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Stéphane Jaffard
University of Paris XII
Paris, France

Jelena Kovačević
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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numerical
implementation, but richness and relevance of applications and implementation de-
pend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by means
of creative cross-fertilization with diverse areas. The intricate and fundamental
relationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis, but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

vii



viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function”. Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodu-
lar trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
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The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor





Preface

The chapters in these Volumes 3 and 4 have at least one author who spoke at the
February Fourier Talks during the period 2002–2013 or at the workshop on Phase-
less Reconstruction that immediately followed the 2013 February Fourier Talks.
Volumes 1 and 2 were limited to the period 2006–2011.

The February Fourier Talks (FFT)

The FFT were initiated in 2002 and 2003 as small meetings on harmonic analysis
and applications, held at the University of Maryland, College Park. There were no
FFTs in 2004 and 2005. The Norbert Wiener Center (NWC) for Harmonic Analysis
and Applications was founded in 2004 in the Department of Mathematics at the
university, and, since 2006, the FFT have been organized by the NWC. The FFT
have developed into a major annual conference that brings together applied and pure
harmonic analysts along with scientists and engineers from universities, industry,
and government for an intense and enriching two-day meeting.

The goals of the FFT are the following:

• To offer a forum for applied and pure harmonic analysts to present their latest
cutting-edge research to scientists working not only in the academic community
but also in industry and government agencies;

• To give harmonic analysts the opportunity to hear from government and indus-
try scientists about the latest problems in need of mathematical formulation and
solution;

• To provide government and industry scientists with exposure to the latest
research in harmonic analysis;

xi



xii Preface

• To introduce young mathematicians and scientists to applied and pure harmonic
analysis;

• To build bridges between pure harmonic analysis and applications thereof.

These goals stem from our belief that many of the problems arising in engineer-
ing today are directly related to the process of making pure mathematics applicable.
The Norbert Wiener Center sees the FFT as the ideal venue to enhance this process
in a constructive and creative way. Furthermore, we believe that our vision is shared
by the scientific community, as shown by the steady growth of the FFT over the
years.

The FFT is formatted as a two-day single-track meeting consisting of 30 minute
talks as well as the following:

• Norbert Wiener Distinguished Lecturer Series;
• General Interest Keynote Address;
• Norbert Wiener Colloquium;
• Graduate and Postdoctoral Poster Session.

The talks are given by experts in applied and pure harmonic analysis, including
academic researchers and invited scientists from industry and government agencies.

The Norbert Wiener Distinguished Lecture caps the technical talks of the first
day. It is given by a senior harmonic analyst, whose vision and depth through the
years have had profound impact on our field. In contrast to the highly technical day
sessions, the Keynote Address is aimed at a general public audience and highlights
the role of mathematics, in general, and harmonic analysis, in particular. Further-
more, this address can be seen as an opportunity for practitioners in a specific area
to present mathematical problems that they encounter in their work. The conclud-
ing lecture of each FFT, our Norbert Wiener Colloquium, features a mathematical
talk by a renowned applied or pure harmonic analyst. The objective of the Norbert
Wiener Colloquium is to give an overview of a particular problem or a new chal-
lenge in the field. We include here a list of speakers for these three lectures.

Distinguished Lecturer

• Ronald Coifman
• Ingrid Daubechies
• Ronald DeVore
• Richard Kadison
• Peter Lax
• Elias Stein
• Gilbert Strang

Keynote Address

• Peter Carr
• Barry Cipra
• James Coddington
• Nathan Crone
• Mario Livio
• William Noel
• Steven Schiff
• Mark Stopfer
• Frederick Williams

Colloquium

• Rama Chellappa
• Margaret Cheney
• Charles Fefferman
• Robert Fefferman
• Gerald Folland
• Christopher Heil
• Peter Jones
• Thomas Strohmer
• Victor Wickerhauser

In 2013, the February Fourier Talks were followed by a workshop on Phaseless
Reconstruction, also hosted by the Norbert Wiener Center and intellectually in the
spirit of the FFT.



Preface xiii

The Norbert Wiener Center

The Norbert Wiener Center for Harmonic Analysis and Applications provides a
national focus for the broad area of Mathematical Engineering. Applied harmonic
analysis and its theoretical underpinnings form the technological basis for this area.
It can be confidently asserted that Mathematical Engineering will be to today’s
mathematics departments what Mathematical Physics was to those of a century ago.
At that time, Mathematical Physics provided the impetus for tremendous advances
within mathematics departments, with particular impact in fields such as differential
equations, operator theory, and numerical analysis. Tools developed in these fields
were essential in the advances of applied physics, e.g., the development of the solid
state devices which now enable our information economy.

Mathematical Engineering impels the study of fundamental harmonic analysis
issues in the theories and applications of topics such as signal and image process-
ing, machine learning, data mining, waveform design, and dimension reduction into
mathematics departments. The results will advance the technologies of this millen-
nium.

