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Abstract This paper reviews some results on the identifiability of classes of
operators whose Kohn-Nirenberg symbols are band-limited (called band-limited
operators), which we refer to as sampling of operators. We trace the motivation and
history of the subject back to the original work of the third-named author in the late
1950s and early 1960s, and to the innovations in spread-spectrum communications
that preceded that work. We give a brief overview of the NOMAC (Noise Mod-
ulation and Correlation) and Rake receivers, which were early implementations
of spread-spectrum multi-path wireless communication systems. We examine in
detail the original proof of the third-named author characterizing identifiability of
channels in terms of the maximum time and Doppler spread of the channel, and do
the same for the subsequent generalization of that work by Bello. The mathematical
limitations inherent in the proofs of Bello and the third author are removed by
using mathematical tools unavailable at the time. We survey more recent advances
in sampling of operators and discuss the implications of the use of periodically
weighted delta-trains as identifiers for operator classes that satisfy Bello’s criterion
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for identifiability, leading to new insights into the theory of finite-dimensional Ga-
bor systems. We present novel results on operator sampling in higher dimensions,
and review implications and generalizations of the results to stochastic operators,
MIMO systems, and operators with unknown spreading domains.

Key words: Sampling, Gabor frame, Delta trains, Kohn-Nirenberg symbol,
Spreading function, Operator Paley-Wiener space, Operator identification, Op-
erator sampling, Channel identification, Channel measurement, Rake receiver,
Time-variant filters, Band-limited operators, Gabor matrices, Stochastic operator,
Compressive sensing, Matrix probing, MIMO channel

Introduction

The problem of identification of a time-variant communication channel arose in the
1950s as the problem of secure long-range wireless communications became in-
creasingly important due to the geopolitical situation at the time. Some of the theo-
retical and practical advances made then are described in this paper, and more recent
advances extending the theory to more general operators, and onto a more rigorous
mathematical footing, known as sampling of operators are developed here as well.

The launching point for the theory of operator sampling is the early work of the
third-named author in his Master’s thesis at MIT, entitled “Sampling models for lin-
ear time-variant filters” [19], see also [22, 23], and [21] in which he reviews the iden-
tification problem for time-variant channels. The third named author as well as Bello
in subsequent work [6] were attempting to understand and describe the theoretical
limits of identifiability of time-variant communication channels. Section “Histori-
cal Remarks” of this paper describes in some detail their work and explores some
of the important mathematical challenges they faced. In Section “Operator Sam-
pling”, we describe the more recently developed framework of operator sampling.
Results addressing the problem considered by Bello are based on insights on finite
dimensional Gabor systems which are presented in Section “Linear Independence
Properties of Gabor Frames”. Malikiosis’s recent result [32] allows for the general-
ization of those results to a higher-dimensional setting, these are stated and proven in
Section “Generalizations of operator sampling to higher dimensions”. We conclude
the paper in Section “Further results on operator sampling” with a short summary of
the sampling of operators literature, that is, of results presented in detail elsewhere.

Historical Remarks

The Cold War Origins of the Rake System

In 1958, Price and Green published A Communication Technique for Multi-path
Channels in Proc. IRE [56], in which they describe a communication system called
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Rake, designed to solve the multi-path problem. When a wireless transmitter does
not have line-of-sight with the receiver, the transmitted signal is reflected possi-
bly multiple times before reaching the receiver. Reflection by stationary objects
such as the ground or buildings introduces random time delays to the signal, and
reflection or refraction by moving objects such as clouds, the troposphere, iono-
sphere, or a moving vehicle produce random frequency or Doppler shifts in the
signal as well. Due to scattering and absorption, the reflected signals are randomly
amplitude-attenuated too. The problem is to recover the transmitted signal as accu-
rately as possible from the superposition of time-frequency-shifted and randomly
amplitude-attenuated versions of it. Since the location and velocities of the reflect-
ing objects change with time, the effects of the unknown, time-variant channel must
be estimated and compensated for.

Price and Green’s paper [56] was the disclosure in the literature of a long-distance
system of wide-band or spread-spectrum communications that had been developed
in response to strategic needs related to the Cold War. This fascinating story has
been described in several articles by those directly involved [12, 55, 57, 58]. We
present a summary of those remarks and of the Rake system below. The goal is to
motivate the original work of the third-named author on which the theory of operator
sampling is based.

In the years following World War II, the Soviet Union was exercising its power
in Eastern Europe with a major point of contention being Berlin, which the Soviets
blockaded in the late 1940s. This made secure communication with Berlin a top
priority. As Paul Green describes it,

[T]he Battle of Berlin was raging, the Russians having isolated the city physically on land,
so that the Berlin Airlift was resorted to, and nobody knew when all the communication
links would begin to be subjected to heavy Soviet jamming. [12]

By 1950, with a shooting war in Korea about to begin, the Army Signal Corps ap-
proached researchers at MIT to develop secure, and reliable wireless communication
with the opposite ends of the world. According to Green,

It is difficult today to recall the fearful excitement of those times. The Russians were thought
to be 12 feet high in anything having to do with applying mathematics to communication
problems (“all Russians were Komogorovs or Kotelnikovs”)....[T]here was a huge backlog
of unexploited theory lying around, and people were beginning to build digital equipment
with the unheard of complexity of a hundred or so vacuum tube-based bits (!). And the
money flowed. [12]

The effort was called Project Lincoln (precursor to Lincoln Laboratory). The re-
searchers were confronted by two main problems: 1) making a communications
system robust to noise and deliberate jamming, and 2) enabling good signal recov-
ery from multiple paths.

Spread Spectrum communications and NOMAC

The technique chosen to address the first problem is an application of the no-
tion, already well understood and used by that time, that combatting distortions
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from noise and jamming can be achieved by spreading the signal over a wide fre-
quency band. The idea of spreading the spectrum had been around for a long time
[51, 55, 63] and can be found even in a now famous Hedy Lamarr-George Antheil
patent of 1942 [33, 55], which introduced the concept later called “frequency hop-
ping”. The system called NOMAC (Noise Modulation and Correlation) was devel-
oped in the early 1950s and used noise-like (pseudo-noise or PN) signals to achieve
spectrum spreading. Detailed discussion of its history can be found in [12, 55, 64].

The huge backlog of “unexploited theory” mentioned above included the re-
cent work of Claude Shannon on communication theory [61], of Norbert Wiener
on correlation functions and least mean squares prediction and filtering [65], and
recent applications of statistical decision theory to detection problems in radar and
communications.

The communication problem addressed by NOMAC was to encode data rep-
resented by a string of ones and zeros into analog signals that could be electro-
magnetically transmitted over a noisy communication channel in a way that foiled
“jamming” by enemies. The analog signals x1(·) and x0(·), commonly called Mark
and Space, associated with the data digits 1 and 0, were chosen to be waveforms of
approximate bandwidth B, and with small cross correlation. The target application
was 60 wpm teletype, with 22 msec per digit (called a baud), which corresponds
to a transmission rate of 1/0.022sec = 45 Hz. The transmitted signals were chosen
to have a bandwidth of 10 KHz, which was therefore expected to yield a “jamming
suppression ratio” of 10,000/45 = 220, or 23 db [12, 64]. The jamming ratio is of-
ten called the “correlation gain”, because the receiver structure involves cross cor-
relation of the received signal with each of the possible transmitted signals. If the
correlation with the signal x1(·) is larger than the one with the signal x0(·), then it
is decided that the transmitted signal corresponded to the digit 1. This scheme can
be shown to be optimum in the sense of minimum probability of error provided that
the transmitted signals are not distorted by the communications channel and that
the receiver noise is white Gaussian noise (see, for example, [16]). The protection
against jamming is because unless the jammer has good knowledge of the noise-like
transmitted signals, any jamming signals would just appear as additional noise at the
output of the crosscorrelations.

More details on the nontrivial ideas required for building a practical system can
be found in the references. We may mention that the key ideas arose from three
classified MIT dissertations by Basore [4], Pankowski [34], and Green [10], in fact,
documents on NOMAC remained classified until 1961 [12].

A transcontinental experiment was run on a NOMAC system, but was found to
have very poor performance because of the presence of multiple paths; the signals
arriving at the receiver by these different paths sometimes interfere destructively.
This is the phenomenon of “fading”, which causes self-jamming of the system.
Some improvement was achieved by adding additional circuitry and the receiver
to separately identify and track the two strongest signals and combine them after
phase correction; this use of time and space diversity enabled a correlation gain of
17 db, 6 db short of the expected performance. It was determined that this loss was
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because of the neglected weaker paths, of which there could be as many as 20 or 30.
So attention turned to a system that would allow the use of all the different paths.

The RAKE system

One conceptual basis for this new system was provided by the doctoral thesis of
Robert Price [52], the main results of which were published in 1956 [53]. In a chan-
nel with severe multi-path the signal at the receiver is composed of large number of
signals of different amplitudes and phases and so Price made the assumption that
the received “signal” was a Gaussian random process. He studied the problem of
choosing between the hypothesis

Hi : w(·) = Axi(·)+n(·), i = 0,1,

where the random time variant linear communication channel A is such that the
{Axi(·)} are Gaussian processes. In this case, the earlier cross correlation detection
scheme makes no sense, because the “signal” arriving at the receiver is not deter-
ministic but is a sample function of a random process, which is not available to the
receiver because it is corrupted by the additive noise. Price worked out the opti-
mum detection scheme and then ingeniously interpreted the mathematical formulas
to conclude that the new receiver forms least mean-square estimates of the {Axi(·)}
and then crosscorrelates the w(·) against these estimates. In practice of course, one
does not have enough statistical information to form these estimates and therefore
more heuristic estimates are used and this was done in the actual system that was
built. The main heuristic, from Wiener’s least mean-square smoothing filter solu-
tion and earlier insights, is that one should give greater weight to paths with higher
signal-to-noise ratio.

So Price and Green devised a new receiver structure comprised of a delay line
of length 3 ms intervals (the maximum expected time spread in their channel), with
30 taps spaced every 1/10 Khz, or 100 μs. This would enable the capture of all the
multi-path signals in the channel. Then the tap gains were made proportional to the
strength of the signal received at that tap. Since a Mark/Space decision was only
needed every 22 ms (for the transmission rate of 60 wpm), and since the fading rate
of the channel was slow enough that the channel characteristics remain constant over
even longer than 22 ms, tap gains could be averaged over several 3 ms intervals. The
new system was called “Rake”, because the delay line structure resembled that in a
typical garden rake!

Trials showed that this scheme worked well enough to recover the 6 db loss expe-
rienced by the NOMAC system. The system was put into production and was suc-
cessfully used for jam-proof communications between Washington DC and Berlin
during the “Berlin crisis” in the early 60s.

HF communications is no longer very significant, but the Rake receiver has found
application in a variety of problems such as sonar, the detection of underground
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nuclear explosions, and planetary radar astronomy (pioneered by Price and Green,
[11, 54]) and currently it is much used in mobile wireless communications. It is
interesting to note that the eight racks of equipment needed to build the Rake system
in the 1960s is now captured in a small integrated circuit chip in a smart phone!

