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Abstract Importance sampling is a technique originating in Monte Carlo simulation
whereby one samples from a different, weighted distribution, in order to reduce vari-
ance of the resulting estimator. More recently, variations of importance sampling
have emerged as a means for reducing computational and sample complexity in
different problems of modern signal processing. Here we review importance sam-
pling as it is manifested in three such problems: stochastic optimization, compres-
sive sensing, and low-rank matrix approximation. In keeping with a general trend
in convex optimization towards the analysis of phase transitions for exact recov-
ery, importance sampling in compressive sensing and low-rank matrix recovery can
be used to effectively push the phase transition for exact recovery towards fewer
measurements.
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Introduction

Importance sampling in simulation

The usual setup for importance sampling is in Monte Carlo simulation: one wants to
compute an integral of the form

∫
D f (x)p(x)dx, where p(x) is a probability density:∫

D p(x)dx = 1. An easy and computationally efficient way to approximate such an
integral is to consider the integral as an expectation, μ = E( f (x)) =

∫
D f (x)p(x)dx,

and approximate the expectation as a sample average,
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∫

D
f (x)dx ≈ 1

m

m

∑
i=1

f (xi), xi ∼ p,

where the random variables xi are independent and ideally distributed. Validity of
this approximation is ensured by the law of large numbers, but the number of sam-
ples m needed for a given approximation accuracy grows with the variance of the
random variable f (x). In particular, if f (x) is nearly zero on its domain D except in
a region A ⊂ D for which P(x ∈ A) is small, then such standard Monte Carlo sam-
pling may fail to have even one point inside the region A. It is clear intuitively that in
this situation, we would benefit from getting some samples from the interesting or
important region A. What importance sampling means is to sample from a different
density q(x) which overweights this region, rescaling the resulting quantity in order
that the estimate remain unbiased.

More precisely, if x has probability density p(x), then

μ = E[ f (x)] =
∫

D
f (x)p(x)dx

=
∫

D
f (x)

p(x)
q(x)

q(x)dx = Eq[ f (x)w(x)], (1)

where w(·)≡ p(·)
q(·) is the weighting function. By (1), the estimator

μ̂ =
1
m

m

∑
i=1

f (xi)w(xi), xi ∼ q, (2)

is also an unbiased estimator for μ . The importance sampling problem then focuses
on finding a biasing density q(x) which overweights the important region close to
an “optimal” way, at least such the variance of the importance sampling estimator
is smaller than the variance of the general Monte Carlo estimate, so that fewer sam-
ples m are required to achieve a prescribed estimation error. In general, the density
q∗ with minimal variance σ2

q∗ is proportional to | f (x)|p(x), which is unknown a
priori; still, there are many techniques for estimating or approximating this optimal
distribution, see [31, Chapter 9].

Importance sampling beyond simulation

In recent times, probabilistic and stochastic algorithms have seen an explosion of
growth as we move towards bigger data problems in higher dimensions. Indeed, we
are often in the situation where at least one of the following is true:

1. Taking measurements is expensive, and we would like to reduce the number of
measurements needed to reach a prescribed approximation accuracy
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2. Optimizing over the given data is expensive, and we would like to reduce the
number of computations needed to get within a prescribed tolerance of the opti-
mal solution.

Importance sampling has proved to be helpful in both regimes. Whereas in simula-
tion, importance sampling has traditionally been used for approximating linear es-
timates such as expectations/integrals, recent applications in signal processing and
machine learning have considered importance sampling in approximating or even
exactly recovering nonlinear estimates as well.

We consider here three case studies where the principle of importance sampling
has been applied; this is by no means a complete list of all applications of impor-
tance sampling to machine learning and signal processing problems.

1. Stochastic optimization: Towards minimizing F : Rn → R of the form F(x) =
∑m

i=1 fi(x) via stochastic gradient descent, one iterates xk+1 = xk−γw(ik)∇ fik(xk)
with ik randomly chosen from {1,2, . . . ,m} so that

Eik [xk+1] = xk − γ
m

∑
i=1

∇ fi(xk);

that is, one implements a full gradient descent update at each iteration, in ex-
pectation. Standard procedure is to sample indices from {1,2, . . . ,m} uniformly,
and the resulting convergence rate is limited by the worst-case Lipschitz con-
stant associated with the component gradient functions. If however one has prior
knowledge about the component Lipschitz constants, and has the liberty to draw
indices proportionately to the associated Lipschitz constants, then the conver-
gence rate of stochastic gradient can be improved so as to depend on the average
Lipschitz constant among the components. This is in line with the principle of
importance sampling: if ∇ fi has a larger Lipschitz constant, then this component
is contributing more in content, and should be sampled with higher probability.
We review some results of this kind in more detail below. For more details, see
Section “Importance sampling in Stochastic Optimization”.

2. Compressive sensing: Consider an orthonormal matrix Φ ∈R
n×n (or Φ ∈C

n×n),
along with a vector x ∈ R

n. Then clearly

Φ∗Φx = x;

moreover, if ϕik ∈ R
1,n is a randomly selected row from Φ , drawn such that row

i is sampled with probability p(i), then also

Ep

[
1

[p(ik)]2
(
ϕ∗

ik ϕik

)
]

x = x.

Compressive sensing shows that if x is s-sparse, with s 	 n, then for certain
orthonormal Φ , as few as m ∝ s log4(n) i.i.d. samples of the form 〈ϕik ,x〉 can
suffice to exactly recover x as the solution to a convex optimization program. For
instance, such results hold if all of the rows of Φ are “equally important” (i.e., Φ
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has uniformly bounded entries), and if rows are drawn i.i.d. uniformly from Φ .
One may also incorporate importance sampling: if rows are drawn i.i.d. propor-
tionately to their squared Euclidean norm, and if the average Euclidean row norm
is small, then m ∝ s log4(n) i.i.d. samples still suffice for exact reconstruction. For
more details, see Section “’Importance sampling in compressive sensing’.

3. Low-rank matrix approximations: Consider a matrix M ∈ R
n1×n2 of rank

r 	 min{n1,n2}, and a subset Ω ⊂ [n1]× [n2] of |Ω | = m revealed entries
Mi, j. If the entries are revealed as i.i.d. draws where Prob[(i, j)] = pi, j, then

E

[
1

pi, j
Mi, j

]
= M. Importance sampling here corresponds to putting more weight

pi, j on “important” entries in order to exactly recover M using fewer samples.
We will see that if entries are drawn from a weighted distribution based on ma-
trix leverage scores, then m = r log2(max{n1,n2}) revealed entries suffices for M
to be exactly recoverable as the solution to a convex optimization problem.

