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    Abstract      Escherichia coli  is one of the most-studied species of bacteria due to its fre-
quent incidence in diverse environments and hosts, as well as its use as a tool in molecu-
lar biology. Most  E. coli  strains are commensal, in that they colonize the host without 
causing disease; however, some strains of  E. coli  are pathogens and are able to cause 
diverse illnesses, including urinary tract infections, sepsis/meningitis, as well as intesti-
nal disease that result in diarrhea (Kaper et al. 2004). Six categories of diarrheagenic  E. 
coli  are recognized, and these are classifi ed in part based on how they interact with epi-
thelial cells (Kaper et al. 2004). Of these, enterohemorrhagic  E. coli  O157:H7 (EHEC) 
is one of the most important pathogenic  E. coli  strains. EHEC causes major outbreaks of 
bloody diarrhea that can result in the development of fatal hemorrhagic colitis and 
hemolytic uremic syndrome (Karmali et al. 1983). EHEC colonizes the colon, where it 
forms attaching and effacing (AE) lesions on the intestinal epithelial cell. AE lesions are 
characterized by intimate attachment of EHEC to epithelial cells, effacement of the 
microvilli and rearrangement of the underlying cytoskeleton, which results in formation 
of a pedestal-like structure beneath the bacterium (Jerse et al. 1990; Jarvis et al. 1995; 
Kenny et al. 1997). Most of the genes involved in the formation of AE lesions are 
encoded within a chromosomal pathogenicity island termed the locus of enterocyte 
effacement (LEE) (McDaniel et al. 1995). The LEE contains 41 genes that are organized 
in fi ve major operons ( LEE1, LEE2, LEE3, LEE5 , and  LEE4 ) (Elliott et al. 1998, 1999; 
Mellies et al. 1999). The LEE encodes a type three secretion system (T3SS) (Jarvis et al. 
1995), an adhesin (intimin) (Jerse et al. 1990) and its receptor (Tir) (Kenny et al. 1997), 
as well as effector proteins (Kenny et al. 1996; Abe et al. 1997; McNamara and 
Donnenberg 1998; Elliott et al. 2001; Tu et al. 2003; Kanack et al. 2005). EHEC also 
encodes an arsenal of effector proteins located outside of the LEE that are important in 
EHEC virulence (Campellone et al. 2004; Deng et al. 2004; Garmendia et al. 2004, 
2005; Gruenheid et al. 2004; Tobe et al. 2006).  
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9.1          Escherichia coli  O157:H7 

  Escherichia coli  is one of the most-studied species of bacteria due to its frequent 
incidence in diverse environments and hosts, as well as its use as a tool in molecular 
biology. Most  E. coli  strains are commensal, in that they colonize the host without 
causing disease; however, some strains of  E. coli  are pathogens and are able to cause 
diverse illnesses, including urinary tract infections, sepsis/meningitis, as well as 
intestinal disease that result in diarrhea (Kaper et al.  2004 ). Six categories of diar-
rheagenic  E. coli  are recognized, and these are classifi ed in part based on how they 
interact with epithelial cells (Kaper et al.  2004 ). Of these, enterohemorrhagic  E. coli  
O157:H7 (EHEC) is one of the most important pathogenic  E. coli  strains. EHEC 
causes major outbreaks of bloody diarrhea that can result in the development of fatal 
hemorrhagic colitis and hemolytic uremic syndrome (Karmali et al.  1983 ). EHEC 
colonizes the colon, where it forms attaching and effacing (AE) lesions on the intes-
tinal epithelial cell. AE lesions are characterized by intimate attachment of EHEC 
to epithelial cells, effacement of the microvilli and rearrangement of the underly-
ing cytoskeleton, which results in formation of a pedestal-like structure beneath the 
bacterium (Jerse et al.  1990 ; Jarvis et al.  1995 ; Kenny et al.  1997 ). Most of the genes 
involved in the formation of AE lesions are encoded within a chromosomal patho-
genicity island termed the locus of enterocyte effacement (LEE) (McDaniel et al. 
 1995 ). The LEE contains 41 genes that are organized in fi ve major operons ( LEE1, 
LEE2, LEE3, LEE5 , and  LEE4 ) (Elliott et al.  1998 ,  1999 ; Mellies et al.  1999 ). 
The LEE encodes a type three secretion system (T3SS) (Jarvis et al.  1995 ), an adhe-
sin (intimin) (Jerse et al.  1990 ) and its receptor (Tir) (Kenny et al.  1997 ), as well as 
effector proteins (Kenny et al.  1996 ; Abe et al.  1997 ; McNamara and Donnenberg 
 1998 ; Elliott et al.  2001 ; Tu et al.  2003 ; Kanack et al.  2005 ). EHEC also encodes an 
arsenal of effector proteins located outside of the LEE that are important in EHEC 
virulence (Campellone et al.  2004 ; Deng et al.  2004 ; Garmendia et al.  2004 ,  2005 ; 
Gruenheid et al.  2004 ; Tobe et al.  2006 ).  