However the fact that the Rake system did not perform satisfactorily when the
fading rates of the communication channel were not very slow led MIT professor
John Wozencraft, (who had been part of the Rake project team at Lincoln Lab) to
suggest in 1957 (even before the open 1958 publication of the Rake system) to his
new graduate student Thomas Kailath a fundamental study of linear time-variant
communication channels and their identifiability for his Masters thesis. While time-
variant linear systems had begun to be studied at least as early as 1950 (notably
by Zadeh [66]), in communication systems there are certain additional constraints,
notably limits on the bandwidths of the input signal and the duration of the channel
memory. So a more detailed study was deemed to be worthwhile.

Kailath’s Time-Variant Channel Identification Condition

In the paper [19], the author considers the problem of measuring a channel whose
characteristics vary rapidly with time. He considers the dependence of any theoret-
ical channel estimation scheme on how rapidly the channel characteristics change
and concludes that there are theoretical limits on the ability to identify a rapidly
changing channel. He models the channel A as a linear time-variant filter and
defines

A(λ , t) = response of A, measured at time t to a unit impulse input at time t −λ .

A(λ , t) is one form of the time-variant impulse response of the linear channel that
emphasizes the role of the “age” variable λ . The channel response to an input signal
x(·) is

Ax(t) =
∫

A(λ , t)x(t −λ )dλ .

An impulse response A(λ , t) = A(λ ) represents a time-invariant filter. Further, the
author states

Therefore the rate of variation of A(λ , t) with t, for fixed λ , is a measure of the rate of
variation of the filter. It is convenient to measure this variation in the frequency domain by
defining a function A

A(λ , f ) =
∫ ∞

−∞
A(λ , t)e−2πi f tdt

Then he defines

B = max
λ

[b−a, where A(λ , f ) = 0 for f /∈ [a,b] ].
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While symmetric support is assumed in the paper, this definition makes clear that
non-rectangular regions of support are already in view. Additionally, he defines the
memory as the maximum time-delay spread in response to an impulse of the chan-
nel as

L = max
t
[min

λ ′
such that A(λ , t) = 0, λ ≥ λ ′].

In short, the assumption in the continuation of the paper is that

suppA(λ , f )⊆ [0,L]× [−W,W ]

where W = B/2. The function A(λ , f ) is often called the spreading function of the
channel. He then asks under what assumptions on L and B = 2W can such a channel
be measured? In the context of the Rake system, this translates to the question of
whether there are limits on the rate of variation of the filter that can assure that the
measurement filter can be presumed to be effective.

The author’s assertion is that as long as BL ≤ 1, then a “simple measurement
scheme” is sufficient.

We have assumed that the bandwidth of any “tap function”, Aλ (·) [= A(λ , ·)] , is limited to
a frequency region of width B, say a low-pass region (−W,W ) for which B = 2W . Such
band-limited taps are determined according to the Sampling theorem, by their values at the
instants i/2W , i = 0,±1,±2, . . ..

If the memory, L, of the filter, A(λ , t) is less than 1/2W these values are easily determined:
we put in unit impulses to A(λ , t) at instants 0, 1/2W, 2/2W, . . . ,T , and read off from the
responses the desired values of the impulse response A(λ , t). [...] If L≤ 1/2W , the responses
to the different input impulses do not interfere with one another and the above values can
be unambiguously determined.

In other words, sufficiently dense samples of the tap functions can be obtained
by sending an impulse train ∑n δn/2W through the channel. Indeed,

A
(
∑
n

δn/2W
)
(t) = ∑

n

∫
A(λ , t)δn/2W (t −λ )dλ = ∑

n
A(t −n/2W, t).

Evaluating the operator response at t = λ0 +n0/2W , n0 ∈ Z, we obtain

A
(
∑
n

δn/2W
)
(λ0 +n0/2W ) = ∑

n
A(λ0 +(n0 −n)/2W,λ0 +n0/2W )

= A(λ0,λ0 +n0/2W )

since L ≤ 1/2W implies that A(λ0 +(n0 − n)/2W,λ0 + n0/2W ) = 0 if n �= n0. In
short, for each λ , the samples A(λ ,λ +n/2W ) for n ∈ Z can be recovered.

The described Kailath sounding procedure is depicted in Figure 1. In this visual-
ization, we plot the kernel κ(s, t) = A(t − s, t) of the operator A, that is,

Ax(t) =
∫

A(λ , t)x(t −λ )dλ =

∫
A(t − s, t)x(s)ds =

∫
κ(t,s)x(s)ds.
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Fig. 1 Kailath sounding of A with suppA(λ , f ) ⊆ [0,L]× [−W,W ] and L = 1/2W . The kernel
κ(t,s) is displayed on the (t,s) plane, the impulse train ∑n δn/2W (s) on the s-axis, and the output
signal Ax(t) = A

(
∑n δn/2W

)
(t) = ∑n A(t−n/2W, t) = ∑n κ(t,n/2W ). The sample values of the tab

functions Aλ (t) = A(λ , t) = κ(t, t −λ ) can be read off Ax(t).

Necessity of Kailath’s Condition for Channel Identification

For the “simple measurement scheme” to work, BL ≤ 1 is sufficient but could be
restrictive.

We need, therefore, to devise more sophisticated measurement schemes. However, we have
not pursued this question very far because for a certain class of channels we can show that
the condition

L ≤ 1/2W, i.e. ,BL ≤ 1

is necessary as well as sufficient for unambiguous measurement of A(λ , t). The class of
channels is obtained as follows: We first assume that there is a bandwidth constraint on the
possible input signals to A(λ , t), in that the signals are restricted to (−Wi,Wi) in frequency.
We can now determine a filter AWi (λ , t) that is equivalent to A(λ , t) over the bandwidth
(−Wi,Wi), and find necessary and sufficient conditions for unambiguous measurement of
AWi (λ , t). If we now let Wi → ∞, this condition reduces to condition (1), viz: L ≤ 1/2W .
Therefore, condition (1) is valid for all filters A(λ , t) that may be obtained as the limit
of band-limited channels. This class includes almost all filters of physical interest. The
argument is worked out in detail in Ref. 6 1 but we give a brief outline here.

The class of operators in view here can be described as limits (in some unspeci-
fied sense) of operators whose impulse response A(λ , t) is bandlimited to [−Wi,Wi]
in λ for each t and periodic with period T > 0 in t for each λ . Here, T is assumed
to have some value larger than the maximum time over which the channel will be
operated. We could take it as the duration of the input signal to the channel.

1 Ref. 6 is [19].
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The restriction to input signals bandlimited to (−Wi,Wi) indicates that it suffices
to know the values of A(λ , t) or A(λ , f ) for a finite set of values of λ : λ = 0, 1/2Wi,
2/2Wi, . . ., L, assuming for simplicity that L is a multiple of 1/2Wi. Therefore, we
can write

A(λ , t) = ∑
n

A(n/2Wi, t)sincWi(λ −n/2Wi),

where sincWi(t) = sin(2πWit)/(2πWit) so that as Wi → ∞, sincWi(t) becomes more
concentrated at the origin.

Also, T -periodicity in t allows us to write

A(λ , t) = ∑
k

A(λ ,k/T )e2πikt/T ,

so that combining gives

A(λ , t) = ∑
n

∑
k

A(n/2Wi,k/T )sincWi(λ −n/2Wi)e2πikt/T .

Based on the restriction to bandlimited input signals which are T periodic, we
have obtained a representation of A which is neither compactly supported in λ nor
bandlimited in t. However, the original restriction that

suppA(λ , f )⊆ [0,L]× [−W,W ]

motivates the assumption that we are working with finite sums, viz.

A(λ , t) = ∑
n/2Wi∈[0,L]

∑
k/t∈[−W,W ]

A(n/2Wi,k/T )sincWi(λ −n/2Wi)e2πikt/T .

This is how the author obtains the estimate that there are at most (2WiL+1)(2WT+1)
degrees of freedom in any impulse response A in the given class.

For any input signal x(t) bandlimited to [−Wi,Wi], the output will be bandlimited
to [−W −Wi,W +Wi]. Specifically,

Ax(t) =
∫

A(λ , t)x(t −λ )dλ

= ∑
n/2Wi∈[0,L]

∑
k/T∈[−W,W ]

A(n/2Wi,k/T )e2πikt/T

∫
x(t −λ )sincWi(λ −n/2Wi)dλ

= ∑
n/2Wi∈[0,L]

∑
k/T∈[−W,W ]

A(n/2Wi,k/T )e2πikt/T

(x∗ sincWi)(t −n/2Wi).

Since e2πikt/T (x∗ sincWi)(t −n/2Wi) is bandlimited to [−Wi,Wi]+ (k/T ) for k/T ∈
[−W,W ], it follows that Ax(t) is bandlimited to [−W −Wi,W +Wi].
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If we restrict our attention to signals x(t) time-limited to [0,T ], the output signal
Ax(t) will have duration T + L, and Ax(·) will be completely determined by its
samples at n

2(W+Wi)
∈ [0,T +L], from which we can identify 2(T +L)(W +Wi)+1

degrees of freedom.
In order for identification to be possible, the number of degrees of freedom of the

output signal must be at least as large as the number of degrees of freedom of
the operator, i.e.

2WiT +2WiL+2WT +2WL+1 =

2(T +L)(Wi +W )+1 ≥ (2WT +1)(2WiL+1)

= 2WT +2WiL+1+4WiWTL

which reduces ultimately to

1
1−1/(2WiT )

≥ 2WL = BL.

That is, BL needs to be strictly smaller than 1 in the approximation while BL = 1
may work in the limiting case Wi → ∞ (and/or T → ∞).

This result got a lot of attention because it corresponded with experimental evi-
dence that Rake did not function well when the condition BL < 1 was violated. It led
to the designation of “underspread” and “overspread” channels for which BL was
less than or greater than 1.

Some Remarks on Kailath’s Results

This simple argument is surprising, particularly in light of the fact that the author
obtained a deep result in time-frequency analysis with none of the tools of modern
time-frequency analysis at his disposal. He very deftly uses the extremely useful en-
gineering “fiction” that the dimension of the space of signals essentially bandlimited
to [−W,W ] and time-limited to [0,T ] is approximately 2WT . The then recent papers
of Landau, Slepian, and Pollak [28, 29], which are mentioned explicitly in [19],
provided a rigorous mathematical framework for understanding the phenomenon
of essentially simultaneous band- and time-limiting. While the existence of these
results lent considerable mathematical heft to the argument, they were not incorpo-
rated into a fully airtight mathematical proof of his theorem.

In the proof we have used a degrees-of-freedom argument based on the sampling theorem
which assumes strictly bandlimited functions. This is an unrealistic assumption for physical
processes. It is more reasonable to call a process band (or time) limited if some large fraction
of its energy, say 95%, is contained within a finite frequency (or time) region. Recent work
by Landau and Slepian has shown the concept of approximately 2TW degrees of freedom
holds even in such cases. This leads us to believe that our proof of the necessity of the
BL ≤ 1 condition is not merely a consequence of the special properties of strictly band-
limited functions. It would be valuable to find an alternative method of proof.

While Kailath’s Theorem is stated for channel operators whose spreading func-
tions are supported in a rectangle, it is clear that the later work of Bello [6] was
anticipated and more general regions were in view. This is stated explicitly.
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We have not discussed how the bandwidth, B is to be defined. There are several possibilities:
we might take the nonzero f -region of A(λ , f ); or use a “counting” argument. We could
proceed similarly for the definition of L. As a result of these several possibilities, the value 1,
of the threshold in the condition BL ≤ 1 should be considered only as an order of magnitude
value.