Importance sampling in Stochastic Optimization

Gradient descent is a standard method for solving unconstrained optimization
problems of the form

min
x∈Rn

F(x); (3)

gradient descent proceeds as follows: initialize x0 ∈ R
n, and iterate along the direc-

tion of the negative gradient of F (the direction of “steepest descent”) until conver-
gence

xk+1 = xk − γk∇F(xk). (4)

Here γk is the step-size which may change at every iteration. For optimization prob-
lems of very big size, however, even a full gradient computation of the form ∇F(xk)
can require substantial computational efforts and full gradient descent might not be
feasible. This has motivated recent interest in random coordinate descent or stochas-
tic gradient methods (see [3, 28, 29, 35, 36, 40], to name just a few), where one
descends along gradient directions which are cheaper to compute. For example,
suppose that F to be minimized is differentiable and admits a decomposition of the
form

F(x) =
m

∑
i=1

fi(x). (5)

Since ∇F(x) = ∑m
i=1 ∇ fi(x), a full gradient computation involves computing all m

gradients ∇ fi(x); still, one could hope to get close to the minimum, at a much
smaller expense, by instead selecting a single index ik at random from {1,2, . . . ,m}
at each iteration. This is the principle behind stochastic gradient descent.
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(5) Stochastic Gradient (SG)

Consider the minimization of F : Rn → R of the form F(x) = ∑m
i=1 fi(x).

Choose x0 ∈ R
n.

For k ≥ 1 iterate until convergence criterion is met:

1. Choose ik ∈ [m] according to the rule Prob[ik = k] = w(k)

2. Update xk+1 = xk − γ 1
w(ik)

∇ fik(xk).

We have set the step-size γ to be constant for simplicity. Note that with the nor-
malization in the update rule,

E
(w)[xk+1] = xk − γ

m

∑
i=1

∇ fik(xk)

= xk − γ∇F(xk). (6)

Thus, we might hope for convergence in expectation of such stochastic iterations
to the minimizer of (5) under similar conditions guaranteeing convergence of full
gradient descent, namely, when F is convex (so that every minimizer is a global
minimizer) and ∇F is Lipschitz continuous [30]. That is, we will assume
1. F is convex with convexity parameter μ = μ(F)≥ 0: for any x and y from R

n we
have

F(y)≥ F(x)+ 〈∇F(x),y− x〉+ 1
2

μ‖y− x‖2. (7)

When μ > 0 strictly, we say that F is μ-strongly convex.
2. The component functions fi are continuously differentiable and satisfy

‖∇ fi(x)−∇ fi(y)‖ ≤ Li‖y− x‖, i = 1,2, . . . ,m, x,y ∈ R
n. (8)

We refer to Li as the Lipschitz constant of ∇ fi.

The default sampling strategy in stochastic gradient methods is to sample uniformly,
taking w(i) = 1

m in (5). In cases where the component functions fi are only observed
sequentially or in a streaming fashion, one does not have the freedom to choose
a different sampling strategy. But if one does have such freedom, and has prior
knowledge about the distribution of the Lipschitz constants Li associated with the
component function gradients, choosing probabilities w(i) ∝ Li can significantly
speed up the convergence rate of stochastic gradient. This is in line with the principle
of importance sampling: if ∇ fi has a larger Lipschitz constant, it is contributing
more in content, and should be sampled with higher probability. We review some
results of this kind in more detail below.
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Stochastic Gradient (SG) with Importance Sampling

For strongly convex functions, a central quantity in the analysis of stochastic de-
scent is the conditioning of the problem, which is, roughly speaking, the ratio of
the Lipschitz constant to the parameter of strong convexity. Recall that for a convex
quadratic F(x) = 1

2 x′Hx, the Lipschitz constant of the gradient is given by the max-
imal eigenvalue of the Hessian H while the parameter of strong convexity is given
by its minimal eigenvalue, and so in this case the conditioning reduces to the con-
dition number of the Hessian matrix. In the general setting where F(x) = ∑m

i=1 fi(x)
is strongly convex, the Hessian can vary with x, and the results will depend on the
Lipschitz constants Li of the ∇ fi and not only of the aggregate ∇F .

In short: with importance sampling, the convergence rate of stochastic descent is
proportional to the average conditioning L/μ = 1

m ∑m
i=1 Li/μ of the problem; with-

out importance sampling, the convergence rate must depend on the uniform con-
ditioning supi Li/μ . Thus, importance sampling has the highest potential impact if
the Lipschitz constants are highly variable. This is made precise in the following
theorem from [26], which in the case of uniform sampling, improves on a previous
result of [2].

Theorem 1. Let each fi be convex where ∇ fi has Lipschitz constant Li, with Li ≤
supL, and let F(x) = E fi(x) be μ-strongly convex. Set σ2 = E‖∇ fi(x∗)‖2, where
x∗ =argminx F(x). Suppose that γ ≤ 1

μ . Then the SG iterates in (5) satisfy:

E‖xk − x∗‖2 ≤
[
1−2γμ(1− γ supL)

)]k ‖x0 − x∗‖2 +
γσ2

μ
(
1− γ supL

) . (9)

where the expectation is with respect to the sampling of {ik} in (5).

The parameter σ2 should be thought of as a ‘residual’ parameter measuring the ex-
tent to which the component functions fi share a common minimizer. As a corollary
of Theorem 1, if one pre-specifies a target accuracy ε > 0, then the optimal step-size
γ∗ = γ∗(ε ,μ ,σ2,supL) is such that

k = 2log(ε0/ε)
(

supL
μ

+
σ2

μ2ε

)

(10)

SG iterations suffice so that E‖xk − x∗‖2
2 ≤ ε ,. See [26] for more details.