9.2     Regulation of the LEE Expression 

 Regulation of the LEE is complex and tightly regulated. The LEE pathogenicity 
island encodes genes for three regulators, Ler, GrlA, and GrlR (Mellies et al.  1999 ; 
Deng et al.  2004 ). Ler is encoded in  LEE1  and is a master regulator of the LEE 
(Mellies et al.  1999 ; Sperandio et al.  2000 ; Sánchez-SanMartín et al.  2001 ; Haack 
et al.  2003 ; Russell et al.  2007 ). Expression of Ler is directly or indirectly regulated 
by multiple proteins (Friedberg et al.  1999 ; Sperandio et al.  2002a ,  b ; Umanski et al. 
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 2002 ; Iyoda and Watanabe  2004 ,  2005 ; Sharma and Zuerner  2004 ; Iyoda et al. 
 2006 ; Sharp and Sperandio  2007 ; Kendall et al.  2010 ), including GrlR that represses 
 ler  transcription and GrlA that activates  ler  transcription (Deng et al.  2004 ; Barba 
et al.  2005 ; Russell et al.  2007 ). Moreover, expression of the LEE and LEE- 
associated genes is subject to further regulation at the transcriptional and posttran-
scriptional levels in response to diverse environmental cues, including nutrients and 
stress responses (Sperandio et al.  2003 ; Mellies et al.  2007 ; Bhatt et al.  2009 ,  2011 ; 
Lodato and Kaper  2009 ; Shakhnovich et al.  2009 ; Kendall et al.  2011 ,  2012 ; Njoroge 
et al.  2012 ; Pacheco and Sperandio  2012 ) as well as host hormones present in the 
gastrointestinal (GI) tract (Sperandio et al.  2003 ).  

9.3     Shiga Toxin 

 The mortality associated with EHEC infections stems from the production and release 
of a potent Shiga toxin. EHEC expresses Shiga toxin in the intestine, and this inhibitor 
of mammalian protein synthesis is absorbed systemically and binds to receptors found 
in the kidneys and central nervous system, causing HUS, seizures, cerebral edema, and/
or coma (Karmali et al.  1983 ). The genes encoding Shiga toxin are located within a 
lambdoid bacteriophage and are transcribed when the phage enters its lytic cycle (Neely 
and Friedman  1998 ; Neely and Friedberg  2000 ; Wagner et al.  2001 ). Disturbances in 
bacterial envelope, DNA replication, or protein synthesis (which are targets of conven-
tional antibiotics) initiate an SOS response in EHEC that triggers the bacteriophage to 
enter the lytic cycle and produce Shiga toxin. Consequently, treatment of EHEC infec-
tions with conventional antimicrobials is contraindicated (Davis et al.  2013 ).  