...constant and predictable variations in B and L, due for example to known Doppler shifts
or time displacements, would yield large values for the absolute values of the time and
frequency spreadings. However such predictable variations should be subtracted out before
the BL product is computed; what appears to be important is the area covered in the time-
and frequency-spreading plane rather than the absolute values of B and L. (emphasis added)

The reference to “counting” as a definition of bandwidth clearly indicates that
essentially arbitrary regions of support for the operator spreading function were in
view here, and that a necessity argument relying on degrees of freedom and not
the shape of the spreading region was anticipated. The third-named author did not
pursue the measurement problem studied in his MS thesis because he went on in
his PhD dissertation to study the optimum (in the sense of minimum probability of
error) detector scheme of which Rake is an intelligent engineering approximation.
See [20, 21, 23].

The mathematical limitations of the necessity proof in [19] can be removed by
addressing the identification problem directly as a problem on infinite-dimensional
space rather than relying on finite-dimensional approximations to the channel.
This approach also avoids the problem of dealing with simultaneously time and
frequency-limited functions. In this way, the proof can be made completely mathe-
matically rigorous. This approach is described in Section “Kailath’s necessity proof
and operator identification”.

Bello’s time-variant Channel Identification Condition

Kailath’s Theorem was generalized by Bello in [6] along the lines anticipated in
[19]. Bello’s argument follows that of [19] in its broad outlines but with some sig-
nificant differences. Bello clearly anticipates some of the technical difficulties that
have been solved more recently by the authors and others and which have led to the
general theory of operator sampling.

Continuing with the notation of this section, Bello considers channels with
spreading function A(λ , f ) supported in a rectangle [0,L]× [−W,W ]. If L and W
are all that is known about the channel, then Kailath’s criterion for measurability re-
quires that 2WL ≤ 1. Bello considers channels for which 2WL may be greater than
1 but for which

SA = |suppA(λ , f )| ≤ 1

and argues that this is the most appropriate criterion to assess measurability of the
channel modeled by A.

In order to describe Bello’s proof we will fix parameters T 
 L and Wi 
 W
and following the assumptions earlier in this section, assume that inputs to the
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channel are time-limited to [0,T ] and (approximately) bandlimited to [−Wi,Wi].
Under this assumption, Bello considers the spreading function of the channel to
be approximated by a superposition of point scatterers, viz.

A(λ , f ) = ∑
n

∑
k

An,k δ ( f − (k/T ))δ (λ − (n/2Wi)).

Hence the response of the channel to an input x(·) is given by

Ax(t) =
∫ ∫

x(t −λ )e2πi f (t−λ )A(λ , f )dλ d f (1)

= ∑
n

∑
k

An,k x(t − (n/2Wi))e2πi(k/T )(t−(n/2Wi)).

Note that this is a continuous-time Gabor expansion with window function x(·) (see,
e.g., [13]). By standard density results in Gabor theory, the collection of functions
{x(t − (n/2Wi))e2πi(k/T )(t−(n/2Wi))} is overcomplete as soon as 2TWi > 1. Conse-
quently, without further discretization, the coefficients An,k are in principle unrecov-
erable. Taking into consideration support constraints on A, we assume that the sums
are finite, viz. (

n
2Wi

,
k
T

)
∈ suppA.

Hence determining the channel characteristics amounts to finding An,k for those
pairs (n,k). It should be noted that for a given spreading function A(λ , f ) for which
suppA is a Lebesgue measurable set, given ε > 0, there exist T and Wi sufficiently
large that the number of such (n,k) is no more than 2SAWiT (1+ ε). On the other
hand, for a given T and Wi, there exist spreading functions A(λ , f ) with arbitrarily
small non-convex SA for which the number of nonzero coefficients An,k can be large.
For example, given T and Wi, SA could consist of rectangles centered on the points
(n/(2Wi),k/T ) with arbitrarily small total area.

By sampling, (1) reduces to a discrete, bi-infinite linear system, viz.

Ax

(
p

2Wi

)
= ∑

n
∑
k

An,k x

(
p−n
2Wi

)
e

2πi k
T ( p−n

2Wi
)

(2)

for p ∈ Z. Note that (2) is the expansion of a vector in a discrete Gabor system
on �2(Z), a fact not mentioned by Bello, and of which he was apparently unaware.
Specifically, defining the translation operator T and the modulation operator M on
�2 by

T x(n) = x(n−1), and Mx(n) = eπin/(TWi)x(n), (3)

(2) can be rewritten as

Ax

(
p

2Wi

)
= ∑

n
∑
k

(T nMkx)(p)An,k. (4)
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Since there are only finitely many nonzero unknowns in this system, Bello’s analysis
proceeds by looking at finite sections of (4) and counting degrees of freedom.

Necessity. Following the lines of the necessity argument in [19], we note that there
are at least 2(T + L)(W +Wi) degrees of freedom in the output vector Ax(t), that
is, at least that many independent samples of the form Ax(p/2Wi), and as observed
above, no more than 2SAWiT (1+ε) nonzero unknowns An,k. Therefore, in order for
the An,k to be determined in principle, it must be true that

2WiT (1+ ε)SA ≤ 2(T +L)(W +Wi)

or

SA ≤ (T +L)(W +Wi)

WiT (1+ ε)
.

Letting T,Wi → ∞ and ε → 0, we arrive at SA ≤ 1.

Sufficiency. Considering a section of the system (4) based on the assumption that
suppA ⊆ [0,L]× [−W,W ], the system has approximately 2Wi(T +L) equations in
(2WiT )(2WL) unknowns. Since L and 2W are simply the dimensions of a rectangle
that encloses the support of A, 2WL may be quite large and independent of SA.
Hence the system will not in general be solvable. However by assuming that SA < 1,
only approximately SA(2WiT ) of the An,k do not vanish and the system reduces to
one in which the number of equations is roughly equal to the number of unknowns.
In this case it would be possible to solve (4) as long as the collection of appropriately
truncated vectors {T nMkx : An,k �= 0} forms a linearly independent set for some
vector x.

In his paper, Bello was dealing with independence properties of discrete Gabor
systems apparently without realizing it, or at least without stating it explicitly. In-
deed, he argues in several different ways that a vector x that produces a linearly
independent set should exist, and intriguingly suggests that a vector consisting of
±1 should exist with the property that the Grammian of the Gabor matrix corre-
sponding to the section of (4) being considered is diagonally dominant.

The setup chosen below to prove Bello’s assertion leads to the consideration of
a matrix whose columns stem from a Gabor system on a finite-dimensional space,
not on a sequence space.

Operator Sampling

The first key contribution of operator sampling is the use of frame theory and time-
frequency analysis to remove assumptions of simultaneous band- and time-limiting,
and also to deal with the infinite number of degrees of freedom in a functional ana-
lytic setting (Section “Operator classes and operator identification”). A second key
insight is the development of a “simple measurement scheme” of the type used by
the third-named author but that allows for the difficulties identified by Bello to be re-
solved. This insight is the use of periodically weighted delta-trains as measurement
functions for a channel. Such measurement functions have three distinct advantages.
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First, they allow for the channel model to be essentially arbitrary and clarify
the reduction of the operator identification problem to a finite-dimensional setting
without imposing a finite dimensional model that approximates the channel. Second,
it combines the naturalness of the simple measurement scheme described earlier
with the flexibility of Bello’s idea for measuring channels with arbitrary spreading
support. Third, it establishes a connection between identification of channels and
finite-dimensional Gabor systems and allows us to determine windowing vectors
with appropriate independence properties.

In Section “Operator classes and operator identification”, we introduce some
operator-theoretic descriptions of some of the operator classes that we are able to
identify, and discuss briefly different ways of representing such operators. Such a
discussion is beneficial in several ways. First, it contains a precise definition of iden-
tifiability, which comes into play when considering the generalization of the neces-
sity condition for so-called overspread channels (Section “Kailath’s necessity proof
and operator identification”). Second, we can extend the necessity condition to a
very large class of inputs. In other words, we can assert that in a very general sense,
no input can identify an overspread channel. Third, it allows us to include both con-
volution operators and multiplication operators (for which the spreading functions
are distributions) in the operator sampling theory. The identification of multipli-
cation operators via operator sampling reduces to the classical sampling formula,
thereby showing that classical sampling is a special case of operator sampling. In
Section “Kailath’s necessity proof and operator identification” we present a natural
formalization of the original necessity proof of [19] (Section “Necessity of Kailath’s
Condition for Channel Identification”) to the infinite-dimensional setting, which in-
volves an interpretation of the notion of an under-determined system to that setting.
Finally, in Section “Identification of operator Paley-Wiener spaces by periodically
weighted delta-trains” we present the scheme given first in [41, 45] for the identi-
fication of operator classes using periodically weighted delta trains and techniques
from modern time-frequency analysis.

Operator classes and operator identification

We formally consider an arbitrary operator as a pseudodifferential operator repre-
sented by

H f (x) =
∫

σH(x,ξ ) f̂ (ξ )e2πixξ dξ , (5)

where σH(x,ξ ) ∈ L2(R2) is the Kohn-Nirenberg (KN) symbol of H. The spreading
function ηH(t,ν) of the operator H is the symplectic Fourier transform of the KN
symbol, viz.

ηH(t,ν) =
∫∫

σH(x,ξ )e−2πi(νx−ξ t) dxdξ (6)
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and we have the representation

H f (x) =
∫∫

ηH(t,ν)Tt Mν f (x)dν dt (7)

where Tt f (x) = f (x− t) is the time-shift operator and Mν f (x) = e2πiνx f (x) is the
frequency-shift operator.

This is identical to the representation given in [19] where ηH(t,ν) =A(ν , t), see
Section “Kailath’s Time-Variant Channel Identification Condition”.

To see more clearly where the spreading function arises in the context of com-
munication theory, we can define the impulse response of the channel modeled by
H, denoted hH(x, t), by

H f (x) =
∫

hH(x, t) f (x− t)dt.

Note that if hH were independent of x, then H would be a convolution operator and
hence a model for a time-invariant channel. In fact, with κH(x, t) being the kernel of
the operator H,

H f (x) =
∫

κH(x, t) f (t)dt (8)

=
∫

hH(x, t) f (x− t)dt (9)

=
∫∫

ηH(t,ν)e2πiν(x−t) f (x− t)dν dt (10)

=
∫

σH(x,ξ ) f̂ (ξ )e2πixξ dξ , (11)

where

hH(x, t) = κH(x,x− t)

=
∫

σH(x,ξ )e2πiξ t dξ ,

=
∫

ηH(t,ν)e2πiν(x−t) dν . (12)

With this interpretation, the maximum support of ηH(t,ν) in the first variable corre-
sponds to the maximum spread of a delta impulse sent through the channel and the
maximum support of ηH(t,ν) in the second variable corresponds to the maximum
spread of a pure frequency sent through the channel.

Since we are interested in operators whose spreading functions have small sup-
port, it is natural to define the following operator classes, called operator Paley-
Wiener spaces (see [38]).