To see what this result implies for importance sampling, consider the stochas-
tic gradient algorithm (5) with weights w(k). Then, when expectation is taken with

respect to the sampling of {ik}, we have F(x) = E f (w)i (x) where f (w)i = 1
w(k) fi has

Lipschitz constant L(w)
i = 1

w(i)Li. The supremum of L(w)
i is then given by:

supL(w) = sup
i

L(w)
i = sup

i

Li

w(i)
. (11)

It is easy to verify that (11) is minimized by the weights
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w(i) =
Li

L
, so that supL(w) = sup

i

Li

Li/L
= L. (12)

Since μ is invariant to choice of weights, we find that in the “realizable” regime
where σ2 = 0, and hence σ2

(w) = 0, then choosing the weights w(i) as in (11) gives

linear convergence with a linear dependence on the average conditioning L/μ , and
a number of iterations,

k(w) ∝ log(1/ε)L/μ ,

to achieve a target accuracy ε . This strictly improves over the best possible results
with uniform sampling, where the linear dependence is on the uniform conditioning
supL/μ (see [26] for more details).

However, when σ2 > 0, we get a potentially much worse scaling of the second
term, by a factor of L/infL:

σ2
(w) = E

(w)[‖∇ f (w)i (x)‖2
2]≤

L
infL

σ2. (13)

Fortunately, we can easily overcome this factor by sampling from a mixture of the
uniform and fully weighted sampling, referred to as partially biased sampling. Us-
ing the weights

w(i) =
1
2

Li

L
+

1
2

m,

we have

supL(w) = sup
i

1
1
2 +

1
2 · Li

L

Li ≤ 2L (14)

and

σ2
(w) = E

[
1

1
2 +

1
2 · Li

L

‖∇ fi(x)‖2
2

]

≤ 2σ2. (15)

In this sense, under the assumptions of Theorem 1, partially biased sampling will
never be worse in terms of convergence rate than uniform sampling, up to a factor
of 2, but can potentially have much better convergence.

Remark 1. An important example where all of these parameters have explicit forms
is the least squares problem, where

F(x) =
1
2
‖Ax−b‖2

2 =
1
2

m

∑
i=1

(〈ai,x〉−bi)
2, (16)

with b an m-dimensional vector, A an m × n matrix with rows ai, and x∗ =
argminx

1
2‖Ax − b‖2

2 is the least-squares solution. The Lipschitz constants of the
components fi =

m
2 (〈ai,x〉− bi)

2 are Li = m‖ai‖2
2, and the average Lipschitz con-

stant is 1
m ∑i Li = ‖A‖2

F where ‖ · ‖F denotes the Frobenius norm. If A is full-rank
and overdetermined, then F is strongly convex with strong convexity parameter
μ = ‖(AT A)−1‖−1

2 , so that the average condition number is L/μ =‖A‖2
F‖(AT A)−1‖2.
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Moreover, the residual is σ2 = m∑i ‖ai‖2|〈ai,x〉 − bi|2. Observe the bounds
σ2 ≤ n‖A‖2

F supi |〈ai,x〉−bi|2 and σ2 ≤ msupi ‖ai‖2‖Ax∗ −b‖2
2.

Importance Sampling for SG in other regimes

Theorem 1 is stated for smooth and strongly convex objectives, and is particularly
useful in the regime where the residual σ2 is low, and the linear convergence term
is dominant. But importance sampling can be incorporated into SG methods also in
other regimes, and we now briefly survey some of these possibilities.

Smooth, Not Strongly Convex

When each component fi is convex, non-negative, and has an Li-Lipschitz gradient,
but the objective F(x) is not necessarily strongly convex, then after

k = O

(
(supL)‖x∗‖2

2

ε
· F(x∗)+ ε

ε

)

(17)

iterations of SGD with an appropriately chosen step-size we will have F(x) ≤
F(x∗)+ ε , where x is an appropriate averaging of the k iterates [43]. The relevant
quantity here determining the iteration complexity is again supL. Furthermore, the
dependence on the supremum is unavoidable and cannot be replaced with the av-
erage Lipschitz constant L [43]: if we sample gradients according to the uniform
distribution, we must have a linear dependence on supL.

The only quantity in (17) that changes with a re-weighting is supL—all other
quantities (‖x∗‖2

2, F(x∗), and the sub-optimality ε) are invariant to re-weightings.
We can therefore replace the dependence on supL with a dependence on supL(w) by
using a weighted SGD as in (12). As we already calculated, the optimal weights are
given by (12), and using them we have supL(w) = L. In this case, there is no need
for partially biased sampling and we obtain that

k = O

(
L‖x∗‖2

2

ε
· F(x∗)+ ε

ε

)

(18)

iterations of weighed SGD updates (5) using the weights (12) suffice.

Non-Smooth Objectives

We now turn to non-smooth objectives, where the components fi might not be
smooth, but each component is Gi-Lipschitz. Roughly speaking, Gi is a bound on the
first derivative (gradient) of fi, while Li is a bound on the second derivatives of fi.
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Here, the performance of SGD depends on the second moment G2 = E[G2
i ]. The

precise iteration complexity depends on whether the objective is strongly convex or
whether x∗ is bounded, but in either case depends linearly on G2.

Using weighted SGD, we get linear dependence on:

G2
(w) = E

(w)
[
(F(w)

i )2
]
= E

(w)
[

G2
i

w(i)2

]

= E

[
G2

i

w(i)

]

, (19)

where F(w)
i = Gi/w(i) is the Lipschitz constant of the scaled f (w)i . This is mini-

mized by the weights w(i) = Gi/G, where G = E[Gi], yielding G2
(w) = G

2
. Using

importance sampling, we reduce the dependence on G2 to a dependence on G
2
. It is

helpful to recall that G2 = G
2
+Var[Gi]. What we save is thus exactly the variance

of the Lipschitz constants Gi. For more details, see [46].

Importance sampling in random coordinate descent

A related stochastic optimization problem is randomized coordinate descent, where
one minimizes F : Rn → R, not necessarily having the form F(x) = ∑m

i=1 fi(x), but
still assumed to be strongly convex, by decomposing its gradient (5) into its coordi-
nate directions

∇F(x) =
n

∑
i=1

∇iF(x)

and performing the stochastic updates:

1. Choose coordinate i ∈ [n] according to rule Prob[ik = k] = w(k)

2. Update xk+1 = xk − γ 1
w(ik)

∇ik F(xk).

The motivation is that a coordinate directional derivative can be much simpler
than computation of either function value, or a directional derivative along an arbi-
trary direction.