The golden age of Mathematical Engineering is upon us. The Norbert Wiener
Center reflects the importance of integrating new mathematical technologies and
algorithms in the context of current industrial and academic needs and problems.

The Norbert Wiener Center has three goals:

• Research activities in harmonic analysis and applications;
• Education - undergraduate to postdoctoral;
• Interaction within the international harmonic analysis community.

We believe that educating the next generation of harmonic analysts, with a strong
understanding of the foundations of the field and a grasp of the problems arising in
applications, is important for a high level and productive industrial, government,
and academic workforce.

The Norbert Wiener Center website: www.norbertwiener.umd.edu

The structure of the volumes

To some extent the four parts for each of these volumes are artificial placeholders
for all the diverse chapters. It is an organizational convenience that reflects major
areas in harmonic analysis and its applications, and it is also a means to highlight
significant modern thrusts in harmonic analysis. Each part includes an introduction
that describes the chapters therein.

www.norbertwiener.umd.edu
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2 XIII Theoretical Harmonic Analysis

The chapters in Part XIII illustrate the interplay between harmonic analysis and
a number of areas in both pure and applied mathematics. In particular, the topics
covered in this part include function space theory, frames and operators in Hilbert
spaces, and nonlinear dispersive equations.

In the first chapter, ÁRPÁD BÉNYI, TADAHIRO OH , and OANA POCOVNICU

introduce a randomization technique of functions defined on R
d , that is naturally

related to a Wiener-type decomposition of functions in the modulation spaces.
Such technique allows them to consider the (almost sure) well-posedness of certain
non-linear Schrödinger equations defined on R

d . The chapter briefly surveys how
randomization techniques have been used to establish well-posedness results for
such equations when the space variable lies in a compact domain. Using this new
(Wiener) randomization technique enables them to derive some improved (prob-
abilistic) Strichartz estimates which in turn help established an almost sure well-
posedness result for NLS.

In the second chapter, DAVID LARSON and SAM SCHOLZE give a detailed
overview of a new operator theoretical approach to the erasure problem in frame the-
ory. In a tutorial-style exposition, they describe a technique called bridging whose
goal is to perfectly reconstruct signals/functions from a set of incomplete/lost frame
or sampling coefficients. Using matrix analysis they consider the question both for
the finite and infinite dimensional cases and provide conditions under which perfect
reconstruction is possible. In addition, they give a number of algorithms (in the form
of Matlab codes) showing how to implement their method in practice.

Chapter “Choosing Function Spaces in Harmonic Analysis” is an entertaining
and highly informative survey of HANS FEICHTINGER on the question of choosing
the right function space for a specific application. A parallel is drawn between this
choice and the one that is made when buying a car! His point being that in the latter
case one has a set of standards and options the desired automobile should possess.
In this regard, the chapter argues that choosing a function space for a given appli-
cation should be dealt with in a similar fashion. The chapter then proceeds with
an inventory of different methods to construct function spaces and provides exam-
ples of such spaces in the form of the Wiener amalgam spaces and the modulation
spaces. The chapter advocates for a new approach to Fourier analysis motivated by
the use of certain ad hoc mathematical methods in signal processing.

In the final chapter of this part, MARCIN BOWNIK and JOHN JASPER survey
the recent developments on the existence of (infinite dimensional) frames with pre-
scribed norms and frame operator. In particular, they observe that such results can be
viewed as Schur-Horn type theorems for the diagonals of positive self-adjoint oper-
ators with given spectral properties. Similar results in infinite dimensions were due
to Kadison. The chapter presents some generalizations of Kadison’s results dealing
with characterization of certain frames with specified spectra.



Wiener randomization on unbounded
domains and an application to almost
sure well-posedness of NLS

Árpád Bényi∗, Tadahiro Oh, and Oana Pocovnicu

Abstract We introduce a randomization of a function on R
d that is naturally

associated to the Wiener decomposition and, intrinsically, to the modulation spaces.
Such randomized functions enjoy better integrability, thus allowing us to improve
the Strichartz estimates for the Schrödinger equation. As an example, we also show
that the energy-critical cubic nonlinear Schrödinger equation on R

4 is almost surely
locally well posed with respect to randomized initial data below the energy space.

Key words: Nonlinear Schrödinger equation, Almost sure well-posedness, Mod-
ulation space, Wiener decomposition, Strichartz estimate, Fourier restriction norm
method
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Á. Bényi (�)
Department of Mathematics, Western Washington University, 516 High Street,
Bellingham, WA 98225, USA
e-mail: arpad.benyi@wwu.edu

T. Oh
School of Mathematics, The University of Edinburgh, and The Maxwell Institute
for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings,
Mayfield Road, Edinburgh, EH9 3JZ, UK
e-mail: hiro.oh@ed.ac.uk

O. Pocovnicu
School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Department of Mathematics, Princeton University, Fine Hall, Washington Rd., Princeton,
NJ 08544-1000, USA

Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
e-mail: opocovnicu@math.princeton.edu

© Springer International Publishing Switzerland 2015
R. Balan et al. (eds.), Excursions in Harmonic Analysis, Volume 4,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-20188-7 1

3

mailto:arpad.benyi@wwu.edu
mailto:hiro.oh@ed.ac.uk
mailto:opocovnicu@math.princeton.edu


4 Á. Bényi et al.

