLR2 McDonald Laser Ranging Station, MLRS McDonald Laser Ranging Station

Table 3 Estimates of geodetic precession, KGP , with the new data set from APOLLO station

Parameter GR initial value Final value

KGP 0 −0.0096

APOLLO Apache Point Observatory Lunar Laser-ranging Operation

These preliminary measurements are to be compared with the best result pub-
lished by the Jet Propulsion Laboratory (JPL) (KGP = (−1.9 ± 6.4) × 10−3),
obtained using a completely different software package, developed over the past
40 years. On the contrary, after the original 2 %KGP measurement by CfA in 1988,
the use of PEP for LLR has been resumed only since a few years, and it is still
undergoing the necessary modernization and optimization.
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Table 4 Estimates of geodetic precession, KGP using every single old station

Station KGP

CERGA −0.016

MAUI 0.0060

MLR2 0.0095

TEXL −0.044

CERGA Centre d’Etudes et de Recherches Godynamiques et Astronomiques, MLR2 McDonald
Laser Ranging Station, TEXL Texas Laser Ranging, MAUI Hawaii Laser Ranging Station

4 Determination of β

Using LLR data is also possible to measure PPN parameter β that is of great interest.
In order to do this, we start from the equivalence principle (EP).

There are two different kinds of EP: weak equivalence principle (WEP that con-
cerns nongravitational contribution to mass) and strong equivalence principle (SEP
that extends the WEP to include gravitational self-energy of a body).

In GR, SEP is exact and a possible violation can be expressed by:
[
MG

MI

]
SEP

= 1 + η U
Mc2

, (1)

where MG
MI

is the ratio between gravitational and inertial mass, U is the gravitational
energy, and η is a constant expressed by:

η = 4β − γ − 3. (2)

Considering the Earth–Moon–Sun system, we have:
[(
MG

MI

)
e

−
(
MG

MI

)
m

]
SEP

=
[
Ue

Mec2
− Um

Mmc2

]
η = −4.45 × 10−10η, (3)

where e is relative to the Earth and m is relative to the Moon.
Fitting the data using LLR measurements:

[(
MG

MI

)
e

−
(
MG

MI

)
m

]
EP

= (−1.0 ± 1.4)× 10−13. (4)

The combination of laboratory experiments of EP [22] with LLR data gives:
[(
MG

MI

)
e

−
(
MG

MI

)
m

]
SEP

= (−2.0 ± 2.0)× 10−13. (5)

Considering the previous equation and the most accurate result of γ [23], the value
of the β-parameter is:

β − 1 = (1.2 ± 1.1)× 10−4. (6)
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Our value of the β-parameter calculated using the PEP software is:

β = (6.4 ± 6.4)× 10−4, (7)

which is consistent with the value obtained by [4].

5 Conclusions and Future Prospects

The analysis of the existing LLR data with PEP is making good progress, thanks to
the important collaboration with CfA, as shown with the preliminary measurement
of the geodetic precession (de Sitter effect) with an accuracy level of 1 %.

In the future, we are going to enhance our knowledge of data and software in
order to better estimate the KGP uncertainty and other GR parameters. A possible
way to improve the precision of LLR measurements is to improve the intercalibra-
tion among the stations, that is, to range not only to the Moon but also to satellites
around the Earth and primarily to laser geodynamics satellites (LAGEOS).

Before the end of the decade, a robotic mission on the lunar surface will deploy
new scientific payloads, which include MoonLIGHT-type laser retroreflectors, and
thus extend the LLR reach for new physics in three ways: (i) using a signifi-
cantly improved second-generation retroreflector design; (ii) increasing by a factor
of about 2 the geometric lever arm of LLR with missions to the lunar poles or
limbs; (iii) combining LLR payloads with radio/microwave transponders (at least
two) for same-beam microwave interferometry (SBI) capable of additional accurate
measurements of lunar rotations and librations.

In particular, the single, large, fused-silica retroreflector design developed by
UMD and INFN-LNF will improve by a factor of 100 or more the performance
of current Apollo arrays, removing in this way the dominant contribution to the
LLR error budget. Such a contribution is of the order of 2 cm. It is due to the multi-
retroreflector structure of the arrays together with the librations and rotations of the
Moon with respect to the Earth. The functionality of this specific new design, which
inherits and is evolved from the successful Apollo 11, 14, and 15 experience, is
being validated by thermal–vacuum–optical testing in space conditions accurately
simulated in the laboratory at the INFN-LNF SCF_Lab.”
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Space-based Tests of Relativistic Gravitation

Vyacheslav G. Turyshev

Abstract Since its initial publication, Einstein’s general theory of relativity had
been tested to a very high precision and presently is considered to be the standard
theory of gravitation, especially when the phenomena in astrophysics, cosmology,
and fundamental physics are concerned. As such, this theory has many practi-
cally important applications including spacecraft navigation, relativistic geodesy,
time transfer, etc. Here we discuss the foundations of general relativity, present its
current empirical status, and highlight the need for the new generation of high-
accuracy tests. We present some space-based gravitational experiments and discuss
anticipated advances in our understanding of the fundamental laws of nature.

1 Introduction

With a successful explanation of the puzzle of the perihelion advance of the Mer-
cury’s orbit calculated by Einstein himself in 1916 [1, 2] and confirmation of the
general relativistic gravitational deflection of light reported by the Eddington’s expe-
dition in 1919, the Einstein’s general theory of relativity has been tested and verified
with ever-increasing precision [3]. Presently, after nearly a century-long and very
successful reign, the theory accounts for all the empirical data gathered within our
solar system and also received from the millisecond binary pulsars [4–6].

The true renaissance in the tests of relativistic gravitation began in early 1970s
with advances in microwave tracking of interplanetary spacecraft, high-precision
astrometric observations with very long baseline interferometry (VLBI), and the
beginning of lunar laser ranging (LLR) operations that followed the Apollo missions
to the Moon. In particular, analysis of ranging data provided by the Viking lander
on Mars became the first use of then new interplanetary tracking technologies to test
Einstein’s theory of gravitation. Thus, the value of the Eddington’s space curvature
parameter γ (whose value is 1 in general relativity, see [7] for details) was obtained
at the level of 1.000 ± 0.002 [8]. Later on, tracking of interplanetary spacecraft and
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series of planetary radar observations reached the accuracy of ∼ 0.15 % [9, 10] in
testing relativistic gravity via dynamics in the solar system.

At the same time, the geodetic observations with VLBI have reached the accu-
racy below 100 μas (micro-arcseconds of arc), yielding a number of very precise
measurements of the parameter γ . It is well known that bending of starlight by
gravity was predicted by Einstein when he published his theory in 1916. It was sug-
gested that the gravity of a massive object curves the nearby space, thereby altering
the path of light passing near the object. The phenomenon was first observed by
Eddington during a solar eclipse in 1919 [3]. Over the years, multiple independent
analyses of various VLBI data have yielded a consistent stream of improvements in
measuring the gravitational deflection of light and reaching the present-day accu-
racy of γ = 0.9998± 0.0003 [11], resulting in the accuracy of ∼ 0.03 % in the tests
of gravity via astrometric VLBI observations.

LLR, the longest continuously running space experiment to date, has provided
series of important constraints on the Eddington parameter β (a measure of nonlin-
earity of superposition of gravitational fields; equal to 1 in general relativity, see [12]
for details). Thus, using the Cassini value for the parameterized post-Newtonian
(PPN) parameter γ , the analysis of LLR data in 2004 [13] constrained the com-
bination of parameters 4β − γ − 3 = (4.0 ± 4.3) × 10−4, leading to the current
best accuracy of ∼ 0.011 % in testing the Eddington’s parameter β via precision
measurements of the lunar orbit.

Finally, microwave tracking of the Cassini spacecraft on its approach to Saturn in
2002 has provided the most precise measurement of the relativistic gravity parame-
ter γ measuring it with an accuracy of γ −1 = (2.1±2.3)×10−5, thereby reaching
the current best accuracy of ∼ 0.002 % achieved in the solar system tests of funda-
mental gravitation [6, 14]. Figure 1 shows the progress in gravitational tests for the
past several decades.

To date, the general theory of relativity is also in agreement with the data col-
lected in studying binary and double pulsars. By measuring relativistic corrections
to the Keplerian description of the orbital motion, the recent analysis of the data col-
lected from the double pulsar system, PSR J0737-3039A/B, found agreement with
general relativity with an uncertainty of ∼ 0.05 % [15], which is the most precise
pulsar test of gravity yet obtained.

As a result, both in the limit of weak gravitational field (such as in our solar sys-
tem) and with the stronger fields (present in the vicinity of the binary pulsars) the
foundations of the general theory of relativity have been tested extremely well with
the theory surviving every test. It is remarkable that nearly 100 years after its dis-
covery, Einstein’s theory of gravitation has survived every test [4]. Such a successful
longevity makes general relativity the de facto “standard” theory of gravitation for
all practical purposes involving spacecraft navigation and astrometry, astronomy,
astrophysics, cosmology, and fundamental physics [5].

However, despite a very impressive track record, there are many important rea-
sons to continue with high-precision tests of relativistic gravitation, especially those
conducted in the solar system. In fact, our solar system is a very important labo-
ratory to conduct gravitational experiments. The solar system gravitational field is
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Fig. 1 The progress in measuring the Eddington’s parameters γ and β. General theory of relativity
survived every test, yielding γ − 1 = (2.1± 2.3)× 10−5 [14] and β− 1 = (1.2± 1.1)× 10−4 [13]

determined by the dynamical distribution of matter in the solar system and by that
outside the solar system itself. Different relativistic theories of gravity can make
different predictions about the properties of the solar system gravitational field with
some being within the reach of modern technologies. Hence, precise investigations
of the orbits of the celestial bodies, trajectories of spacecraft, and that of electromag-
netic signals can be used to test modern theories of gravitation. This is especially
important since the highly precise measurements may reveal the presence of physics
beyond the framework of general relativity, which currently is highly anticipated.

This chapter discusses a number of recently proposed gravitational experiments
in space and anticipated advances in our understanding of the fundamental laws of
nature. This short review is organized as follows. Section 2 discusses the founda-
tions of general theory of relativity and reviews the recent results of the tests of its
foundations. In Sect. 3 we present the PPN formalism—a phenomenological frame-
work developed to facilitate experimental research in relativistic gravity. In Sect. 4
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we review the recent progress in the tests of the general relativity and discuss sev-
eral proposed space missions, focusing only on the most representative and viable
concepts. We conclude in Sect. 5.

2 General Theory of Relativity

Fundamentally, the general theory of relativity is a tensor-field theory of gravitation
with universal coupling to the particles and fields of the Standard Model. It describes
gravity as a universal deformation hmn of the flat space-time Minkowski metric,1

γmn:

gmn(x
k) = γmn + hmn(xk). (1)

On a classical level [1, 2], the theory is introduced by the action describing the
propagation and self-interaction of the gravitational field [16–19]

SG[gmn] = c4

16πG

∫
d4x

√−gR, (2)

where G is Newton’s universal gravitational constant, g = detgmn, and R is the
Ricci scalar. Applying the variational principle with respect to gmn to the total action
that contains the gravitational field and the fields of matter from the Standard Model,
one obtains the well-known Einstein’s field equations of general relativity,

Rmn − 1

2
gmnR +Λgmn = 8πG

c4
Tmn, (3)

where Tmn = gmkgnlT
kl with T mn = 2/

√−g δLSM/δgmn being the (symmetric)
energy–momentum tensor of the matter as described by the Standard Model with
the Lagrangian density LSM. With the value for the vacuum energy density ρvac ≈
(2.3 × 10−3eV)4, as measured by recent cosmological observations [20, 21], the
cosmological constantΛ = 8πGρvac/c

4 is too small to be observed by solar system
experiments, but may be important for greater scales.

The theory is invariant under arbitrary coordinate transformations: x′m= fm(xn).
To solve the field Eq. (3), one needs to fix this coordinate gauge freedom. For exam-
ple, the “harmonic gauge” (which is the analog of the Lorentz gauge, ∂mAm = 0, in
electromagnetism) corresponds to imposing the condition ∂n(

√−ggmn) = 0.
Einstein’s equations (3) of general theory of relativity connect the geometry of

a four-dimensional Riemannian manifold representing space-time with the energy-
momentum contained in that space-time. In classical mechanics, phenomena that

1 The notational conventions employed here are as follows: Letters from the second half of the
Latin alphabet, m, n,. . .= 0. . . 3 denote space-time indices. Greek letters α, β,. . .= 1. . . 3 denote
spatial indices. The flat Minkowski space-time metic is γmn = diag(+ 1,−1,−1,−1). We rely on
the Einstein summation convention with indices being lowered or raised using γmn.
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are ascribed to the action of the force of gravity (such as free-fall, orbital motion,
and spacecraft trajectories) correspond to inertial motion within a curved geometry
of space-time in general relativity.

Equation (3) represents a set of nonliner hyperbolic-type differential equations
of the second order with respect to the metric tensor of the Riemannian space-time.
This nonlinearity makes finding a solution to this set of equations in the general
case to be a complicated problem to which no analytical solution is known and a
full numerical treatment is needed. Depending on a particular situation, one usually
introduces relevant small parameters and develops an iterative solution. Quite often,
when studying a problem in the weak gravitational field and slow motion approxi-
mation, one uses the ratio v/c of the velocity of motion of the bodies v with respect
to a barycentric coordinate reference frame to the speed of light c.

For the bodies of the solar system this ratio is a small parameter and typically is of
the order v/c ≈ 10−4. The gravitational field in the solar system is also quite weak
(compared to that of, say, a neutron star or a black hole) and, as the virial theorem
suggests, the potential energy in the solar system, represented by the Newtonian
potential U , is of the same order as the kinetic energy, leading to the following
relationship U/c2 ≈ (G/c2)(m/r) ∼ v2/c2 ≈ 10−8, where G is the universal
gravitational constant, m is a mass monopole of a body’s mass distribution, and r is
its radius vector with respect to the barycentric coordinate reference frame.

The metric tensor for a system of N point-like gravitational sources [18, 22, 23]
that satisfy Eq. (3) may be written as

g00 = 1 − 2

c2

∑
j 
=i

μj

rij
+ 2

c4

{[∑
j 
=i

μj

rij

]2 − 3

2

∑
j 
=i

μj ṙ
2
j

rij

+
∑
j 
=i

μj

rij

∑
k 
=j

μk

rjk
− 1

2

∑
j 
=i
μj
∂2rij

∂t2

}
+O(c−5),

g0α = 4

c3

∑
j 
=i

μj ṙαj
rij

+O(c−5), gαβ = −δαβ
⎛
⎝1 + 2

c2

∑
j 
=i

μj

rij

⎞
⎠+O(c−5), (4)

where the indices j and k refer to the N bodies and where k includes body i whose
motion is being investigated. μj is the gravitational constant for body j given as
μj = Gmj , where G is the universal Newtonian gravitational constant and mj is
the isolated rest mass of a body j . In addition, the vector ri is the barycentric radius
vector of this body, the vector rij = rj − ri is the vector directed from body i to
body j , rij = |rj − ri |, and the vector nij = rij /rij is the unit vector along this
direction.

The point-mass Newtonian and relativistic perturbative accelerations in the solar
system’s barycentric reference frame have the form [16, 18, 24]:
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r̈i =
∑
j 
=i

μj (rj − ri)

r3
ij

{
1 − 4

c2

∑
l 
=i

μl

ril
− 1

c2

∑
k 
=j

μk

rjk
+ ( ṙi

c

)2 + 2
( ṙj
c

)2 − 4

c2
ṙi ṙj

− 3

2c2

[
(ri − rj )ṙj

rij

]2

+ 1

2c2
(rj − ri)r̈j

}

+ 1

c2

∑
j 
=i

μj

r3
ij

{[
ri − rj

]
·
[
4ṙi − 3ṙj

]}
(ṙi − ṙj ) + 7

2c2

∑
j 
=i

μj r̈j
rij

+O(c−4).

(5)

To describe the propagation of electromagnetic signals between any two points in
space, the following light-time equation is derived from the metric tensor Eq. (4)

t2 − t1 = r12

c
+ 2

∑
i

μi

c3
ln

[
ri1 + ri2 + ri12 + 2μi

c2

ri1 + ri2 − ri12 + 2μi
c2

]
+O(c−5), (6)

where t1 refers to the signal transmission time and t2 refers to the reception time.
r1,2 are the barycentric positions of the transmitter and receiver and r12 is their
spatial separation. The terms proportional to μ2

i are important only in the proximity
of the Sun and are negligible for all other bodies in the solar system [22]. General
relativistic equations of motion form the “backbone” of the entire suite of models
used for interplanetary spacecraft navigation [22, 25].

3 Metric Theories of Gravity and PPN Formalism

Metric theories hold a special position among other alternative theories of gravity [3,
7]. This is because independently of many different principles in their foundations,
the gravitational field in these theories affects the matter directly through the metric
tensor gmn, which is determined from the field equations of this particular theory.
As a result, this tensor expresses the properties of a particular gravitational theory
and carries information about the gravitational field of the bodies.

In many alternative theories of gravity, the gravitational coupling strength
depends on a certain field. In scalar–tensor theories, this is a scalar field ϕ. The
scalar–tensor theories of gravity are some of the most established and well-studied
alternative theories of gravity that exist in the literature. They are often used as the
prototypical way in which deviations from general relativity are modeled, and are
of particular interest as the relatively simple structure of their field equations allows
exact analytic solutions to be found in a number of physically interesting situations.

Scalar–tensor theories arise naturally as the dimensionally reduced effective the-
ories of higher dimensional theories, such as Kaluza–Klein and string models. They
are also often used as simple ways to self-consistently model possible variations in
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Newton’s constant, G. The Brans–Dicke theory [26] is the best-known alternative
scalar–tensor theory of gravity with action being

S = c3

16πG

∫
d4x

√−g
[
ϕR − 2ω

ϕ
∂mϕ∂

mϕ
]
+
∑
i

qi(ϕ)Li , (7)

where qi(ϕ) are coupling functions, Li is the Lagrangian density of the matter fields
of the Standard Model, and ω is an arbitrary coupling constant.

Note that in the Brans–Dicke theory (Eq. 7), the kinetic energy term of the field
ϕ is noncanonical and has a dimension of energy squared. In the context of this
theory [26], one can operationally introduce Mach’s principle which states that the
inertia of bodies is due to their interaction with the matter distribution in the uni-
verse. Indeed, in this theory the gravitational coupling is proportional to ϕ−1, which
depends on the energy–momentum tensor of matter through the field equations.

The presence of an unknown dimensionless parameter ω in the action Eq. (7)
yields non-general relativistic values for the two PPN parameters, β = 1, γ =
(1 + ω)/(2 + ω), a feature of the theory that may lead to observational deviations
from general relativity. The stringent observational bound resulting from the 2003
experiment with the Cassini spacecraft requires that |ω| � 40, 000 [14]. There exist
additional alternative theories that provide guidance for gravitational experiments.

3.1 PPN-Renormalized Extension of General Relativity

Using Eddington’s phenomenological parameterization of the gravitational metric
tensor as a starting point, a method called the PPN formalism has been developed
(see details in [7]). The PPN formalism represents the gravity tensor’s potentials for
slow moving bodies and weak interbody gravity, and is valid for a broad class of
metric theories, including general relativity as a unique case. The several parame-
ters in the PPN metric expansion vary from theory to theory and are individually
associated with various symmetries and invariance properties of the underlying
theory.

Note that in the complete PPN framework, a particular metric theory of gravity in
the PPN formalism with a specific coordinate gauge is fully characterized by means
of ten PPN parameters [7]. Thus, in addition to the parameters γ and β, there are
eight other parameters, not included in Eq. (4). The formalism uniquely prescribes
the values of these parameters for the particular theory under study. Gravity experi-
ments can be analyzed in terms of the PPN metric, and an ensemble of experiments
determine the unique value for these parameters and hence the metric field itself.

In the special case, when only two PPN parameters (γ , β) are considered, these
parameters have a clear physical meaning. The parameter γ represents the measure
of the curvature of the space-time created by a unit rest mass; parameter β represents
a measure of the nonlinearity of the law of superposition of the gravitational fields
in the theory of gravity. General relativity, when analyzed in standard PPN gauge,
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gives γ = β = 1, and the other eight parameters vanish; the theory is thus embedded
in a two-dimensional space of theories.

Given the phenomenological success of general relativity, it is convenient to use
this theory to describe experiments. At the same time, any possible deviation from
general relativity would appear as a small perturbation to this general relativistic
background. Such perturbations are proportional to renormalized PPN parameters
(i.e., γ̄ ≡ γ − 1, β̄ ≡ β − 1, etc.), which are zero in general relativity, but which
may have nonzero values for some gravitational theories. In terms of the metric
tensor, this PPN-perturbative procedure may be conceptually presented as

gmn = gGR
mn + δgPPN

mn , (8)

where metric gGR
mn is derived from Eq. (4) by taking the general relativistic values

of the PPN parameters and where δgPPN
mn is the PPN metric perturbation. The PPN-

renormalized metric perturbation δgPPN
mn for a system of N point-like gravitational

sources in four dimensions may be given as

δgPPN
00 = −2γ̄
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c2

∑
j 
=i

μj

rij
+O(c−5). (9)

Thanks to the smallness of the current values for the PPN parameters γ̄ and β̄,
the PPN metric perturbation δgPPN

mn in (9) represents a very small deformation from
the general relativistic background gGR

mn . The expressions (9) embody the “spirit”
of many gravitational tests that assume that general relativity provides the correct
description of the experimental situation at the first order and search for small non-
Einsteinian deviations from that background.

The equations of motion (5) may also be presented in the PPN-renormalized form
with explicit dependence on the PPN-perturbative acceleration terms:

r̈i = r̈GR
i + δr̈PPN

i , (10)

where r̈GR
i are the equations of motion from Eq. (5) with the values of the PPN

parameters γ and β set to their general relativistic values of unity. Then the PPN-
perturbative acceleration term δr̈PPN

i is given as
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Space-based Tests of Relativistic Gravitation 219

+ 2γ̄

c2

∑
j 
=i

μj r̈j
rij

+O(c−4). (11)

Equation (11) provides a useful framework for gravitational tests conducted in the
solar system. Thus, besides the terms with PPN-renormalized parameters γ̄ and β̄,
it also contains the expression ([mG/mI ]i − 1) that signifies a possible inequality
between the gravitational and inertial masses of the same body; this contribution is
needed to facilitate the investigation of a possible violation of the equivalence prin-
ciple (EP; see Sect. 4.1.2). In addition, Eq. (11) also includes the parameter Ġ/G,
which is needed to investigate a possible temporal variation in the gravitational con-
stant (see Sect. 4.2), during the period starting from the initial moment t0. Note that
in this framework, general relativity corresponds to δr̈PPN

i ≡ 0.
Finally, we present the similar expressions for the light-time equation, Eq. (6).

This equation that can be written as t2 − t1 = Δt12 = ΔtGR
12 + δΔtPPN

12 with the PPN
perturbation is given as below

δΔtPPN
12 = γ̄

c3

∑
i

μi ln

[
ri1 + ri2 + ri12

ri1 + ri2 − ri12

]
+O(c−5), (12)

where, again, general relativity is characterized by δΔtPPN
12 = 0.

The PPN expansion serves as a useful framework to test relativistic gravitation
in the context of the gravitational experiments. The main properties of the PPN
metric tensor given by Eq. (4) are well established and are widely used in mod-
ern astronomical practice [7]. For practical purposes one uses the metric to derive
the equations of motion for gravitating bodies and light, namely Eqs. (10)–(12).
These general relativistic equations are then used to produce numerical codes for
the purposes of construction of the solar system’s ephemerides, spacecraft orbit
determination [22], and analysis of the gravitational experiments in the solar system
[7, 23].

Equations (10)–(12) are used to focus the science objectives of gravitational
experiments and also to interpret their results. So far, the general theory of rel-
ativity survived every test [5], yielding the ever-improving values for the set of
the PPN parameters (γ, β), namely γ̄ = (2.1 ± 2.3) × 10−5 using the data
from the Cassini spacecraft taken during solar conjunction experiment [14] and
β̄ = (1.2± 1.1)× 10−4, which resulted from the analysis of the multiyear segments
of LLR data [13].

4 Search for New Physics Beyond General Relativity

The fundamental physical laws of nature, as we know them today, are described by
the Standard Model of particles and fields and the general theory of relativity [5,27].
The Standard Model specifies the families of fermions (i.e., leptons and quarks) and
their interactions by vector fields that transmit the strong, electromagnetic, and weak
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forces. General relativity is a tensor-field theory of gravity with universal coupling
to the particles and fields of the Standard Model.

However, despite the beauty and simplicity of general relativity and the suc-
cess of the Standard Model, our present understanding of the fundamental laws
of physics has several shortcomings. From a theoretical standpoint, the challenges
appear from the strong gravitational field regime and include appearance of space-
time singularities and breakdown of classical approach in describing the physics
of very strong gravitational fields. It is believed that a way out of the difficulties
above may be through gravity quantization. However, despite encouraging progress
in string theory, the search for a realistic theory of quantum gravity remains a chal-
lenge. These continued difficulties with gravity quantization indicate that, perhaps,
the pure tensor gravity of general relativity needs alteration. In addition, the recent
progress in observational cosmology has subjected the general theory of relativ-
ity to increased scrutiny by suggesting a non-Einsteinian scenario of the universe’s
evolution. It is now believed that new physics is needed to resolve these issues.

The theoretical models of new physics that can solve the problems described
above typically involve new interactions, some of which may manifest themselves
as violations of the EP, variation of fundamental constants, modification of the grav-
itational inverse-square law at short distances, breaking of the Lorenz symmetry, or
large-scale gravitational phenomena [5, 23, 28, 29]. Each of these manifestations
offers an opportunity for space-based experiment and, hopefully, could lead to a
major discovery.

Gravitation is the weakest of the four fundamental particle interactions in
physics. Experiments designed to test gravitation fall into five categories [3]: those
which attempt to prove the invariance of conventional constants; those designed to
confirm the predictions of the special theory of relativity; tests of the EP involving
the question of how various forms of energy contribute to mass; those attempting
to determine the mathematical relationship between the curvature of space-time and
mass energy; and those to detect gravitational radiation [5].

Below we discuss space-based gravitational experiments that aim to test the EP,
search for variability of the fundamental constants, tests of the gravitational inverse-
square law, and tests of alternative and modified gravity theories.

4.1 Tests of the Equivalence Principle

Since the early days of general relativity, there was a need to develop a framework
to test the theory against other possible theories of gravity compatible with spe-
cial relativity. To that extent Einstein’s equivalence principle (EEP) was suggested.
The EEP states that the result of a local nongravitational experiment in an inertial
frame of reference is independent of the velocity or location in the universe of the
experiment. This is a kind of Copernican extension of Einstein’s original formula-
tion, which requires that suitable frames of reference all over the universe behave
identically. It is an extension of the postulates of special relativity in that it requires
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that dimensionless physical values such as the fine-structure constant and electron-
to-proton mass ratio be constant. From the theoretical standpoint, the EEP is at the
foundation of general relativity; therefore, testing the principle is very important.

One can test the validity of both the EP and the field equations that determine the
geometric structure created by a mass distribution. There are two different “flavors”
of the EP, the weak and the strong forms (weak equivalence principle, WEP and
strong equivalence principle, SEP, respectively), which are being tested in various
experiments performed with laboratory test masses and with bodies of astronomical
size [7, 12].

4.1.1 The Weak Equivalence Principle

The weak form of the EP (the WEP) assumes freely falling bodies are bound by non-
gravitational forces only and also strong and electroweak interactions obey the EP.
In this case the relevant test-body differences are their fractional nuclear-binding
differences, their neutron-to-proton ratios, their atomic charges, etc. Furthermore,
the equality of gravitational and inertial masses implies that different neutral mas-
sive test bodies have the same free-fall acceleration in an external gravitational field,
and therefore in freely falling inertial frames, the external gravitational field appears
only in the form of a tidal interaction.

General relativity and other metric theories of gravity assume that the WEP
is exact. However, many extensions of the Standard Model that contain new
macroscopic-range quantum fields predict quantum exchange forces that generi-
cally violate the WEP because they couple to generalized “charges” rather than to
mass/energy as does gravity [30–32].

In a laboratory, precise tests of the EP can be made by comparing the free-fall
accelerations, a1 and a2, of different test bodies. When the bodies are at the same
distance from the source of the gravity, the expression for the EP takes the form

Δa

a
= 2(a1 − a2)

a1 + a2
=
[
mG

mI

]
1
−
[
mG

mI

]
2
= Δ

[
mG

mI

]
, (13)

where mG and mI are the gravitational and inertial masses of each body, respec-
tively. The sensitivity of the EP test is determined by the precision of the differential
acceleration measurement divided by the degree to which the test bodies differ (e.g.,
composition).

Various experiments have been performed to measure the ratios of gravitational
to inertial masses of bodies. Recent experiments on bodies of laboratory dimen-
sions have verified the WEP to a fractional precision of � 1.4 × 10−13 [33]. The
accuracy of these experiments is high enough to confirm that the strong, weak, and
electromagnetic interactions each contribute equally to the passive gravitational and
inertial masses of the laboratory bodies.
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Currently, the most accurate results in testing the WEP have been reported by
ground-based laboratories [34]. The most recent result [33, 35] for the fractional
differential acceleration between beryllium and titanium test bodies gave Δa/a =
(1.0 ± 1.4) × 10−13. A review of the most recent laboratory tests of gravity can
be found in Ref. [36]. Significant improvements in the tests of the EP are expected
from dedicated space-based experiments [5].

The composition independence of acceleration rates of various masses toward
the Earth can be tested in space-based laboratories to a precision of many additional
orders of magnitude, down to levels at which some models of the unified theory of
quantum gravity, matter, and energy suggest a possible violation of the EP [30–32].
In some scalar–tensor theories, the strength of EP violations and the magnitude of
the fifth force mediated by the scalar can be drastically larger in space than on
the ground [37], providing further justification for space deployment. Importantly,
many of these theories predict observable violations of the EP at various levels of
accuracy ranging from 10−13 to 10−16. Therefore, even a confirmation of no EP
violation will be exceptionally valuable, as it will place useful constraints on the
range of possibilities in the development of a unified physical theory.

Compared with Earth-based laboratories, experiments in space can benefit from
a range of conditions, including free fall and significantly reduced contributions
due to seismic, thermal, and other nongravitational noise [5]. As a result, many
experiments have been proposed to test the EP in space.

The Micro-Satellite à traînée Compensée pour l’Observation du Principe d’Equi-
valence (MicroSCOPE) mission is a room-temperature EP experiment in space that
utilizes electrostatic differential accelerometers [38]. The mission is currently under
development and is scheduled for launch in 2016. The design goal is to achieve a
differential acceleration accuracy of 10−15.

The Galileo Galilei (GG) mission [39] is an Italian space experiment proposed
to test the EP at room temperature with an accuracy of 1 part in 1017. The key
instrument of GG is a differential accelerometer made of weakly coupled coaxial,
concentric test cylinders that spin rapidly around the symmetry axis and are sensitive
in the plane perpendicular to it. GG is included in the National Aerospace Plan of
the Italian Space Agency (ASI) for implementation in the near future.

The Satellite Test of Equivalence Principle (STEP) mission [40] is a proposed test
of the EP to be conducted from a free-falling platform in space provided by a drag-
free spacecraft orbiting the Earth. STEP will test the composition independence of
gravitational acceleration for cryogenically controlled test masses by searching for
a violation of the EP with a fractional acceleration accuracy of 1 part in 1018. As
such, this ambitious experiment will be able to test very precisely for the presence
of any new nonmetric, long-range physical interactions.

The evidence of the validity of the WEP for laboratory bodies is incomplete for
astronomical body scales. The experiments searching for WEP violations are con-
ducted in laboratory environments that utilize test masses with negligible amounts
of gravitational self-energy; therefore, a large-scale experiment is needed to test the
postulated equality of gravitational self-energy contributions to the inertial and pas-
sive gravitational masses of the bodies. Once the self-gravity of the test bodies is
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nonnegligible (which is currently true only for bodies of astronomical sizes), the
corresponding experiment tests the ultimate version of the EP—the SEP.

4.1.2 The Strong Equivalence Principle

In its strong form (SEP) the EP is extended to cover the gravitational properties
resulting from gravitational energy itself. It is an assumption about the way gravity
acts on itself, that is, about the nonlinear property of gravitation. Although general
relativity assumes that the SEP is exact, alternate metric theories of gravity—such
as those involving scalar fields—typically violate the SEP. For the SEP case, the
relevant test-body differences are the fractional contributions to their masses by
gravitational self-energy. Because of the extreme weakness of gravity, SEP test
bodies must have astronomical size.

The SEP states that the results of any local experiment, gravitational or not, in
an inertial frame of reference are independent of where and when in the universe it
is conducted. This is the only form of the EP that applies to self-gravitating objects
(such as stars), which have substantial internal gravitational interactions. It requires
that the gravitational constant be the same everywhere in the universe and is incom-
patible with a fifth force. It is much more restrictive than the EEP. General relativity
is the only known theory of gravity compatible with this form of the EP.

Nordtvedt [41] suggested several solar system experiments for testing the SEP. In
fact, the PPN formalism [7] describes the motion of celestial bodies in a theoretical
framework common to a wide class of metric theories of gravity. To facilitate inves-
tigation of a possible violation of the SEP, Eq. (11) allows for a possible inequality
of the gravitational and inertial masses, given by the parameter [mG/mI ]i , which in
the PPN formalism is expressed as

[
mG

mI

]
SEP

= 1 + η
( E
mc2

)
, (14)

where m is the mass of a body, E is the body’s (negative) gravitational self-energy,
mc2 is its total mass energy, and η is a dimensionless constant for SEP viola-
tion. Any SEP violation is quantified by the parameter η: in fully conservative,
Lorentz-invariant theories of gravity [4, 7], the SEP parameter is related to the PPN
parameters by η = 4β − γ − 3 ≡ 4β̄ − γ̄ (in general relativity, η = 0, see [4, 12]).

The quantity E is the body’s i gravitational self-energy (E < 0), which is given
by

[
E

mc2

]
i

= − G

2mic2

∫
i

d3xρiUi = − G

2mic2

∫
i

d3xd3x′ ρi(r)ρi(r′)
|r − r′| . (15)

For a uniform density sphere with a radius R, E/mc2 = −3Gm/5Rc2 =
−0.3v2

E/c
2, where vE is the escape velocity. Accurate evaluation for solar system

bodies requires numerical integration of the expression (15). Evaluating the stan-
dard solar model [42] results in (E/mc2)� ∼ −3.52 × 10−6. Because gravitational
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self-energy is proportional tom2
i and also because of the extreme weakness of grav-

ity, the typical values for the ratio (E/mc2) are ∼ 10−25 for bodies of laboratory
size. Therefore, the experimental accuracy of 1 part in 1013 [33], which is so useful
for the WEP, is not sufficient to test how gravitational self-energy contributes to the
inertial and gravitational masses of small bodies. To test the SEP, one must consider
planet-sized extended bodies, where the ratio in Eq. (15) is considerably higher.

Currently, the Earth–Moon–Sun system provides the best solar system arena for
testing the SEP. LLR experiments involve reflecting laser beams off retroreflector
arrays placed on the Moon by the Apollo astronauts and by two unmanned Soviet
landers [12,13]. Solutions using LLR data give (−0.8±1.3)×10−13 for any possible
inequality in the ratios of the gravitational and inertial masses for the Earth and
Moon. This result, in combination with laboratory experiments on the WEP, yields
an SEP test of ([mG/mI ]i − 1) = (−1.8 ± 1.9) × 10−13 that corresponds to the
value of the SEP violation parameter of η = (4.0 ± 4.3) × 10−4. In addition, using
the recent Cassini result for the PPN parameter γ , PPN parameter β is determined
at the level of β̄ = (1.2 ± 1.1) × 10−4 (see [13, 43] for details).

With the Apache Point Observatory Lunar Laser-ranging Operations (APOLLO)
facility [44, 45], LLR goes through a significant progress. APOLLO’s 1-mm range
precision will translate into order-of-magnitude accuracy improvements in tests of
the WEP and the SEP (leading to accuracy at levels of Δa/a � 1 × 10−14 and
η � 2 × 10−5 respectively), in the search for variability of Newton’s gravitational
constant (see Sect. 4.2), and in the test of the gravitational inverse-square law (see
Sect. 4.3) on scales of the Earth–Moon distance (anticipated accuracy of 3× 10−11)
[45].

One possible improvement would be an upgrade to the corner-cube retroreflector
arrays currently on the moon [3]. There is a proposal to develop and deploy, on
the lunar surface, new retroreflector instrument which is based on a single, hollow
corner cube with a large aperture [46]. The new instrument will be able to reach
an Earth–Moon range precision of 1 mm in a single pulse while being subject to
significant thermal variations present on the lunar surface, and will have low mass
to allow robotic deployment.

The next step in this direction is interplanetary laser ranging [47] to, for exam-
ple, a lander on Phobos. Technology is available to conduct such measurements
with a few-picosecond timing precision, which could translate into millimeter-class
accuracies ranging between the Earth and Mars. The resulting Phobos laser ranging
(PLR) experiment [48] could (a) test the strong form of the EP with accuracy at
the 2 × 10−6 level, (b) measure the PPN parameter γ (see Sect. 4.4) with accuracy
below the 10−6 level, and (c) test the gravitational inverse-square law at ∼ 2-AU
distances with an accuracy of 1 × 10−14, thereby greatly improving the accuracy of
the current tests [47]. PLR could also advance research in several areas of science
including remote-sensing geodesic and geophysical studies of Mars and Phobos.

Furthermore, with the recently demonstrated capabilities of reliable laser links
over large distances in space [48], there is a strong possibility of improving the
accuracy of gravity experiments with precision laser ranging over interplanetary
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scales [48]. With PLR, the best venue for gravitational physics will be expanded to
interplanetary distances, representing an upgrade in both the scale and the precision
of this promising technique.

The experiments described above are examples of the rich opportunities offered
by the fundamental physics community to explore the validity of the EP. These
experiments could potentially offer a major improvement up to five orders of mag-
nitude over the accuracy of the current tests of the EP. Such experiments would
dramatically enhance the range of validity for one of the most important physical
principles or they could lead to a spectacular discovery.

4.2 Search for Variability of the Gravitational Constant

Dirac’s nearly 80-year-old idea that cosmological evolution may lead to variation of
fundamental physical constants has been recently revisited. This was motivated by
the advent of models unifying the forces of nature based on the symmetry properties
of possible extra dimensions, such as the Kaluza–Klein-inspired theories, Brans–
Dicke theory, and supersymmetry models. Alternative theories of gravity [4] and
theories of modified gravity [3] include cosmologically evolving scalar fields that
lead to variability of the fundamental constants. It has been hypothesized that a vari-
ation of the cosmological-scale factor with epoch could lead to temporal or spatial
variation of the constants, especially the gravitational constant, G.

A possible variation of Newton’s gravitational constant G could be related to
the expansion of the universe depending on the cosmological model considered.
Variability in G can be tested in space with a much greater precision than on Earth
[13, 49]. For example, a decreasing gravitational constant, G, coupled with angular
momentum conservation is expected to increase a planet’s semimajor axis, a, as
ȧ/a = −Ġ/G. The corresponding change in orbital phase grows quadratically with
time, providing for strong sensitivity to the effect of Ġ.

Currently, experiments relying on lunar and planetary ranging measurements are
the best means of searching for very small spatial or temporal gradients in the values
of G [12, 13]. Thus, analysis of LLR data performed in 2004 strongly limited such
variations and constrained a local scale (∼ 1 AU) expansion of the solar system as
Ġ/G = (5±6)×10−13 year−1, including the expansion resulting from cosmological
effects [50]. Interestingly, the achieved accuracy in Ġ/G implies that, if this rate is
representative of our cosmic history, then G has changed by less than 1 % over the
13.4 Gyr age of the universe.

The ever-extending temporal span of the LLR data set and the increase in
the accuracy of lunar ranging (i.e., APOLLO) could lead to improvements in the
search for variability of Newton’s gravitational constant; an accuracy at the level
of Ġ/G ∼ 1 × 10−14 year−1 is feasible with LLR [47]. High-accuracy timing
measurements of binary and double pulsars could also provide a good test of the
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variability of the gravitational constant [6, 15, 51]. A preliminary analysis of the
accuracy achievable with PLR indicates that Ġ/G could be determined with an
accuracy at the level Ġ/G ∼ 3 × 10−15 year−1, limited by the asteroids and the
lifetime of the experiment.

4.3 Testing the Gravitational Inverse-Square Law

Many modern theories of gravity, including the string, supersymmetry, and brane-
world theories, suggest that new physical interactions will appear at short ranges.
This may happen because at submillimeter distances new dimensions can exist,
thereby changing the gravitational inverse-square law [52]. Similar forces that act at
short distances are predicted in supersymmetric theories with weak-scale compacti-
fications [53], in some theories with very low energy supersymmetry breaking [54],
and also in theories of very low quantum gravity scale [55, 56]. These multiple
predictions provide strong motivation for experiments that would test for possible
deviations from Newton’s gravitational inverse-square law at very short distances,
notably on millimeter-to-micrometer ranges.

Most of the investigations to date were devoted to study the behavior of gravity
at short distances. However, it is possible that small deviations from the inverse-
square law occur at much larger distances. In fact, there is a possibility that non-
compact extra dimensions could produce such deviations at astronomical distances
[57], motivating new tests.

By far the most stringent constraints on a possible violation of the inverse-square
law to date come from very precise measurements of the lunar orbit about the Earth
[58]. Even though the lunar orbit has a mean radius of 384,000 km, the models agree
with the data at the level of 2 mm. As a result, analysis of the LLR data tests the
gravitational inverse-square law to 1.5 × 10−11 of the gravitational field strength at
the scale of the Earth–Moon distance [45].

Additionally, the emerging interplanetary laser ranging could provide the con-
ditions needed to improve the tests of the inverse-square law on interplanetary
scales [47]. Thus, PLR could reach the accuracy of 1 × 10−14 at ∼ 2 AU distances,
thereby improving the current tests by several orders of magnitude.

We note that with the successful resolution of the puzzling Pioneer anomaly [59],
there are other intriguing puzzles in the solar system dynamics still awaiting a proper
explanation, notably the so-called fly-by anomaly [60] that occurred during Earth
gravity assists performed by several interplanetary spacecraft.

4.4 Tests of Alternative and Modified Gravity Theories in Space

The challenge posed by the unexpected discovery of the accelerated expansion of
the universe makes it very important to explore every option to explain and probe
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the underlying physics. Theoretical efforts in this area offer a rich spectrum of new
ideas, some discussed below, that can be tested by experiment.

Motivated by the dark-energy and dark-matter problems, long-distance gravity
modification is one of the radical proposals that has recently gained attention [61].
Theories that modify gravity at cosmological distances exhibit a strong coupling of
extra graviton polarizations [62]. This effect plays an important role in this class of
theories in allowing them to agree with solar system constraints. In particular, the
“brane-induced gravity” model [63] provides a new and interesting way of modify-
ing gravity at large distances to produce an accelerated expansion of the universe,
without the need for a nonvanishing cosmological constant [61,64]. One of the pecu-
liarities of this model is by means of recovering the usual gravitational interaction
at small (i.e., non-cosmological) distances, motivating precision tests of gravity on
solar system scales [65].

The Eddington parameter γ is perhaps the most fundamental PPN parame-
ter [4, 7], in that 1

2 γ̄ is a measure, for example, of the fractional strength of the
scalar–gravity interaction in scalar–tensor theories of gravity [66]. Currently, the
most precise value for this parameter, γ̄ = (2.1 ± 2.3) × 10−5, was obtained using
radiometric tracking data received from the Cassini spacecraft [14]. This accuracy
approaches the region where multiple tensor–scalar gravity models, consistent with
the recent cosmological observations [21], predict a lower bound for the present
value of this parameter at the level of γ̄ ∼ 10−6÷10−7 [30–32]. Therefore, improv-
ing the measurement of this parameter would provide crucial information to separate
scalar–tensor theories of gravity from general relativity, probe possible ways for
gravity quantization, and test modern theories of cosmological evolution.

As far as optical observations are concerned, future astrometric missions such as
Gaia will push the accuracy to the level of a few microarcseconds, and the expected
accuracy in the determination of γ will be 10−6 to 5 × 10−7 [67]. We note that this
result will be obtained simply as a by-product of its astrometric campaign.

Interplanetary laser ranging could lead to a significant improvement in the accu-
racy of the parameter γ . Thus, precision ranging between the Earth and a lander
on Phobos during solar conjunctions may offer a suitable opportunity (i.e., PLR). If
the lander were equipped with a laser transponder capable of reaching a precision
of 1 mm, a measurement of γ with accuracy of 2 × 10−7 would be possible [48].
In addition, a Mercury lander equipped with a laser ranging transponder would be
interesting as it would probe a stronger gravity regime while providing measure-
ments that will not be affected by the dynamical noise from the asteroids. If the
technical challenges related to landing a spacecraft in polar regions of Mercury and
relevant thermal design issues are resolved (see [48]), this would be a valuable test.

The Gravitational Time Delay Mission (GTDM) [68] proposes to use laser
ranging between two drag-free spacecraft (with spurious acceleration levels below
1.3× 10−13 m/s2 Hz−1/2 at 0.4 μHz) to accurately measure the Shapiro time delay
for laser beams passing near the Sun. One spacecraft will be kept at the L1 Lagrange
point of the Earth–Sun system, the other one will be placed on a 3:2 Earth-resonant,
LATOR-type orbit (see below and [69] for details). A high-stability frequency stan-
dard (δf/f � 1 × 10−13 Hz−1/2 at 0.4 μHz) located on the L1 spacecraft will
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permit accurate measurement of the time delay. If requirements on the performance
of the disturbance compensation system, the timing-transfer process, and the high-
accuracy orbit determination are successfully addressed, then determination of the
time delay of interplanetary signals to a 0.5-ps precision in terms of the instan-
taneous clock frequency could lead to an accuracy of 2 × 10−8 in measuring γ .

The Astrodynamical Space Test of Relativity using Optical Devices (ASTROD)
[70, 71] is a mission concept with three spacecraft, one near the L1/L2 point, one
with an inner solar orbit, and one with an outer solar orbit, ranging coherently with
one another using lasers to test relativistic gravity, measure the solar system, and
detect gravitational waves. ASTROD will place two spacecraft in separate solar
orbits carrying a payload of a proof mass, two telescopes, two 1–2 W lasers, a
clock, and a drag-free system, together with a similar L1/L2 spacecraft. The three
spacecraft range coherently with one another using lasers to map the solar system
gravity, test relativistic gravity, and detect gravitational waves. The three spacecraft,
advanced drag-free systems, and mature laser interferometric ranging will be used
and the resolution is sub-wavelength. The accuracy of measuring γ will depend
on the stability of the lasers and clocks. Preliminary analysis of the missions’ per-
formance indicates that an uncertainty of 1 × 10−9 on the determination of γ is
achievable.

The Beyond Einstein Advanced Coherent Optical Network (BEACON) [72] is
an experiment designed to reach a sensitivity of 1 part in 109 in measuring the PPN
parameter γ . The mission will place four small spacecraft in 80,000-km circular
orbits around the Earth with all spacecraft in the same plane. Each spacecraft will
be equipped with three sets of identical laser ranging transceivers, which will send
laser metrology beams between the spacecraft to form a flexible light-trapezoid for-
mation. In Euclidean geometry this system is redundant. By measuring only five of
the six distances one can compute the sixth. To enable its primary science objec-
tive, BEACON will precisely measure and monitor all six inter-spacecraft distances
within the trapezoid using transceivers capable of reaching an accuracy of ∼ 0.1 nm
in measuring these distances. The resulting geometric redundancy is the key ele-
ment that enables BEACON’s superior sensitivity in measuring a departure from
Euclidean geometry. In the Earth’s vicinity, this departure is primarily due to the
curvature of the relativistic space-time. It amounts to ∼ 10 cm for laser beams just
grazing the surface of the Earth, then falls off inversely proportional to the impact
parameter. The simultaneous analysis of the resulting time series of these distance
measurements will allow BEACON to measure the curvature of the space-time
around the Earth with an accuracy of better than 1 part in 109 [72].

The Laser Astrometric Test of Relativity (LATOR) [69] proposes to measure the
parameter γ with an accuracy of 1 part in 109, which is a factor of 30,000 beyond
the best currently available, Cassini’s 2003 result [14]. The key element of LATOR
is a geometric redundancy provided by the long-baseline optical interferometry and
interplanetary laser ranging. By using a combination of independent time series
of gravitational deflection of light in immediate proximity to the Sun, along with
measurements of the Shapiro time delay on interplanetary scales (to a precision bet-
ter than 0.01 prad and 3 mm, respectively), LATOR will significantly improve our
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knowledge of relativistic gravity and cosmology. LATOR’s primary measurement,
the precise observation of the non-Euclidean geometry of a light triangle that sur-
rounds the Sun, pushes the search for cosmologically relevant scalar–tensor theories
of gravity to unprecedented accuracy by looking for a remnant scalar field in today’s
solar system. LATOR could lead to very robust advances in the tests of fundamental
physics. It could discover a violation or extension of general relativity or reveal the
presence of an additional long-range interaction.

As we see, there is an impressive list of modern experiments that are designed to
test fundamental gravitation to a remarkable precision. The science is clearly impor-
tant [3] and the needed technology is ready with some of its components already
being space-qualified [5]. It is likely that some of these missions could be realized
in the near future; if that happens, we will have an important opportunity either to
verify the theory in a different setting or to make a profound discovery.

5 Discussion and Outlook

For many years since its discovery in 1916, Einstein’s general theory of relativity has
been considered as a purely mathematical structure rather than as a physical theory.
This was due partly to an insufficient recognition of the deep physical significance
of the nongeometrical nature of the right-hand side of the Einstein’s equations [18],
and partly to the lack of experimental or observational challenges to the theory.

The situation has changed drastically in the past 40 years. From the conceptual
point of view, it has been realized through the work of many people that the ele-
gant, geometrical nature of the left-hand side of Einstein’s equations followed, as a
necessary consequence, from the physical postulate that the source of gravity be the
energy–momentum tensor. From the empirical point of view, starting in the 1960s,
the implementation of high-precision gravity tests, and the discovery of quasars and
pulsars motivated one to tackle, in detail, the deep physical implications of general
relativity. As we know it today, the theory has successfully passed all the challenges.

Although general theory of relativity had been successfully and extensively
tested in various configurations, we, nevertheless, should continue testing this fun-
damental physical theory to the highest precision available. This is simply because
this theory is one of the essential pillars of the framework of modern physics. Sec-
ond, some very crucial qualitative features of this theory have not yet been verified;
in particular, the direct detection of gravitational waves. Also, accurate tests in the
strong-gravity regime are still missing.

Presently, there is well-supported expectation of new physics. In particular, the
remarkable recent progress in observational cosmology has subjected the general
theory of relativity to increased scrutiny by suggesting a non-Einsteinian scenario
of the universe’s evolution. From a theoretical standpoint, the challenge is even
stronger—if gravity is to be quantized, general relativity must be modified! Further-
more, recent advances in the scalar–tensor extensions of gravity, and brane-world
gravitational models, along with efforts to modify gravity on large scales, predict
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the existence of very small deviations from general relativity on various scales,
including on the spacecraft-accessible distances in the solar system. These theo-
retical advances motivate searches for deviations from Einstein’s theory, at the level
of three to five orders of magnitude below the level currently tested by experiment.

Space itself, deep-space probes, and orbiting space platforms are all compo-
nents of a new laboratory for gravitation experiments and their use offers exciting
prospects for the future. As far as modern tests of gravitation are concerned, space
deployment offers access to unique conditions that are beneficial to gravitational
experiments and are not readily available on Earth, but are important for many
highly accurate investigations exploring the limits of modern physics. There are
ongoing efforts to develop a highly accurate framework to benefit the new genera-
tion of the gravitational tests [25, 73, 74] that would replace the PPN formalism in
the case of highly accurate measurements [75]. The work is nearing completion, its
results will soon be available and are expected to be useful for many areas related to
spacecraft navigation, precision metrology, and time transfer.

We presented the current empirical status of the general theory of relativity based
on the results of solar system experiments and discussed a number of recently pro-
posed advanced tests of this fundamental theory. Concluding, we emphasize that
physics is an empirical science, so is gravitation. The road map for gravitation is
clearly empirical. As the precision of the fundamental tests will be increased by
orders of magnitude, we will be in a position to explore deeper into the origin of
gravitation and, thus, into the evolution and the fate of the universe. The current and
coming generations of space-based experiments are holding such promises.
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The Detection of Gravitational Waves

Stefano Braccini and Francesco Fidecaro

Abstract The detection of gravitational waves is challenging researchers since half
a century. The relative precision required, 10−21, is difficult to imagine, this is 10−5

the diameter of a proton over several kilometres, using masses of tens of kilograms,
or picometres over millions of kilometres. A theoretical description of gravitational
radiation and its effects on matter, all consequence of the general theory of relativ-
ity, is given. Then the astrophysical phenomena that are candidates of gravitational
wave emission are discussed, considering also amplitudes and rates. The binary neu-
tron star system PSR1913+16, which provided the first evidence for energy loss by
gravitational radiation in 1975, is briefly discussed. Then comes a description of the
experimental developments, starting with ground-based interferometers, their work-
ing principles and their most important sources of noise. The earth-wide network
that is being built describes how these instruments will be used in the observation
era. Several other detection techniques, such as space interferometry, pulsar timing
arrays and resonant detectors, covering different bands of the gravitational wave
frequency spectrum complete these lectures.

1 Foreword

Detecting gravitational waves (GW) is challenging human ingenuity since several
decades. Stefano Braccini had taken it up putting into it his energies and passion.
These lectures were given by Stefano in beautiful Villa Olmo, where he transmitted
all his enthusiasm for the construction of knowledge through scientific discovery.
These lectures describe where we stand now, with Stefano’s conviction that the
next steps in instrumentation will record the first signals transmitted gravitation-
ally. Through the work going into building and commissioning the new instruments
and achieving GW detection, we wish to honour his memory.
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2 Gravitational Waves: What Are They?

The general theory of relativity [1–3] has proven to be highly successful in describ-
ing gravitation as a geometric phenomenon involving the structure of space-time [4].
The Einstein equivalence principle suggests that experimentalists can measure cur-
vature using uncharged test masses or photons that follow geodesic lines. Light
deflection, radar echo delay and Mercury precession measure the amount of curva-
ture generated by the Sun, finding agreement of general relativity with experiment
at the ‰ level. Here the gravitational field is static, while general relativity allows
curvature to vary with time and to propagate at the speed of light. These travelling
variations of curvature are called GW and are necessary to signal at a distance where
gravity changes. These are generated by the motion of massive objects or, more gen-
erally said, by changes of the stress–energy tensor [5, 6]. Curvature is usually very
small, but its effects could be detected in the laboratory by Cavendish. Curvature
changes are even smaller and one has to turn to astrophysical processes with solar
mass compact objects to generate sizeable GW.

How GW arise from general relativity and which are the most promising sources
is covered in the first part. Then various approaches to achieve GW detection are
discussed with attention to experimental challenges encountered.

2.1 Einstein’s Equations

The theory Einstein published in 1916 was the result of a long work that required
facing many conceptual problems. Differential geometry concepts had to be
acquired, among which the Riemann tensor Rα βμν that characterizes curvature.
This tensor describes the change of a vector when parallelly transported along a
closed infinitesimal path; it has 20 independent components. Derived from it by
contraction over two indices is the Ricci tensor,

Rαβ = Rμαμβ (1)

that carries most of the curvature information. The Einstein tensor is then obtained
by making Rαβ traceless

Gαβ = Rαβ − 1

2
gαβRμμ, (2)

to be part of the left-hand side of Einstein’s equations:

Gαβ + gαβΛ = 8πG

c4
Tαβ . (3)

T αβ is the stress–energy tensor, and Λ is called the cosmological constant.
These equations are highly nonlinear because of the presence of the metric in the

equations, metric that is in turn obtained from the solution for the Einstein tensor
of these equations. Curvature from gravitation generates additional curvature, that
is gravitation.
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2.2 Weak-Field Approximation

Flat space-time is described by the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2

= ημνdxμdxν . (4)

Tiny deviations from flat space-time can be described by setting

gμν = ημν + hμν, (5)

where hμν � 1 in some coordinate system. A very useful feature of hμν can be
noted imagining to apply a “background Lorentz transformation”

xᾱ = Λᾱβxβ, (6)

whereΛᾱβ coincides with a Lorentz transformation of special relativity, that is with
constant coefficients. The metric tensor transforms as

gᾱβ̄ = ΛμᾱΛνβ̄ gμν
= ΛμᾱΛνβ̄ ημν +ΛμᾱΛνβ̄ hμν . (7)

But ημν is invariant under Lorentz transformations, so

gᾱβ̄ = ηᾱβ̄ + hᾱβ̄ (8)

having defined
hᾱβ̄ = ΛμᾱΛνβ̄hμν . (9)

One can think in terms of a flat space-time with a Lorentz “tensor” defined on it.
Other fields depending on gμν , likeRμναβ appear as deviations from their flat space-
time form:

Rαβμν = 1

2

[
hαν,βμ + hβμ,αν + hαμ,βν − hβν,αμ

]
. (10)

Under gauge transformations

xα
′ = xα + ξα(xβ ), |ξα, β| � 1 (11)

the Riemann tensor is invariant under gauge transformations, neglecting second-
order terms. Gauge transformations identify classes of equivalent coordinates of
curved space-time.

Following the idea that hμν is a special relativity tensor on a flat background
one can set up some rules for index manipulation, making use of the following
definitions:

hμβ := ημαhαβ (12)

hμν := ηνβhμβ (13)
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h := hαα (14)

h̄αβ := hαβ − 1

2
ηαβh. (15)

In this framework, the Einstein tensor becomes

Gαβ = −1

2

[
h̄αβ,μ

,μ + ηαβh̄μν ,μν − h̄αμ,β ,μ − h̄βμ,α ,μ +O(h2
αβ )

]
. (16)

The form of Gαβ can be simplified performing a gauge transformation such that

hμν,ν = 0 (17)

as is done in electromagnetism. With this choice of gauge, the weak-field Einstein
equations simplify to

h̄ μν,α,α = � h̄ μν = −16πG

c4
T μν . (18)

This is a wave equation with the stress–energy tensor T μν as a source term.
Consider the static case of a point-like source with mass M at rest and spherical

symmetry. The equation with nonzero right-hand side is

�h̄ 00 = −16πGM

c2
δ(r), (19)

where
� := ∂i∂i (20)

is the Laplacian operator. Comparing Eq. 19 with the equation

�φ = 4πGM (21)

that determines the gravitational potential of Newtonian gravitation, one sees that

h̄ 00 = −4φ/c2, (22)

while h̄0i = h̄i0 = h̄ij = 0. Going back to hμν

h00 = −2φ/c2, hii = 2φ/c2, (23)

which allows to write the metric, shown here for the spherically symmetric case

ds2 = (1 + 2φ)c2dt2 − (1 − 2φ)dx2 + dy2 + dz2). (24)

By using the geodesic equation, one obtains Newton’s equation of motion as
classical limit of general relativity

xi ;00 = −φ ;i . (25)

These equations show mass playing the role of charge in electromagnetism. The
comparison can be pursued further by considering masses in motion. There will be a
“current” of matter and one expects “gravitomagnetism”. The Lense–Thirring effect
[7, 8] recently observed [9, 10] gravitomagnetism, which is generated by Earth’s
rotation, dragging space-time around it.
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2.3 Plane Waves

In vacuum, Eq. 18 admits as a possible solution for plane waves. The following form
will be assumed:

h̄αβ = Aαβ exp (ikμx
μ), (26)

so that
h̄αβ ,μ = ikμh̄αβ . (27)

The wave equation becomes

h̄αβ,μ,μ = ημνh̄αβ ,μν = −ημνkμkνh̄αβ = 0, (28)

from which one has

ημνkμkν = kνkν = c2ω2 − k · k = 0. (29)

In other words, planes of constant gravitational wave phase move at the speed of
light. The group velocity vg

vg = ∂ω

∂k
(30)

is also equal to c, without any dispersion.
A further condition derived from the gauge condition of Eq. 17 that was imposed

to simplify the Einstein equations implies

Aαβkβ = 0, (31)

that is Aαβ is orthogonal to kβ .

2.4 TT Gauge and Solution

As mentioned before, the weak-field Einstein equations are simplified by applying
a gauge transformation whose generator ξα(xμ) has to satisfy a wave equation

�ξα = 0. (32)

It is a good idea to select a solution that has the same wave number kμ as the
gravitational plane wave

ξα = Bα exp (ikμx
μ). (33)

The change in h̄αβ under a gauge transformation is such that

h̄αβ → h̄αβ − ξα,β − ξβ,α + ημνξα,α, (34)

so that Aαβ transforms as

Aαβ → Aαβ − iBαkβ − iBβkα + iηαβBμkμ. (35)
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The freedom given by Bα can be used to impose

Aαα = 0, AαβU
β = 0, (36)

where Uβ is some fixed four-velocity. Applying the first constraint to the trans-
formed Aαβ

Aαα − 2iBαkα + iηααBμkμ =
Aαα + 2iBαkα = 0, (37)

while for the second constraint

AαβU
β − iBαkβUβ − iBβkαUβ + iηαβUβBμkμ =

AαβU
β − iBαkβUβ − iBβkαUβ + iUβBμkμ = 0. (38)

If one chooses a reference frame such that Uβ becomes the time basis vector, or
the four-velocity of a particle in its rest frame, then in that frame Aα0 = 0. By
further choosing the orientation of axes so that kμ represents a wave traveling in the
z-direction, then Aαz = 0. One obtains in this coordinate system called “transverse-
traceless (TT)”

h̄αα = 0 (39)

and
h̄T Tαβ = hT Tαβ . (40)

Using the trace condition

ATTαβ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (41)

which contains only two independent quantities,A+ andA×. These describe a plane
wave with wave number kμ.

2.5 Polarization of Gravitational Waves

The above result can be interpreted in terms of polarization by studying how to
detect the passage of a gravitational wave. First, consider a particle moving with
four-velocity Uα along a geodesic determined by a flat metric deformed by a
gravitational wave. The geodesic equation requires

d

dτ
Uα + Γ α μνUμUν = 0, (42)
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where Γ α μν is the Cristoffel symbols used in covariant derivation. For a particle
initially at rest, the initial value of its acceleration is

d

dτ
Uα + Γ α 00 = −1

2
ηαβ (hβ0,0 + h0β,0 − h00,β ) = 0, (43)

that is the particle, in that reference frame, has constant space coordinates or, in
other words, stays at rest.

To detect the passage of a gravitational wave, one needs to measure changes
in curvature. The simplest conceptual (and practical) case is to use two masses in
free fall and initially at rest to mark two geodesics. Variations of invariant distance
as function of the proper time of one of the masses measure curvature variations.
This measurement can be performed by sending a light ray from one mass to the
other and return measuring the round trip time. Consider a gravitational wave with
h+ 
= 0 and h× = 0 and two masses with coordinates (0,0,0) and (L,0,0), that is on
the x-axis. The metric element is

ds2 = d(ct)2 − (1 + h+)dx2 − (1 − h+)dy2 − dz2. (44)

For a light beam that propagates along the x-axis, one has ds2 = 0 or

d(ct)2 = (1 + h+(t))dx2, (45)

where h+(t) is computed at constant z and does not depend on x or y for a plane
wave. One has

d(ct)2 = (1 + h+(t − x/c))dx2 (46)

d(ct)2 = (1 + h+(t + x/c))dx2 (47)

for light travelling toward increasing or decreasing x, respectively. By following the
light ray in space and time, the round trip time is computed by

∫ t1

t0

dt =
∫ L

0

√
1 + h+(t0 + x/c)dx +

∫ 0

L

√
1 + h+(t0 + (L− x)/c)dx, (48)

which definitely changes if h+ varies with time.
A similar result is obtained for a light ray travelling along the y-direction. As

above,

d(ct)2 = (1 − h+(t − y/c))dy2 (49)

d(ct)2 = (1 − h+(t + y/c))dy2, (50)

and
∫ t1

t0

dt =
∫ L

0

√
1 − h+(t0 + y/c)dy +

∫ 0

L

√
1 − h+(t0 + (L− y)/c)dy. (51)
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The variation of the round trip time has now opposite sign. If the light goes along -x
the effect again will be the one observed along +x. This is the effect of the so-called
+ polarization

Along the same lines, one can show that if h× 
= 0 and h+ = 0, the maximum
effect is obtained with light travelling along x = y and x = −y, and a similar
pattern is obtained. This is the effect of the x polarization , identical to the + one,
but for a π/4 rotation.