9.4     Chemical Signaling in EHEC 

 Bacterial pathogens rely on environmental cues derived from the host, as well as 
from the resident microbiota, to properly coordinate expression of traits important 
for pathogenesis. Quorum sensing is a cell-to-cell signaling mechanism through 
which bacteria synthesize and/or respond to bacterial-produced chemical signals 
called autoinducers (AIs). As concentrations of AI molecules change, bacteria mod-
ulate gene expression. Quorum sensing was fi rst characterized in  Vibrio fi sheri  and 
is based on the LuxI and LuxR proteins (Nealson et al.  1970 ). LuxI is a cytoplasmic 
protein that synthesizes the AI molecules, which then diffuses freely out of the bac-
terial cell. Once a particular threshold concentration of AI molecules is reached in 
the extracellular environment, the AI molecules diffuse back into the bacterial cells, 
where they interact with the transcription factor LuxR. Interaction between LuxR 
and its cognate AI promotes LuxR stability and oligomerization, which enables 
LuxR to bind target promoters and control gene expression. 
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 EHEC relies on quorum sensing to control expression of genes encoding motility 
and virulence (Sperandio et al.  1999 ,  2001 ,  2002a ,  b ,  2003 ). Initial studies sug-
gested that the AI molecule called AI-2 was the signal that mediated quorum 
sensing- dependent virulence gene expression in EHEC (Sperandio et al.  1999 , 
 2001 ); however, additional studies revealed that a distinct molecule, AI-3, was actu-
ally the signal responsible for activating expression of the LEE-encoded T3SS and 
motility genes (Sperandio et al.  2003 ). The molecule AI-2 is synthesized by a small 
metalloenzyme LuxS. Specifi cally, LuxS converts  S- ribosyl-homocysteine into 
homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD). DPD is a very unstable 
compound that reacts with water and cyclizes to form several different furanones 
(Schauder et al.  2001 ; Winzer et al.  2002 ; Sperandio et al.  2003 ), one of which is 
thought to be the precursor of AI-2 (Schauder et al.  2001 ). AI-3 does not directly 
depend upon  luxS  for synthesis; however, a mutation in the  luxS  gene affects AI-3 
production by altering cellular metabolism (Walters et al.  2006 ). Subsequent studies 
that incorporated biochemical assays have conclusively demonstrated that AI-2 and 
AI-3 are distinct molecules. For example, the polar furanone AI-2 does not bind to 
C 18  columns, whereas AI-3 binds to C 18  columns and can only be eluted with metha-
nol (Sperandio et al.  2003 ). Moreover, electrospray mass spectrometry also revealed 
differences between the structures of AI-2 and AI-3 (Chen et al.  2002 ; Sperandio 
et al.  2003 ). AI-2 activity leads to the production of bioluminescence in  V. harveyi , 
and AI-3 does not show any activity for this assay. Conversely, the AI-3 activates 
transcription of the EHEC virulence genes, whereas AI-2 does not infl uence EHEC 
virulence. Signifi cantly, the eukaryotic hormones epinephrine and norepinephrine 
(epi/NE) can substitute for AI-3 to activate EHEC virulence gene expression, 
including the LEE genes, and adrenergic receptor antagonists inhibit the regulatory 
effects of epi/NE and AI-3 (Clarke et al.  2006 ). Thus, although the fi nal structure of 
AI-3 has not yet been elucidated, it has been hypothesized that AI-3 may be struc-
turally similar to epi/NE (Sperandio et al.  2003 ) (Fig.  9.1a, b ).

9.5        Infectious Disease and Hormones 

 Eukaryotic cell-to-cell signaling is based on a variety of hormones, which are essen-
tial for eukaryotic development and homeostasis. Signifi cantly, the hormones epi-
nephrine and norepinephrine also promote EHEC growth and are co-opted as 
signals that EHEC uses to modulate expression of virulence traits (Lyte and Ernst 
 1992 ; Lyte et al.  1996 ; Freestone et al.  2000 ; Sperandio et al.  2003 ). Epinephrine 
and norepinephrine belong to the class of hormones called catecholamines. These 
hormones are derived from the amino acid tyrosine and are composed of a catechol 
and a side-chain amine. Epinephrine and norepinephrine are the most abundant cat-
echolamines in the human body and are involved in the fi ght or fl ight response. 
Epinephrine and norepinephrine are present at micromolar concentrations in the 
intestine (Eldrup and Richter  2000 ) and play important roles in physiology of the GI 
tract by modulating smooth muscle contraction, submucosal blood fl ow, and 
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chloride and potassium secretion (Horger et al.  1998 ). In addition to the central 
nervous system and adrenal medulla, the adrenergic neurons that are present in the 
enteric nervous system are the major sources of epinephrine and norepinephrine 
(Furness  2000 ; Purves et al.  2001 ). Additionally, immune cells including T cells, 
macrophages, and neutrophils produce and secrete epinephrine and norepinephrine 
(Flierl et al.  2008 ). Therefore, bacterial infections may results in increased epineph-
rine and norepinephrine concentrations in the GI tract due to the stress of the infec-
tion in conjunction with the immune response. Finally, the commensal GI microbiota 
also contribute to the generation of biologically active norepinephrine (and to a 
lesser extent epinephrine) in the lumen of the GI tract (Asano et al.  2012 ).  