Actually, Theorem 1 can also be applied to this setting; its proof from [26] uses
only that

∇F(x) = E[∇ fi(x)], (20)

and the fact that for, given any x,y ∈ R
n,

‖∇ fi(x)−∇ fi(y)‖2
2 ≤ Li〈x− y,∇ fi(x)−∇ fi(y)〉. (21)

which follows from the assumption that fi is smooth with Lipschitz continuous gra-
dient by the so-called co-coercivity Lemma, see [26, Lemma A.1]. Note that (20) still
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holds in the setting of randomized coordinate descent, and (21) holds if F : Rn →R

has component-wise Lipschitz continuous gradient:

|∇iF(x+hei)−∇iF(x)| ≤ Li|h|, x ∈ R
n, h ∈ R, i ∈ [n], (22)

Under these assumptions, one may consider importance sampling for random coor-
dinate descent with weights w(k) = Lk/∑ j L j, then we may apply Theorem 1 to get
a linear convergence rate depending on L/μ as opposed to supL/μ . This is because
coordinate descent falls into the realizable regime, as ∇iF(x∗) = 0 for each i, and
hence also σ2 =E‖(∇F)i(x∗)‖2 = 0. Coordinate descent with importance sampling
was considered before SG with importance sampling, originating in the works of
[29] and [35]. One may consider the extension of randomized coordinate descent
(8) to randomized block coordinate descent, descending in blocks of coordinates at
a time. Then, the important Lipschitz constants are those associated with the partial
gradients of F as opposed to the component-wise gradients [29].

Notes and extensions

Several aspects of importance sampling in stochastic optimization were not covered
here, but we point out further results and references.

1. If the Lipschitz constants are not known a priori, then one could still consider
doing importance sampling via rejection sampling, simulating sampling from
the weighted distribution; this can be done by accepting samples with probability
proportional to Li/sup j L j. The overall probability of accepting a sample is then
L/supLi, introducing an additional factor of supLi/L, and thus again obtaining
a linear dependence on supLi. Thus, if we are only presented with samples from
the uniform distribution, and the cost of obtaining the sample dominates the cost
of taking the gradient step, we do not gain (but do not lose much either) from
rejection sampling. We might still gain from rejection sampling if the cost of
operating on a sample (calculating the actual gradient and taking a step according
to it) dominates the cost of obtaining it and (a bound on) the Lipschitz constant.

2. All of the convergence results we stated in this section were with respect to the
expected value. Nevertheless, all these rates extend to high probability results
using Chebyshev’s inequality. See [29] for more details.

3. Recently, several hybrid full-gradient/stochastic gradient methods have emerged
which, as opposed to pure SG as in (5), have the advantage of progressively re-
ducing the variance of the stochastic gradient with the iterations [19, 37, 41, 42],
thus allowing convergence to the true minimizer. These algorithms can further be
applied to the more general class of composite problems,

minimizex∈Rn {P(x) = F(x)+R(x)} , (23)

where F(x) is the average of many smooth component functions fi(x) whose gra-
dients have Lipschitz constants Li as in (5) and R(x) is relatively simple but can
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be non-differentiable. These algorithms have the added complexity of requiring
a single pass over the data, all having complexity O((n+ supL/μ) log(1/ε)).
As shown in [45], importance sampling can also be applied in this more
general setting to speed up convergence: sampling component functions
proportional to their Lipschitz constants, this complexity bound becomes
O((n+L/μ) log(1/ε)).

4. An observation that is important not only for this chapter but also for the entire
discussion on importance sampling is the computational cost of implementing a
random counter, that is, given values L1,L2, . . . ,Lm, generate efficiently random
integer numbers i ∈ {1,2, . . . ,m} with probabilities

Prob[i = k] =
Lk

∑m
j=1 L j

, k = 1,2, . . . ,m. (24)

Using a tree search algorithm [29], such a counter can be implemented with
log(m) operations, and by generating one random number.

Importance sampling in compressive sensing

Introduction

The emerging area of mathematical signal processing known as compressive sensing
is based on the observation that a signal which allows for an approximately sparse
representation in a suitable basis or dictionary can be recovered from relatively few
linear measurements via convex optimization, provided these measurements are suf-
ficiently incoherent with the basis in which the signal is sparse [8, 10, 38]. In this
section we will see how importance sampling can be used to enhance the incoher-
ence between measurements and signal basis, again, allowing for recovery from
fewer linear measurements.

We illustrate the power of importance sampling through two examples: com-
pressed sensing imaging and polynomial interpolation. In compressed sensing imag-
ing, coherence-based sampling provides a theoretical justification for empirical
studies [23, 24] pointing to variable-density sampling strategies for improved MRI
compressive imaging. In polynomial interpolation, coherence-based sampling im-
plies that sampling points drawn from the Chebyshev distribution are better suited
for the recovery of polynomials and smooth functions than uniformly distributed
sampling points, aligning with classical results on Lagrange interpolation [5].

Before continuing, let us fix some notation. A vector x ∈ C
N is called s-sparse

if ‖x‖0 = #{x j : x j �= 0} ≤ s, and the best s-term approximation of a vector x ∈ C
N

is the s-sparse vector xs ∈ C
N satisfying xs = infu:‖u‖0≤s ‖x− u‖p. Clearly, xs = x

if x is s-sparse. Informally, x is called compressible if ‖x− xs‖ decays quickly as s
increases.
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Incoherence in compressive sensing

Here we recall sparse recovery results for structured random sampling schemes cor-
responding to bounded orthonormal systems, of which the partial discrete Fourier
transform is a special case. We refer the reader to [15] for an expository article
including many references.

Definition 1 (Bounded orthonormal system (BOS)). Let D be a measurable sub-
set of Rd .

• A set of functions {ψ j : D →C, j ∈ [N]} is called an orthonormal system with
respect to the probability measure ν if

∫
D ψ̄ j(u)ψk(u)dν(u) = δ jk, where δ jk

denotes the Kronecker delta.
• Let μ be a probability measure on D . A random sample of the orthonormal

system {ψ j} is the random vector (ψ1(T ), . . . ,ψN(T )) that results from drawing
a sampling point T from the measure μ .

• An orthonormal system is said to be bounded with bound K if
sup j∈[N] ‖ψ j‖∞ ≤ K.