Definition 1. For S ⊆ R
2, we define the operator Paley-Wiener spaces OPW (S) by

OPW (S) = {H ∈ L(L2(R),L2(R)) : suppηH ⊆ S, ‖σH‖L2 < ∞}.
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Remark 1. In [38, 42], the spaces OPW p,q(S), 1 ≤ p, q< ∞, were considered, where
L2-membership of σH is replaced by

‖σH‖Lp,q =
(∫ (∫

|σH(x,ξ )|qdξ
)p/q

dx
)1/p

with the usual adjustments made when either p = ∞ or q = ∞. OPW p,q(S) is
a Banach space with respect to the norm ‖H‖OPW p,q = ‖σH‖Lp,q . Note that if S
is bounded, then OPW ∞,∞(S) consists of all bounded operators whose spreading
function is supported on S. In fact, the operator norm is then equivalent to the
OPW ∞,∞(S) norm, where the constants depend on S [26].

The general definition is beneficial since it also allows the inclusion of convo-
lution operators with kernels whose Fourier transforms lie in Lq(R) (OPW ∞,q(R))
and multiplication operators whose multiplier is in Lp(R) (OPW p,∞(R)).

The goal of operator identification is to find an input signal g such that each
operator H in a given class is completely and stably determined by Hg. In other
words, we ask that the operator H �→ Hg be continuous and bounded below on its
domain. In our setting, this translates to the existence of c1, c2 > 0 such that

c1 ‖σH‖L2 ≤ ‖Hg‖L2 ≤ c2 ‖σH‖L2 , H ∈ OPW (S). (13)

This definition of identifiability of operators originated in [24]. Note that (13) im-
plies that the mapping H �→ Hg is injective, that is, that Hg = 0 implies that H ≡ 0,
but is not equivalent to it. The inequality (13) adds to injectivity the assertion that
H is also stably determined by Hg in the sense that a small change in the output Hg
would correspond to a small change in the operator H. Such stability is also neces-
sary for the existence of an algorithm that will reliably recover H from Hg. In this
scheme, g is referred to as an identifier for the operator class OPW (S) and if (13)
holds, we say that operator identification is possible.

In trying to find an explicit expression for an identifier, we use as a starting point
the “simple measurement scheme” of [19], in which g is a delta train, viz. g =

∑n δnT for some T > 0. In the framework of operator identification the channel
measurement criterion in [19] takes the following form [24, 38, 41].

Theorem 1. For H ∈ OPW
(
[0,T ]×[−Ω/2,Ω/2]

)
with T Ω≤1, we have

‖H ∑
k∈Z

δkT‖L2(R) = T‖σH‖L2 ,

and H can be reconstructed by means of

κH(x+ t,x) = χ[0,T ](t) ∑
n∈Z

(
H ∑

k∈Z
δkT

)
(t +nT )

sin(πT (x−n))
πT (x−n)

(14)

where χ[0,T ](t) = 1 for t ∈ [0,T ] and 0 elsewhere and with convergence in the L2

norm and uniformly in x for every t.
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As was observed earlier, the key feature of this scheme is that the spacing of
the deltas in the identifier is sufficiently large so as to allow the response of the
channel to a given delta to “die out” before the next delta is sent. In other words, the
parameter T must exceed the time-spread of the channel. On the other hand, the rate
of change of the channel, as measured by its bandwidth Ω , must be small enough
that its impulse response can be recovered from “samples” of the channel taken T
time units apart. In particular, the samples of the impulse response T units apart can
be easily determined from the output. In the general case considered by Bello, in
which the spreading support of the operator is not contained in a rectangle of unit
area, this intuition breaks down.

Specifically, suppose that we consider the operator class OPW (S) where S ⊆
[0,T0]× [−Ω0/2,Ω0/2] and T0Ω0 
 1 but where |S|< 1. Then sounding the channel
with a delta train of the form g = ∑n δnT0 would severely undersample the impulse
response function. Simply increasing the sampling rate, however, would produce
overlap in the responses of the channel to deltas close to each other. An approach to
the undersampling problem in the literature of classical sampling theory is to sample
at the low rate transformed versions of the function, chosen so that the interference
of the several undersampled functions can be dealt with. This idea has its most
classical expression in the Generalized Sampling scheme of Papoulis [35]. Choosing
shifts and constant multiples of our delta train results in an identifier of the form
g = ∑n cn δnT where the weights (cn) have period P (for some P ∈ N) and T > 0
satisfies PT > T0.

If g is discretely supported (for example, a periodically-weighted delta-train),
then we refer to operator identification as operator sampling. The utility of peri-
odically weighted delta trains for operator identification is a cornerstone of oper-
ator sampling and has far-reaching implications culminating in the developments
outlined in Sections “Generalizations of operator sampling to higher dimensions”
and “Further results on operator sampling”.

Kailath’s necessity proof and operator identification

In Section “Necessity of Kailath’s Condition for Channel Identification” we pre-
sented the proof of the necessity of the condition BL ≤ 1 for channel identification
as given in [19]. The argument consisted of finding a finite-dimensional approxi-
mation of the channel H, and then showing that, given any putative identifier g, the
number of degrees of freedom present in the output Hg must be at least as large
as the number of degrees of freedom in the channel itself. For this to be true in
any finite-dimensional setting, we must have BL < 1 and so in the limit we require
BL ≤ 1. In essence, if BL > 1, we have a linear system with fewer equations than
unknowns which necessarily has a nontrivial nullspace. The generalization of this
notion to the infinite-dimensional setting is the basis of the necessity proof that ap-
pears in [24]. In this section, we present an outline of that proof, and show how the
natural tool for this purpose once again comes from time-frequency analysis.
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To see the idea of the proof, assume that BL > 1 and for simplicity let S =
[−L

2 ,
L
2 ]× [−B

2 ,
B
2 ]. The goal is to show that for any sounding signal s in an appropri-

ately large space of distributions2, the operator Φs : OPW (S) −→ L2(R), H �→ Hs,
is not stable, that is, it does not possess a lower bound in the inequality (13).

First, define the operator E : l0(Z2) −→ OPW (S), where l0(Z2) is the space of
finite sequences equipped with the l2 norm, by

E(σ) = E({σk,l}) = ∑
k,l

σk,lMkλ/LTlλ/B PT−lλ/BM−kλ/L

where 1 < λ is chosen so that 1 < λ 4 < BL and where P is a time-frequency local-
ization operator whose spreading function ηP(t,ν) is infinitely differentiable, sup-
ported in S, and identically one on [− L

2λ ,
L

2λ ]× [− B
2λ ,

B
2λ ]. It is easily seen that the

operator E is well defined and has spreading function

ηE(σ)(t,ν) = ηP(t,ν) ∑
k,l

σk,l e2πi(kλ t/L−lλν/B).

By construction, it follows that for some constant c1, ‖E(σ)‖OPW (S) ≥ c1‖σ‖l2(Z2),
for all σ , and that for any distribution s, Ps decays rapidly in time and in frequency.

Next define the Gabor analysis operator Cg : L2(R)−→ l2(Z2) by

Cg(s) = {〈s,Mkλ 2/LTlλ 2/Bg〉}k,l∈Z

where g(x) = e−πx2
. A well-known theorem in Gabor theory asserts that

{MkαTlβ g}k,l∈Z is a Gabor frame for L2(R) for every αβ < 1 [31, 59, 60].
Consequently Cg satisfies, for some c2 > 0, ‖Cg(s)‖l2(Z2) ≥ c2 ‖s‖L2(R) for all s,

since λ 2/L ·λ 2/B = λ 4/BL < 1.
For any s, consider the composition operator

Cg ◦Φs ◦E : l0(Z
2)−→ l2(Z2).

The crux of the proof lies in showing that this composition operator is not stable,
that is, it does not have a lower bound. Since Cg and E are both bounded below, it
follows that Φs cannot be stable. Since s ∈ S′0(R) was arbitrary, this completes the
proof.

To complete this final step we examine the canonical bi-infinite matrix repre-
sentation of the above defined composition of operators, that is, the matrix M =
(mk′,l′,k,l) that satisfies

(Cg ◦Φs ◦E(σ))k′,l′ = ∑
k,l

mk′,l′,k,l σk,l .

2 S′0(R), the dual space of the Feichtinger algebra S0(R) [13], or S ′(R), the space of tempered
distributions [42]. These spaces are large enough to contain weighted infinite sums of delta distri-
butions.
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It can be shown that M has the property that for some rapidly decreasing function
w(x),

|mk′,l′,k,l | ≤ w(max{|λk′ − k|, |λ l′ − l|}). (15)

The proof is completed by the following Lemma. Its proof can be found in [24] and
generalizations can be found in [37].

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2 A 1/λ−slanted matrix M. The matrix is dominated by entries on a slanted diagonal
of slope 1/λ .

Lemma 1. Given M = (m j′, j) j′, j∈Z2 . If there exists a monotonically decreasing

function w : R+
0 −→ R+

0 with w = O(x−2−δ ), δ > 0, and constants λ > 1 and K0 > 0
with |m j′, j|< w(‖λ j′ − j‖∞) for ‖λ j′ − j‖∞ > K0, then M is not stable.

Intuitively, this result asserts that a bi-infinite matrix whose entries decay rapidly
away from a skew diagonal behaves like a finite matrix with more rows than columns
(see Figure 2). Such a matrix will always have a nontrivial nullspace. In the case of
an infinite matrix what can be shown is that at best its inverse will be unbounded.

We can make a more direct connection from this proof to the original necessity
argument in [19] in the following way. If we restrict our attention to sequences
{σk,l} with a fixed finite support of size say N, then the image of this subspace of
sequence space under the mapping E is an N-dimensional subspace of OPW (S).
The operator P is essentially a time-frequency localization operator. This fact is
established in [24] and follows from the rapid decay of the Fourier transform of ηP.
Since ηP itself is concentrated on a rectangle of area BL/λ 2, its Fourier transform
will be concentrated on a rectangle of area λ 2/BL. From this it follows that for σ
as described above, the operator E(σ) essentially localizes a function to a region in
the time-frequency plane of area N(λ 2/BL).

Considering now the Gabor analysis operator Cg, we observe that the Gaussian
g(x) essentially occupies a time-frequency cell of area 1, and that this function is



310 D. Walnut et al.

shifted in the time-frequency plane by integer multiples of (λ 2/B,λ 2/L). Hence
to “cover” a region in the time-frequency plane of area N(λ 2/BL) would require
only about

N(λ 2/BL)
λ 4/BL

=
N
λ 2

time-frequency shifts. So roughly speaking, in order to resolve N degrees of freedom
in the operator E(σk,l), we have only N/λ 2 < N degrees of freedom in the output
of the operator E(σk,l)s.

Identification of operator Paley-Wiener spaces
by periodically weighted delta-trains

Theorem 1 is based on arguments outlined in Section “Kailath’s Time-Variant Chan-
nel Identification Condition” and applies only to OPW (S) if S is contained in a rect-
angle of area less than or equal to one. In the following, we will develop the tools
that allow us to identify OPW (S) for any compact set S of Lebesgue measure less
than one.

In our approach we discretize the channel by covering the spreading support S
with small rectangles of fixed sidelength, which we refer to as a rectification of S.
As long as the measure of S is less than one, it is possible to do this in such a way
that the total area of the rectangles is also less than one. This idea seems to bear
some similarity to Bello’s philosophy of sampling the spreading function on a fixed
grid but with one fundamental difference. Bello’s approach is based on replacing t
and x by samples, thereby approximating the channel. For a better approximation,
sampling on a finer grid is necessary, which results in a larger system of equations
that must be solved. In our approach, as soon as the total area of the rectification
is less than one, the operator modeling the channel is completely determined by
the discrete model. Once this is achieved, identification of the channel reduces to
solving a single linear system of equations at each point (Figure 3).