9.6     Bacterial Adrenergic Receptors 

 The mammalian adrenergic receptors that bind epinephrine and norepinephrine and 
transmit signals are called G-coupled protein receptors. GPCRs are transmembrane 
receptors are coupled to heterotrimeric guanine-binding proteins (G proteins). EHEC 
does not encode G proteins; therefore, EHEC senses epinephrine and norepinephrine 
via a different mechanism. The main signaling transduction systems in bacteria are 
two component systems (TCSs) (Clarke et al.  2006 ). TCSs are critical for bacteria to 
sense and respond to changes in the environment. A typical TCS is composed of a 
histidine sensor kinase (HK) located in the cytoplasmic membrane that perceives a 

  Fig. 9.1    Structures involved in adrenergic signaling. ( a ) Host hormones epinephrine and norepi-
nephrine. ( b ) The structure of AI-3 has not been solved, but may resemble epinephrine and norepinephrine. 
( c ) The structure of LED209 that inhibits QseC signaling       
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stimulus and a cytoplasmic response regulator (RR) that controls the output (Jung 
et al.  2012 ). Upon sensing a specifi c environmental cue, the kinase autophosphory-
lates at a specifi c histidine residue and subsequently transfers this phosphate to an 
aspartate residue on its cognate RR. RRs are transcription factors that mediate the 
output of this signaling cascade by binding DNA to promote or repress gene expres-
sion (Jung et al.  2012 ). EHEC encodes two adrenergic receptors, QseC and QseE 
(Clarke et al.  2006 ; Reading et al.  2009 ), that upon sensing epinephrine and norepi-
nephrine initiate a complex signaling cascade, which results in coordinated expres-
sion of virulence genes (Sperandio et al.  1999 ,  2002a ,  b ,  2003 ; Clarke et al.  2006 ; 
Kendall et al.  2007 ; Reading et al.  2007 ,  2009 ; Hughes et al.  2009 ; Njoroge and 
Sperandio  2012 ; Pacheco et al.  2012 ; Gruber and Sperandio  2014 ) (summarized in 
Fig.  9.2 ).

9.7        The QseBC TCS 

 The gene encoding QseC was fi rst identifi ed in an array that compared gene 
expression between wild type (WT) EHEC and a  luxS  mutant (Sperandio et al. 
 2002a ,  b ), and subsequent studies revealed that QseC directly senses, and 

  Fig. 9.2    Summary of the epinephrine/NE/AI-3 signaling cascade in EHEC.  Arrows  indicate posi-
tive regulation and  lines  with  bars  indicate negative regulation       
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autophosphorylates, in response to host-derived epinephrine and norepinephrine 
as well as the bacterial- derived AI-3 (Clarke et al.  2006 ). QseC is a global regula-
tor in EHEC and infl uences expression of more than 400 genes in response to 
epinephrine and AI-3 (Hughes et al.  2009 ). QseC directs expression of genes 
involved in cell metabolism, virulence, motility and stress responses (Hughes 
et al.  2009 ). To mediate these responses, QseC phosphorylates three distinct RRs, 
QseB, QseF, and KdpE (Hughes et al.  2009 ). QseB activates genes encoding fl a-
gella and motility (Sperandio et al.  2002a ,  b ); QseF coordinates expression of 
genes encoding AE lesions and stress responses (Reading et al.  2007 ); and KdpE 
regulates genes encoding potassium uptake, osmolarity, and AE lesion formation 
(Nakashima et al.  1992 ; Hughes et al.  2009 ; Njoroge et al.  2012 ). Adrenergic 
signaling is essential for EHEC virulence during infection, as a  qseC  mutant 
strain is attenuated for virulence in rabbit- infection models (Clarke et al.  2006 ; 
Rasko et al.  2008 ).  