Suppose now that we have an orthonormal system {ψ j} j∈[N] and m random sam-
pling points T1,T2, . . . ,Tm drawn independently from some probability measure μ .
Here and throughout, we assume that the number of sampling points m 	 N. As
shown in [15], if the system {ψ j} is bounded, and if the probability measure μ from
which we sample points is the orthogonalization measure ν associated with the sys-
tem, then the (underdetermined) structured random matrix A :CN →C

m whose rows
are the independent random samples will be well conditioned, satisfying the so-
called restricted isometry property [11] with nearly order-optimal restricted isome-
try constants with high probability. Consequently, matrices associated with random
samples of bounded orthonormal systems have nice sparse recovery properties.

Proposition 1 (Sparse recovery through BOS). Consider the matrix A ∈ C
m×N

whose rows are independent random samples of an orthonormal system {ψ j , j ∈
[N]} with bound sup j∈[N] ‖ψ j‖∞ ≤ K, drawn from the orthogonalization measure ν
associated with the system. If the number of random samples satisfies

m � K2s log3(s) log(N), (25)

for some s � log(N), then the following holds with probability exceeding 1 −
N−C log3(s) : For each x ∈ C

N, given noisy measurements y = Ax +
√

mη with
‖η‖2 ≤ ε , the approximation

x# = arg min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤
√

mε

satisfies the error guarantee ‖x− x#‖2 � 1√
s‖x− xs‖1 + ε .

An important special case of such a matrix construction is the subsampled discrete
Fourier matrix, constructed by sampling m 	 N rows uniformly at random from
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the unitary discrete Fourier matrix Ψ ∈ C
N×N with entries ψ j,k =

1√
N

ei2π( j−1)(k−1).

Indeed, the system of complex exponentials ψ j(u) = ei2π( j−1)u, j ∈ [N], is orthonor-
mal with respect to the uniform measure over the discrete set D = {0, 1

N , . . . ,
N−1

N },
and is bounded with optimally small constant K = 1. In the discrete setting, we may
speak of a more general procedure for forming matrix constructions adhering to the
conditions of Proposition 1: given any two unitary matrices Φ and Ψ , the composite
matrix Φ∗Ψ is also a unitary matrix, and this composite matrix will have uniformly
bounded entries if the orthonormal bases (φ j) and (ψk), corresponding to the rows
of Φ and Ψ , respectively, are mutually incoherent:

μ(Φ ,Ψ) :=
√

N sup1≤ j,k≤N |〈φ j,ψk〉| ≤ K. (26)

Indeed, if Φ and Ψ are mutually incoherent, then the rows of B =
√

NΨ ∗Φ con-
stitute a bounded orthonormal system with respect to the uniform measure on
D = {0, 1

N , . . . ,
N−1

N }. Proposition 1 then implies a sampling strategy for reconstruct-
ing signals x ∈C

N with assumed sparse representation in the basis Ψ , that is x =Ψb
and b≈ bs (the s-sparse vector corresponding to its best s-term approximation), from
a few linear measurements: form a sensing matrix A ∈C

m×N by sampling rows i.i.d.
uniformly from an incoherent basis Φ , collect measurements y = Ax+η , ‖η‖2 ≤ ε ,
and solve the �1 minimization program,

x# = arg min
z∈CN

‖Ψ ∗z‖1 subject to ‖Az− y‖2 ≤
√

mε .

This scenario is referred to as incoherent sampling.

Importance sampling via local coherences

Consider more generally the setting where we aim to compressively sense signals
x ∈C

N with assumed sparse representation in the orthonormal basis Ψ ∈C
N×N , but

our sensing matrix A ∈C
m×N can only consist of rows from some fixed orthonormal

basis Φ ∈ C
N×N that is not necessarily incoherent with Ψ . In this setting, we ask:

Given a fixed sensing basis Ψ and sparsity basis Φ , how should we sample rows of
Ψ in order to make the resulting system as incoherent as possible? We will answer
this question by introducing the concept of local coherence between two bases as
described in [21, 32], whereby in the discrete setting the coherences of individual
elements of the sensing basis are calculated and used to derive the sampling strategy.

The following result quantifies how regions of the sensing basis that are more
coherent with the sparsity basis should be sampled with higher density: they should
be given more “importance”. The following is essentially a generalization of Theo-
rem 2.1 in [32], but for completeness, we include a short self-contained proof.

Theorem 2 (Sparse recovery via local coherence sampling). Consider a measur-
able set D and a system {ψ j , j ∈ [N]} that is orthonormal with respect to a measure
ν on D which has square-integrable local coherence,
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sup
j∈[N]

|ψ j(u)| ≤ κ(u),
∫

u∈D
|κ(u)|2ν(u)du = B. (27)

We can define the probability measure μ(u) = 1
B κ2(u)ν(u) on D . Draw m sam-

pling points T1,T2, . . . ,Tm independently from the measure μ , and consider the ma-
trix A ∈ C

m×N whose rows are the random samples ψ j(Tk), j ∈ [N]. Consider also
the diagonal preconditioning matrix P ∈ C

m×m with entries pk,k = 1/μ(Tk). If the
number of sampling points

m � B2s log3(s) log(N), (28)

for some s � log(N), then the following holds with probability exceeding 1 −
N−C log3(s).

For each x∈C
N, given noisy measurements y=Ax+

√
mη with ‖Pη‖2 ≤√

mε ,
the approximation

x# = arg min
z∈CN

‖z‖1 subject to ‖PAz−Py‖2 ≤
√

mε

satisfies the error guarantee

‖x− x#‖2 �
1√
s
‖x− xs‖1 + ε .

The proof is a simple change-of-measure argument following the lines of stan-
dard importance sampling principle:

Proof. Consider the functions Q j(u) =
√

B
κ(u)ψ j(u). The system {Q j} is bounded

with sup j∈[N] ‖Q j‖∞ ≤√
B, and this system is orthonormal on D with respect to the

sampling measure μ :
∫

u∈D
Q̄ j(u)Qk(u)μ(u)du

=
∫

u∈D

(
1

κ(u)
ψ̄ j(u)

)(
1

κ(u)
ψk(u)

)
(
κ2(u)ν(u)

)
du

=
∫

u∈D
ψ̄ j(u)ψk(u)ν(u)du = δ jk. (29)

Thus we may apply Proposition 1 to the system {Q j}, noting that the matrix of
random samples of the system {Q j} may be written as PA.