A different point of view can be adopted by considering the local inertial frame
where one of the masses is at rest. For small relative velocities and a small separation
between the two masses, we can work in a Newtonian reference frame where the
proper distance between the masses is obtained from the components of the vector
ξα connecting them. In such a frame, the trajectory of the second mass is given by
the equation of geodesic deviation:

d2

dτ 2
ξα = RαμνβUμUνξβ, (52)

where Uμ is the four-velocity of the second particle. At rest, Uμ = (1, 0, 0, 0) and
since Rαμνβ is already of the order of hμν changes in Uμ will be of higher order.
For ξα = (0, ε, 0, 0), the equation of geodesic deviation becomes:

d2

dτ 2
ξα = ∂2

∂t2
ξα = Rα00xε = −Rα0x0ε. (53)

The Riemann tensor is gauge invariant, ξα has initially as non-zero component a
proper length, so the above equation is gauge invariant.

For a wave traveling in the z−direction and masses along the x−axis, one has

∂2

∂t2
ξx = 1

2
ε
∂2

∂t2
hT Txx (54)

∂2

∂t2
ξy = 1

2
ε
∂2

∂t2
hT Txy . (55)

Similar expressions are obtained for masses along the y-axis.
This acceleration can also be seen as the result of a force acting on the second

mass, called Riemann force. Being proportional to separation, these forces are called
“tidal” forces, thinking of the elongation observed on the Earth surface when it
deforms due to the tide. This is best shown in Fig. 1 where the displacement of
masses initially on a circle is shown for the + and x polarizations.

Two different points of view, that translate into different coordinate systems, have
been shown. In the TT approach, masses do not change their coordinates and the
measurement rod (the light) stretches. In the other case, the rod is rigid and masses
move. Other coordinate choices are possible, but the result of the measurement of
the round-trip time is invariant.
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Fig. 1 Displacement of free masses for the + and the x wave polarizations

Coming back to the TT gauge, consider a wave described by h cos (Ωt +φ). The
integral along the light path gives

t1 − t0 = 2L

c

[
1 − h

2

sin ΩL
c

ΩL
c

cos

(
Ω

(
t1 − L

c

)
+ φ

)]
.

Considering the Fourier components of a generic waveform, if ΩL/c � 1 then
the measurement of the round-trip time follows the shape of the incoming gravita-
tional wave. To increase the gain, one can consider N round trips; in that case, L is
replaced by NL. Note that if ΩL/c = kπ , that is if 2L is a multiple of the gravi-
tational wavelength, the response vanishes; the change accumulated during, say, the
positive half wave gets cancelled during the negative one.

It is anticipated here that the most promising astrophysical sources have h ∼
10−23. With L = 0.75 km for ground-based detectors, the displacement in a rigid
frame is

δx = Lh
2
= 1.5 ÷ 2 × 10−20 m (56)

or 1/1010 of the size of hydrogen atom.
The measurement of the round-trip time or, for interferometers, the comparison

between the round trip times for two different paths is the technique adopted for
most of the gravitational wave spectrum.
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3 The Generation of Gravitational Waves

The weak-field equations have been discussed until now without the source term for
gravitational wave emission. As indicated before, the complete equation is

�h̄μν = −16πG

c4
T μν (57)

where the coupling constant is G/c4 = 8.23 × 10−45 kg−1 m−1 s−2.
The outgoing solution of this equation is

h̄μν(t, x) = 4
G

c4

∫
Tμν(t − R/c, z)

R
d3z, R = ||x − z||, (58)

where the integrand is to be computed at the “retarded time”, that is on the past light
cone of (t, x). Computing the solution far away from the source with respect to the
source size, R � ||x||, and with slowly moving sources then

h̄μν(t, x) ≈ 4G

c4r

∫
Tμν(t − R/c, z)d3z. (59)

Now, the conservation law T μν,ν = 0 is also written in integral form as
∫
T0μd3z = const. (60)

implying that h̄0μ cannot contain a propagating field.
From the conservation law T μν,ν = 0, it can be shown that

d2

dt2

∫
T 00xlxmd3x = 2

∫
T lmd3x (61)

or

h̄jk(t, x) = −2

r
Ijk,00(t − r/c), (62)

that is the second derivative of the mass quadrupole moment at retarded time

Ijk(t − r/c) =
∫
xixjdm. (63)

Expressing this in the TT gauge

h̄T Txx (t, x) = G

c4r

[−I xx,00(t − r/c) −−I yy,00(t − r/c)]

h̄T Txy (t, x) = G

c4r
−I xy,00(t − r/c), (64)

where −I ij,00(t − r/c) is the TT part of the quadrupole moment of the source.



The Detection of Gravitational Waves 247

The presence of the factor G/c4 implies that the amplitude of the wave emitted
by whatever device could be conceived in the laboratory is so small that one has to
consider the mass of astrophysical objects in violent motion, as shown below.

The luminosity, or emitted power of a source, can be computed from the energy
flux of a gravitational wave (see e.g. Schutz [3]. The expression

L = c5

5G
〈...−I ij

...−I ij 〉 (65)

is valid, however, for slow moving bodies and weak fields. This expression, through
the square of

...−I ij , is proportional to the average (v/c)6. Higher luminosity is
obtained by considering rapid and coherent motion of large masses. The factor
c5/G  3.6 × 1052 W sets the scale of luminosity for gravitational wave sources.
This is a huge number that however does not translate in a large wave amplitude.

To compute the amplitude at the detector, one has to consider propagation, with
energy flow decreasing as 1/R2. Consider a source emitting in 1 s an amount of
energy corresponding to one solar mass and size one Schwarzschild radius RS ∼
3 km situated at a distance R = 100 Mpc (approximately 300 million light years
or 3 × 1024 m). At the source, gravity will be strong, h ∼ O(1), but on the Earth
the gravitational wave amplitude is reduced by a factor of the order of (RS/R)2 ∼
10−42.

This still gives a high energy flux, related to amplitude by

F = ω2c3

32πG
〈h̄T Tij h̄T T ij 〉. (66)

The amplitude estimate is

h̄T Tij ∼
(

32πG

ω2c3
F

)1/2

, (67)

where, leaving aside the ω−2 behaviour, the conversion factor from the square root
of flux to amplitude is (

32πG

c3

)1/2

∼ 10−16.

A small deformation of vacuum stores an enormous amount of energy: it can be said
that vacuum is quite rigid.

One can now estimate the order of magnitude of the gravitational wave amplitude
in various cases. A ground-based source could be a bar rotating with angular speed
ω around an axis perpendicular to the bar itself. For a thin homogenous bar, the
quadrupole moment would oscillate with amplitude

I 0
xx = 2

∫ L/2

0
x2dm = 2

∫ L/2

0
x2dm = ML

2

12
= ρSL

3

12
, (68)
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and the second derivative would be

d2

dt2
I 0
xx = −ω2ρS

L3

12
. (69)

On the other hand, the bar has to sustain the stress, that is going to be maximum at
its centre

σ = F

S
= 1

S

∫ L/2

0
ω2xdm = ω2ML2

8S
= ω2ρL3

8
(70)

that has to be less than the fracture modulus which is of the order of 10 GPa for iron.
Assume a monster of 1000 t and 100 m length rotating at 10 rad/s. The luminosity

is going to be

L ∼ G

c5
M2L4ω6 ∼ 10−26 W, (71)

which is a very tiny power.
On the other hand, consider two neutron stars in their last phase of inspiral, that

is a system of 2.8M� of size r ∼ 20 km. For such a system in a regime of strong
gravity, the Schwarzschild radius is going to be of the order of the size of the neutron
star:

L ∼ G

c5
M2L4ω6 ∼ G

c5

c4RS

G2
r4 β

6c6

r6
∼ c5

G

(
RS

r

)2

β6 ∼ 1043 W (72)

or 1017 Suns, but for a fraction of a second.
Another example of interest is a rotating neutron star (radius r ∼ 10 km) with

moment of inertia

I ∼ 2

5
1.4M�R2 ∼ 1038 kg m2, (73)

rotation frequency 103 rad/s and ellipticity ε = (Ixx − Iyy)/Izz ∼ 10−7. The
luminosity is

L ∼ G

c5
M2L4ω6 ∼ G

c5
(εIzz)

2(ω)6 ∼ 3 × 1028 W. (74)

If this neutron star is at 10 kpc (3 × 1019 m) away, the flux on Earth is 3 ×
10−12 W/m2, which corresponds to an amplitude for hT Tij of the order of 10−26.

Consider now a binary system made of two neutron stars (m = 1.4M�) that
are practically touching themselves, that is with an orbit radius r0 of 10 km. This
would be the very end of the life of a binary system that lost almost all its energy.
Making the crude approximation of considering the two masses as point-like with
Newtonian dynamics, the orbital frequency is given by

ω2 = Gm/r3
0 (75)

or ω ∼ 2 × 103 rad/s.
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The TT quadrupole moment is given by

−Ixx = mr2
0 cos 2ωt + C

−Iyy = −mr2
0 sin 2ωt + C′

−Ixy = mr2
0 sin 2ωt . (76)

For this system, the order of magnitude of the amplitude of the radiation, observed
at distance R, is then

h ∼ G

Rc5
mr2

0ω
2 = G2m2

c5Rr0
∼ 1

c5
φφ0, (77)

where φ = Gm/R is the potential of the system at the observation point and φ0 =
Gm/r0 is the typical potential in the system.

4 GW Sources

The possibility of detecting GW, studying their properties, and analyzing the astro-
physics message they carry depends on many factors. Detectors have to give a
response that can stand out of the instrument noise, and an effort started several
decades ago has gone into the design of more and more sensitive instruments. This
determines the amplitude of detectable waves. But sufficient sources at the right dis-
tance have to be available. Strong but unlikely events may never occur during the
lifetime of an instrument, while events that are feeble due to distance may be more
frequent as they come from a broader portion of the universe. Today, predictions
for amplitudes and populations for the various sources still span several orders of
magnitude.

The sources being considered are binary systems in their final inspiral and merg-
ing phase, supernova core collapse, rapidly rotating neutron stars and stochastic
background. The first two are transient, the other two are permanent. Considering
detection, another distinction has to be made; knowing the waveform allows to sig-
nificantly increase the signal-to-noise ratio (SNR) in the detector. This is the case
for binary systems and rotating neutron stars. Core collapse cannot really be mod-
elled; stochastic background results in additional noise in a detector, possibly with
different statistical properties.

4.1 Inspiralling Binary Systems

Binary systems of compact astrophysical objects are the simplest systems that are
able to emit GW. As shown above, waveforms can be computed at first order using
Newtonian orbits, having care of taking into account secular variations of energy and
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Table 1 Predicted observing rates per year for second generation interferometers Advanced Ligo-
Advanced VIRGO (see [11] for details. Lo, Re, Hi and Max refer to the posterior probability
density function (PDF) when available. RRe refers to the PDF peak, RLo and RHi to the 95 %
pessimistic and optimistic confidence intervals. RMax is based on very basic limits set by other
astrophysical knowledge

System RLo RRe RHi RMax
yr−1 yr−1 yr−1 yr−1

Binary neutron stars 0.4 40 400 1000

Neutron star-black hole 0.2 10 300

Binary black holes 0.4 20 1000

angular momentum. Much more can be learnt when the system becomes more rela-
tivistic and higher order terms in (v/c)2 need to be taken into account. Ground-based
experiments, sensitive in the band 10÷104 Hz, will be able to observe only the very
last orbits of systems of 1÷100 solar masses, their merging and ring down. Whether
in these extreme conditions general relativity will need modifications or will suc-
cessfully compare with observation is a fundamental question for our understanding
of gravitation. In addition, in the case of neutron stars the observed behaviour will
allow to discriminate between various equations of state for nuclear matter.

Much less certain is the rate of observation of these events. One has to predict
the probability to build a binary system made of two compact objects such as two
neutron stars, two black holes or a black hole-neutron star system. Theoretical pre-
dictions are uncertain, being largely model dependent. Only a handful of neutron
star binary systems has been identified and is thus available to tune models. How-
ever, lower limits are now within the reach of ground-based interferometers that
are being upgraded now, as shown in Table 1 (computed in [11]) for the expected
performance of the second generation interferometers.

The table indicates that in the next years, when the second generation detectors
will be operating we should observe gravitational wave signals. Not observing them
would have major implications on our understanding of physical laws.

These events may be accompanied by electromagnetic emission, in particular
gamma-ray bursts. The simultaneous observation of GW and electromagnetic radia-
tion over the whole spectrum would allow to study these violent phenomena in great
detail. In particular, GW will allow to probe the inner matter of the system, opaque
to other radiation.

4.2 Supernova Core Collapse

At the end of a star life, when the pressure originated by the nuclear reactions is
not able to sustain gravitational force anymore, one has the collapse of the star core,
resulting then in a supernova (SN) explosion. At the end of the process, a neutron
star may have formed, if the parent star mass is in the range 8÷25M�. The collapse
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has a duration of the order of 1 ms and involves large quantities of mass. This is very
promising to make a core collapse an interesting gravitational wave source; if the
collapse is not axisymmetric, there should be a large quadrupole emission. The short
duration of the pulse makes it accessible to the ground-based detectors, as discussed
later, and indeed supernovae are a primary target for gravitational wave detection by
acoustic detectors resonating around 1 kHz.

Knowledge of these sources has evolved since the first experiments both for rate
estimates and for emission amplitude. It is estimated that in the Milky Way there
will be 2 ÷ 3 SN explosions every century. This rate becomes high if one is able to
listen to tens or hundreds of galaxies, extending the sensitivity range (or horizon)
well outside our own galaxy. For the amplitude, estimates were based on the amount
of energy going into gravitational radiation. Early estimates assumed that 10−2M�
solar masses would be converted, but the development of general relativistic mag-
netohydrodynamic codes drastically reduced that amount. Nowadays, estimates are
of 10−7 − 10−8M� [12]; so, the perspective of detecting SN signals is dim even for
second-generation detectors.

The waveform from a core collapse is unpredictable; matter motion toward the
star centre is prone to instability and will depend strongly on initial conditions.
Detection of these signals against background noise can be achieved primarily by
estimating the energy content of the wave. On the other hand, the recorded signal
will carry unique information about the last milliseconds of life of the star.

4.3 Periodic Sources

Estimates on star population in our galaxy indicate that there are of the order of 109

neutron stars. These neutron stars have a mass that is typically 1.4 M� as higher
masses would lead to the formation of a black hole. Their radius is of the order of
10 km; the density is 3 × 1017 kg/m3. They come from progenitor stars and due to
angular momentum conservation when they were created, or by successive matter
accretion, they can spin quite fast. They have a strong magnetic dipole, with a field
at the surface of 108 T and turn out to be powerful electromagnetic pulse emitters.
Pulsars were discovered in radioastronomical signals and were immediately inter-
preted as coming from rotating neutron stars. As of today, more than 2000 pulsars
have been discovered, from tens of seconds to millisecond period [13]. As discussed
above, rapidly rotating neutron stars are gravitational wave emitters. The amplitude
of the wave at the Earth is given by

h = 3 × 10−27
(

10 kpc

r

)(
I

1038kg m2

)(
f

200 Hz

)2 ( ε

10−6

)
, (78)

where I is the actual moment of inertia and r is the distance of the source.
It is anticipated that this amplitude is nevertheless very small. However, one can

profit from the periodicity of the signal and use the detector as a lock-in ampli-
fier, accumulating the signal period after period, while averaging the noise down



252 S. Braccini and F. Fidecaro

as T −1/2, where T is the observation time. In this way with T ∼ 1 year, the
signal-to-noise ratio can be optimally enhanced by a factor of 5 × 103.

With an observation time of 1 year, the frequency resolution δf = 1/T =
3 × 10−7 Hz but the signal observed will not be that stable, due to the Doppler
effect coming from the Earth orbiting around the Sun at 30 km/s = 10−4βc.
For a source emitting GW at frequency f the frequency span Δf will be up to
Δf = ±104f � δf , making the lock-in scheme ineffective. Data analysis becomes
much more complex as frequency follows a different pattern for every different loca-
tion in the sky, so one needs to set up in data analysis programs something like 1016

different lock-in devices, for 1010 different frequency bins up to 1 kHz and of the
order of 106 different patches in the sky. This is not manageable with current com-
puters so other methods have been developed, attempting to compromise between
the computing time needed and a lower detection efficiency.

The detection of GW from these sources will provide direct information on the
neutron star structure and the nuclear matter equation of state. The distribution of
these pulsars will give a completely new view of the galaxy, and it may be that
there is a pulsar nearby the solar system that just does not illuminate Earth with
its lighthouse beam and would be discovered only by the ripples in space-time it
generates.

4.4 Stochastic Background

Gravitational wave detectors are sensitive to waves coming from almost any direc-
tion. In presence of several waves, these detectors are going to measure a linear
combination of the resulting spacetime deformations. Waves from all directions,
frequencies and polarizations form a stochastic background, whose origin can be
astrophysical, cumulating many sources at different red-shifts, or cosmological,
coming from the early moments of the universe. The microwave background gives a
picture of the universe at an age of 380,000 years, when the temperature has dropped
sufficiently so that nuclei and electrons can recombine to form neutral atoms that are
transparent to electromagnetic radiation. For GW, due to their very low interaction
with matter, the universe becomes transparent much earlier and information about
that epoch is kept in the stochastic background.

Many cosmology-related measurements have been performed, resulting in a
highly coherent picture for the standard model of the Big Bang. These measure-
ments provide constraints on the energy density of the gravitational wave stochastic
background

ρGW = c2

32πG
〈ḣij ḣij 〉 = 1.34 × 10−25〈ḣij ḣij 〉, (79)

related to the energy flow of Eq. 66. The main limit is given by Big Bang
Nucleosynthesis and leads to an upper limit [14]:

ΩGW (f ) = 1

ρc

dρGW
d ln f

< 8.6 × 106, (80)
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flat in frequency, and

ρc = 3c2H 2
0

8πG
≈ 1.6 × 1020H 2

0 = 5.49 × 10−20 J/m3, (81)

with H0 = 73.8 ± 2.4 km/sMpc [15]. An additional limit at low frequency comes
from the observation of cosmic microwave background and matter inhomogeneities:

ΩGWh
2 < 10−14, f < 10−15 ÷ 10−10 Hz. (82)

The energy density of the gravitational wave stochastic background is related to the
amplitude of GW by [16]

〈ḣij ḣij 〉 < 10−26. (83)

In the standard scenario, the expected amplitude seems to be out of reach for ground-
based detectors. However, if the cosmological gravitational wave background has
an appropriate frequency dependence, the limits set by cosmology might not apply.
This could be the case if some new physics were present at the Big Bang.

Detecting a stochastic background amounts to detect an excess noise in a detec-
tor. Unless one has precise control of the instrumental noise, this task cannot be
carried out but by observing correlation between two different instruments. The task
of detecting a stochastic background signal is very difficult indeed, but scientific
interest for it is beyond doubt.

5 PSR 1913+16

Having spent some time in describing the various sources of GW, it is appropriate
to discuss the first evidence for gravitational wave emission [13]. The pulsar PSR
1913+16 was discovered by Hulse and Taylor in 1974 using the Arecibo radiotele-
scope. The pulsar has a rotation frequency of about 17 Hz but it was immediately
apparent that this frequency was fluctuating in a periodic way (see Fig. 2. This
allowed to deduce that the pulsar was a member of a tight binary system with an
orbital period of 7.75 h as there was no other way to explain the size of the effect
(1.3 ‰) over such a time scale.

It can be seen that the orbit is highly eccentric and the ratio of speeds at periastron
and apastron allows to compute the eccentricity in Newtonian approximation:

vp

va
= 1 + e

1 − e , e = vp − va
vp + va  0.6. (84)

The periastron precession is given by

ϕ̇ = 6πGM ′

a(1 − e2)τc2
, (85)
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Fig. 2 Top: PSR1913+16 pulse arrival time relative to centre of mass [17]. Bottom: Doppler
shift of the pulsar frequency. The 7.75 h period is explained most naturally by the presence of
a companion in a tight binary orbit

where M ′ is the mass of the pulsar companion and τ is the orbital period. For PSR
1913+16, this precession is of about 4

◦
year−1, orders of magnitude larger than the

Mercury’s.
From the same data, one can deduce the size of the orbit along the line of sight

which is about 4 light-seconds,  1.2 × 109 m, much less than the diameter of the
Sun. The distance between the two stars varies by a factor of 4, enough to be able to
observe a gravitational redshift for the pulsar period P in the field of the other star:

P = P0

(
1 − 2

GM ′

rc2

)−1/2

. (86)

It is also possible to observe the time dilation of special relativity, as the pulsar speed
is high and varies sufficiently to detect the related period variations:

P = P0

(
1 − 2

GM ′

rc2

)−1/2 (
1 − v

2

c2

)−1/2

. (87)

All this makes PSR1913+16 a unique laboratory for special and general relativity,
moreover at a distance of about 20,000 light-years.
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Fig. 3 Cumulative shift of
periastron time for PSR
1913+16 (data from [18])
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However, the most important result was the observation that the orbital period
of the system, which should stay constant in Newtonian mechanics, decreases in a
sizeable way:

dτ

dt
= −2.422(6) × 10−12, (88)

as shown in Fig. 3. The decrease comes from the energy decrease of the system due
to gravitational wave emission. The parameters related to the system PSR 1913+16
are listed in Table 2.

The hypothesis of gravitational radiation as origin of the energy loss is clearly
compatible with these observations; once all effects are included, general relativity
is in agreement with the observations, the combination of theoretical uncertainties
and experimental errors being at the 2 ‰ level. This is a clear evidence for grav-
itational radiation; however, until now no gravitational wave signal has ever been
detected.

6 Gravitational Wave Detection

The discussion on sources of GW has a first conclusion: detecting them is not going
to be an easy task. The expected changes in the metric range from 10−12 for stochas-
tic background with timescale of million of years down to 10−21 for inspiral events
within some tens of Mpc. These very small values have to be compared on one side
with how precisely test masses follow a geodesic and on the other to the precision in
distance measurement. Experimentalists know that the best techniques are needed
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Table 2 Parameters of PSR 1913+16. Data from [19] and [18]

Parameter Symbol (units) Value

Pulsar parameters

Right Ascension α 19h15m28.s0018(15)

Declination δ +16 ◦06′27.′′4043(3)

Distance kpc 7.13

Pulsar period Pp (ms) 59.029997929613(7)

Period derivative Ṗp 8.62713(8) × 10−18

Binary system parameters

Projected semimajor axis ap sin ι (light-s) 2.3417592(19)

Eccentricity e 0.6171308(4)

Orbital period Pb (day) 0.322997462736(7)

Longitude of periastron ω0( ◦) 226.57528(6)

Julian date of periastron T0 (MJD) 46443.99588319(3)

Post-Keplerian parameters

Mean rate of periastron advance 〈ω̇〉 ( ◦ yr−1) 4.226621(11)

Redshift/time dilation γ ′ (ms) 4.295(2)

Orbital period derivative Ṗb ( × 10−12) −2.422(6)

and will have to be improved: There is a strong drive toward improving that preci-
sion realizing that the number of sources increases with the cube of the distance that
can be reached.

Interferometry is a high precision technique; optical paths can be very effectively
compared by having two beams interfere destructively, performing a null experi-
ment. The natural measurement unit is the wavelength, typically of the order of
10−6 m. Still more than 12 orders of magnitude need to be gained but interferometry
seems well suited for gravitational wave detection. It has been shown that distances
in perpendicular directions vary with opposite signs (see 41), so that a Michelson–
Morley type interferometer (Fig. 4) is an excellent device for gravitational wave
detection. A first experimental advantage of the use of two-arm interferometry is
that for equal arms the measurement is insensitive to wavelength changes. Although
exact symmetry cannot be achieved, nevertheless the requirements on the light
source can be relaxed with respect to the above 10−21 of relative precision. Call-
ing φN and φW the phases of the beams (N is for North and W for West), k and λ
the wave number and wavelength, respectively, one has

φN − φW = 2k(LN − LW ) = 4π

λ

(
LN

(
1 + h+

2

)
− LW

(
1 − h+

2

))

= 4π

λ

(
ΔL+ h+LN + LW

2

)
(89)
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Fig. 4 Michelson interferom-
eter principle

where ΔL = LN − LW is the difference in arm length and h+ is the amplitude of
the gravitational wave. The error on phase is given by

σφ = 4π
ΔL

L

σλ

λ
. (90)

Geometrically, ΔL/L can be as low as 10−6, depending on how well mirror survey
is performed, but if L is increased by means of a Fabry–Perot cavity the effective
cavity asymmetry is determined by the difference in transmission coefficients of the
mirrors. A few ‰ asymmetry has been achieved in present generation interferome-
ters and this allows to reduce significantly the requirements on the frequency noise
of the light source.

7 Fundamental Noises in the Interferometers

The sort of noise discussed above, although at the hearth of the measurement,
is not fundamental at the present level, in the sense that more symmetric arms
could be achieved, and frequency fluctuations can be controlled at the required
level by appropriate feedback. The first sort of fundamental noise that will be
discussed is related to the measurement process, which involves, at some point,
counting photons. The inherent statistical nature of this process limits the achievable
precision.

The actual position of the masses used in the measurement is modified by local
forces. Most of them can be reduced by an appropriate experimental set-up but there
are sources of noise that cannot be easily shielded. Masses are in a thermal bath, and
the average energy associated to any degree of freedom is on average kT , where k is
the Boltzmann constant and T is the absolute temperature. The actual kinetic energy
fluctuates, resulting in random motion. The actual effect on the measurement repre-
sents the main limit to the performance of today’s interferometers. The masses are
also in a gravitational field, that is not constant. In fact, fluctuating gravity gradients
modify mass separation making them undistinguishable from GW.

For completeness, as this is becoming relevant in second generation interferom-
eters, one has to mention the effect of the measurement process on the masses.
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Fluctuations in light intensity introduce time-dependent thermal effects resulting
in mass deformation and therefore mirror surface motion. The same fluctuations
move the mass as a whole limiting the measurement capability. Fluctuations from
the ultimate quantum nature of light enter the measurement process too, a macro-
scopic manifestation of the Heisenberg’ principle. This can be evaded by changing
the quantum nature of the light used, measuring better the phase while tolerating
larger amplitude fluctuations, but this intriguing subject is beyond the scope of this
chapter.

7.1 Measurement Noise

Consider a Michelson interferometer with a light source of power Pin and detected
power Pout and assume a phase difference between the two arms containing an offset
π + α and the gravitational wave signal φGW

Δϕ = π + α + φGW , (91)

where α = 0 means destructive interference toward the detection port. The detected
power is

Pout = Pin sin2
(
α + φGW

2

)
, (92)

which becomes, for φGW � 1

Pout = Pin
(

sin2 α

2
+ 1

2
φGW sinα

)
. (93)

The interferometer response is:

dPout
dφGW

= Pin sin

(
α + φGW

2

)
cos

(
α + φGW

2

)

= sin (α + φGW), (94)

which is maximum for α = π/2. This corresponds to Pout = P ¯out = Pin/2 with
P ¯out being the power back to the light source. The response of an instrument to a
small variation of the physical quantity to be measured is traditionally called sensi-
tivity. In the field of GW, however, this term is used in a different way, as discussed
below. dPout

dφGW
can be called instead GW transfer function or GW gain, following

electronic engineering terminology.
However, Pout is affected with fluctuations and this will limit the precision of

the measurement. If on average N photon counts per second are expected, and these
counts have Poisson statistics, as is the case for usual and laser light, the counting



The Detection of Gravitational Waves 259

process is affected by “shot noise” and the variance of the counting process is N .
The fluctuation in the measurement of Pout is

σPout =
√
ηN =

√
ηPin

hν

(
sin2 α

2
+ 1

2
φGW sinα

)
, (95)

η being the detection quantum efficiency and hν the energy of the single photon. In
absence of the signal,

σPout =
√
ηPin

hν

∣∣∣sin
α

2

∣∣∣ . (96)

The SNR for a 1-s observation time (or a 1-Hz frequency band) is

SNR =
√
ηPin

2hν

∣∣∣cos
α

2

∣∣∣φGW , (97)

maximum for α = 0. Gravitational wave interferometric detectors work near the
“dark fringe” (although not exactly at α = 0 to avoid a quadratic response).

The amplitude of h that generates a signal equal to the noise level (SNR=1) is
conventionally called “sensitivity” in the gravitational wave community and from
now this meaning will be adopted. The phase sensitivity for a 1-s measurement is

φ̃minGW =
√

2
hν

ηPin
. (98)

If the measurement time is T , the average count varies accordingly and the phase
sensitivity becomes

φminGW =
√

2
hν

ηPinT
. (99)

Note that φ̃minGW and φminGW have different units. φminGW is in radians and φ̃minGW is in
radians s1/2 or radians/

√
Hz. What has been measured is φminGW , which has physical

units. However, to be independent of its measurement time, which may depend on
the particular gravitational wave source, φ̃minGW is usually mentioned. This is a (linear)
spectral density in the sense that the square represents the variance of the physical
quantity downstream a 1-Hz wide bandpass filter. Discussion of power spectra for
random signals can be found in books on stochastic processes [20] or on telecommu-
nications. For our purposes, linear spectral densities (or for short spectra), represent
the standard deviation of a given quantity in a 1-Hz bin. Contributions from inde-
pendent noise sources must be added quadratically. Noise over a wider frequency
band is also obtained adding quadratically the various frequency bins. One has to
be careful specifying whether the spectrum is to be considered for both negative
and positive frequency, or only positive. As both sides of the spectrum sum up, the
two-sided spectrum is a factor

√
2 lower that the one-sided one.



260 S. Braccini and F. Fidecaro

Table 3 Sensitivity in h for
a table top and a km class
interferometer

L hmin (Hz−1/2)

Table top 1 m 1.6 × 10−17

VIRGO 3 km 5.3 × 10−21

As a typical example, consider an infrared 10-W light source (λ = 1064 nm and
an ideal photon detector η = 1). One obtains

φminGW ∼
√

2hν

ηPin
= 2.0 × 10−10rad Hz−1/2. (100)

For a gravitational wave with + polarization impinging perpendicularly to the
interferometer

φGW = 2π

λ
2L
h

2
× 2, (101)

so that

hmin = λ

4πL

√
2hν

ηPin
= 1

4πL

√
2hcλ

ηPin
, (102)

which is a spectral density in Hz−1/2. In Table 3, two cases of interest are presented,
a table top and the 3-km arm VIRGO interferometer.

One sees that for a kilometre-class interferometer the sensitivity is respectable
but not yet very useful, given the amplitude of the expected signals. Equation 102
shows which improvements are possible; an increase in L, although this has conse-
quences on the maximum detectable frequency, an increase in Pin and a decrease
in λ. All these parameters hit practical limitations; L is not easily increased on the
Earth for ground-cost reasons, increasing Pin requires a serious technological effort
to stay within other very stringent requirements for the light source, like frequency
stability and beam quality, while decreasing λ significantly would mean operating
in the near UV, where light sources and optical components do not have the same
level of quality that is available at 1064 nm.

Remaining in the near infrared, L can be increased by using multiple reflections
in order to increase the optical path difference. The simplest way is to have a beam
bounce on different places of a test mass. Light diffusion by mirror imperfections
and the natural broadening of the beam require each reflection spot to be well sepa-
rated from the other otherwise there is crosstalk between the various segments of the
optical path. This quickly sets a limit to this approach; either very large transversal
dimension for the test masses are adopted or one needs more than one test mass at
each end of the arm. A different approach is to use a Fabry–Perot resonant cavity,
made of two mirrors between which light goes back and forth. At the input, a semi-
reflective mirror allows light to enter the cavity that is closed by a reflective mirror.
By properly adjusting the distance between the mirrors, the light can be stored with
little light being reflected. As a consequence, length variations are detected through
the light reflected by the cavity.
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Fig. 5 Schematic Fabry–Perot cavity

Consider plane waves with incoming and reflected electric fields Ein e Eout . The
fields inside the cavity at both ends and in both directions are E1, E2, E3 and E4
(see Fig. 5).

The boundary conditions are as follows:

E1 = t1Ein + jr1E4

E2 = exp [jkl]E1

E3 = jr2E2

E4 = exp [jkl]E3

Eout = jr1Ein + t1E4

with a reflection phase difference equal to π/2 (dielectrics).
The result is

E1 = t1

1 + r1r2 exp [2jkl]
Ein (103)

that has a resonance condition for 2kL = π giving for the field inside the cavity

E1 = t1

1 − r1r2Ein. (104)

The beam intensity at resonance is

P1 = ε0c

2
|E1|2 =

(
t1

1 − r1r2
)2

Pin, (105)

and more in general

P1 =
(

t1

1 − r1r2
)2

Pin

1 + 4F2

π2 sin (kx)2[x/2]
, (106)

where x is the deviation from the resonance length L and F is the cavity finesse:

F = π
√
r1r2

1 − r1r2 . (107)
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Fig. 6 Beam intensity as function of detuning

It is important to note that the cavity resonates at many different frequencies as
shown in Fig. 6:

νn =
(
n+ 1

2

)
c

2L
. (108)

2L/c is called the free spectral range (FSR). For a 3-km cavity, FSR ∼= 50 kHz.
In analogy with resonating LC circuits, one can define as figure of merit the field

inside the cavity divided by the incident field. The reflected field Eout is given by

Eout = jr1Ein + jr2t1 exp [j2kL]E1 = jREin (109)

with

R = r1 + (1 − p1)r2 exp [j2kL]

1 + r1r2 exp [j2kL]
. (110)

p1 represents the cavity absorption. There will be a phase variation corresponding
to a length variation:

dΦ

dL
= 8F
λ

. (111)

However, as in the case of the Michelson interferometer working point, this does not
correspond to the highest sensitivity because being at resonance implies that little
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light is reflected. More detailed computations show that a good working point for
the cavity leads to a reduction by a factor of 2 for the sensitivity.

The phase difference between the two arm cavities in presence of a gravitational
wave is

hmin = λ

8FL2

√
hν

ηPin

√
1 + 4F2

π2
sin2

(
ΩL

c

)
(112)

to be compared with the simple Michelson case

hmin = λ

2πL

√
hν

ηPin
. (113)

At low frequency (Ω � c/L), one obtains a sensitivity gain of

2F
π
, (114)

which can also be read as the effective length increase of the arms. For F = 150,
the gain is 92.4, which brings the sensitivity level of the VIRGO interferometer to
5.7 × 10−23 Hz−1/2.

While the physical arm length difference can be controlled at 10−5 relative level
of 10 μm, the difficulty of having exactly the same finesse in the two arms intro-
duces a much more severe asymmetry. Since the effective length is proportional to
LF , Eq. 90 becomes a sum in quadrature

σφ =
(
ΔL

L
⊕ ΔF

F

)
, (115)

making the instrument much more sensitive to frequency fluctuations; current inter-
ferometers have achieved ΔF/F  0.5%, still one order of magnitude worse than
ΔL/L.

It should be mentioned here that keeping these cavities optically resonant
requires controlling the mirror relative positions with a sophisticated feedback sys-
tem, with error signals that have to be extracted directly from the circulating light.
The Pound–Drever–Hall technique [21,22] is often used but its discussion would be
out of the scope of this work (see [23] for a pedagogical introduction).

Another technique based on resonant cavities is used to increase the sensitivity
of gravitational wave interferometers. By inserting a semi-reflective mirror between
the light source and the beam splitter, one can create a large complex optical cavity.
This mirror behaves as the input mirror of a Fabry–Perot cavity with the E4 field of
the above discussion being determined by the reflected light from the optical system.
Since the interferometer is operated on the dark fringe, in principle all power is
coming back to the mirror and can be recycled into the interferometer. The incident
power on the beam splitter is multiplied by a recycling factor that will depend on the
losses in the interferometer. A recycling factor of the order C = 30 was achieved
with VIRGO.
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The resulting sensitivity, including the filtering behavior of the Fabry–Perot
cavities, is

hmin = λ

4FL

√
hν

ηCPin

√
1 + 4F2

π2
sin2

(
ΩL

c

)
, (116)

which in the low-frequency limit results in

hmin = λ

4FL

√
hν

ηCPin
= 0.8 × 1024 Hz−1/2. (117)

The introduction of “power recycling”, the availability of more powerful light
sources and the increase in finesse for advanced detectors results in beams of sev-
eral MW circulating in the cavities. At this level, even with mirrors of several tens
of kilograms, the fluctuations in radiation pressure introduce a spurious motion,
limiting the measurement capability.

For a beam of power P , the radiation force on a fully reflective mirror is F =
2P/c = 2N̄hν/c, where N̄ is the average number of photons per second. The force
fluctuations are then

δF = 2
√
Nhν/c = 2

√
P

hν

1

c
, (118)

the mirror acceleration fluctuations per unit time will be

δa = 2

√
P

hν

1

mc
(119)

resulting in a position fluctuation

δx = 2

√
P

hν

1

mΩ2c
, (120)

Ω being the angular frequency at which the measurement takes place.
On the other hand, the precision of the measurement by the cavity is

σx = 2π

λ

√
P

hν

1

mΩ2c
. (121)

The overall precision is the quadratic sum of the two combinations and has a mini-
mum that is frequency dependent. This is the “Standard Quantum Limit” (SQL), the
macroscopic manifestation of Heisenberg’s uncertainty principle anticipated before.

This is a noise of fundamental origin. As mentioned above, there are develop-
ments that allow to better measure the phase while tolerating a larger amplitude
fluctuation, still verifying the relation

σφσN ≥ 1

2
(122)

that originates from the quantum nature of light.
A factor of 10 has been achieved in the laboratory [24] while the applicability

of these techniques to kilometre-size interferometric detectors was demonstrated,
although with much smaller performance [25]. Even a factor of 4 would otherwise
require increasing the laser power by a factor of 16!
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7.2 Seismic and Newtonian Noise

As discussed above, gravitational wave detection requires to observe the relative
motion of masses that mark geodesic lines in space-time. This requires that motion
due to local perturbations is reduced below something like 10−19 m. This very small
value is not really appreciated until one learns that, in 1 s, ground motion is of the
order of 10−7 m. Fortunately, this displacement spectrum decreases with frequency;
a typical parametrization of “seismic noise” is given by

x̃(f ) = 10−7 1 Hz

f 2
mHz−1/2. (123)

Devices for seismic attenuation have to be introduced that should also filter all sort
of mechanical vibrations present in a laboratory. Here, the solution adopted for the
VIRGO interferometer is presented.

The VIRGO “Superattenuator” is based on the behaviour of a pendulum in pres-
ence of a displacement of the suspension point. For small angles, one obtains for the
oscillation amplitude

|x(ω)| = x0
ω0√

(ω2 − ω2
0)2 + ω2Γ 2

, (124)

where x0 is the oscillation amplitude of the suspension point, ω0 is the pendulum
angular frequency, and Γ measures dissipation, assuming viscous damping. One
sees that for ω � ω0 the response decreases as (ω0/ω)−2, decoupling the mass from
the suspension point. By using a cascade of several pendula, sufficient attenuation
can be achieved already at a frequency of a few hertz.

Experimentally, it turns out to be extremely difficult to achieve orders of mag-
nitude of attenuation in one degree of freedom without acting on the others. The
pendulum can attenuate in the horizontal direction, and rotation degrees of freedom
can have quite a low resonant frequency if the pendulum body has large moments of
inertia. The vertical degree of freedom is a challenge; passive attenuation is achieved
using a mass upon which acts a restoring force that has to be as gentle as possible.
This would lead to a very soft spring that would have to elongate in an unpracti-
cal way. The chosen solution is to use a strong supporting spring in parallel with
an unstable device (with a negative elastic constant) acting over a small position
interval. The two “elastic constants” are finely tuned to achieve locally a resonant
frequency below 1 Hz. In VIRGO, this is achieved using magnets in a repulsive
configuration, to obtain a force in a small interval:

F (y) = + ky, (125)

where y is the deviation from the unstable equilibrium position.
A device based on the same principle is introduced to suspend the full pendulum

chain. An inverted pendulum, in our case, is a set of three beams connected to the
ground by means of elastic joints supports a platform to which the superattenuator
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is hooked. The beams would fall under the weight of the pendula but are prevented
to do so by the elastic joints that generate a restoring momentum. By tuning the
weight an oscillation frequency of 30 mHz has been achieved, introducing additional
attenuation in the horizontal direction. The resulting restoring force is therefore very
low.

This allows to make use of the suspension to compensate for another effect, the
elongation of the Earth’s crust due to tides, which amounts up to 60 μm with spring
tides. The force needed to displace 1 t is low and therefore less noisy. It is applied
upstream the attenuation chain so that the tide compensation at the level of the mirror
can be performed without introducing additional noise. The dynamic range of the
device thus spans more than 12◦ of freedom.

It was possible to measure the attenuation of this system only by making full use
of VIRGO sensitivity and stability, averaging for hours the output of the interferom-
eter with a force applied at the top of the pendulum chain. The results [26] indicate
that seismic noise is filtered at a frequency as low as 4 Hz, well below the VIRGO
observation band of 10 Hz ÷ 10 kHz.

Local gravity fluctuations, which generate a gravity gradient, mimic a gravita-
tional wave signal. These fluctuations come from the motion of local masses and
generate what is called “Newtonian noise”. Some effects can be avoided by keep-
ing moving foreign bodies away from the test masses. However, the motion of large
masses can act at a distance. One example is atmospheric density variation, that
occurs fortunately on a time scale below the second. More important are surface
waves, that are a manifestation of seismic activity. A test mass placed above the
ground will be attracted more by the crest of the wave than by the trough, and the
resulting force will change with the wave passage. The force is proportional to the
seismic amplitude and using the seismic noise spectrum of Eq. 123 and taking into
account the transfer function from force to acceleration one deduces an ω−4 fre-
quency dependence, meaning that this noise becomes important when attempting
detection at low frequency. This can be reduced by going underground, where mass
is distributed all around the test mass. In that case, a density variation at the pas-
sage of the wave still generates a force on the test mass, but the resulting amplitude
is much lower. However, for a detector above ground the effect is relevant up to
several hertz.

7.3 Thermal Noise

The test masses are at a finite temperature and have thus some thermal energy.
Although being macroscopic objects with a mass of several tens of kilogram, the
amplitude of the motion along the light beam direction is sufficiently large to
limit seriously the performance of current interferometers. The thermal pendulum
motion limits sensitivity in the tens of hertz band. At medium and high frequency
(100 ÷ 10000 Hz), the vibration modes of the mirrors introduce fluctuation of the
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reflecting surface with respect to the centre of mass of the mirror, spoiling the mea-
surement of the separation of the geodesics. Noise comes from thermodynamic
fluctuations that disturb an otherwise predictable motion; for example, the pendu-
lum oscillation. Thermodynamic fluctuations have the effect of erasing the memory
of the initial conditions of the system. The rate of thermodynamic fluctuations is
related to the rate of dissipation of the system. The dissipation mechanism for
energy flowing toward the thermal bath is the same through which the thermal bath
introduces energy fluctuations in the mechanical system. This is summarized by the
fluctuation-dissipation theorem, that relates the power spectrum of velocity of the
system to the strength of the dissipation mechanism.

Consider an harmonic oscillator with the equation of motion

mẍ + Γ ẋ + kx = F (t). (126)

If a force is applied on the mass, going into the frequency domain the transfer
function from force to velocity is

Y (ω) = v(ω)

F (ω
= 1

Z(ω)
= ω

m

−ω2
0 + ω2 − iωγ

(−ω2
0 + ω2)2 + γ 2ω2

, (127)

where γ = Γ/m and ω2
0 = k/m.

The fluctuation dissipation theorem states that the velocity power spectrum is
proportional to the absolute temperature T and to the real part of the admittance
Y (ω) = 1/Z(ω) of the system

Sv(ω) = �(Y (ω))4kBT , (128)

where kB is the Boltzmann constant and Sv(ω) is the one-sided power spectrum that
sums both positive and negative ω contributions.

The thermal noise for the position of this oscillator is

x̃(ω) =
√

1

ω2
Sv(ω) =

√
4kbT γ

m((−ω2
0 + ω2)2 + γ 2ω2)

. (129)

Thermal noise can be greatly reduced outside the resonance region by reducing
as much as possible γ . This amounts to design very low dissipation mechanical
systems with a high-merit figure, Q = ω0/γ . By use of suitable materials and
configurations,Q of 107 ÷ 108 has been achieved.

The presence of a pendulum to suspend the mirror is a great advantage. Grav-
itation does not dissipate (but for negligible gravitational wave emission...), so
that dissipation occurs only where the pendulum wire flexes, and little energy is
available for dissipation in that flexure. High Q pendula have been achieved using
low-dissipation silica fibers. Mirrors themselves are made of silica and have a very
highQ, but these mirrors have to be coated to create reflective layers, and as of today
these layers introduce a dissipation that determines thermal noise between 100 and
10,000 Hz. Intense research is going on to increase the Q factor of interferometer
mirrors.
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Fig. 7 Sensitivity of the LIGO and VIRGO interferometers

7.4 Typical Interferometer Sensitivity

The resulting sensitivity of a typical interferometer is shown in Fig. 7.
Detailed studies of the various sources of noise, fundamental and technical, indi-

cate that the observed spectrum is essentially understood, giving confidence that
upgrades currently being done rely on a solid base.

This noise curve is used to compute an “horizon”, that is the distance at which
a binary neutron star system can be detected, assuming an amplitude that is aver-
aged over all possible orientations of the system and the detector. To ensure a false
alarm rate much less than one event per year a signal-to-noise ratio larger than 8
is required. That curve indicates an horizon of almost 12 Mpc. Advanced detectors
now under construction have been designed to reach an horizon of 130 ÷ 200 Mpc,
for the 3-km VIRGO and the 4-km LIGO, respectively.

8 Ground-Based Interferometer Network

The signal recorded by a single interferometer does not allow to measure all the
parameters of the incoming gravitational wave at a given time. One has to determine
the incoming direction and the amplitude of the two polarizations. In contrast with
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Fig. 8 Response of an inter-
ferometer to a nonpolarized
gravitational wave as function
of direction

a telescope, the interferometer is sensitive to waves coming from any direction,
except for those traveling along a symmetry axis or along one arm for the + and x
polarizations, respectively. The antenna pattern for nonpolarized waves is shown in
Fig. 8.

To reconstruct the incoming direction of a gravitational wave, several interferom-
eters have to detect it so that the time of arrival at the various sites can be recorded,
with an expected precision of the order of 1 ms. For two interferometers separated
by an Earth radius the resulting angular precision on the plane defined by the wave
vector and the segment connecting the two interferometers is

σθ ∼ cσt
R⊕

 5 × 10−2 rad, (130)

which is about 3◦. Detailed studies have shown that with three interferometers an
acceptable coverage can be achieved, with some directions that are less precisely
measured. In the optimal case, error boxes of 3 × 3 degrees are expected. Adding a
fourth interferometer improves significantly precision and coverage [27].

Instruments that are sensitive to any direction in the sky can record sources from
any direction. As opposed to the electromagnetic telescopes, they are not blind to
waves that have to cross the Earth. A network of interferometers, while recording the
transit of a gravitational wave, can send alerts to instruments that need to be pointed,
like telescopes and detectors on satellites. In fact in violent events, that are anyway
triggered by gravity, a gravitational wave signal should be the first component to
be emitted (but for possible precursors). Other kinds of more interacting radiation
(neutrinos and photons from the whole electromagnetic spectrum) will be emitted
once the outgoing energy flow reaches a region transparent to radiation.

Triggered on gravitational wave candidate events, a permanent watch for violent
transient events can be organized. Being able to record what is happening at the
very hearth of violent events is a unique opportunity for astrophysics, apart from
allowing to study gravitational radiation by itself. However, the resources needed
are very large, both for the construction and for the commissioning, operation and
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Fig. 9 The gravitational wave network

data analysis of the instruments. This has led to establish a network of interferom-
eters that share their data and are able to perform a low latency analysis to alert
astronomical observatories. Currently, the network is composed of the two LIGO
interferometers located in Louisiana and Washington, VIRGO in Italy and GEO600
in Germany. In Japan, the construction of KAGRA has just started, while discus-
sions are at different stages for an interferometer in Australia and in India. With a
full network complete observation will be possible, maximizing the live time of the
network while allowing for maintenance of the instruments. Agreements between
the various collaborations are such that all members of the network will participate
in producing scientific results. The situation is summarized in Fig. 9 showing the
gravitational wave network.

Current plans are for advanced LIGO and VIRGO detectors to start operation
in 2015. By 2020 the full network might be operating at a respectable sensitivity,
recording tens of events per year.

9 Space Detectors

The detection of GW by ground-based detectors is limited at low frequency by grav-
ity gradient fluctuations caused by local masses. This can be avoided by having
masses in orbit in space, in perfect free fall, far away from local gravity fluctua-
tions. This idea has been elaborated imagining to locate an interferometer in space,
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Fig. 10 The orbits of the three eLISA spacecrafts

orbiting around the Earth or around the Sun. The arm length could be from sev-
eral hundred thousand kilometres up to a couple of astronomical units, spanning a
frequency band from 1 Hz down to 0.1 mHz. In the galaxy, there are many galac-
tic binary systems that emit gravitational wave in this band with a comfortable
amplitude. But most interesting would be the possibility to record the inspiral and
coalescence of massive (million solar masses) black holes. These events, coming
from extremely powerful sources, could be detected at cosmological distance with
high signal-to-noise ratio providing precise signals to be compared against gravity
theories in a stronger field.

The largest effort toward achieving a space gravitational observatory was devoted
jointly by NASA and ESA to laser interferometer space antenna (LISA). This has
now evolved into evolved LISA (eLISA), recently inserted by ESA in their long-
term planning for the L3 [28] launch slot, in 2034. The detector test masses will
be housed in three spacecraft in heliocentric orbit lagging behind the Earth, staying
1 million km from one another in a triangular constellation, as shown in Fig. 10.
Light will be received at the end of the arm and will drive a local source acting as
a transponder, otherwise the returning beam would be too faint. Phases of arrival
will be compared as in a usual interferometer but fringes will not be stable as eLISA
arms will be affected by length changes.

By staying sufficiently far from the Earth, the residual acceleration noise on the
test masses is at the level of 3 × 10−15 m s−2 below 3 mHz. On the high-frequency
side, the distance measurement, including shot noise, is at the level of 12 pm Hz−1/2

or in strain 10−21 Hz−1/2.
Space operation, in addition to many technical constraints, exposes the masses to

radiation pressure. This is enough to disturb significantly the motion of test masses
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in free fall that have to measure a differential acceleration of the order of 1015 m
s−2. The spacecraft must act as a shield against these external agents, creating a
“drag-free” environment. This is achieved by having the spacecraft, whose motion
is influenced by the solar wind, track its position relative to the shielded test mass
that ideally is following a geodesic to within 2 nm Hz−1/2. Corrections to the space-
craft motion are applied by means of microthrusters. The nominal test mass position
inside the spacecraft is such that forces exerted by the spacecraft itself perturb
negligibly its free-fall motion.

Due to the extremely ambitious goals and the high cost of the space mission, a
test mission called LISA Pathfinder, to demonstrate in particular the concept of drag-
free satellite and interferometry at very low frequency, is expected to be launched in
2015.

When eLISA will be launched unique information shall be collected from the
band 0.1 mHz ÷1 Hz. However 10−4 Hz might not be low enough to detect the
cosmological background, possibly more accessible at much lower frequencies.
This has led to an effort based on the use of pulsar timing arrays like EPTA [29],
NANOGrav [30] and PPTA [31], to attempt detecting stochastic background profit-
ing of the extreme regularity of pulse emission shown by several millisecond pulsar.
The one-way timing of pulses emitted with high regularity allows to detect metric
variations. In this case, the arm length is of the order of 10 kpc and the frequency
band is around 10−8 Hz, limited by the observation time. Such a stochastic back-
ground can be detected by observing correlations in the fluctuations of arrival times
of pulses from different sources. This is the largest “interferometer” in space that
has been imagined.

Finally, an effort to detect traces of the interaction of primordial gravitational
wave and electromagnetic background is in progress. Here, the primary detector is
the whole early universe; the polarization distribution of the microwave background
is predicted to have been influenced by the quadrupolar nature of gravitational back-
ground. The latest data on polarization fluctuations were collected by the BICEP2
instrument [32] and by the Planck mission [33]. Very recently, the BICEP2 Col-
laboration published the detection of polarization patterns (B-mode) that can be
attributed to primordial GW [34]. However, due to the presence of foreground con-
tamination further analysis is needed to establish with confidence the result. The
analysis of Planck data showed that the BICEP2 observations could as well be
originated by foreground contamination.

10 Bar Detectors

Detection of GW by means of a resonant detector was first attempted by Joseph
Weber. The principle is that a gravitational wave transit results in forces being
applied to masses separated by some distance ξ , as shown in Eq. 54.

For a simple detector made of two masses connected by a spring, the equation of
motion for the mass separation is

ξ,00 + 2γ ξ,0 + ω2
0ξ = 0, (131)
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Fig. 11 The antenna pattern
for a resonant bar

where ω2
0 = k/2m and γ = Γ/m. Then one has to find the proper length of the

spring l(t), to be compared with the rest length l0:

l(t) = (x2(t) − x1(t))

[
1 + 1

2
hT Txx (t)

]
+O(|hμν |2). (132)

To first order in hμν one has

ξ (t) = x2 − x1 − l0 + 1

2
(x2 − x1)hT Txx +O(|hμν |2), (133)

then the equation of motion for the separation becomes

ξ,00 + 2γ ξ,0 + ω2
0ξ =

1

2
l0h

T T
xx (134)

to first order in hμν .
For a resonant bar, one has a continuum of masses and springs and the equation

of motion for the end of the bar becomes [35]

ξ,00 + 2γ ξ,0 + ω2
0ξ =

1

2π2
l0h

T T
xx (135)

The antenna pattern is shown in Fig. 11.
These first attempts to detect GW stimulated the ingenuity of many other

researchers toward attempting gravitational wave detection. After intense efforts,
various groups were able to operate cryogenic resonant bars, with significantly
reducing the thermal noise. A typical sensitivity is shown in Fig. 12.

As can be seen, the bar is most sensitive in a frequency band of approximately
100 Hz around 900 Hz. This is well suited to detect a supernova core collapse that
has a timescale of the order of 1 ms and also try to catch some millisecond pulsar.
In the first case, an international effort by five bars was set up, the International
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Fig. 12 The sensitivity achieved by the Auriga resonant bar

Gravitational Event collaboration (IGEC), composed by ALLEGRO [36], AURIGA
[37], EXPLORER and NAUTILUS [38] and NIOBE [39]. The full configuration ran
from 1997 until 2000, setting an upper limit to the rate of gravitational wave bursts
as a function of their amplitude [40].

Further studies have shown the interest of having a spherical resonant detec-
tor, whose quadrupolar vibration modes would be excited by a gravitational wave
allowing reconstruction by a single detector of the wave incoming direction and
its polarization. Two such detectors have been built: MiniGRAIL [41] and Schen-
berg [42]. However, as of today, it appears that the advantage given by the arm length
of interferometric detectors cannot easily be matched by resonant detectors, unless
one considers gravitational wave frequencies much above the kilohertz, a band that
seems of no astrophysical interest, but that it contains a cosmological background is
not excluded at the moment.

11 Summary

The existence of GW appears to have a strong support. A theory that has seen many
verifications as of today predicts them, and a solid astronomical evidence has been
accumulating for more than 30 years. The understanding of the universe content
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has also made many steps forward since the first attempts to detect gravitational
radiation. Rates are still uncertain by two or three orders of magnitude, but the
expected performance of second generation interferometers is such that a first detec-
tion may happen soon after begin of operation. Detectors themselves have evolved
from prototypes to reliable instruments that are suitable to continuously listen to
the universe. In the meantime, detector improvement is continuing, achieving what
was only described in visionary theoretical papers, like manipulating vacuum on the
kilometre scale to improve photon shot noise. This progress will be very rewarding:
Every factor in noise decrease will expand the volume of universe by the cube of
that factor, and a handful of events will turn into hundreds starting from gravitational
wave astronomy.
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The Role of Binary Pulsars in Testing Gravity
Theories

Andrea Possenti and Marta Burgay

Abstract Radio pulsars are neutron stars (NSs) which emit collimated beams of
radio waves, observed as pulses, once per rotation of the NS. A subgroup of the radio
pulsars behave as highly stable clocks and monitoring the times of arrival of their
radio pulses can provide an accurate determination of their positional, rotational,
and orbital parameters, as well as indications on the properties of their space-time
environment. In this chapter, we focus on the so-called relativistic binary pulsars,
recycled NSs orbiting around a compact companion star. Some of them can be
used as unique tools to test general relativity and other gravitational theories. The
methodology for exploiting these sources as laboratories for gravity theories is first
explained and then some of the most relevant recent results are reviewed.

1 The Many Faces of Pulsar Science

Pulsars are radio sources representing a paradigm for the aims and the procedures
of modern astrophysics. In fact, on one side, they are very intriguing celestial
objects per se, whereas, on another side, they can be exploited as unique tools for
investigating the behavior of nature and constraining its most fundamental laws.

As to the former aspect, the investigation of the radio pulsars (i.e., highly mag-
netized and rapidly spinning neutron stars (NSs)) is, for example, an important
ingredient for understanding the final fate of massive stars, as well as for clarify-
ing the processes occurring in the evolution of binary systems involving at least one
compact star. The explanation of the broadband emission of electromagnetic waves
(from the radio to the GeV and TeV bands) has been representing a challenging
task for generations of experts of electrodynamics, while the expected emission of
accelerated particles impacts on the studies of the cosmic rays. Also, the dispersion
of the pulsed signal while it goes across the interstellar medium opens the possi-
bility of determining the distribution of free electrons in the Milky Way (e.g., [1]),
and the observation of the Faraday rotation of the polarized signals helps in map-
ping the large-scale structure of the galactic magnetic field (e.g., [2]). Furthermore,
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when discovered in a globular cluster, pulsars provide a way for studying the clus-
ter’s dynamics and potential well, potentially unveiling the presence of nonluminous
matter in the form of black holes [3].

Looking at the second aspect, the study of pulsars is of utmost relevance for
investigating two of the fundamental “forces” in nature, the nuclear interaction and
the gravitational interaction. No terrestrial laboratory can compress a sizable amount
of matter to nuclear density; hence, the equation of state for the nuclear matter at
ultrahigh density can only be investigated in a NS, where nature provides matter
experiencing those extreme conditions. In particular, each equation of state for the
nuclear matter predicts a precise value for the radius and for the moment of inertia
of a NS, depending on the gravitational mass (below a maximum mass) and the rota-
tional frequency (below a maximum frequency) of the star. The maximum allowed
mass and frequency are also dependent on the equation of state. The observation of
the very high spin rate [4] and/or high mass of some pulsars [5, 6] has already been
used for constraining the equation of state for the nuclear matter. The measurement
of moment of inertia is a more difficult task, but it might be attained in the near
future for some particularly favorable pulsar (i.e., the double pulsar [7]).

This chapter mostly deals with the application of the pulsars to the investigation
of the gravitational theories. We will first briefly summarize the rudiments of pulsar
science (Sect. 2), and the evolutionary scenario leading to the formation of the so-
called relativistic binary pulsars. Then, in Sect. 3 the principles and methodology of
the pulsar timing will be reviewed and the most interesting applications presented
in Sect. 4. Last Sect. 5 will illustrate where this field of research is heading to.

2 Rudiments for Pulsars’ Investigators

Pulsars are celestial objects which only progressively unveil their parameters. The
peculiarities and/or the degree of scientific interest of a new source only emerges
after having undertaken a patient monitoring of its radio signal, over timescales
starting from few weeks and sometimes reaching few decades. One of the basic
parameters is the spin period first derivative, Ṗ , a determination of which typically
requires almost 1 year of regular observations (see Sect. 3).

Assuming that the emission is due to the rotational energy loss in the form of
magneto-dipole radiation (see Eq. 1), its measurement allows us to estimate impor-
tant physical parameters, such as the dipolar surface magnetic field Bs and the
spin-down age of the pulsar. The basic equation is:

−INSωω̇ = 2

3

1

c3
ω4B2

s R
6
NS sin2 α, (1)

where INS is the moment of inertia of the NS, ω = 2π/P its angular velocity, RNS
its radius, and α the angle between the rotation and the magnetic axes. Expressing
Eq. 1 in terms of the spin period, assuming α = 90◦, and using the standard values
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for INS = 1045 g cm2 and RNS = 106 cm, we can derive an estimate of the surface
dipolar magnetic field at the magnetic equator as:

Bs = 3.2 × 1019
√
P Ṗ G (2)

and, after integration of the differential equation in time, we can calculate the so-
called spin-down age (or characteristic age) of the pulsar as:

τc = P

2Ṗ

(
1 − P

2
0

P 2

)
∼ P

2Ṗ
, (3)

where P0 is the initial spin period of the pulsar, usually considered negligible with
respect to the current one (whence the last approximation in Eq. 3).

According to [13, 14] more than 2000 radio pulsars have been discovered in the
field of our Galaxy, in the galactic globular clusters, and in the Magellanic Clouds.
The most interesting of which are the so-called millisecond or, better saying recycled
pulsars (see later) located in the bottom-left corner of the P − Ṗ diagram of Fig. 1,
whose short pulse duration and particularly regular pulsations are very helpful to
study many physical and astrophysical problems listed in Sect. 1.

2.1 Basics of Evolution

According to the current paradigm, the recycled pulsars, to which the relativistic
binaries belong, are believed to be formed in binary systems in which the compan-
ion star, during its evolution, transfers matter and angular momentum, via wind or
Roche-lobe overflow, onto the NS surface (recycling model) [16]. The NS is hence
spun-up to periods of the order of few or few tens of milliseconds, depending on
the amount of matter accreted, which, in turn, depends on the initial mass of the
companion.

The initial mass of the companion star, as well as the orbital separation at the
time of formation of the NS, leads to very different evolutionary paths for the binary,
whose in-depth description goes beyond the scope of this chapter. For a thorough
discussion of (some of) the different possible evolutionary paths of binary pulsars,
the reader can rely on the review [17], or on [18] for the case of the evolution of the
increasing number of double neutron stars (DNS), as well as [19] for the case of the
evolution of binaries in globular clusters.