9.8     The QseEF TCS 

 A second TCS involved in adrenergic signaling was identifi ed in a microarray 
study that compared differential gene expression in WT and the  luxS  mutant EHEC 
strains. This TCS was renamed QseEF, where QseE is the HK and QseF is the RR 
(Reading et al.  2007 ). The  qseE  and  qseF  genes are encoded within a polycistronic 
operon that also contains the  yfhG  gene, which encodes an uncharacterized protein, 
as well as  glnB , which encodes the PII protein involved in nitrogen regulation 
(Reading et al.  2007 ). QseE senses epinephrine and norepinephrine, as well as the 
environmental signals phosphate and sulfate, but does not sense AI-3. Therefore, 
QseE functions to sense strictly host-derived signals, in contrast to QseC that 
senses host- and bacterial-derived molecules (Clarke et al.  2006 ; Reading et al. 
 2009 ). Finally, QseC activates transcription of  qseEF , and therefore, in the epi-
nephrine and norepinephrine signaling cascade, QseE is downstream of QseC 
(Reading et al.  2007 ). 

 QseEF regulates expression of genes involved in the SOS response and Shiga 
toxin production, as well as transcription of genes encoding for other TCSs, 
including RcsBC and PhoPQ (Reading et al.  2009 ,  2010 ; Njoroge and Sperandio 
 2012 ). Additionally, QseEF infl uences AE lesion formation through regulation of 
EspFu/TccP (Reading et al.  2007 ). EspFu/TccP is an effector encoded outside of 
the LEE that enhances AE lesion formation (Campellone et al.  2004 ; Garmendia 
et al.  2004 ). The LEE- encoded T3SS translocates EspFu into the host cell where 
it mimics the eukaryotic SH2/SH3 adapter protein and leads to actin polymeriza-
tion during AE lesion formation (Campellone et al.  2004 ). Bioinformatic analyses 
revealed that QseF contains a σ 54  activator domain, whereas the  espFu  gene con-
tains a conserved σ 70  promoter, suggesting that QseF regulation of EspFu was 
indirect. Moreover, purifi ed QseF did not bind to the espFu promoter in electro-
phoretic mobility shift assays. Together, these data confi rmed that QseEF regula-
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tion of EspFu requires an intermediate factor. Subsequent studies revealed that 
QseF regulates the sRNA GlmY, which is located immediately upstream from the 
 qseGFglnB  operon (Reichenbach et al.  2009 ). More recently, Gruber and 
Sperandio reported that GlmY, acting in concert with a second sRNA GlmZ, is the 
link between QseF and EspFu (Gruber and Sperandio  2014 ). Interestingly, GlmY 
and GlmZ promote  espFu  translation through cleavage of the transcript and nega-
tively regulate expression of the  LEE4  and  LEE5  operons through destabilization 
of the mRNA (Gruber and Sperandio  2014 ).  

9.9     Interplay Between QseBC and QseEF Sensing Systems 

 Single deletion strains of  qseC  or  qseE  are able to modulate gene expression in an 
epinephrine-dependent manner, whereas,  qseC/qseE  double mutant does not 
respond to epinephrine (Njoroge and Sperandio  2012 ). These fi ndings suggest that 
QseC and QseE are the only adrenergic receptors in EHEC. QseC and QseE display 
convergent regulation of some target genes while differentially regulating others 
(Njoroge and Sperandio  2012 ). For example, QseB also promotes expression of 
GlmY, and thus regulates EspFu expression (Gruber and Sperandio  2014 ). Moreover, 
QseBC and QseEF negatively regulate expression of the TCS FusKR (Pacheco and 
Sperandio  2012 ). The HK FusK senses fucose in the GI tract, which EHEC uses to 
determine its location in the GI tract and correctly time expression of the LEE genes 
(Pacheco and Sperandio  2012 ). Further characterization of these regulatory cas-
cades will provide a clearer understanding of how EHEC coordinates expression of 
these TCSs in order to precisely regulate virulence genes.  