Given parameters T > 0 and P ∈ N, we assume that S is rectified by rectangles
of size T ×Ω , where Ω = 1/(T P), such that the total area of the rectangles is less
than one. Given a period-P sequence c = (cn)n∈Z, we then define the periodically
weighted delta-train g by g = ∑n∈Z cn δnT . The goal of this subsection is to describe
the scheme by which a linear system of P equations in a priori P2 unknowns can be
derived by which an operator H ∈OPW (S) can be completely determined by Hg(x).
In this sense, the “degrees of freedom” in the operator class OPW (S), and that of
the output function Hg(x) are precisely defined and can be effectively compared
(Figure 4).

The basic tool of time-frequency analysis that makes this possible is the Zak
transform (see [13]).
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supp η(t, ν)
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Fig. 3 A set not satisfying Kailath’s condition is rectified with 1/(T Ω) = P ∈ N, the rectification
has area ≤ 1, Ωmax ≤ 1/T , and Tmax ≤ 1/Ω .

Definition 2. The non-normalized Zak Transform is defined for f ∈ S(R)3, and
a > 0 by

Za f (t,ν) = ∑
n∈Z

f (t −an)e2πianν .

Za f (t,ν) satisfies the quasi-periodicity relations

Za f (t +a,ν) = e2πiaν Za f (t,ν)

and
Za f (t,ν +1/a) = Za f (t,ν).

√
aZa can be extended to a unitary operator from L2(R) onto L2([0,a]×[0,1/a]).
A somewhat involved but elementary calculation yields the following

(see [44, 46] and Section “Proof of Lemma 2”).

Lemma 2. Let T > 0, P ∈N, c = (cn), and g be given as above. Then for all (t,ν)∈
R

2, and p = 0, 1, . . . , P−1,

e−2πiνT p (ZT P ◦H)g(t +T p,ν)

= Ω
P−1

∑
q,m=0

(T q Mmc)p e−2πiνT q ηQ
H (t +T q,ν +m/T P). (16)

Here T and M are the translation and modulation operators given in Definition 3,
and ηQ

H (t,ν) is the quasiperiodization of ηH ,

ηQ
H (t,ν) = ∑

k
∑
�

ηH(t + kT P,ν + �/T )e−2πiνkT P (17)

whenever the sum is defined (Figure 4).
Under the additional simplifying assumption that the spreading function ηH(t,ν)

is supported in the large rectangle [0,T P]× [0,1/T ], and by restricting (16) to the
rectangle [0,T ]× [0,1/(T P)], we arrive at the P×P2 linear system

3 S(R) denotes the Schwartz class of infinitely differentiable, rapidly decreasing functions.
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Fig. 4 Channel sounding of OPW ([0,2/3]×[−1/4,1/4] ∪ [4/3,2]×[−1/2,1/2]) using a P-
periodically weighted delta train g. The kernel κ(x,y) takes values on the (x,y)-plane, the
sounding signal g, a weighted impulse train, is defined on the y-axis, and the output signal
Hg(x) =

∫
κ(x,y)g(y)dy is displayed on the x-axis. Here, the sample values of the tab functions

h(x, t) = κ(x, t − x) are not easily read of the response Hg(x) as, for example, for x ∈ [2T,3T ] =
[4/3,2] we have Hg(x) = 0.7κ(x,0)+0.6κ(x,2T ) = 0.7h(x,x)+ .6h(x,2T −x). In detail, we have
g = . . .+ 0.7δ−2 + 0.5δ−4/3 + 0.6δ−2/3 + 0.7δ0 + 0.5δ2/3 + 0.6δ4/3 + 0.7δ2 + 0.5δ8/3 + . . ., so
P = 3, T = 2/3, Ω = 1/PT = 1/2, cn = 0.7 if n mod 3 = 0, cn = 0.5 if n mod 3 = 1, cn = 0.6 if n
mod 3 = 2.

ZHg(t,ν)p =
P−1

∑
q,m=0

G(c)p,(q,m) ηηηH(t,ν)(q,m) (18)

where
ZHg(t,ν)p = (ZT P ◦H)g(t + pT,ν)e−2πiν pT , (19)

ηηηH(t,ν)(q,m) = Ω ηH(t +qT,ν +m/T P)e−2πiνqT e−2πiqm/P, (20)

and where G(c) is a finite Gabor system matrix (23). If (18) can be solved for each
(t,ν) ∈ [0,T ]× [0,1/(T P)], then the spreading function for an operator H can be
completely determined by its response to the periodically weighted delta-train g.

As anticipated by Bello, two issues now become relevant. (1) We require that
suppηH occupy no more than P of the shifted rectangles [0,T ]× [0,1/(T P)] +
(qT,k/(T P)), so that (18) has at least as many equations as unknowns. This forces
|suppηH | ≤ 1. (2) We require that c be chosen in such a way that the P×P system
formed by removing the columns of G(c) corresponding to vanishing components
of ηηηH is invertible. That such c exist is a fundamental cornerstone of operator sam-
pling and is the subject of the next section.
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Based on the existence of c such that any set of P columns of G(c) form a linearly
independent set, we can prove the following [45].

Theorem 2. For S ⊆ (0,∞)×R compact with |S|< 1, there exists T > 0 and P ∈N,
and a period-P sequence c = (cn) such that g = ∑n cn δnT identifies OPW (S). In
particular, there exist period-P sequences b j = (b j,k), and integers 0 ≤ q j, m j ≤
P−1, for 0 ≤ j ≤ P−1 such that

h(x, t) = e−πit/T ∑
k

P−1

∑
j=0

[
b j,k Hg(t − (q j − k)T )

e2πim j(x−t)/PT φ((x− t)+(q j − k)T )r(t −q jT )
]

(21)

where r,φ ∈ S(R) satisfy

∑
k∈Z

r(t + kT ) = 1 = ∑
n∈Z

φ̂(γ +n/PT ), (22)

where r(t)φ̂(γ) is supported in a neighborhood of [0,T ]×[0,1/PT ], and where the
sum in (21) converges unconditionally in L2 and for each t uniformly in x.

Equation (21) is a generalization of (14) which is easily seen by choosing φ(x) =
sin(πPT x)/(πPT x) and r(t) to be the characteristic function of [0,T ).

Linear Independence Properties of Gabor Frames

Finite Gabor Frames

Definition 3. Given P ∈ N, let ω = e2πi/P and define the translation operator T on
(x0, . . . , xP−1) ∈ C

P by

T x = (xP−1,x0, x1, . . . ,xP−2),

and the modulation operator M on C
P by

Mx = (ω0x0,ω1x1, . . . , ωP−1xP−1).

Given a vector c ∈ C
P the finite Gabor system with window c is the collection

{T qMpc}P−1
q,p=0. Define the full Gabor system matrix G(c) to be the P×P2 matrix

G(c) = [ D0 WP D1 WP · · · DP−1 WP ] (23)

where Dk is the diagonal matrix with diagonal

T kc = (cP−k, . . . , cP−1, c0, . . . , cP−k−1),

and WP is the P×P Fourier matrix WP = (e2πinm/P)P−1
n,m=0.
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Remark 2. (1) For 0 ≤ q, p ≤ P−1, the (q+1)st column of the submatrix DpWP is
the vector MpT qc where the operators M and T are as in Definition 3. This means
that each column of the matrix G(c) is a unimodular constant multiple of an element
of the finite Gabor system with window c, namely {e−2πipq/PT qMpc}P−1

q,p=0.

(2) Note that the finite Gabor system defined above consists of P2 vectors in C
P

which form an overcomplete tight frame for CP [30]. For details on Gabor frames
in finite dimensions, see [9, 27, 30] and the overview article [39].

(3) Note that we are abusing notation slightly by identifying a vector c ∈ C
P with a

P-periodic sequence c = (cn) in the obvious way.

Definition 4. [8] The Spark of an M×N matrix F is the size of the smallest linearly
dependent subset of columns, i.e.,

Spark(F) = min{‖x‖0 : Fx = 0, x �= 0}

where ‖x‖0 is the number of nonzero components of the vector x. If Spark(F) =
M + 1, then F is said to have full Spark. Spark(F) = k implies that any collection
of fewer than k columns of F is linearly independent.

Finite Gabor frames are generically full Spark

The existence of Gabor matrices with full Spark has been addressed in [30, 32]. The
results in these two papers are as follows.

Theorem 3. [30] If P ∈N is prime, then there exists a dense, open subset of c ∈C
P

such that every minor of the Gabor system matrix G(c) is nonzero. In particular, for
such c, G(c) has full Spark.

Theorem 4. [32] For every P ∈ N, there exists a dense, open subset of c ∈ C
P such

that the Gabor system matrix G(c) has full Spark.

The goal of this subsection is to outline the proof of Theorems 3 and 4. We will
adopt some of the following notation and terminology of [32].

Let P ∈ N and let M be an P×P submatrix of G(c). For 0 ≤ κ < P let �κ be the
number of columns of M chosen from the submatrix DκWP of (23). While the vector
� = (�κ)

P−1
κ=0 does not determine M uniquely, it describes the matrix M sufficiently

well for our purposes. Define Mκ to be the P×�κ matrix consisting of those columns
of M chosen from DκWP. Given the ordered partition B = (B0, B1, . . . , BP−1) where
{B0, B1, . . . , BP−1} forms a partition of {0, . . . , P−1}, and where for each 0 ≤ κ <
P, |Bκ |= �κ , let Mκ(Bκ) be the �κ × �κ submatrix of Mκ whose rows belong to Bκ .
Then det(M) = ∑∏P−1

κ=0 det(Mκ(Bκ)) where the sum is taken over all such ordered
partitions B. This formula is called the Lagrange expansion of the determinant.

Each ordered partition B corresponds to a permutation on ZP as follows. Define
the trivial partition A = (A0, A1, . . . , AP−1) by
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A j = {
j−1

∑
i=0

�i,
( j−1

∑
i=0

�i
)
+1, . . . ,

( j

∑
i=0

�i
)
−1}

so that A0 = [0, �0 − 1], A1 = [�0, �0 + �1 + 1], . . . , AP−1 = [�0 + · · · + �P−2,P− 1].
Then given B = (B0, B1, . . . , BP−1) there is a permutation σ ∈ SP such that σ(Aκ) =
Bκ for all κ . This σ is unique up to permutations that preserve A, that is, up to τ ∈ SP

such that τ(Aκ) = Aκ for all κ . Call such a permutation trivial and denote by Γ the
subgroup of SP consisting of all trivial permutations. Then the ordered partitions B
of ZP can be indexed by equivalence classes of permutations σ ∈ SP/Γ .

The key observation is that det(M) is a homogeneous polynomial in the P vari-
ables c0, c1, . . . , cP−1 and we can write

det(M) = ∑
σ∈SP/Γ

aσ Cσ (24)

where the monomial Cσ is given by

Cσ =
P−1

∏
κ=0

∏
j∈σ(Aκ )

c( j−κ)(mod P).