In the discrete setting where {ψ j} j∈[N] and {φk} are rows of unitary matrices Ψ
and Φ , and ν is the uniform measure over the set D = {0, 1

N , . . . ,
N−1

N }, the integral
in condition (27) reduces to a sum,

sup
k∈[N]

√
N|〈ψ j,φk〉| ≤ κ j,

1
N

N

∑
j=1

κ2
j = B. (30)
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This motivates the introduction of the local coherence of an orthonormal basis
{φ j}N

j=1 of CN with respect to the orthonormal basis {ψk}N
k=1 of CN :

Definition 2. The local coherence of an orthonormal basis {φ j}N
j=1 of CN with re-

spect to the orthonormal basis {ψk}N
k=1 of C

N is the function μ loc = (μ j) ∈ R
N

defined coordinate-wise by

μ j = sup
1≤k≤N

√
N|〈ϕ j,ψk〉|.

We have the following corollary of Theorem 2.

Corollary 1. Consider a pair of orthonormal basis (Φ ,Ψ) with local coherences
bounded by μ j ≤ κ j. Let s ≥ 1, and suppose that

m � s

(
1
N

N

∑
j=1

κ2
j

)

log4(N).

Select m (possibly not distinct) rows of Φ∗ independent and identically distributed
from the multinomial distribution on {1,2, . . . ,N} with weights cκ2

j to form the
sensing matrix A : CN → C

m. Consider also the diagonal preconditioning matrix
P ∈ C

m×m with entries pk,k =
1√
cκ j

. Then the following holds with probability ex-

ceeding 1−N−C log3(s) : For each x ∈ C
N, given measurements y = Ax+η , with

‖Pη‖2 ≤
√

mε , the approximation

x# = arg min
u∈CN

‖Ψ ∗u‖1 subject to ‖y−PAu‖2 ≤
√

mε

satisfies the error guarantee ‖x− x#‖2 � 1√
s‖Ψ ∗x− (Ψ ∗x)s‖1 + ε .

Remark 2. Note that the local coherence not only influences the embedding dimen-
sion m, it also influences the sampling measure. Hence a priori, one cannot guar-
antee the optimal embedding dimension if one only has suboptimal bounds for the
local coherence. That is why the sampling measure in Theorem 2 is defined via the
(known) upper bounds κ and ‖κ‖2 rather than the (usually unknown) exact values
μloc and ‖μloc‖2, showing that local coherence sampling is robust with respect to
the sampling measure: suboptimal bounds still lead to meaningful bounds on the
embedding dimension.

We now present two applications where local-coherence sampling enables a sam-
pling scheme with sparse recovery guarantees.

Remark 3. The log(N)4 factor in the required number of measurements, m, can be
reduced to a single log(N) factor if one asks not for uniform sparse recovery (of the
form “with high probability, this holds for all x”) but rather a with-high probability
result holding only for a particular x (of the form “for this x, recovery holds with
high probability”). See [18] for more details.
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Variable-density sampling for compressive sensing MRI

In Magnetic Resonance Imaging, after proper discretization, the unknown image
(x j1, j2) is a two-dimensional array in R

n×n, and allowable sensing measurements
are two-dimensional Fourier transform measurements 1:

φk1,k2 =
1
n ∑

j1, j2

x j1, j2e2πi(k1 j1+k2 j2)/n, −n/2+1 ≤ k1,k2 ≤ n/2.

Natural sparsity domains for images, such as discrete spatial differences, are not
incoherent to the Fourier basis.

A number of empirical studies, including the very first papers on compressed
sensing MRI, observed that image reconstructions from compressive frequency
measurements could be significantly improved by variable-density sampling.

Note that lower frequencies are more coherent with wavelets and step functions
than higher frequencies. In [21], the local coherence between the two-dimensional
Fourier basis and bivariate Haar wavelet basis was calculated:

Proposition 2. The local coherence between frequency φk1,k2 and the bivariate Haar
wavelet basis Ψ = (ψI) can be bounded by

μ(φk1,k2 ,Ψ)�
√

N

(|k1 +1|2 + |k2 +1|2)1/2
.

Note that this local coherence is almost square integrable independent of discretiza-
tion size n2, as

1
N

N

∑
j=1

μ2
j � log(n).

Applying Corollary 1 to compressive MRI imaging, we then have

Corollary 2. Let n ∈ N. Let Ψ be the bivariate Haar wavelet basis and let Φ =
(φk1,k2) be the two-dimensional discrete Fourier transform. Let s ≥ 1, and suppose
that m � s log5(N). Select m (possibly not distinct) frequencies (φk1,k2) indepen-
dent and identically distributed from the multinomial distribution on {1,2, . . . ,N}
with weights proportional to the inverse squared Euclidean distance to the origin,

1
(|k1+1|2+|k2+1|2) , and form the sensing matrix A :CN →C

m. Then the following holds

with probability exceeding 1−N−C log3(s) : for each image x ∈C
n×n, given measure-

ments y = Ax, the approximation

x# = arg min
u∈Cn×n

‖Ψ ∗u‖1 subject to ‖Dy−Au‖2 ≤ ε

satisfies the error guarantee ‖x− x#‖2 � 1√
s‖Ψ ∗x− (Ψ ∗x)s‖1 + ε .

1 The unknown might also be higher-dimensional, and is often 3-dimensional, but the ideas are
analogous and we focus on the 2D example for simplicity.
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Remark 4. This result was generalized to multidimensional wavelet and Fourier
bases (not just two dimensions as considered above), and to any Daubechies wavelet
basis in [20].

Remark 5. One can prove similar guarantees as in (2) using total variation mini-
mization reconstruction, see [21, 25].

Sparse orthogonal polynomial expansions

Here we consider the problem of recovering polynomials g from m sample val-
ues g(x1),g(x2) . . . ,g(xm), with sampling points x� ∈ [−1,1] for �= 1, . . . ,m. If the
number of sampling points is less or equal to the degree of g, then in general such
reconstruction is impossible due to dimension reasons. However, the situation be-
comes tractable if we make a sparsity assumption. In order to introduce a suitable
notion of sparsity, we consider the orthonormal basis of Legendre polynomials.

Definition 3. The (orthonormal) Legendre polynomials P0,P1, . . . ,Pn, . . . are
uniquely determined by the following conditions:

• Pn(x) is a polynomial of precise degree n in which the coefficient of xn is positive,
• the system {Pn}∞

n=0 is orthonormal with respect to the normalized Lesbegue mea-
sure on [−1,1]: 1

2

∫ 1
−1 Pn(x)Pm(x)dx = δn,m, n,m = 0,1,2, . . .