A sketch in the P − Bs diagram of the two evolutionary paths which are most
relevant for the relativistic binaries is displayed in Fig. 2. At birth, the NS spins fast
(tens of ms) and has a high magnetic field (1011÷13 G), hence a high Ṗ . Therefore,
the pulsar slows down in a relatively short time scale moving left in the diagram. It
is still debated whether a significant spontaneous decay of the surface magnetic field
occurs [20] or does not [21] during this stage. When the death-valley (a region sur-
rounding the nominal model-dependent death-line) is crossed, the pulsar switches
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Fig. 1 Period-period derivative diagram. Grey dots are galactic field radio pulsars (those sur-
rounded by a red circle being in a binary system); purple squares are X-ray dim isolated NS
(XDINSs; e.g., [8]); yellow triangles are central compact objects (CCOs; e.g., [9]); green asterisks
are rotating radio transients (RRATs; the top smaller ones do not have yet a measured Ṗ ; e.g., [10]);
blue stars are magnetars [11]. Dashed lines denote equal dipolar magnetic field, calculated as in
Eq. 2, while dotted ones are equal spin-down age (Eq. 3) lines. The violet line is the so-called
death line (in particular the death-line C of [12]) for values of P and Ṗ below which the mecha-
nism responsible for radio emission is not efficient anymore and the pulsar switches off. We point
out that the use of a specific line is only for the sake of simplicity; a death valley [12], across which
the pulsars’ signal slowly fades out in time, should better replace a single line. (Data taken [13]
from [14] and [15])

off. If the NS is isolated, it ends its electromagnetic life in the so-called pulsar
graveyard.

If the progenitor of the pulsar companion is a star more massive than 8–10 M�
and the orbital separation is suitable, a phase of mass transfer from the compan-
ion can establish, followed by a phase of common envelope, during which the two
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Fig. 2 Spin evolution of a neutron star in the period—magnetic field diagram (analogous to the
P − Ṗ diagram and obtained using Eq. 2)

stars are included in the material lost by the companion and during which the orbit
shrinks. Since the evolution of a massive star is relatively fast, the amount of trans-
ferred matter, hence of angular momentum, is small. The massive star ends its life
in a supernova explosion leaving behind, under favorable circumstances, a binary
system containing two NSs, that is, a so-called DNS binary. Due to the effect of
the second supernova, the binary acquires a high eccentricity. The first born NS
is a so-called mildly recycled pulsar, spun-up to tens of milliseconds and typically
brought back above the death-line: in fact the short duration of the accretion phase
also decreases the surface magnetic field of a couple of orders of magnitude only,
thus leaving an NS with Bs ∼ 1010 G. The second born NS behaves as a young
radio pulsar, slowing down rapidly and reaching the death-line much faster than the
mildly recycled pulsar. This path is labeled as “HM companion” in Fig. 2.
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Among the known pulsars with a high mass companion, ten have a NS com-
panion. Sorted according to right ascension (RA), they are: J0737−3039A [22]
and J0737−3039B [23], composing the first (and so far the only) known double
pulsar system (this will be described in details in Sect. 4.2.2); J1518+4904 [24];
J1537+1151 (better known as B1534+12 and described in Sect. 4.2.1) [25,26], the
only other DNS besides the double pulsar for which all five post-Keplerian param-
eters have been measured; J1756−2251 [27]; J1811−1736 [28, 29]; J1829+2456
[30]; J1906+0746 [31], whose undetected companion is likely the recycled pul-
sar in the system; J1915+1606 (better known as B1913+16, see Sect. 4.2.1), the
first known binary pulsar whose discoverers were awarded with the Nobel prize for
physics in 1993 [32, 33] and J2129+1210C in the globular cluster M15 [34, 35].

If the progenitor of the pulsar companion has a low mass, below ∼ 8 M�, its
evolution is slower. When the companion star expands due to its nuclear evolution,
it fills its Roche lobe starting to transfer mass through the inner Lagrangian point.
The mass-transfer phase lasts up to ∼ 108 years, during which the mass accreted
onto the NS surface is able to accelerate the NS up to few milliseconds, to “bury”
the NS surface magnetic field down to ∼ 108 ÷ 109 G and to circularize the orbit.
Once the accretion stops, the NS is again above the death-line and is able to shine as
a fully recycled millisecond pulsar. The companion, not having an initial mass high
enough to ignite a supernova explosion, typically ends quietly its life as a white
dwarf (WD) in an almost circular orbit. This evolutionary path is labeled as “LM
companion” in Fig. 2.

The sample of the pulsars with a low mass companion (in most cases, an NS–
WD system) is larger than the sample of DNS binaries. In a dozen of these systems,
some relativistic effects have been already observed. Two remarkable cases are that
of J1614−2230 and J0348+0432. For the former, the determination of both the post-
Keplerian parameters related to the Shapiro delay led to determine that the NS has
a mass very close to two solar masses (1.97 ± 0.04 M� with a companion mass of
0.5 M�, [5]). The masses of the two stars were separately measured with high pre-
cision (2.01 ± 0.04 M� for the pulsar and 0.172 ± 0.003 M� for the WD [6])
also in the second binary, by combining the determination of the post-Keplerian
parameter related to the decay of the orbit of the NS with the phase-resolved opti-
cal spectroscopy of its white-dwarf companion. These are the highest NS masses
measured with such accuracy to date. That constrains the equation of state for the
nuclear matter, effectively ruling out the softest equations of state. In the framework
of the study of the gravity theories, another very interesting binary of this class is
J1738+0333, which is providing at the moment the most stringent test to the class
of the scalar–tensor gravity theories [36, 37] (see Sect. 4.2.3).

In effect, the masses of the companion star in NS–WD systems span a large
range from 0.02 M� (typically Helium WDs) to ∼ 1 M� (typically carbon–oxygen
WDs). As we will show inSect. 4.2.3, the often comparable masses (but very differ-
ent radius) of the two stars in these systems can make them a better target than the
DNS binaries for constraining gravity theories alternative to general relativity.

Finally, we note that the pulsars’ zoo has been very recently enriched by a very
intriguing object, PSR J0337+1715, which is a a fully recycled radio pulsar with two
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WD companions in a hierarchical triple system [38]. Besides raising new questions
about its formation and evolution [39], it promises to be an excellent laboratory for
studying the strong equivalence principle (SEP), as it will be described in Sect. 4.1.

3 Keynotes on Pulsar Timing

When a new pulsar is discovered, the only known parameters are the approximate
rotational period P and dispersion measure (DM)1, as well as the very approximate
position of the source in celestial coordinates. The possibility of an accurate deter-
mination of P , DM, and position in the sky, as well as the measurement of many
other parameters of the targeted pulsar, results from undertaking a procedure dubbed
timing. Although timing can be applied to any pulsar, the best results are obtained
for those pulsars which behave as very stable rotators and whose flux density is large
enough for an accurate determination of the “times of arrival” (ToAs) of the radio
pulses. This is the case for some of the rapidly spinning recycled pulsars.

Excellent references for a thorough discussion on the pulsar timing procedures
are represented, for example, by Chaps. 7 and 8 of [40], as well as Chaps. 4 and 5
of [41] (and Chap. 6 of [42] for an historical view).

3.1 First Step: Determination of the ToAs

On a practical ground, timing a pulsar means performing a campaign of semi-regular
observations of the ToAs of some recognizable feature—for example, the peak—in
the radio light curve (the so-called pulse profile) of the source. The total duration
of the campaign depends on the aims of the experiment and ranges from about 1
year up to decades, when the pulsar is part of a pulsar timing array (PTA, see last
section). As to the cadence of repetition of the observations, a dense coverage (up to
few observations a day for pulsars in a binary system) is required at the beginning
of the timing procedure. At later times it usually ranges from biweekly to bimonthly
observations.

The vast majority of radio pulsars are weak radio sources, with their single radio
pulses being well below the typical noise resulting from the contribution of the
sky and that of the detector system. In view of that, a timing observation typically
results in an array of Nsub × Nch integrated pulse profiles, related to Nsub sub-
sequent intervals of the observation time (sub-integrations) and to Nch frequency
intervals (sub-bands), spanning the total available bandwidth. Each of these profiles
is obtained by de-dispersing the signal within each sub-band using the best available

1 That represents the integrated column density of free electrons along the line of sight to the pulsar
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value for the DM of the source and folding the data in each sub-band and each sub-
integration at a constant period, corresponding to the expected apparent spin period
of the source. Each pulse profile is also carefully time tagged, using an accurate
clock which is installed at the radio observatory and is in turn regularly monitored
and compared with the time distributed by the global positioning system (GPS).

Each of the pulse profiles is then compared with a very high signal-to-noise (S/N)
standard profile, typically obtained from summing in phase a large number of obser-
vations of the given pulsar at the given frequency. This comparison produces a set
of so-called topocentric ToAs, which are calculated by adding at the reference time
of any pulse profile, the fraction of spin period by which the pulse profile is shifted
with respect to the standard profile. Roughly speaking, the characteristic root mean
square (rms) uncertainty in the determination of a topocentric ToA scales as the ratio
between the width of the pulse in seconds and the S/N of the pulse profile.

3.2 Second Step: Modeling the ToAs

The aim is to use the pulses from a pulsar as the ticks of a clock, that is, being able
to count all the pulses arrived from a reference epoch tep to the present time t and
to predict the times of arrival of all next pulses. With no loss of generality, we can
assume that a pulse arrived exactly at tep and model the rotational evolution of the
NS with a power series:

N (t) = νep × (t − tep) + 1

2
ν̇ep × (t − tep)2 + 1

6
ν̈ep × (t − tep)3 + ..., (4)

where νep, ν̇ep, ν̈ep, ... are the NS-spin frequency and its first- and second- and
higher-order derivatives at the reference epoch tep, whereas N (t) represents the
number of rotations occurred from tep to t . The aim of the timing procedure is
to determine νep, ν̇ep, ν̈ep, ... with an accuracy high enough that N (tnext) will be
very close to be an integer, for any future time of occurrence tnext of a pulse. In
this framework, it is useful to introduce the so-called timing residuals, given by
R(ti) = N (ti)−n(ti), where n(ti) is the nearest integer toN (ti). We can state to have
got a satisfactorily coherent timing solution for a pulsar over a time-span Δtspan, if
R(ti) � 1 for all the observed ToAs ti in the time range from tep to tep +Δtspan.

Of course, R(ti) = R(ti;α1, α2, ..., αm), where α1, α2, ..., αm are the m parame-
ters of the adopted timing model (i.e., νep, ν̇ep, ν̈ep in the simple 3-parameter case
discussed so far) and that naturally provides an operational way for improving a
timing solution with a multi-parametric least squares fit, aimed to minimize the
expression

χ2 = &i

(
R(ti;α1, α2, ..., αm)

εi

)2

, (5)

where εi is the uncertainty on the ith ToA in units of the pulsar spin period and i
runs over all the available ToAs in the given time-span.
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At the end of the day, one ideally expects to have a set of uncorrelated timing
residuals, which should appear randomly scattered (i.e., with no evident trend) about
a zero mean value when they are plotted versus the times of their collection ti . A
useful figure of merit for evaluating the quality of the timing solution is the ratio η
between the rms of the residuals and the rotational rate of the pulsar, with η <∼ 0.001
usually indicating a good solution.

What described above would be the whole story if the topocentric ToAs were
collected in an inertial observing frame and when the NS had no binary companion.
However, at least the first hypothesis is always wrong and the first step in the timing
procedure is to convert the topocentric ToAs to the so-called barycentric ToAs. For
each topocentric ToA ti , this implies to calculate the corresponding ToA ti,bary , as
it were detected at the Solar System Barycenter (SSB, an acceptable approximation
of an inertial frame) by a detector operating at an (in principle) infinite frequency.
In a formal way, the conversion formula reads like:

ti,bary = ti + tclock − D

f 2
+ΔR� +ΔE� +ΔS�. (6)

The value of tclock results from the sum of various terms of correction (the so-called
clock correction chain) and it is added retroactively, using tabulated values pub-
lished by the Bureau International des Poids et Mesures (BIPM): the aim is to
convert the time obtained at the telescope to the terrestrial time (TT) realization of
the Temps Atomique International (TAI) (i.e., TT(TAI)), which differs (since 1971)
from the TAI by a constant offset.

The next term in Eq. 6 takes into account the effect of the dispersion of the radio
pulses in the interstellar medium (see Sect. 1). In particular,

D(ti) = e2

2πmec

∫ d

0
nedl = D × DM(ti), (7)

where D = (4.148808 ± 0.000003) × 103 MHz2 pc−1 cm3 s is the dispersion con-
stant, d the distance to the pulsar, and f is the Doppler-corrected observing
frequency.

In general, the fourth term in Eq. 6—also known as Roemer delay—gives the
dominant contribution to the barycentric correction. It can be written as

ΔR� = r · n
c

+ (r · n)2 − |r|2
2cd

, (8)

where n is the unit vector on the line going from the SSB to the pulsar and r is
the vector connecting the SSB and the Earth. Accounting for this term requires the
knowledge of the location and motion of the major bodies in the solar system and
of the nonuniform Earth rotation. They are provided by the ephemeris published by
the Jet Propulsion Laboratory [43] and by the bulletin regularly published by the
International Earth Rotation Service [44].
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Einstein’s delayΔE� is a combination of the relativistic time delay and the grav-
itational red-shift due, respectively, to the motion of the Earth and the mass of the
other solar system bodies. Its time derivative is given by:

dΔE�
dt

=
∑
k

Gmk

c2dk,⊕
+ v2⊕

2c2
− constant, (9)

where G is the gravitational constant, mk are the masses of the other solar system
bodies, dk,⊕ their distances to the Earth, and v⊕ the velocity of the Earth with respect
to the SSB.

Finally, the Shapiro delay ΔS� [45] measures the extra time required for an
electromagnetic wave to move in the curved gravitational field of a celestial body.
In the framework of the pulsar timing, only the Sun and, sometimes, Jupiter, causes
observable effects. In the case of the Sun, the formula takes the form:

ΔS� = −2GM�
c3

ln (1 + cos θ), (10)

where θ is formed by the vector from the pulsar to the telescope with the vector
from the telescope to the third body.

If the pulsar is included in a binary system, the pulsarcentric ToAs (i.e., the
ToAs expressed in pulsar proper time at the pulsar surface) must also be corrected
calculating them at the Pulsar Binary System Barycenter, before translating them to
the Solar System Barycenter. This involves the introduction of four additional terms
in the Eq. 6:

tBini,bary = ti,bary +ΔRBin +ΔEBin +ΔSBin +ΔABin. (11)

Again, the Roemer term ΔRBin generates the largest effects: the ToAs anticipate
when the pulsar is in front of the companion and are delayed when it is behind
it. In a purely Newtonian framework, fitting for the orbital modulations of the ToAs
allows one to derive five Keplerian parameters describing the binary system: namely,
the orbital period Pb, the eccentricity e, the projection of the semimajor axis along
the line of sight x = a sin i, the longitude of the periastron ω (typically calculated
with respect to the ascending node), and the epoch of the passage at the periastron
T0. Only in few favorable cases [46], the position angle on the sky of the ascending
node (i.e., a sixth Keplerian parameter) can also be measured. From the Keplerian
parameters one can derive the mass function:

f (M) = (Mc sin i)3(
Mp +Mc

)2
= 4π2 (a sin i)3

GP 2
b

, (12)

whereMp is the pulsar mass andMc is the companion mass. Assuming a value for
Mp and an edge-on orbit (i = 90◦), it is possible to derive a lower limit forMc.

The other terms in Eq. 11 express the deviations from the predictions of the
classical physics expected for a binary pulsar when it experiences strong gravita-
tional fields and/or an high orbital velocity. These effects, and the related measurable



The Role of Binary Pulsars in Testing Gravity Theories 289

parameters, will be explained in next Sect. 4. It is worth noting that ΔABin incor-
porates the effects of the changing aberration along the orbit and, strictly speaking,
it is a classical physics effect. However, since the two related aberration parameters
are almost degenerate with some post-Keplerian relativistic parameters (see later),
this term is usually also described in the context of the relativistic effects.

In practice, one typically starts with a model having the minimum number of
parameters, typically νep and the celestial coordinates of the pulsar. A poor determi-
nation of the pulsar spin frequency νep imprints a linear trend in the timing residuals
plotted over the usually very short initial time-span. Instead, an error in the spin
derivative imprints a parabolic trend in the residuals and the errors in the celestial
coordinates leave a sinusoidal signature with a period of 1 year. If the pulsar is
in a binary system, many additional trends in the residuals overlap with the ones
mentioned above. Solving a pulsar means removing all these trends over a yearlong
time-span. This is not only the result of a large series of trials and errors, but requires
a good deal of experience, perseverance, and educated feeling, as well as a touch of
insight, in turn throwing a flash of artistic inspiration on the whole procedure.

We conclude these keynotes on the timing procedure noticing that, unfortunately,
not all the, about 2000, radio-emitting NSs are equally good timekeepers: for exam-
ple, there are many sources exhibiting glitches (i.e., sudden increases in the spin
frequency) and/or other timing irregularities. The former have been long thought
to be related to some event occurring in the NS interior, although the exact origin
of the process is still a matter of debate (e.g., [47–49]). The timing noise has been
only recently recognized to be most likely a phenomenon related with instabilities
occurring in the magnetosphere of the pulsars [50]. Observations show that the two
effects pertain mostly to the youngest and the ordinary pulsars, whose timing resid-
uals display long-term and unpredictable variations [51]. On the contrary, they are
virtually absent (or present at a very low level, e.g., [52]) in the population of the
recycled pulsars, at least within the present level of precision in the measurements
of the ToAs [53].

The considerations above indicate that the recycled pulsars are intrinsically better
clocks than the bulk of the ordinary pulsars. Moreover, the accuracy of the measure-
ment of the ToAs roughly scales with the width of the pulses and hence, in turn, with
the rotational rate. As a consequence, the fast spin rate of the recycled pulsars allows
one to determine their ToAs with an higher accuracy than for the ordinary pulsars.
However, at least three additional characteristics are very important in evaluating
the quality and the potentialities of a recycled pulsar as a clock: the flux density, the
shape of the pulse, and the timing stability.

4 Pulsar Tests of Relativistic Gravity

To first approximation, the amplitude of the deviations of general relativity with
respect to Newtonian gravity can be evaluated by comparing the classical gravi-
tational potential energy Egr ∼ −GM2/R of a body of mass M and radius R
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with the rest mass energy of the same body, Erm = Mc2 (c being the speed of
light in vacuum and G the gravitational constant). For the Earth, the dimension-
less ratio ε = |Egr/Erm| is tiny (∼ 10−10) and then most of the tests of general
relativity have been carried on in space, involving various bodies of the solar sys-
tem (e.g., [54]). A detailed description of some of these experiments (the earliest of
them, performed by Eddington on 1919, dates more than 90 years ago) is reported
in the chapters by Iafolla, Peron, and Turyshev in this book, whereas the chapter
by Dell’Agnello mostly deals with future experiments of this class. All these exper-
iments fully exploit a unique feature of general relativity, that is, the absence of
tunable parameters in the theory. As a consequence, even a single observation in
disagreement with the predictions of the theory would unambiguously determine
the falsification of the theory, at least in the physical regime of validity of the given
observation. It is well known that to date general relativity passed cum laude all
these potentially lethal tests (e.g., [55] for a recent review). However, even for the
Sun ε is only ∼ 10−6, implying that all the experiments carried on in the solar
system can only explore the so-called weak-field limit of gravitational physics.

Despite the observational successes of general relativity, a wealth of alternate
gravity theories kept on being proposed. Some of these theories have been already
disproved by the observations, whereas many others preserve only a historical
and/or academic relevance. However, few of them are still particularly interesting,
since they emerged in the context of the studies aimed to build the long sought
unified theory of the physical interactions, that is, a theory capable to include elec-
troweak and nuclear interactions in the same framework as the gravitational effects.
Nowadays, a major obstacle in this direction is to match the probabilistic approach
involved in the treatment of the first two phenomena with the deterministic pre-
dictions of general relativity. Following this reasoning, one may wonder whether
other theories of gravity may lead to solve the dichotomy, while providing a better
description of the behavior of nature in the extreme physical conditions of appli-
cation of the putative unified theories, for example, in the first fractions of second
after the Big Bang (some of these theories are described in depth elsewhere in this
book, e.g., in the chapter by Diaferio and Angus, the one by Liberati and Mattingly,
as well as the chapter by Antoniadis).

The considerations above emphasize the need of performing tests of general
relativity and/or of alternate gravity theories under the so-called strong-field limit
(corresponding to a value of ε close to unity), which is the regime associated to the
notion of extreme physical conditions in presence of gravitational effects alone. In
particular, on one side it is very important the derive tight constraints to the falsifi-
ability of general relativity in the strong-field regime, where the Einsteinian theory
could finally reveal the existence of limits to its application. On another side, it has
been shown [56] that there exist alternative theories which could pass all the tests
in the weak-field limit, but would be violated as soon as the strong-field regime
is approached; that makes the strong-field tests mandatory to properly test those
theories.

In this context, two factors—described below—allow some binary recycled pul-
sars to become superb tools for investigating gravity theories. (I) It holds ε ∼ 0.2
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at the pulsar surface, which reflects the large gravitational binding energy (i.e.,
self-field energy) of the NS. We here note that for all the known binary pulsar
systems, the orbital separation is large with respect to the NS radius and so any
binary component moves in the weak gravitational field of the companion. How-
ever, in most alternate theories of gravity (but not in general relativity), the orbital
motion and the gravitational radiation damping depend on the self-field energy of
the binary components. Therefore, when ε is large (i.e., of order unity), signifi-
cant deviations—attributable to strong-field effects—are expected with respect to
the orbital motion predicted by general relativity. (II) The radio signal behaves as
an accurate and stable clock, which leads to accurately map the rotation and the
orbit of the pulsar by means of the timing procedure described in Sect. 3. From
the combination of the facts (I) and (II), it results the intriguing possibility of using
some binary pulsars as unique laboratories for testing the strong-field regime of the
gravity theories. In particular, the best binaries are those for which the properties
expounded in (I) and (II) are particularly prominent.

General relativity and all the other in-principle acceptable (i.e., with some chance
to be viable [57]) alternate gravity theories can be grouped under the very large
class of the so-called metric theories of gravity. They satisfy the following three
assumptions: [a] a symmetric metric exists; [b] all test bodies follow geodesics of
the metric; [c] in local freely falling reference frames, all the nongravitational laws
of physics are those written in the language of special relativity. In other words, in all
metric theories, gravitation must be a phenomenon related with the occurrence of a
curved space-time. Although matter and nongravitational fields respond only to the
metric, additional fields can occur, giving rise to, for example, tensor/scalar theories,
tensor/vectorial theories, and so on... These additional fields prescribe how matter
and nongravitational fields contribute to create the metric; once determined, the met-
ric alone acts back on the matter. Of course, at variance with the case of general
relativity, these theories include a set of tunable parameters, associated to the addi-
tional fields. A detailed review of various gravity theories appeared, for example, in
the textbook [54], which can be complemented with some recent updates [55, 57],
as well as with the chapter by Will in this book.

4.1 Gravity Theory Tests Using the PPN Parameters

A first class of tests of metric theories of gravity involving pulsar observations is
based on the parametrized post-Newtonian (PPN) formalism. In this framework, the
deviations of any given theory from Newtonian physics are reflected in the values
assumed by ten parameters (the so-called PPN parameters, see e.g., [55] and the
chapter by Will in this book), each of them connected with a given physical effect,
such as the existence of preferred frames, the occurrence of preferred locations, the
nonconservation of the momentum, the nonlinearity in the superposition of grav-
itational effects, the amount of space curvature produced by a unit mass. On the
theoretical point of view, this formalism allows one to easily interpret the physical
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implications of the various proposed alternative gravity theories in the weak-field
limit. At the same time, on the experimental point of view, the comparison between
the observed and the predicted values of the PPN parameters provides an observa-
tional tool for directly constraining the falsifiability of general relativity and other
theories. In effect, the PPN formalism was originally conceived (e.g., [58]) and then
fruitfully used for performing a variety of tests in the weak-field environment of
the solar system [54, 55, 57]. Its extension to the case of the compact objects (i.e.,
including strong self-field effects) was elaborated in the 1990s [56] at least for a
large class of tensor–multi-scalar gravitational theories [59]. That implied a partial
redefinition of the ten original PPN parameters, with the introduction of correction
factors which are approximately dependent on the value of the dimensionless ratio
ε introduced above. As a matter of fact, these factors can be safely neglected for
the solar system tests (ε <∼ 10−6), but not when dealing with NSs (ε ∼ 0.2), which
highlights again the fact that the pulsar tests of gravity are complementary to the
tests involving bodies of the solar system.

A detailed reading about pulsar experiments using the PPN formalism is given
in the excellent online summary [60]. A particularly interesting case is that of the
tests of the SEP. That is not only satisfied by general relativity, but it is conjectured
to imply general relativity itself (e.g., [54]). It includes both the weak equivalence
principle (WEP) and the Einstein equivalence principle (EEP). WEP states that the
trajectory of a free falling test body in a gravitational field is independent of its com-
position and internal structure (i.e., what is often referred to as the universality of
free fall), whereas EEP adds that the outcome of any local nongravitational exper-
iment is independent of (i) when, (ii) where in the universe, and (iii) the velocity
of the freely falling reference frame in which it is performed (Lorentz and posi-
tional invariance of the nongravitational laws of physics, see the chapter by Liberati
and Mattingly in this book for details). SEP extends WEP to self-gravitating bodies
(i.e., not only test bodies but also bodies with a significant amount of internal gravi-
tational energy, i.e., having a large value of the parameter ε) and EEP to experiments
involving gravitational forces (like for instance the measurement of the position of
the axes of the orbit followed by two bodies).

Therefore, a simple test of the SEP is to check for the occurrence of differ-
ences in the trajectories of two massive bodies in a gravitational field. In particular,
Nordtvedt [61] first proposed to search for the occurrence of a “polarization” in the
direction of the Sun of the orbit of the [Earth+Moon] system, caused by the differ-
ent self-field energy of the two bodies (a phenomenon often called Nordtvedt effect
or gravitational Stark effect). Using lunar laser ranging (LLR) experiments, it has
been possible to set a strong limit to a linear combination of various PPN parame-
ters in the typical conditions of the solar system. In a similar way, the study of the
“polarization” of the [pulsar+WD] binaries in the galactic gravitational potential
allows one to set a limit to the violation of the SEP also in presence of strong self-
field effects (in principle provided by the NS in the binary). At variance with the
case of the [Earth+Moon] system, the geometrical and orbital parameters of a given
[pulsar+WD] binary are usually only partially known, which prevents the use of a
single binary to perform the test. However, a statistical approach can be adopted:
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for example, [62] used 21 [pulsar+WD] binaries with long orbital periods (Pb > 4
days) and very low eccentricity (10−6 <∼ e <∼ 10−3) in order to put 95 % confidence
upper limit on Δ of 5.6 × 10−3, where Δ = (Mgr/Min)NS − (Mgr/Min)WD, with
(Mgr/Min)i being the ratio between the gravitational and the inertial mass of the
ith body (of course, if SEP holds true, (Mgr/Min)i = 1 for any ith body and so
Δ ≡ 0). More recently, using a extended sample of 27 [pulsar+WD] binaries, [63]
improved the constraint to Δ < 4.6 × 10−3. The possibility for a direct (vs the sta-
tistical approach presented above) determination of Δ relies on the measurement of
the derivative of the eccentricity ė in pulsar binaries [64]. Although the best limits
from this approach [65] are not yet as constraining as those resulting from the sta-
tistical analyses above, the prospects are very promising, in view of the continuous
improvement in the technology of the pulsar instrumentation and the availability of
decadelong data spans [65].

Besides the aforementioned gravitational Stark effect, many other phenomena
related to violations of the SEP manifest as polarization of the orbit or as precession
of the orbit or of the spin axis of the NS, as well as the occurrence of an additional
acceleration applied to the NS or to the centre of mass of the binary, Accurate pul-
sar timing of one binary (or of an ensemble of suitable binaries) can unveil and
measure those effects, thus putting constraints to various PPN parameters. These
limits are often much better than those obtained in the solar system: an illustrative
case is that of the parameter α̂3 (where α̂i denotes the strong-field generalization
of the PPN parameter αi). A nonzero value of α̂3 would imply the occurrence
of preferred reference frames, as well as the nonconservation of the momentum.
By using the data from an ensemble of [pulsar+WD] binaries one can get a limit
α̂3 < 4 × 10−20 [62] (95 % confidence level), which is 13 orders of magnitude
better than that derived from the measurements of the perihelion shift of the Earth
and of Mercury [54]. Similarly, strong-field limits on the other two PPN parameters
(α̂1 = −0.4+3.7

−3.1 × 10−5 [66] and |α̂2| < 1.6 × 10−9 [67], 95 % confidence level)
which involve, like α̂3, the existence of preferred frame effects (i.e., a violation of
the Lorentz invariance) have been obtained from the timing analysis of the binary
pulsar PSR J1738+0333 [36, 37] (in this case, the limit is about one order of mag-
nitude better that than derived for α1 from lunar laser ranging experiments [68]),
as well as exploiting the observations of two isolated millisecond pulsars, PSRs
B1937+21 and J1744−1134 (in this case, the constraint is two orders of magnitude
stronger than that obtained for |α2| with the best test performed in a weak field, that
is, the alignment of the Sun spin with the total angular momentum of the solar sys-
tem [69]). It is worth noting that the current best limit on |α̂2| is not obtained from
the study of binary pulsars, but it results from the analysis of the secular stability
of the pulse profile of the two aforementioned solitary pulsars. In fact, a nonvanish-
ingly small α̂2 would induce the precession of a pulsar spin (and hence a secular
variation in the observed pulse profile) around the pulsar direction of motion with
respect to the putative preferred frame. An analogous precessional effect leads to
the possibility of using the same pulse profile data of the two millisecond pulsars
above for deriving the strongest available limit on the parameter |ξ̂ | < 3.9 × 10−9

(95 % confidence level) [70] (the strong-field counterpart of the Whitehead PPN
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parameter ξ ), that turns out to be six orders of magnitude more constraining than
the previous best limit on ξ obtained in the weak gravitational field environment of
the superconducting gravimeter experiments [71].

On other cases, the pulsar timing tests are nominally less constraining than the
solar system tests; however—as explained above—they explore a different regime
of gravity with respect to the solar system tests. For example, an upper limit ζ2 <
4×10−5 to the nonconservation of the momentum (embodied in the PPN parameter
ζ2) also resulted from the analysis of PSR B1913+16 [72]. Furthermore, we note
that the occurrence of preferred positions and times in the universe may naturally
lead to variations in the fundamental constants, such as the gravitational constant
G. Pulsar timing can put constraints also on this effect, as described in Sect. 4.2.3,
when dealing with the case of the binary pulsar PSR J0437−4715. Interestingly, the
limit on |ξ̂ | can also be converted into an upper limit of 4 × 10−16 on the spatial
anisotropy of the gravitational constant [70].

Additional relevant improvements in constraining the SEP are expected from the
timing of the first known millisecond pulsar (PSR J0337+1715) in a hierarchical
triple system with two other compact stars, both WDs, a recently announced (Jan
2014) milestone discovery [38] in pulsar science. The classical Newtonian effects
occurring in this 3-body system (complemented with the inclusion in the model
of the special-relativistic transverse Doppler effect) have already led to a precise
determination of the masses of the pulsar (1.4378 ± 0.0013 M�) and of the two
companions (0.19751 ± 0.00015 M� and 0.4101 ± 0.0003 M�), as well as to a
measurement of the inclinations of the orbits, surprisingly almost coplanar (close to
∼ 39.2 deg [38]). The pulsar and the inner WD (orbiting the common center of mass
in about 1.6 days) are two bodies having a very different self-field energy (ε ∼ 0.2
for the NS, whereas ε ∼ 10−4 for the WD, see Sects. 4 and 4.2.3) and both moving
in the gravitational field provided by the outer white dwarf (having an orbital period
of about 327 days). Since the latter field is 6–7 orders of magnitude larger than
the gravitational field due to the Galaxy, any putative SEP violation occurring in
the J0337+1715 inner binary would be strongly magnified with respect to the case
of all the previously described [pulsar+WD] binaries, thus making the new triple
system the best laboratory for investigating the limits of the SEP.

4.2 Gravity Theory Tests Using the PK Parameters

When a pulsar is orbiting another compact object (a second NS or a WD) in a close
enough orbit, the very high orbital velocity and the large deformation of the space-
time produced by the two massive stars in the system can lead to stronger relativistic
effects than those described in Sect. 4.1. This may open the possibility of directly
measuring these effects on the times of arrival of the pulses from the pulsar(s) and,
in turn, to carry on a direct comparison between the observations and the predictions
of the various theories of gravity.
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Fig. 3 Mass-vs-mass diagrams of a binary system for which three post-Keplerian parameters have
been measured. The two panels refer to two alternate gravity theories. Each color-coded curve in
the panels describes the constraint on the masses of the two orbiting bodies resulting from the same
observed value of a given PK parameter (and its uncertainty), combined with the adoption of the
gravity theory specific to that panel. Left panel: Since a common area exists for the three curves,
this gravity theory survives the test. Right panel: No overlap exists for the three curves, implying
the rejection of this gravitational theory

In this context, Damour and Deruelle [73,74] developed a powerful and success-
ful framework, tailored for constraining a very large class of gravitational theories.
It relies on the introduction of the so-called post-Keplerian (PK) parameters, which
satisfy the following two very useful properties: (i) the PK parameters are phe-
nomenological quantities, which can be measured according to a well-established
operational prescription, independent on the adopted gravity theory; (ii) in any spe-
cific gravity theory (chosen in a large range of metric theories), the PK parameters
can be written as function of the pulsar and companion masses and of the Keplerian
parameters of the binary system.

Since the Keplerian parameters are easily determined with a precision much bet-
ter than any PK parameter, they can be regarded as well known terms in the formulae
for the PK parameters, which leaves only two unknown quantities (the pulsar and
companion masses) in each formula. As a consequence, the measurement of two
PK parameters results in the determination of the masses of the two stars in the sys-
tem, the values of which are expected to depend on the adopted theory of gravity.
On the other hand, the measurement of NPK > 2 PK parameters yields NPK − 2
independent self-consistency tests for the given theory. The methodology can be
illustrated in a simpler way in the mass-vs-mass plot for the two binary components,
where each PK parameter (with its uncertainty) is associated to a pair of lines (see
Fig. 3). The region in the plot located between a pair of lines is only allowed by the
theory under investigation. If an area of overlap between the various pairs of lines
exists, that specific gravity theory passes the test (see left panel of Fig. 3). Otherwise
(e.g. right panel of Fig. 3) the theory has to be unequivocally rejected.
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In the specific case of general relativity, the equations describing the five most
used PK parameters assume the form [74–76]:

ω̇ = 3

(
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)−5/3
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2 ≡ sin i, (17)

where m1 and m2 are the two star masses, M = m1 + m2, x = a sin i and
T� ≡ GM�/c3 = 4.925490947 μs. The PK parameter ω̇ is phenomenologically
associated with the advance of the periastron, γ is a parameter accounting for grav-
itational red-shift and time dilation, Ṗb is the orbital damping and, in the framework
of general relativity, measures the rate at which the orbital period decreases due
to emission of gravitational radiation. Finally, r and s ≡ sin i represent respec-
tively the rate and the shape of the so-called Shapiro delay [45], a time delay of the
radio signal caused by the space-time deformations around the companion star. As
expected, no tunable parameter appears in the set of equations above, whereas one
or more theory-dependent tunable parameters are contained in the arrays of equa-
tions resulting from adopting alternate gravity theories (see e.g., [54, 57] for a few
examples).

4.2.1 The Case of the Double Neutron Star Binaries

The first very famous case of application of this class of tests is represented by the
binary pulsar system B1913+16, discovered at Arecibo in 1974 [77]. It is a DNS
system whose pulsar is rotating with a 59-ms period while completing a highly
eccentric (e = 0.61) orbit in about 7.8 h. Three PK parameters have been measured
for this system: from Eqs. 13 and 14, for ω̇ and γ respectively, the most precise
values ever for the masses of two pulsars have been determined [78], and an accu-
rate prediction for ṖGR

b resulted from inserting these masses in Eq. 15. It turned out
that the observed intrinsic value Ṗ int

b (see later) for the rate of the orbital damping
matched spectacularly with ṖGR

b (the agreement, after more than three decades of
timing observations, is now at 0.2 % level [78]). On one hand, that provided a spec-
tacular proof of the occurrence of quadrupolar gravitational waves emission from
the system, while, on another hand, that also showed that the internal structure (i.e.,
the self-gravity) of the NSs does not affect—at least not at more than the 0.2 %
level—the dynamics of the system, which can be described as it were composed
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by two point masses. This supports the so-called effacement of the interior of the
bodies [79], which is a property peculiar to general relativity (in turn arising from
the SEP), while not holding in other gravity theories.

It is here important to note that Ṗ int
b is not directly the value Ṗ ToA

b resulting
from the fitting of the observed ToAs to the timing formula, but it was corrected for
various effects which can contaminate Ṗ ToA

b . In fact in general it holds

(
Ṗb

Pb

)ToA

=
(
Ṗb

Pb

)int

+
(
Ṗb

Pb

)z

+
(
Ṗb

Pb

)rot

+
(
Ṗb

Pb

)Shk

+
(
Ṗb

Pb

)other

, (18)

where Ṗ int
b is the intrinsic rate of the orbital decay, while Ṗ z

b is the contribution to
the apparent orbital damping due to the vertical acceleration in the Galactic poten-
tial [80] , Ṗ rot

b is the contribution due to differential rotation in the plane of the
Galaxy [80], (Ṗb/Pb)Shk = [v2⊥/(cd)] (with d the distance and v⊥ the transverse
velocity of the binary system with respect to the SSB) is the Shklovskii effect, aris-
ing from the transverse component of the relative velocity of the binary barycenter
with respect to the SSB. Finally, Ṗ other

b summarizes other contributions which have
been thoroughly investigated in [80] and which, in most cases, are negligible with
respect to the other terms. A relevant exception is for the binary pulsars harbored in
a globular cluster, whose gravitational potential well can impart a significant line-
of-sight acceleration to the pulsar; in this case, Ṗ other

b can overcome all the other
contributions2. In the case of PSR B1913+16, the imperfect knowledge of the shape
of the Galactic potential, and in turn of Ṗ z

b and Ṗ rot
b , emerges now as the limiting

factor acting against further large improvements of the accuracy of the test of general
relativity.

The impact of the Galactic potential in the orbital period derivative is even more
evident for the case of the 38-ms pulsar PSR B1534+12, discovered at Arecibo on
1990 [81] and also hosted in a DNS binary. All the five PK parameters listed in the
Eqs. 13→17 have been measured. The three PK parameters ω̇, γ, and s provided
the first accurate test (at better than 1 % level) for the nonradiative prediction of
general relativity [82] and the range r of the Shapiro delay is also fully compatible
with what expected from general relativity. However, the observed value Ṗ ToA

b is
not compatible (at 1σ level) with the expectations of general relativity. This is inter-
preted as due to the large uncertainty on the correction to Ṗ ToA

b resulting from the
Shklovskii contribution (Ṗb/Pb)Shk = [v2⊥/(cd)], in turn arising from the uncertain
determination of the pulsar distance d . Assuming that general relativity is correct,
one can invert the line of reasoning, obtaining a precise determination of the dis-
tance of the binary, which should be located at dGR = 1.02 ± 0.05 pc. This is about
a factor 30 % farther away with respect to the distance inferred from the DM of
the pulsar dDM ∼ 0.7 kpc, in agreement with the typical uncertainty on the pulsar
distances inferred from the value of their dispersion measure.

2 This is likely the case for the DNS system J2129+1210C [35] associated with the globular cluster
M15.
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4.2.2 The Unique Case of the Double Pulsar

The second and unique other binary for which five PK parameters have been deter-
mined is the spectacular J0737−3039 system, also known as double pulsar. In April
2003, the discovery at Parkes of this unprecedented system [22, 23] represented a
breakthrough in the science of the compact objects and started a new era in the
study of relativistic gravity. The discovery occurred during a search for pulsars at
high galactic latitude (the so-called PH-survey [83]) performed at 1.4 GHz using
the multi-beam receiver of the Parkes radio telescope. The discovery plot clearly
manifested the occurrence of a strong line-of-sight acceleration (about 100 m s−2)
on the pulsar, indicating that it was experiencing a relevant gravitational pull from a
massive companion.

Three subsequent ∼ 5-h long integrations provided the radial velocity curve sug-
gesting that it was a DNS binary system with an orbital period of only 2.4 h and an
eccentricity e ∼ 0.09. Subsequent observations also showed that both the compact
objects were observable as a radio pulsar: PSR J0737−3039A (hereafter labeled as
psrA) is a mildly recycled pulsar with a rotational period of about 22 ms, whereas
PSR J0737−3039B (hereafter dubbed psrB) is an ordinary pulsar with a spin period
of about 2.7 s.

At least four features conjure in order to make this binary an unprecedented lab-
oratory for studying general relativity: (a) the large velocity of the stars along their
orbit (more than 300 km s−1, i.e., about 1000th of the speed of light in the vac-
uum); (b) the small distance between the two stars (between about 2 and 3 times the
Earth–Moon distance); (c) the high orbital inclination (above 88◦); (d) the observ-
ability of the radio pulses from both the stars, allowing one to use them as two clocks
in the binary. In particular, the first two factors lead to significant relativistic effects,
while the features (c) and (d) simplify the detectability of the effects with the timing
procedure.

As a result, only few timing observations (spanning no more than about 1 week)
were enough to measure the relativistic advance of periastron ω̇ of psrA [22]: about
16.9 year−1, significantly larger than ever observed before. Total 6 months of addi-
tional ToAs led to determine three further PK parameters, that is, the combined time
dilation and gravitational red-shift parameter γ, as well as the range r and the shape
s of the Shapiro delay. The observability of both the pulsars made also possible to
independently determine the size of the two orbits, which in turn—using the Kepler
third law—led to the first direct measurement of the mass ratio R [23] in a DNS
system. It is worth noting that the value of R is not affected by the self-field effects
(at least for a very large class of metric theories of gravity), in contrast with the PK
parameters [74]. In terms of the mass-vs-mass plot, that implies that the location
of the pair of straight lines—both passing from the origin of the plot—which are
associated with R (and with the observational uncertainty on R) is independent of
the specific gravity theory.

The fifth PK parameter (i.e., the orbital decay Ṗb) was also detected with high
significance after another year of data taking. This confirmed that the system shrinks
at the pace of about 7 mm day−1 and it will end up into a merging of the two NSs in
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∼ 85 million years, owing to emission of gravitational waves. This fact, combined
with the short distance of this system, makes the double pulsar the dominant binary
in the calculations for the merger rate of DNS systems in our galaxy and in the rest
of the universe [22]. Despite many uncertainties still affecting the prediction of the
absolute rate for those events, the discovery of the double pulsar determined a signif-
icant relative increase (up to about an order of magnitude, e.g., [84]) in any model,
triggering new hopes for the ongoing ground-based interferometric experiments
(e.g., LIGO and VIRGO) aimed at the detection of gravitational waves.

An additional relativistic effect—the relativistic precession of the spin axis of
psrB3—has been more recently measured in the double pulsar system, exploiting
the occurrence of short eclipses (∼ 30 s long) of the radio signal from psrA (at least
at frequencies smaller than ∼ 1.4 GHz) when it transits at the superior conjunction.
About 4 years of observations revealed a clear linear evolution in the azimuthal
spin axis angle, that is the angle which describes the precessional motion of the
spin vector of psrB around the total angular momentum vector. The measured rate
ΩB = (4.77+0.66

−0.65) year−1 [86] is compatible, at the 13 % level, with the prediction
of general relativity [87], ΩGR

B = (5.0734 ± 0.0007) year−1.
Although this effect has been somehow observed in other binary pulsars (e.g.,

see [88] for PSR B1534+12 and [89–91] for PSR B1913+16, and more recently
see [92] for PSR J1141−6545), only in the case of the double pulsar it provides
a significant test both to general relativity and alternate gravity theories. In fact,
when dealing with the class of the Lorentz-invariant gravity theories based on a
Lagrangian [76]—general relativity of course belongs to that class—one can write
the following general formula for the relativistic spin precession rate of the NS
labeled as B in the system:

ΩB =
[xAxB
s2

] [ 8π3

(1 − e2)P 3
b

][
c2σB

GAB

]
, (19)

where xA, xB are the projected semimajor axes of the orbits of the two NSs in the
system, σB is a (theory dependent) strong-field spin-orbit coupling constant and
GAB is the gravitational constant—also theory dependent!—for the gravity interac-
tion between the two pulsars, whereas the other quantities are the usual Keplerian
and PK parameters and constants as defined in previous sections. In order to solve
for the rightmost factor, one needs a measurement of the spin precession, a precise
determination of s, and separately, of xA and xB , which means that the binary must
satisfy at least the three following properties: (i) a high spin precession rate, (ii) a
highly inclined orbital plane, and (iii) the observability of both the NSs as pulsars.
These features simultaneously hold only for the fortunate and so far unique case
of the double pulsar, for which, inserting the measured parameters in Eq. 19, one

obtains [ c
2σB
GAB

] = 3.38+0.49
−0.46. This provides an unprecedented strong-field test for all

3 In many papers related with pulsars, this effect is referred to as geodetic (or as De Sitter)
precession. For a brief description of the apparently discrepant terminology, see e.g., [85].
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the gravity theories belonging to the large aforementioned class: a theory can sur-

vive only if it predicts for [ c
2σB
GAB

] a value in agreement with the one above. General

relativity passes also this test, since in this theory [ c
2σB
GAB

]GR = 2 + 3mA
2mB

, and from

the measured value of R, it results 3mA
2mB

+2 = 3.60677±0.00035. As it involves the
strong self-field of a NS, this test of general relativity has a wider nature with respect
to the tests of the relativistic spin precession which have been performed and/or are
in progress in the weak-field regime of the solar system. In particular, it supports
the extension to the rotating bodies of the already introduced concept of effacement
of gravity in general relativity [79], which had been previously tested for the orbital
motion only. Namely the internal structure of the NS does not prevent the star to
behave like a spinning test particle in a weak external field4.

With the measurement of the spin precession rate of psrB—implying the appear-
ance of a related pair of lines, labeled as ΩB, in the mass-vs-mass diagram of the
binary—there are now seven relativistic constraints (i.e., seven pairs of lines in
Fig. 4), for the values of the masses of the two NSs in the J0737−3039 system:
five from the PK parameters, one from the mass-ratio R, and one arising from ΩB .
On top of those, there are the additional classical constraints derived from the New-
tonian mass function of the pulsars. Inspecting the inset in Fig. 4, one can see the
existence of a common, although tiny, region of overlap for all the pairs of lines. As
a consequence, after less than a decade from the discovery of the system, the obser-
vations of the double pulsar binary are already providing 7 − 2 = 5 successful tests
of self-consistency of general relativity in presence of strong-field effects [95]. The
most stringent published test to date—and the best so far among all the gravitational
experiments involving strong-field effects—is for the shape s of the Shapiro delay,
which matches with the observations at 0.05 % level [96].

Since there is still a large room for future improvement of the timing solution
for the double pulsar5, a wealth of further intriguing results are expected to flood
from keeping on observing this system and from the introduction of more sensitive
observational apparatuses. For example, a recent interferometric determination of
the parallax of the system [98] indicated that over a decade, Ṗb may be observed
with an accuracy of >∼ 0.01%, paving the way to stringent tests of the theories that
predict dipolar gravitational radiation (contrary to the quadrupolar only contribution
resulting from general relativity, see Sect. 4.2.3).

Continuous accumulation of ToAs will also lead to measure new PK parameters
(such as the aberration ones), and to derive constraints on the existence of a preferred
frame and thus on the violation of the local Lorentz invariance of gravity in the
strong internal fields of the NSs [99]. Moreover, the availability of a (decennial)
series of high quality ToAs may lead to unveil the signature of the second order post-
Newtonian corrections to the orbital periastron advance ω̇ of the system. This would

4 Note that, contrary to common expectations, no precession of the spin axis of psrA in the double
pulsar has been detected so far [93], which may suggest the occurrence of a small misalignment
angle between the orbital angular momentum and the spin axis of psrA, likely less than ∼ 15◦ [94].
5 The recent (but supposedly temporary) disappearance of the radio signal from psrB [97] will not
hamper the improvement of the timing accuracy of the solution for psrA.
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Fig. 4 Mass-vs-mass diagram for the double pulsar system J0737−3039. The shaded regions are
those that are excluded by the Newtonian mass functions of the two pulsars. Further constraints are
shown as pairs of lines enclosing permitted regions as predicted by general relativity and related
to the observation of the mass ratio R, the PK parameters, and the precession rate ΩB of the spin
axis of psrB. Inset is an enlarged view of the small quadrilateral encompassing the intersection of
all these constraints. (Courtesy of René Breton 2009)

be of paramount importance, since these corrections will include the value of the
spin angular momentum of psrA, opening the intriguing perspective to measure that
and therefore to determine the moment of inertia of psrA [100]. As a matter of fact,
this measurement may finally reveal to be at the borderline of the possibilities of the
current instrumentation [7], but might be attained when new more powerful radio
telescopes will enter in play. The scientific payback from that would be enormous,
since the simultaneous determination of the mass and the moment of inertia of a
NS would significantly constrain the equation of state for the nuclear matter [101],
shedding light on a long standing and still unanswered fundamental question of the
nuclear physics.
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4.2.3 Other Interesting Cases and Constraints on Tensor–Scalar Theories

As discussed in previous sections there are few binary pulsars with a white dwarf
companion for which one or more PK parameters have been measured. In most
cases, they are only the shape s and range r of the Shapiro delay, which allow one
to infer with good accuracy the mass of the companion, but are not enough for
constraining the gravitational theories.

However, at the time of writing these notes, there are at least four notable excep-
tions, the binary pulsars PSR J0437−4715, PSR J1141−6545, PSR J1738+0333,
and PSR J0348+0432 (sorted in chronological order of discovery), the cases of
which we briefly illustrate here, since their continuous timing is producing results
which are complementary to those of the double pulsar and the other two relativistic
DNSs (PSR B1913+16 and PSR B1534+12) which we previously described.

The former was discovered in 1993 during a survey at 400 MHz at the Parkes
radio telescope [102]. Two factors make PSR J0437−4715 a primary target for high
precision timing: its proximity to the Earth (it is indeed the closest known recy-
cled pulsar, d = 156.3 ± 1.3 pc [103]) and its brightness (flux density of 142 mJy
at 1.4 GHz, a factor ∼ 14 larger than the second most luminous recycled pulsar).
In fact, the closeness to us produce significant geometrical effects, such us (i) the
so-called annual-orbital parallax [104] (i.e., the apparent variation of the inclina-
tion angle of the binary system) due to the orbital motion of our planet, and (ii) the
apparent secular change in the projected semimajor axis of the pulsar orbit due to the
pulsar proper motion [105]. Accounting in the timing model for these two apparent
phenomena, and exploiting the exceptionally accurate ToAs achievable for this sys-
tem, it was possible [106] to infer both the inclination angle i and the longitude of
the ascending node (a Keplerian parameter which is usually not measurable via pul-
sar timing) of the system. The derived value of i—thus determined in a completely
independent way—was then compared with the expected effects on the ToAs of the
Shapiro delay, finding a nice agreement of the data with the prediction of general
relativity, for which the PK parameter s is simply equal to sin i. The best pulsar test
on the time variation of the Newtonian constant of gravity G is also so far provided
by this system: |Ġ/G| < 23 × 10−12 year−1 (see [107]).

PSR J1141−6545 (discovered on 1999 at Parkes [108]) is a rare example of a
binary pulsar, the WD companion6 of which is older than the NS, due to a reversal in
the mass ranking of the two stars in the system—that is—the originally less massive
object became the most massive one after the first stages of mass transfer during the
binary evolution [110]. Whence, the originally more massive star ended its evolution
as a massive (1.02 ± 0.01 M�) WD [111], whereas the originally less massive star
later exploded as a supernova leaving a relatively young (∼ 1.4 Myear [108]) and
not recycled (spin period of 394 ms) pulsar with a mass of 1.27 ± 0.01 M� [111],
which is now orbiting the WD in an elliptical and short orbit (e ∼ 0.17, Pb ∼
4.74 h) [108]. Despite the relatively long rotational period, the latter two properties

6 The recent optical detection of the companion supports its being a WD [109]
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(as well as the brightness of the source) led to clearly detect three PK parameters
(namely ω̇, γ , Ṗb), allowing [111] to infer the masses of the two bodies (as reported
above) and—after correction for the spurious effects of Eq. 18—to test the radiative
prediction (i.e., the damping of the orbit due to gravitational waves emission) of
general relativity at better than 10 % level [111]. Also, it has been very recently
detected the occurrence of the relativistic precession [92] of the spin axis of the
pulsar.

Although the aforementioned test of general relativity with PSR J1141−6545 is
far from approaching the accuracy of those obtained with the J0737−3039 or the
B1913+16 systems, it is more useful than the other tests in constraining a particu-
larly important class of alternate gravity theories, that is, the so-called tensor–scalar
theories, in which the usual tensor field is complemented with one scalar field ψ .
Besides many other additional advantages (see e.g., [59, 112]), these gravity theo-
ries are a natural outcome of many unified theories (i.e., superstring, Kaluza-Klein,
etc. [59, 112]) invoking a scalar counterpart for the graviton and they often appear
as a key ingredient in cosmology for explaining the past or the current phases
of accelerated expansion (i.e., inflation, quintessence) of the universe. In particu-
lar, the tensor–mono-scalar theories can be grouped in a family, parametrized by
two constants, α0 and β0, which describe the linear and the quadratic coupling
between the matter and the additional scalar field, according to the expression
a(ψ) = α0ψ + 0.5β0ψ

2, where a(ψ) is the coupling function, and exp [2a(ψ)]gμν
replaces the role of the ordinary spin-2 metric tensor gμν of general relativity. Of
course, the Einsteinian theory is fully recovered for α0 = β0 = 0, whereas, for
example, the Jordan–Fierz–Brans–Dicke gravitational theory [113] is accounted for
by assuming β0 = 0 and α2

0 = 1/(2ωBD + 3), where ωBD is the Brans–Dicke
parameter (e.g., [114]). In this context, the experimental tests aim to put constraints
in the two-dimensional space of (α0, β0), where the origin coincides with the theory
of general relativity, the vertical axis with the Brans–Dicke theory, and so on [115]:
one such plot is reported in Fig. 5.

The orbital damping rate Ṗb is the most affected PK parameter by the occurrence
of a scalar field. In particular the value of Ṗb should be enhanced by the emission of
dipolar gravitational radiation (due to emission of scalar spin-0 waves) with a power
of order O(1/c3), superimposed to the quadrupolar component (associated to spin-
2 gravitons) of general relativity having a much smaller power of order O(1/c5).
However, for two perfectly identical NSs in a binary, the dipolar term obviously
vanishes and it almost cancels out also for two NSs of similar masses, since their
compactness parameters (related to the dimensionless ratio ε) are supposed to be
similar. This is not the case for a WD, whose compactness parameter (and hence the
coupling of matter with the scalar field) is expected to be much smaller than for a
NS. Therefore, the binary pulsars orbiting a WD in clean binary systems (i.e., with
no uncontrolled effects affecting Ṗb, like tidal interactions or mass loss or magnetic
braking. . . ) are primary targets for investigating the occurrence of scalar waves and
in turn for constraining the space of the parameters of the tensor–scalar theories.

Figure 5 illustrates the important role played by PSR J1141−6545 in this frame-
work. However, another binary pulsar, PSR J1738+0333 (discovered during 2001
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Fig. 5 Experimental constraints on the |α0| (logarithmic scale) and β0 (linear scale) constants of
the coupling function a(ψ) = α0ψ + 0.5β0ψ

2 of the matter with a scalar field ψ . The point in
the diagram at coordinates (|α0| → 0; β0 = 0) corresponds to general relativity. The vertical
axis corresponds to Brans–Dicke theory, whereas the horizontal axis is the locus of the theories
which are indistinguishable from general relativity in the weak-field conditions of the solar system
experiments. The allowed regions are below the various solid lines, related to the observations of
various binary pulsar systems (B1534+12, J0737−3039, B1913+16, J1141−6545, J1738+0333)
and to the outcomes of several experiments performed in the weak-field limit of the solar system,
including the lunar laser ranging (LLR) and the Cassini spacecraft’s results. The shaded area is the
one allowed so far by all the tests. It is evident the primary role of PSR J1738+0333 in setting
some of the current limits. (Courtesy of Paulo Freire 2012 [37])

at Parkes [116] and orbiting a low-mass WD companion of ∼ 0.18 M� in a ∼ 8.5 h
orbit of low eccentricity, e ∼ 3 × 10−7), recently gained the pole position in the
ranking of the most useful binary pulsars in testing (and constraining the parame-
ters of) the tensor–scalar theories [37]. A decadelong timing campaign at Arecibo
provided a determination of Ṗb, as well as an extremely accurate determination of
the proper motion and the parallax of the system, allowing for a precise subtraction
of the kinematic contribution to the observed orbital decay. This led to a determina-
tion of the intrinsic Ṗ int

b = −25.9±3.2×10−15, to be compared with the prediction
of general relativity ṖGR

b = −27.7+1.5
−1.9 × 10−15 (the latter prediction relies on the

values of the mass of the WD and of the pulsar, obtained from optical photometry
and spectroscopy [36]). The nice agreement between the two values introduces a
very strong upper limit on dipolar gravitational wave emission, which is reflected
on the diagram of Fig. 5.
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Finally, it is worth noting also the rejection of any model with β0
<∼ −5 which

is imposed by J1141−6545, J1738+0333, as well as by B1534+12, J0737−3039,
and B1913+16 systems. This is a pure strong-field effect (e.g., [117]), which can be
exploited only using the radio pulsars, while the investigation of such low negative
values of β0 is escaping all the solar system experiments.

Additional constraints on deviations from GR due to strong self-field effects
derive from the discovery at the Green Bank radio telescope (reported by [118,119]
during 2013), and the subsequent radio timing and optical observations, of the
J0348+0432 system [6]. It includes a WD and a massive pulsar (2.01 ± 0.04 M�)
in a 2.46 h almost circular orbit. Given its large mass, PSR J0348+0432 has a
gravitational binding energy ∼ 60% larger than that of all the other known pul-
sars with a measured orbital decay (the highest mass of which is 1.46+0.06

−0.05 M� for
PSR J1738+0333), and the self-field effects (scaling nonlinearly with the binding
energy) are expected to be much more prominent in this binary than in the ones
described above. Therefore, the consistency (at the 18 % level at the time being [6])
of the observed orbital decay with the predictions of GR can be used [6] to pose
stringent limits to the occurrence of strong-field deviations from the Einsteinian
theory in the form of a long-range field7.

5 Perspectives

As anticipated in the previous sections, a wealth of improved/new tests of grav-
ity theories is expected to emerge from keeping on observing the already known
systems, both with the current generation or with new timing instruments, like
MeerKAT (in South Africa) and/or the Large European Array for Pulsars (LEAP),
which combines the five largest European radio telescopes to generate the equiv-
alent of a ∼ 200-m dish [120]. Other relativistic [pulsar + NS] or [pulsar + WD]
binaries should also be discovered by the ongoing large search experiments, at
Parkes [121], Green Bank [122], Arecibo [123], and Effelsberg radio telescopes,
all of them having better sensitivity than all previous surveys. Targeted searches
towards gamma-ray point sources [124] have also already demonstrated to be a new
promising channel for unveiling recycled pulsars, some of them likely included in
relativistic binaries.

Looking on a longer decennial timescale, the perspectives in this field of research
will undergo a new gigantic step forward when novel large instruments, like the
Square Kilometer Array (SKA) [125] or the Five-hundred meter A-spherical Single-
aperture radio Telescope (FAST) [126] will enter in operation. In particular, they
will almost certainly lead to the discovery of some [pulsar+black hole] binaries, the

7 Obviously, short-range fields, not affecting the binary dynamics, cannot be constrained with this
kind of tests.
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long-dreamt and still unsatisfied objective of all the current pulsar search collabo-
rations. These binaries are expected to be very rare, but, besides the most obvious
case of a pulsar orbiting the super-massive black hole in the galactic centre ( [127]
and references therein), at least some pulsars should be found with a stellar-mass
black hole companion (e.g., [128]) and, even more interestingly, some recycled pul-
sars could be discovered in a globular cluster orbiting an intermediate mass black
hole [129].

Timing a natural clock orbiting a spinning black hole will give the unprecedented
possibility of a direct measurement not only of the mass of the black hole MBH,
but also of its angular momentum SBH and its quadrupole moment QBH, thus in
turn allowing one to experimentally test [130, 131] the so-called Cosmic Censor-
ship Conjecture [132], and the No-Hair Theorem. The first states that no-naked
singularity (i.e., a singularity not hidden behind an event horizon) exists, while the
second affirms that any black hole can be described only on the basis ofMBH, SBH,
and its electric charge, the latter not being usually relevant in an astrophysical con-
text. Since the event horizon tends to shrink as a black hole spins up, the Cosmic
Censorship Conjecture implies that there is a maximum spin for a black hole of
a given mass; on the other hand the No-Hair Theorem requires that QBH must
be expressed in terms of MBH and SBH. Introducing the dimensionless spin and
quadrupole parameters χ and q,

χ = c

G

SBH

M2
BH

; q = c4

G2

QBH

M3
BH

, (20)

one then expects a black hole to satisfy in general relativity the equations

χ ≤ 1 ; q = −χ2, (21)

which can be experimentally checked with the timing of a [pulsar+black hole]
binary.

Although it is not within the scope of this review, it is worth concluding by briefly
recalling the very promising expectations of the so-called pulsar timing arrays for
tests of gravitational theories [133]. They are based on the consideration of the Earth
and a pulsar as a pair of test masses in the space-time metric; the passage of a grav-
itational wave perturbs the metric and is then expected to leave a signature on the
observed timing residuals of the pulsar. The size of the effect on the residuals is very
small and is proportional to the amplitude of the characteristic strain (see the chapter
by Braccini and Fidecaro in this book for an introduction to the gravitational waves
and a description of their basic parameters). The correlation between the data of
many Earth-pulsar pairs [134] distributed throughout the sky (thus forming a PTA) is
required to remove spurious effects on the timing residuals and lead to a significant
detection of gravitational waves. In particular, the PTAs are most sensitive to gravi-
tational waves with periods >∼ 1 year (i.e., frequency <∼ 10 nHz), and therefore probe
the nanoHertz gravitational wave sky, thus being nicely complementary to the other
experiments aimed at a direct detection of gravitational waves (like LIGO/VIRGO,
Advanced LIGO/VIRGO, eLISA and CMB-POL), all operating in other frequency
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bands. The most suitable target for the current PTAs [the Australian one (PPTA;
[135]), the European one (EPTA, embedding the aforementioned LEAP experiment;
[136]), and the US–Canadian one (nanoGrav; [137])], as well as for the international
joined effort, labeled IPTA [138], is the stochastic background—or better saying the
stocastic foreground—of gravitational waves produced by coalescing super-massive
black hole binaries in the early stage of assembling of the galaxies (red-shift ∼ 1)
in the universe. Although no claim for a detection has been announced so far by the
various involved groups (the most updated upper limits are reported in [139–141]),
the present trend in the timing accuracy of the experiments and the calculation of
the cosmological models lend support to the possibility of a clear detection within a
few years [139,142,143]. Since most metric gravitational theories (e.g., all of those
which are Lorentz invariant) unavoidably predict emission of waves from coalesc-
ing binaries [144], it would be very surprising (and would determine a revolution
in physics or in cosmology) if not only the current instruments, but also SKA and
FAST will fail to detect the aforementioned foreground. What seems more likely is
that the superb sensitivity of SKA and FAST will not only lead to a simple detec-
tion, but will give the chance of using the properties of the observed gravitational
waves for constraining the alternative gravity theories (e.g., by studying the mass
and the spin of the gravitons [145]), as well as for characterizing the parameters of
the massive black hole binary systems (e.g., [146, 147]).