If it can be shown that this polynomial does not vanish identically, then we can
choose a dense, open subset of c ∈ C

P for which det(M) �= 0. Since there are only
finitely many P×P submatrices of G(c) it follows that there is a dense, open subset
of c for which det(M) �= 0 for all M, and we conclude that, for these c, G(c) has full
Spark.

Following [32], we say that a monomial Cσ0 appears uniquely in (24) if for ev-
ery σ ∈ SP/Γ such that σ �= σ0, Cσ �= Cσ0 . Therefore, in order to show that the
polynomial (24) does not vanish identically, it is sufficient to show that (1) there
is a monomial Cσ that appears uniquely in (24) and (2) the coefficient aσ of this
monomial does not vanish.

Obviously, whether or not (24) vanishes identically does not depend on how the
variables ci are labelled. More specifically, if the variables are renamed by a cyclical
shift of the indices, viz., ci �→ c(i+γ)mod P for some 0 ≤ γ < P, then

det(M)(cγ+1, . . . , cP−1, c0, . . . , cγ) =± det(M′)(c0, . . . , cP−1)

where M′ is a P×P submatrix described by the vector

�′ = (�γ+1, . . . , �P−1, �0, . . . , �γ).

The lowest index monomial

In [30], a monomial referred to in [32] as the lowest index (LI) monomial is defined
that has the required properties when P is prime. In order to see this, note first that
each coefficient aσ in the sum (24) is the product of minors of the Fourier matrix
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WP and since P is prime, Chebotarev’s Theorem says that such minors do not vanish
[62]. More specifically,

aσ Cσ =±
P−1

∏
κ=0

det(Mκ(σ(Aκ)))

and for each κ , the columns of Mκ are columns of WP where each row has been
multiplied by the same variable c j and Mκ(σ(Aκ)) is a square matrix formed by
choosing �κ rows of Mκ . Hence for each κ , det(Mκ(σ(Aκ))) is a monomial in c
with coefficients a constant multiple of a minor of WP. Since aσ is the product of
those minors, it does not vanish.

Note moreover that each submatrix Mκ(σ(Aκ)) is an �κ × �κ matrix, so that
det(Mκ(σ(Aκ))) is the sum of a multiple of the product of �κ ! diagonals of
Mκ(σ(Aκ)). Hence aσ Cσ is the sum of multiples of the product of ∏P−1

κ=0 �κ ! gener-
alized diagonals of M.

We define the LI monomial as in [30] as follows. If M is 1× 1, then det(M) is
a multiple of a single variable c j and we define the LI monomial, pM by pM = c j.
If M is d × d, let c j be the variable of lowest index appearing in M. Choose any
entry of M in which c j appears, eliminate the row and column containing that entry,
and call the remaining (d − 1)× (d − 1) matrix M′. Define pM = c j pM′ . It is easy
to see that the monomial pM is independent of the entry of M chosen at each step.
In order to show that the LI monomial appears uniquely in (24), we observe as in
[30] that the number of diagonals in det(M) that correspond to the LI monomial
is ∏P−1

κ=0 �κ !. Since this is also the number of generalized diagonals appearing in
the calculation of each det(Mκ(σ(Aκ))), it follows that this monomial appears only
once. The details of the argument can be found in Section “Proof of Theorem 3”.
Note that because P is prime, this argument is valid no matter how large the matrix
M is. In other words, M does not have to be a P×P submatrix in order for the result
to hold. Consequently, given k < P and M an arbitrary P× k submatrix of G(c), we
can form the k× k matrix M0 by choosing k rows of M in such a way that the LI
monomial of M0 contains at most only the variables c0, . . . , ck−1. This observation
leads to the following theorem for matrices with arbitrary Spark.

Theorem 5. [46] If P ∈ N is prime, and 0 < k < P, there exists an open, dense
subset of c ∈ Ck ×{0} ⊆ C

P with the property that Spark(G(c)) = k+1.

This result has implications for relating the capacity of a time-variant communi-
cation channel to the area of the spreading support, see [46].

The consecutive index monomial

In [32], a monomial referred to as the consecutive index (CI) monomial is defined
that has the required properties for any P ∈ N. The CI monomial, CI , is defined
as the monomial corresponding to the identity permutation in SP/Γ , that is, to the
equivalence class of the trivial partition A = (A0, A1, . . . , AP−1). Hence
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CI =
P−1

∏
κ=0

∏
j∈Aκ

c( j−κ)mod P.

For each κ , the monomial appearing in det(Mκ(Aκ)), ∏ j∈Aκ c( j−κ)mod P, consists of
a product of �k variables c j with consecutive indices modulo P.

That aI �= 0 follows from the observation that for each κ , det(Mκ(Aκ)) is a
monomial whose coefficient is a nonzero multiple of a Vandermonde determi-
nant and hence does not vanish (for details, see [32]). The proof that CI appears
uniquely in (24) amounts to showing that, with respect to an appropriate cyclical
renaming of the variables ci, the CI monomial uniquely minimizes the quantity
Λ(Cσ ) = ∑P−1

i=0 i2 αi, where αi is the exponent of the variable ci in Cσ . An abbrevi-
ated version of the proof of this result as it appears in [32] is given in Section “Proof
of Theorem 4”.

As a final observation, we quote the following corollary that provides an explicit
construction of a unimodular vector c such that G(c) has full Spark.

Corollary 1. [32] Let ζ = e2πi/(P−1)4
or any other primitive root of unity of order

(P−1)4 where P ≥ 4. Then the vector

c = (1, ζ , ζ 4, ζ 9, . . . , ζ (P−1)2
)

generates a Gabor frame for which G(c) has full Spark.

Generalizations of operator sampling to higher
dimensions

The operator representations (5), (6), and (7) hold verbatim for higher dimensional
variables x,ξ , t,ν ∈ R

d . In this section, we address the identifiability of

OPW (S) = {H ∈ L(L2(Rd),L2(Rd)) : suppFsσH ⊆ S, ‖σH‖L2 < ∞}

where S ⊆ R
2d .

Looking at the components of the multidimensional variables separately, Theo-
rem 1 easily generalizes as follows.

Theorem 6. For H ∈ OPW
(

∏d
�=1[0,T�]×∏d

�=1[−Ω�/2,Ω�/2]
)

with T�Ω�≤1,
�= 1, . . . ,d, we have

‖H ∑
k1∈Z

. . . ∑
kd∈Z

δ(k1T1,...,kdTd)
‖L2(R) = T1 . . .Td‖σH‖L2 ,
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and H can be reconstructed by means of

κH(x+ t,x) = χ∏d
�=1[0,T�]

(t) ∑
n1∈Z

. . . ∑
nd∈Z(

H ∑
k1∈Z

. . . ∑
kd∈Z

δ(k1T1,...,kdTd)

)
(t +(n1T1, . . . ,ndTd)

sin(πT1(x1 −n1))

πT1(x1 −n1)
. . .

sin(πTd(xd −nd))

πTd(xd −nd)

with convergence in the L2 norm.

In the following, we address the situation where S is not contained in a set
∏d

�=1[0,T�]×∏d
�=1[−Ω�/2,Ω�/2] with T�Ω�≤1, � = 1, . . . ,d. For example, S =

[0,1]× [0,2]× [0, 1
4 ]× [0,1]⊆ R

4 of volume 1
2 is not covered by Theorem 6.

To give a higher dimensional variant of Theorem 2, we shall denote pointwise
products of finite and infinite length vectors k and T by k � T , that is, k � T =
(k1T1, . . . ,kdTd) for k,T ∈ C

d . Similarly, k/T = (k1/T1, . . . ,kd/Td).

Theorem 7. If S⊆ (0,∞)d×R
d is compact with |S|< 1, then OPW (S) is identifiable.

Specifically, there exist T1, . . . ,Td > 0 and pairwise relatively prime natural numbers
P1, . . . ,Pd such that

S ⊆
d

∏
�=1

[0,P�T�]×
d

∏
�=1

[−1/(2T�),1/(2T�)],

and a sequence c = (cn) ∈ �∞(Zd) which is P� periodic in the �-th component n�
such that g = ∑n∈Zd cn δn�T identifies OPW (S). In fact, for such g there exists for
each j ∈ J = ∏d

�=1{0,1, . . . ,P�−1} a sequence b j = (b j,k) which is P� periodic in k�
and 2d-tuples (q j,m j) ∈ J× J with

h(x, t) = e−πi∑d
�=1 t�/T� ∑

k∈Zd
∑
j∈J

[
b j,k Hg(t − (q j − k)�T )

e2πim j ·((x−t)/P�T ) φ((x− t)+(q j − k)�T )r(t −q j �T )
]
. (25)

The functions r,φ ∈ S(Rd) are assumed to satisfy

∑
k∈Zd

r(t + k �T ) = 1 = ∑
n∈Zd

φ̂(γ +(n/(P�T )), (26)

and r(t)φ̂(γ) is supported in a neighborhood of ∏d
�=1[0,T�]×∏d

�=1[0,1/P�T�]. The
sum in (25) converges unconditionally in L2 and for each t uniformly in x.

This result follows from adjusting the proof of Theorem 7 to the higher dimen-
sional setting. For example, it will employ the Zak transform

ZT�P f (t,ν) = ∑
n∈Zd

f (t −n�P�T )e2πiν ·(P�T ),
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where P = (P1, . . . ,Pd). We are then led again to a system of linear equations of the
form

ZHg(t,ν)p = ∑
q∈J

∑
m∈J

G(c)p,(q,m) ηηηH(t,ν)(q,m) (27)

where as before

ZHg(t,ν)p = (ZT�P ◦H)g(t + p�T,ν)e−2πiν p�T ,

ηηηH(t,ν)(q,m) = (T1P1 . . .TdPd)
−1 ηH(t +q�T,ν +(m/(T �P))

e−2πiν ·(q�T ) e−2πiq·(m/P),

and where G(c) is now a multidimensional finite Gabor system matrix similar
to (23).

In order to show that the spreading function for operator H can be com-
pletely determined by its response to the periodically weighted d-dimensional
delta-train g, we need to show that (27) can be solved for each (t,ν) ∈
∏d

�=1[0,T�]×∏d
�=1[0,1/(T�P�)] if c ∈ C

P1×...×Pd is chosen appropriately.
To see that a choice of c is possible, observe that the product group ZP1 × . . .×ZPd

is isomorphic to the cyclic group ZP1·...·Pd since the P� are chosen pairwise relatively
prime. Theorem 4 applied to the cyclic group ZP1·...·Pd guarantees the existence of
c̃ ∈ C

P1·...·Pd so that the Gabor system matrix G(c̃) is full spark. We can now define
c ∈ C

P1×...×Pd by setting

cn1,...,nd = c̃n1+n2 P1+n3 P1P2+...+nd P1...Pd−1 , n = (n1, . . . ,nd) ∈ J

and observe that G(c) is simply a rearrangement of G(c̃), hence, G(c) is full spark.

Further results on operator sampling

The results discussed in this paper are discussed in detail in [6, 22, 24, 38, 41]
and [46]. The last listed article contains the most extensive collection of operator
reconstruction formulas, including extensions to some OPW (S) with S unbounded.
Moreover, some hints on how to use parallelograms to rectify a set S for operator
sampling efficiently are given.

A central result in [46] is the classification of all spaces OPW (S) that are identi-
fiable for a given g = ∑n∈Z cnδnT for cn being P-periodic.