9.10     The Transcriptional Regulator QseA 

 QseA is a LysR-family transcriptional regulator that is activated by the AI-3/epi/NE 
signaling cascade (Sperandio et al.  1999 ,  2002a ,  b ). QseA plays an important role 
in promoting ECHE virulence. QseA activates transcription of  ler , and hence all the 
LEE genes (Sperandio et al.  2002a ,  b ). The  LEE1  operon contains two promoters, a 
distal P1 promoter, and a proximal P2 promoter (Mellies et al.  1999 ; Sperandio 
et al.  2002a ,  b ). QseA binds both promoters to regulate  ler  expression (Sperandio 
et al.  2002a ,  b ; Kendall et al.  2010 ). Consistent with the transcriptional data, a  qseA  
mutant strain formed signifi cantly less AE lesions compared to WT EHEC 
(Sperandio et al.  2002a ,  b ). Subsequent studies demonstrated that QseA regulates 
 grlRA  transcription in a Ler-dependent and Ler-independent mechanism and also 
showed that QseA regulon extends beyond the LEE and includes genes encoded in 
O-islands, which are regions of the chromosome unique to EHEC (Hayashi et al. 
 2001 ; Perna et al.  2001 ), other transcriptional regulators, sRNAs, as well as  qseE  
(Reading et al.  2007 ; Kendall et al.  2010 ).  
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9.11     Disruption of AI-3/Epi/NE Signaling as an Antivirulence 
Strategy 

 Bacterial infections may lead to severe morbidity and mortality; however, the ability 
to treat these diseases with conventional antibiotics is becoming more and more 
limited. This is due primarily to the fact that antibiotics have lost their effectiveness 
as many bacteria are becoming resistant, often to multiple types of antibiotics. 
Conventional antibiotics disrupt essential functions, including DNA replication and 
protein synthesis, and thus place selective pressure on bacteria to develop resis-
tance. An alternative approach may be to develop anti-virulence drugs that target 
bacterial virulence, but that does not inhibit bacterial growth or lead to death of the 
bacterial cell (Rasko and Sperandio  2010 ). 

 QseC homologues are present in over 25 plant and animal pathogens (Rasko 
et al.  2008 ). Thus, disrupting QseC signaling may be an effective strategy to inhibit 
virulence. Indeed, a high throughput screen identifi ed a small, synthetic compound 
called LED209 (Fig.  9.1c ) that blocked QseC signaling and prevented virulence 
expression not only in EHEC, but also in enteroaggregative  E. coli ,  Salmonella 
enterica  serovar Typhimurium, and  Francisella tularensis  (Rasko et al.  2008 ; Curtis 
et al.  2014 ). LED209 functions as a prodrug that inhibits virulence by binding to 
and allosterically modifying QseC to disrupt activity (Curtis et al.  2014 ). LED209 
specifi cally targets QseC and does not inhibit pathogen growth, suggesting that 
LED209 will not place selective pressure on pathogens to evolve resistance. An 
issue with an inhibitor of adrenergic signaling is that it may present adverse effects 
on the host. Signifi cantly, LED209 did not present toxicity in cell culture or in 
rodents (Curtis et al.  2014 ), and future studies will need to be performed to confi rm 
non-toxicity and effi cacy in humans. Finally, some bacterial infections, including 
infections caused by  Clostridium diffi cile  and  Salmonella , are associated with anti-
biotic use that disrupts the resident microbiota. Therefore, another important issue 
to be addressed concerns the effects of LED209 on the resident GI microbiota 
(Curtis and Sperandio  2011 ). Nevertheless, these recent fi ndings underscore the 
potential of disrupting chemical signaling as a novel and effective antivirulence 
approach to treat diverse infectious diseases.     
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