With all these exciting perspectives, pulsar science is more vital than ever and
promises to give additional fundamental contributions to our understanding of
fundamental physics and relativistic gravity just on the eve of its first half-century.
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Non-inertial Frames in Special and General
Relativity

Luca Lusanna

Abstract A theory of global non-inertial frames in special relativity is developed by
taking into account relativistic metrology and by avoiding the coordinate singulari-
ties of the rotating disk and of Fermi coordinates. Then this theory is used in general
relativity for the treatment of globally hyperbolic, asymptotically Minkowskian
space-times solution of Einstein’s equations. Also some comments on the problem
of dark matter, connecting it to the relativistic metrology used in astrophysics, are
made.

1 Introduction

The aim of this contribution is to clarify what is known about non-inertial frames
in special relativity (SR) and general relativity (GR). This topic is rarely discussed
and till recently there was no attempt to develop a consistent general theory. All
the results of the standard model of elementary particles are defined in the inertial
frames of Minkowski space-time. Only at the level of neutron, atomic, and molec-
ular physics one needs a local study of non-inertial frames in SR, for instance the
rotating ones for the Sagnac effect.

Moreover, relativistic metrology [1] and space physics around the Earth and
in the solar system [2] must take into account the gravitational field and the
post-Newtonian (PN) limit of GR, a theory in which global inertial frames are
forbidden by the equivalence principle. In Einstein’s GR, the gauge group of its
Lagrangian formulation, the diffeomorphism group, implies that the 4-coordinates
of the space-time (and therefore the local non-inertial frames) are gauge variables.
As a consequence, one would like to describe the effects of the physical degrees of
freedom of the gravitational field by means of 4-scalars. This is an open theoreti-
cal problem. The praxis of experimentalists, who do not know which is the correct
formulation of GR among the existing ones, is completely different.

Inside the solar system, the experimental localization of macroscopic classical
objects is unavoidably done by choosing some convention for the local 4-coordinates
of space-time. Atomic physicists, NASA engineers, and astronomers have chosen a
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series of reference frames and standards of time and length suitable for the exist-
ing technology [1,2]. These conventions determine certain post-Minkowskian (PM)
4-coordinate systems of an asymptotically Minkowskian space-time, in which the
instantaneous 3-spaces are not strictly Euclidean. Then these reference frames are
seen as a local approximation of an International Celestial Reference Frame (ICRS),
where however the space-time has become a cosmological Friedman–Robertson–
Walker (FRW) one, which is only conformally asymptotically Minkowskian at
spatial infinity. A search of a consistent patching of the 4-coordinates from inside
the solar system to the rest of the universe will start when the data from the future
GAIA mission [3] for the cartography of the Milky Way will be available. This
will allow a PM definition of a Galactic Reference System containing at least our
galaxy. Let us remark that notwithstanding the FRW instantaneous 3-spaces are not
strictly Euclidean, all the books on galaxy dynamics describe the galaxies by means
of Kepler theory in Galilei space-time.

A well-posed formulation of a PM ICRS (a global non-inertial frame for the
3-universe) would also be needed to face the main open problem of astrophysics,
namely the dominance of dark entities, the dark matter, and the dark energy, in
the existing description of the universe given by the standard ΛCDM cosmological
model [4] based on the cosmological principle (homogeneity and isotropy of the
space-time), which selects the class of FRW space-times. After the transition from
quantum cosmology to classical astrophysics, with the Heisenberg cut (the interface
between the quantum and classical worlds) roughly located at a suitable cosmic
time (≈ 105 years after the big bang) and at the recombination surface identified by
the cosmic microwave background (CMB), one has a description of the universe in
which the known forms of baryonic matter and radiation contribute only with a few
percents of the global budget. One has a great variety of models trying to explain
the composition of the universe in accelerated expansion (based on data on high
red-shift supernovae, galaxy clusters, and CMB): WIMPS (mainly supersymmet-
ric particles), f (R) modifications of Einstein’s gravity (with a modified Newton’s
potential), MOND (with a modification of Newton’s law), . . . for dark matter;
cosmological constant, string theory, back-reaction (spatial averages, nonlinear-
ity of Einstein’s equations), inhomogeneous space-times (Lemaitre–Tolman–Bondi,
Szekeres), scalar fields (quintessence, k-essence, phantom), fluids (Chaplygin fluid),
. . . for dark energy.

A PM ICRS would allow to interpret the astronomical data (luminosity, light
spectrum, angles) on the two-dimensional sky vault in a more realistic way (taking
into account the inhomogeneities in the 3-universe) than in the nearly flat 3-spaces
(as required by CMB data) of FRW space-times. In particular, one needs new stan-
dards of time and length like the cosmic time and the luminosity distance extending
the standard relativistic metrology inside the solar system.

All these open problems justify the following description of what is known about
non-inertial frames in SR and GR.
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2 Non-inertial Frames in Special Relativity

In nonrelativistic (NR) Newtonian physics isolated systems are described in Galilei
space-time, where both time and the instantaneous Euclidean 3-spaces are absolute
quantities. As a consequence, the transition from the description of the system in NR
inertial frames to its description in rigid non-inertial frames can be done by defining
the following 3-coordinate transformation

xi = yi(t) + σ r Rri(t). (1)

Here xi’s are inertial Cartesian 3-coordinates centered on an inertial observer, while
σ r ’s are rigid non-inertial 3-coordinates centered on an arbitrary observer whose
trajectory is described by the Cartesian 3-coordinates yi(t) in the inertial frame.
This accelerated observer has a 3-velocity, which can be conveniently written in the

form vi(t) = Rij (t)
dyj (t)
dt

. R(t) is a time-dependent rotation matrix (R−1 = RT ),
which can be parametrized with three time-dependent Euler angles. The angular
velocity of the rotating frame is ωi(t) = 1

2 ε
ijk Ωjk(t) with Ωjk(t) = −Ωkj (t) =(

dR(t)
dt
RT (t)

)
jk

.

A particle of mass mo with inertial Cartesian 3-coordinates xio(t) is described in
the non-inertial frame by 3-coordinates ηr (t) such that

xio(t) = yi(t) + ηr (t)Rri(t). (2)

As shown in every book on Newtonian mechanics, a particle satisfying the equa-

tion of motion mo
d2 xo(t)
dt2

= − ∂ V (t,xjo (t))
∂ xo

, if an external potential V (t, xko (t)) =
Ṽ (t, ηr (t)) is present, will satisfy the following equation of motion in the rigid
non-inertial frame

mo
d2 η(t)

dt2
= − ∂ Ṽ (t, ηr (t))

∂ ηo

− mo
[dv(t)

dt
+ ω(t) × v(t) + dω(t)

dt
× η(t)

+ 2 ω(t) × dη(t)

dt
+ ω(t) × [ω(t) × η(t)

]
, (3)

where the standard Euler, Jacobi, Coriolis, and centrifugal inertial forces associated
with the linear acceleration of the non-inertial observer and with the angular velocity
of the rotating frame are present.

In Ref. [5] there is the extension to nonrigid non-inertial frames in which Eq. (1)
is replaced by xi = Ai(t, σ r ) with Ai arbitrary functions well behaved at spa-
tial infinity. For instance, a differentially rotating non-inertial frame is described by
Eq. (1) with a point-dependent rotation matrix R(t, σ r ).

To go from NR inertial frames to the nonrigid non-inertial ones one has to replace
the group of Galilei transformations, connecting the NR inertial frames, with some
subgroup of the group of 3-diffeomorphisms of the Euclidean 3-space.
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The transition to SR is highly nontrivial because, due to the Lorentz signature of
Minkowski space-time, time is no more absolute and there is no notion of instan-
taneous 3-space: the only intrinsic structure is the conformal one, that is, the light
cone as the locus of incoming and outgoing radiation. A convention on the synchro-
nization of clocks is needed to define an instantaneous 3-space. For instance, the
1-way velocity of light from one observer A to an observer B has a meaning only
after a choice of a convention for synchronizing the clock in A with the one in B.
Therefore, the crucial quantity in SR is the 2-way (or round trip) velocity of light
c involving only one clock. It is this velocity which is isotropic and constant in SR
and replaces the standard of length in relativistic metrology1.

Einstein convention for the synchronization of clocks in Minkowski space-time
uses the 2-way velocity of light to identify the Euclidean 3-spaces of the inertial
frames centered on an inertial observer A by means of only its clock. The inertial
observer A sends a ray of light at xoi towards the (in general accelerated) observer
B; the ray is reflected towards A at a point P of B world-line and then reabsorbed by
A at xof ; by convention, P is synchronous with the mid-point between emission and

absorption on A’s world-line, that is, xoP = xoi + 1
2 (xof − xoi ) = 1

2 (xoi + xof ). This
convention selects the Euclidean instantaneous 3-spaces xo = ct = const . of the
inertial frames centered on A. Only in this case the 1-way velocity of light between
A and B coincides with the 2-way one, c. However if the observer A is acceler-
ated, the convention can break down due to the possible appearance of coordinate
singularities.

The existing coordinatizations, like either Fermi or Riemann normal coordinates,
hold only locally. They are based on the 1+ 3 point of view, in which only the world-
line of a time-like observer is given. In each point of the world-line, the observer 4-
velocity determines an orthogonal three-dimensional space-like tangent hyperplane,
which is identified with an instantaneous 3-space. However, these tangent planes
intersect at a certain distance from the world-line (the so-called acceleration length
depending upon the 4-acceleration of the observer [6]), where 4-coordinates of the
Fermi type develop a coordinate singularity. Another type of coordinate singularity
is developed in rigidly rotating coordinate systems at a distance r from the rotation
axis where ω r = c (ω is the angular velocity and c the 2-way velocity of light). This
is the so-called horizon problem of the rotating disk: a time-like 4-velocity becomes
a null vector at ω r = c, like it happens on the horizon of a black hole. See Ref. [7]
for a classification of the possible pathologies of non-inertial frames and on how to
avoid them.

As a consequence, a theory of global non-inertial frames in Minkowski space-
time has to be developed in a metrology-oriented way to overcome the pathologies
of the 1+ 3 point of view. This has been done in the papers of Ref. [7] by using
the 3+ 1 point of view in which, besides the world-line of a time-like observer, one
gives a global nice foliation of the space-time with instantaneous 3-spaces.

1 See Ref. [1] for an updated review on relativistic metrology on Earth and in the solar system.
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Assume that the world-line xμ(τ ) of an arbitrary time-like observer carrying a
standard atomic clock is given: τ is an arbitrary monotonically increasing func-
tion of the proper time of this clock. Then one gives an admissible 3+ 1 splitting
of Minkowski space-time, namely a nice foliation with space-like instantaneous
3-spaces &τ . It is the mathematical idealization of a protocol for clock synchro-
nization: all the clocks in the points of &τ sign the same time of the atomic clock of
the observer2. On each 3-space&τ one chooses curvilinear 3-coordinates σ r having
the observer as origin. These are the Lorentz-scalar and observer-dependent radar
4-coordinates σA = (τ ;σ r ), first introduced by Bondi [8].

If xμ  → σA(x) is the coordinate transformation from the Cartesian 4-coordinates
xμ of a reference inertial observer to radar coordinates, its inverse σA  → xμ =
zμ(τ, σ r ) defines the embedding functions zμ(τ, σ r ) describing the 3-spaces &τ as
embedded 3-manifolds into Minkowski space-time. The induced 4-metric on &τ
is the following functional of the embedding 4gAB (τ, σ r ) = [zμA ημν z

ν
B ](τ, σ r ),

where zμA = ∂ zμ/∂ σA and 4ημν = ε ( + − − −) is the flat metric3. While the
4-vectors zμr (τ, σu) are tangent to &τ , so that the unit normal lμ(τ, σu) is propor-
tional to εμαβγ [zα1 z

β

2 z
γ

3 ](τ, σu), one has zμτ (τ, σ r ) = [N lμ + Nr zμr ](τ, σ r ) with
N (τ, σ r ) = ε [zμτ lμ](τ, σ r ) = 1 + n(τ, σ r ) and Nr (τ, σ r ) = −ε gτr (τ, σ r ) being
the lapse and shift functions, respectively.

As a consequence, the components of the 4-metric 4gAB (τ, σ r ) have the follow-
ing expression:

ε 4gττ = N2 −Nr Nr, −ε 4gτr = Nr = 3grs N
s,

3grs = −ε 4grs =
3∑
a=1

3e(a)r
3e(a)s

= φ̃2/3
3∑
a=1

e
2
∑2
b̄=1 γb̄a Rb̄ Vra(θi)Vsa(θ

i), (4)

where 3e(a)r (τ, σu) are cotriads on &τ , φ̃2(τ, σ r ) = det 3grs(τ, σ r ) is the 3-volume

element on &τ , λa(τ, σ r ) = [φ̃1/3 e
∑2
b̄=1 γb̄a Rb̄ ](τ, σ r ) are the positive eigenval-

ues of the 3-metric (γāa are suitable numerical constants) and V (θi(τ, σ r )) are
diagonalizing rotation matrices depending on three Euler angles.

Therefore, starting from the four independent embedding functions zμ(τ, σ r )
one obtains the ten components 4gAB of the 4-metric (or the quantities N , Nr ,
φ̃, Rā , θi), which play the role of the inertial potentials generating the relativis-
tic apparent forces in the non-inertial frame. It can be shown [7] that the usual
NR Newtonian inertial potentials are hidden in the functions N , Nr , and θi . The

extrinsic curvature tensor 3Krs(τ, σu) =
[

1
2N (Nr|s +Ns|r − ∂τ 3grs)

]
(τ, σu) (”|”

2 It is the nonfactual idealization required by the Cauchy problem generalizing the existing
protocols for building a coordinate system inside the future light cone of a time-like observer.
3 ε = ±1 according to either the particle physics ε = 1 or the GR ε = −1 convention.



320 L. Lusanna

denotes the covariant derivative inside the 3-spaces), describing the shape of the
instantaneous 3-spaces of the non-inertial frame as embedded 3-sub-manifolds of
Minkowski space-time, is a secondary inertial potential, functional of the ten inertial
potentials 4gAB . Now a relativistic positive-energy scalar particle with world-line
x
μ
o (τ ) is described by 3-coordinates ηr (τ ) defined by xμo (τ ) = zμ(τ, ηr (τ )), sat-

isfying equations of motion containing relativistic inertial forces whose NR limit
reproduces Eq. (3) as shown in Refs. [5, 7].

The foliation is nice and admissible if it satisfies the following conditions:

1. N (τ, σ r ) > 0 in every point of &τ so that the 3-spaces never intersect, avoiding
the coordinate singularity of Fermi coordinates;

2. ε 4gττ (τ, σ r ) > 0, so to avoid the coordinate singularity of the rotating disk, and
with the positive-definite 3-metric 3grs(τ, σu) = −ε 4grs(τ, σu) having three
positive eigenvalues (these are the Møller conditions [9]);

3. all the 3-spaces&τ must tend to the same space-like hyperplane at spatial infinity
with a unit normal εμτ , which is the time-like 4-vector of a set of asymptotic
orthonormal tetrads εμA. These tetrads are carried by asymptotic inertial observers
and the spatial axes εμr are identified by the fixed stars of star catalogues. At
spatial infinity the lapse function tends to 1 and the shift functions vanish.

By using the asymptotic tetrads εμA one can give the following parametrization of
the embedding functions

zμ(τ, σ r ) = xμ(τ ) + εμA FA(τ, σ r ), FA(τ, 0) = 0,

xμ(τ ) = xμo + εμA f A(τ ), (5)

where xμ(τ ) is the world-line of the observer. The functions f A(τ ) determine

the 4-velocity uμ(τ ) = ẋμ(τ )/
√
ε ẋ2(τ )

(
ẋμ(τ ) = dxμ(τ )

dτ

)
and the 4-acceleration

aμ(τ ) = duμ(τ )
dτ

of the observer.
The Møller conditions are nonlinear differential conditions on the functions

f A(τ ) and FA(τ, σ r ), so that it is very difficult to construct explicit examples of
admissible 3+ 1 splittings. When these conditions are satisfied, Eq. (5) describes a
global non-inertial frame in Minkowski space-time.

Till now the solution of Møller conditions is known in the following two cases in
which the instantaneous 3-spaces are parallel Euclidean space-like hyperplanes not
equally spaced due to a linear acceleration.

A) Rigid non-inertial reference frames with translational acceleration. For
example, the following embeddings:

zμ(τ, σu) = xμo + εμτ f (τ ) + εμr σ r ,

gττ (τ, σu) = ε
(df (τ )

dτ

)2
, gτr (τ, σ

u) = 0, grs(τ, σ
u) = −ε δrs .

(6)
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This is a foliation with parallel hyperplanes with normal lμ = ε
μ
τ = const . and

with the time-like observer xμ(τ ) = x
μ
o + εμτ f (τ ) as origin of the 3-coordinates.

The hyperplanes have translational acceleration ẍμ(τ ) = ε
μ
τ f̈ (τ ), so that they are

not uniformly distributed like in the inertial case f (τ ) = τ .
B) Differentially rotating non-inertial frames without the coordinate singularity

of the rotating disk. The embedding defining these frames is

zμ(τ, σu) = xμ(τ ) + εμr Rr s(τ, σ ) σ s →σ→∞ xμ(τ ) + εμr σ r ,

Rr s(τ, σ ) = Rrs(αi(τ, σ )) = Rrs(F (σ ) α̃i(τ )),

0 < F (σ ) <
1

Aσ
,

d F (σ )

dσ

= 0 (Møller conditions),

zμτ (τ, σu) = ẋμ(τ ) − εμr Rr s(τ, σ ) δsw εwuv σ
u Ω

v(τ, σ )

c
,

zμr (τ, σu) = εμk Rkv(τ, σ )
(
δvr +Ωv(r)u(τ, σ ) σu

)
, (7)

where σ = |σ | and Rrs(αi(τ, σ )) is a rotation matrix satisfying the asymp-
totic conditions Rrs(τ, σ )→σ→∞δrs , ∂A Rrs(τ, σ )→σ→∞ 0, whose Euler angles
have the expression αi(τ, σ ) = F (σ ) α̃i(τ ), i = 1, 2, 3. The unit normal is

lμ = ε
μ
τ = const . and the lapse function is 1 + n(τ, σu) = ε

(
z
μ
τ lμ

)
(τ, σu) =

ε ε
μ
τ ẋμ(τ ) > 0. In Eq. (7) one uses the notationsΩ(r)(τ, σ ) = R−1(τ, σ ) ∂r R(τ, σ )

and
(
R−1(τ, σ ) ∂τ R(τ, σ )

)u
v = δum εmvr Ωr (τ,σ )

c
, with Ωr (τ, σ ) = F (σ ) Ω̃(τ, σ )

n̂r (τ, σ )4 being the angular velocity. The angular velocity vanishes at spatial infin-
ity and has an upper bound proportional to the minimum of the linear velocity
vl(τ ) = ẋμ l

μ orthogonal to the space-like hyperplanes. When the rotation axis
is fixed and Ω̃(τ, σ ) = ω = const ., a simple choice for the function F (σ ) is
F (σ ) = 1

1+ ω2 σ2

c2

5.

To evaluate the NR limit for c → ∞, where τ = c t with t the abso-
lute Newtonian time, one chooses the gauge function F (σ ) = 1

1+ ω2 σ2

c2

→c→∞

1− ω2 σ 2

c2 +O(c−4). This implies that the corrections to rigidly rotating non-inertial

frames coming from Møller conditions are of order O(c−2) and become important
at the distance from the rotation axis where the horizon problem for rigid rotations
appears.

4 n̂r (τ, σ ) defines the instantaneous rotation axis and 0 < Ω̃(τ, σ ) < 2max
( ˙̃α(τ ), ˙̃β(τ ), ˙̃γ (τ )

)
.

5 Nearly rigid rotating systems, like a rotating disk of radius σo, can be described by using a
function F (σ ) approximating the step function θ (σ − σo).
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As shown in the first paper in Ref. [7], global rigid rotations are forbidden
in relativistic theories, because if one uses the embedding zμ(τ, σu) = xμ(τ ) +
ε
μ
r R

r
s(τ ) σ s describing a global rigid rotation with angular velocity Ωr = Ωr (τ ),

then the resulting gττ (τ, σu) violates Møller conditions, because it vanishes at σ =
σR = 1

Ω(τ )

[√
ẋ2(τ ) + [ẋμ(τ ) εμr Rr s(τ ) (σ̂ × Ω̂(τ ))r ]2 −ẋμ(τ ) εμr Rr s(τ ) (σ̂ ×

Ω̂(τ ))r
]

( σu = σ σ̂ u, Ωr = Ω Ω̂r , σ̂ 2 = Ω̂2 = 1). At this distance from the

rotation axis the tangential rotational velocity becomes equal to the velocity of light.
This is the horizon problem of the rotating disk (the horizon is often named the light
cylinder). Let us remark that even if in the existing theory of rotating relativistic
stars [10] one uses differential rotations, notwithstanding that in the study of the
magnetosphere of pulsars often the notion of light cylinder is still used.

The search of admissible 3+ 1 splittings with non-Euclidean 3-spaces is much
more difficult. The simplest case is the following parametrization of the embeddings
(4) in terms of Lorentz matricesΛAB (τ, σ ) →σ→∞ δAB

6 withΛAB (τ, 0) finite. The
Lorentz matrix is written in the form Λ = BR as the product of a boost B(τ, σ )
and a rotation R(τ, σ ) like the one in Eq. (7) (Rτ τ = 1, Rτ r = 0, Rr s = Rrs).

The components of the boost are Bτ τ (τ, σ ) = γ (τ, σ ) = 1/
√

1 − β2(τ, σ ),

Bτ r (τ, σ ) = γ (τ, σ )βr (τ, σ ), Rr s(τ, σ ) = δrs + γ βr βs
1+γ (τ, σ ), with βr (τ, σ ) =

G(σ )βr (τ ), where βr (τ ) is defined by the 4-velocity of the observer uμ(τ ) =
ε
μ
A β

A(τ )/
√

1 − β2(τ ), βA(τ ) = (1;βr (τ )). The Møller conditions are restrictions
onG(σ ) →σ→∞ 0 withG(0) finite, whose explicit form is still under investigation.

The embedding (7) has been studied in details in Ref. [11] for the development
of quantum mechanics in non-inertial frames.

See the second paper of Ref. [7] for the description of the electromagnetic field
and of phenomena like the Sagnac effect and the Faraday rotation in this framework
for non-inertial frames.

The previous approach based on the 3+ 1 point of view has allowed a com-
plete reformulation of relativistic particle mechanics in SR [7, 12, 13]. By means of
parametrized Minkowski theories [7,12], one can get the description of arbitrary iso-
lated systems (particles, strings, fluids, fields) admitting a Lagrangian formulation
in arbitrary non-inertial frames7. To get it, the Lagrangian is coupled to an external
gravitational field and then the gravitational 4-metric is replaced with the 4-metric
3gAB (τ, σ r ), a functional of the embedding zμ(τ, σ r ), induced by an admissible
3+ 1 splitting of Minkowski space-time. The new Lagrangian, a function of the

6 It corresponds to the locality hypothesis of Ref. [6], according to which at each instant of
time the detectors of an accelerated observer give the same indications as the detectors of the
instantaneously comoving inertial observer.
7 See Ref. [5] for the definition of parametrized Galilei theories in NR mechanics.
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matter and of the embedding, is invariant under the frame-preserving diffeomor-
phisms of Ref. [14]8. This kind of general covariance implies that the embeddings
are gauge variables, so that the transition among non-inertial frames is described as
a gauge transformation: only the appearances change, not the physics.

This framework allows us to define the inertial and non-inertial rest frames of the
isolated systems, where to develop the rest-frame instant form of the dynamics and
to build the explicit form of the Lorentz boosts for interacting systems. While the
inertial rest frames have their Euclidean 3-spaces defined as space-like 3-manifolds
of Minkowski space-time orthogonal to the conserved 4-momentum of the isolated
system, the non-inertial rest frames are admissible non-inertial frames whose 3-
spaces tend to those of some inertial rest frames at spatial infinity, where the 3-space
becomes orthogonal to the conserved 4-momentum.

This makes possible to study the problem of the relativistic center of mass with
the associated external and internal (i.e., inside the 3-space) realizations of the
Poincaré algebra [15], relativistic bound states [16–18], relativistic kinetic theory,
and relativistic micro-canonical ensemble [19] and various other systems [20, 21].
Moreover, a Wigner-covariant relativistic quantum mechanics [22], with a solution
of all the known problems introduced by SR, has been developed after some prelim-
inary work done in Ref. [11]. This allows the beginning of the study of relativistic
entanglement taking into account all the consequences of the Lorentz signature of
Minkowski space-time. As shown in Ref. [22], in SR the relativistic center of mass
is a nonlocal nonmeasurable quantity: only relative variables have an operational
meaning and this implies a spatial non-separability, that is, some form of weak rela-
tionism in which all the objects know each other, differently from the NR case where
the center of mass is a measurable quantity.

See Ref. [23] for an extended review of this approach both in SR and in GR. In
the next section, there will be a sketch of the known results in GR.

3 Non-inertial Frames in General Relativity

In GR, global inertial frames are forbidden by the equivalence principle. Therefore,
gravitational physics has to be described in non-inertial frames.

While in SR Minkowski space-time is an absolute notion, unifying the absolute
notions of time and 3-space of the NR Galilei space-time, in Einstein’s GR also the
space-time is a dynamical object [24] and the gravitational field is described by the
metric structure of the space-time, namely by the ten dynamical fields 4gμν(x) (xμ

are world 4-coordinates) satisfying Einstein’s equations.
The ten dynamical fields 4gμν(x) are not only a (pre)potential for the gravita-

tional field (like the electromagnetic and Yang–Mills fields are the potentials for

8 This is the only paper known to us where there is an attempt to formulate a theory of non-inertial
frames in SR.
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electromagnetic and non-Abelian forces) but also determine the chrono-geometrical
structure of space-time through the line element ds2 = 4gμν dx

μ dxν . Therefore,
the 4-metric teaches relativistic causality to the other fields: it says to massless par-
ticles like photons and gluons which are the allowed world-lines in each point of
space-time. The Atoitic Clock Ensemble in Space (ACES) mission of European
Space Agency (ESA) [25] will give the first precision measurement of the gravi-
tational redshift of the geoid, namely of the 1/c2 deformation of Minkowski light
cone caused by the geopotential.

The metrology-oriented solution of the problem of clock synchronization used
in SR can be extended to GR if Einstein’s space-times are restricted to the class of
globally hyperbolic, topologically trivial, asymptotically Minkowskian space-times
without super-translations9.

As shown in the first paper of Ref. [26], in the chosen class of space-times the
4-metric 4gμν(x) tends in a suitable way to the flat Minkowski 4-metric 4ημν at spa-
tial infinity and the ten strong asymptotic Arnowitt–Deser–Misner (ADM) Poincaré
generators PAADM , JABADM (they are fluxes through a 2-surface at spatial infinity) are
well-defined functionals of the 4-metric fixed by the boundary conditions at spatial
infinity.

These properties do not hold in generic asymptotically flat space-times, because
they have the SPI group of asymptotic symmetries (direction-dependent asymptotic
Killing symmetries at SPatial Infinity) [27] and this is an obstruction to the exis-
tence of asymptotic Lorentz generators for the gravitational field [28]. However,
if one restricts the class of space-times to those not containing super-translations
[29], then the SPI group reduces to the asymptotic ADM Poincaré group [30]:
these space-times are asymptotically Minkowskian, they contain an asymptotic
Minkowski 4-metric (to be used as an asymptotic background at spatial infinity
in the linearization of the theory), and they have asymptotic inertial observers at
spatial infinity whose spatial axes may be identified by means of the fixed stars of
star catalogues10. Moreover, in the limit of vanishing Newton’s constant (G = 0),
the asymptotic ADM Poincaré generators become the generators of the special rel-
ativistic Poincaré group describing the matter present in the space-time. This is
an important condition for the inclusion into GR of the classical version of the
standard model of particle physics, whose properties are all connected with the
representations of this group in the inertial frames of Minkowski space-time. In
absence of matter, a subclass of these space-times is the (singularity-free) family of
Christodoulou–Klainermann solutions of Einstein’s equations [31] (they are near to
Minkowski space-time in a norm sense and contain gravitational waves).

In the first paper of Ref. [26], it is also shown that the boundary conditions on the
4-metric required by the absence of super-translations imply that the only admissible

9 At this preliminary level these space-times must also be without Killing symmetries, because,
otherwise, at the Hamiltonian level one should introduce complicated sets of extra Dirac constraints
for each existing Killing vector.
10 The fixed stars can be considered as an empirical definition of spatial infinity of the observable
universe.
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3+ 1 splittings of space-time (i.e., the allowed global non-inertial frames) are the
non-inertial rest frames: their 3-spaces are asymptotically orthogonal to the weak
ADM 4-momentum. Therefore, one gets P̂ rADM ≈ 0 as the rest-frame condition of
the 3-universe with a mass and a rest spin fixed by the boundary conditions. Like in
SR the 3-universe can be visualized as a decoupled non-covariant (nonmeasurable)
external relativistic center of mass plus an internal non-inertial rest-frame 3-space
containing only relative variables (see the first paper in Ref. [32]).

In these space-times one can define global non-inertial frames by using the same
admissible 3+ 1 splittings, centered on a time-like observer, and the observer-
dependent radar 4-coordinates σA = (τ ;σ r ) employed in SR. This will allow to
separate the inertial (gauge) degrees of freedom of the gravitational field (playing
the role of inertial potentials) from the dynamical tidal ones at the Hamiltonian level.

In GR the dynamical fields are the components 4gμν(x) of the 4-metric
and not the embeddings xμ = zμ(τ, σ r ) defining the admissible 3+ 1
splittings of space-time like in the parametrized Minkowski theories of SR.
Now the gradients zμA(τ, σ r ) of the embeddings give the transition coefficients
from radar to world 4-coordinates, so that the components 4gAB (τ, σ r ) =
z
μ
A(τ, σ r ) zνB (τ, σ r ) 4gμν(z(τ, σ r )) of the 4-metric will be the dynamical fields in

the ADM action. Like in SR the 4-vectors zμA(τ, σ r ), tangent to the 3-spaces &τ ,
are used to define the unit normal lμ(τ, σ r ) = zμA(τ, σ r ) lA(τ, σ r ) to &τ , while the
4-vector zμτ (τ, σ r ) has the lapse function as component along the unit normal and
the shift functions as components along the tangent vectors.

Since the world-line of the time-like observer can be chosen as the origin of a set
of the spatial world coordinates, that is, xμ(τ ) = (xo(τ );0), it turns out that with this
choice the space-like surfaces of constant coordinate time xo(τ ) = const . coincide
with the dynamical instantaneous 3-spaces&τ with τ = const . By using asymptotic
flat tetrads εμA = δμo δτA + δμi δiA (with εAμ denoting the inverse flat cotetrads) and by
choosing a coordinate world time xo(τ ) = xoo+εoτ τ = xoo+τ , one gets the following
preferred embedding corresponding to these given world 4-coordinates

xμ = zμ(τ, σ r ) = xμ(τ ) + εμr σ r = δμo xoo + εμA σA. (8)

This choice implies zμA(τ, σ r ) = εμA and 4gμν(x = z(τ, σ r )) = εAμ εBν 4gAB (τ, σ r ).
As shown in Ref. [24], the dynamical nature of space-time implies that each

solution (i.e., an Einstein 4-geometry) of Einstein’s equations (or of the associated
ADM Hamilton’s equations) dynamically selects a preferred 3+ 1 splitting of the
space-time, namely in GR the instantaneous 3-spaces are dynamically determined
in the chosen world coordinate system, modulo the choice of the 3-coordinates in
the 3-space and modulo the trace of the extrinsic curvature of the 3-space as a space-
like sub-manifold of the space-time. Equation (8) can be used to describe this 3+ 1
splitting and then by means of 4-diffeomorphisms the solution can be written in an
arbitrary world 4-coordinate system in general not adapted to the dynamical 3+ 1
splitting. This gives rise to the 4-geometry corresponding to the given solution.

To define the canonical formalism the Einstein–Hilbert action for metric gravity
(depending on the second derivative of the metric) must be replaced with the ADM
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action (the two actions differ for a surface tern at spatial infinity). As shown in the
first paper of Ref. [26], the Legendre transform and the definition of a consistent
canonical Hamiltonian require the introduction of the DeWitt surface term at spatial
infinity: the final canonical Hamiltonian turns out to be the strong ADM energy (a
flux through a 2-surface at spatial infinity), which is equal to the weak ADM energy
(expressed as a volume integral over the 3-space) plus constraints.

Therefore, there is not a frozen picture like in the “spatially compact space-times
without boundaries” used in loop quantum gravity11, but an evolution generated by
a Dirac Hamiltonian equal to the weak ADM energy plus a linear combination of the
first-class constraints. Also, the other strong ADM Poincaré generators are replaced
by their weakly equivalent weak form P̂ AADM , Ĵ ABADM .

To take into account the fermion fields present in the standard particle model one
must extend ADM gravity to ADM tetrad gravity. Since our class of space-times
admits orthonormal tetrads and a spinor structure [34], the extension can be done
by simply replacing the 4-metric in the ADM action with its expression in terms of
tetrad fields, considered as the basic 16 configurational variables substituting the 10
metric fields. This can be achieved by decomposing the 4-metric on cotetrad fields
(by convention, a sum on repeated indices is assumed)

4gAB (τ, σ r ) = E(α)
A (τ, σ r ) 4η(α)(β) E

(β)
B (τ, σ r ) (9)

by putting this expression into the ADM action and by considering the resulting
action, a functional of the 16 fields E(α)

A (τ, σ r ), as the action for ADM tetrad grav-

ity. In Eq. (9), (α) are flat indices and the cotetrad fields E(α)
A are the inverse of

the tetrad fields EA(α), which are connected to the world tetrad fields by Eμ(α)(x) =
z
μ
A(τ, σ r )EA(α)(z(τ, σ

r )) by the embedding of Eq. (8).
This leads to an interpretation of gravity based on a congruence of time-like

observers endowed with orthonormal tetrads: In each point of space-time, the time-
like axis is the unit 4-velocity of the observer, while the spatial axes are a (gauge)
convention for observer’s gyroscopes. This framework was developed in the second
and third paper of Ref. [26].

Even if the action of ADM tetrad gravity depends upon 16 fields, the counting of
the physical degrees of freedom of the gravitational field does not change, because
this action is invariant not only under the group of 4-diffeomorphisms but also under
the O(3,1) gauge group of the Newman–Penrose approach [35] (the extra gauge
freedom acting on the tetrads in the tangent space of each point of space-time).

11 In these space-times the canonical Hamiltonian vanishes and the Dirac Hamiltonian is a combi-
nation of first-class constraints, so that it only generates Hamiltonian gauge transformations. In the
reduced phase space, quotient with respect to the Hamiltonian gauge group, the reduced Hamil-
tonian is zero and one has a frozen picture of dynamics. This class of space-times fits well with
Machian ideas (no boundary conditions) and with interpretations in which there is no physical time
like the one in Ref. [33]. However, it is not clear how to include in this framework the standard
model of particle physics.
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The cotetrads E(α)
A (τ, σ r ) are the new configuration variables. They are con-

nected to cotetrads 4
◦
E

(α)

A (τ, σ r ) adapted to the 3+ 1 splitting of space-time, namely

such that the inverse adapted time-like tetrad 4
◦
E
A

(o)(τ, σ
r ) is the unit normal to the 3-

space &τ , by a standard Wigner boost for time-like Poincaré orbits with parameters
ϕ(a)(τ, σ r ), a = 1, 2, 3

E
(α)
A = L(α)

(β)(ϕ(a))
o

E
(β)

A ,
4gAB = 4

◦
E

(α)

A
4η(α)(β)

4
◦
E

(β)

B ,

L(α)
(β)(ϕ(a))

def= L(α)
(β)(V (z(σ ));

◦
V ) = δ(α)

(β) + 2ε V (α)(z(σ ))
◦
V (β) −

−ε (V (α)(z(σ )) + ◦
V

(α)
) (V(β)(z(σ )) + ◦

V (β))

1 + V (o)(z(σ ))
. (10)

In each tangent plane to a point of &τ this point-dependent standard Wigner boost

sends the unit future-pointing time-like vector
o

V
(α)

= (1;0) into the unit time-like

vector V (α) = 4E
(α)
A lA =

(√
1 +∑

a ϕ
2
(a);ϕ

(a) = −ε ϕ(a)

)
. As a consequence, the

flat indices (a) of the adapted tetrads and cotetrads and of the triads and cotriads on
&τ transform as Wigner spin-1 indices under point-dependent SO(3) Wigner rota-
tions R(a)(b)(V (z(σ )); Λ(z(σ )) ) associated with Lorentz transformations Λ(α)

(β)(z)
in the tangent plane to the space-time in the given point of &τ . Instead, the index
(o) of the adapted tetrads and cotetrads is a local Lorentz scalar index.

The adapted tetrads and cotetrads have the expression

4
◦
E
A

(o) =
1

1 + n

(
1; −

∑
a

n(a)
3er(a)

)
= lA, 4

◦
E
A

(a) = (0;3er(a)),

4
◦
E

(o)

A = (1 + n) (1;0) = ε lA, 4
◦
E

(a)

A = (n(a);
3e(a)r ), (11)

where 3er(a) and 3e(a)r are triads and cotriads on&τ and n(a) = nr 3er(a) = nr 3e(a)r
12

are adapted shift functions. In Eq. (11), N (τ, σ ) = 1 + n(τ, σ ) > 0, with n(τ, σ )
vanishing at spatial infinity (absence of super-translations), so that N (τ, σ ) dτ is
positive from &τ to &τ+dτ , is the lapse function; Nr (τ, σ ) = nr (τ, σ ), vanishing at
spatial infinity (absence of super-translations), are the shift functions.

The adapted tetrads 4
◦
E
A

(a) are defined modulo SO(3) rotations 4
◦
E
A

(a) =
∑
b R(a)(b)(α(e)) 4

◦
Ē

A

(b),
3er(a) = ∑

b R(a)(b)(α(e)) 3ēr(b), where α(a)(τ, σ ) are three
point-dependent Euler angles. After having chosen an arbitrary point-dependent

12 Since one uses the positive-definite 3-metric δ(a)(b), one will use only lower flat spatial indices.

Therefore, for the cotriads, one uses the notation 3e
(a)
r

def= 3e(a)r with δ(a)(b) = 3er(a)
3e(b)r .
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origin α(a)(τ, σ ) = 0, one arrives at the following adapted tetrads and cotetrads
[n̄(a) = ∑

b n(b) R(b)(a)(α(e)) ,
∑
a n(a)

3er(a) =
∑
a n̄(a)

3ēr(a)]

4
◦
Ē

A

(o) = 4
◦
E
A

(o) =
1

1 + n

(
1; −

∑
a

n̄(a)
3ēr(a)

)
= lA, 4

◦
Ē

A

(a) = (0;3ēr(a)),

4
◦
Ē

(o)

A = 4
◦
E

(o)

A = (1 + n) (1;0) = ε lA, 4
◦
Ē

(a)

A = (n̄(a);
3ē(a)r ), (12)

which one will use as a reference standard.
The expression for the general tetrad

4EA(α) = 4
◦
E
A

(β) L
(β)

(α)(ϕ(a)) = 4
◦
Ē

A

(o) L
(o)

(α)(ϕ(c))

+
∑
ab

4
◦
Ē

A

(b) R
T
(b)(a)(α(c))L

(a)
(α)(ϕ(c)) (13)

shows that every point-dependent Lorentz transformation Λ in the tangent planes
may be parametrized with the (Wigner) boost parameters ϕ(a) and the Euler angles
α(a) being the product Λ = RL of a rotation and a boost.

The future-oriented unit normal to &τ and the projector on &τ are lA = ε (1 +
n)
(

1; 0
)

, 4gAB lA lB = ε, lA = ε (1 + n) 4gAτ = 1
1+n

(
1; − nr

)
= 1

1+n
(

1; −
∑
a n̄(a)

3ēr(a)

)
, 3hBA = δBA − ε lA lB .

The 4-metric has the following expression:

4gττ = ε [(1 + n)2 − 3grs nr ns] = ε
[

(1 + n)2 −
∑
a

n̄2
(a)

]
,

4gτr = −ε nr = −ε
∑
a

n̄(a)
3ē(a)r ,

4grs = −ε 3grs = −ε
∑
a

3e(a)r
3e(a)s = −ε

∑
a

3ē(a)r
3ē(a)s ,

4gττ = ε

(1 + n)2
, 4gτr = −ε nr

(1 + n)2
= −ε

∑
a

3ēr(a) n̄(a)

(1 + n)2
,

4grs = −ε (3grs − nr ns

(1 + n)2
) = −ε

∑
ab

3ēr(a)
3ēs(b) (δ(a)(b) − n̄(a) n̄(b)

(1 + n)2
),

√−g =
√
|4g| =

√
3g√
ε 4gττ

= √
γ (1 + n) = 3e (1 + n),

3g = γ = (3e)2, 3e = det 3e(a)r . (14)

The 3-metric 3grs has signature ( +++ ), so that one may put all the flat 3-indices
down. One has 3gru 3gus = δrs .
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After having introduced the kinematical framework for the description of non-
inertial frames in GR, we must study the dynamical aspects of the gravitational field
to understand which variables are dynamically determined and which are the inertial
effects hidden in the general covariance of the theory. Since at the Lagrangian level
it is not possible to identify which components of the 4-metric tensor are connected
with the gauge freedom in the choice of the 4-coordinates and which ones describe
the dynamical degrees of freedom of the gravitational field, one must restrict him-
self to the class of globally hyperbolic, asymptotically flat space-times allowing
a Hamiltonian description starting from the description of Einstein’s GR in terms
of the ADM action [36] instead in terms of the Einstein–Hilbert one. In canonical
ADM gravity one can use Dirac theory of constraints [37] to describe the Hamil-
tonian gauge group, whose generators are the first-class constraints13 of the model.
The basic tool of this approach is the possibility to find so-called Shanmugadhasan
canonical transformations [38], which identify special canonical bases adapted to
the first-class constraints (and also to the second-class ones when present). In these
special canonical bases the vanishing of certain momenta (or of certain config-
urational coordinates) corresponds to the vanishing of well-defined Abelianized
combinations of the first-class constraints (Abelianized because the new constraints
have exactly zero Poisson brackets even if the original constraints were not in strong
involution). As a consequence, the variables conjugate to these Abelianized con-
straints are inertial Hamiltonian gauge variables describing the Hamiltonian gauge
freedom.

Starting from the ADM action for tetrad gravity, one defines the Hamiltonian
formalism in a phase space containing 16 configurational field variables and 16
conjugate moments. One identifies the 14 first-class constraints of the system and
finds that the canonical Hamiltonian is the weak ADM energy (it is given as a vol-
ume integral over 3-space). The existence of these 14 first-class constraints implies
that 14 components of the tetrads (or of the conjugate momenta) are Hamiltonian
gauge variables describing the inertial aspects of the gravitational field (6 of these
inertial variables describe the extra gauge freedom in the choice of the tetrads and
in their transport along world-lines). Therefore, there are only 2+ 2 degrees of free-
dom for the description of the tidal dynamical aspects of the gravitational field.
The asymptotic ADM Poincaré generators can be evaluated explicitly. Till now, the
type of matter studied in this framework [32] consists of the electromagnetic field
and of N charged scalar particles, whose signs of the energy and electric charges
are Grassmann-valued to regularize both the gravitational and electromagnetic
self-energies (it is both an ultraviolet and an infrared regularization).

13 The gauge invariance of actions like the ADM one imply the existence of equations, named
constraints, restricting the coordinates and momenta of the model to a sub-manifold (named the
constraint manifold) of phase space. One of these equations is named a first-class constraint, if it
determines one canonical variable with the conjugate variable completely undetermined (arbitrary
gauge variable). Two of these equations form a pair of second-class constraints, if they determine
a pair of conjugate canonical variables (redundant variables, for instance present to implement
manifest covariance of the model).
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The remaining 2+ 2 conjugate variables describe the dynamical tidal degrees of
freedom of the gravitational field (the two polarizations of gravitational waves in the
linearized theory). If one would be able to include all the constraints in the Shan-
mugadhasan canonical basis, these 2+ 2 variables would be the Dirac observables
of the gravitational field, invariant under the Hamiltonian gauge transformations.
However, such Dirac observables are not known: one only has statements about their
existence [39]. Moreover, in general, they are not 4-scalar observables. The prob-
lem of the connection between the 4-diffeomorphism group and the Hamiltonian
gauge group was studied in Ref. [40] by means of the inverse Legendre transfor-
mation and of the notion of dynamical symmetry. The conclusion is that on the
space of solutions of Einstein’s equations there is an overlap of the two types of
observables: There should exist special Shanmugadhasan canonical bases in which
the 2+ 2 Dirac observables become 4-scalars when restricted to the space of solu-
tions of the Einstein’s equations. In any case the identification of the inertial gauge
components of the 4-metric is what is needed to make a fixation of 4-coordinates as
required by relativistic metrology.

It can be shown that there is a Shanmugadhasan canonical transformation
[41] (implementing the so-called York map [42] and diagonalizing the York–
Lichnerowicz approach [43]) to a so-called York canonical basis adapted to 10 of the
14 first-class constraints. Only the super-Hamiltonian and super-momentum con-
straints, whose general solution is not known, are not included in the basis, but it
is clarified which variables are to be determined by their solution, namely the 3-
volume element (the determinant of the 3-metric) of the 3-space &τ and the three
momenta conjugated to the 3-coordinates on&τ . The 14 inertial gauge variables turn
out to be: (a) the six configurational variables ϕ(a) and α(a) of the tetrads describing
their O(3,1) gauge freedom; (b) the lapse and shift functions; (c) the 3-coordinates
on the 3-space (their fixation implies the determination of the shift functions); (d)
the York time [44] 3K , that is, the trace of the extrinsic curvature of the 3-spaces as
3-manifolds embedded into the space-time (its fixation implies the determination of
the lapse function). It is the only gauge variable which is a momentum in the York
canonical basis14: This is due to the Lorentz signature of space-time, because the
York time and three other inertial gauge variables can be used as 4-coordinates of
the space-time (see Ref. [24] for this topic and for its relevance in the solution of
the hole argument15). In this way, an identification of the inertial gauge variables to
be fixed to get a 4-coordinate system in relativistic metrology was found. While in
SR all the components of the tetrads and their conjugate momenta are inertial gauge
variables, in GR the two eigenvalues of the 3-metric with determinant one and their

14 Instead in Yang–Mills theory all the gauge variables are configurational.
15 The hole argument concerns the problem of how to make a consistent individuation of the points
of a space-time, solution of Einstein’s equations, taking into account the general covariance under
both active and passive diffeomorphisms. If all the solutions (i.e., the mathematical space-times)
connected by such diffeomorphisms correspond to a unique Einstein’s space-time (equivalence
class of gauge-transformed space-times), then the points must be identified with special coordinates
depending upon the 4-metric.
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conjugate momenta describe the physical tidal degrees of freedom of the gravita-
tional field. In the first paper of Ref. [32] is shown the expression of the Hamilton’s
equations for all the variables of the York canonical basis.

An important remark is that in the framework of the York canonical basis the
natural family of gauges is not the harmonic one, but the family of 3-orthogonal
Schwinger time gauges in which the 3-metric in the 3-spaces is diagonal.

Both in SR and GR an admissible 3+ 1 splitting of space-time has two associated
congruences of time-like observers [7], geometrically defined and not to be confused
with the congruence of the world-lines of fluid elements, when relativistic fluids are
added as matter in GR [45–47]. One of the two congruences, with zero vorticity, is
the congruence of the Eulerian observers, whose 4-velocity field is the field of unit
normals to the 3-spaces. This congruence allows us to reexpress the nonvanishing
momenta of the York canonical basis in terms of the expansion (θ = −3K) and of
the shear of the Eulerian observers. This allows us to compare the Hamilton’s equa-
tions of ADM canonical gravity with the usual first-order non-Hamiltonian ADM
equations deducible from Einstein’s equations given a 3+ 1 splitting of space-time
but without using the Hamiltonian formalism. As a consequence, one can extend our
Hamiltonian identification of the inertial and tidal variables of the gravitational field
to the Lagrangian framework and use it in the cosmological (conformally asymp-
totically flat) space-times: in them, it is not possible to formulate the Hamiltonian
formalism, but the standard ADM equations are well defined. The time inertial
gauge variable needed for relativistic metrology is now the expansion of the Eule-
rian observers of the given 3+ 1 splitting of the globally hyperbolic cosmological
space-time.

4 Conclusion

In conclusion we now have a framework for non-inertial frames in GR and an iden-
tification of the inertial gauge variables in asymptotically Minkowskian and also
cosmological space-times.

See Refs. [23, 32] for the possibility that dark matter is only a relativistic inertial
effect induced by the inertial gauge variable 3K (the York time): A suitable choice
of the 3-space in PM International Celestial Reference Frame could simulate the
effects explained with dark matter. As shown in the third paper of Ref. [32], in the
PM equations of motion for point particles (with a suitable regularization of the
gravitational self-energies), there are inertial forces depending upon the York time.
In the PN limit there are residual inertial forces of this type at the order 1/c and they
may explain the three existing signatures of dark matter (rotation curves of galaxies,
mass of galaxies from weak gravitational lensing, and mass of clusters of galaxies
from the virial theorem). Since 3K determines how non-Euclidean is the 3-space
at each instant, dark matter can be reinterpreted as a metrological standard for the
deviation of 3-space from the Euclidean one in astrophysics.
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Moreover in Ref. [23], at a preliminary level, it is also shown that the York time
is connected also with dark energy in cosmological space-times [4]. In the standard
FRW space-times, the Killing symmetries connected with homogeneity and isotropy
imply (τ is the cosmic time, a(τ ) the scale factor) that the York time is no more a
gauge variable but coincides with the Hubble constant: 3K(τ ) = − ȧ(τ )

a(τ ) = −H (τ ).
However, at the first order in cosmological perturbations (see Ref. [48] for a review)
one has 3K = −H + 3K(1) with 3K(1) being again an inertial gauge variable to be
fixed with a metrological convention. Therefore, the York time has a central role also
in cosmology and one needs to know the dependence on it of the main quantities,
like the redshift and the luminosity distance from supernovae [49], which require the
introduction of the notion of dark energy to explain the 3-universe and its accelerated
expansion in the framework of the standard ΛCDM cosmological model.

In particular, it will be important to study inhomogeneous space-times without
Killing symmetries like the Szekeres ones [50], where the York time remains an
arbitrary inertial gauge variable, to see whether it is possible to find a 3-orthogonal
gauge in them (at least in a PM approximation) in which the convention on the
inertial gauge variable York time allows one to eliminate both dark matter and dark
energy through the choice of a 4-coordinate system in a consistent PM reformulation
of ICRS and simultaneously to save the main good properties of the standardΛCDM
cosmological model due to the inertial and dynamical properties of the space-time.
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The Acceleration Scale, Modified Newtonian
Dynamics and Sterile Neutrinos

Antonaldo Diaferio and Garry W. Angus

Abstract General relativity is able to describe the dynamics of galaxies and larger
cosmic structures only if most of the matter in the universe is dark, namely, it does
not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is
strong observational evidence that the presence of dark matter appears to be neces-
sary only when the gravitational field inferred from the distribution of the luminous
matter falls below an acceleration of the order of 10−10 m s−2. In the standard
model, which combines Newtonian gravity with dark matter, the origin of this accel-
eration scale is challenging and remains unsolved. On the contrary, the full set of
observations can be neatly described, and were partly predicted, by a modification
of Newtonian dynamics, dubbed MOND, that does not resort to the existence of
dark matter. On the scale of galaxy clusters and beyond, however, MOND is not
as successful as on the scale of galaxies, and the existence of some dark matter
appears unavoidable. A model combining MOND with hot dark matter made of ster-
ile neutrinos seems to be able to describe most of the astrophysical phenomenology,
from the power spectrum of the cosmic microwave background anisotropies to the
dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory
that contains general relativity and Newtonian gravity in the weak field limit and
MOND as the ultra-weak field limit is still an open question.

1 Introduction

The dynamical properties of galaxies and larger cosmic structures should be
described by their mass content if gravity is the dominant force field. In 1932, Oort
noticed a shortage of mass required to describe the velocity of stars in the solar
neighbourhood [1]. In 1933, Zwicky found the very same problem by applying the
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virial theorem to the Coma cluster, based on the radial velocities of a few galaxies
derived from their optical spectra [2]. These early discoveries were revived in the
70s, when the existence of flat rotation curves in disk galaxies [3] and the require-
ment of the dynamical stability of galactic disks [4, 5] showed that a large fraction
of mass, in addition to the observed luminous mass, was necessary to describe the
dynamics of galaxies. Ever since, the evidence of missing mass in cosmic structures
has become overwhelming [6].

General relativity (GR) has encountered such a plethora of successes in the solar
system that the scientific community finds it hard to suppose that GR, and its New-
tonian weak field limit, might fail on cosmic scales. It is more natural to suppose
that this missing mass is actually some form of dark matter (DM) that does not emit
any electromagnetic radiation but only acts gravitationally.

This idea meets the demand of particle physics: going beyond the standard model
of particle physics requires the existence of still unknown elementary particles
like supersymmetric particles, axions, Kaluza–Klein excitations or sterile neutrinos.
These particles may naturally play the role of the astrophysical DM [7]: they formed
in the early universe and their relic abundance can fill in the fraction of mass that is
required to describe both the internal dynamics of structures and their formation by
gravitational instability.

In addition, most of these particles have the advantage of being non-baryonic,
namely, in astrophysical jargon, they are neither electrons nor particles made of
quarks. Non-baryonic matter includes neutrinos and the hypothetical weakly inter-
acting massive particles (WIMPs). So far, only neutrinos have been detected; all
other non-baryonic matter is still hypothetical.

Being non-baryonic is advantageous if gravitational instability drives the forma-
tion of the cosmic structure. In fact, in the inflationary scenario of the standard hot
Big Bang cosmology, small perturbations due to quantum fluctuations are inflated to
cosmic scales by the ∼ 100 e-folding expansion of the universe and provide the ini-
tial conditions of the matter density field. However, this scenario is contradicted by
the cosmic microwave background (CMB) anisotropies if the matter density field is
mostly baryonic. In fact, the observation of temperature anisotropies δT /T = δ/3,
with δ the baryonic matter density fluctuations, in the CMB, which formed by red-
shift z ∼ 103, yields δT /T ∼ 10−5 on θ ∼ 7◦ angular scales, corresponding to
superclusters and larger structures [8]. Gravitational instability yields a growth rate
∝ (1+ z)−1 or slower. Thus, superclusters would have matter overdensities δ of the
order ∼ 10−2 today, rather than the observed δ ∼ 1−10. Non-baryonic DM decou-
ples from the radiation field much earlier than baryons and its density perturbations
can start growing at the time of equivalence, when the radiation and matter energy
densities are equal. At the time of the baryon-radiation decoupling, DM perturba-
tions have already grown to δ ∼ 10−2 − 10−3 on supercluster scales and they will
keep growing to δ ∼ 1 − 10 by today.

Further evidence of the non-baryonic nature of DM is the abundance of light
elements which are synthesized in the early universe. Measures of the primordial
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abundance of deuterium, for example, which is particularly sensitive to the photon-
to-baryon ratio, implies a baryon density Ωbh2 = 0.0214 ± 0.00201 [9], which
agrees with the baryon density Ωbh2 = 0.02229 ± 0.00073 implied by the CMB
anisotropies [10], yet it is smaller than the total matter density Ωmh2 = 0.114 [11].

By combining all these pieces of evidence, the standard interpretation of the
observations of the cosmic structure, from galactic scales to the CMB, suggests
that only 17 % of the matter in the universe is baryonic, whereas the remaining 83 %
is required to be non-baryonic cold DM [11]. The entire amount of matter, however,
yields only 27 % of the matter-energy density required to make the universe geo-
metrically flat, as suggested by the CMB power spectrum [12]. The missing 73 %
can be easily described by a cosmological constant [13], but a large fraction of the
cosmological community is searching for more sophisticated models, some of them
including an additional dark energy (DE) fluid [6].

The current standard ΛCDM model thus contains non-baryonic cold DM and
a cosmological constant Λ. However, we are in the uneasy situation where only
4.6 % of the matter-energy density of the universe is made of matter we can detect
in laboratories on Earth. The rest is hypothetical (DM) and has unusual properties,
like negative pressure (Λ or DE). To avoid this situation, the alternative solution
is to assume that GR breaks down at some scale. A number of extended or modi-
fied theories of gravity have been suggested. Among them, Milgrom [14] proposed
modified Newtonian dynamics (MOND), an empirical law that modifies Newtonian
dynamics and actually goes beyond a simple alternative theory of gravity. MOND
can elegantly deal with the galaxy scale phenomenology without DM but is less
successful at describing the dynamical properties of galaxy clusters. Famaey and
McGaugh [15] have recently extensively reviewed this model. Here, we summa-
rize the successes of MOND and mention how the combination of MOND with
the existence of sterile neutrinos of mass in the range 11 eV−1 keV can provide a
reasonable description of the observed phenomenology, from galaxy scales to the
CMB.

2 The Acceleration Scale

In 1983, MOND was originally introduced to explain the observed rotation curves of
spiral galaxies [14]: The observed velocities of the stars are larger than the velocities
that Newtonian dynamics would predict based on the distribution of the luminous
matter [3]. As we mentioned above, this observational piece of evidence suggested
the existence of some hidden mass, or DM, responsible for a stronger gravitational
field and hence larger velocities. An alternative solution is that, on these cosmic
scales, Newtonian gravity does not hold. Milgrom [14] went beyond the sugges-
tion of a modified theory of gravity that becomes relevant beyond some large length

1 We use the standard parametrization for the Hubble constant today H0 = 100 h km s−1 Mpc−1.
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scale. Rather, he suggested that Newtonian dynamics breaks down below an acceler-
ation scale a0. In the framework of classical physics, MOND assumes the following
relation between the acceleration a actually felt by a point mass and the acceleration
aN expected in Newtonian dynamics:

μ

( |a|
a0

)
a = aN, (1)

whereμ(x) is an unknown interpolating function that satisfies the conditionsμ(x →
+∞) = 1 and μ(x → 0) = x.2 With the acceleration scale a0 ≈ 10−10 m s−2, this
relation enables the description of the observed rotation curves of spiral galaxies
without requiring the existence of any DM [16]. Moreover, Milgrom showed that
this modification of Newtonian dynamics also drastically reduces the amount of
DM required in groups and clusters of galaxies [17].

More importantly, Milgrom’s suggestion provided clean predictions [16] that
were confirmed in later years. Most notably (1) the zero point of the Tully–Fisher
relation, (2) the one-to-one correspondence between features in the baryonic distri-
bution and the rotation curve, (3) a larger mass discrepancy, when interpreted with
Newtonian gravity, in low-surface brightness dwarf spheroidal galaxies and (4) the
validity of the Tully–Fisher relation for low-surface brightness disk galaxies.

It also became clear very soon that there are different numerical coincidences that
might suggest that a0 is indeed a fundamental quantity (see [18] for a recent review).
For example, it is rather intriguing that a0 is related to the Hubble constant H0 and
the cosmological constant Λ with the relations a0 = cH0/2π and a2

0 = c2Λ/2π ,
where c is the speed of light. A compilation of kinematic and photometric data
of disk galaxies very clearly shows the validity of this ansatz on the acceleration
scale [19]: Disk galaxies do not require DM beyond a given length scale, but rather
below a given acceleration scale. Figure 1 shows the ratio between the observed
velocity V and the velocity Vb expected in Newtonian gravity from the distribution
of the visible matter. The square of this ratio is proportional to the ratio between
the total mass and the visible mass in a spherical system. Evidently, (V/Vb)2 > 1
reflects a mass discrepancy and the requirement of DM; the larger the ratio the larger
is the contribution of DM. Figure 1 clearly shows that the need for DM increases
with decreasing Newtonian acceleration gN = V 2

b /r which is proportional to the

2 A year later, Bekenstein and Milgrom [20] showed that, in spherical symmetry, Eq. (1) is
equivalent to a modified theory of gravity where the standard Poisson equation is replaced by

∇ ·
[
μ

( |∇Φ|
a0

)
∇Φ

]
= 4πGρ, (2)

where Φ is the gravitational potential and ρ the mass distribution. A more recent modified theory
of gravity that reproduces Eq. (1) is the quasi-linear formulation of MOND (QUMOND) [21].
This theory has the advantage of involving only linear differential equations and one nonlinear
algebraic step. See [15] for a comprehensive review of the various formulations of MOND as
modified dynamics or modified gravity.
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Fig. 1 (V/Vb)2 versus the Newtonian gravity gN = V 2
b /r , derived from the baryonic surface

density in almost 100 spiral galaxies. The need for DM appears when (V/Vb)2 > 1. Observations
clearly show that this only happens below a specific acceleration of the order of 10−10 m s−2.
(Courtesy of B. Famaey and S. McGaugh. Reproduced from [15], with permission)

baryonic surface density. The MOND prediction is thus that low-surface bright-
ness (LSB) galaxies are more DM-dominated than high-surface brightness (HSB)
galaxies in Newtonian gravity. However, the Tully–Fisher relation, that we describe
below, remains valid for both classes of galaxies. In the DM paradigm, it is unclear
how the tight correlation shown in Fig. 1 can emerge from the combination of intrin-
sically chaotic processes, including the history of the DM halo formation, the star
formation history and feedback processes.

If this acceleration scale does indeed exist, we have two relevant consequences:
(1) MOND has to break the strong equivalence principle, which states that all laws
of physics are independent of velocity and location in spacetime and (2) Birkhoff’s
theorem is not valid.

MOND is not required to break the weak equivalence principle which asserts
the equality between inertial and gravitational masses. In GR, the weak quiva-
lence principle translates into the assumption that all matter fields are coupled
with the geodesic metric gμν , whereas the strong equivalence principle is guar-
anteed by assuming that the same metric gμν obeys the Einstein–Hilbert action
SEH = c4/(16πG)

∫
gμνRμν(−g)1/2d4x, where Rμν is the Ricci tensor and g

the determinant of the metric. Therefore, theories where the Einstein and geodesic
metrics are distinct do not necessarily satisfy the strong equivalence principle.

The nonvalidity of Birkhoff’s theorem clearly complicates the interpretation of
the dynamical properties of self-gravitating systems. In Newtonian gravity, any
object is subject to the gravitational attraction of all the other objects in the uni-
verse, but in Newtonian linear dynamics a star in a galaxy or a galaxy in a galaxy
cluster is virtually isolated from the gravitational field felt by the parent system,
unless this latter external field varies across the parent system and originates the
well-known effect of tides. In MOND, the external field affects the internal motions
of the objects even when this field is constant, because it is the total acceleration felt
by the object that determines the dynamical, MONDian or Newtonian, regime. We
will mention below that this issue can be relevant in the investigation of the internal
dynamics of elliptical galaxies, which are mostly located in regions of high galaxy
density, and dwarf spheroidal galaxies and globular clusters, which are satellites of
larger galaxies.
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Fig. 2 Baryonic mass Mb versus circular velocity Vc in dwarf (squares) and spiral (circles)
galaxies [23] and in clusters of galaxies (triangles; [24]). The blue dashed line is the fit to the
spiral galaxies alone Mb = 50(Vc/km s−1)4M�. The red dotted line is the simplest standard
model expectation if all the baryons in each DM halo are identified. (Courtesy of S. McGaugh.
Reproduced from [25], with permission)

In Sect. 4, we describe an example of how these issues enter the construction of
a covariant theory of MOND.

3 Self-gravitating Systems

3.1 Disk Galaxies

On the scales of galaxies there are a number of observations that were either pre-
dicted or easily explained by MOND. In the DM paradigm, these very same obser-
vations require extreme fine-tuning between baryonic and non-baryonic physics or
even yet undiscovered mechanisms.