The papers [38, 42] address some functional analytic challenges in operator sam-
pling, and [26] focuses on the question of operator identification if we are restricted
to using more realizable identifiers, for example, truncated and modified versions of
g, namely, g̃(t) = ∑N

n=0 cnϕ(t −nT ). The problem of recovering parametric classes
of operators in OPW (S) is discussed in [2, 3].

In the following, we briefly review literature that address some other directions
in operator sampling.
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Multiple Input Multiple Output

A Multiple Input Multiput Output (MIMO) channel H with N transmitters and M re-
ceivers can be modeled by an N×M matrix whose entries are time-varying channel
operators Hmn ∈ OPW (Smn). For simplicity, we write H ∈ OPW (S). Assuming that
the operators Hmn are independent, a sufficient criterion for identifiability is given
by ∑N

n=1 |Smn| ≤ 1 for m = 1, . . . ,M. Conversely, if for a single m, ∑N
n=1 |Smn| > 1,

then OPW (S) is not identifiable by any collection s1, . . . ,sN of input signals [36, 43].
A somewhat dual setup was considered in [18]. Namely, a Single Input Sin-

gle Output (SISO) channel with S being large, say S = [0,M]× [−N/2,N/2] with
N,M ≥ 2. As illustrated above, OPW ([0,M]× [−N/2,N/2]) is not identifiable,
but if we are allowed to use MN (infinite duration) input signals g1, . . . ,gMN ,
then H ∈ OPW ([0,M]× [−N/2,N/2]) can be recovered from the MN outputs
Hg1, . . . ,HgMN .

Irregular Sampling of Operators

The identifier g = ∑n∈Z cnδnT is supported on the lattice TZ in R. In general, for
stable operator identification, choosing a discretely supported identifier is reason-
able, indeed, in [26] it is shown that identification for OPW (S) in full requires the
use of identifiers that neither decay in time nor in frequency. (Recovery of the char-
acteristics of H during a fixed transmission band and a fixed transmission interval
can be indeed recovered when using Schwartz class identifiers [26].)

In irregular operator sampling, we consider identifiers of the form g=∑n∈Z cnδλn

for nodes λn that are not necessarily contained in a lattice. If such g identifies
OPW (S), then we refer to suppg = {λn} as a sampling set for OPW (S), and simi-
larly, the sampling rate of g is defined to be

D(g) = D(suppg) = D(Λ) = lim
r→∞

n−(r)
r

where
n−(r) = inf

x∈R
#{Λ ∩ [x,x+ r]}

assuming that the limit exists [18, 46].
To illustrate a striking difference between irregular sampling of functions and

operators, note that Z is a sampling set for OPW ([0,1]× [− 1
2 ,

1
2 ]) as well as for

the Paley Wiener space PW ([− 1
2 ,

1
2 ]), but the distribution g = c0δλ0

+∑n∈Z\{0} cnδn

does not identify OPW ([0,1]× [− 1
2 ,

1
2 ]), regardless of our choice of cn and λ0 �= 0.

This shows that, for example, Kadec’s 1
4 th theorem does not generalize to the oper-

ator setting [18].
In [46] we give with D(g) =D(Λ)≥B(S) a necessary condition on the (operator)

sampling rate based on the bandwidth B(S) of OPW (S) which is defined as
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B(S) = sup
t∈R

|suppη(t,ν)|=
∥∥∥
∫
R

χS(·,ν)dν
∥∥∥

∞
. (28)

Here, χS denotes the characteristic function of S. This quantity can be interpreted as
the maximum vertical extent of S and takes into account gaps in S. Moreover, in [46]
we discuss the goal of constructing {λn} of small density, and/or large gaps in order
to reserve time-slots for information transmission. Results in this direction can be
interpreted as giving bounds on the capacity of a time-variant channel in OPW (S)
in terms of |S| [46].

Finally, we give in [46] an example of an operator class OPW (S) that cannot
be identified by any identifier of the form g = ∑n∈Z cnδnT with T > 0 and periodic
cn, but requires coefficients that form a bounded but non-periodic sequence. In this
case, S is a parallelogram and B(S) = D(g) (see Figure 5)

t

ν

1 2 3 4

1

2

3

4

Fig. 5 The operator class OPW (S) with S = (2, 2 ;
√

2,
√

2+1/2)[0,1]2 whose area equals 1 and
bandwidth equals 1/2 is identifiable by a (non-periodically) weighted delta train with sampling
density 1/2. It is not identifiable using a periodically weighted delta train.

Sampling of OPW (S) with unknown S

In some applications, it is justified to assume that the set S has small area, but its
shape and location are unknown. If further S satisfies some basic geometric assump-
tions that guarantee that S is contained in [0,T P]× [−1/2T,1/2T ] and only meets
few rectangles of the rectification grid [kT,(k+1)T ]× [q/T P,(q+1)/T P], then re-
covery of S and, hence, an operator in OPW (S) is possible [15, 46].

The independently obtained results in [15, 46] employ the same identifiers g =

∑n∈Z cnδλn as introduced above. Operator identification is therefore again reduced
to solving (18), that is, the system of P linear equations

Z(t,ν) = G(c)ηηη(t,ν) (29)
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for the vector ηηη(t,ν) ∈ C
P2

for (t,ν) ∈ [0,T ]× [−1/2T P,1/2T P]. While the zero
components of ηηη(t,ν) are not known, the vector is known to be very sparse. Hence,
for fixed (t,ν), we can use the fact that G(c) is full spark and recover ηηη(t,ν) if it
has at most P/2 nonzero entries. Indeed, assume ηηη(t,ν) and η̃ηη(t,ν) solve (29) and
both have at most P/2 nonzero entries. Then ηηη(t,ν)− η̃ηη(t,ν) has at most P nonzero
entries and the fact that G(c) is full spark indicates that G(c)(ηηη(t,ν)− η̃ηη(t,ν)) = 0
implies ηηη(t,ν)− η̃ηη(t,ν) = 0.

Clearly, under the geometric assumptions alluded to above, the criterion that at
most P/2 rectangles in the grid are met can be translated to the unknown area of S
has measure less than or equal to 1/2.

In [15], this area 1/2 criterion is improved by showing that H can be identified
whenever at most P−1 rectangles in the rectification grid are met by S. This result
is achieved by using a joint sparsity argument, based on the assumption that for all
(t,ν), the same cells are active.

Alternatively, the “area 1/2” result can be strengthened by not assuming that for
all (t,ν), the same cells are active. This requires solving (29), for ηηη(t,ν) sparse, for
each considered (t,ν) independently, see Figure 6 and [46].

It must be added though, that solving (29) for ηηη(t,ν) being P/2 sparse is not
possible for moderately sized P, for example for P > 15. If we further reduce the
number of active boxes, then compressive sensing algorithms such as Basis Pursuit
and Orthogonal Matching Pursuit become available, as is discussed in the following
section.

t

ν

T

Ω

LT

LΩ

Fig. 6 For S the union of the colored sets, OPW (S) is identifiable even though 7 > 3 boxes are
active, implying that S cannot be rectified with P = 3 and T = 1 (see Section “Identification of
operator Paley-Wiener spaces by periodically weighted delta-trains”). Recovering η from Hg re-
quires solving three systems of linear equations, one to recover η on the yellow support set, one to
recover η on the red support set, and one to recover η on the blue support set. The reconstruction
formula (21) does not apply for this set S.



Cornerstones of Sampling of Operator Theory 323

Finite dimensional operator identification and compressive sensing

Operator sampling in the finite dimensional setting translates into the following
matrix probing problem [5, 7, 49]. For a class of matrices M∈ C

P×P, find c ∈ C
P

so that we can recover M ∈M from Mc (Figure 7).

Fig. 7 The matrix probing problem: find c so that the map M −→ C
P, M �→ Mc is injective and

therefore invertible.

The classes of operator considered here are of the form Mηηη = ∑λ ηηηλ Bλ with
Bλ = Bp,q = T pMq, and the matrix identification problem is reduced to solving

ZZZ = Mηηη c =
P−1

∑
p,q=0

ηηη p,q

(
T pMqc

)
= G(c)ηηη , (30)

where c is chosen appropriately; this is just (29) with the dependence on (t,ν)
removed.

If ηηη is assumed to be k-sparse, (Figure 8) we arrive at the classical compres-
sive sensing problem with measurement matrix G(c) ∈ C

P×P2
which depends on

c = (c0,c1, . . . ,cP−1). To achieve recovery guarantees for Basis Pursuit and Orthog-
onal Matching Pursuit, averaging arguments have to be used that yield results on the
expected qualities of G(c). This problem was discussed in [40, 49, 50] as well as, in
slightly different terms, in [1, 17] (Figure 9). The strongest results were achieved in
[25] by estimating Restricted Isometry Constants for c being a Steinhaus sequence.
These results show that with high probability, G(c) has the property that Basis Pur-
suit recovers ηηη from G(c)ηηη for every k sparse ηηη as long as k ≤C P/ log2 P for some
universal constant C.

Fig. 8 Time-frequency structured measurement matrix G(c) with c randomly chosen.
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Stochastic operators and channel estimation

It is common that models of wireless channels and radar environments take the
stochastic nature of the medium into account. In such models, the spreading func-
tion η(t,ν) (and therefore the operator’s kernel and Kohn–Nirenberg symbol) are
random processes, and the operator is split into the sum of its deterministic portion,
representing the mean behavior of the channel, and its zero-mean stochastic portion
that represents the noise and the environment.

(t, ν)

(t′, ν′) (t′, ν′) (t′, ν′)

(t, ν) (t, ν)

Fig. 9 Support sets of autocorrelation functions, the general case, the WSSUS case, and the tensor
case.

The detailed analysis of the stochastic case was carried out in [47, 48]. One of
the foci of these works lies in the goal of determining the second-order statistics of
the (zero mean) stochastic process η(τ ,ν), that is, its so-called covariance function
R(τ ,ν ,τ ′,ν ′) = E{η(τ ,ν)η(τ ′,ν ′)}. In [47, 48], it was shown that a necessary but
not sufficient condition for the identifiability of Rη(τ ,ν ,τ ′,ν ′) from the output co-
variance A(t, t ′) = E{Hg(t)Hg(t ′)} is that R(τ ,ν ,τ ′,ν ′) is supported on a bounded
set of 4-dimensional volume less than or equal to one. Unfortunately, for some sets
S ⊆ R

4 of arbitrary small measure, the respective stochastic operator Paley–Wiener
space StOPW (S) of operators with Rη supported on S is not identifiable; this is a
striking difference to the deterministic setup where the geometry of S does not play
a role at all.

In [67, 68] the special case of wide-sense stationary operators with uncorrelated
scattering, or WSSUS operators is considered. These operators are characterized by
the property that

Rη(t,ν , t ′,ν ′) =Cη(t,ν)δ (t − t ′)δ (ν −ν ′).

The function Cη(t,ν) is then called the scattering function of H. Our results on the
identifiability of stochastic operator classes allowed for the construction of two es-
timators for scattering functions [67, 68]. The estimator given in [67] is applicable,
whenever the scattering function of H has bounded support. Note that the autocor-
relation of a WSSUS operator is supported on a two-dimensional plane in R

4 which
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therefore has 4D volume 0, a fact that allows us to lift commonly assumed restric-
tions on the size of the 2D area of the support of the scattering function.