Since the interval [−1,1] is symmetric, the Legendre polynomials satisfy Pn(x) =
(−1)nPn(−x). For more information see [44].

An arbitrary real-valued polynomial g of degree N −1 can be expanded in terms
of Legendre polynomials,

g(x) =
N−1

∑
j=0

c jPj(x), x ∈ [−1,1]

with coefficient vector c ∈ R
N . The vector is s-sparse if ‖c‖0 ≤ s. Given a set of

m sampling points (x1,x2, . . . ,xm), the samples yk = g(xk), k = 1, . . . ,m, may be
expressed concisely in terms of the coefficient vector according to

y = Φc,

where φk, j = Pj(xk). If the sampling points x1, . . . ,xm are random variables, then the
matrix Φ ∈ R

m×N is exactly the sampling matrix corresponding to random sam-
ples from the Legendre system {Pj}N

j=1. This is not a bounded orthonormal system,
however, as the Legendre polynomials grow like

|Pn(x)| ≤ (n+1/2)1/2, −1 ≤ x ≤ 1.

Nevertheless the Legendre system does have bounded local coherence. A classic
result from [44] follows.
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Proposition 3. For all n > 0 and for all x ∈ [−1,1], |Pn(x)| < κ(x) = 2π−1/2(1−
x2)−1/4. Here, the constant 2 π−1/2 cannot be replaced by a smaller one.

Indeed, κ(x) is a square integrable function proportional to the Chebyshev measure
π−1(1−x2)−1/2. We arrive at the following result for Legendre polynomial interpo-
lation as a corollary of Theorem 2.

Corollary 3. Let x1, . . . ,xm be chosen independently at random on [−1,1] according
to the Chebyshev measure π−1(1 − x2)−1/2dx. Let Ψ be the matrix with entries
Ψk, j =

√
π/2(1− x2

k)
1/4Pn(xk). Suppose that

m � s log3(N).

Consider the matrix A ∈ C
m×N whose rows are independent random vectors

(ψ j(Xk)) drawn from the measure μ . If

m � B2s log3(s) log(N), (31)

for some s � log(N), then the following holds with probability exceeding 1 −
N−C log3(s). Let D ∈ C

m×m be the diagonal matrix with entries dk,k = 1
μ(Xk)

. For

each x ∈ C
N, given noisy measurements y = Ax+

√
mη with ‖Dη‖2 ≤ √

mε , the
approximation

x# = arg min
u∈CN

‖u‖1 subject to ‖DAu−Dy‖2 ≤
√

mε

satisfies the error guarantee ‖x−x#‖2 � 1√
s‖x−xs‖1+ε where xs is the best s-term

approximation to x.

In fact, more general theorems exist: the Chebyshev measure is a universal sampling
strategy for interpolation with any set of orthogonal polynomials [32]. An exten-
sion to the setting of interpolation with spherical harmonics, and more generally,
to the eigenfunctions corresponding to smooth compact manifolds, can be found
in [6, 32], respectively. For extensive numerical illustrations comparing Chebyshev
vs. uniform sampling, also for high-dimensional tensor-product polynomial expan-
sions, we refer the reader to [18].

Structured sparse recovery

Often, the prior of sparsity can be refined, and additional structure of the support
set is known. In the MRI example where one senses with Fourier measurements sig-
nals which are sparse in Wavelets, the sparsity level will be higher for higher-order
wavelets. One may consider sampling strategies based on a more refined notion of
local coherence – based not only on μ j = sup1≤k≤N

√
N|〈φ j,ψk〉|, but also coher-

ences of sub-blocks μ j,Bk = supk∈Bk

√
N|〈φ j,ψk〉|. For more information, we refer

the reader to the survey article [1] and the references therein.
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In fact, we also have more information about the sparsity structure in the set-
ting of function interpolation. It is well known that the smoothness of a function is
reflected in the rate of decay of its Fourier coefficients / orthonormal Legendre poly-
nomial coefficients, and vice versa. Thus, smooth functions have directional sparsity
in their orthonormal polynomial expansions: low-order and low-degree polynomi-
als are more likely to contribute to the representation. Another way to account for
directional sparsity is in the reconstruction method itself. A more general theory
of sparse recovery involves weighted �1 minimization as a reconstruction strategy,
which serves as a weighted sparse prior, and the incorporation of importance sam-
pling there, can be found in [33].

One of the motivating applications of sparse orthogonal polynomial expansions
is toward the setting of Polynomial Chaos expansions in the area of Uncertainty
Quantification (UQ), which involves high-dimensional expensive random inputs
and modeling the output as having approximately sparse expansion in a tensorized
orthogonal polynomial expansion. As shown in [18], in high dimensions, local co-
herence sampling strategy will depend on how high is the dimension compared to
the maximal order of orthogonal polynomial considered; for higher-order models,
Chebyshev sampling is a good strategy; for low-order, high-dimensional problems,
uniform sampling outperforms Chebyshev sampling. For a detailed overview and
more results, we refer the reader to [18].

Importance sampling in low-rank matrix recovery

Low-rank matrix completion

The task of low-rank matrix completion concerns the recovery of a low-rank matrix
from a subset of its revealed entries, and nuclear norm minimization has emerged
as an effective surrogate for this combinatorial problem. In fact, nuclear norm mini-
mization can recover an arbitrary n×n matrix of rank r from O(nr log2(n)) revealed
entries, provided that revealed entries are drawn proportionally to the local row and
column coherences (closely related to leverage scores) of the underlying matrix.
Matrix completion has been the subject of much recent study due to its applica-
tion in myriad tasks: collaborative filtering, dimensionality reduction, clustering,
non-negative matrix factorization and localization in sensor networks. Clearly, the
problem is ill-posed in general; correspondingly, analytical work on the subject has
focused on the joint development of algorithms, and sufficient conditions under
which such algorithms are able to recover the matrix.

If the true matrix is M with entries Mi j, and the set of observed elements is Ω ,
this method guesses as the completion the optimum of the convex program:

min
X

‖X‖∗
s.t. Xi j = Mi j for (i, j) ∈ Ω .