Tully and Fisher [22] showed that, in disk galaxies, the maximum rotation veloc-
ity vrot is proportional to the galaxy luminosity. MOND predicts that at large radii
a2/a0 ∼ aN = GMb/r2 (Eq. 1) and from a = v2

rot/r we obtain

v4
rot = GMba0, (3)

whereMb is the baryonic mass. Figure 2 shows the measured baryonic massMb as a
function of the measured circular velocity Vc for astrophysical systems on different
scales, from dwarf galaxies (left bottom corner) to clusters of galaxies (upper right
corner). Vc is a characteristic circular velocity measured in the outer region of the
system [25]. The blue dashed line shows the relation Mb = 50(Vc/km s−1)4M�.
The MOND prediction clearly agrees with both the observed slope and normaliza-
tion. In addition, the observed spread is consistent with the uncertainties. This result
implies that the relation v4

rot = GMba0 holds exactly.
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In the standard model, disk galaxies are embedded in DM halos whose average
density within their virial radius is basically independent of the halo mass. It is thus
usual to define r200 as the radius within which the average density is 200 times the
critical density of the universe. It follows that for M200, the mass within r200, we
have M200 ∝ r3

200 and the circular velocity Vc = (GM200/r200)1/2 ∝ M
1/3
200 . This

relation is shown as the red dotted line in Fig. 2. The circular velocity is not nec-
essarily identical to the disk rotation velocity vrot, because of the complex interplay
between the merger history of the DM halo and the star formation history and energy
feedback of the galaxy. For example, we could easily recover the correct slope
v4

rot ∝ Mb, by assuming that luminosity traces the total mass (L ∝ Mb ∝ Mtot)
and that the density and scale height of the galaxy disk is roughly constant in disk
galaxies; this latter assumption implies Mtot ∝ R2 where R is the disk size. From
v2

rot = GMtot/R, we correctly derive v4
rot ∝ Mb. A rigorous comparison between

observations and the standard model is not trivial [26], but recent analyses, where
properly balanced contributions of the various physical and observational effects
are carefully blended, seem to bring the ΛCDM Tully–Fisher relation in better
agreement with observations [27, 28].

However, in the standard model, the predicted scatter remains larger than
observed, because, unlike MOND, we do expect that the galaxy merger and star for-
mation history mentioned above introduce an intrinsic scatter. In addition, a priori,
we do not have any reason to expect that (1) the observed relation extends over five
orders of magnitude in baryonic mass, from dwarf galaxies to massive disk galaxies,
again with basically no scatter, as shown in Fig. 2; and that (2) the LSB galax-
ies, which should presumably have a star formation efficiency lower than normal
galaxies [29,30], also perfectly fit into this relation. This latter result was originally
predicted by Milgrom [16], 15 years before the measurements of the rotation curves
of LSB galaxies [31]. MOND goes beyond the description of global properties of
disk galaxies. The open symbols with error bars in Fig. 3 show the observed rota-
tion curves of an HSB galaxy and an LSB galaxy. The rotation curves expected
in Newtonian gravity from the distribution of baryonic matter (black solid lines)
severely underestimate the observations. The underestimate increases with distance
R from the galaxy centre and is larger for the LSB galaxy. In the standard model,
this observation is explained by increasing the DM contribution with increasing R
and decreasing galaxy luminosity. This solution is usually motivated by a lower star
formation efficiency at larger radii, as suggested by extensive surveys of neutral
hydrogen in nearby galaxies [32, 33].

What is more remarkable is that the small-scale features of the rotation curves
mirror the distribution of the baryonic matter in the disk. This characteristic is
shared by the rotation curves expected in Newtonian gravity from the distribution
of baryonic matter (black solid lines in Fig. 3). In the standard model, this prop-
erty of the total rotation curve is unexpected, because this rotation curve should be
mostly determined by the dynamically dominant DM distribution and the baryonic
distribution should play a very minor role. On the contrary, MOND describes the
observations with impressive accuracy (blue solid lines), including the small-scale
features of the curves (see also [34]).
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Fig. 3 Examples of modification of Newtonian dynamics (MOND) rotation curve fits of a high-
surface brightness (HSB) galaxy (NGC 6946, top panel) and a low-surface brightness (LSB) galaxy
(NGC 1560, bottom panel). The black lines show the Newtonian rotation curve expected from the
observed distribution of stars and gas. The blue lines are the MOND fits with best fit stellar mass-
to-light ratios in theK-band 0.37 M�/L� (NGC 6946) and 0.18 M�/L� (NGC 1560). (Courtesy
of B. Famaey and S. McGaugh. Reproduced from [15], with permission)

The MOND curves are derived with a single free parameter, the stellar mass-
to-light ratio of the disk (namely the ratio between the disk mass in stars and the
disk luminosity), in addition to the distance to the galaxy required to determine
its length and hence, acceleration scales; the best fit values of the mass-to-light
ratios are in perfect agreement with values derived from stellar population synthesis
models. Moreover, redder galaxies require larger mass-to-light ratios, as expected on
completely independent astrophysical grounds [35]. This limited freedom of MOND
should be compared with the standard model that requires two parameters for the
DM halo of each galaxy and a global mass-to-light ratio of the galaxy that depends
on R and is unrelated to the mass-to-light ratios of the stellar populations.

The agreement shown in Fig. 3 is common to 75 nearby galaxies to date [15].
Among these, an interesting case is NGC 7814: This galaxy is almost perfectly edge-
on and the uncertainties on the rotation curve deriving from the disk inclination are
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negligible; in addition, the distance to the galaxy is accurate to 5 % and is basically
not a free parameter any longer. This galaxy provides a stringent test for MOND:
high-quality infrared photometric observations [36] enable, for the first time, the
construction, from an accurate bulge-disk decomposition, of a three-dimensional
model of the galaxy whose gravitational potential is inferred by numerically solving
the MONDian Poisson equation. The comparison of the model rotation curve with
the observed one allows the derivation of the mass-to-light ratios for both the disk
and the bulge components. Both ratios are found to be in excellent agreement with
the expected values [37].

The data expected in the upcoming GAIA mission and other future surveys will
provide unprecedented possibilities to test MOND with the Milky Way dynam-
ics [15]. Pioneering work with current data has already shown that the rotation curve
and the surface density of the inner disk of the Milky Way are fully consistent with
each other within the MOND framework [38, 39]. Similarly, the escape velocity
from the solar neighbourhood agrees with current estimates if the external gravi-
tational field in which the Milky Way is embedded is a ∼ 10−2a0: This value is
indeed compatible with the actual field [40]. An additional test involves the veloc-
ity ellipsoid tilt angle within the meridional galactic plane. The angles expected in
MOND and in the standard Newtonian gravity with DM agree with each other and
with observations at galactic heights z = 1 kpc; however, the discrepancy between
the predicted angles in the two models increases with z and the measure of the
velocity ellipsoid tilt angle will thus be a relevant test to discriminate between the
models [41].

3.2 Elliptical Galaxies

The role played by the acceleration scale is also apparent in elliptical galaxies, dwarf
spheroidal galaxies (dSphs) and globular clusters.

In elliptical galaxies, which are pressure-supported systems, Faber and Jack-
son [42] observed a relation similar to the Tully–Fisher one that is valid for disk
galaxies: The galaxy luminosity L correlates with the stellar velocity dispersion
σ in the galaxy’s central region, according to the power law L ∝ σ 4. If we
assume that ellipticals are isothermal spheres that, in MOND, have finite mass
with asymptotically decreasing density ρ ∝ rα , with α = d ln ρ/d ln r = −4, we
find σ 4 = GMba0/α

2 [43]. Unlike the Tully–Fisher relation, the observed Faber–
Jackson relation is not expected to be exact in MOND, because ellipticals are not
strictly isothermal and their velocity field is not isotropic; the velocity anisotropy
parameter must actually vary with radius to match the observed fundamental plane
of ellipticals [44]. The MOND fundamental plane is actually slightly tilted com-
pared to observations, but this problem might be removed by including the external
field effect [45].
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Elliptical galaxies pose some challenges to the standard model, because they
should be embedded, like disk galaxies, in DM halos. X-ray-emitting hot gas coro-
nae are expected signatures of a DM halo and are indeed observed in many early
type galaxies [46], including isolated ellipticals, like NGC 1521 [47]. However,
there are cases that are unexpected in the DM paradigm: Accurate observations,
based on planetary nebulae, of the kinematics of the outer parts of three ordinary
ellipticals show very little evidence, if any, of the presence of DM [48], but are
in good agreement with MOND, because the large masses implied by the high-
surface brightnesses indicate that the gravitational field is in the Newtonian regime
a > a0 [49, 50].

The kinematics of the outskirts of ellipticals, where a < a0, can be probed
with spectroscopic observations of their globular cluster systems: For example, the
galaxy NGC 4636 in the Virgo cluster is surrounded by 460 globular clusters with
measured velocity, and this sample represents one of the largest currently avail-
able. The MONDian predictions agree with the kinematic data and NGC 4636 also
appears to fall onto the baryonic Tully–Fisher relation shown in Fig. 2 [51].

The X-ray data available for NGC 1521 and NGC 720 offer a unique test of
MOND in elliptical galaxies: These galaxies are not embedded in groups or clusters
and the X-ray data extend to large radii. Similar to disk galaxies, one can thus test
MOND on the outskirts of galaxies where the gravitational acceleration due to the
luminous matter is smaller than a0 and the external field effect is negligible. MOND
describes the distribution of the baryonic mass in these galaxies with mass-to-light
ratios fully consistent with stellar population synthesis models [52].

3.3 Dwarf Spheroidals

At the low-mass end of the galaxy mass function, dSphs also pose a challenge to the
standard model (see [53] for a recent review of dSphs in MOND). dSphs have low-
surface brightnesses and, according to MOND, based on what is shown in Fig. 1
for disk galaxies, Milgrom predicted that they should be DM-dominated and have
mass discrepancies larger than ten when analysed with Newtonian gravity [16]. This
prediction was impressively confirmed when the first measures of the stellar velocity
dispersion in the central regions of these galaxies were available a decade later [54].

More recently, intense observational programs provided velocity dispersion pro-
files of the dSphs orbiting the Milky Way [55]. This piece of information enables
the estimate of the combination of the mass profiles of the galaxies with the pro-
files of their velocity anisotropy parameter. The most recent detailed dynamical
analysis [56] confirms that the mass-to-light ratios in the V band are in the range
1÷3M�/L�, and are therefore consistent with stellar population synthesis models.
This analysis solved an open issue raised earlier [57]: Unbound stars can contami-
nate the velocity dispersion and artificially inflate the estimate of the mass-to-light
ratio. When the unbound stars are properly removed with the caustic technique
[58, 59], Sculptor and Sextans do indeed show the sensible mass-to-light ratios
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1.8 M�/L� and 2.7 M�/L� respectively, whereas Carina still shows a too large
∼ 6M�/L�.

This discrepancy might originate from (1) the uncertainties of the luminosity
distribution that is challenging to estimate accurately enough in LSB galaxies and
(2) the ellipticity of Carina that significantly departs from the spherical symmetry
assumed to derive the mass-to-light ratio. However, this discrepant mass-to-light
ratio might have a deeper origin due to the specific feature of MOND that we men-
tioned in Sect. 2, the external gravitational field effect: A star in a dSph, that is a
satellite of the Milky Way, moves according to both the dSph mass and the grav-
itational field exerted by the Milky Way; only if this latter external acceleration is
negligible compared to the acceleration internal to the dSph is the dSph mass derived
from the stellar velocity dispersion accurate. Carina is one of the least luminous,
and presumably least massive, dSphs and one of the closest to the Milky Way. It
is therefore reasonable to suspect that the Milky Way’s gravitational field can play
a role in inflating the velocity dispersion of this dSph. Although this suggestion
still awaits a quantitative confirmation, this same effect appears to be responsible
for the deviation of some dSphs from the expected Tully–Fisher relation shown in
Fig. 2 [60].

An additional piece of evidence, which is problematic for the standard model, is
the phase-space distribution of the dSphs that are satellites of the Milky Way. These
dSphs are distributed over an extended thin disk whose thickness is between 10 and
30 kpc and radius ∼ 200 kpc. An invoked solution is that these dSphs fell into the
Milky Way halo as a small group of galaxies who kept their orbits correlated [61].
However, recent measures of the dSph proper motions indicate that this scenario is
untenable because, according to these measures, four dSphs must have fallen in at
least 5 Gyr ago [62] and N -body simulations of the standard model show that the
orbit correlation cannot be preserved for such a long time [63].

In MOND, dSphs may form as tidal debris during close encounters of large
galaxies [64], and the orbit correlation would thus be a natural consequence of this
formation process [65,66]. The formation of tidal dwarf galaxies has been observed
in interacting galaxies for the last 20 years [67], since the first detection in the Anten-
nae [68]. The observed stellar velocities of these systems agree with MOND in the
majority of the systems using sensible values of the two available free but con-
strained parameters, the mass-to-light ratio and the velocity anisotropy parameter
β [69,70]. In the standard model, these systems are somewhat challenging because,
in this case, the observed velocities require a factor of a few more mass than the
observed luminous mass, despite the fact that there is no physical reason for these
LSB tidal dwarfs to drag large amounts of DM [71].

The formation of dwarf galaxies as tidal debris is also likely to solve the missing
satellite problem of the standard model that predicts a factor of ten more satel-
lites in the halos of large galaxies than is actually observed [72]. In MOND, the
rate of galaxy encounters is small enough that it might provide the right number of
satellites with the correct dynamics. Contrarily, in the standard model, a conspiracy
of processes regulating the star formation efficiency is required so that most DM
satellites form no stars [73]. In addition, the possible supersonic relative velocity
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between baryons and DM before reionization might be responsible for the inhibi-
tion of the formation of half the expected luminous satellites [74]. If we take into
account the ultra-faint galaxies surrounding the Milky Way, the problem can also
be partly alleviated, but there would still be a factor of four too few dwarfs [75].
In addition, these ultra-faint galaxies show indications of tidal disruption, although
one would expect that, with mass-to-light ratios of the order of 1000 M�/L�, the
large DM halo within which they are embedded should be sufficient to screen the
stellar components from the external tidal field of the Milky Way. The properties of
dwarf galaxies thus remain challenging for the DM paradigm [76–78].

3.4 Globular Clusters

The good agreement between the expected dSph dynamics in MOND and observa-
tions is more intriguing when we consider globular clusters. These stellar systems
and dSphs roughly have the same baryonic mass but different surface brightnesses,
stellar populations and ages. In the standard model, globular clusters are devoid of
DM, whereas dSphs are the cosmic structure with the largest fraction of DM, with
mass-to-light ratios in the range ∼ 10 ÷ 1000 M�/L� [55, 79]. These discrep-
ancies between globular clusters and dSphs are solved by invoking low formation
efficiencies in low-mass DM halos [80, 81] and two completely different formation
processes for the two kinds of systems. Contrarily, in MOND, the different observed
internal velocities are exactly what we expect from the different surface brightnesses
(Fig. 1) [82].

Nevertheless, there is a system that requires careful consideration. NGC 2419 is a
globular cluster in the outer halo of the Milky Way with low enough surface bright-
ness to be in the MOND regime. It is far enough from the gravitational field of the
galaxy that the MOND external field effect might not play a relevant role. Similarly
to the analyses of the dSphs, it is possible to estimate the mass-to-light ratio of the
cluster from measurements of the projected velocity dispersion of the stars [83]. In
MOND, the mass-to-light ratio required to describe the stellar kinematics is a factor
of a few lower than expected (the opposite case as for the Carina dSph). Invoking
a variable velocity anisotropy does not help improve the comparison between the
MOND fit and the data, but non-isothermal polytropic models seem to provide a
MONDian description of the kinematic and photometric observations of this clus-
ter [84, 85]. An additional solution is that the lifetime of the globular cluster is long
enough that mass segregation has already taken place. In this case, the distribution of
Red-Giant-Branch (RGB) and luminous upper main sequence stars used in the Jeans
analysis is expected to be more centrally concentrated than the other less massive
stars of the clusters; therefore, the true gravitational potential of the cluster might be
different from the gravitational potential actually derived with the Jeans equation.
Another possibility is that globulars have nonstandard initial stellar mass functions.
More data and more testable globular clusters are clearly called for.
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Another system that has seemed to be challenging for MOND is the five globular
clusters orbiting the Fornax dSph. Fornax is the most luminous dwarf spheroidal
(by about a factor of ten) and is the only classical dwarf of the Milky Way with
a system of globulars. It was suggested that the surprisingly stronger dynamical
friction due to the dwarf galaxy’s low-density component of stars in MOND, relative
to the dynamical friction from the more dense DM halo in Newtonian gravity [86],
would cause the globular clusters to lose their orbital angular momentum in a period
of time much shorter than the Hubble time and create a stellar nucleus in Fornax
which is not observed [87, 88]. However, Angus and Diaferio [89] used an orbit
integrator with accurate mass models of Fornax both in MOND and Newtonian
dynamics to convincingly demonstrate that the situation is relatively easy to explain:
The globular clusters can orbit for a Hubble time as long as their orbits start near
the tidal radius. This solution does not apply to the most massive globular cluster;
however, this globular cluster is a statistics of one and could have a sizeable line of
sight distance where the dynamical friction is negligible.

3.5 Groups and Clusters of Galaxies

The impressive agreement between observations and MOND predictions on the
scale of galaxies, based on the introduction of the acceleration scale a0, is not
shared by the galaxy cluster data [90,91]. Clusters do not perfectly obey the relation
between circular velocity and baryonic mass of Eq. (3) (green triangles in Fig. 2)
but seem to require more mass than actually observed. In fact, in the core of clusters
a > a0 and the luminous matter should be enough to describe the observed dynam-
ics. The evidence suggests the opposite is true, because the amount of observed
mass is a factor of two too small. The shortage of mass, which is confined to the
central regions of clusters and progressively disappears in the cluster outskirts [92],
is not as large as the factor of five or larger we have in the standard model, but it
clearly poses a challenge to MOND. An equivalent, more conventional way to look
at Fig. 2 for clusters is to consider the relation between the cluster mass and the X-
ray temperature of the hot intracluster gas. According to the relation between mass
and circular velocity, MOND makes a clear prediction for the mass–temperature
relation. By assuming the same argument used for the Faber–Jackson relation in
elliptical galaxies, the relation between the velocity dispersion σ of the galaxies in a
cluster and the baryonic massMb of the cluster is σ 4 = GMba0/α

2, where α is the
logarithmic slope of the mass density profile. The temperature T of the intracluster
medium is a measure of the kinetic energy of the galaxies and T ∝ σ 2. Therefore,
in MOND, we have Mb ∝ T 2. Figure 4 shows that the data agree with this scal-
ing relation but not with the normalization, because of the mass discrepancy in the
cluster cores mentioned above.
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Fig. 4 The baryonic mass–X-ray temperature relation for rich clusters (gray triangles [93]) and
groups of galaxies (green triangles [92]). The solid line is the MOND prediction Mb ∝ T 2.
(Courtesy of B. Famaey and S. McGaugh. Reproduced from [15], with permission)

This relation is not at odds with the standard model relationM ∝ T 3/2,3 which is
known to agree with observations [94], for two reasons. First, theM ∝ T 3/2 relation
is between the X-ray temperature and the total cluster mass, which includes DM,
rather than the baryonic mass alone that we have in the MOND Mb ∝ T 2 relation.
Second, the mass M is inferred by assuming valid Newtonian gravity whereas Mb
shown in Fig. 4 is derived with MOND [92]. Nevertheless, we can neglect the latter
reason and still see that the two scaling relations are roughly consistent with each
other. In fact, in the standard model, we can write M = Mb/fb ∝ T 3/2, where fb
is the baryon fraction of the cluster total mass. Therefore, the observed MONDian
Mb ∝ T 2 should imply fb ∝ T 1/2. This expectation is broadly consistent with
observations: By combining X-ray Chandra groups and HIFLUGCS [95] over the
temperature range [0.6, 15] keV, Eckmiller et al. [96] find fb ∼ T 0.79±0.09 at r500;
by limiting the sample to clusters with T in the range [1, 15] keV, the slope is 0.83±
0.42, but it appears to be shallower at smaller radii.

The apparent mass discrepancy in X-ray bright groups and clusters in MOND
[92, 98], clearly shown by the difference between the observed and predicted nor-
malizations of the mass–temperature relation shown in Fig. 4, does not seem to
appear in groups of galaxies where the X-ray emission is negligible or absent

3 In the standard model, the cluster virial mass scales as Mvir ∝ ρc(z)Δc(z)R3, where R is the
cluster size in proper units (not comoving), ρc(z) = 3H 2(z)/(8πG) is the critical density of the
universe and Δc(z) is the cluster density in units of ρc(z). A widely used approximation is

Δc(z) = 18π2 +
{

60w − 32w2, Ωm ≤ 1, ΩΛ = 0

82w − 39w2, Ωm +ΩΛ = 1,
(4)

where w = Ωm(z) − 1 [97]. Now, ρc(z) scales with redshift z as ρc(z) ∝ E2(z) = Ωm(1 + z)3 +
(1 −Ωm −ΩΛ)(1 + z)2 +ΩΛ. The cluster size thus scales as R ∝ M1/3

vir Δ
−1/3
c (z)E−2/3(z), and

the temperature as T ∝ Mvir/R ∝ M2/3
vir Δ

1/3
c (z)E2/3(z).
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[99,100]. This piece of evidence might suggest that the mass discrepancy in MOND
can be solved by assuming the presence of undetected baryonic mass in the form of
cold, dense gas clouds that can form and be stable because of the presence of the
ionised hot gas [101].

A different solution is that we might well have some DM that clusters on cluster
scales but not on galaxy scale. The piece of evidence that is usually claimed to be
difficult to interpret without assuming the existence of some form of DM comes
from colliding galaxy clusters. During the collision of two clusters, the galaxies
and the two halos of DM, if DM exists and is collisionless, keep their momen-
tum, whereas the intracluster medium is shock-heated and slows down. The DM
and galaxy components thus separate from the gas component. This separation is
clearly visible by combining X-ray and optical images of individual colliding clus-
ters: for example, the so-called Bullet cluster 1E 0657-558 [102] and the cluster
MACS J0024.4-1222 [103].

In the absence of DM, most of the matter resides in the gas rather than in the
galaxies. The only way to measure how the total mass is distributed is to derive a
map of the gravitational potential with weak gravitational lensing. In GR, this pro-
cedure is now standard and in the two systems mentioned above, the mass appears
to be concentrated where the galaxies are and not where the gas is: This is in striking
agreement with the presence of some form of collisionless DM dominating the mass
content of the cluster.

Unfortunately, a similar gravitational lensing analysis is not trivial in alterna-
tive theories of gravity where the effect of gravity on the light path is not treated
properly. MOND belongs to this group of theories because it is a classical theory
and gravitational lensing can only be described by resorting to one of the differ-
ent covariant extensions of MOND. We will describe the results of this approach in
Sect. 4. Here, we wish to emphasize that the location of the gravitational peaks is
not an observational fact, but derives from the assumption of GR’s validity. A priori,
it is possible that the nonlinearity of a gravity theory alternative to GR is sufficient to
mimic the observed gravitational lensing distortion with a mass distribution differ-
ent from that required by GR. For example, in the covariant MOND theory named
TeVeS, particular matter distributions can yield nonzero convergence on sky posi-
tions where there is no projected mass [104]. Weyl gravity provides another clear
non-MONDian example of this phenomenology [105, 106].

There is a final cautionary comment that cannot be omitted: The interpretation of
the observed properties of colliding clusters is far from being clear, because these
systems can also be challenging for the standard model. The Abell cluster A 520 has
the same morphology of the Bullet cluster and MACS J0024.4-1222: Two clouds of
galaxies on the opposite sides of a cloud of hot gas [107, 108]. However, the GR
weak lensing analysis indicates that, in addition to the two gravitational potential
peaks at the location of the galaxies, there is a significant peak where the gas is. This
peak is difficult to explain in the standard model, because it requires the existence
of a massive DM halo devoid of galaxies, but is associated with the cluster hot gas.
A number of possible solutions have been suggested, but none of them appears to
be fully convincing [108].
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In addition, colliding clusters appear to have relative velocities that are unlikely
in the standard model: A system like the Bullet cluster, with a relative velocity
derived from the shockwave of ∼ 4700 km s−1 [102], requires an initial infall
velocity of the two clusters of ∼ 3000 km s−1 [109] that has a probability smaller
than 3.6 × 10−9 to occur in ΛCDM [110]. On the contrary, the enhanced intensity
of MOND gravity may naturally produce these large relative velocities [111, 112].
Similarly, the coherent motion of galaxy clusters on large scales, measured with a
technique based on the kinematic Sunyaev–Zeldovich effect produced by Compton
scattering of the CMB photons, appears to be challenging for the standard gravita-
tional instability paradigm: These bulk flows are a factor of five larger than predicted
by the standard model and might require a modification of the theory of gravity,
among other possible solutions [113].

4 TeVeS and Gravitational Lensing

MOND, as described in Sect. 2, is a classical empirical law that we would like to
recover as the weak-field limit of a covariant theory. This theory should contain
GR, which excellently describes the gravitational phenomenology of the solar sys-
tem. A covariant theory for MOND is required if we wish to build a cosmological
model and describe the gravitational lensing phenomenology within the MONDian
framework. A covariant theory is thus essential for the validation of MOND.

The attempts to build a covariant theory containing MOND are numerous. A
recent overview of these attempts is provided by Famaey and McGaugh [15]. Here,
we briefly outline one of them, namely TeVeS (see [114] for a recent review), whose
Lagrangian contains a time-like vector field and a scalar field in addition to the
tensor field representing the metric, hence the name Te(nsor)Ve(ctor)S(calar). Halle
et al. [115] have shown that a very general Lagrangian for a decaying vector field
unifies most of the popular gravity theories, including quintessence, f (R), Einstein–
Aether theories and TeVeS itself, among others. We stress that TeVeS by no means
is the only possible covariant theory that yields MOND in the weak-field limit.
Moreover, it is clear that any problem or failure belonging to one of these covariant
theories are not necessarily problems or failures of MOND.

TeVeS was first proposed by Bekenstein [116]. At the classical level, MOND
introduces an acceleration scale. This issue poses an immediate problem for building
a generally covariant theory, because the acceleration scale is played by the affine
connection Γ κμν , that involves the first derivatives of the metric tensor gμν , and Γ κμν
is not a tensor. As we mentioned in Sect. 2, one way to bypass this problem is to dis-
tinguish between the Einstein metric gμν , which enters the Einstein–Hilbert action,
and the geodesic metric g̃μν , which enters the matter action. In GR, the two metrics
coincide. In TeVeS, the two metrics are related by the following equation4 [117]

g̃μν = e−2ϕgμν − 2 sinh (2ϕ)UμUν, (5)

4 In this section, we use units where the speed of light c = 1.
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where ϕ is a scalar field and Uμ is a normalized vector field with gμνUμUν = −1.
Both fields are dynamical. Therefore, the TeVeS action is the sum of three terms:
the standard Einstein–Hilbert action, the action term for the scalar field

Sϕ = − 1

2k2�2G

∫
F(k�2hαβϕ,αϕ,β )(−g)1/2d4x, (6)

where F is an arbitrary positive function, k is a dimensionless coupling constant, �
a constant scale length, and hαβ = gαβ − gαμgβνUμUν , and the action term for the
vector field

SU = − 1

32πG

∫
[KgαβgμνU[α,μ]U[β,ν] + K̄(gαβUα;β )2

− 2λ(gμνUμUν + 1)](−g)1/2d4x, (7)

where the square brackets indicate antisymmetrisation, K and K̄ are dimensionless
coupling costants and λ is a Lagrange multiplier to guarantee the normalization of
Uμ.

TeVeS violates the local Lorentz invariance, because at each point in spacetime
there is a preferred frame in which the time coordinate aligns with Uμ. The vio-
lation of Lorentz invariance derives from the invalidity of the strong equivalence
principle anticipated in Sect. 2. Clearly, this violation has to be smaller than current
experimental bounds.

In the limit K, K̄, 1/� → 0, with k ∼ �−2/3, for quasi-static systems and
homogeneous cosmology, TeVeS corresponds to GR. To recover MOND in the
nonrelativistic ultra-weak-field limit (Eq. 1), we need to choose the function F .
The arbitrariness of the function F makes TeVeS a family of models, rather than
a single model. The function F proposed by Bekenstein [116] yields the MOND
acceleration scale

a0 =
√

3k

4π�
. (8)

As we have just mentioned, we recover GR in the limit K, K̄ → 0, whereas to
recover Newtonian gravity in the weak-field limit � → ∞ suffices. Therefore, in
principle, TeVeS and GR might differ in the strong field regime [118].

In the weak-field limit, and quasi-static system, the geodesic metric becomes

g̃μνdx
μdxν = −(1 + 2Φ)dt2 + (1 + 2Ψ )δijdx

idxj . (9)

This metric is formally identical to GR, where Φ = −Ψ = φN , and φN is the
Newtonian gravitational potential. In this limit, in TeVeS we also have Φ = −Ψ ,
but Φ = 'φN + ϕ, where ' = (1 − K/2)−1e−2ϕc ∼ 1, with ϕc the asymptotic
boundary value of ϕ. It appears clear that the scalar field ϕ plays the role that DM
plays in the standard model.

Equation (9) enables us to derive the gravitational lensing equations in TeVeS. In
Sect. 3, we have seen that MOND excellently describes the dynamics of galaxies but
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requires some additional DM on the scales of clusters. One can thus anticipate that
the description of gravitational lensing with TeVeS fits the observations on galaxy
scales without the need of any matter in addition to the observed baryonic matter,
but it does not do as well on cluster scales.

In fact, the TeVeS gravitational lensing equations applied to the strong lens-
ing regime on galaxy scales reproduce the lensing morphology with the observed
baryonic matter alone, both in simple spherically symmetric models of the lens
[119, 120] and in models departing from spherical symmetry [121]. These analyses
self-consistently include TeVeS cosmology, because of the cosmological distances
of the lenses: It is easy to get erroneous results if one uses hybrid theories like
MOND combined with GR rather than TeVeS itself [122]. In addition, claimed
inadequacies of TeVeS [123] may be easily healed by assuming different, but still
perfectly reasonable, mass models for the lens [124]. When analysed properly, to
date no lensing system on galaxy scale appears to be problematic, including lensed
quasars [124–126]. TeVeS even returns a measure of the Hubble constant consis-
tent with other independent estimates when its time-delay formula is applied to
lensed variable quasars [127]. Nevertheless, the debate on the adequacy of TeVeS to
describe lensing data on galaxy scales is still open and lively [128].

Lensing of clusters returns the mass discrepancy that one encounters with the
analysis of galaxy kinematics or X-ray emission. Because of the complexity of the
covariant theories of MOND, the lensing analysis usually assumes spherical symme-
try and quasi-stationarity. Relatively relaxed clusters, where these assumptions are
substantially valid, show the expected mass discrepancies [129, 130]. DM halos are
required, and it was suggested that DM in MOND could be made of neutrinos [93].
However, the neutrino phase-space density must be smaller than the Tremaine–Gunn
limit we describe below in Sect. 5.1. The combination of strong and weak gravita-
tional lensing data shows that the DM central density of MONDian clusters is larger
than the Tremaine–Gunn limit for neutrino masses smaller than 7 eV [130]; this
mass exceeds by more than a factor of three the experimental upper limits on the
neutrino mass, and this result suggests that neutrinos are inadequate MONDian DM
particles.

The Bullet cluster is usually held as the definitive proof of the existence of colli-
sionless DM [102]. Unfortunately, it is a difficult lens to model in MOND covariant
theories because of its large departure from the assumptions mentioned above of
spherical symmetry and quasi-stationarity. Figure 5 shows the results of one of the
first TeVeS analyses of the Bullet cluster [131]: The convergence map is computed
by assuming four spherically symmetric mass distributions at the location of the two
galaxy distributions and the two X-ray-emitting gas clouds. The model agrees with
observations if the galaxies are embedded in additional halos of collisionless matter.
Angus et al. [131] concluded that massive neutrinos with 2 eV mass accounting for
two thirds of the total mass of the system is sufficient to reproduce the lensing signal.
This amount of additional mass agrees with the results of the dynamical analysis of
other clusters in MOND reviewed in Sect. 3.5, but, it became clear later [92,130], as
we mention earlier, that the conclusion about the 2 eV mass neutrinos is erroneous.
The nonlinearity of TeVeS does not seem to be conducive to removing the demand
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Fig. 5 The solid black contours show the MONDian convergence map of the Bullet cluster
[131]. The dotted red contours show the GR convergence map [102]. The contour levels are
[0.37, 0.30, 0.23, 0.16]. The red stars indicate the centres of the four potentials used. The blue
dashed lines show the contours of surface density [4.8, 7.2]×102 M� pc−2 for the MOND stan-
dard μ function. In the green shaded region, the matter density is larger than 1.8× 10−3 M� pc−3

and indicates the clustering of 2 eV neutrinos. Inset: The surface density of the gas in the Bullet
cluster predicted by a collisionless matter subtraction method for the standard μ-function described
in [131]. The contour levels are [30, 50, 80, 100, 200, 300] M�pc−2. The origin is [06h58m24s .38,
−55o56′.32]. (Reproduced from [131])

for DM in the Bullet cluster [132]. On the other hand, the effect of the external
gravitational field, that plays a role in the internal dynamics of dSphs, or the non-
trivial features that the additional TeVeS fields can induce in the lensing phenomena
remain to be investigated [133].

5 MOND and Sterile Neutrinos

MOND assumes the existence of an acceleration scale below which an ultra-weak-
field limit of the theory of gravity sets in. From this very simple ansatz, MOND
describes with impressive success the dynamics of galaxies and smaller systems. On
the scale of galaxy clusters, MOND partly fails (Fig. 2) and the observed kinematics
require either a new gravity law or the existence of some baryonic or non-baryonic
DM. This failure is bound to be shared by any covariant theory, like TeVeS, that is
conceived to yield MOND in the ultra-weak-field limit.

For most cosmologists, this failure implies the end of MOND as a successful
description of the universe. However, the DM paradigm currently is far from being
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satisfactory on galactic scales [78]. Therefore, if we are interested in finding a the-
ory that describes the universe with the minimum number of assumptions, we have
to consider the possibility that MOND can indeed be a valid description of the
observed phenomenology and look for possible solutions for its shortcomings on
larger scales.

Similarly to the standard model, a natural solution is the introduction of some
form of DM. However, we might have an advantage over the standard model. In a
MONDian model with DM, DM has to be hot enough to freely stream out of galactic
systems, to preserve the excellent description of the galactic dynamics without DM,
but cold enough to cluster on the scale of galaxy clusters. Unlike the hypothetical
cold DM particles, we know that an elementary particle that can play the role of hot
DM does exist: the neutrino.

The properties of neutrinos are currently constrained by various experimental
results. In 1979, Tremaine and Gunn [134], by considering the maximum mass den-
sity that DM halos made of light leptons can reach, set a lower limit of ∼ 1 MeV to
the mass of the light leptons that can make the DM halos of galaxies and clusters of
galaxies. Below, we briefly review this argument for its relevance to the subsequent
discussion.

5.1 The Tremaine–Gunn Limit

Neutrinos are collisionless particles, and, according to Liouville’s theorem, the
phase-space fluid they form is incompressible. In practice, if neutrinos make the DM
in self-gravitating systems, like galaxy clusters, this theorem sets an upper limit to
the observable coarse-grained phase-space density.

If self-gravitating systems form by violent relaxation, the neutrino coarse-grained
phase-space density is f (x, v) = f (ε) = f0{1 + exp [β(ε − χ )]}−1, where ε =
v2/2+φ(x), φ(x) is the gravitational potential, σ 2(x) = 1/β is the one-dimensional
velocity dispersion, χ is the neutrino chemical potential, and f0 = gνm

4
νh

−3 is
the mass phase-space density of an occupied microcell; gν = 2 is the number of
degrees of freedom, which includes the anti-particles, mν is the neutrino mass and
h the Planck constant.

For a nondegenerate neutrino fluid, we have f (ε)� f0 which implies β(φ − χ )
� 0 and the phase-space density must be smaller than the Maxwell–Boltzmann dis-
tribution fMB(ε) = f0 exp [−v2/2σ 2(x)]. Therefore, for the neutrino mass density
ρν(x), we must have

ρν(x) ≤ 4π
∫ +∞

0
v2fMB(ε)dv = f0[2πσ 2(x)]3/2 . (10)

This relation implies that

max{f } = f0 ≥ ρν(x)

[2πσ 2(x)]3/2
. (11)
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However, clusters form from the relic neutrino background that has the Fermi distri-
bution f (p) = f0[1+exp (pc/kBT )]−1, with p the momentum and T = 1.95 K the
neutrino temperature today. The initial maximum coarse-grained phase-space den-
sity is therefore max{f } = f (p = 0) = f0/2. According to Liouville’s theorem,
this upper limit cannot increase, and we must thus have

ρν(x) ≤ f0

2
[2πσ 2(x)]3/2. (12)

For a fully degenerate gas, all the microcells with v < vlim are occupied and
f (ε) = f0, whereas all the microcells with v > vlim are empty and f (ε) = 0.
Therefore, in this case, the neutrino mass density is

ρν(x) ≤ f04π
∫ vlim

0
v2dv = f0

4πv3
lim

3
. (13)

By considering only bound states with ε = v2/2 + φ(x) ≤ 0, we have v2 ≤ 2|φ| ≡
v2

lim, and thus ρν(x) ≤ f04π |2φ|3/2/3. By assuming 3σ 2 = −φ, we obtain ρν(x) ≤
f0[2πσ 2(x)]3/24(3/π)1/2, which implies that the maximum phase-space density is

max{f } = f0 ≥ ρν(x)

4[2πσ 2(x)]3/2

(π
3

)1/2
. (14)

However, applying Liouville’s theorem again with the initial maximum phase-space
density f0/2, we obtain the more stringent upper limit to the neutrino density

ρν(x) ≤ f0

2
[2πσ 2(x)]3/24

(
3

π

)1/2

, (15)

which is 4(3/π )1/2 ≈ 3.91 times larger than the density upper limit obtained in the
nondegenerate case [135, 136]. Therefore, the nondegenerate case yields the most
restrictive upper limit and is usually called the Tremaine–Gunn limit.

We can write this limit in astrophysical interesting units as

ρν ≤ 2.16 × 102
(mν

eV

)4 (σ
c

)3 M�
pc3

(16)

or, by considering the relation kBT/μmp = σ 2 between temperature and velocity
dispersion, with mp the proton mass and μ = 0.6 the mean atomic weight for a
fully ionized gas of solar abundance,

ρν ≤ 4.64 × 10−7
(mν

eV

)4
(
kBT

keV

)3/2
M�
pc3

. (17)
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5.2 The Role of an 11-eV Sterile Neutrino

The mass contribution of the three ordinary (active) neutrinos of the standard model,
νe, νμ and ντ , could, in principle, solve the mass discrepancy in MONDian galaxy
clusters. At the end of the 90s, laboratory experiments yielded an upper bound limit
to the mass of ordinary neutrinos of 2.2 eV [137]. Therefore, neutrinos with mass
2 eV were proposed as DM in MONDian models [93]. However, when their contri-
butions to the properties of astrophysical sources, namely, galaxy clusters, CMB and
massive galaxies, are analysed in detail, the ordinary neutrinos with mass smaller
than this limit are shown to be inadequate.

Sanders [93] and Pointecouteau and Silk [138] pointed out the relevance of
the Tremaine–Gunn limit in galaxy clusters in MOND. An extensive analysis of
26 X-ray emitting groups and clusters of galaxies [92] considered neutrinos with
the maximum mass allowed by the current upper limits. These neutrinos have a
Tremaine–Gunn limit that is at least a factor of two smaller than the DM density
within 100 kpc that is required to describe the thermal properties of the intra-cluster
medium in MOND. Therefore, either neutrinos are more massive, that is excluded
by laboratory measurements, or they are not the major contribution to the MOND
DM in clusters.

The three species of ordinary neutrinos with mass in the range 1 ÷ 2 eV also
are problematic when we attempt to reproduce the CMB power spectrum. These
neutrinos suppress the third peak by ∼ 25% when compared to observations,
because of their free-streaming imposed by the Tremaine–Gunn limit [139]. We can
obtain a CMB power spectrum consistent with observations with these neutrinos
in TeVeS if we substantially increase the MOND acceleration scale a0 at the time
of recombination [140]. However, this redshift dependence of a0 remains unproved
observationally.

Finally, the amplitude of the weak lensing signal around luminous galaxies (L >
1011L�), extracted from the Red-Sequence Cluster Survey and the Sloan Digital
Sky Survey, suggests mass-to-light ratios larger than ∼ 10 M�/L� in the MOND
framework [141]. It thus follows that DM is also required on the scale of massive
galaxies. This DM cannot be made of ordinary neutrinos that are not massive enough
to cluster on these small scales.

The inadequacies of ordinary neutrinos with any mass smaller than the current
upper limits to properly describe this astrophysical phenomenology forces us to
conclude that ordinary neutrinos as the MONDian DM are ruled out.

MOND can still be viable if we resort to hot DM made of sterile neutrinos. Ster-
ile neutrinos do not have standard weak interactions and are right-handed, unlike
the three ordinary neutrinos, and are motivated by a number of anomalies observed
in neutrino experiments (see [142] for an extensive review). For example, the exis-
tence of one sterile neutrino in addition to the three ordinary neutrinos can elegantly
explain the disappearance of electron neutrinos from the low-energy beam measured
in short-baseline neutrino oscillation experiments [143–146].
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If sterile neutrinos are more massive than ordinary neutrinos, they can have larger
Tremaine–Gunn limits, and thus eventually solve the problems we mentioned above.
The analysis of the MiniBooNE experiment data does indeed favour a sterile neu-
trino mass in the 4 ÷ 18 eV range [147]. This mass range is inconsistent with
cosmological constraints in the ΛCDM framework that would require the mass to
be smaller than 1 eV (see, e.g., [144] and references therein). However, this mass
limit derives from the enhanced gravity on galactic scales that is required by the
standard model but not by MOND. Therefore, in MOND, the 4÷ 18 eV mass range
might be perfectly reasonable.

It is actually quite impressive that a universe with baryonic matter and one mas-
sive sterile neutrino alone reproduces very well the observed CMB power spectrum
if the sterile neutrino mass ismνs = 11 eV [148], a value that is fully consistent with
the mass range inferred from the MiniBooNE data. In addition, the sterile neutrino
mass must be within ∼ 10% of the 11 eV value if we wish to keep the good match
with the observed CMB power spectrum. This strong constraint is mostly due to the
fact that, in this case, the contribution of the sterile neutrinos to the density of the
universe isΩνsh

2 = 0.117. This value is comparable to the contribution of CDM in
the standard model that we know to describe the CMB power spectrum very well. It
is important to remind that this analysis assumes that the sterile neutrinos are fully
thermalised at the time of decoupling; more massive sterile neutrinos are possible
but they must not be fully thermalised [149].

Figure 6 shows that the CMB power spectra of the standard ΛCDM model and
of a model with baryonic matter and an 11-eV sterile neutrino are indistinguish-
able. Note that at the time of recombination, the average gravitational field is strong
enough that the universe is not in the MOND regime, with a0 kept constant to
the present day value; therefore, the CMB power spectrum can be estimated with
the standard theory of gravity. It is only later that the existence of such a massive
neutrino would be problematic for the formation of structure in the standard model.

On the contrary, in MOND this massive sterile neutrino would be adequate to
solve the mass discrepancy on the cluster scale. In fact, the study of the hydro-
static equilibrium configuration of 30 groups and clusters of galaxies, including the
two clumps forming the Bullet cluster system, by the analysis of the profiles of
the galaxy velocity dispersion and hot gas temperature, shows that the mass den-
sity profile of DM made of 11-eV neutrinos always reaches the Tremaine–Gunn
limit in the cluster centre [150]. Some of the dynamical mass must be provided, as
expected, by the central galaxies, but the required amount implies a mass-to-light
ratio of 1.2M�/L� in the K band, in agreement with stellar population synthesis
models. An 11-eV sterile neutrino is also consistent with the straight arc, originated
by a strong lensing effect, observed in the cluster A 2390 [151].

It is remarkable that the 11-eV sterile neutrino required to match the CMB power
spectrum also solves the completely independent problem of the mass discrepancy
of MONDian clusters without requiring any additional free parameter or adjustment
of the model. It is also intriguing that the Tremaine–Gunn limit is always reached in
the cluster centres, implying that the dynamical properties of clusters are uniquely
set by the mass of the sterile neutrino. This relation is completely unknown to the
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Fig. 6 Cosmic microwave background (CMB) angular power spectra for a cosmological model
with baryons and an 11-eV sterile neutrinos (blue line), and for the ΛCDM model (red line).
The points show data from the Wilkinson Microwave Anisotropy Probe (WMAP) year 7 (black),
Atacama Cosmology Telescope (ACT) (turquoise) and Arcminute Cosmology Bolometer Array
Receiver (ACBAR) (green). (Reproduced from [112])

standard DM paradigm, where the mass of the cold DM particle does not have any
role in the dynamical properties of clusters.

It remains to be seen whether gravitational instability in a universe filled with
baryonic matter and one species of sterile neutrino with 11 eV mass can form the
observed cosmic structure at the correct pace, although we remind that the ability to
explain the cluster mass discrepancy does not directly imply that MOND combined
with 11-eV sterile neutrinos can form clusters in a cosmological context.

The investigation of structure formation in this model requires an efficient N -
body code and proper cosmological initial conditions. PreviousN -body simulations
of MOND do not consider the presence of any non-baryonic DM and the adopted
initial conditions might not be consistent for a universe filled with baryons alone.
These previous N -body simulations show an overproduction of cosmic structure
in a baryon-only MONDian universe, in obvious disagreement with observations
[152, 153].

A first attempt of N -body simulation of structure formation in a MONDian
universe with baryons and an 11-eV sterile neutrino has been performed with a
particle-mesh cosmological N -body code that solves the modified Poisson equation
of the quasi-linear formulation of MOND (QUMOND) and with initial conditions
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appropriate to DM made of 11-eV neutrinos [112]. The simulation evolved a box
of 512h−1 Mpc on a side with 2563 particles from redshift z = 250 to the present
time.

This MONDian hot DM model does indeed produce galaxy clusters with the
correct order of magnitude of the abundance of observed X-ray clusters, unlike hot
DM models with standard gravity that have structure formation suppressed on small
scales [154]. However, the model overproduces the X-ray luminous clusters by a
factor of three and underproduces the low luminosity clusters with T < 4.5 keV by
at least a factor of ten. Nevertheless, the density profiles of the simulated clusters
are compatible with the observed profiles of MONDian clusters. In addition, the
frequency of relative velocities larger than 3000 km s−1 of cluster pairs is large
enough to make likely, unlike the standard model [110], the occurrence of systems
like the Bullet cluster.

Overall, the results of this simulation are somewhat unsatisfactory. However, the
simulation has very poor mass and length resolutions ∼ 1012M� and ∼ 2 Mpc,
respectively; therefore, clustering on small scales is artificially suppressed and this
can partly explain the severe underestimate of the abundance of low-luminous X-
ray clusters. The underproduction of low massive clusters could also be quelled
by swapping the 11-eV sterile neutrino for a more massive, up to 1-keV, sterile
neutrino, because the free-streaming scale decreases with increasing mass of the
DM particle. As we mentioned above, however, these higher mass sterile neutrinos
would not be fully thermalised prior to decoupling. The overproduction of massive
clusters and supercluster size objects actually is a problem that MOND has with any
mass of sterile neutrino or any other DM particle.

In addition, the expansion of the universe is assumed to coincide with the
standard Friedmann–Robertson–Walker model with a cosmological constant. It is
doubtful that a self-consistent relativistic version of MOND will be close enough to
the standard model to be consistent with current observational limits on the expan-
sion history of the universe, but discrepant enough to yield the correct structure
formation rate. Structure formation is affected by the acceleration scale a0 which
sets the enhancement of the intensity of the gravitational field compared to stan-
dard gravity. Currently, we do not have any observational constraints on the redshift
dependence of a0, but if a0 is lower at higher redshift, the overproduction of cos-
mic structure could be suppressed and the abundance of massive clusters could
become consistent with observations. However, this feature would suppress galaxy
formation and is therefore not ideal.

Clearly, the phenomenological formulation of MOND is not conceived to yield a
self-consistent cosmological model, and a covariant model including MOND needs
to be implemented to test its predictions of structure formation robustly. For exam-
ple, the linear perturbation theory of the density field in TeVeS has already been
outlined [155], but the nonlinear evolution of cosmic structure, with or without a
non-baryonic DM component, still needs to be investigated.
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6 Conclusion

MOND is based on the ansatz that Newtonian dynamics is modified when the grav-
itational field determined by the distribution of baryonic matter drops below the
acceleration a0 ∼ 10−10 m s−2 [14]. The observational evidence for the existence
of this acceleration scale has been rapidly accumulating over the last decade. The
success of MOND at describing the dynamics of self-gravitating systems up to the
scale of galaxies with fewer parameters than the standard DM paradigm is unde-
niable: In the standard model, the additional gravitational force that is required by
the observed kinematics is supplied by the presence of proper amounts of DM, but
this solution requires, unlike MOND, a number of fine-tunings and coincidences to
explain the existence of the acceleration scale that emerges at different length scales.
MOND provides a far simpler explanation of these observations.

In addition, on the scale of galaxies, MOND has an impressive predictive power
that is alien to the DM paradigm. Numerous observations predicted by MOND were
confirmed years later. One of the most striking was that, if interpreted in Newtonian
dynamics, the kinematics of LSB galaxies imply that DM dominates the dynamics
of these systems more than in any other system in the universe [16].

However, on the scale of galaxy clusters, MOND still requires some form of DM,
although not as much as in the DM paradigm [92]. Reproducing the power spectrum
of the CMB beyond the second peak also requires some non-baryonic DM [139].

In principle, neutrinos might represent a possible candidate for this non-baryonic
DM. However, current upper limits on the ordinary neutrino mass show that they
would not be massive enough to condense in the core of clusters and preserve the
height of the third peak of the CMB power spectrum, as required by observations.

A viable alternative candidate is a sterile neutrino. This particle seems to be
required to interpret a number of anomalous results from neutrino experiments
[142]. A sterile neutrino with mass in the range 11 eV÷1 keV would ensure DM
hot enough to stream out of galaxies but cold enough to cluster on the scale of
massive galaxies and beyond. It is thus, in principle, capable of explaining the phe-
nomenology of astrophysical systems preserving the success of MOND on small
scales and, in principle, the success of the standard model on large scales [148].
Such a model, where we have a modification of gravity and an exotic DM particle,
might be more attractive than the current standard ΛCDM model, because of its
elegance on the scale of galaxies, the physical motivation of the existence of its DM
particle from experiments on Earth and, eventually, the fact that it requires fewer
free parameters than ΛCDM. However, it remains to be investigated whether this
model can reproduce the full phenomenology of the large-scale structure formation
and evolution.

Moreover, this model rests on MOND, which is still a classical theory, not a
covariant theory. The parent covariant theory that gives MOND in the proper limit
is still unknown. Many possibilities have been proposed, but none of them appears
yet to be fully convincing.
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The exciting conclusion is that, whatever model is going to be correct, the
existence of the acceleration scale, that the data on galaxy scales indicates with
astonishing regularity, has to be explained naturally by the correct model, unless a
number of surprising coincidences happen to fool us.
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Lorentz Breaking Effective Field Theory Models
for Matter and Gravity: Theory and
Observational Constraints

Stefano Liberati and David Mattingly

Abstract A number of different approaches to quantum gravity are at least partly
phenomenologically characterized by their treatment of Lorentz symmetry, in par-
ticular whether the symmetry is exact or modified/broken at the smallest scales.
For example, string theory generally preserves Lorentz symmetry while analog
gravity and Lifshitz models break it at microscopic scales. In models with broken
Lorentz symmetry, there are a vast number of constraints on departures from Lorentz
invariance that can be established with low-energy experiments by employing the
techniques of effective field theory in both the matter and gravitational sectors. We
shall review here the low-energy effective field theory approach to Lorentz breaking
in these sectors, and present various constraints provided by available observations.

1 Introduction

Our understanding of the observed laws of nature is currently based on two different
theories: the Standard Model (SM) of particle physics, and general relativity (GR).
However, in spite of their phenomenological successes, SM and GR leave many
fundamental theoretical questions unanswered. First of all, part of the success of
the SM has been the recognition that symmetry breaking is an important part of
modern physics and that what appear to be multiple forces at low energies can often
be described in a unified manner. The prime example of this is the Glashow–Salam–
Weinberg theory of electroweak interactions. Since such unification is possible, and
since many physicists feel that our understanding of the fundamental laws of nature
would be deeper and more accomplished if we are able to reduce the number of
degrees of freedom in a theory, much effort has been spent trying to construct unified
theories in which not only all the subnuclear forces are seen as different aspects of a
unique interaction but also gravity is included in a consistent manner as merely part
of the overall structure.
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Another important reason why we seek for a new theory of gravity comes directly
from the gravity side. We know that GR fails to be a predictive theory in some
regimes. Indeed, many solutions of Einstein’s equations are singular in some region,
and GR is not able to make any prediction in those regions of space-time. Moreover,
there are honest classical solutions of the Einstein’s equations that contain closed
time-like curves, which would allow traveling back and forth in time with the asso-
ciated causal paradoxes. Finally, the problem of black hole evaporation considered
just within the framework of semiclassical gravity clashes with quantum mechanical
unitary evolution.

This long list of puzzles spurred intense research toward a quantum theory of
gravity that started almost immediately after Einstein’s proposal of GR and which
is still one of the most active areas of theoretical physics. The quantum gravity
(QG) problem is not only conceptually and technically challenging but has also
been an almost metaphysical pursuit for several decades, in that most progress has
been on the theoretical side and the experimental aspect has been (for good rea-
sons) neglected. Indeed, we expect QG effects at experimentally/observationally
accessible energies to be extremely small, due to suppression by the Planck scale
Mpl ≡ √

h̄c/GN  1.22 × 1019 GeV/c2. In this sense it has been considered (and
it is still considered by many) that only ultrahigh-precision (or Planck scale energy)
experiments would be able to test QG models.

It was however realized (mainly over the course of the past decade) that the
situation is not quite as bleak as it appears. In fact, quantum gravitational models
beyond GR have shown that there can be several of what we term low-energy “relic
signatures” of quantum gravitational effects which would lead to deviations from the
standard theory predictions (SM plus GR) in specific regimes. Some of these new
phenomena, which comprise what is often termed “QG phenomenology,” include:

• Quantum decoherence and state collapse [1]
• QG imprint on initial cosmological perturbations [2]
• Cosmological variation of couplings [3, 4]
• TeV black holes, related to extra dimensions [5]
• Violation of discrete symmetries [6]
• Violation of space-time symmetries [7]

In this chapter we will focus upon the phenomenology of violations of space-time
symmetries, and in particular of local Lorentz invariance (LLI), a pillar both of quan-
tum field theory as well as GR (LLI is a crucial part of the Einstein’s equivalence
principle on which metric theories of gravity are based).

2 A Brief History of Lorentz Breaking

Contrary to the common perception, explorations of the possible breakdown of LLI
have a long standing history. It is however undeniable that the past 20 years have
witnessed a striking acceleration in the development both of theoretical ideas as



Lorentz breaking effective field theory models . . . 369

well as of phenomenological tests previously unimagined. We shall here present an
admittedly incomplete review of these developments.

2.1 Early Works

The possibility that Lorentz invariance violation (LV) could play a role in physics
dates back at least 60 years [8–13] and in the 1970s and 1980s there was
already a well-established literature investigating the possible phenomenological
consequences of LV (see, e.g., [14–19]).

The relative scarcity of these studies in the field was due to the general expec-
tation that new effects would only appear in particle interactions where the particle
energies were of the order of the Planck scale, as only at those energies would the
natural QG suppression by powers of the Planck scale be overcome. However, it
was only in the 1990s that it was clearly realized that there are special situations in
which new effects, even if highly suppressed, can have observational consequences.
These situations were termed “windows on QG.”

2.2 The Dawn of QG Phenomenology

At first glance, it appears hopeless to search for effects suppressed by the Planck
scale. Even the most energetic particles ever detected (ultrahigh-energy cosmic rays
(UHECR), see, e.g., [20, 21]) have E � 1011 GeV ∼ 10−8Mpl . However, tiny
corrections can be magnified into an observational effect if the physics in ques-
tion involves not just the Planck scale and the energy scale of the particle, but also
another scale such as the mass of a light particle or a cosmological travel time. In
these situations observables can be constructed that leverage the scales against one
another to create an actually measurable effect at achievable energies (i.e., anything
from the energies in tabletop optical experiments to cosmic rays. See, e.g., [7, 22]
for an extensive review).

A partial list of these windows on QG includes:

• Sidereal signal variations as a laboratory apparatus such as an optical cavity
moves with respect to a preferred frame or direction

• Cumulative effects: long baseline dispersion and vacuum birefringence (e.g., of
signals from gamma-ray bursts (GRBs), active galactic nuclei (AGN), and
pulsars)

• Anomalous (normally forbidden) threshold reactions allowed by LV terms
(e.g., photon decay, vacuum Čerenkov (VC) effect)

• Shifting of existing threshold reactions (e.g., photon annihilation from blazars,
ultrahigh-energy (UHE) protons pion production)

• Lorentz violation induced decays not characterized by a threshold (e.g., decay of
a particle from one helicity to the other or photon splitting)
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• Maximum attainable particle velocities different from c (e.g., synchrotron peak
from supernova remnants)

• Dynamical effects of LV background fields (e.g., gravitational coupling and
additional wave modes)

It is rare one can assign a definitive “paternity” to a field, and our so-called QG
phenomenology is no exception. However, among the papers commonly accepted
as seminal we can cite the one by Kostelecký and Samuel [23] that already in 1989
envisaged, within a string field theory framework, the possibility of nonzero vacuum
expectation values (VEV) for some Lorentz breaking operators. This work led later
on to the development of a systematic extension of the SM (what was later on called
“minimal Standard Model extension,” mSME) incorporating all possible Lorentz
breaking and power counting renormalizable operators (i.e., of mass dimension ≤ 4)
by Colladay and Kostelecký [24]. This provided a framework for computing, in
effective field theory (EFT), the observable consequences for many experiments and
led to much experimental work setting limits on the LV parameters in the Lagrangian
(see, e.g., [25] for a review).

Another seminal paper was that of Amelino-Camelia and collaborators [26]
which highlighted the possibility to cast observational constraints on Planck-
suppressed violations of Lorentz invariance in the photon dispersion relation by
examining the propagation of light from remote astrophysical sources like GRBs
and AGN. Finally, we also mention the influential papers by Coleman and Glashow
[27–29] which brought the subject of systematic tests of Lorentz violation to the
attention of the broader community of particle physicists.

Let us stress that this is necessarily an incomplete account of the literature that
investigated departures from special relativity. Several papers appeared in the same
period and some of them anticipated many important results, see, for example, [30,
31]; unfortunately at the time of their appearance they were hardly noticed (and seen
by many as too “exotic”).

In the first decade after 2000 the field reached a concrete maturity and many
papers pursued both a systematization of the various frameworks and the available
constraints (see ,e.g., [32–34]). In this sense another crucial contribution was the
development of an EFT approach also for higher order (mass dimension greater
than four), naively non-power counting renormalizable, operators 1. This was first
done for rotationally invariant dimension-five operators in quantum electrodynamics
(QED) [38] by Myers and Pospelov which was later on extended to larger sections of
the SM by Bolokhov and Pospelov [39] and dimension-six operators by Mattingly
[40]. The general set of higher-dimension operators for free photons and fermions
has been recently cataloged by Kostelecky and Mewes [41, 42].

1 Anisotropic scaling [35–37] techniques were recently recognized to be the most appropriate way
of handling higher-order operators in Lorentz breaking theories and in this case the highest-order
operators are indeed crucial in making the theory power counting renormalizable. This is why we
shall adopt sometimes the expression “naively non-renormalizable.”
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Why did all this attention to Lorentz breaking frameworks and observations
develop in the late 1990s and in the first decade of the new century? The answer
is twofold as it is related to important developments coming from experiments and
observation as well as from theoretical investigations. Observationally, there were
a number of puzzling observations related to gravity that spawned a correspond-
ing growth in the zoo of QG models/scenarios with a low-energy phenomenology.
For example, in cosmology these are the years of the striking realization that our
universe is undergoing an accelerated expansion phase [43, 44] which apparently
requires a new exotic cosmological fluid, called dark energy, which violates the
strong energy condition (to be added to the already well known, and still mysterious,
dark matter component).

Also in the same period high-energy astrophysics provided some new obser-
vational puzzles directly related to Lorentz symmetry, first with the apparent
absence of the Greisen–Zatsepin–Kuzmin (GZK) cutoff [45, 46], a suppression
of the high-energy tail of the UHECR spectrum due to UHECR interaction with
cosmic microwave background (CMB) photons, as claimed by the Japanese exper-
iment AGASA [47], and later on with the so-called TeV-gamma rays crisis, that
is, the apparent detection of a reduced absorption of TeV gamma rays emitted by
AGN [48]. Both these “crises” later on subsided or at least alternative, more ortho-
dox explanations for them were advanced. However, their existence undoubtedly
boosted the research in the field at that time.

It is perhaps this past “training” that made several collaborations within the QG
phenomenology community strongly emphasize the apparent incompatibility of the
recent CERN–LNGS based experiment OPERA [49] measurement of superluminal
propagation of muonic neutrinos with Lorentz violating EFT (see, e.g., [50–53]).
There is now evidence that the OPERA measurement might be flawed due to
unaccounted experimental errors and furthermore has been refuted by a similar mea-
surement of the ICARUS collaboration [54]. Nonetheless, this claim propelled a
new burst of activity in Lorentz breaking phenomenology which might still provide
useful insights for future searches.

Parallel to these exciting developments on the experimental/observational side,
theoretical investigations provided new motivations for Lorentz breaking searches
and constraints. Indeed, specific hints of LV arose from various approaches to QG.
Among the many examples are the abovementioned string theory tensor VEVs [23]
and space-time foam models [26, 55–58], then semiclassical spin-network calcu-
lations in Loop QG [59], noncommutative geometry [60–62], some brane-world
backgrounds [63].

More recently, it cannot be omitted the role associated with the development
of Lorentz breaking theories of gravity from early studies [64–68] to more
systematic approaches such as Einstein-aether [69–71] and Hořava–Lifshitz [36]
gravity. Finally, there was the vigorous development over the same time of the so-
called condensed matter analogues of “emergent gravity” [72], which showed how
approximate LLI can arise from a fundamental Galilean theory.

Many of these approaches yield a low energy description of Lorentz violation in
terms of EFT, and so before we delve into the specific operators that people have
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considered we remark on some generic aspects of embedding phenomenologically
acceptable Lorentz violation in a low-energy EFT.

3 Modified Dispersion Relations and Their Naturalness

We will concentrate here on the free field modifications to EFT from LV and hence
talk primarily about modifications to dispersion relations. This restriction is not as
limiting as it might seem. For example, the necessary LV interaction terms generated
when one wants to maintain gauge covariance in an LV theory [24] are controlled by
the same LV coefficients that control the free theory, so no new LV coefficients are
introduced. Since most experimental work is sensitive to free field behavior, con-
straints on those coefficients are generated from the phenomenology of the free part
of the Lagrangian rather than the interaction part. One can of course add other LV
interaction terms by hand—such terms have not been as extensively studied in the
literature and so we will not focus on them here. There is one caveat: When one
sees constraints in the literature from modified particle decay mechanisms there is
usually an assumption that the interactions of the SM hold with only small modifica-
tions if any. This is reasonable, as if there is only a tiny modification to the free field
equations then by the argument above about how gauge generated LV interaction
terms are controlled by the same coefficients as the free field part, the corresponding
modifications to the interaction terms would also be small. This would, in general,
modify the rate of various reactions but the rate difference, given the constraints
detailed below, would be unobservable.