For details, formal definitions of identifiability and detailed statements of results
we refer to the papers [47, 48, 67, 68].

Appendix: Proofs of Theorems

Proof of Lemma 2

In order to see how the time-frequency shifts of c arise, we will briefly outline the
calculation that leads to (16). It can be seen by direct calculation using the represen-
tation given by (7), that if g = ∑n δnT P then 〈Hg,s〉 = 〈ηH ,ZT Ps〉 for all s ∈ S(R)
where the bracket on the left is the L2 inner product on R and that on the right the
L2 inner product on the rectangle [0,T P]×[0,1/(T P)]. Periodizing the integral on
the left gives

〈ηH ,ZT Ps〉=
∫ 1/(TP)

0

∫ T P

0
∑
k

∑
m

ηH(t + kT P,ν +m/(T P))

e−2πiνkT PZT Ps(t,ν)dt dν .

Since this holds for every s ∈ S(R), we conclude that

(ZT P ◦H)g(t,ν)

= 1/(T P) ∑
k

∑
m

ηH(t + kT P,ν +m/(T P))e−2πiνkT P.

Given g = ∑n∈Z cn δnT , for a period-P sequence c = (cn), and letting n = mP−q
for m ∈ Z and 0 ≤ q < P, we obtain

g = ∑cn δnT =
P−1

∑
q=0

∑
m∈Z

cmP−q δmPT−qT

=
P−1

∑
q=0

c−qT−qT

(
∑

m∈Z
δmPT

)
.

Since for α ∈R, the spreading function of H ◦Tα is ηH(t−α,ν)e2πiνα , we arrive at

(ZT P ◦H)g(t,ν)

= 1/(T P)
P−1

∑
q=0

c−q ∑
k

∑
m

ηH(t + kT P+qT,ν +m/(T P))

e−2πi(ν+m/(TP))qT e−2πiνkT P. (31)
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Letting m = jP+ � for j ∈ Z and 0 ≤ � < P, we obtain

(ZT P ◦H)g(t,ν)

= 1/(T P)
P−1

∑
q=0

c−q ∑
k

∑
j

P−1

∑
�=0

ηH(t + kT P+qT,ν + j/T + �/(T P))

e−2πiνqT e−2πi�q/P e−2πiνkT P

= 1/(T P)
P−1

∑
q=0

P−1

∑
�=0

(
c−q e−2πi�q/P)e−2πiνqT ηQ

H (t +T q,ν + �/T P).

Finally, replacing t by t + pT for p = 0, 1, . . . , P−1, and changing indices by
replacing q by q− p, we obtain

(ZT P ◦H)g(t + pT,ν)

= 1/(T P)
P−1

∑
q=0

P−1

∑
�=0

(
c−q e−2πi�q/P)e−2πiνqT ηQ

H (t +(q+ p)T,ν + �/T P)

= 1/(T P)
P−1

∑
q=0

P−1

∑
�=0

(
c−(q−p) e−2πi�(q−p)/P)

e−2πiν(q−p)T ηQ
H (t +qT,ν + �/T P).

The observation that (T qMmc)p = cp−q e2πim(p−q)/P completes the proof.

Proof of Theorem 3

To see why this is true, define μ(M) to be the number of diagonals of M whose
product is a multiple of pM , and proceed by induction on the size of the matrix M.
If M is 1 × 1, then the result is obvious. Suppose that M is n × n and that it is
described by the vector �= (�0, . . . , �P−1). Assuming without loss of generality that
the variable of smallest index in pM with a nonzero exponent is c0, there is a row
of M in which the variable c0 appears � j times for some index j. Choose one of
these terms and delete the row and column in which it appears. Call the remaining
matrix M′. The vector � describing M′ is (�0, . . . , � j−1, � j − 1, � j+1, . . . , �P−1), and
is independent of which term was chosen from the given row to form M′. By the
construction of the LI monomial, pM = c0 pM′ and by the induction hypothesis

μ(M′) = �0! · · · � j−1!(� j −1)!� j+1! · · · �P−1!.

Since there are � j ways to choose a term from the given row to produce M′ we have
that

μ(M) = � j μ(M′) = �0! · · · � j−1!� j(� j −1)!� j+1! · · · �P−1! =
P−1

∏
κ=0

�κ !

which was to be proved.
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Since each term aσ Cσ in (24) is made up of a sum of precisely this many terms,
it follows that exactly one of these terms is a multiple of the LI monomial. Alterna-
tively, we can think of the LI monomial as the one corresponding to the σ ∈ SP/Γ
that minimizes the functional Λ0(Cσ ) = ∑L−1

i=0 i2 H(αi) where αi is the exponent of
ci in Cσ and where H(αi) = 0 if αi = 0 and 1 otherwise.

Because by Chebotarev’s Theorem, aσ �= 0 for all σ the proof works for any
square submatrix M, no matter what size. This gives us Theorem 3.

Proof of Theorem 4

We first need to assert the existence of a cyclical renumbering of the variables such
that with respect to the new trivial partition A′ = (A′

κ)
P−1
κ=0, the CI monomial is

given by

CI =
P−1

∏
κ=0

∏
j∈A′

κ

c j−κ

in other words, if j ∈ A′
κ then 0 ≤ j−κ < P. Note first that since min(A′

κ) = ∑κ−1
i=0 �′i

for all κ , j ∈A′
κ implies that j ≥∑κ−1

i=0 �′i. Therefore, it will suffice to find a 0≤ γ <P
such that for all κ , ∑κ−1

i=0 �′i −κ ≥ 0 so that j−κ ≥ ∑κ−1
i=0 �′i −κ ≥ 0.

Let 0 ≤ γ < P be such that the quantity ∑γ−1
i=0 �i − γ is minimized, let

�′ = (�′i)
L−1
i=0 = (�(i+γ)mod P)

P−1
i=0 ,

and let A′ = (A′
κ)

P−1
κ=0 be the corresponding trivial partition. Now fix κ and assume

that κ + γ ≤ P. Then

κ−1

∑
i=0

�′i −κ =
κ−1

∑
i=0

�(i+γ)−κ

=

(κ+γ−1

∑
i=0

�i − (κ + γ)
)
−
( γ−1

∑
i=0

�i − γ
)

≥ 0

since the second term in the difference is minimal. If κ + γ ≥ P+ 1, then remem-
bering that ∑P−1

i=0 �i = L

κ−1

∑
i=0

�′i −κ =
κ−1

∑
i=0

�(i+γ)mod P −κ

=
P−1

∑
i=γ

�i +
κ+γ−P−1

∑
i=0

�i −κ
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=
P−1

∑
i=0

�i −
γ−1

∑
i=0

�i +
κ+γ−P−1

∑
i=0

�i −κ

=

( (κ+γ−P)−1

∑
i=0

�i − (κ + γ −P)

)
−
( γ−1

∑
i=0

�i − γ
)

≥ 0.

In order to complete the proof, we must show that Λ(Cσ ) ≥ Λ(CI) for all σ ∈
SP/Γ with equality holding if and only if σ is trivial. This will follow by direct
calculation together with the following lemma which follows from a classical result
on rearrangements of series [14, Theorems 368, 369]. This result is Lemma 3.3
in [32].

First, however, we adopt the following notation. For 0 ≤ n < P, let bn = κ if
n ∈ Aκ . With this notation, given σ ∈ SP/Γ ,

Cσ =
P−1

∏
n=0

c(σ(n)−bn) mod P

and under the above assumptions,

CI =
P−1

∏
n=0

c(n−bn).

Moreover,

Λ(Cσ ) =
P−1

∑
i=0

i2 αi

=
P−1

∑
i=0

i2 (#{n : (σ(n)−bn) mod P = i})

=
P−1

∑
i=0

(
(σ(n)−bn) mod P

)2
.

Lemma 3. Given two finite sequences of real numbers (αn) and (βn) defined up to
rearrangement, the sum

∑
n

αn βn

is maximized when α and β are both monotonically increasing or monotonically
decreasing. Moreover, if for every rearrangement α ′ of α ,

∑
n

α ′
n βn ≤ ∑

n
αnβn

then α and β are similarly ordered, that is, for every j, k,

(α j −αk)(β j −βk)≥ 0.
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In particular, for every σ ∈ SP,

P−1

∑
n=0

nbn ≥
P−1

∑
n=0

σ(n)bn

with equality holding if and only if σ is trivial.

Proof. The first part of the lemma is simply a restatement of Theorems 368 and 369
of [14]. To prove the second part, note first that bn is a non-decreasing sequence
and in particular is constant on each Aκ . Theorem 368 in [14] states that a sum of
the form ∑P−1

n=0 σ(n)bn is maximized when σ(n) is monotonically increasing, which
proves the given inequality. Since bn is constant on each Aκ , it follows that if σ is
trivial, then we have equality.

If σ is not trivial, then we will show that the sequences σ(n) and bn are not
similarly ordered. Letting κ be the minimal index such that Aκ is not left invariant
by σ , there exists m ∈ Aκ such that σ(m)∈ Aμ for some μ > κ , and for some λ > κ
there exists k ∈ Aλ such that σ(k) ∈ Aκ . Therefore, bm = κ < λ = bk but since
μ > κ , σ(m)> σ(k), and so σ(n) and bn are not similarly ordered.

In order to complete the proof, define C1, C2 ⊆ {0, . . . , P− 1} by n ∈ C1 if 0 ≤
σ(n)−bn <P, and n∈ C2 if −P+1≥ σ(n)−bn < 0 (note that always |σ(n)−bn|<
P) so that when n ∈ C2, (σ(n)− bn) mod P = σ(n)− bn +P. Let σ ′(n) = σ(n) if
n∈C1 and σ(n)+P if n∈C2, and let (an)

P−1
n=0 be an increasing sequence enumerating

the set σ(C1)∪ (σ(C2)+P). Therefore,

Λ(Cσ )−Λ(CI) =
P−1

∑
n=0

(σ ′(n)−bn)
2 −

P−1

∑
n=0

(n−bn)
2

=

[P−1

∑
n=0

(σ ′(n)−bn)
2 −

P−1

∑
n=0

(an −bn)
2
]

+

[P−1

∑
n=0

(an −bn)
2 −

P−1

∑
n=0

(n−bn)
2
]

= 2

[P−1

∑
n=0

anbn −σ ′(n)bn

]
+

[P−1

∑
n=0

(an −bn)
2 − (n−bn)

2
]

= I + II.

Since an is increasing, I ≥ 0 by Lemma 3, and since an ≥ n for all n, (an − bn) ≥
(n−bn)≥ 0 so that (an−bn)

2 ≥ (n−bn)
2 and hence II ≥ 0. It remains to show that

equality holds only if σ is trivial. If Λ(Cσ ) = Λ(CI), then I = II = 0. Since II = 0,
C2 = /0 for if an ∈ σ(C2)+P then an > n and we would have II > 0. Since C2 = /0,
σ ′(n) = σ(n) so that
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0 = Λ(Cσ )−Λ(CI)

=
P−1

∑
n=0

(σ(n)−bn)
2 −

P−1

∑
n=0

(n−bn)
2

= 2
P−1

∑
n=0

(nbn −σ(n)bn)

which by Lemma 3 implies that σ is trivial. The proof is complete.
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