(32)
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where the “nuclear norm” ‖ · ‖∗ of a matrix is the sum of its singular values2.
Throughout, we use the standard notation f (n) = Θ(g(n)) to mean that cg(n) ≤
f (n)≤Cg(n) for some positive constants c,C.

We focus on the setting where matrix entries are revealed from an underlying
probability distribution. To introduce the distribution of interest, we first need a
definition.

Definition 4. For an n1 × n2 real-valued matrix M of rank r with SVD given by
UΣV�, the local coherences3 – μi for any row i, and ν j for any column j - are
defined by the following relations

∥
∥
∥U�ei

∥
∥
∥=

√
μir
n1

, i = 1, . . . ,n1

∥
∥
∥V�e j

∥
∥
∥=

√
ν jr

n2
, j = 1, . . . ,n2.

(33)

Note that the μi,ν js are non-negative, and since U and V have orthonormal columns
we always have ∑i μir/n1 = ∑ j ν jr/n2 = r.

The following theorem is from [13].

Theorem 3. Let M = (Mi j) be an n1 × n2 matrix with local coherence parameters
{μi,ν j}, and suppose that its entries Mi j are observed only over a subset of elements
Ω ⊂ [n1]× [n2]. There are universal constants c0,c1,c2 > 0 such that if each element
(i, j) is independently observed with probability pi j, and pi j satisfies

pi j ≥ min

{

c0
(μi +ν j)r log2(n1 +n2)

min{n1,n2} , 1

}

, (34)

pi j ≥ 1
min{n1,n2}10 ,

then M is the unique optimal solution to the nuclear norm minimization prob-
lem (32) with probability at least 1− c1(n1 +n2)

−c2 .

We will refer to the sampling strategy (34) as local coherence sampling. Note that
the expected number of observed entries is ∑i, j pi j, and this satisfies

∑
i, j

pi j ≥ max

{

c0
r log2(n1 +n2)

min{n1,n2} ∑
i, j
(μi +ν j),∑

i, j

1
n10

}

= 2c0 max{n1,n2}r log2(n1 +n2),

2 This becomes the trace norm for positive-definite matrices. It is now well recognized to be a
convex surrogate for rank minimization.
3 In the matrix sparsification literature [4, 14] and beyond, the quantities

∥
∥U�ei

∥
∥2

and
∥
∥V�e j

∥
∥2

are referred to as the leverage scores of M.
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independent of the coherence, or indeed any other property, of the matrix. Hoeffd-
ing’s inequality implies that the actual number of observed entries sharply concen-
trates around its expectation, leading to the following corollary:

Corollary 4. Let M = (Mi j) be an n1 ×n2 matrix with local coherence parameters
{μi,ν j}. Draw a subset of its entries by local coherence sampling according to the
procedure described in Theorem 3. There are universal constants c′1,c

′
2 > 0 such

that the following holds with probability at least 1− c′1(n1 +n2)
−c′2: the number m

of revealed entries is bounded by

m ≤ 3c0 max{n1,n2}r log2(n1 +n2),

and M is the unique optimal solution to the nuclear norm minimization pro-
gram (32).

(A) Roughly speaking, the condition given in (34) ensures that entries in im-
portant rows/columns (indicated by large local coherences μi and ν j) of the matrix
should be observed more often. Note that Theorem 3 only stipulates that an in-
equality relation hold between pi j and

{
μi,ν j

}
. This allows for there to be some

discrepancy between the sampling distribution and the local coherences. It also has
the natural interpretation that the more the sampling distribution

{
pi j

}
is “aligned”

to the local coherence pattern of the matrix, the fewer observations are needed.
(B) Sampling based on local coherences provides close to the optimal number of

sampled elements required for exact recovery (when sampled with any distribution).
In particular, recall that the number of degrees of freedom of an n× n matrix with
rank r is 2nr(1− r/2n). Hence, regardless how the entries are sampled, a minimum
of Θ(nr) entries is required to recover the matrix. Theorem 3 matches this lower
bound, with an additional O(log2(n)) factor.

(C) Theorem 3 is from [13] and improves on the first results of matrix completion
[7, 9, 17, 34] which assumed uniform sampling and incoherence i.e. every μi ≤ μ0

and every ν j ≤ μ0 – and an additional joint incoherence parameter μstr defined by

‖UV�‖∞ =
√

rμstr
n1n2

. The proof of Theorem 3 involves an analysis based on bounds

involving the weighted �∞,2 matrix norm, defined as the maximum of the appro-
priately weighted row and column norms of the matrix. This differs from previous
approaches that use �∞ or unweighted �∞,2 bounds [12, 17]. In some sense, using
the weighted �∞,2-type bounds is natural for the analysis of low-rank matrices, be-
cause the rank is a property of the rows and columns of the matrix rather than its
individual entries, and the weighted norm captures the relative importance of the
rows/columns.

(D) If the column space of M is incoherent with maxi μi ≤ μ0 and the row space
is arbitrary, then one can randomly pick Θ(μ0r logn) rows of M and observe all
their entries, and compute the local coherences of the space spanned by these rows.
These parameters will be equal to the ν j’s of M with high probability. Based on
these values, we can perform non-uniform sampling according to (34) and exactly
recover M. Note that this procedure does not require any prior knowledge about the
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local coherences of M. It uses a total of Θ(μ0rn log2 n) samples. This was observed
in [22].

Theorem 3 has some interesting consequences, discussed in detail in [13] and
outlined below.

• Theorem 3 can be turned on its head, and used to quantify the benefit of weighted
nuclear norm minimization over standard nuclear norm minimization, and pro-
vide a strategy for choosing the weights in such problems given non-uniformly
distributed samples so as to reduce the sampling complexity of weighted nuclear
norm minimization to that of standard nuclear norm minimization. In particular,
these results can provide exact recovery guarantees for weighted nuclear norm
minimization as introduced in [16, 27, 39], thus providing theoretical justifica-
tion for its good empirical performance.

• Numerical evidence suggests that a two-phase adaptive sampling strategy, which
assumes no prior knowledge about the local coherences of the underlying matrix
M, can perform on par with the optimal sampling strategy in completing coherent
matrices, and significantly outperform uniform sampling. Specifically, [13] con-
siders a two-phase sampling strategy whereby given a fixed budget of m samples,
one first draws a fixed proportion of samples uniformly at random, and then draw
the remaining samples according to the local coherence structure of the resulting
sampled matrix.
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