Turning back to the issues of modified dispersion relations in LV EFT, one has to
first recognize that calculations of a specific dispersion modification from a specific
QG theory are in general problematic and that cases where one can do so [55] are the
exception rather than the norm. A more reasonable approach is to, therefore, sim-
ply consider a generic momentum expansion of a dispersion relation in a specified
observer’s frame of

E2 = p2 +m2 +
∞∑
N=1

η
(N )
α1α2...αN

pα1pα2 ...pαN , (1)

where the low energy speed of light c = 1 and each η(N ) is an arbitrary rank N tensor
with mass dimension 2 −N and the αi indices run over space-time coordinates.

Let us note that this ansatz assumes that the propagating mass eigenstates are also
eigenstates of the Lorentz violating physics. This does not need to be the case, and
having the eigenstates of Lorentz violation not match the mass eigenstates can be
useful when trying to analyze the effects of Lorentz violation on neutrinos. However,
since such a mismatch in other sectors would introduce oscillations and other unseen
effects for particles other than neutrinos, that is, those particles we are primarily
concerned about, we shall not consider such possibilities outside of the neutrino
sector.



Lorentz breaking effective field theory models . . . 373

The η(N )’s can be mapped on to coefficients in a corresponding Lagrangian,
although we note for the reader that in a generic Lagrangian there are many other
coefficients that do not influence free field dispersions (c.f. [41]). Needless to say,
as N increases, there are a multitude of possible dispersions for even low N as the
number of components of η(N ) scales as 4N . Testing all such possible combina-
tions can be done, of course, and would be the most systematic way to evaluate the
possibility of Lorentz violation.

One can, however, simplify the possible set of dispersions by making various
assumptions such as Charge/parity/time-reversal (CPT) invariance, rotational invari-
ance, etc. Rotational invariance is one of the most common assumptions made, for
three reasons 2. The first is that it dramatically reduces the number of possible dis-
persion terms while still preserving interesting phenomenology. Second, in many
instances rotational invariance is more stringently tested than boost invariance so it
provides a good model for testing boost invariance alone. Finally, many QG mod-
els out there that do not predict exact Lorentz invariance still preserve rotational
invariance. (See [34] for further discussion about this assumption.)

With rotational invariance in mind in some frame, a common assumption for the
dispersion relation is then

E2 = p2 +m2 +
∞∑
N=1

η̃Np
N , (2)

where p is the magnitude of the three-momentum. This type of expansion assumes
high-energy particles and that the corrections are small, so anywhere E would have
appeared on the right-hand side of (2) it is replaced by p. In general one can allow
the LV parameters η̃N to depend on the particle type, and indeed it turns out that
they must sometimes be different but related in certain ways for photon polarization
states, and for particle and antiparticle states, if the framework of EFT is adopted.
The lowest-order LV terms (p, p2, p3, p4) have been the terms that have generated
the most attention (c.f. [7, 73] and references therein)3.

3.1 The Naturalness Problem

From an EFT point of view the only relevant operators should be the lowest order
ones, that is, those of mass @@dimension 3, 4 corresponding to terms of order

2 A notable exception to this assumption is the SME and associated tests. Rotational invariance is
not assumed in the program of the SME as it considers all terms at each mass dimension.
3 We disregard here the possible appearance of dissipative terms [74] in the dispersion relation,
as this would correspond to a theory with unitarity loss and to a more radical departure from
standard physics than that envisaged in the framework discussed herein (albeit a priori such dissi-
pative scenarios are logically consistent and even plausible within some quantum/emergent gravity
frameworks).
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p and p2 in the dispersion relation. Situations in which higher-order operators
contribute to the dispersion as much as the lowest order ones at some energy are
only possible at the cost of a severe, indeed arbitrary, fine-tuning of the coeffi-
cients η̃N (which we discuss below). However, as we shall see current observational
constraints are incredibly tight on dimension-three operators and very severe on
dimension four ones. This is kind of obvious, given that these operators would end
up modifying the dispersion relation of elementary particles at easily achievable
energies. Dimension 3 operators would dominate as p → 0 while the dimen-
sion four ones would generically induce a species dependent, constant shift in the
limit speed for elementary particles. Hence, one is left with two less than perfect
approaches.

First, one can assume the standard EFT hierarchy, stop testing at operators of
mass dimension three and four, and, due to the tightness of limits, argue that Lorentz
invariance is likely an exact symmetry of nature and that QG/emergent models that
do not respect the symmetry should be discounted. Or, one can avoid assumptions
about whether any additional new physics comes into play between everyday ener-
gies and the QG scale and so not assume a particular hierarchy between operators of
various mass dimension. This is the approach many phenomenologists take: Simply
start at the lowest-dimension operators, derive constraints, and work upward in N
as far as one can observationally go without imposing any necessary hierarchy.

Not assuming a necessary hierarchy (3) and simply constraining the coefficients
η̃N at each order is perfectly good phenomenologically, and we will take that
approach going forward, but it is important that the reader understand why it is the-
oretically unnatural. The reason such a hierarchy is unnatural is simple: In EFT,
radiative corrections will generically allow the percolation of higher-dimension
Lorentz violating terms into the lower-dimension terms due to the interactions of
particles [75, 76].

In EFT, loop integrals will be naturally cutoff at the EFT breaking scale, if such
scale is as well the Lorentz breaking scale the two will effectively cancel leading to
unsuppressed, coupling dependent, contributions to the base dimension four kinetic
terms that generate the usual propagators. Hence, radiative corrections will not allow
a dispersion relation with only p3 or p4 Lorentz breaking terms but will automat-
ically induce extra unsuppressed LV terms in p and p2 which will be naturally
dominant. One could argue that renormalization group (RG) effects might naturally
suppress the sizes of these coefficients at low energies. As we shall see, in spe-
cific models where the RG flow has been calculated, the running of LV coefficients
is only logarithmic and so there is no indication that RG flow will actually drive
coefficients to zero quickly in the infrared.

Several ideas have been advanced in order to resolve such a “natural-
ness problem” (see, e.g., [34]). While it would be cumbersome to review all
the proposals here, we point out two of the more prominent ideas, both of
which involve introducing a new scale into the problem in addition to the
Lorentz violating scale. If there are two scales M and μ involved, there can
be a hierarchy of LV coefficients different than the naive one, for example,
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η̃1 = η1
μ2

M
, η̃2 = η2

μ

M
, η̃3 = η3

1

M
(3)

or

η̃2 = η2
μ2

M2
, η̃4 = η4

1

M2
, (4)

where M is the QG scale, usually taken to be the Planck scale, μ is some other far
lower-energy scale, and ηN is a de-dimensionalized coefficient usually assumed to
be O(1). The exact hierarchy, whether it involves terms of every mass dimension as
in (3), or only even dimension as in (4) (which can be accomplished up to N = 4
by imposing CPT) is model dependent. We now briefly describe two ideas that have
been put forward that would generate such scales.

3.1.1 A New Symmetry

Most of the aforementioned proposals implicitly assume that the Lorentz breaking
scale is the Planck scale. One then needs the EFT scale (which can be naively iden-
tified with what we called previously μ) to be different from the Planck scale and
actually sufficiently small so that the lowest order “induced” coefficients can be sup-
pressed by suitable small ratios of the kind μp/Mq where p, q are some positive
powers.

A possible solution in this direction can be provided by introducing what is com-
monly called a “custodial symmetry” — a symmetry other than Lorentz that forbids
lower-dimension operators and is broken at the low-scale μ. The most plausible
candidate for this role is supersymmetry (SUSY) [77, 78]. SUSY is by definition a
symmetry relating fermions to bosons, that is, matter with interaction carriers. As
a matter of fact, SUSY is intimately related to Lorentz invariance. Indeed, it can be
shown that the composition of at least two SUSY transformations induces space-
time translations. However, SUSY can still be an exact symmetry even in presence
of LV and can actually serve as a custodial symmetry preventing certain operators
to appear in LV field theories.

The effect of SUSY on LV is to prevent dimension ≤ 4, renormalizable LV
operators to be present in the Lagrangian. Moreover, it has been demonstrated [77,
78] that the RG equations for supersymmetric QED plus the addition of rotationally
invariant dimension-five operators [38] do not generate lower-dimensional operators
if SUSY is unbroken. However, this is not the case for our low-energy world, of
which SUSY is definitely not a symmetry.

The effect of soft SUSY breaking was also investigated in [77, 78]. It was found
there that, as expected, when SUSY is broken the renormalizable operators are gen-
erated. In particular, dimension κ ones arise from the percolation of dimension κ+2
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LV operators4. The effect of SUSY soft breaking is, however, to introduce a suppres-
sion of orderm2

s /MPl (κ = 3) or (ms/MPl)2 (κ = 4), wherems  1 TeV is the scale
of SUSY soft breaking. Although, given present constraints, the theory with κ = 3
needs a lot of fine-tuning to be viable, since the SUSY-breaking-induced suppres-
sion is not enough powerful to kill linear modifications in the dispersion relation of
electrons, if κ = 4 then the induced dimension-four terms are suppressed enough,
provided ms < 100 TeV. Current lower bounds from the Large Hadron Collider are
at most around 950 GeV for the most simple models of SUSY [79] (the so called
constrained minimal supersymmetric standard model, CMSSM).

Finally, it is also interesting to note that the analogue model of gravity can be
used as a particular implementation of the abovementioned mechanism for avoiding
the so called naturalness problem via a custodial symmetry. This was indeed the
case of multi-Bose–Einstein condensate (or multi-BEC) [80, 81].

3.1.2 Gravitational Confinement of Lorentz Violation

The alternative to an extra symmetry is to turn the problem upside down and posit
that the Lorentz breaking scale (the M appearing in the above dispersion rela-
tions) is not set by the Planck scale, but is instead the lower-scale μ. If one does
this and begins with a theory which has higher-order Lorentz violating operators
only in the gravitational sector, then one can hope that the gravitational coupling
GN ∼ M−2

Pl will suppress the “percolation” to the matter sector where the con-
straints are strongest. Matter Lorentz violating terms will all possess factors of the
order (μ/MPl)2 which can become strong suppression factors if μ � MPl. This is
the idea underlying the work presented in [82] which applies it to the special case
of Hořava–Lifshitz gravity. There it was shown that indeed a workable low-energy
limit of the theory can be derived through this mechanism which apparently is fully
compatible with existing constraints on Lorentz breaking operators in the matter
sector. In our opinion, this new route deserves further attention and should be more
deeply explored in the future.

4 Dynamical Frameworks I: Rotationally Invariant CPT Even
Standard Model Extension with Mass Dimension 5 and 6
Operators

We now turn from theoretical considerations about naturalness and retreat to the
phenomenological approach of “constrain everything as best as one can do observa-
tionally.” There are various systematic frameworks and approaches for this. The

4 We consider here only κ = 3, 4, for which these relationships have been demonstrated.
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SME contains all possible Lorentz violating tensors that can be coupled to SM
fields without changing the field content or violating gauge symmetry. The SME
can be split into the ‘mSME” [23] of Kostelecky et. al., which contains only
renormalizable operators, and the full SME, which contains the infinite tower of
non-renormalizable higher-mass dimension operators. As one can imagine, there
are dozens of possible operators even for the renormalizable case, and the number
of operators up to mass dimension six is in the hundreds. Many of the operators can
be constrained by similar methods, so for the purposes of this introduction we will
concentrate on the most well-studied sector of the SME, that of rotationally invari-
ant QED. In particular, we will concentrate on the interactions of photons, electrons,
and protons.

Usually when defining a field theory, one starts with the renormalizable operators
and proceeds in increasing mass dimension. Here we start with higher-mass dimen-
sion and work backwards for purely pedagogical reasons—many of the reactions
and constraints we describe in detail for the higher-dimension operators will also be
useful for setting constraints on various lower-dimension operators. The first mass
dimension we explore is mass dimension six, as this is the highest-mass dimension
where all the operators have been classified and significantly studied. We break the
operators into CPT even and odd classes as a different set of observations can be
used to constraint CPT odd operators.

4.1 The Model

A list of CPT even, rotationally invariant mass dimension five- and six-LV terms
was computed in [40] through the same procedure used by Myers and Pospelov
for dimension-five LV (see below), and this has been extended to nonrotationally
invariant operators in [41, 42]. With rotation invariance all LV tensors must reduce
to suitable products of a time-like vector field, usually denoted by uα . This is usually
taken to be unit, so that in the frame of the observer whose world line is tangent to
uα , uα has components (1, 0, 0, 0). This allows us to express constraints solely in
terms of the numerical coefficient involved in any uα-matter interaction term. Of
course, the actual direction of uα is technically arbitrary. However, the common
choice, which we make here, is to define uα to be aligned with the rest frame of
the cosmic microwave background. In terms of uα the known mass dimension-six
fermion operators are

− i

M2
Pl

ψ(u ·D)3(u · γ )(α(6)
L PL + α(6)

R PR)ψ (5)

− i

M2
Pl

ψ(u ·D)�(u · γ )(α̃(6)
L PL + α̃(6)

R PR)ψ ,

where PR,L are the usual left- and right-spin projectors PR,L = (1 ± γ 5)/2 and D
is the gauge covariant derivative. All the coefficients α are dimensionless because
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we factorize suitable powers of the Planck mass out explicitly. In addition there is a
CPT even dimension-five term [40]

− 1

MPl
ψ(u ·D)2(α(5)

L PL + α(5)
R PR)ψ . (6)

The known photon operator is

− 1

2M2
Pl

β(6)
γ F

μνuμu
σ (u · ∂)Fσν . (7)

From these operators, the dispersion relations of fermions and photons can be
computed, yielding

E2 − p2 −m2 = α
(6)
R E

3

M2
Pl

(E + sp) + α
(6)
L E

3

M2
Pl

(E − sp) + m

MPl
(α(5)
R + α(5)

L )p2

+ α(5)
R α

(5)
L

p4

M2
Pl

(8)

ω2 − k2 = β(6) k
4

M2
Pl

,

wherem is the electron mass and s = σ ·p/|p| is the helicity of the fermions. The α̃
terms contribute asm2/M2

Pl, that is, are highly suppressed, and so will be neglected.
In general, a LV dispersion for a particle with a certain set of quantum numbers

(mass, spin, etc.) will be of the form E2 = p2+f (n)pn/Mn−2
Pl , and so we will often

refer to type “n” LV. For example, because the high-energy fermion states are almost
exactly chiral, we can further simplify the fermion dispersion relation Eq. (9) (with
R = +, L = −)

E2 = p2 +m2 + m

MPl
η(2)p2 + η(4)

±
p4

M2
Pl

, (9)

where η(n) is the dispersion coefficient of the LV pn term in the dispersion relation
for the fermion. We choose η as the coefficient as this nomenclature is common
in the literature. Similarly, ξ (n) will refer to the generic dispersion coefficient for a
photon (so in the case above ξ (4) = β(6)). As it is suppressed by a factor of order
m/MPl, we will drop the quadratic modification generated by the dimension-five
operator. Indeed this can be safely neglected, provided that E >

√
mMPl. Let us

stress however, that this is exactly an example of a dimension-four LV term with a
natural suppression, which for electron is of orderme/MPl ∼ 10−22. Therefore, any
limit larger than 10−22 placed on this term would not have to be considered as an
effective constraint (to date, the best constraint for a rotationally invariant electron
LV term of dimension four is O(10−16) [83]). Note that modulo this the CPT even
dimension-five operator for fermions has the same effect on the dispersion as the
CPT even dimension six in that it generates a p4 term, so we will generally just write
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constraints directly on η(6)
± . It may seem puzzling that in a CPT invariant theory we

distinguish between different fermion helicities in (9). However, although they are
CPT invariant, some of the LV terms displayed in Eq. (7) are odd under P and T.

CPT invariance allows us to determine a relationship between the LV coeffi-
cients of fermions and antifermions. Indeed, to obtain these we simply realize that,
by CPT, the dispersion relation of the antifermion is given by (9), with the replace-
ments s → −s and p→ −p. If q, q denote a charge fermion and antifermion, then
the relevant antifermion coefficient η(6)

q is such that η(6)
q± = η(6)

q∓ , where q± indicates
an antifermion of positive/negative helicity (and similarly for the q±). Let us antici-
pate that the same argument used above leads to the conclusions that for dispersion
relations with odd powers of “n” (e.g., p3-type dispersion relations) one obtains
η

(nodd )
q± = −η(nodd )

q∓ . Hence, for arbitrary “n” one would expect η(n)
q± = (−1)nη(n)

q∓ .
This different behavior between even and odd powers “n”-type dispersion relations
leads to quite distinct phenomenologies as we shall see later.

4.2 Constraints

4.2.1 Threshold Reactions

Threshold reactions with UHECR provide the only significant constraints on the
above operators. A threshold reaction is a reaction that does not occur above a cer-
tain energy scale, which we call the “threshold energy.” An interesting and useful
phenomenology of threshold reactions is introduced by LV in EFT; also, threshold
theorems can be rederived [33]. Sticking to the present case of rotational invari-
ance and monotonic dispersion relations (see [84] for a generalization to more
complex situations), the kinematics of threshold reactions yield a number of useful
phenomenological facts about these reactions [32]:

• Threshold configurations still correspond to head-on incoming particles and
parallel outgoing ones.

• The threshold energy of existing threshold reactions can shift, and upper thresh-
olds (i.e., maximal incoming momenta at which the reaction can happen in any
configuration) can appear.

• Pair production can occur with unequal outgoing momenta.
• New, normally forbidden reactions can be viable.

LV corrections are surprisingly important in threshold reactions because the LV term
(which as a first approximation can be considered as an additional energy-dependent
“mass”) should be compared not to the momentum of the involved particles, but
rather to the (invariant) mass of the heaviest particle in the interaction. Thus, an
estimate for the threshold energy is

pth 
(
m2Mn−2

Pl

η(n)

)1/n

, (10)
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Table 1 Values of pth,
according to Eq. (10), for
different particles involved in
the reaction: neutrinos, elec-
trons, and protons. Here we
assume η(n)  1

mν  0.1 eV me  0.5 MeV mp  1 GeV

n = 2 0.1 eV 0.5 MeV 1 GeV

n = 3 500 MeV 14 TeV 2 PeV

n = 4 33 TeV 74 PeV 3 EeV

where m is the mass of the heaviest particle involved in the reaction. Interesting
values for pth are discussed, for example, in [32] and given in Table 1. Reactions
involving neutrinos are the best candidate for observation of LV effects, whereas
electrons and positrons can provide results for n = 3 theories but cannot readily be
accelerated by astrophysical objects up to the required energy for n = 4. In this case
reactions of protons can be very effective, because cosmic rays can have measured
energies well above 3 EeV. We now discuss three threshold reactions are of particu-
lar use when constraining n = 4 LV.

LV-Allowed Threshold Reactions: γ -decay
The decay of a photon into an electron/positron pair is made possible by LV because
energy-momentum conservation may now allow otherwise forbidden reactions to
occur. Since the decay is a reaction described by the fundamental QED vertex, the
rate once above threshold will be quite fast. The threshold for this process is set by
the condition [34]

kth ≈
(

m2Mn−2
Pl

(F (η(n), ξ (n)))n−2

)1/n

, (11)

where F (η(n), ξ (n)) is a linear combination of η(n), ξ (n). Notably, the electron–
positron pair can be created with slightly different outgoing momenta (asymmetric
pair production). Furthermore, the decay rate is extremely fast above threshold [34]
and is of the order of (10 ns)−1 (n = 3) or (10−6 ns)−1 (n = 4) if the LV coefficients
are of O(1).

LV-Allowed Threshold Reactions: Vacuum Čerenkov
In the presence of LV, the process of VC radiation q± → q±γ , where q is a charged
fermion, can occur as this is just a rotated diagram of γ -decay. The threshold energy
of the reaction is roughly the same and so is also given by

Eth ≈
(

m2Mn−2
Pl

(F (η(n), ξ (n))n−2

)1/n

. (12)

Just above threshold this process is also an extremely efficient method of energy
loss. Note that while γ -decay destroys the incoming photon, the VC effect merely
is an energy loss process.
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LV-Modified Threshold Reactions: Photon Absorption
A process related to photon decay is photon absorption, γ γ → e+e−. Unlike photon
decay, this is allowed in Lorentz invariant QED and it plays a crucial role in making
our universe opaque to gamma rays above tens of TeVs.

If one of the photons has energy ω0, the threshold for the reaction occurs in
a head-on collision with the second photon having the momentum (equivalently
energy) kLI = m2/ω0. For example, if kLI = 10 TeV (the typical energy of
inverse Compton-generated photons in some AGN) the soft photon threshold ω0
is approximately 25 meV, corresponding to a wavelength of 50 μ.

In the presence of Lorentz violating dispersion relations the threshold for this
process is in general altered, and the process can even be forbidden. Moreover, as
firstly noticed by Kluźniak [85], in some cases there is an upper threshold beyond
which the process does not occur. Physically, this means that at sufficiently high
momentum the photon does not carry enough energy to create a pair and simul-
taneously conserve energy and momentum. Note also, that an upper threshold can
only be found in regions of the parameter space in which the γ -decay is forbidden,
because if a single photon is able to create a pair, then a fortiori two interacting
photons will do [32].

Let us exploit the abovementioned relation ηe
−
± = (−1)nηe

+
∓ between the

electron–positron coefficients, and assume that on average the initial state is unpo-
larized. In this case, using the energy-momentum conservation, the kinematics
equation governing pair production is the following [34]:

m2

kny (1 − y) =
4ωb
kn−1

+ ξ̃ − η̃
(
yn−1 + (−1)n (1 − y)n−1

)
, (13)

where ξ̃ ≡ ξ (n)/Mn−2 and η̃ ≡ η(n)/Mn−2 are respectively the photon’s and
electron’s LV coefficients divided by powers of M , 0 < y < 1 is the fraction of
momentum carried by either the electron or the positron with respect to the momen-
tum k of the incoming high-energy photon and ωb is the energy of the target photon.
The analysis is more complicated than simple one-particle initial-state decay or
radiative processes. In particular it becomes necessary to sort out whether the thresh-
olds are lower or upper ones and whether they occur with the equal or different pair
momenta.

4.2.2 Constraints from GZK Secondaries

One of the most interesting features related to the physics of UHECR is the GZK
cutoff [45,46], a suppression of the high-energy tail of the UHECR spectrum arising
from interactions with CMB photons, according to pγ → Δ+ → pπ0(nπ+). This
process has a (LI) threshold energy Eth  5 × 1019 (ωb/1.3 meV)−1 eV (ωb is the
target photon energy). Experimentally, the presence of a suppression of the UHECR
flux was claimed only recently [20, 21]. Although the cutoff could be also due to
the finite acceleration power of the UHECR sources, the fact that it occurs at the
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expected energy favors the GZK explanation. The results presented in [86] seemed
to further strengthen this hypothesis (but see further discussion below).

Rather surprisingly, significant limits on ξ = ξ (6) and η = η(6) for the pro-
ton can be derived by considering UHE photons generated as secondary products
of the GZK reaction [87, 88]. This can be used to further improve the constraints
on dimension-five LV operators and provide a first robust constraint of QED with
dimension-six CPT even LV operators.

These UHE photons originate because the GZK process leads to the production
of neutral pions that subsequently decay into photon pairs. These photons are mainly
absorbed by pair production onto the CMB and radio background. Thus, the fraction
of UHE photons in UHECRs is theoretically predicted to be less than 1 % at 1019 eV
[89]. Several experiments imposed limits on the presence of photons in the UHECR
spectrum. In particular, the photon fraction is less than 2.0, 5.1, 31, and 36 %
(95 % C.L) at E = 10, 20, 40, 100 EeV, respectively [90, 91].

However, we have just seen that pair production can be strongly affected by LV.
In particular, the (lower) threshold energy can be slightly shifted and in general an
upper threshold can be introduced [32]. If the upper threshold energy is lower than
1020 eV, then UHE photons are no longer attenuated by the CMB and can reach
the Earth, constituting a significant fraction of the total UHECR flux and thereby
violating experimental limits [87, 88, 92].

Moreover, it has been shown [88] that the γ -decay process can also imply a
significant constraint. Indeed, if some UHE photon (Eγ  1019 eV) is detected by
experiments (and the Pierre Auger Observatory (PAO) will be able to do so in few
years [90]), then γ -decay must be forbidden above 1019 eV.

In conclusion we show in Fig. 1 the overall picture of the constraints of QED
dimension-six LV operators, where the green dotted lines do not correspond to
real constraints, but to the ones that will be achieved when PAO will observe, as
expected, some UHE photon.

5 Dynamical Frameworks II: Rotationally Invariant CPT Odd
Standard Model Extension with Mass Dimension 5 Operators

5.1 The Model

Myers and Pospelov [38] found that there are essentially only three operators of
dimension five, quadratic in the fields, that can be added to the QED Lagrangian
that give rise to dispersion modifications of type n = 3.5 These extra-terms are the

5 Actually these criteria allow the addition of other (CPT even) terms, but these would not lead
to modified dispersion relations (they can be thought of as extra, Planck suppressed, interaction
terms) [39].
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Fig. 1 LV induced by dimension-six operators. The LV parameter space is shown. The allowed
regions are shaded grey. Green dotted lines represent values of (η, ξ ) for which the γ -decay thresh-
old kγ−dec  1019 eV. Solid, blue lines indicate pairs (η, ξ ) for which the pair production upper
threshold kup  1020 eV. Picture taken from [93]

following:

− ξ

2MPl
umFma(u ·D)(unF̃

na) + 1

2MPl
umψγm(ζ1 + ζ2γ5)(u ·D)2ψ , (14)

where F̃ is the dual of F and ξ , ζ1,2 are dimensionless parameters. All these terms
also violate CPT symmetry. More recently, this construction has been extended to
the whole SM [39, 41, 42].

From (14) the dispersion relations of the fields are modified as follows. For the
photon one has

ω2± = k2 ± ξ (3)

MPl
k3 , (15)

where ξ (3) = ξ and the + and − signs denote right and left circular polarization,
while for the fermion (with the + and − signs now denoting positive and negative
helicity states)

E2± = p2 +m2 + η(3)
±
p3

MPl
, (16)
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with η(3)
± = 2(ζ1 ± ζ2). For the antifermion, it can be shown by simple “hole inter-

pretation” arguments that the same dispersion relation holds, with η(3),af
± = −η(3),f

∓
where af and f superscripts denote respectively antifermion and fermion coeffi-
cients [34, 94]. Note that if CPT ends up being a fundamental symmetry of nature
without Lorentz symmetry it would forbid all of the above mentioned CPT odd
operators.

5.2 An Aside on Naturalness

With the specific dimension-five operators in hand, we can now return to a previ-
ously mentioned point, that RG flow does not significantly suppress the sizes of
operators at low energies. Let us consider the evolution of the dimension-five LV
parameters. Bolokhov and Pospelov [39] addressed the problem of calculating the
RG equations for QED and the SM extended with dimension 5 operators that violate
Lorentz symmetry. In the framework defined above, assuming that no extra physics
enters between the low energies at which we have modified dispersion relations and
the Planck scale at which the full theory is defined, the evolution equations for the
LV terms in Eq. (14) that produce modifications in the dispersion relations, can be
inferred as

dζ1

dt
= 25

12

α

π
ζ1 ,

dζ2

dt
= 25

12

α

π
ζ2− 5

12

α

π
ξ ,

dξ

dt
= 1

12

α

π
ζ2− 2

3

α

π
ξ , (17)

where α = e2/4π  1/137 (h̄ = 1) is the fine structure constant and t = ln (μ2/μ2
0)

with μ and μ0 two given energy scales. (Note that the above formulae are given
to lowest order in powers of the electric charge, which allows one to neglect the
running of the fine structure constant.)

These equations show that the running is only logarithmic and therefore low-
energy constraints are robust: O(1) parameters at the Planck scale are still O(1)
at lower energy. Moreover, they also show that η(3)

+ and η(3)
− cannot, in general, be

equal at all scales. Similar calculations in the context of the renormalizable SME
give equivalent results.

5.3 Constraints

We now detail some of the constraints that can be put on the CPT odd dimension-five
operators. For a thorough review of these constraints, see also [93].

5.3.1 Photon Time of Flight

Although photon time-of-flight constraints from high-energy photons propagat-
ing from cosmologically distant objects currently provide limits several orders of
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magnitude weaker than other constraints, they have been widely adopted in the
astrophysical community. They were one of the first to be proposed in the semi-
nal paper [26]. More importantly, given their purely kinematical nature, they may
be applied to a broad class of frameworks, even beyond EFT with LV.

In general, a photon dispersion relation in the form of (15) implies that photons
of different colors (wave vectors k1 and k2) travel at slightly different speeds. Let us
first ignore any birefringence effects, and just consider some coefficient ξ (n) that is
universal for all photons. Then, upon propagation on a cosmological distance d, the
effect of energy dependence of the photon group velocity produces a time delay

Δt (n) = n− 1

2

kn−2
2 − kn−2

1

Mn−2
Pl

ξ (n) d , (18)

which clearly increases with d and with the energy difference as long as n > 2.
The largest systematic error affecting this method is the uncertainty about whether
photons of different energy are produced simultaneously in the source.

One way to alleviate systematic uncertainties is to apply EFT which gives more
information than just a modified dispersion for photons. In particular, one knows that
the term generated by ξ (3), in an EFT context implies birefringence. Furthermore,
photon beams generally are not circularly polarized; thus, they are a superposition
of super and subluminal circularly polarized modes. Hence, one can remove any
systematic uncertainty relating to source dynamics or measured energy by measur-
ing the velocity difference between the two polarization states at a single energy,
corresponding to

Δt = 2|ξ (3)|k d/MPl . (19)

This bound would require that both polarizations be observed and that no spuri-
ous helicity-dependent mechanism (such as, for example, propagation through a
birefringent medium) affects the relative propagation of the two polarization states.

Note that one does not have to actually measure the actual polarization — a
double peak in the high-energy spectra of GRB’s with a separation that scaled lin-
early with distance would be a smoking gun for birefringent theories. However, if
the polarization states do not fully separate then extracting a signal becomes more
complicated. Since current time-of-flight constraints compare low- to high-energy
photons, birefringence destroys this. A GRB would not have low-energy photons
arriving first with high energy following (or vice versa). Instead the structure of the
burst for a birefringent theory would be high-energy photons first, low-energy pho-
tons following, and then more high-energy photons at the end. Therefore, the net
effect of this superposition may be to partially or completely erase the time-delay
effect as it is usually calculated.

In order to compute this modulating effect on a generic photon beam in a bire-
fringent theory, let us describe a beam of light by means of the associated electric
field, and let us assume that this beam has been generated with a Gaussian width

E = A
(
ei(Ω0t−k+(Ω0)z) e−(z−v+g t)2δΩ2

0 ê+ + ei(Ω0t−k−(Ω0)z) e−(z−v−g t)2δΩ2
0 ê−

)
,

(20)
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where Ω0 is the wave frequency, δΩ0 is the gaussian width of the wave, k±(Ω0)
is the “momentum” corresponding to the given frequency according to (15) and
ê± ≡ (ê1 ± iê2)/

√
2 are the helicity eigenstates. Note that by complex conjugation

ê∗+ = ê−. Also, note that k±(ω) = ω ∓ ξω2/MPl. Thus,

E = AeiΩ0(t−z) (eiξΩ2
0 /MPlz e−(z−v+g t)2δΩ2

0 ê+ + e−iξΩ2
0 /MPlz e−(z−v−g t)2δΩ2

0 ê−
)

.

(21)
The intensity of the wave beam can be computed as

E · E∗ = |A|2
(
e2iξΩ2

0 /MPlz + e−2iξΩ2
0 /MPlz

)
e
−δΩ2

0

(
(z−v+g t)2+(z−v−g t)2

)

= 2|A|2e−2δΩ2
0 (z−t)2

cos

(
2ξ
Ω0

MPl
Ω0z

)
e
−2ξ2 Ω

2
0

M2 (δΩ0t)2
. (22)

This shows that there is an effect even on a linearly-polarized beam. The effect is
a modulation of the wave intensity that depends quadratically on the energy and
linearly on the distance of propagation. In addition, for a Gaussian wave packet,
there is a shift of the packet center, that is controlled by the square of ξ (3)/MPl; and
hence, is strongly suppressed with respect to the cosinusoidal modulation. Hence,
by looking for modulation of the signal with energy and distance one can in prin-
ciple determine if the LV is birefringent from time-of-flight information even if the
photons arrive as part of one “burst.”

So far, the most robust constraints on ξ (3), derived from time-of-flight differ-
ences, have been obtained within the D-brane model (discussed in Sect. 9.1) from
a statistical analysis applied to the arrival times of sharp features in the intensity at
different energies from a large sample of GRBs with known redshifts [95], leading
to limits ξ (3) ≤ O(103). The importance of systematic uncertainties can be found
in [96], where the strongest limit f (3) < 47 is found by looking at a very strong flare
in the TeV band of the AGN Markarian 501. Finally, an extremely strong limit (for
this method at least) of ξ (3) < 0.8 has been obtained from the short, high-energy
GRB 090510 [97].

5.3.2 Photon Polarization

Since electromagnetic waves with opposite circular polarizations have slightly dif-
ferent group velocities in rotationally invariant EFT LV when CPT is violated, the
polarization vector of a linearly polarized plane wave with energy k rotates. During
the wave propagation over a distance d , the rotation angle for n = 3 dispersion
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modifications is [34] 6

θ (d) = ω+(k) − ω−(k)

2
d  ξ (3) k

2d

2MPl
. (24)

Observations of polarized light from a distant source can then lead to a constraint on
|ξ (3)| that, depending on the amount of available information—both on the observa-
tional and on the theoretical (i.e., astrophysical source modeling) side—can be cast
in two different ways [98]:

1. Because detectors have a finite-energy bandwidth, Eq. (24) is never probed in
real situations. Rather, if some net amount of polarization is measured in the band
k1 < E < k2, an order of magnitude constraint arises from the fact that if the
angle of polarization rotation (24) differed by more than π/2 over this band, the
detected polarization would fluctuate sufficiently for the net signal polarization
to be suppressed [94, 99]. From (24), this constraint is

ξ (3) � π MPl

(k2
2 − k2

1)d(z)
. (25)

This constraint requires that any intrinsic polarization (at source) not be com-
pletely washed out during signal propagation. It thus relies on the mere detection
of a polarized signal; there is no need to consider the observed polarization
degree. A more refined limit can be obtained by calculating the maximum
observable polarization degree, given the maximum intrinsic value [100]:

Π (ξ ) = Π (0)
√
〈cos (2θ )〉2

P + 〈sin (2θ )〉2
P , (26)

where Π (0) is the maximum intrinsic degree of polarization, θ is defined in
Eq. (24) and the average is weighted over the source spectrum and instrumental
efficiency, represented by the normalized weight function P(k) [99]. Conserva-
tively, one can setΠ (0) = 100 %, but a lower value may be justified on the basis
of source modeling. Using (26), one can then cast a constraint by requiringΠ (ξ )
to exceed the observed value.

2. Suppose that polarized light measured in a certain energy band has a position
angle θobs with respect to a fixed direction. At fixed energy, the polarization vec-
tor rotates by the angle (24) 7; if the position angle is measured by averaging over

6 Note that for an object located at cosmological distance (let z be its redshift), the distance d
becomes

d(z) = 1

H0

∫ z

0

1 + z′√
ΩΛ +Ωm(1 + z′)3

dz′ , (23)

where d(z) is not exactly the distance of the object as it includes a (1 + z)2 factor in the integrand
to take into account the redshift acting on the photon energies.
7 Faraday rotation is negligible at these energies.
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a certain energy range, the final net rotation 〈Δθ〉 is given by the superposition
of the polarization vectors of all the photons in that range:

tan (2 〈Δθ〉 ) = 〈sin (2θ )〉P
〈cos (2θ )〉P , (27)

where θ is given by (24). If the position angle at emission θi in the same energy
band is known from a model of the emitting source, a constraint can be set by
imposing

tan (2 〈Δθ〉 ) < tan (2θobs − 2θi) . (28)

Although this limit is tighter than those based on Eqs. (25) and (26), it clearly
hinges on assumptions about the nature of the source, which may introduce
significant uncertainties.

In the case of the Crab Nebula (CN), a (46 ± 10) % degree of linear polarization
in the 100 keV − 1 MeV band has recently been measured by the INTEGRAL
mission [101, 102]. This measurement uses all photons within the Spectrometer on
INTEGRAL (SPI) instrument energy band. However, the convolution of the instru-
mental sensitivity to polarization with the detected number counts as a function of
energy, P(k), is maximized and approximately constant within a narrower energy
band (150–300 keV) and falls steeply outside this range [103]. For this reason we
shall, conservatively, assume that most polarized photons are concentrated in this
band. Given dCrab = 1.9 kpc, k2 = 300 keV and k1 = 150 keV, Eq. (25) leads
to the order of magnitude estimate |ξ | � 2 × 10−9. A more accurate limit follows
from (26). In the case of the CN there is a robust understanding that photons in the
range of interest are produced via the synchrotron process, for which the maximum
degree of intrinsic linear polarization is about 70 % (see, e.g., [104]). Figure 2 illus-
trates the dependence of Π on ξ (see Eq. (26)) for the distance of the CN and for
Π (0) = 70 %. The requirement Π (ξ ) > 16% (taking account of a 3σ offset from
the best fit value 46 %) leads to the constraint (at 99 % confidence level)

|ξ | � 6 × 10−9 . (29)

It is interesting to notice that X-ray polarization measurements of the CN already
available in 1978 [105] set a constraint |ξ | � 5.4 × 10−6, only one order of
magnitude less stringent than that reported in [106].

Constraint (29) can be tightened by exploiting the current astrophysical under-
standing of the source. The CN is a cloud of relativistic particles and fields powered
by a rapidly rotating, strongly magnetized neutron star. Both the Hubble Space Tele-
scope and the Chandra X-ray satellite have imaged the system, revealing a jet and
torus that clearly identify the neutron star rotation axis [107]. The projection of this
axis on the sky lies at a position angle of 124.0◦ ± 0.1◦ (measured from north in
anticlockwise direction). The neutron star itself emits pulsed radiation at its rotation
frequency of 30 Hz. In the optical band these pulses are superimposed on a fainter
steady component with a linear polarization degree of 30 % and direction precisely
aligned with that of the rotation axis [108]. The direction of polarization measured
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Fig. 2 Constraint for the polarization degree. Dependence of Π on ξ for the distance of the CN
and photons in the 150–300 keV range, for a constant instrumental sensitivity P(k). Picture taken
from [98]

by INTEGRAL-SPI in the γ -rays is θobs = 123◦ ± 11◦ (1σ error) from the north,
thus also closely aligned with the jet direction and remarkably consistent with the
optical observations.

This compelling (theoretical and observational) evidence allows us to use
Eq. (28). Conservatively assuming θi−θobs = 33◦ (i.e., 3σ from θi, 99 % confidence
level), this translates into the limit

|ξ (3)| � 9 × 10−10 , (30)

and |ξ (3)| � 6 × 10−10 for a 2σ deviation (95 % confidence level).
Polarized light from GRBs has also been detected and given their cosmological

distribution they could be ideal sources for improving the abovementioned con-
straints from birefringence. Attempts in this sense were done in the past [94, 109]
(but later on the relevant observation [110] appeared controversial) but so far we
do not have sources for which the polarization is detected and the spectral red-
shift is precisely determined. In [111] this problem was circumvented by using
indirect methods (the same used to use GRBs as standard candles) for the esti-
mate of the redshift. This leads to a possibly less robust but striking constraints
|ξ (3)| � 2.4 × 10−14.
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Remarkably this constraint was recently further improved by using the
INTEGRAL-IBIS observation of the GRB 041219A, for which a luminosity dis-
tance of 85 Mpc (z ≈ 0.02) was derived thanks to the determination of the GRB’s
host galaxy. In this case a constraint |ξ (3)| � 1.1 × 10−14 was derived [112].8

5.3.3 Synchrotron Radiation

Synchrotron emission is strongly affected by LV, however for Planck scale LV and
observed energies, it is a relevant “window” only for CPT odd dimension-five LV
QED (and dimension-four LV QED, which we describe below). We shall work out
here the details of CPT-odd dimension-five QED (n = 3) for illustrative reasons, for
the lower-dimension case see [113].

In both LI and LV cases [34], most of the radiation from an electron of energy E
is emitted at a critical frequency

ωc = 3

2
eB
γ 3(E)

E
, (31)

where γ (E) = (1 − v2(E))−1/2, and v(E) is the electron group velocity.
However, in the LV case, and assuming specifically n = 3, the electron group

velocity is given by

v(E) = ∂E

∂p
=
(

1 − m2
e

2p2
+ η(3) p

M

)
. (32)

Therefore, v(E) can exceed 1 if η > 0 or it can be strictly less than 1 if η < 0. This
introduces a fundamental difference between particles with positive or negative LV
coefficient η.

If η is negative, the group velocity of the electrons is strictly less than the (low
energy) speed of light. This implies that, at sufficiently high energy, γ (E)− <

E/me, for all E. As a consequence, the critical frequency ω−c (γ,E) is always less
than a maximal frequency ωmax

c . Then, if synchrotron emission up to some maximal
frequency ωobs is observed, one can deduce that the LV coefficient for the corre-
sponding leptons cannot be more negative than the value for which ωmax

c = ωobs,
leading to the bound [34]

η(3) > −M
me

(
0.34 eB

me ωobs

)3/2

. (33)

8 The same paper also claims a strong constraint on the parameter ξ (4). Unfortunately, such a
claim is based on the erroneous assumption that the EFT order six operators responsible for this
term imply opposite signs for opposite helicities of the photon. We have instead seen that the CPT
evenness of the relevant dimension-six operators imply a helicity independent dispersion relation
for the photon (see Eq. (9)).
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Fig. 3 Comparison between observational data, the LI model and a LV one with η+ · η− < 0
(left) and η+ · η− > 0 (right). The values of the LV coefficients, reported in the insets, show the
salient features of the LV modified spectra. The leptons are injected according to the best fit values
p = 2.4, Ec = 2.5 PeV. The individual contribution of each lepton population is shown. Picture
taken from [115]

If η is instead positive the leptons can be superluminal. One can show that at energies
Ec � 8 TeV/η1/3, γ (E) begins to increase faster than E/me and reaches infinity at
a finite energy which corresponds to the threshold for soft VC emission. The critical
frequency is thus larger than the LI one and the spectrum shows a characteristic
bump due to the enhanced ωc.

How the synchrotron emission processes at work in the CN would appear in a
“LV world” has been studied in [114, 115]. There the role of LV in modifying the
characteristics of the Fermi mechanism (which is thought to be responsible for the
formation of the spectrum of energetic electrons in the CN [116]) and the contribu-
tions of VC and helicity decay (HD) were investigated for n = 3 LV. This procedure
requires fixing most of the model parameters using radio to soft X-rays observations,
which are basically unaffected by LV.

Given the dispersion relations (15) and (16), clearly only two configurations in
the LV parameter space are truly different: η+ · η− > 0 and η+ · η− < 0, where
η+ is assumed to be positive for definiteness. The configuration wherein both η±
are negative is the same as the (η+ · η− > 0, η+ > 0) case, whereas that whose
signs are scrambled is equivalent to the case (η+ ·η− < 0, η+ > 0). This is because
positron coefficients are related to electron coefficients through ηaf± = −ηf∓ [34].
Examples of spectra obtained for the two different cases are shown in Fig. 3.

A χ2 analysis has been performed to quantify the agreement between models
and data [115]. From this analysis, one can conclude that the LV parameters for
the leptons are both constrained, at 95 % confidence level, to be |η±| < 10−5, as
shown by the red vertical lines in Fig. 4. Although the best fit model is not the LI
one, a careful statistical analysis (performed with present-day data) shows that it is
statistically indistinguishable from the LI model at 95 % confidence level [115].
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5.3.4 Constraints from GZK Secondaries

The same reasoning that established constraints on the CPT even higher-dimension
sector from GZK secondaries can also be applied to further strengthen the available
constraints on CPT odd dimension-five LV QED. In this case the absence of relevant
UHE photon flux strengthens by (at most) two orders of magnitude the constraint on
the photon coefficient ξ (3) while an eventual detection of the expected flux of UHE
photons would constrain η(3) for the electron/positron at the level of |η(3)| � 10−16

(see [88, 93] for further details) by limiting the γ -decay process. Note however that
in this case, unlike the CPT even case, one cannot exclude that only one photon
helicity survives and hence a detailed flux reconstruction would be needed.

5.3.5 Summary of Constraints

Constraints on LV QED at n = 3 are summarized in Fig. 4 where also the con-
straints — coming from the observations of up to 80 TeV γ -rays from the CN [117]
(which imply no γ -decay for these photons neither VC at least up to 80 TeV
for the electrons producing them via inverse Compton scattering)—are plotted for
completeness.

5.4 Other Threshold Processes

Once one realizes the power of the VC effect it is natural to explore other threshold
processes that might yield useful constraints. The constraints in Fig. 4 are the best
available constraints. We detail below some other processes that have been used to
set constraints in the past.

5.4.1 Helicity Decay

A slightly different version of the VC process is that of HD, e∓ → e±γ . If
η+ 
= η−, an electron can flip its helicity by emitting a suitably polarized photon.
This reaction does not have a real threshold, but rather an effective one [34]—pHD =
(m2
eM/Δη)1/3, whereΔη = |η(3)

+ −η(3)
− |—at which the decay lifetime τHD changes

how it scales with Δη. For Δη ≈ O(1) this effective threshold is around 10 TeV.
Below threshold the lifetime τHD is given by τHD > Δη−3(p/10 TeV)−8 10−9s,
while above threshold τHD becomes independent of Δη [34] and is given by
τHD ≈ 10−10 × (10 Tev)/E s. It is more difficult, however, to use HD to set
constraints as we do not have polarization measurements of high-energy cosmic
rays and the flux above a certain energy scale is only halved in the case of HD,
rather than almost completely removed as in the VC effect. One therefore requires
more detailed knowledge of the source spectrum to properly apply HD constraints.
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Fig. 4 Summary of the constraints on LV QED at order n = 3. The red lines are related to the
constraints derived from the detection of polarized synchrotron radiation from the CN as discussed
in the text. For further reference the constraints that can be derived from the detection of 80 TeV
photons from the CN: the solid black lines symmetric w.r.t. the ξ axis are derived from the absence
of gamma decay, the dashed vertical line cutting the η axis at about 10−3 refers to the limit on the
VC effect coming from the inferred 80 TeV inverse Compton electrons are also shown. The dashed
vertical line on the negative side of the η axis is showing the first synchrotron-based constraint
derived in [114]

Nonetheless, HD can play a crucial role in lepton/antilepton propagation by basi-
cally leaving only a survival helicity state for each particle type. This mechanism,
for example, played a pivotal role in the reconstruction of the CN synchrotron
spectrum [115].

5.4.2 Photon Splitting and Lepton Pair Production

VC radiation is an effect that would ordinarily be forbidden, however one can also
look for modifications of normally allowed threshold reactions that are especially
relevant for high-energy astrophysics. It is rather obvious that once photon decay
and VC are allowed also the related reactions in which an outgoing lepton/antilepton
pair is replaced by two or more photons, γ → 2γ and γ → 3γ , etc., or the outgoing
photons are replaced by an electron-positron pair, e− → e−e−e+, are also allowed.
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LV-allowed Reactions: Photon Splitting
This is forbidden for ξ (n) < 0 while it is always allowed if ξ (n) > 0 [32]. When
allowed, the relevance of this process is simply related to its rate. The most relevant
cases are γ → γ γ and γ → 3γ , because processes with more photons in the final
state are suppressed by higher powers of the fine structure constant.

The γ → γ γ process is forbidden in QED because of kinematics and CP con-
servation. In LV EFT both the kinematics changes and CP is not necessarily a good
symmetry. However, we can argue that γ → γ γ is suppressed by an additional
power of the Planck mass with respect to γ → 3γ . In fact, in LI QED the matrix
element is zero due to the exact cancellation of fermionic and antifermionic loops.
In LV EFT this cancellation is not exact and the matrix element is expected to be
proportional to at least (ξE/MPl)p, p > 0, as it is induced by LV and must vanish
in the limitMPl → ∞.

Therefore we have to deal only with γ → 3γ . This process has been studied
in [32, 118]. In particular, in [118] it was found that, if the “effective photon mass”
m2
γ ≡ ξEnγ /M

n−2
Pl � m2

e , then the splitting lifetime of a photon is approximately

τn=3  0.025 ξ−5f−1
(
50 TeV/Eγ

)14 s, where f is a phase space factor of order
1. This rate was rather higher than the one obtained via dimensional analysis in [32]
because, due to integration of loop factors, additional dimensionless contributions
proportional to m8

e enhance the splitting rate at low energy.
This analysis, however, does not apply for the most interesting case of UHE pho-

tons around 1019 eV given that at these energies m2
γ � m2

e if ξ (3) > 10−17 and

ξ (4) > 10−8. Hence the abovementioned loop contributions are at most logarithmic,
as the momentum circulating in the fermionic loop is much larger than me. More-
over, in this regime the splitting rate depends only on mγ , the only energy scale
present in the problem. One then expects the analysis proposed in [32] to be correct
and the splitting time scale to be negligible atEγ  1019 eV, which therefore makes
it not particularly competitive with other constraints.

Lepton Pair Production
The process e− → e−e−e+ is similar to VC radiation or HD with the final pho-
ton replaced by an electron-positron pair. Various combinations of helicities for the
different fermions can be considered individually. If we choose the particularly sim-
ple case (and the only one we shall consider here) where all electrons have the
same helicity and the positron has the opposite helicity, then the threshold energy
will depend on only one LV parameter. In [32] the threshold for this reaction was
derived for electron pair production, and it was found that the rate is a factor of
∼ 2.5 times higher than that for soft VC radiation. Therefore, since the rate for
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the reaction is high as well, constraints may be imposed using just the value of the
threshold energy. 9

6 Dynamical Frameworks III: Rotationally Invariant Minimal
Standard Model Extension in QED

6.1 The Model

The mSME, is the set of renormalizable operators that generate LV but maintain the
existing particle content of the SM and do not violate gauge invariance. A subset of
the mSME, the rotationally invariant LV operators are

−auμψγμψ − buμψγ5γ
μψ + 1

2
icuμuνψγ

μ
↔
Dν ψ + 1

2
iduμuνψγ5γ

μ
↔
Dν ψ

(34)
for fermions and

−1

4
(kF )uκηλμuνF

κλFμν + 1

4
kAFu

κεκαβγ A
αFβγ (35)

for photons. The dimension three, CPT odd kAF term generates an instability in the
theory and so we will set it to zero from here on out. The a term can be absorbed
by shifting the phase of the fermion field and so we will ignore it temporarily (we
shall return to this term when we deal with gravity). Note however that while the a
term can be absorbed in QED, it can be measured in matter sectors where the phase
of the fermion is important. For example, neutrinos can constrain differences in a
between species [42].

The corresponding high-energy (MPl � E � m) dispersion relations for QED
can be expressed as (see [7] and references therein for more details)

E2
el = m2

e + p2 + f (1)
e p + f (2)

e p
2 electrons (36)

E2
γ = (1 + f (2)

γ )p2 photons, (37)

where f (1)
e = −2bs, f (2)

e = −(c − ds), and f (2)
γ = kF /2 with s = ±1 the helicity

state of the fermion [7]. The antifermion dispersion relation is the same as (36) with
the replacement p→ −p, which will change only the f (1)

e term.

9 One could of course consider any lepton/antilepton pair as produced, for example, the reaction
e− → e−νν. While standard particle physics arguments imply that the rate will be roughly equiv-
alent to the e−e+ pair production case [119] given the same order of coefficients, and the threshold
will be slightly lower, the constraints are on a higher-dimensional parameter space and so less
useful.
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Note that the typical energy at which new phenomenology should start to appear
is quite low. In fact, taking for example f (2)

e ∼ O(1), one finds that the correspond-
ing extra term is comparable to the particle massm precisely at p  m. Even worse,
for the linear modification to the dispersion relation, we would have, in the case in
which f (1)

e  O(1), that pth ∼ m2/MPl ∼ 10−17 eV for electrons. (Notice that
this energy corresponds by chance to the present upper limit on the photon mass,
mγ � 10−18 eV [120].)

6.2 Constraints

In contrast to the higher-dimension operators, LV due to the mSME does not grow
with energy. Therefore, astrophysics with its higher energies does not necessarily
provide a tremendous advantage over laboratory and terrestrial experiments when
testing the mSME. We list below the best constraints currently available on the
QED sector of the mSME. For a recent listing of all the constraints as well as the
non-rotationally invariant case, see [73].

6.2.1 Spin Polarized Torsion Constraints on b for Electrons

Both spin polarized and unpolarized torsion balances can place limits on the
mSME. Spin polarized torsion balances place limits on the electron sector of the
mSME [121], while unpolarized torsion balances constrain the gravitational sec-
tor [122]. Spin polarized torsion balances constrain the electron sector, as the torsion
balances are constructed to have a large number of aligned electron spins (e.g.,
a simple magnet attached on a torsion fiber is a very crude spin polarized tor-
sion balance). Usually of course, the magnet design is optimized to search for LV.
For example, a vertical stack of an octagonally symmetric pattern of magnets con-
structed to have an overall spin polarization in the octagon’s plane has been used as
a torsion balance with a net electron spin polarization of 1023 electron spins [121].
The mSME coefficients give rise to an interaction potential for nonrelativistic elec-
trons which produces an orientation-dependent torque on the torsion balance which
is measured using the twist of the torsion fiber. The torsion balance in its sealed
vacuum chamber is mounted on a rotating turntable, which allows for very sensitive
detection of any anomalous torque as a function of the rotation frequency (and the
earth’s rotation and motion in the solar system). Current limits on b from torsion
balances are of the order of 10−27 GeV [121].

6.2.2 Accelerator Bounds on c for Electrons

Accelerator beams of various subatomic particles are produced with (roughly) time-
independent energies. Energy loss mechanisms such as the VC effect q → q + γ
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(see Sect. 4.2.1) for charged fermions are incompatible with a constant beam energy
as long as the energy loss rate is high enough. Limits can therefore be set on the
c coefficient for accelerated charged particles, as if c is too much larger than zero
then above the n = 2 threshold energy (12) radiative energy losses become signifi-
cant over the beam time. The large electron-positron (LEP) experiment accelerates
electrons and positrons to energies of roughly 100 GeV in the lab frame. The beam
energy is carefully measured and it is known that the beam does not lose any signif-
icant energy to VC radiation. Additionally, the synchrotron emission from the beam
has been measured. Since synchrotron emission is sensitive to the Lorentz factor of
the accelerated particles, the existence of synchrotron radiation of a certain spec-
trum given a source particle energy and path provides constraints on any LV present
(see Sect. 5.3.3). Using the characteristics of the LEP beam and the associated
synchrotron radiation spectrum limits c for electrons to be of order |c| < 10−15.

6.2.3 Astrophysical Inverse Compton Bounds on d for Electrons

The parameter d causes a spin-dependent change to the dispersion relation for a
fermion. As such, one of the helicity states for a fermion is always subluminal and
one cannot trivially apply simple astrophysical arguments based on the VC effect,
etc. without knowing the helicity of the measured fermion. However, there is a way
around this by considering the dynamics of sources of high-energy photons pro-
duced by inverse Compton scattering. We receive energies from the radio up to
80 TeV from astrophysical sources such as the CN [117]. The overall spectrum
of these sources is well understood and the high-energy emission is dominated by
inverse Compton scattering of accelerated electrons off of lower-energy photons. In
order to constrain d one cannot simply require the absence of VC radiation for the
electrons, as half of any population will still be present under the influence of a d
term and available to inverse Compton scatter. However, the magnetic field present
in the same sources causes the electrons to precess, thereby destroying any initial
polarization of the electrons. Therefore, as argued in [123] both helicities of elec-
trons must be present and stable if there is to be inverse Compton radiation. The VC
effect is therefore forbidden for both helicities, which allows one to put double-sided
constraints on d of the order of |d| < O(10−12) [123].10

6.2.4 Cosmic Ray and HESS Bounds on kF

Bounds on the fermion sector that use processes involving the fundamental QED
vertex implicitly assume that the photon sector is unmodified. The sector which is

10 Note that the bounds presented here are weaker by a factor of 10−3, as we have used the CMB
frame as the rest frame rather than the Sun-centered frame and therefore the strengths of the bounds
are weakened by the v/c of the Sun with respect to the CMB.
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the “unmodified” sector is arbitrary, in that the limiting speed of one of the sectors
can be defined to be the “speed of light.” When constraining photon coefficients, we
simply make the opposite assumption—we assume the fermion sector is unmodified
and constrain kF . Constraints on kF can be generated for protons and photons using
the same effects as above, that is, the necessary absence of VC and photon decay if
we see high-energy cosmic ray protons and TeV gamma rays. In [124] the authors
used the necessary absence of p→ p + γ and a Pierre Auger event in conjunction
with the excess of high-energy TeV gamma rays observed by the HESS telescope
(which forbids γ → p + p) to produce a two-sided bound on kF of −9 × 10−16 <

kf < 6 × 10−20.

7 Dynamical Frameworks IV: Gravity

7.1 The Model

The SME is constructed by coupling matter terms to non-zero LV tensors in vac-
uum. If we left the tensors as constants, without any sort of dynamics, then one
would break general covariance. It may be that for other reasons one may want to
change the underlying symmetry structure for gravity in just this way; such is the
case with Hořava–Lifshitz gravity [36]. Alternatively, if one wants to preserve gen-
eral covariance one can do so by promoting any LV tensors to dynamical fields.
Dynamical Lorentz breaking is also sometimes called “spontaneous Lorentz viola-
tion,” although this is a bit of a misnomer as there are models where there really is
no Lorentz invariant phase. There are many ways that a dynamical field can generate
a LV term in vacuum. If we restrict ourselves to rotational invariance, then it is nat-
ural to generate LV couplings by including in the action either a scalar or a timelike
vector field that takes a VEV. In the case of a scalar, one can use a shift symmetry
(φ(x) → φ(x) + φ0) to construct actions for which the derivative of the scalar takes
a nonzero value (c.f. [125]). In the vector case, one simply puts a potential for the
vector field such that the vector acquires a vev. We concentrate on the vector case
here as it is the simplest model that allows for rotationally invariant Lorentz viola-
tion [126]. Just as the SME is a derivative expansion in derivatives of matter fields,
one can treat the vector field in the same way. If we still denote the vector field by
uα then we can write the low-energy action for gravity and the vector as

S = SEH + S� = ∞
∞�πGæ

∫
d�§

√−g (R+L�) , (38)

where Lu is given by

Lu = −Zαβγ δ (∇αuγ )(∇βuδ) + V (u). (39)
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The tensor Zαβγ δ is defined as [71]11

Z
αβ
γ δ = c1gαβgγ δ + c2δ

α
γ δ
β
δ + c3δ

α
δ δ
β
γ − c4u

αuβgγ δ , (40)

where ci, i = 1, . . . , 4 are simple coefficients of the various kinetic terms and
V (u) is a potential term that generates a nonzero VEV for uα . An additional term,
Rabu

aub, is a combination of the above terms when integrated by parts, and hence
is not explicitly included here.

In general, such a theory possesses four additional degrees of freedom. One of the
vector components, however, will necessarily have a wrong sign for its kinetic term,
thereby generating a ghost excitation. This can be remedied, at least at low energies,
by choosing the potential V (u) = λ(u2 + 1), where λ is a Lagrange multiplier. This
fixes the norm of uα and removes the ghost excitation 12 so the excitations of the
vector all have positive norm (c.f. the discussions in [70] and [127]). With this form
of the potential, the vector theory is known as “Einstein-aether theory” [126]. We
will refer to the vector field as an “aether” field, vector field models that couple to
the SM Lagrangian are also sometimes nicknamed “bumblebee” models. In reality
of course the Lagrange multiplier is likely simply an approximation to a potential
that generates dynamics such that the ghost only has ultraviolet (UV) effects. For
the purposes of constraints, we will treat the Lagrange multiplier as “the” potential
term and so neglect any possible ghost excitation.

The matter couplings between aether and the SM field content are the same
as they were before, only now the field has dynamics so there can be position-
dependent violations of Lorentz symmetry. Interestingly, some of the couplings to
matter that are unobservable for a single fermion field can have relevant effects
when the aether varies. For example, the −auμψγμψ term in the mSME could be
removed by making a phase change for the fermion. However, once uα is dynam-
ical and varies with position, only a single component of the term can actually be
removed by a phase change [128]. This leads to a new type of term which requires
gravitational/position-dependent tests in the matter sector [128].

Additionally, just as constraints can be put on the coupling of matter fields to
the LV vector field, constraints can also be put on the ci coefficients themselves
by examining the relevant parameterized post-Newtonian (PPN) parameters and
comparing to known PPN limits from solar system and other observations.

11 Note the index symmetry Zβαδγ = Zαβγ δ .
12 Note that one could have fixed the norm to be different than −1, however, one can simply scale
uα to have norm −1 and absorb the scaling into the coefficients.



400 S. Liberati and D. Mattingly

7.2 Constraints

7.2.1 Constraints on the Aether Kinetic Terms

Constraints from PPN Analysis
There are two primary methods to constrain the aether kinetic terms. First, one can
compute the PPN coefficients for the theory and compare to observational tests. The
only two nonvanishing PPN parameters are α1, α2 which describe preferred-frame
effects. α1 and α2 have been calculated [129] as

α1 = −8(c2
3 + c1c4)

2c1 − c2
1 + c2

3

, (41)

α2 = α1

2
− (c1 + 2c3 − c4)(2c1 + 3c2 + c3 + c4)

(c1 + c2 + c3)(2 − c1 − c4)
. (42)

Current constraints are α1 < 10−4 and α2 < 4 × 10−7 [130] and so from a PPN
analysis alone there is still a large two-dimensional region of parameter space that
remains consistent with available tests of GR.

Constraints from Gravity-Aether Wave Modes
The aether introduces three new excitations into the gravity sector (there are naively
four, but the unit constraint removes one). These excitations strongly couple to the
metric via the constraint. The combined aether-metric modes consist of the two
usual transverse traceless graviton modes, a vector mode, and a scalar mode [131].
Gravitational wave detectors can in principle test for polarizations [132], however,
there is an additional possibility to constrain the kinetic terms. The speeds of each of
the modes can differ from the speed of light. Hence if the speeds are less than unity,
high-energy cosmic rays will emit vacuum gravitational Čerenkov radiation [133].
If we denote the speeds of the spin-2, spin-1 and spin-0 modes by s2, s1, s0 then we
have [131]

s2
2 = (1 − c1 − c3)−1, (43)

s2
1 = 2c1 − c2

1 + c2
3

2(c1 + c4)(1 − c1 − c3)
, (44)

s2
0 = (c1 + c2 + c3)(2 − c1 − c4)

(c1 + c4)(1 − c1 − c3)(2 + 3c2 + c1 + c3)
. (45)

Requiring all these speeds to be greater than unity therefore places constraints on a
combination of the ci coefficients.

Combined Constraints
Even after imposing the above constraints there is still a large region of parameter
space allowed. To get an estimate of the size of the space, one can set α1 and α2
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equal to zero and solve the resulting equations for c2 and c4 in terms of c1 and c3. If
we define c+ = c1 + c3 and c− = c1 − c3 then the PPN and gravitational Čerenkov
constraints are all satisfied provided [71]

0 ≤ c+ ≤ 1 (46)

0 ≤ c− ≤ c+
3(1 − c+)

, (47)

which shows that the gravitational sector is only minimally constrained compared
to aether-matter couplings.

7.2.2 Gravitational Constraints on Aether-Matter Couplings

There are couplings between aether and matter that can only be strongly tested when
the aether is dynamical. The prime example is the coupling −auμψγμψ in the
mSME. As said, when gravity is neglected and we are dealing with an observation
that involves only one fermion field, then the auμ term can be absorbed by making
a phase transformation of the fermion ψ → eiau·xψ . This cannot be done when
u is a function of position, which would necessarily be the case if u is a dynam-
ical field strongly coupled to gravity (as we have done with the constraint above).
One can therefore use gravitational experiments to measure the position dependence
of uμ, similar to how redshift experiments measure the gravitational field. For a
larger overview of constraints, see [73,134]. We will concentrate here on a recently
applied method, that of atom interferometry [134].

Atom interferometry involves splitting of a beam of cold atoms such as Cs along
two beam arms and comparing the phase difference at a point of the Cs atoms that
travel along each beam. Since gravity and the matter sector of the mSME affect the
phase of the atomic wavefunctions, one can look for an anomalous sidereal pattern.
By orienting the interferometer vertically and horizontally, one can adjust the sen-
sitivity to the gravitational and matter sectors of the mSME. Since one can also use
other limits to control for any possible matter mSME effect on the signal, one can
thereby isolate solely gravitational effects. Hence, atom interferometers have been
used with great success on constraining the gravitational sector of the mSME.

Consider an interferometer that is constructed to measure phase shifts of atoms
moving vertically versus horizontally. There will be a contribution to the total phase
shiftΔφ that comes from the gravitational redshift, that is, someΔφred . In the New-
tonian limit where uμ is proportional to the timelike Killing vector, uμ is given by
uμ = (1 − U, 0, 0, 0) [135], where U is the Newtonian gravitational potential. If
we couple uμ to matter, one can easily see that the effect of the coupling via an
auμ or cuμuν term is to change the redshift by an additional amount proportional
to the gravitational potential, that is, the change in frequency of a wave is given by
Δω = (1+β)ΔU where β is an experimental parameter related to the fundamental
Lagrangian parameters (c.f. [136] for a discussion). The phase shift generated by
this extra gravitational redshift is then just Δφred = (1 + β)Δφ0, where Δφ0 is
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the expected gravitational redshift. Constraints on β therefore limit the fundamen-
tal Lagrangian parameters. β is limited to be zero within a few parts per billion,
which then generates fairly strong limits on position dependence of the a and c
couplings [134].

8 Neutrinos

While we have concentrated primarily on QED, we would be remiss to not men-
tion at least in passing the important role of neutrinos in tests of Lorentz violation.
More so than other particles, neutrinos are uniquely suited to test various aspects of
Lorentz symmetry. They are copiously produced in both terrestrial experiments and
astrophysical objects, so there are solar neutrinos at < 1 MeV, controlled beams of
neutrinos at roughly 10 GeV, atmospheric neutrinos up to 10 TeV, and (theoretically)
UHE neutrinos up to 1018 eV and above. Neutrinos are weakly interacting, so they
propagate over long distances which allows for detailed time of flight and threshold
reaction analyses. Neutrinos have a very small mass, which make threshold analyses
even more sensitive. Finally, neutrinos oscillate between flavor eigenstates, which
constrains interspecies Lorentz violation.

The problem, of course, is that neutrinos are rather difficult to detect. However,
thanks to the numerous ongoing neutrino experiments, many significant experimen-
tal results have been published that can be adapted to constraining Lorentz violation
in the neutrino sector. We now turn to the theoretical framework and current and
future constraints on the neutrino sector.

8.1 Neutrinos I: Species Dependent Lorentz Violation

8.1.1 The Model

Neutrinos come in three distinct flavors/masses, and there is a priori no reason to
believe that any Lorentz violating coefficients are the same for each species. It may
even be that any Lorentz violation is not diagonal in either basis. We make a couple
simplifying assumptions on this point — that the neutrinos are Dirac neutrinos and
that any Lorentz violation is diagonal in the mass basis. This is a reasonable starting
point, as one natural idea is that since any theory of QG must reduce to GR in the
infrared, any Lorentz violation induced by QG would be primarily controlled by the
charges that couple to gravity. However, this does not mean that the coefficients for
each mass eigenstate are the same. Indeed, one would expect that, due to RG effects,
even if the coefficients were the same for all eigenstates at one energy they would
not be the same for the large range of energies we can test in neutrino experiments.
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With these assumptions, the Lorentz violating terms (written in the mass basis) are
exactly those for the QED fermions,

−aiuμψiγ μψi − biuμψiγ5γ
μψi + 1

2
iciuμuνψiγ

μ
↔
∂ν ψi (48)

+1

2
idiuμuνψiγ5γ

μ
↔
∂ν ψi + 1

2MPl
umψiγm(ζi,1 + ζi,2γ5)(u · ∂)2ψi

− i

M2
Pl

ψi(u · ∂)3(u · γ )(α(6)
i,LPL + α(6)

i,RPR)ψi,

where i is the mass index. We have dropped the gauge covariant derivative above,
as it is irrelevant and couples in the flavor basis so merely would add needless com-
plication. Also note that we have included both right and left projection operators.
However, since SM interactions only produce left-handed neutrinos, the constraints
will primarily be on the corresponding left-handed operators and so we drop all PR
terms in our discussion of oscillations (although we will need to return to them when
we discuss neutrino splitting). Finally, in contrast to the QED case, we cannot drop
the ai term as this gives a contribution to the oscillation pattern.

The above terms and the usual Dirac Lagrangian for the neutrino yield a high-
energy neutrino dispersion relation of

E2
i = p2 +N2

i (49)

N2
i = m2

i + 2(ai + bi)p − (ci + di)p2 + mi

MPl
α

(5)
i,Lp

2

+2(ζi,1 − ζi,2)
p3

MPl
+ 2

α
(6)
i,Lp

4

M2
Pl

.

The tightest constraint on species dependence comes from neutrino flavor oscillation
measurements. Neutrino oscillations depend on the differences in E − p between
different neutrino eigenstates. In standard neutrino oscillations, this difference is
governed by the squared mass differences between the energy eigenstates. With
Lorentz violation and our assumption that the Lorentz violating eigenstates are the
mass eigenstates, oscillations are governed by the differences in the effective mass
squared. Therefore, neutrino oscillations do not probe any absolute Lorentz vio-
lation in the neutrino sector, but rather the differences in the dispersion relations
between different neutrino states.

Now let us consider a neutrino produced via a particle reaction in a definite flavor
eigenstate I with momentum p. The amplitude for this neutrino to be in a particular
mass eigenstate i is represented by the matrix UIi , where

∑
U

†
J iUIi = δIJ . The

amplitude for the neutrino to be observed in another flavor eigenstate J at some
distance L from the source, after some time T is then

AIJ =
∑
i

U
†
J ie

−i(ET−pL)UIi ≈
∑
I

U
†
J ie

−iLN2
i /(2E)UIi . (50)
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The transition probability can then be written as

PIJ = δIJ −
∑
i,j>i

4FIJ ij sin2

(
δN2
ijL

4E

)
+ 2GIJ ij sin2

(
δN2
ijL

2E

)
, (51)

with δN2
ij = N2

i − N2
j and FIJ ij and GIJ ij are functions of the mixing matrices.

With this formalism one can compare with existing neutrino oscillation experiments
that measure PIJ . Many of these experiments quote results on a deviation of the
neutrino speed from that of light, that is,

(
Δc

c

)LIV
ij

= E−2(δN2
ij − δm2

ij ) (52)

which can be easily translated into a constraint on the coefficients in the Lagrangian,
as we do below.

8.1.2 Constraints

We now turn to the constraints that can be put on the neutrino sector. For the renor-
malizable terms governed by ai, bi, ci , di and the non-renormalizable α(5)

i,L term that
contributes a similar term in the dispersion relation the best known limits come
from the miniBoone experiment [137]. They limit various combinations of coeffi-
cients at the 10−20 GeV level, which implies that the order of magnitude constraints
(assuming no cancellations) on these coefficients are

|ai |, |bi | � 10−20GeV, (53)

|ci |, |di | � 10−20,

α
(5)
i,L � 109,

where we have used the mass of the neutrino as approximately 0.1 eV and the
energy of the neutrinos in the miniBoone experiment as approximately 1 GeV (it is
actually slightly less). As one can see, both the renormalizable operators are very
tightly constrained, while the non-renormalizable operator is essentially free.

For the higher-dimension operators that contribute higher-order corrections to
the dispersion relation the best constraints to date come from the survival of atmo-
spheric muon neutrinos observed by the former IceCube detector AMANDA-II in
the energy range 100 GeV to 10 TeV [138]. AMANDA-II searched for a generic
LIV in the neutrino sector [139] and achieved (Δc/c)ij ≤ 2.8× 10−27 at 90 % con-
fidence level assuming maximal mixing for some of the combinations i, j . Using
the low end of the energy band (100 GeV) to be conservative, this yields order of
magnitude constraints on the Lorentz violating coefficients of

|ζi,1|, |ζi,2| � 10−10 (54)

|α(6)
i,L| � 107.
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Given that IceCube does not distinguish neutrinos from antineutrinos, the same con-
straints apply to the corresponding antiparticles. Of interest is that due to the strong
energy dependence of the dimension-six term, as more data is taken at the 10-TeV
range the constraint will drop below O(1) (at 10 TeV for the energy the constraint
is already α(6)

i,L < 0.1). The IceCube detector is expected to improve this constraint

to (Δc/c)ij ≤ 9 × 10−28 in the next few years [140]. We also note that the lack
of sidereal variations in the atmospheric neutrino flux also yields comparable con-
straints on some combinations of SME parameters [141], which can be translated
into the framework above. Finally, a nice summary of neutrino oscillation observa-
tions, with particular attention to LIV, can be found in [142]. For a comprehensive
listing of constraints on terms in the neutrino sector of the SME see [42, 73].

8.2 Neutrinos II: Species Independent Lorentz Violation

Neutrino oscillation depends on δNij and so if all the Lorentz violating terms are
species independent there is no contribution to the oscillation pattern from Lorentz
violation. Hence other methods must be used to constrain these terms. The model is
almost the same as above. The only differences are that all neutrinos have the same
Lorentz violating coefficients and therefore the ai term can be dropped as in QED.
Hence we proceed directly to the relevant constraints.

8.2.1 Constraints

Time-of-Flight
For pure time-of-flight constraints we have to date only two observations to rely
on, the supernova SN1987a neutrino burst and the ICARUS experiment. We deal
first with SN1987a, which was a unique event that generated the almost simultane-
ous (within a few hours) arrival of electronic antineutrinos and photons. Although
only few electronic antineutrinos at MeV energies were detected by the experiments
KamiokaII, IMB, and Baksan, it was enough to establish a constraint (Δc/c)TOF �
10−8 [143] or (Δc/c)TOF � 2 × 10−9 [144] by looking at the difference in arrival
time between antineutrinos and optical photons over a baseline distance of 1.5×105

light years. Further analyses of the time structure of the neutrino signal strengthened
this constraint down to ∼ 10−10 [145, 146].

The scarcity of the detected neutrino did not allow the reconstruction of the
full energy spectrum and of its time evolution; in this sense one should probably
consider constraints purely based on the difference in the arrival time with respect
to photons more conservative and robust. Adopting Δc/c � 10−8, the supernova
constraint implies the following order of magnitude constraints:
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|b| � 10−11GeV (55)

|c|, |di | � 10−8

α
(5)
L � 1021

|ζ1|, |ζ2| � 1013

|α(6)
L | � 1034.

Hence, time-of-flight constraints are quite tight for renormalizable operators but
leave the non-renormalizable operators effectively unconstrained. The Imaging Cos-
mic And Rare Underground Signals (ICARUS) experiment measured the time of
flight of neutrinos traveling from CERN to Gran Sasso in a repeat of the OPERA
experiment. ICARUS found that the arrival time was consistent with zero and within
approximately 10 ns of the expected light travel time [54]. The light travel time
between CERN and Gran Sasso is roughly 2.4 ms, so the Δc/c from ICARUS is
of the order of 10−5, consistent with previous measurements made by the MINOS
detector [147]. Therefore the SN1987A neutrinos remain the tightest constraint on
Lorentz violation from time-of-flight experiments.

Threshold Reactions
Threshold reactions also can be used to cast constraints on the neutrino sector.
Several processes are of interest: neutrino Čerenkov emission ν → γ ν, neutrino
splitting ν → ν νν, and neutrino electron/positron pair production ν → ν e−e+. Let
us consider for illustration the latter process as the others work similarly. Neglecting
possible LV modification in the electron/positron sector (on which we have seen we
have already strong constraints) the threshold energy for a dispersion modification
that scales as pn is

E2
th,(n) =

4m2
e

δ(n)
, (56)

with δ(n) = ξν(Eth/M)n−2.
The rate of this reaction was first computed in [51] for n = 2 but can be eas-

ily generated to arbitrary n [52]. The generic energy loss time-scale then reads
(dropping purely numerical factors)

τν−pair  m4
Z cos4 θw

g4E5

(
M

E

)3(n−2)

, (57)

where g is the weak coupling and θw is Weinberg’s angle. ICARUS found no
electron-positron pair creation from the CERN neutrino beam as it passed through
their detector [148], but the best constraint comes from the observation of upward-
going atmospheric neutrinos up to 400 TeV by the IceCube experiment. Since the
neutrinos propagated through the entire Earth to reach the IceCube detector the free
path of these particles is at least longer than the Earth radius. This measurement has
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been used to establish constraints on |ζ1|, |ζ2| < 30 while c, d are constrained at
the 10−12 level [52]. No effective constraint can be optioned for the dimension-six
operators, however in this case neutrino splitting (which has the further advantage
to be purely dependent on LV on the neutrinos sector) could be used on the “cos-
mogenic” neutrino flux. This is supposedly created via the decay of charged pions
produced by the aforementioned GZK effect. The neutrino splitting should modify
the spectrum of the UHE neutrinos by suppressing the flux at the highest energies
and enhancing it at the lowest ones. In [149] it was shown that future experiments
like ARIANNA [150] will achieve the required sensitivity to cast a constraint of
order |α(6)

L | � 10−4. Note however, that the rate for neutrino splitting computed
in [149] was recently recognized to be underestimated by a factor O(E/M)2 [119].
Hence, the future constraints here mentioned should be recomputed and one should
be able to strengthen the constraint by a few orders of magnitude.

9 Other Frameworks

Specifying which dynamical framework is employed is crucial when discussing the
phenomenology of Lorentz violations. The most robust and well-motivated frame-
work is that which we have been discussing, EFT. However, it is not the only one
and, in fact, there are reasonable arguments from holography that a QG theory
should not necessarily be a local field theory in the UV (cf. the discussion in [151]).
Hence Lorentz violation may enter into low-energy physics in novel ways. In addi-
tion, if one believes that the fundamental QG theory should not be Lorentz invariant,
then one might look for ways in which Lorentz violation might appear outside the
realm of EFT and so avoid many of the constraints that exist in the EFT framework.
For completeness, and because the EFT approach is nothing more than a highly
reasonable, but rather arbitrary “assumption,” it is worth studying and constrain-
ing additional models, given that they may evade the majority of the constraints
discussed in this review.

9.1 D-brane Models

Ellis et al. developed a model [56,58] in which modified dispersion relations derive
from the Liouville string approach to quantum space-time [152]. Liouville string
models [152] motivate corrections to the usual relativistic dispersion relations that
are first order in the particle energies and that correspond to a vacuum refractive
index η = 1 − (E/MPl)α , where α = 1. Models with quadratic dependencies of the
vacuum refractive index on energy, α = 2, have also been considered [63].

In particular, the D-particle realization of the Liouville string approach predicts
that only gauge bosons such as photons, and not charged matter particles such
as electrons, might have QG-modified dispersion relations. This difference occurs
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since excitations which are charged under the gauge group are represented by open
strings with their ends attached to the D-brane [153], and that only neutral excita-
tions are allowed to propagate in the bulk space transverse to the brane [154]. Thus,
if we consider photons and electrons, in this model the parameter η is forced to
be null, whereas ξ is free to vary. Even more importantly, the theory is CPT even,
implying that vacuum is not birefringent for photons (ξ+ = ξ−).

9.2 New Relativity Theories

Lorentz invariance of physical laws relies on only a few assumptions: the principle
of relativity, stating the equivalence of physical laws for non-accelerated observers,
isotropy (no preferred direction) and homogeneity (no preferred location) of space-
time, and a notion of precausality, requiring that the time ordering of co-local events
in one reference frame be preserved [155–162].

All the realizations of LV we have discussed so far explicitly violate the principle
of relativity by introducing a preferred reference frame. This may seem a high price
to pay to include QG effects in low-energy physics. For this reason, it is worth
exploring an alternative possibility that keeps the relativity principle but that relaxes
one or more of the above postulates.

For example, relaxing the space isotropy postulate leads to the so-called very
special relativity framework [163], which was later on understood to be described
by a Finslerian-type geometry [164–166]. In this example, however, the generators
of the new relativity group number fewer than the usual ten associated with Poincaré
invariance. Specifically, there is an explicit breaking of the O(3) group associated
with rotational invariance.

One may wonder whether there exist alternative relativity groups with the same
number of generators as special relativity. Currently, we know of no such generaliza-
tion in coordinate space. However, it has been suggested that, at least in momentum
space, such a generalization is possible, and it was termed “doubly” or “deformed”
(to stress the fact that it still has ten generators) special relativity (DSR). Even
though DSR aims at consistently including dynamics, a complete formulation capa-
ble of doing so is still missing, and present attempts face major problems. Thus, at
present DSR is only a kinematic idea.

Finally, we cannot omit the recent development of what one could perhaps con-
sider a spin-off of DSR that is relative locality, which is based on the idea that
the invariant arena for classical physics is a curved momentum space rather than
space-time (the latter being a derived concept) [167].

DSR and relative locality are still a subject of active research and debate (see,
e.g., [168–171]); nonetheless, they have not yet attained the level of maturity needed
to cast robust constraints13.

13 Note however, that some knowledge of DSR phenomenology can be obtained by considering
that, as in special relativity, any phenomenon that implies the existence of a preferred reference
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10 Discussion and Perspectives

As we have seen, for rotationally invariant QED, Lorentz symmetry is extremely
well tested with strong constraints all the way up to dimension-six operators. Lest
the reader get a false impression, we also should mention that many other sectors
of the SM, from neutrons to mesons both with and without rotation invariance also
have tight limits set on any possible deviation from Lorentz invariance.

There are two areas where there remains immediate work to be done. First, there
is one current caveat in regards to the dimension-six operator constraints that needs
to be resolved. As we have seen, the dimension-six constraints mostly rely on the
physics of the GZK feature of the UHECR spectrum. More specifically, UHECR
constraints rest upon the hypothesis, not in contrast with any previous experimental
evidence, that protons constitute the majority of UHECRs above 1019 eV. Recent
PAO [172] and Yakutsk [173] observations, however, showed hints of an increase of
the average mass composition with rising energies up to E ≈ 1019.6 eV, although
still with large uncertainties mainly due to the proton-air cross section at ultrahigh
energies. Hence, *experimental data suggest that heavy nuclei can possibly account
for a substantial fraction of UHECR arriving on Earth. Furthermore, the evidence for
correlations between UEHCR events and their potential extragalactic sources [86]—
such as AGN (mainly blazars)—has not improved with increasing statistics. This
might be interpreted as a further hint that a relevant part of the flux at very high
energies should be accounted for by heavy ions (mainly iron) which are much more
deviated by the extra- and intergalactic magnetic fields due to their larger charge
with respect to protons (an effect partially compensated by their shorter mean free
path at very high energies). If consequently one conservatively decides to momen-
tarily suspend his/her judgment about the evidence for a GZK feature, then he/she
would lose the constraints at n = 4 on the QED sector14 as well as very much
weaken the constraints on the hadronic one.

Assuming that current hints for a heavy composition at energies E ∼ 1019.6 eV
[172] may be confirmed in the future, that some UHECR is observed up to E ∼
1020 eV [175], and that the energy and momentum of the nucleus are the sum of
energies and momenta of its constituents (so that the parameter in the modified
dispersion relation of the nucleus is the same of the elementary nucleons) one could
place a first constraint on the absence of spontaneous decay for nuclei which could

frame is forbidden. Thus, the detection of such a phenomenon would imply the falsification of
both special and DSR. An example of such a process is the decay of a massless particle.
14 This is a somewhat harsh statement given that it was shown in [174] that a substantial (albeit
reduced) high-energy gamma-ray flux is still expected also in the case of mixed composition, so
that in principle the previously discussed line of reasoning based on the absence of upper threshold
for UHE gamma rays might still work.
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not spontaneously decay without LV.15 Such a constraint would place bounds on
subluminal protons, because in this case the energy of the emitted nucleon is low-
ered with respect to the LI case until it “compensates” the binding energy of the
nucleons in the initial nucleus in the energy-momentum conservation. A comple-
mentary constraint, an upper limit on superluminal protons, can be obtained from
the absence of VC emission. If UHECR are mainly iron at the highest energies the
constraint is given by ζp � 2 × 102 for nuclei observed at 1019.6 eV (and ζp � 4
for 1020 eV), while for helium it is ζp � 4 × 10−3 [176].

Second, the gravitational sector of Lorentz symmetry violation is currently less
constrained. A large region of the parameter space of Einstein-aether theory remains
unconstrained, while atom interferometry is starting to probe matter-tensor cou-
plings that are sensitive to the dynamics of the Lorentz violating tensors. Useful
modified gravity theories that also evade solar system tests, such as galileons [177],
or allow for better UV behavior, such as the aforementioned Hořava–Lifshitz grav-
ity, yield interesting Lorentz symmetry violating gravitational phenomenology.
Hence, fully exploring Lorentz violation in the gravitational sector is currently an
important area that requires further progress.
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feedback on the manuscript preparation.
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Possible Low-Energy Manifestations of Strings
and Gravity

Ignatios Antoniadis

Abstract Despite the important experimental success of general relativity, there
are several theoretical reasons indicating that gravitational phenomena may change
radically from the predictions of Einstein’s theory at very short distances. A main
motivation comes from studies of unifying all fundamental forces in the frame-
work of a consistent quantum theory, called string theory. In the first part of my
lectures (Sects. 1–6), I discuss the main motivations and directions for physics
beyond the Standard Model of elementary particles and I give a short introduction
on perturbative string theory. This theory introduces a new physical constant, the
string length, under which a new fundamental structure appears, changing drasti-
cally the laws of nature. In particular, lowering the string scale in the TeV region
provides a theoretical framework for solving the so-called mass hierarchy problem:
the apparent weakness of gravity can be accounted for by the existence of large
internal dimensions, in the submillimeter region, and transverse to a braneworld
where our observed universe is confined. In the second part of my lectures (Sects. 7–
11), I describe the main properties of this scenario and its implications for new
gravitational phenomena that can be observed at both particle colliders, and in
non-accelerator experiments searching for new short-range forces.

1 Departure from the Standard Model

1.1 Why Beyond the Standard Model?

Almost all research in theoretical high-energy physics of the past 30 years has been
concentrated on the quest for the theory that will replace the Standard Model (SM)
as the proper description of nature at the energies beyond the TeV scale. Thus, it
is important to know if this quest is justified or not, given that the SM is a very
successful theory that has offered us some of the most striking agreements between
experimental data and theoretical predictions. We will start by briefly examining
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the reasons for leaving behind such a successful SM. Actually there is a variety
of such arguments, both theoretical and experimental, that lead to the undoubtable
conclusion that the SM should be only an effective theory of a more fundamental
one.

We briefly mention some of the most important arguments. First, the SM does
not include gravity. It says absolutely nothing about one of the four fundamental
forces of nature. Another is the popular “mass hierarchy” problem. Within the SM,
the mass of the Higgs particle is extremely sensitive to any new physics at higher
energies and its natural value is of the order of the Planck mass, if the SM is valid up
to that scale. This is several orders of magnitude higher than the electroweak scale
implied by experiment. The way to cure this discrepancy within the SM requires an
incredible fine-tuning of parameters. Also, the SM does not explain why the charges
of elementary particles are quantized. Other equally important reasons include that
the SM does not describe the dark matter or the dark energy of the universe. It does
not explain the observed neutrino masses and oscillations, and does not predict any
gauge coupling unification, suggested by experiments.

Here, we describe some of these arguments in more detail, starting from gravity.
If we follow the intuition that the fundamental theory should describe within the
same quantum framework all forces of nature, we need to extend the SM in a way
that it consistently includes this force. However, this is particularly difficult for a
variety of reasons. The most serious is that gravity cannot be quantized consistently
as a field theory. Another one is that the new theory has to provide a natural explana-
tion for the apparent weakness of gravity compared to the other three fundamental
interactions.

The gravitational force between two particles of mass m is

Fgrav = GN m
2

r2
, G

−1/2
N = MPlanck = 1019 GeV. (1)

If we compare this with the electric force

Fel = e2

r2
, (2)

for, say, the proton, we get

Fgrav

Fel
= GNm

2
proton

e2
 10−40. (3)

So, gravity is an extremely weak force at low energies (or equivalently large
distances) even compared to the weak force as is shown in Table 1.

The distance at which gravitation becomes comparable to the other interactions
is 10−33 cm, the Planck length. The energy that corresponds to this length is of the
order of the Planck mass and is ∼ 1015 times the Large Hadron Collider (LHC)
energy! Thus, another great difficulty is that even if we manage to construct such a
model, its phenomenological verification will be extremely difficult.
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Table 1 Fundamental forces

Force Range Intensity for two protons Intensity at 10−16 cm

Gravitation ∞ 10−38 10−30

Electromagnetic ∞ 10−2 10−2

Weak (radioactivity β) 10−15 cm 10−5 10−2

Strong (nuclear forces) 10−12 cm 1 10−1

Next, we describe the mass hierarchy problem. The mass of the Higgs particle
is very sensitive to high-energy physics. For example, the main one-loop radiative
corrections from the virtual exchange of top quarks and the Higgs particle itself are

μ2
eff = μ2

bare +
(
λ

8π2
− 3λ2

t

8π2

)
Λ2 + · · ·, (4)

where, λ is the Higgs quartic coupling, λt is the top Yukawa coupling, and Λ is the
ultraviolet (UV) cutoff set by the scale where new physics appears. From the masses
of all other particles and for reasons that we will explain later, we know that the
Higgs mass should be at the weak scale. Requiring the validity of the SM at energies
Λ � O(100) GeV imposes an “unnatural” order by order fine-tuning between the
bare mass parameter μ2

bare in the Lagrangian and the radiative corrections.
For example, for Λ ∼ O(MPlanck) ∼ 1019 GeV and a loop factor of the order

of 10−2, we get μ2
1−loop ∼ 10−2 × 1038 = ±1036 (GeV)2. Thus, we need μ2

bare ∼
∓1036 (GeV)2 + 104 (GeV)2. An incredible adjustment is then required, at the level
of 1 part per 1032: μ2

bare/μ
2
1−loop = −1±10−32. Even more, at the next and all

higher orders, a new adjustment is required. The correction will be of the order of

O(100) GeV only beyond 17 loops:
(
10−2

)N × 1038 ≤ 104 ⇒ N ≥ 17 loops.
If we want to avoid these unnatural adjustments we need 10−2Λ2 ≤ 104 (GeV)2

⇒ Λ ≤ 1 TeV. The resolution of the mass hierarchy problem should reside within
the energy reach of LHC!

Another open question is the charge quantization: All observed color sin-
glet states have integer electric charges. The symmetry group of the SM is
SU (3) × SU (2)L × U (1)Y and the electric charge is given by: Q = T3 + Y . The
representations of the symmetry group of all fields are:

q = (3, 2)1/6 q =
(
u2/3

d−1/3

)

uc = (3̄, 1)−2/3

dc = (3̄, 1)1/3

� = (1, 2)−1/2 � =
(
ν0

e−1

)

ec = (1, 1)1,
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Fig. 1 Gauge coupling evolution of SM (dashed lines) versus the supersymmetric SM (solid lines)

where the subscripts denote the hypercharges in the left column and the electric
charges in the right one. However, the SM does not tell us anything about this choice
of the hypercharges that guarantees the observed electric charge quantization.

Also, the experimental indication of gauge coupling unification is a feature of
nature that asks for an explanation. The renormalization group evolution of the three

SM gauge couplings αi = g2
i

4π is given by:

dαi

d lnQ
= − bi

2π
α2
i ⇒ α−1

i (Q) = α−1
i (Q0) − bi

2π
ln
Q

Q0
, (5)

where Q is the energy scale and bi are the one-loop beta-function coefficients.
The extrapolation of the low-energy experimental data at high energies under the
“desert” assumption indicates an approximate unification of all couplings at ener-
gies of orderMGUT  1015÷1016 GeV. By doing a more precise analysis however,
using the current experimental precision, one finds that the SM fails to predict such
a unification (see Fig. 1).

One more reason for going beyond the SM is the existence of dark matter. Astro-
nomical observations tell us that the ordinary baryonic matter is only a tiny fraction
of the energy of the universe. There are observations that point toward the fact that
a kind of nonluminous matter is out there and that is actually much more abundant
than baryonic matter, consisting of around 25 % of the total energy density of the
universe. A natural explanation is that dark matter consists of a new kind of particles
that are stable, massive at the electroweak scale, and weakly interacting.

We could mention many other important reasons that drive us beyond the SM,
like neutrino masses, dark energy (see Fig. 2), and so on, but we will stop here.



Possible Low-Energy Manifestations of Strings and Gravity 423

ObservationsObservationsObservationsObservations

Dark Energy
Fraction

Matter Energy Fraction

Fig. 2 Observational constraints on dark matter and dark energy [1]

Even this brief and incomplete presentation shows that there are a lot of funda-
mental questions that the SM cannot address so the search for a new fundamental
theory is definitely justified.

Modifying the SM though is not as easy as it might seem. If we try to identify
the scale Λ of new physics by looking at what energies there are deviations from
the SM predictions by observations, we will be disappointed. With the exception
of dark matter and the Higgs mass, all experimental indications suggest that Λ is
very high. For example, the “see-saw” mechanism for the neutrino masses gives a

very large scale: mν ∼ v2

M
∼ 10−2 eV ⇒ M ∼ 1013 GeV, where v is the vacuum

expectation value (VEV) of the SM Higgs. Similarly, the scale of gauge coupling
unification is even higher:MGUT ∼ 1016 GeV.

Even more, modifying the SM in a way that solves the hierarchy problem is
highly restricted by numerous experiments. Any new interactions could violate
various SM predictions that have been experimentally tested with good accuracy
such as lepton and baryon number conservation, absence of flavor changing neu-
tral currents (FCNC), charge parity (CP) violation etc. For example, theories with
baryon number violating operators like 1

Λ2
B

(q̄γ μuc)
(
�̄γμd

c
)

can lead to proton

decay: p = [uud] → (e+[d̄d]) = e+π0, uu→ e+d̄. The bound from the
Superkamiokande experiment on the proton lifetime of τp ≥ 2.6×1033 years highly
restricts the allowed scale:ΛB ≥ 1015 GeV. Similarly, for the lepton number, in this
case, the lowest dimensional operator that violates lepton number has dimension
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5: 1
ΛL
(�H ∗)2, whereH is the Higgs field. This operator leads in particular to Majo-

rana neutrino masses. However, as we said before, neutrino masses are very low,

mν = v2

ΛL
≤ 0.1 eV. With a VEV for the Higgs at O(100) GeV, the scale ΛL is

also constrained to very high values: ΛL ≥ 1014 GeV. Finally, FCNC operators

like 1
Λ2
F

(
d̄LγμsL

)2
are restricted by the measured value of K0 − K0 mixing to be

ΛF ≥ 106 GeV. It is very challenging to construct a model that provides us with a
solution to the theoretical problems mentioned above and at the same time to comply
with all experimental requirements.

1.2 Directions Beyond the Standard Model

One way to encapsulate in the low-energy regime the effects of a more fundamental
theory is to use effective operators. These can be produced by integrating out heavy
states in the fundamental theory. However, we can always write down generic effec-
tive operators even when that theory is unknown. We just require Lorentz symmetry
and gauge invariance of the low-energy effective action. These terms need not be
renormalizable because by definition, the validity of an effective theory holds only
up to the scale where the high-energy physics appears.

Here we show an example of integrating out a heavy gauge boson of mass M

−1

4
F 2
μν −

1

2
M2A2

μ + gψ̄ /Aψ ⇒ g2

M2

(
ψ̄γ μψ

)2
. (6)

It gives rise to a six-dimensional (6D) non-renormalizable four-fermion effective
operator. This is, for instance, the case in the popular Fermi theory obtained by
integrating out at low energies E � mW the heavy SU (2) gauge bosonsW±:

Leff = GF
(
q̄LγμqL + �̄Lγμ�L

)2 + · · ·, (7)

with GF = g2
2/m

2
W .

Generally, effective field theory parametrizes our ignorance of the high-energy
physics by introducing local effective operators Oin of dim (4 + n)

Leff = LSM +
∑
i

cin

Mn
Oin, (8)

for E � M; M is the new physics scale where the heavy states become dynamical.
If this is not too far away from the electroweak scale, the lowest dimensional (in
powers of M) operatorsOin can significantly affect the low-energy physics. They can
shift the mass of the Higgs or violate symmetries of the SM such as baryon number,
lepton number, induce FCNC and important CP violation, etc. as we mentioned
previously.
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Effective field theory offers a systematic but blind way to explore the physics
beyond the SM. The alternative is to propose a totally new theory and study its con-
sequences. There are several such proposals. They all cure some major weaknesses
of the SM but they also have their own drawbacks. Keeping the mass hierarchy as
guidance, the following proposals exist so far:

1. Compositeness
2. Symmetry:

– Supersymmetry (SUSY)
– Higgs as pseudo-Goldstone boson, little Higgs
– Conformal
– Higgs as component of a higher-dimensional gauge field

3. Low-UV cutoff:

– Low-scale gravity ⇒ · large extra dimensions
· warped extra dimensions

– Low-string scale ⇒ · low-scale gravity
· ultra-weak string coupling

– Large N degrees of freedom
– Higgsless models

4. Live with the hierarchy:

– Landscape of vacua, environmental selection
– Split SUSY

We will briefly describe only the first two, and later we will focus on strings and
extra dimensions.

The first proposal for physics beyond the SM is “compositeness.” This idea
postulates the existence of new strong dynamics at the energy range of TeV. The
Higgs field which breaks the electroweak symmetry is then a bound state of fermion
bilinears just like the pions that break chiral symmetry in quantum chromodynam-
ics (QCD). A concrete model realizing this idea is called “technicolor.” However,
most technicolor models have conflicts with electroweak precision measurements,
leading in particular to the appearance of FCNCs, and are generally disfavored.

Another idea is to introduce a new symmetry. This provides a natural way to
keep the mass of the Higgs small and solve the mass hierarchy. After all, there are
various examples where symmetries have been used to naturally obtain small masses
for fermions and bosons. In the case of fermions, it is the chiral symmetry as it can
be seen in the following simple Lagrangian

LF = iψ̄L/DψL + iψ̄R/DψR +m (
ψ̄LψR + ψ̄RψL

)
. (9)

When m = 0 there is an enhanced symmetry ψL → eiθ1ψL; ψR → eiθ2ψR
which breaks when the mass terms are included. Thus, imposing this symmetry
on our model, one forbids any mass terms in the Lagrangian. Moreover, in their
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presence, since chiral symmetry is “softly” broken, radiative corrections behave like
δm ∝ g2m where g is the gauge coupling (e.g., in quantum electrodynamics (QED)
with ψ ≡ electron and g ≡ e). An alternative reason to understand why there is
no g2Λ term is because in a relativistic quantum field theory, any linear divergence
cancels between the electron and positron contributions.

The corresponding symmetry for vector bosons is the gauge invariance. Consider,
for instance, a massive abelian vector field:

LV = −1

4
F 2
μν−

1

2
m2A2

μ. (10)

We see again that m = 0 respects Aμ → Aμ + ∂μω. This is, for instance, how the
gauge invariance of QED forbids any mass for the photon.

Is there a symmetry that can protect scalar masses, too? We can introduce, for
example, a shift symmetry, implying that the Lagrangian should depend only on
derivatives of the scalar field:

φ → φ + c ⇒ L
(
∂μφ

) = 1

2
(∂μφ)2 + 1

Λ4

[
(∂μφ)2

]2 + · · · . (11)

This is the case for a Goldstone boson without potential and in particular it does
not hold when a quartic coupling is included. Scenarios like the “little Higgs” take
advantage of this property and treat the Higgs as a pseudo-Goldstone boson. In this
case, the shift symmetry is broken by new gauge interactions that generate quartic
Higgs interactions at higher orders. Another possibility is to use scale invariance:

xμ → axμ ϕd → a−dϕ(ax), (12)

where d is the conformal dimension of the field ϕd and d = 1 for a scalar field. This
symmetry allows a quartic coupling but in a renormalizable theory is hardly broken
by radiative corrections. In order to take advantage of this symmetry, the SM should
be embedded in a conformally invariant theory at the TeV scale.

Finally, we can use a different strategy by postulating a new symmetry that
connects scalars to fermions or gauge fields:

δφ = ξψ or δφ = εμAμ. (13)

Then the chiral or gauge invariance that protects the fermion or the gauge boson
masses should also protect the masses of their scalar partners. This idea leads us
to SUSY or to theories with extra dimensions, correspondingly. Indeed, the second
case leads to the identification of the Higgs field with an internal component of a
higher-dimensional gauge field.

1.3 Advantages and Problems of Supersymmetry

We would like to conclude this introductory section by summarizing the main
advantages and drawbacks of SUSY. First of all, SUSY offers a solution to the
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hierarchy problem predicting a Higgs mass that can be reached by colliders like
LHC. Moreover, SUSY offers an excellent candidate for dark matter, the lightest
supersymmetric particle. Another attractive feature is the gauge coupling unifica-
tion, a property that indicates that the theory might stay perturbative up to the Grand
Unified Theory (GUT) scale. On the conceptual level, we are given a framework
where elementary scalars can be naturally included and treated on the same foot-
ing as fermions. Also, SUSY expanded our notion of space-time including new
dimensions of Grassmannian nature. Last but not least, SUSY is a theory that makes
specific predictions and can be verified or disproved experimentally in the real fea-
ture. If SUSY is true, there will be a rich spectrum of new particles within LHC
reach.

On the other hand, one of the weak points is the fact that the Minimal Supersym-
metric Standard Model (MSSM), without imposing phenomenological restrictions,
has far too many free parameters. Also, global symmetries like lepton and baryon
number conservation are not automatic like in the SM but need to be imposed, for
instance, by R-parity. Restrictions by hand also need to be imposed on the soft terms
for suppressing dangerous FCNC processes. In addition there is a problem with the
parameter μ. This is a SUSY mass parameter and a priori has nothing to do with
SUSY breaking but its phenomenologically acceptable value is of the order of the
soft breaking masses. Finally, there is some tension from experimental results in col-
liders such as LEP2 and TEVATRON. The fact that they have not seen any SUSY
signatures yet has introduced already a fine-tuning in the theory of the order of a
few percent.

Because of these problems, several alternative theories have been proposed that
can also offer an explanation to the mass hierarchy, predicting new phenomena at the
TeV scale. One radical idea, motivated by string theory, is based on extra dimensions
(ordinary bosonic and not fermionic as in SUSY).

2 Strings and Extra Dimensions

In all physical theories, the number of dimensions is a free parameter fixed to three
by observation, with one exception: string theory, which predicts the existence of
six new spatial dimensions. This is the only known theory today that unifies the two
great discoveries of twentieth century: quantum mechanics, describing the behavior
of elementary particles, and Einstein’s general relativity, describing gravitational
phenomena in our universe [2].

String theory replaces all elementary point particles that form matter and its
interactions with a single extended object of vanishing width: a tiny string. Thus,
every known elementary particle, such as the electron, quark, photon, or neutrino,
corresponds to a particular vibration mode of the string (see Fig. 3).

The diversity of these particles is due to the different properties of the corre-
sponding string vibrations.
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Fig. 3 In string theory, the elementary constituent of matter is a miniscule string, having vanishing
width but finite size. It can be open with free ends (upper part), or closed (lower part). Its vibration
modes, like the ones shown above, correspond to various elementary particles

Until now, there is no experimental confirmation of string theory. No one has
ever observed strings, not even indirectly, neither the space of extra dimensions
where they live. The main arguments in its favor are theoretical, because it provides
a coherent framework for unification of all fundamental interactions. For a long
time, string physicists thought that strings were extremely thin, having the smallest
possible size of physics, associated to the Planck length ∼ 10−35 m.

However, the situation changed drastically over the last decade. It has been real-
ized that the “hidden” dimensions of string theory may be much larger than what we
thought in the past and they become within experimental reach in the near future,
together with the strings themselves [3, 4]. These ideas lead in particular to propos-
als of experimental tests of string theory that can be performed at TEVATRON and
LHC.

The main motivation for these ideas came from considerations of the hierarchy
problem that was described in the previous section. As mentioned already, a pos-
sible solution is provided by the introduction of SUSY. The appropriate and most
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convenient framework for low-energy SUSY and grand unification is the perturba-
tive heterotic string. Indeed, in this theory, gravity and gauge interactions have the
same origin, as massless modes of the closed heterotic string, and they are unified at
the string scaleMs . As a result, the Planck massMP is predicted to be proportional
toMs :

MP = Ms/g , (14)

where g is the gauge coupling. In the simplest constructions, all gauge couplings are
the same at the string scale, given by the four-dimensional (4D) string coupling, and
thus no grand unified group is needed for unification. In our conventions αGUT =
g2  0.04, leading to a discrepancy between the string and grand unification scale
MGUT by almost two orders of magnitude. Explaining this gap introduces in general
new parameters or a new scale, and the predictive power is essentially lost. This is
the main defect of this framework, which remains though an open and interesting
possibility [5].

On the other hand, a new idea has been proposed that solves the problem if the
fundamental string length is fixed to 10−18 ÷ 10−19 m [4]. In this case, quantum
corrections are controlled by the string scale, which is in the TeV region, and do not
destabilize the masses of elementary particles. Moreover, it offers the remarkable
possibility that string physics may be testable soon in particle colliders.

How is it possible to lower the string scale from the traditional quantum gravity
Planck scale to the TeV region without contradicting observations? In particular,
what happens to the extra dimensions of string theory and why they have not been
observed? A crucial role is played by the discovery of p-branes which are higher-
dimensional objects extended in p spatial dimensions, generalizing the notion of
point particle (p = 0) and string (p = 1). A main consequence of this discovery
is that the string scale is in general a free parameter that can be dissociated from
the Planck mass, if the universe is localized on a p-brane and does not feel all extra
dimensions of string theory. The braneworld description of our universe separates
the dimensions of space in two groups: those extended along our p-braneworld,
called parallel, and those transverse to it.

If our universe has additional dimensions, we should observe new phenomena
related to their existence. Why nobody has detected them until now? A possible
answer was given in the beginning of twenteith century by Kaluza and Klein [6]:
because the size of the new dimensions is very small, in contrast to the size of the
other three that we know, which is infinitely large. An infinite and narrow cylinder,
for example, is a two-dimensional (2D) space, with one dimension forming a very
small cycle: one can move infinitely far away along the axis, while one returns back
at the same point when moving along the orthogonal direction (see Fig. 4).

If one of the three known dimensions of space was small, say of millimeter size,
we would be flat and, while we could move freely toward left or right, forward or
backward, it would be impossible to do more than a few millimeters up or down
where space ends. It follows that extra dimensions along our universe escape obser-
vation if their size is less than about 10−18 m which is the smallest distance scale
that can be probed in present high-energy experiments [3, 7].
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Fig. 4 Possible forms of small extra dimensions of space. Far away they are unobservable, but at
distances comparable to their size we start feeling their existence and exploring their shapes

The next question is how we can detect their existence if we dispose sufficient
energy to probe their size? The minimum energy required is given by their inverse
size and is called compactification scale. The answer was given again by Kaluza and
Klein: The motion of a particle in extra dimensions of finite size manifests to us as
a tower of massive particles, called Kaluza–Klein excitations. If, for instance, the
photon propagates along an extra compact dimension, one should observe a tower
of massive particles with the same properties as the photon but with a mass that
becomes higher as the size of the extra dimension is getting smaller. It follows, that
for a size of order 10−18 m, an energy of order of a few TeV would be sufficient to
produce them.

The above analysis and bound does not apply though for transverse dimensions
to our universe, since in this case we cannot send light or any form of observable
matter to probe their existence. The only way to communicate is through gravity
which couples to any kind of energy density. However, our knowledge of gravity
at short distances is much weaker than the other interactions, allowing for sizes
of such “hidden” dimensions as large as almost a millimeter. This is roughly the
shortest distance where Newton’s law is tested in the laboratory.

The appropriate string perturbative framework that provides such a description,
and has been studied extensively in the more recent years is type I string theory
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Fig. 5 In the type I string framework, our universe contains, besides the three known spatial dimen-
sions (denoted by a single blue line), some extra dimensions (d‖ = p − 3) parallel to our world
p-brane (green plane) where endpoints of open strings are confined, as well as some transverse
dimensions (yellow space) where only gravity described by closed strings can propagate

with D-branes. Unlike in the heterotic string, gauge and gravitational interactions
have now different origin. The latter are described again by closed strings, while
the former emerge as excitations of open strings with endpoints confined on D-
branes [8]. This leads to a braneworld description of our universe, which should
be localized on a hypersurface, that is, a p-brane extended in p spatial dimensions
(see Fig. 5). Closed strings propagate in all nine dimensions of string theory: in
those extended along the p-brane (parallel) as well as in the transverse ones. On the
contrary, open strings are attached on the p-brane.

Obviously, our p-brane world must have at least the three known dimensions of
space. But it may contain more: the extra d‖ = p−3 parallel dimensions must have
a finite size, in order to be unobservable at present energies, and can be as large
as TeV−1 ∼ 10−18 m. On the other hand, transverse dimensions interact with us
only gravitationally and experimental bounds are much weaker: Their size should
be less than about 0.1 mm [9]. In the following, I review the main properties and
experimental signatures of low-string scale models [4, 10].
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3 A Brief Introduction to Perturbative String Theory

Before proceeding, in this section, we give a short introduction of perturbative string
theory [2, 11–13].

3.1 From Point Particle to Extended Objects

A p-brane is a p-dimensional spatially extended object, generalizing the notion of
point particles (p= 0) to strings (p= 1), membranes (p= 2), etc. We will discuss the
dynamics of a free p-brane, propagating in D space-time dimensions (p ≤ D − 1),
using the first quantized approach in close analogy with the case of point particles.
Indeed, the propagation of a point leads to a world line. The corresponding action
that describes the dynamics of a free particle is proportional to the length of this
line. The trajectory which minimizes the action in flat space is then a straight line.
Similarly, the propagation of a p-brane leads to a (p+1)-dimensional world-volume.
The action describing the dynamics of a free p-brane is then proportional to the
area of the world-volume and its minimization implies that the classically prefered
motion is the one of minimal volume.

More precisely, in order to describe the dynamics of a p-brane in the embed-
ding D-dimensional space-time, we introduce space-time coordinates Xμ(ξα) (μ =
0, 1, . . . ,D − 1) depending on the world-volume coordinates ξα (α = 0, 1, . . . , p).
The Nambu–Gotto action in a flat space-time is then given by

S = −T
∫ √−deth dp+1ξ , (15)

where, T is the brane tension of dimensionality (mass)p+1, and

hαβ = ∂αXμ∂βXμ ≡ ∂αXμ∂βXνημν (16)

is the induced metric on the brane.
An equivalent but more convenient description is given by the covariant Polyakov

action:

S = −T
2

∫ √−deth {hαβ∂αXμ∂βXμ − (p − 1)} dp+1ξ , (17)

where the intrinsic metric of the brane world-volume hαβ is introduced as an
independent variable. Solving the equations of motion for Xμ and hαβ

∂α(
√−dethhαβ∂βXμ) = 0 , (18)

∂αX
μ∂βXμ − 1

2
hαβ (∂X)2 + 1

2
(p − 1)hαβ = 0 , (19)

with (∂X)2 ≡ hαβ∂αXμ∂βXμ, one finds

hαβ = ∂αXμ∂βXμ ; p 
= 1. (20)
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hαβ is thus identified with the induced metric (16), and after substitution into the
Polyakov action (17) we obtain back the Nambu–Gotto form (15).

The symmetries of the Polyakov action are (i) global space-time Lorentz invari-
ance, and (ii) local world-volume reparameterization invariance under an arbitrary
change of coordinates ξα → ξα

′
(ξβ ) with Xμ and hαβ transforming as a (p + 1)-

dimensional scalar and symmetric tensor, respectively. The local symmetry needs a
gauge fixing: We should impose p+1 gauge conditions, so that only theD−(p+1)
ones transverse to the brane oscillations are physical.

The equations of motion (18, 19) are generally complicated and simplify only for
the cases of particle (p = 0) and string (p = 1). Indeed, to solve the equations, we
apply the gauge-fixing conditions on the elements of the p × p symmetric matrix
hαβ , so that there remain 1

2p(p + 1) free components.
For p = 0, one can fix the metric to a constant, hαβ = −m2. Furthermore, there

is only one world line coordinate, the time ξα = τ , and the equation of motion (18)
becomes Ẍμ = 0. The general solution is

Xμ(τ ) = Xμ0 + pμτ , (21)

which is a straight line. On the other hand, the second equation of motion (19) leads
to the constraint

Ẋ2 = −m2 , (22)

which is the on-shell condition p2 = −m2. The quantization can be done following
the canonical procedure, that is, by applying the (equal-time) commutators

[Xμ, Ẋν] = iημν , (23)

leading to the usual relation [Xμ0 , p
ν] = iημν .

For p = 1, we have two world-sheet coordinates ξα = (τ, σ ), where σ is a
parameter along the string. Using the gauge freedom, one can fix two components
of the metric and bring it into the conformally flat form

hαβ (σ, τ ) = eΦ(σ,τ )ηαβ , (24)

where the scale factor Φ is the only remaining degree of freedom. However for
p = 1, the action (17) has an additional symmetry under local rescalings of the
metric (local conformal invariance), so that Φ decouples from both the action and
the equations of motion (18, 19). As a result, there is an additional gauge freedom
and one can again fix the metric to a constant, hαβ = ηαβ , as in the case p = 0. The
equations of motion for Xμ and constraints then read:

∂α∂
αXμ = 0 , (25)

∂αX
μ∂βXμ = 1

2
ηαβ (∂X)2 . (26)

The above equations are further simplified by defining light-cone variables τ, σ →
σ± = τ ± σ . The equations of motion (25) then become

∂+∂−Xμ = 0 , (27)
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and the general solution for Xμ(σ±) is separated into left- and right-movers:

Xμ(σ±) = XμL(σ+) +XμR(σ−) . (28)

These functions are subject to the constraints (26):

(∂+XL)2 = (∂−XR)2 = 0 . (29)

In order to write explicit solutions, we need to impose boundary conditions that
correspond in general to two kind of strings: Closed and open.

Closed strings satisfy the periodicity condition

Xμ(τ, σ ) = Xμ(τ, σ + 2π ) , (30)

leading to the general solution

Xμ = Xμ0 + Pμτ + i√
2

∑
n 
=0

1

n
{aμn e−in(τ+σ ) + ãμn e−in(τ−σ )} ,

in mass units of T = 1
2π .1 The first two terms on the right-hand side describe the

motion of the closed string center of mass, while the remaining terms in the sum
correspond to the string oscillations of the left- and right-movers which are subject
to the constraints (29). Reality of the coordinatesXμ imply (aμn )† = aμ−n and similar
for the right-movers. Applying the canonical quantization procedure:

[Xμ(τ, σ ), Ẋν(τ, σ ′)] = 2iπδ(σ − σ ′)ημν , (31)

one obtains the commutation relations

[aμm, a
ν
n] = [ãμm, ã

ν
n] = mδm+n,0ημν , (32)

[ãμm, a
ν
n] = 0 , [Xμ0 , P

ν] = iημν . (33)

For open strings, the only Lorentz-invariant boundary condition is the Neumann
one:

∂σX
μ|σ=0,π = 0 , (34)

implying that the ends of the string propagate with the speed of light. The general
solution (28) becomes in this case

Xμ(σ, τ ) = Xμ0 + 2Pμτ + i√2
∑
n 
=0

1

n
aμn e

−inτ cos (nσ ) ,

and can be obtained from the closed string expression (28) by identifying left- and
right-movers (a ≡ ã).2

1 This convention corresponds to fixing the Regge slope α′ ≡ 1
2πT = 1.

2 Note though the factor 2 in Pμ due to the change in the range of σ .
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3.2 Free Closed and Open String Spectrum

By inspection of the commutation relations (32, 33), one can identify aμn , ã
μ
n with

n > 0 (aμ−n, ã
μ
−n) with the annihilation (creation) operators. Without loss of gen-

erality, let us first restrict to the holomorphic (left-moving) part. As usual, we can
define a vacuum |p> of momentum p annihilated by aμn :

aμn |p>= 0 ; Pμ|p>= pμ|p> . (35)

The physical states are then created by the action of aμ−n’s on this vacuum after
imposing the constraints (29). Expanding the latter into Fourier decomposition, one
should require:

Lm ≡ 1

2

∑
n∈Z

: am−n · an := 0 (36)

for m> 0, and

L0 ≡ 1

2π

∫ 2π

0
dσ (∂+X)2 (37)

= 1

4
p2 + 1

2

∑
n 
=0

: a−n · an := 1

4
p2 +N = c ,

where N is the number operator and the constant c appears due to the normal order-
ing. These constraints are in fact necessary to eliminate the negative norm states
generated by the action of the time component of creation operators due to the
commutator (32); for instance, ||aμ−m|p> || = mημμ < 0 for μ = 0.

Unitarity is manifest in the light-cone gauge which fixes the residual symme-
try of the covariant gauge-fixed Eqs. (27) and (29) under σ+ → σ ′+(σ+) and
σ− → σ ′−(σ−). Defining

X± = X0 ±XD−1 , (38)

this invariance can be used to set:

X+ = X+
0 + p+τ , (39)

while the constraints can be solved for X− in terms of the transverse coordinates
XT :

∂+X− = 2

p+
(∂+XT )2 . (40)

Thus, we are left only with the transverse aT−n that are the independent physical
oscillations.

We can now derive the spectrum. Note that the zero-mode of Eq. (40) reproduces
the global Hamiltonian constraint (37) that gives the mass formula:

−1

4
p2 = N − c . (41)
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The first excited state aT−1|p > with N = 1 is a space-time vector with D − 2
transverse independent components. Therefore, by Lorentz invariance, it should
be massless, implying c = 1. Furthermore, the quantum algebra of Lorentz
generators—or equivalently the absence of conformal anomaly—fixes the space-
time dimensionality D = 26. As a result, one obtains:

N = 0 |p> - 1
4p

2 = −1 tachyon

N = 1 a
μ
−1|p> - 1

4p
2 = 0 massless vector

N = 2

{
a
μ
−1a

ν
−1|p>

a
μ
−2|p>

- 1
4p

2 = 1 massive spin 2 ,

(42)

and so on. Note that the states of highest spin J at each mass level form a Regge
trajectory:

1

4
M2 = (J − 1)

α′
. (43)

The spectrum of a closed string is obtained by the direct product of states from left-
and right-movers with the conditionM2

L = M2
R . At the massless level, one thus has:

a
μ
−1ã

ν
−1|p> , (44)

that can be decomposed into a spin-2 graviton (symmetric traceless part), a scalar
dilaton (trace), and a 2-index antisymmetric tensor (2-form). The automatic and
unavoidable occurrence of the graviton in the massless spectrum is of course wel-
come and constitutes a strong motivation for string theory as quantum theory of
gravity.

For open strings, there are no separate left- and right-movers, but one has the free-
dom to introduce additional quantum numbers associated to their ends. As a result,
the vacuum of oscillators becomes |p, ij >, where the indices i, j are Chan–Paton
charges “living” at the two ends of the open string. Their transformation properties
define a (non-abelian) gauge group, and the massless states are now gauge fields:

aν−1|p, ij >. (45)

They can form antisymmetric, symmetric, or complex representations correspond-
ing to orthogonal, symplectic, or unitary gauge groups, respectively. Obviously,
open strings cannot be a theory of gravitation as they do not contain a massless
graviton in the spectrum. However, in the presence of interactions, closed strings
appear by unitarity making string theory a candidate for unification of gauge with
gravitational forces.

String interactions of splitting and joining can be introduced in analogy with
the first quantized approach of point particles, where the world line can split using
n-point vertices. However, unlike the particle case, the string interaction vertex is
unique modulo world-sheet reparameterizations. As a result, interactions correspond
to world-sheets with nontrivial topology and string perturbation theory becomes a
topological expansion in the number of handles (for oriented closed strings), as
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well as holes and crosscaps (for open strings and orientation flips of closed strings,
respectively). As we will see in Sect. 3.7, string diagrams are weighted by powers of
a coupling constant λ2g−2, with g = n+ (h+ c)/2 the genus of the surface given in
terms of the number of handles n, holes h, and crosscaps c. An important property
of string interactions is that (modulo reparametrizations) there is no local notion of
interaction point, which makes string perturbation theory free of UV divergences,
that occur in point particles by products of distributions at the same point. Thus,
string theory provides a unique mathematical framework of describing nontrivial
particle interactions with no UV divergences.

3.3 Compactification on a Circle and T-duality

Since the bosonic string lives in 26 dimensions, one has to compactify 22 of those on
some internal manifold of small (presently unobserved) size. The simplest example
of compactification is given by one dimension X on a circle of radius R. X must
then satisfy the periodicity condition:3

X = X + 2πR , (46)

so that the solution to the equations of motion (27) is

X = X0 + pτ + wσ + i√
2

∑
n 
=0

1

n
{ane−in(τ+σ ) + ãne−in(τ−σ )}

= X0 + p + w
2

σ+ + p − w
2

σ− + oscillators.

Note the appearance of a new term linear in σ , which is allowed to be nonvanishing
due to the periodicity condition (46). Its coefficient is quantized in units of R, w =
nR, since for σ → σ + 2π we must have X→ X+ 2nπR, where n is the (integer)
winding number of the string around the circle. On the other hand, the internal
momentum is also quantized in units of 1/R, p = m/R for m ∈ Z, which follows
from the requirement that plane waves eipX must be single-valued around the circle:
X→ X + 2πR.

For closed strings, it is convenient to define left and right momenta:

pL,R = m

R
± nR , (47)

in terms of which the mass of physical states becomes (in 25 dimensions):

−1

4
p2 = 1

4
p2
L +NL − 1 = 1

4
p2
R +NR − 1 . (48)

3 Here we define X ≡ X25.
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The above spectrum is invariant under the T-duality symmetry R → 1/R with the
simultaneous interchange of momenta and windings:

R→ 1

R
, m↔ n or XL → XL , XR → −XR . (49)

It can be shown that T-duality is also an exact symmetry of the string interactions to
all orders of perturbation theory and it is conjectured to hold at the non-perturbative
level, as well. Note that the string coupling λ ≡ λ26 should transform, so that the
lower-dimensional coupling of the compactified theory λ25 = λ26/

√
R remains

inert:

λ→ λ

R
. (50)

An important consequence of the winding modes in closed strings is the appearance
of enhanced non-abelian gauge symmetries at special values of the compactification
radii. For instance, the generic gauge group in the case of one dimension is the
Kaluza–Klein U (1)L × U (1)R:

a
μ
−1|p>L ⊗ã25

−1|p>R , a25
−1|p>L ⊗ãμ−1|p>R with p25

L = p25
R = 0 .

However, for the special value of the radius R = 1, there is an enhanced gauge
symmetry SU (2)L × SU (2)R , due to the appearance of extra massless states:

m = n = ±1 ⇒ pL = ±2, pR = 0 : | ± 2>L ⊗ãμ−1|p>R

m = −n = ±1 ⇒ pL = 0, pR = ±2 : aμ−1|p>L ⊗| ± 2>R .

(51)

This property will be generalized later on to non-perturbative states.
For open strings, the Neumann boundary condition (34) imposes the windings

to vanish, w = 0. Thus, a T-duality is not anymore a symmetry of the spectrum.
Under T-duality, p→ w (σ ↔ τ ), and the Neumann becomes a Dirichlet boundary
condition:

∂τX|σ=0,π = 0 , (52)

implying the ends of the string to be fixed at particular points of the circle. In fact, a
coordinate (35) satisfying the Neumann (N) condition can be written in the form:

X = XL(σ+) +XR(σ−), (53)

with left- and right-moving oscillators identified, an = ãn. After the T-duality
transformation (49), it becomes

X̃ = XL −XR
= X̃0 + 2wσ + i√2

∑
n 
=0

1

n
aμn e

−inτ sin (nσ ) ,
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which is the general solution of the wave Eq. (27) satisfying the Dirichlet (D)
condition (52), implying that the endpoints of the string are fixed at X̃|σ=0,π = X̃0.

Given the two ends of the open string, one can choose independently the N or D
condition for each endpoint, implying three kinds of boundary conditions: NN, DD,
and ND (for which p = w = 0). The introduction of D conditions along the internal
directions leads to the notion of D-branes which are subsurfaces where open strings
can end. A Dp-brane is then defined by imposing N conditions along its longitudinal
directions Xμ=0,..,p , and D conditions along its transverse ones XI=p+1,..,25. The
endpoints are thus fixed in the XI transverse space, while they can move freely in a
(p+1)-dimensional space-time spanned by the world-volume of the p-brane.

It is now easy to see that performing a T-duality along a compact transverse
(longitudinal) direction, a Dp-brane is transformed into a D(p+1)-brane (D-(p-1)-
brane). Moreover, in this picture, the Chan–Paton multiplicity corresponds to the
multiplicity of D-branes. Thus, D-branes on top of each other, labeled by a Chan–
Paton index, give a gauge group enhancement.

3.4 The Superstring: Type IIA and IIB

Two immediate problems with the bosonic string are the presence of tachyon (sig-
naling a vacuum instability) and the absence of fermions in the spectrum. Both
problems can be solved in the context of superstring, obtained by adding fermions
on the world-sheet.

The fermionic coordinates are Weyl–Majorana 2D fermions ψμL,R(σ, τ ), which
carry a space-time index μ. The 2D Dirac equation implies that the left- (right-)
handed fermions depend only on σ+ (σ−). As in the case of bosonic coordinates, the
timelike components ψ0

L,R generate extra negative norm states that need a new local
symmetry to be removed. This is indeed the super-reparameterization invariance, or
equivalently local SUSY on the world-sheet. In the superconformal gauge (24), the
SUSY transformations read (for the left-movers):

δX
μ
L = −iεRψμL

δψ
μ
L = εR∂+XμL, (54)

and emerge from the 2D supercurrent

TF = ψμL∂+Xμ . (55)

Similar transformations hold for the right-movers by exchanging L ↔ R and
+ ↔ −. The cancellation of conformal anomalies implies, in this case, that the
superstring must live in D = 10 space-time dimensions.

In order to obtain solutions to the equations of motion, we need to discuss bound-
ary conditions. For both closed and open strings, there are two possible conditions
compatible with space-time Lorentz invariance:

ψμ(τ, σ ) = ±ψμ(τ, σ + 2π ) , (56)
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corresponding to the Ramond (R) and Neveu–Schwarz (NS) ones. The general
solution can then be expanded as (for instance for the left-movers):

ψ
μ
L =

∑
r

bμr e
−ir(τ+σ ) ; (bμr )† = bμ−r , (57)

where r is half-integer (integer) for NS (R) boundary conditions, and upon
quantization one has the usual canonical anticommutator relations:

{bμr , bνs } = ημνδr+s,0 . (58)

The mass formula (41) now becomes:

−1

4
p2 = N +Nψ − c , (59)

where Nψ = 1
2

∑
r r :br · b−r : is a sum of half-integer (integer) frequencies for NS

(R) fermions, and c = 1/2 (c = 0) in the NS (R) sector.
As in the bosonic string, unitarity is manifest in the light-cone gauge, where only

the transverse oscillators create physical states. In the superstring, there are however
two sectors in the spectrum: The NS and the R sectors, corresponding to antiperiodic
and periodic world-sheet supercurrent (55) and giving rise to space-time bosons and
fermions, respectively. In the NS sector, the ground state is still a tachyon |p > of
momentum p and mass given by −(1/4)p2 = −1/2, while at the massless level
there is a vector:

|μ;p>= bμ−1/2|p> . (60)

In the R sector, the fermionic coordinates (57) have zero-modes which satisfy the
anticommutator relations (58), generating a ten-dimensional (10D) Clifford algebra:

{bμ0 , bν0} = ημν . (61)

As a result, the oscillator vacuum forms a representation of this algebra and corre-
sponds to a space-time spinor |p, α> of dimension 2d/2 = 32, on which bμ0 act as
the 10D gamma matrices:

i
√

2 bμ0 |p, α>= γ μαβ |p, β> . (62)

Moreover, in the absence of oscillators, the constraint corresponding to the zero-
mode of the 2D supercurrent (55) generates the 10D massless Dirac equation which
reduces the dimensionality of the lowest lying state to 16, corresponding to a
massless 10D real (Majorana) fermion.

At this point, the problem of the tachyon remains. However, it turns out that the
above spectrum is not consistent with world-sheet modular invariance, which guar-
antees the absence of global anomalies under 2D diffeomorphisms disconnected
from the identity that can be performed in topologically nontrivial surfaces. Consis-
tency of the theory already at the one-loop level (torus topology) implies that one
should impose the Gliozzi–Scherk–Olive (GSO) projection:

(−)F = −1 , (63)
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where F is the fermion number operator. This projection eliminates the tachyon
from the NS sector, while in the R sector acts as space-time chirality. In fact, from
the anticommutator

{(−)F , bμ0 } = 0 , (64)

(−)F can be identified with the 10D γ 11 matrix, in the absence of oscillators:

(−)F = γ 11(−)
∑∞
n=1 b

μ
−nb

μ
n . (65)

It follows that at the massless level there is one massless vector and one Weyl–
Majorana spinor, having eight bosonic and eight fermionic degrees of freedom. This
fermion–boson degeneracy holds to all massive levels and is a consequence of a
resulting space-time SUSY.

We can now discuss the spectrum of closed superstrings. There are two dif-
ferent theories depending on the relative (space-time) chirality between left- and
right-movers: The type IIA or type IIB corresponding to opposite or same chirality,
respectively. The massless spectrum is obtained by the tensor product:

(|μ>, |α>L ) ⊗ (|ν>, |β>R,L ) , (66)

where L, R denotes left, right 10D chiralities, and |β>R (|β>L) stands for type IIA
(type IIB). Decomposing the spectrum into representations of the 10D little group
SO(8), one finds the bosons

|μ> ⊗|ν> = 1 + 35S + 28A

|α> ⊗|β> IIA= 8(1−form) + 56(3−form)
IIB= 1(0−form) + 28(2−form) + 35+(4−form),

(67)

and the fermions
|α> ⊗|ν> = 8L + 56L

|μ> ⊗|β> IIA= 8R + 56R
IIB= 8L + 56L .

(68)

The NS–NS states 1, 35S , and 28A in Eq. (67) denote the trace, the 2-index sym-
metric traceless, and antisymmetric combinations corresponding to the dilaton,
graviton, and antisymmetric tensor, respectively, that are part of the massless spec-
trum of any consistent string theory. The above massless spectra coincide with those
of IIA and IIB N = 2 supergravities in ten dimensions; note the two gravitini 56s in
Eq. (68) with opposite or same chirality.

Upon compactification in nine dimensions on a circle of radius R, the two type
II theories are equivalent under T-duality:

R→ 1

R
: IIA ↔ IIB . (69)

This can be easily seen from the transformation (49), whose action on the fermions
is ψL → ψL and ψR → −ψR , in order to preserve the form of the 2D supercurrent
(55). As a result, (−)FR = γ 11

R → −γ 11
R , implying a flip of the fermion chirality in

the right-movers.
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3.5 Heterotic String and Orbifold Compactifications

The heterotic string is a closed string obtained by the tensor product of the super-
string (for the left-movers) and the bosonic string (for the right-movers). Since the
left-moving coordinates live in ten dimensions while the right-moving ones in 26,
16 of the latter are compactified on an internal momentum lattice. One-loop modular
invariance then implies that the corresponding momenta pIR (I = 1, . . . , 16) belong
to an even self-dual lattice (pR · p

′
R ∈ Z and p 2

R ∈ 2Z). There are only two such
lattices in 16 dimensions generated by the roots of SO(32) and E8 × E8 groups.

The massless spectrum of the heterotic string is given by the tensor product

(|μ>, |α> ) ⊗ |ν>= 1 + 35S + 28A + 8L + 56L, (70)

which forms the particle content of the N = 1 supergravity multiplet in ten
dimensions, and by

(|μ>, |α>L ) ⊗ |pIR;p 2
R = 2>, (71)

which forms a 10D N = 1 gauge supermultiplet of SO(32) or E8 × E8.
Upon compactification in nine dimensions on a circle, the two heterotic theories

are equivalent under T-duality:

R→ 1

R
: Het SO(32) ↔ Het E8 × E8. (72)

The continuous connection of the two theories can be easily seen using the freedom
of gauge symmetry breaking by turning on Wilson lines (flux lines in the compact
direction). These correspond to the constant values of the internal (10th) compo-
nent of the gauge fields AI9 along the 16 Cartan generators, and break generically
the gauge group to its maximal abelian subgroup U (1)16. One can then show that
Eq. (72) is valid at the point with SO(16) × SO(16) gauge symmetry.

The heterotic string appears to be the only perturbative closed string theory that
can describe our observable world. One of the main problems is however to get a 4D
superstring which is phenomenologically viable. In particular, in order to be chiral,
the spectrum should be at mostN = 1 supersymmetric. For a toroidal compactifica-
tion, the 10DN = 1 spectrum is converted into a non-chiralN = 4 supersymmetric
spectrum in four dimensions.

A solution to this problem is provided by orbifold compactifications. These are
obtained from toroidal compactifications by identifying points under some discrete
subgroup of the internal rotations that remains an exact symmetry of the compact-
ified theory. The resulting compact spaces are not smooth manifolds because there
are singularities associated to the fixed points. String propagation, however, is made
consistent because modular invariance requires the presence of a new (twisted) sec-
tor corresponding to strings with center of mass localized at the orbifold fixed points.
In four dimensions, the internal rotations form an SO(6) ≡ SU (4) and the condition
of unbroken N = 1 SUSY amounts to divide the torus T 6 with a discrete subgroup
of SU (3) that leaves one of the four gravitini invariant.
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The simplest orbifold example reduces the number of supersymmetries by half
and can be studied in six dimensions. It is defined by T 4/Z2, where the Z2 inverts
the sign of the four internal coordinates Xi → −Xi (i = 1, . . . , 4) and of their
fermionic superpartners. Since in the heterotic string there are no right-moving
superpartners, Z2 should also act nontrivially on the gauge degrees of freedom
breaking partly the gauge symmetry together with the N = 4 SUSY. To see the
reduction of SUSY in the massless sector, consider the (left-moving) Ramond vac-
uum that forms a 10D Weyl–Majorana spinor with (−)F = −1. Its decomposition
under SO(4) × SO(4), with the first factor corresponding to the 6D little group and
the second to the internal rotations, reads

ψμ ψi

+ −
− +

where the signs denote the chiralities under the two SO(4). The Z2 orbifold action
on this spinor is identical to the chirality projection in the internal part, and thus
eliminates half of the gravitini.

The Hilbert space of the theory consists in two sectors:

• The untwisted sector which is obtained from the Hilbert space of the toroidal
compactification on T 4 projected into the Z2 invariant states:

|pi = 0>+ , |pi > +| − pi >
with even number of oscillators

|pi = 0>− , |pi > −| − pi >
with odd number of oscillators

(73)

where |pi = 0 >± denote the Z2 even (+) and odd (−) states with vanishing
internal momentum pi in which the Z2 action is nontrivial.

• The twisted sector which contains states localized at the 24 = 16 fixed points
and, thus, are confined to live on five-dimensional (5D) subspaces (in the large-
volume limit).

3.6 Type I String Theory

Up to this point, we have seen four consistent closed superstring theories in ten
dimensions: Type IIA and IIB with two space-time supersymmetries, and heterotic
SO(32) andE8×E8 with one SUSY. Moreover, the two type II theories and the two
heterotic ones are connected by T-duality upon compactification to nine dimensions.
Actually, there is a fifth consistent superstring theory in 10D with N = 1 SUSY, the
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type I theory of open and closed strings; open strings provide the gauge sector,
whereas closed strings provide gravity needed for unitarity.

A consistent algorithm to construct type I theory is to “orbifolding” type IIB
by the world-sheet involution Ω that exchanges left- and right-movers and is a
symmetry of the theory:

Ω : σ → −σ (L↔ R). (74)

We thus obtain type I theory = IIB/Ω . As in ordinary orbifolds, the spectrum consists
in an untwisted and a twisted sector.

The untwisted sector contains closed strings projected by Ω (unoriented closed
strings). This turns to symmetrize the NS–NS sector and to antisymmetrize the R–
R one. As a result, the two-index NS–NS antisymmetric tensor is projected out,
together with the R–R scalar and 4-form (see Eq. (68)), and we are left with the
dilaton scalar φ and the symmetric tensor (graviton)Gμν from NS–NS, and a 2-form
Bμν from R–R.

The twisted sector corresponds to the “fixed points” X(−σ, τ ) = X(σ, τ )
which are equivalent to the (Neumann) boundary conditions for open strings:
∂σX|σ=0,π = 0. Moreover, the “fixed-point multiplicity” N corresponds to the
Chan–Paton charges. It is determined by the tadpole cancellation condition that
plays the role of modular invariance for open and closed unoriented strings and
guarantees the absence of potential gauge and gravitational anomalies. One finds
N=32 which can also be interpreted as the multiplicity of D9-branes, leading to an
SO(32) gauge group.

Under a T-duality along one compact direction, we get

X = XL +XR → X̃ = XL −XR (75)

and the action of Ω(L↔ R) becomes

X̃→ −X̃ . (76)

So the effect of a T-duality on Ω is

Ω → ΩR , (77)

where R is defined as R : X→ −X. Therefore, T-duality gives

type I = IIB/Ω → type I′ = IIA/ΩR (78)

D9 − branes → D8 − branes (79)

3.7 Effective Field Theories

At low energies, lower than the string scale α′−1/2, one can integrate out all massive
string modes to obtain an effective field theory for the massless excitations of the
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string. There are two ways to obtain this effective action. Either by computing the
string scattering amplitudes or by considering string propagation in the presence of
nontrivial background fields. The latter is described by the world-sheet action:

S = − 1

4π

∫
d2ξ{Gμν(X)∂αX

μ∂αXν + Bμν(X)εαβ∂αX
μ∂βX

ν

− φ(X)R(2) + Aaμ(X)Jμa + ...} (80)

where Gμν , Bμν , φ, Aaμ, . . . are backgrounds for the massless fields (metric, 2-
index antisymmetric tensor, dilaton, gauge fields, etc), and R(2) denotes the 2D
scalar curvature. Note that this is the most general nonlinear sigma model which
is renormalizable in two dimensions. Conformal invariance implies the vanishing
of all beta functions which reproduce the space-time equations of motion for the
background fields.

A particular property of string theories, which can be seen from the action (80), is
that the constant dilaton background eφ plays the role of the string coupling. Indeed,
a shift φ → φ + c amounts to multiply the path integral by a factor

e−S → e2c(g−1)e−S , (81)

where g is the genus of the world-sheet, and we used the Euler integral

1

4π

∫
d2ξR(2) = 2(g − 1) . (82)

It follows that the dilaton shift can be absorbed in a rescaling of the string coupling
λ → ecλ. The 10D effective action can therefore by expanded in powers of eφ

corresponding to the perturbative topological string expansion:

Seff =
∫
d10X{e−2φ[R(10) + · · · ] + e−φ[ · · · ] + 1[ · · · ] + · · · } .

The first term proportional to e−2φ corresponds to the tree-level contribution asso-
ciated to spherical world-sheet topology (g = 0), the second term multiplying e−φ
denotes the disk contribution (g = 1/2), the third term proportional to the identity
corresponds to the one-loop toroidal topology (g = 1), and so on. Closed oriented
string diagrams give rise to even powers e2(g−1)φ with g integer, whereas closed
unoriented and open string diagrams introduce boundaries and crosscaps having g
half-integer and can lead to odd powers of eφ , as well.

4 Framework of Low-Scale Strings

In type I theory, the different origin of gauge and gravitational interactions implies
that the relation between the Planck and string scales is not linear as (14) of the
heterotic string. The requirement that string theory should be weakly coupled, con-
strains the size of all parallel dimensions to be of order of the string length, whereas
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transverse dimensions remain unrestricted. Assuming an isotropic transverse space
of n = 9 − p compact dimensions of common radius R⊥, one finds:

M2
P = 1

g2
s

M2+n
s Rn⊥ , gs  g2 for D−branes , (83)

where gs is the string coupling. It follows that the type I string scale can be chosen
hierarchically smaller than the Planck mass [4, 14] at the expense of introducing
extra-large transverse dimensions felt only by gravity, while keeping the string cou-
pling small [4]. The weakness of 4D gravity compared to gauge interactions (ratio
MW/MP ) is then attributed to the largeness of the transverse space R⊥ compared to
the string length ls = M−1

s .
An important property of these models is that gravity becomes effectively (4+n)-

dimensional with a strength comparable to those of gauge interactions at the string
scale. The first relation of Eq. (83) can be understood as a consequence of the (4 +
n)-dimensional Gauss law for gravity, with

M (4+n)∗ = M2+n
s /g4 (84)

the effective scale of gravity in 4 + n dimensions. Taking Ms  1 TeV, one finds
a size for the extra dimensions R⊥ varying from 108 km, 0.1 mm, down to the
fermi scale for n = 1, 2, or 6 large dimensions, respectively. This shows that while
n = 1 is excluded, n ≥ 2 is allowed by present experimental bounds on gravitational
forces [9,15]. Thus, in these models, gravity appears to us very weak at macroscopic
scales because its intensity is spread in the “hidden” extra dimensions. At distances
shorter than R⊥, it should deviate from Newton’s law, which may be possible to
explore in laboratory experiments (see Fig. 6).

The main experimental implications of TeV scale strings in particle accelera-
tors are of three types, in correspondence with the three different sectors that are
generally present: (i) new compactified parallel dimensions, (ii) new extra-large
transverse dimensions and low-scale quantum gravity, and (iii) genuine string and
quantum gravity effects. On the other hand, there exist interesting implications in
non-accelerator table-top experiments due to the exchange of gravitons or other
possible states living in the bulk.

5 Large Number of Species

Here, we open a parenthesis to describe that low-scale gravity with large extra
dimensions is actually a particular case of a more general framework, where the
UV cutoff is lower than the Planck scale due to the existence of a large number of
particle species coupled to gravity [16]. Indeed, it was shown that the effective UV
cutoffM∗ is given by

M2∗ = M2
P /N , (85)
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Fig. 6 Torsion pendulum
that tested Newton’s law at
55 μm [9]

where the counting of independent species N takes into account all particles which
are not broad resonances, having a width less than their mass. The derivation is
based on black hole evaporation, but here we present a shorter argument using
quantum information storage [17]. Consider a pixel of size L containing N species
storing information. The energy required to localize N wave functions is then given
by N/L, associated to a Schwarzschild radius Rs = N/LM2

P . The latter must be
less than the pixel size in order to avoid the collapse of such a system to a black
hole, Rs ≤ L, implying a minimum size L ≥ Lmin with Lmin = √

N/MP asso-
ciated precisely to the effective UV cutoff M∗ = Lmin given in Eq. (85). Imposing
M∗  1 TeV, one should then have N ∼ 1032 particle species below about the TeV
scale!

In the string theory context, there are two ways of realizing such a large number
of particle species by lowering the string scale at a TeV:

1. In large-volume compactifications, with the SM localized on D-brane stacks, as
described in the previous section. The particle species are then the Kaluza–Klein
(KK) excitations of the graviton (and other possible bulk modes) associated to the
large extra dimensions, given by N = Rn⊥lns , up to energies of orderM∗  Ms .

2. By introducing an infinitesimal string coupling gs  10−16 with the SM local-
ized on Neveu–Schwarz NS5-branes in the framework of little strings [18]. In
this case, the particle species are the effective number of string modes that con-
tribute to the black hole bound [19]: N = 1/g2

s and gravity does not become
strong atMs ∼ O(TeV).
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Note that both TeV string realizations above are compatible with the general expres-
sion (83), but in the second case there is no relation between the string and gauge
couplings.

6 Warped Spaces

In these models, space-time is a slice of anti-de Sitter space (AdS) in d = 5 dimen-
sions whereas our universe forms a 4D flat boundary [20]. The corresponding line
element is:

ds2 = e−2k|y|ημνdxμdxν + dy2 ; Λ = −24M3k2 , (86)

where M,Λ are the 5D Planck mass and cosmological constant, respectively, and
the parameter k is the curvature of AdS5. The fifth coordinate y is restricted on the
interval [0, πrc]. Thus, this model requires two “branes,” a UV and an infrared (IR),
located at the two endpoints of the interval, y = 0 and y = πrc, respectively. The
vanishing of the 4D cosmological constant requires to fine-tune the two tensions:
T = −T ′ = 24M3k2. The 4D Planck mass is given by:

M2
P = 1

k
(1 − e−2πkrc )M3 . (87)

On the other hand, there is an exponential hierarchy of the mass scales in the IR
relative to the UV-brane due to the warped factor in the metric (86). One can then
identify the electroweak scaleMW  MPe−2πkrc .

By studying the corresponding wave functions, one can show that 4D gravity
is localized on the UV-brane, whereas KK gravitons on the IR. It follows that the
main prediction of this model is the existence of spin-2 resonances at the TeV scale
coupled with (TeV)−1 strength. Their masses are given by:

mn = cnke−2πkrc ; cn 
(
n+ 1

4

)
for large n (88)

and they are weakly coupled formn < Me−2πkrc , that is, for k < M . Viable models
can be constructed when SM gauge bosons propagate in the 5D bulk, fermions are
localized near the UV-brane, whereas the Higgs near the IR [21]. Using AdS/CFT
correspondence, they are dual to strongly coupled 4D field theories with composite
Higgs; their gauge coupling gYM ∼ M/k is strong when spin-2 KK modes are
weakly coupled in the gravity dual description.
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7 Experimental Implications in Accelerators

7.1 World-Brane Extra Dimensions

In this case RMs >∼ 1, and the associated compactification scale R−1
‖ would be the

first scale of new physics that should be found increasing the beam energy [3, 7,
22]. There are several reasons for the existence of such dimensions. It is a logical
possibility, since out of the six extra dimensions of string theory only two are needed
for lowering the string scale, and thus the effective p-brane of our world has in
general d‖ ≡ p − 3 ≤ 4. Moreover, they can be used to address several physical
problems in braneworld models, such as obtaining different SM gauge couplings,
explaining fermion mass hierarchies due to different localization points of quarks
and leptons in the extra dimensions, providing calculable mechanisms of SUSY
breaking, etc.

The main consequence is the existence of KK excitations for all SM particles that
propagate along the extra parallel dimensions. Their masses are given by:

M2
m = M2

0 + m
2

R2‖
; m = 0,±1,±2, . . . (89)

where we used d‖ = 1, and M0 is the higher-dimensional mass. The zero-mode
m = 0 is identified with the 4D state, whereas the higher modes have the same quan-
tum numbers as the lowest one, except for their mass given in (89). There are two
types of experimental signatures of such dimensions [7,23,24]: (i) virtual exchange
of KK excitations, leading to deviations in cross sections compared to the SM pre-
diction, that can be used to extract bounds on the compactification scale; (ii) direct
production of KK modes.

On general grounds, there can be two different kinds of models with qualita-
tively different signatures depending on the localization properties of matter fermion
fields. If the latter are localized in 3D-brane intersections, they do not have excita-
tions and KK momentum is not conserved because of the breaking of translation
invariance in the extra dimension(s). KK modes of gauge bosons are then singly
produced giving rise to generally strong bounds on the compactification scale and
new resonances that can be observed in experiments. Otherwise, they can be pro-
duced only in pairs due to the KK momentum conservation, making the bounds
weaker but the resonances difficult to observe.

When the internal momentum is conserved, the interaction vertex involving KK
modes has the same 4D tree-level gauge coupling. On the other hand, their couplings
to localized matter have an exponential form factor suppressing the interactions of
heavy modes. This form factor can be viewed as the fact that the branes intersection
has a finite thickness. For instance, the coupling of the KK excitations of gauge
fieldsAμ(x, y) = ∑

m A
μ
m exp i my

R‖ to the charge density jμ(x) of massless localized



450 I. Antoniadis

fermions is described by the effective action [25]:

∫
d4x

∑
m

e
− ln 16m

2l2s
2R2‖ jμ(x)Aμm(x). (90)

After Fourier transform in position space, it becomes:
∫
d4x dy

1

(2π ln 16)2
e−

y2M2
s

2 ln 16 jμ(x)Aμ(x, y), (91)

from which we see that localized fermions form a Gaussian distribution of charge
with a width σ = √

ln 16 ls ∼ 1.66 ls .
To simplify the analysis, let us consider first the case d‖ = 1 where some of the

gauge fields arise from an effective 4-brane, while fermions are localized states on
brane intersections. Since the corresponding gauge couplings are reduced by the size
of the large dimension R‖Ms compared to the others, one can account for the ratio
of the weak to strong interactions strengths if the SU (2)-brane extends along the
extra dimension, whereas SU (3) does not. As a result, there are three distinct cases
to study [24], denoted by (t, l, l), (t, l, t), and (t, t, l), where the three positions in
the brackets correspond to the three SM gauge group factors SU (3)×SU (2)×U (1)
and those with l (longitudinal) feel the extra dimension, whereas those with t
(transverse) do not.

In the (t, l, l) case, there are KK excitations of SU (2) × U (1) gauge bosons:
W

(m)
± , γ (m), and Z(m). Performing a χ2 fit of the electroweak observables, one finds

that if the Higgs is a bulk state (l), R−1
‖ >∼ 3.5 TeV [26]. This implies that LHC can

produce at most the first KK mode. Different choices for localization of matter and
Higgs fields lead to bounds, lying in the range 1 ÷ 5 TeV [26].

In addition to virtual effects, KK excitations can be produced on-shell at LHC as
new resonances [23] (see Fig. 7).

There are two different channels, neutral Drell–Yan processes pp → l+l−X
and the charged channel l±ν, corresponding to the production of the KK modes
γ (1), Z(1), and W (1)

± , respectively. The discovery limits are about 6 TeV, while the
exclusion bounds 15 TeV. An interesting observation in the case of γ (1) + Z(1) is
that interferences can lead to a “dip” just before the resonance. There are some ways
to distinguish the corresponding signals from other possible origin of new physics
such as models with new gauge bosons. In fact, in the (t, l, l) and (t, l, t) cases, one
expects two resonances located practically at the same mass value. This property is
not shared by most of other new gauge boson models. Moreover, the heights and
widths of the resonances are directly related to those of SM gauge bosons in the
corresponding channels.

In the (t, l, t) case, only the SU (2) factor feels the extra dimension and the limits
set by the KK states of W± remain the same. On the other hand, in the (t, t, l) case
where only U (1)Y feels the extra dimension, the limits are weaker and the exclusion
bound is around 8 TeV. In addition to these simple possibilities, brane constructions
lead often to cases where part of U (1)Y is t and part is l. If SU (2) is l the limits
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Fig. 7 Production at LHC of the first KK modes of the photon and of the Z boson decaying
to electron–positron pairs (upper panel), as well as of the W boson decaying to lepton–neutrino
(lower panel). The number of expected events is plotted as a function of the energy of the pair in
GeV (transverse energy for W excitations). From highest to lowest on the upper panel: excitation
of γ + Z, γ , and Z

come again from W±, while if it is t then it will be difficult to distinguish this case
from a generic extra U (1)′. A good statistics would be needed to see the deviation
in the tail of the resonance as being due to effects additional to those of a generic
U (1)′ resonance. Finally, in the case of two or more parallel dimensions, the sum
in the exchange of the KK modes diverges in the limit R‖Ms � 1 and needs to
be regularized using the form factor (90). Cross sections become bigger yielding
stronger bounds, while resonances are closer implying that more of them could be
reached by LHC.

On the other hand, if all SM particles propagate in the extra dimension (called
universal)4, KK modes can only be produced in pairs and the lower bound on the
compactification scale becomes weaker, of the order of 300–500 GeV. Moreover,
no resonances can be observed at LHC, so that this scenario appears very similar to
low-energy SUSY. In fact, KK parity can even play the role of R-parity, implying
that the lightest KK mode is stable and can be a dark matter candidate in analogy to
the (lightest supersymmetric particle, LSP) [27].

7.2 Extra Large Transverse Dimensions

The main experimental signal is gravitational radiation in the bulk from any physical
process on the world-brane. In fact, the very existence of branes breaks translation
invariance in the transverse dimensions and gravitons can be emitted from the brane

4 Although interesting, this scenario seems difficult to be realized, since 4D chirality requires
nontrivial action of orbifold twists with localized chiral states at the fixed points.
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Table 2 Limits on R⊥ in
mm [10]

Experiment n = 2 n = 4 n = 6

Collider bounds

LEP 2 5 × 10−1 2 × 10−8 7 × 10−11

TEVATRON 5 × 10−1 10−8 4 × 10−11

LHC 4 × 10−3 6 × 10−10 3 × 10−12

NLC 10−2 10−9 6 × 10−12

Present non-collider bounds

SN1987A 3 × 10−4 10−8 6 × 10−10

COMPTEL 5 × 10−5 – –

LHC Large Hadron Collider, NLC Next Linear
Collider

into the bulk. During a collision of center of mass energy
√
s, there are ∼ (

√
sR⊥)n

KK excitations of gravitons with tiny masses, that can be emitted. Each of these
states looks from the 4D point of view as a massive, quasi-stable, extremely weakly
coupled (s/M2

P suppressed) particle that escapes from the detector. The total effect
is a missing-energy cross section roughly of order:

(
√
sR⊥)n

M2
P

∼ 1

s

(√
s

Ms

)n+2

. (92)

Explicit computation of these effects leads to the bounds given in Table 2.
However, larger radii are allowed if one relaxes the assumption of isotropy, by

taking, for instance, two large dimensions with different radii.
Figure 8 shows the cross section for graviton emission in the bulk, corre-

sponding to the process pp → jet + graviton at LHC, together with the SM
background [28].

For a given value of Ms , the cross section for graviton emission decreases with
the number of large transverse dimensions, in contrast to the case of parallel dimen-
sions. The reason is that gravity becomes weaker if there are more dimensions
because there is more space for the gravitational field to escape. It turns out that here
is a particular energy and angular distribution of the produced gravitons that arise
from the distribution in mass of KK states of spin-2. This can be contrasted to other
sources of missing energy and might be a smoking gun for the extra-dimensional
nature of such a signal.

Table 2 also included astrophysical and cosmological bounds. Astrophysical
bounds [29,30] arise from the requirement that the radiation of gravitons should not
carry on too much of the gravitational binding energy released during core collapse
of supernovae. In fact, the measurements of Kamiokande and IMB for SN1987A
suggest that the main channel consists of neutrino fluxes. The best cosmological
bound [31] is obtained from requiring that decay of bulk gravitons to photons does
not generate a spike in the energy spectrum of the photon background measured by
the COMPTEL instrument. Bulk gravitons are expected to be produced just before
nucleosynthesis due to thermal radiation from the brane. The limits assume that the
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n
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(4+n)

Fig. 8 Missing energy due to graviton emission at LHC, as a function of the higher-dimensional
gravity scale M∗, produced together with a hadronic jet. The expected cross section is shown for
n = 2 and n = 4 extra dimensions, together with the SM background [28]

temperature was at most 1 MeV as nucleosynthesis begins, and become stronger if
temperature is increased.

7.3 String Effects

At low energies, the interaction of light (string) states is described by an effec-
tive field theory. Their exchange generates in particular four-fermion operators that
can be used to extract independent bounds on the string scale. In analogy with the
bounds on longitudinal extra dimensions, there are two cases depending on the local-
ization properties of matter fermions. If they come from open strings with both
ends on the same stack of branes, exchange of massive open string modes gives
rise to dimension-eight effective operators, involving four fermions and two space-
time derivatives [25, 32]. The corresponding bounds on the string scale are then
around 500 GeV. On the other hand, if matter fermions are localized on nontriv-
ial brane intersections, one obtains dimension-six four-fermion operators and the
bounds become stronger:Ms >∼ 2÷3 TeV [10,25]. At energies higher than the string
scale, new spectacular phenomena are expected to occur, related to string physics
and quantum gravity effects, such as possible micro-black hole production [33–35].
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Fig. 9 Production of the first Regge excitations at LHC in the dijet channel, for a string scale
Ms = 2 TeV. The cross-section is plotted as a function of the dijet invariant massM [36, 37]

Particle accelerators would then become the best tools for studying quantum gravity
and string theory.

Direct production of string resonances in hadron colliders leads generically to a
universal deviation from SM in jet distribution [36]. In particular, the first Regge
excitation of the gluon has spin-2 and a width an order of magnitude lower than the
string scale, leading to a characteristic peak in dijet production; similarly, the first
excitations of quarks have spin 3/2. The dijet cross section is shown in Fig. 9 for
LHC energies.

The reason for the universal behavior is that treeN -point open superstring ampli-
tudes involving at most two fermions and gluons are completely model independent
from the details of the compactification, including the number of supersymmetries
that are left unbroken in four dimensions (even if all are broken). Such tree-level
amplitudes do not receive contributions from KK, string winding or closed string
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graviton modes, but are given as a universal sum over exchanges of open string
Regge excitations lying in Regge trajectories with masses

M2
n = M2

s n ; n = 0, 1, . . . (93)

and maximal spin n+ 1.
The relevant partonic cross sections for dijet production, involving at most

two quarks are |M(gg → gg)|2, |M(gg → qq̄)|2, |M(qq̄ → gg)|2, and
|M(qg → qg)|2, where g and q denote gluons and quarks, respectively. They
can be obtained from the following two independent processes, up to crossing
symmetries [37]:

|M(gg→ gg)|2 = g4
(

1

s2
+ 1

t2
+ 1

u2

)

×
[

9

4

(
s2V 2

s + t2V 2
t + u2V 2

u

)
− 1

3
(sVs + tVt + uVu)2

]

|M(gg→ qq̄)|2 = g4 t
2 + u2

s2

[
1

6

1

tu
(tVt + uVu)2 − 3

8
VtVu

]
, (94)

where s, t, u are the usual Mandelstam variables in string mass units and

Vs = − tu
s
B(t, u) = 1 − 2

3
π2 tu+ . . . Vt : s ↔ t Vu : s ↔ u . (95)

The low-energy expansion of these amplitudes reproduces the usual QCD expres-
sions (upon inserting the color factors), while higher-order terms describe the
string corrections due to the exchange of Regge excitations. Besides these ampli-
tudes, there are also those involving four quarks such as |M(qq̄ → qq̄)|2 and
|M(qq → qq)|2. These are model dependent, because the details of the compact-
ification do not decouple. The reason is that they involve four vertices containing
twist fields that describe quark states arising from open strings stretched in brane
intersections. However, taking into account QCD color factors, their contribution
is suppressed because parton luminosities in proton–proton collisions at TeV ener-
gies favor at least one gluon in the initial state. As a result, the dominant contribution
comes from the model independent cross sections (94) leading to the effect of Fig. 9.

We finish this section with some comments related to the possible micro-black
hole production. Independently on the unresolved issue of the convergence of string
perturbation theory in the kinematic region relevant to micro-black hole formation,
there is a simple argument showing that at least within the perturbative TeV string
framework, the energy threshold for black hole production is far above the LHC
reach. Indeed, a string size black hole has a horizon radius rH ∼ 1 in string units,
while the d-dimensional Newton’s constant behaves asGN ∼ g2

s . It follows that the
mass of a d-dimensional black hole is [38]:

MBH ∼ rd/2−1
H /GN  1/g2

s . (96)
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Thus, for a weakly coupled theory, this energy threshold is much higher than the
string and the higher-dimensional Planck scales Ms and M∗ of Eq. (84). Com-
paring this energy threshold with the mass of Regge excitations (93), one finds
n ∼ 1/g4

s which is actually compatible with the relation one obtains by identifying
the black hole entropy SBH ∼ 1/GN ∼ 1/g2

s with the perturbative string entropy
Sstring ∼ √

n. Using now relation (83), and the value of the SM gauge couplings
gs  g2 ∼ 0.1, one finds that the energy threshold MBH of micro-black hole pro-
duction is about four orders of magnitude higher than the string scale, implying that
one would produce 104 string states before reachingMBH.

8 Supersymmetry in the Bulk and Short Range Forces

8.1 Submillimeter Forces

Besides the spectacular predictions in accelerators, there are also modifications of
gravitation in the submillimeter range, which can be tested in “table-top” experi-
ments that measure gravity at short distances. There are three categories of such
predictions:
(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n, which can be observ-
able for n = 2 large transverse dimensions of submillimeter size. This case is
particularly attractive on theoretical grounds because of the logarithmic sensitiv-
ity of SM couplings on the size of transverse space [39], that allows to determine
the hierarchy [40].
(ii) New scalar forces in the submillimeter range, related to the mechanism of SUSY
breaking, and mediated by light scalar fields ϕ with masses [4, 41]:

mϕ  m2
susy

MP
 10−4 ÷ 10−6 eV , (97)

for a SUSY breaking scale msusy  1 ÷ 10 TeV. They correspond to Compton
wavelengths of 1 mm to 10 μm. msusy can be either 1/R‖ if supersymmetry is
broken by compactification [41], or the string scale if it is broken “maximally” on
our world-brane [4]. A universal attractive scalar force is mediated by the so-called
radion modulus, whose expectation value determines the size of the extra dimen-
sion, namely ϕ ≡ MP lnR, with R the radius of the longitudinal or transverse
dimension(s). In the former case, the result (97) follows from the behavior of the
vacuum energy density Λ ∼ 1/R4‖ for large R‖ (up to logarithmic corrections).
In the latter, SUSY is broken primarily on the brane, and thus its transmission to
the bulk is gravitationally suppressed, leading to (97). For n = 2, there may be an
enhancement factor of the radion mass by lnR⊥Ms  30 decreasing its wavelength
by an order of magnitude [40].



Possible Low-Energy Manifestations of Strings and Gravity 457

The coupling of the radius modulus to matter relative to gravity can be easily
computed and is given by:

√
αϕ = 1

M

∂M

∂ϕ
; αϕ =

⎧⎪⎪⎨
⎪⎪⎩

∂ lnΛQCD
∂ lnR  1

3 for R‖

2n
n+2 = 1 ÷ 1.5 for R⊥,

(98)

where M denotes a generic physical mass. In the longitudinal case, the coupling
arises dominantly through the radius dependence of the QCD gauge coupling [41],
while in the case of transverse dimension, it can be deduced from the rescaling of
the metric which changes the string to the Einstein’s frame and depends slightly on
the bulk dimensionality (α = 1÷1.5 for n = 2÷6) [40]. Such a force can be tested
in microgravity experiments and should be contrasted with the change of Newton’s
law due to the presence of extra dimensions that is observable only for n = 2 [9,15].
The resulting bounds from an analysis of the radion effects are [42]:

M∗ >∼ 6 TeV . (99)

In principle, there can be other light moduli which couple with even larger strengths.
For example the dilaton, whose VEV determines the string coupling, if it does not
acquire large mass from some dynamical supersymmetric mechanism, can lead to a
force of strength 2000 times bigger than gravity [43].
(iii) Nonuniversal repulsive forces much stronger than gravity, mediated by possible
abelian gauge fields in the bulk [29,44]. Such fields acquire tiny masses of the order
ofM2

s /MP , as in (97), due to brane localized anomalies [44]. Although their gauge
coupling is infinitesimally small, gA ∼ Ms/MP  10−16, it is still bigger than the
gravitational coupling E/MP for typical energies E ∼ 1 GeV (corresponding to the
nucleon mass), and the strength of the new force would be 106 ÷ 108 stronger than
gravity. This is an interesting region which will be soon explored in microgravity
experiments (see Fig. 10). Note that in this case supernova constraints impose that
there should be at least four large extra dimensions in the bulk [29].

In Fig. 10 we depict the actual information from previous, present, and upcoming
experiments [15, 40].

The solid lines indicate the present limits from the experiments indicated. The
excluded regions lie above these solid lines. Measuring gravitational strength forces
at short distances is challenging. The horizontal lines correspond to theoretical pre-
dictions, in particular, for the graviton in the case n = 2 and for the radion in the
transverse case. These limits are compared to those obtained from particle acceler-
ator experiments in Table 2. Finally, in Figs. 11 and 12, we display some improved
bounds for new forces at very short distances by focusing on the left-hand side of
Fig. 10, near the origin [15].
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Fig. 10 Present limits on new short-range forces (yellow regions), as a function of their range λ
and their strength relative to gravity α [9, 15]. The limits are compared to new forces mediated by
the graviton in the case of two large extra dimensions, and by the radion

8.2 Brane Nonlinear Supersymmetry

When the closed string sector is supersymmetric, SUSY on a generic brane con-
figuration is nonlinearly realized even if the spectrum is not supersymmetric and
brane fields have no superpartners. The reason is that the gravitino must couple
to a conserved current locally, implying the existence of a goldstino on the brane
world-volume [45]. The goldstino is exactly massless in the infinite (transverse)
volume limit and is expected to acquire a small mass suppressed by the volume, of
order (97). In the standard realization, its coupling to matter is given via the energy
momentum tensor [46], whereas in general there are more terms invariant under
nonlinear SUSY that have been classified, up to dimension eight [47, 48].

An explicit computation was performed for a generic intersection of two-brane
stacks, leading to three irreducible couplings, besides the standard one [48]: two of
dimension six involving the goldstino, a matter fermion and a scalar or gauge field,
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Fig. 11 Bounds on non-Newtonian forces in the range 6 ÷ 20 μm (see Smullin et al. [15])

and one four-fermion operator of dimension eight. Their strength is set by the gold-
stino decay constant κ , up to model-independent numerical coefficients which are
independent of the brane angles. Obviously, at low energies the dominant operators
are those of dimension six. In the minimal case of (non-supersymmetric) SM, only
one of these two operators may exist, that couples the goldstino χ with the HiggsH
and a lepton doublet L:

Lintχ = 2κ(DμH )(LDμχ ) + complex conjugate , (100)

where the goldstino decay constant is given by the total brane tension

1

2 κ2
= N1 T1 +N2 T2 ; Ti = M4

s

4π2g2
i

, (101)

withNi the number of branes in each stack. It is important to notice that the effective
interaction (100) conserves the total lepton number L, as long as we assign to the
goldstino a total lepton number L(χ ) = −1 [49]. To simplify the analysis, we will
consider the simplest case where (100) exists only for the first generation and L is
the electron doublet [49].

The effective interaction (100) gives rise mainly to the decays W± → e±χ and
Z,H → νχ . It turns out that the invisible Z width gives the strongest limit on κ
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Fig. 12 Bounds on non-Newtonian forces in the range 10÷ 200 nm (see Decca et al. in Ref. [15]).
Curves 4 and 5 correspond to Stanford and Colorado experiments, respectively, of Fig. 11 (see also
Long and Price of Ref. [15])

which can be translated to a bound on the string scale Ms >∼ 500 GeV, comparable
to other collider bounds. This allows for the striking possibility of a Higgs boson
decaying dominantly, or at least with a sizable branching ratio, via such an invisible
mode, for a wide range of the parameter space (Ms,mH ), as seen in Fig. 13.

9 Electroweak Symmetry Breaking

Non-supersymmetric TeV strings also offer a framework to realize gauge symme-
try breaking radiatively. Indeed, from the effective field theory point of view, one
expects quadratically divergent one-loop contributions to the masses of scalar fields.
The divergences are cut off byMs and if the corrections are negative, they can induce
electroweak symmetry breaking and explain the mild hierarchy between the weak
and a string scale at a few TeV, in terms of a loop factor [50]. More precisely, in the
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Fig. 13 Higgs branching rations, as functions either of the Higgs mass mH for a fixed value of the
string scaleMs  2M = 600 GeV, or ofM  Ms/2 for mH = 115 GeV

minimal case of one Higgs doublet H , the scalar potential is:

V = λ(H †H )2 + μ2(H †H ), (102)

where λ arises at tree level. Moreover, in any model where the Higgs field comes
from an open string with both ends fixed on the same brane stack, it is given by an
appropriate truncation of a supersymmetric theory. Within the minimal spectrum of
the SM, λ = (g2

2 + g′2)/8, with g2 and g′ the SU (2) and U (1)Y gauge couplings.
On the other hand, μ2 is generated at one loop:

μ2 = −ε2 g2M2
s , (103)

where ε is a loop factor that can be estimated from a toy model computation and
varies in the region ε ∼ 10−1 ÷ 10−3.

Indeed, consider for illustration a simple case where the whole one-loop effec-
tive potential of a scalar field can be computed. We assume, for instance, one extra
dimension compactified on a circle of radius R > 1 (in string units). An interesting
situation is provided by a class of models where a nonvanishing VEV for a scalar
(Higgs) field φ results in shifting the mass of each KK excitation by a constant a(φ):

M2
m =

(
m+ a(φ)

R

)2

, (104)

with m the KK integer momentum number. Such mass shifts arise, for instance,
in the presence of a Wilson line, a = q

∮ dy
2π gA, where A is the internal compo-

nent of a gauge field with gauge coupling g, and q is the charge of a given state
under the corresponding generator. A straightforward computation shows that the
φ-dependent part of the one-loop effective potential is given by [51]:

Veff = −T r(−)F
R

32π3/2

∑
n

e2πina
∫ ∞

0
dl l3/2fs(l) e

−π2n2R2l , (105)

where F = 0, 1 for bosons and fermions, respectively. We have included a regulat-
ing function fs(l) which contains, for example, the effects of string oscillators. To
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Fig. 14 The coefficient ε of the one-loop Higgs mass (103)

understand its role we will consider the two limits R � 1 and R � 1. In the first
case, only the l → 0 region contributes to the integral. This means that the effective
potential receives sizable contributions only from the infrared (field theory) degrees
of freedom. In this limit we would have fs(l) → 1. For example, in the string model
considered in [50]:

fs(l) =
[

1

4l

θ2

η3
(il + 1

2
)

]4

→ 1 for l → 0, (106)

and the field theory result is finite and can be explicitly computed. As a result of the
Taylor expansion around a = 0, we are able to extract the one-loop contribution to
the coefficient of the term of the potential quadratic in the Higgs field. It is given by
a loop factor times the compactification scale [51]. One thus obtains μ2 ∼ g2/R2

up to a proportionality constant which is calculable in the effective field theory. On
the other hand, if we consider R → 0, which by T -duality corresponds to taking
the extra dimension as transverse and very large, the one-loop effective potential
receives contributions from the whole tower of string oscillators as appearing in
fs(l), leading to squared masses given by a loop factor times M2

s , according to
Eq. (103).

More precisely, from the expression (105), one finds:

ε2(R) = 1

2π2

∫ ∞

0

dl

(2 l)5/2
θ4

2

4η12

(
il + 1

2

)
R3

∑
n

n2e−2πn2R2l , (107)

which is plotted in Fig. 14.
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For the asymptotic value R → 0 (corresponding upon T-duality to a large-
transverse dimension of radius 1/R), ε(0)  0.14, and the effective cutoff for the
mass term isMs , as can be seen from Eq. (103). At large R, μ2(R) falls off as 1/R2,
which is the effective cutoff in the limit R→ ∞, as we argued above, in agreement
with field theory results in the presence of a compactified extra dimension [41, 52].
In fact, in the limit R→ ∞, an analytic approximation to ε(R) gives:

ε(R)  ε∞
Ms R

, ε2∞ = 3 ζ (5)

4π4
 0.008 . (108)

The potential (102) has the usual minimum, given by the VEV of the neutral compo-
nent of the Higgs doublet v = √−μ2/λ. Furthermore, from (103), one can compute
Ms in terms of the Higgs mass m2

H = −2μ2:

Ms = mH√
2 gε

, (109)

yielding naturally values in the TeV range.

10 Standard Model on D-bratnes

The gauge group closest to the SM one can easily obtain with D-branes is U (3) ×
U (2) × U (1). The first factor arises from three coincident “color” D-branes. An
open string with one end on them is a triplet under SU (3) and carries the same U (1)
charge for all three components. Thus, the U (1) factor of U (3) has to be identified
with gauged baryon number. Similarly, U (2) arises from two coincident “weak” D-
branes and the corresponding abelian factor is identified with gauged weak-doublet
number. Finally, an extra U (1) D-brane is necessary in order to accommodate the
SM without breaking the baryon number [53]. In principle this U (1)-brane can be
chosen to be independent of the other two collections with its own gauge coupling.
To improve the predictability of the model, we choose to put it on top of either
the color or the weak D-branes [54]. In either case, the model has two independent
gauge couplings g3 and g2 corresponding, respectively, to the gauge groups U (3)
and U (2). The U (1) gauge coupling g1 is equal to either g3 or g2.

Let us denote byQ3,Q2 andQ1 the three U (1) charges of U (3)×U (2)×U (1),
in a self explanatory notation. Under SU (3)×SU (2)×U (1)3 ×U (1)2 ×U (1)1, the
members of a family of quarks and leptons have the following quantum numbers:

Q (3, 2;1, w, 0)1/6

uc (3̄, 1; − 1, 0, x)−2/3

dc (3̄, 1; − 1, 0, y)1/3 (110)

L (1, 2;0, 1, z)−1/2

lc (1, 1;0, 0, 1)1 .
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Fig. 15 A minimal Stan-
dard Model embedding on
D-branes

The values of the U (1) charges x, y, z,w will be fixed below so that they lead to the
right hypercharges, shown for completeness as subscripts.

It turns out that there are two possible ways of embedding the SM particle
spectrum on these stacks of branes [53], which are shown pictorially in Fig. 15.

The quark doubletQ corresponds necessarily to a massless excitation of an open
string with its two ends on the two different collections of branes (color and weak).
As seen from the figure, a fourth brane stack is needed for a complete embedding,
which is chosen to be a U (1)b extended in the bulk. This is welcome since one can
accommodate right-handed neutrinos as open string states on the bulk with suffi-
ciently small Yukawa couplings suppressed by the large volume of the bulk [55].
The two models are obtained by an exchange of the up and down antiquarks, uc and
dc, which correspond to open strings with one end on the color branes and the other
one either on the U (1)-brane, or on the U (1)b in the bulk. The lepton doublet L
arises from an open string stretched between the weak branes and U (1)b, while the
antilepton lc corresponds to a string with one end on the U (1)-brane and the other in
the bulk. For completeness, we also show the two possible Higgs states Hu and Hd
that are both necessary in order to give tree-level masses to all quarks and leptons
of the heaviest generation.

10.1 Hypercharge Embedding and the Weak Angle

The weak hypercharge Y is a linear combination of the three U (1)’s:

Y = Q1 + 1

2
Q2 + c3Q3 ; c3 = −1/3 or 2/3 , (111)

whereQN denotes the U (1) generator of U (N ) normalized so that the fundamental
representation of SU (N ) has unit charge. The corresponding U (1) charges appear-
ing in Eq. (110) are x = −1 or 0, y = 0 or 1, z = −1, and w = 1 or −1, for
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Fig. 16 The experimental
value of sin2 θW (thick curve),
and the theoretical predictions
(113) [53]
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c3 = −1/3 or 2/3, respectively. The hypercharge coupling gY is given by 5:

1

g2
Y

= 2

g2
1

+ 4c2
2

g2
2

+ 6c2
3

g2
3

. (112)

It follows that the weak angle sin2 θW , is given by:

sin2 θW ≡ g2
Y

g2
2 + g2

Y

= 1

2 + 2g2
2/g

2
1 + 6c2

3g
2
2/g

2
3

, (113)

where gN is the gauge coupling of SU (N ) and g1 = g2 or g1 = g3 at the string
scale. In order to compare the theoretical predictions with the experimental value
of sin2 θW at Ms , we plot in Fig. 16 the corresponding curves as functions of Ms .
The solid line is the experimental curve. The dashed line is the plot of the function
(113) for g1 = g2 with c3 = −1/3 whereas the dotted-dashed line corresponds to
g1 = g3 with c3 = 2/3. The other two possibilities are not shown because they lead
to a value of Ms which is too high to protect the hierarchy. Thus, the second case,
where the U (1)-brane is on top of the color branes, is compatible with low-energy
data forMs ∼ 6 div8 TeV and gs  0.9.

From Eq. (113) and Fig. 16, we find the ratio of the SU (2) and SU (3) gauge
couplings at the string scale to be α2/α3 ∼ 0.4. This ratio can be arranged by
an appropriate choice of the relevant moduli. For instance, one may choose the
color and U (1)-branes to be D3-branes while the weak branes to be D7-branes.
Then, the ratio of couplings above can be explained by choosing the volume of the
four compact dimensions of the seven branes to be V4 = 2.5 in string units. This
being larger than one is consistent with the picture above. Moreover, it predicts an
interesting spectrum of KK states for the SM, different from the naive choices that
have appeared hitherto: The only SM particles that have KK descendants are the W

5 The gauge couplings g2,3 are determined at the tree-level by the string coupling and other
moduli, like radii of longitudinal dimensions. In higher orders, they also receive string threshold
corrections.
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bosons as well as the hypercharge gauge boson. However, since the hypercharge is
a linear combination of the three U (1)’s, the massive U (1) KK gauge bosons do not
couple to the hypercharge but to the weak doublet number.

10.2 The Fate of U (1)’s, Proton Stability and Neutrino Masses

It is easy to see that the remaining three U (1) combinations orthogonal to Y are
anomalous. In particular there are mixed anomalies with the SU (2) and SU (3)
gauge groups of the SM. These anomalies are cancelled by three axions coming
from the closed string RR (Ramond) sector, via the standard Green–Schwarz mech-
anism [56]. The mixed anomalies with the non-anomalous hypercharge are also
cancelled by dimension-five Chern–Simons type of interactions [53]. An important
property of the above Green–Schwarz anomaly cancellation mechanism is that the
anomalous U (1) gauge bosons acquire masses leaving behind the corresponding
global symmetries. This is in contrast to what would have happened in the case of
an ordinary Higgs mechanism. These global symmetries remain exact to all orders
in type I string perturbation theory around the orientifold vacuum. This follows from
the topological nature of Chan–Paton charges in all string amplitudes. On the other
hand, one expects non-perturbative violation of global symmetries and consequently
exponentially small in the string coupling, as long as the vacuum stays at the ori-
entifold point. Thus, all U (1) charges are conserved and since Q3 is the baryon
number, proton stability is guaranteed.

Another linear combination of the U (1)’s is the lepton number. Lepton num-
ber conservation is important for the extra-dimensional neutrino mass suppression
mechanism described above, that can be destabilized by the presence of a large
Majorana neutrino mass term. Such a term can be generated by the lepton-number
violating dimension-five effective operator LLHH that leads, in the case of TeV
string scale models, to a Majorana mass of the order of a few GeV. Even if we
manage to eliminate this operator in some particular model, higher-order operators
would also give unacceptably large contributions, as we focus on models in which
the ratio between the Higgs VEV and the string scale is just of order O(1/10). The
best way to protect tiny neutrino masses from such contributions is to impose lepton
number conservation.

A bulk neutrino propagating in 4 + n dimensions can be decomposed in a series
of 4D KK excitations denoted collectively by {m}:

Skin = Rn⊥
∫
d4x

∑
{m}

{
ν̄Rm/∂νRm + ν̄cRm/∂νcRm + m

R⊥
νRmν

c
Rm+ complex conjugate

}
,

(114)
where νR and νcR are the two Weyl components of the Dirac spinor and for simplicity
we considered a common compactification radius R⊥. On the other hand, there is a
localized interaction of νR with the Higgs field and the lepton doublet, which leads
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to mass terms between the left-handed neutrino and the KK states νRm, upon the
Higgs VEV v:

Sint = gs
∫
d4xH (x)L(x)νR(x, y = 0) → gsv

R
n/2
⊥

∑
m

νLνRm , (115)

in string units. Since the mass mixing gsv/R
n/2
⊥ is much smaller than the KK mass

1/R⊥, it can be neglected for all the excitations except for the zero-mode νR0, which
gets a Dirac mass with the left-handed neutrino

mν  gsv

R
n/2
⊥

 v Ms
Mp

 10−3 ÷ 10−2 eV , (116)

for Ms  1 ÷ 10 TeV, where the relation (83) was used. In principle, with one
bulk neutrino, one could try to explain both solar and atmospheric neutrino oscil-
lations using also its first KK excitation. However, the later behaves like a sterile
neutrino which is now excluded experimentally. Therefore, one has to introduce
three bulk species (at least two) νiR in order to explain neutrino oscillations in a “tra-
ditional way”, using their zero-modes νiR0 [57]. The main difference with the usual
seesaw mechanism is the Dirac nature of neutrino masses, which remains an open
possibility to be tested experimentally.

11 Non-compact Extra Dimensions and Localized Gravity

There are several motivations to study localization of gravity in non-compact extra
dimensions: (i) it avoids the problem of fixing the moduli associated to the size
of the compactification manifold; (ii) it provides a new approach to the mass hier-
archy problem; (iii) there are modifications of gravity at large distances that may
have interesting observational consequences. Two types of models have been stud-
ied: Warped metrics in curved space discussed in Sect. 6 and infinite size extra
dimensions in flat space [58]. The former, although largely inspired by stringy devel-
opments and having used many string-theoretic techniques, have not yet a clear and
calculable string theory realization [59]. In any case, since curved space is always
difficult to handle in string theory, in the following we concentrate mainly on the
latter, formulated in flat space with gravity localized on a subspace of the bulk. It
turns out that these models of induced gravity have an interesting string theory real-
ization [60] that we describe below, after presenting first a brief overview of the
warped case.
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11.1 The Induced Gravity Godel

The DGP model and its generalizations are specified by a bulk Einstein–Hilbert
(EH) term and a 4D EH term [58]:

M2+n
∫
M4+n

d4xdny
√
GR(4+n) +M2

P

∫
M4

d4x
√
gR(4) ; M2

P ≡ rnc M2+n

(117)
withM andMP the (possibly independent) respective Planck scales. The scaleM ≥
1 TeV would be related to the short-distance scale below which UV quantum gravity
or stringy effects are important. The 4D metric is the restriction of the bulk metric
gμν = Gμν

∣∣ and we assume the WORLD6 rigid, allowing the gauge Giμ
∣∣ = 0 with

i ≥ 5.

11.1.1 Co-dimension One

In the case of co-dimension one bulk (n = 1) and δ-function localization, it is easy
to see that rc is a crossover scale where gravity changes behavior on the WORLD.
Indeed, by Fourier transform the quadratic part of the action (117) with respect to the
4D position x, at the WORLD position y = 0, one obtainsM2+n(p2−n+rnc p2), where
p is the 4D momentum. It follows that for distances smaller than rc (large momenta),
the first term becomes irrelevant and the graviton propagator on the “brane” exhibits
4D behavior (1/p2) with Planck constant MP = M3rc. On the contrary, at large
distances, the first term becomes dominant and the graviton propagator acquires a
5D fall-off (1/p) with Planck constantM .

An important consequence of this model is the existence of self-accelerating
solutions for the universe at late times [61]. Indeed, the Friedmann equations
become:

H 2 ± H
rc

= 8πGN
3

ρ(t) , (118)

where H is the Hubble constant and ρ the 4D energy density. For the upper sign
(+), one finds usual Robertson–Walker cosmologies extrapolating between 4D and
5D at large scales, while for the lower (negative) sign, one finds a de Sitter solution
at late times. This can account for the present dark energy if rc  1028 cm. On the
other hand, this model suffers from the van Dam–Veltman–Zakharov discontinuity
of massive gravity, implying a strong coupling regime at distances shorter than the
Vainshtein radius rV = (r2

c w)1/3, where w is the UV cutoff, corresponding to the
“brane” thickness [62]. Moreover, imposing in general rc to be larger than the size
of the universe, rc >∼ 1028 cm, one finds M <∼ 100 MeV, which is in conflict with
experimental bounds.

6 We avoid calling M4 a brane because, as we will see below, gravity localizes on singularities of
the internal manifold, such as orbifold fixed points. Branes with localized matter can be introduced
independently of gravity localization.
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11.1.2 Higher Co-dimension

The situation changes drastically for more than one non-compact bulk dimensions,
n > 1, due to the UV properties of the higher-dimensional theories. Indeed, from
the action (117), the effective potential between two test masses in four dimensions

∫
[d3x] e−ip·x V (x) = D(p)

1 + rnc p2D(p)

[
T̃μνT

μν − 1

2 + n T̃
μ
μ T

ν
ν

]
(119)

D(p) =
∫

[dnq]
fw(q)

p2 + q2
(120)

is a function of the bulk graviton retarded Green’s function G(x, 0;0, 0) =∫
[d4p] eip·x D(p) evaluated for two points localized on the WORLD (y = y′ = 0).

The integral (120) is UV-divergent for n > 1 unless there is a nontrivial brane thick-
ness profile fw(q) of width w. If the 4D WORLD has zero thickness, fw(q) ∼ 1,
the bulk graviton does not have a normalizable wave function. It therefore cannot
contribute to the induced potential, which always takes the form V (p) ∼ 1/p2 and
Newton’s law remains 4D at all distances.

For a nonzero thickness w, there is only one crossover length scale, Rc:

Rc = w
( rc
w

) n
2
, (121)

above which one obtains a higher-dimensional behavior [63]. Therefore, the effec-
tive potential presents two regimes: (i) at short distances (w � r � Rc) the
gravitational interactions are mediated by the localized 4D graviton and Newton’s
potential on the WORLD is given by V (r) ∼ 1/r and, (ii) at large distances (r � Rc)
the modes of the bulk graviton dominate, changing the potential. Note that for n = 1
the expressions (119) and (120) are finite and unambiguously give V (r) ∼ 1/r for
r � rc. For a co-dimension bigger than 1, the precise behavior for large-distance
interactions depends crucially on the UV completion of the theory. At this point we
stress a fundamental difference with the finite extra dimensions scenarios. In these
cases Newton’s law gets higher-dimensional at distances smaller than the character-
istic size of the extra dimensions. This is precisely the opposite of the case of infinite
volume extra dimensions that we discuss here.

As mentioned above, for higher co-dimension, there is an interplay between UV
regularization and IR behavior of the theory. Indeed, several works in the literature
raised unitarity [64] and strong coupling problems [65] which depend crucially on
the UV completion of the theory. A unitary UV regularization for the higher co-
dimension version of the model has been proposed in [66]. It would be interesting
to address these questions in a precise string theory context. Actually, using for UV
cutoff on the “brane” the 4D Planck length w ∼ lP , one gets for the crossover scale
(121): Rc ∼ M−1(MP/M)n/2. Putting M >∼ 1 TeV leads to Rc <∼ 108(n−2) cm.
Imposing Rc >∼ 1028 cm, one then finds that the number of extra dimensions must
be at least six, n ≥ 6, which is realized nicely in string theory and provides an
additional motivation for studying possible string theory realizations.
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11.2 String Theory Realization

The gravity induced model (117) with n = 6 is realized as the low-energy effective
action of type II string theory on a non-compact 6D manifold M6 [60], preserving
N = 2 SUSY in four dimensions. The resulting expressions for the Planck masses
M andMp are:

M2 ∼ M2
s /g

1/2
s ; M2

P ∼ χ
(
c0

g2
s

+ c1

)
M2
s , (122)

with c0 = −2ζ (3), c1 = ±4ζ (2) = ±2π2/3 and χ is the Euler number of M6.
It is interesting that the appearance of the induced 4D localized term preserves

N = 2 SUSY and is independent of the localization mechanism of matter fields (for
instance on D-branes). Localization requires the internal spaceM6 to have a nonzero
Euler characteristic χ 
= 0. Actually, in type IIA/B compactified on a Calabi–Yau
manifold, χ counts the difference between the numbers of N = 2 vector multiplets
and hypermultiplets: χ = ±4(nV −nH ) (where the graviton multiplet counts as one
vector). Moreover, in the non-compact limit, the Euler number can in general split
in different singular points of the internal space, χ = ∑

I χI , giving rise to different
localized terms at various points yI of the internal space. A number of conclusions
(confirmed by string calculations in [60]) can be reached by looking closely at (122):

' Mp � M requires a large nonzero Euler characteristic for M6, and/or a weak
string coupling constant gs → 0.

' Since χ is a topological invariant the localized R(4) term coming from the
closed string sector is universal, independent of the background geometry and
dependent only on the internal topology. It is a matter of simple inspection to see
that if one wants to have a localized EH term in less than ten dimensions, namely
something linear in curvature, with non-compact internal space in all directions, the
only possible dimension is four (or five in the strong coupling M-theory limit).

' In order to find the width w of the localized term, one has to do a separate
analysis. On general grounds, using dimensional analysis in the limitMP → ∞, one
expects the effective width to vanish as a power of lP ≡ M−1

P : w ∼ lνP / lν−1
s with

ν > 0. The computation of ν for a general Calabi–Yau space, besides its technical
difficulty, presents an additional important complication: from the expression (122),
lP ∼ gsls in the weak coupling limit. Thus, w vanishes in perturbation theory and
one has to perform a non-perturbative analysis to extract its behavior. Alternatively,
one can examine the case of orbifolds. In this limit, c0 = 0, lP ∼ ls , and the
hierarchy MP > M is achieved only in the limit of large χ . In this case, one finds
the power ν = 1.
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11.2.1 Summary of the Results

Using w ∼ lP and the relations (122) in the weak coupling limit (with c0 
= 0), the
crossover radius of Eq. (121) is given by the string parameters (n = 6)

Rc = r3
c

w2
∼ gs l

4
s

l3P

 gs × 1032 cm , (123)

for Ms  1 TeV. Because Rc has to be of cosmological size, the string coupling
can be relatively small, and the Euler number |χ |  g2

s lP ∼ g2
s × 1032 must be

very large. The hierarchy is obtained, mainly thanks to the large value of χ , so that
lowering the bound on Rc lowers the value of χ . Our actual knowledge of gravity
at very large distances indicates [67] that Rc should be of the order of the Hubble
radius Rc  1028 cm, which implies gs ≥ 10−4 and |χ | >∼ 1024. A large Euler num-
ber implies only a large number of closed string massless particles with no a priori
constraint on the observable gauge and matter sectors, which can be introduced for
instance on D3-branes placed at the position where gravity localization occurs. All
these particles are localized at the orbifold fixed points (or where the Euler num-
ber is concentrated in the general case), and should have sufficiently suppressed
gravitational-type couplings, so that their presence with such a huge multiplicity
does not contradict observations.

The explicit string realization of localized induced gravity models offers a con-
sistent framework that allows to address a certain number of interesting physics
problems. In particular, the effective UV cutoff and the study of the gravity force
among matter sources localized on D-branes. It would be also interesting to perform
explicit model building and study in detail the phenomenological consequences
of these models and compare to other realizations of TeV strings with compact
dimensions.
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