Introduction

Background

The Cauchy problem of the nonlinear Schrödinger equation (NLS){
i∂t u+Δu =±|u|p−1u

u
∣∣
t=0 = u0 ∈ Hs(Rd),

(t,x) ∈ R×R
d (1)

has been studied extensively over recent years. One of the key ingredients in study-
ing (1) is the dispersive effect of the associated linear flow. Such dispersion is often
expressed in terms of the Strichartz estimates (see Lemma 1 below), which have
played an important role in studying various problems on (1), in particular, local
and global well-posedness issues.

It is well known that (1) is invariant under several symmetries. In the follow-
ing, we concentrate on the dilation symmetry. The dilation symmetry states that
if u(t,x) is a solution to (1) on R

d with an initial condition u0, then uλ (t,x) =

λ−
2

p−1 u(λ−2t,λ−1x) is also a solution to (1) with the λ -scaled initial condition

uλ0 (x) = λ−
2

p−1 u0(λ−1x). Associated to the dilation symmetry, there is a scaling-
critical Sobolev index sc := d

2 −
2

p−1 such that the homogeneous Ḣsc norm is invari-

ant under the dilation symmetry. For example, when p = 4
d−2 + 1, we have sc = 1

and (1) is called energy critical. It is known that (1) is ill posed in the supercritical
regime, that is, in Hs for s < sc; see [1, 11, 16, 18].

In an effort to study the invariance of the Gibbs measure for the defocusing
(Wick-ordered) cubic NLS on T

2, Bourgain [6] considered random initial data of
the form

uω0 (x) = ∑
n∈Z2

gn(ω)√
1+ |n|2

ein·x, (2)

where {gn}n∈Z2 is a sequence of independent complex-valued standard Gaussian
random variables. Function (2) represents a typical element in the support of the
Gibbs measure, more precisely, in the support of the Gaussian free-field on T

2 as-
sociated to this Gibbs measure, and is critical with respect to the scaling. With a
combination of deterministic PDE techniques and probabilistic arguments, Bour-
gain showed that the (Wick-ordered) cubic NLS on T

2 is well posed almost surely
with respect to random initial data (2). Burq-Tzvetkov [14] further explored the
study of Cauchy problems with more general random initial data. They considered
the cubic nonlinear wave equation (NLW) on a three-dimensional compact Rieman-
nian manifold M without a boundary, where the scaling-critical Sobolev index sc is
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given by sc =
1
2 . Given u0(x) = ∑∞

n=1 cnen(x) ∈ Hs(M), s ≥ 1
4 , they proved almost

sure local well-posedness with random initial data of the form2

uω0 (x) =
∞

∑
n=1

gn(ω)cnen(x), (3)

where {gn}∞n=1 is a sequence of independent mean-zero random variables with a
uniform bound on the fourth moments and {en}∞n=1 is an orthonormal basis of L2(M)
consisting of the eigenfunctions of the Laplace-Beltrami operator. It was also shown
that uω0 in (3) has the same Sobolev regularity as the original function u0 and is not

smoother, almost surely. In particular, if u0 ∈ Hs(M) \H
1
2 (M), their result implies

almost sure local well-posedness in the supercritical regime. There are several works
on Cauchy problems of evolution equations with random data that followed these
results, including some on almost sure global well-posedness: [7, 9, 10, 12, 13, 15,
19–22, 36–38, 43, 44, 49].

We point out that many of these works are on compact domains, where there is
a countable basis of eigenfunctions of the Laplacian and thus there is a natural way
to introduce a randomization. On R

d , randomizations were introduced with respect
to a countable basis of eigenfunctions of the Laplacian with a confining potential
such as a harmonic oscillator Δ − |x|2; we note that functions in Sobolev spaces
associated to the Laplacian with a confining potential have an extra decay in space.
Our goal is to introduce a randomization for functions in the usual Sobolev spaces
on R

d without such extra decay. For this purpose, we first review some basic notions
and facts concerning the so-called modulation spaces of time-frequency analysis.

Modulation spaces

The modulation spaces were introduced by Feichtinger [23] in the early 1980s. In
following collaborations with Gröchenig [24, 25, 27], they established the basic the-
ory of these function spaces, in particular their invariance, continuity, embeddings,
and convolution properties, see also [27]. The difference between the Besov spaces
and the modulation spaces consists in the geometry of the frequency space em-
ployed: the dyadic annuli in the definition of the former spaces are replaced by unit
cubes Qn centered at n∈Z

d in the definition of the latter ones. Thus, the modulation
spaces arise via a uniform partition of the frequency space Rd =

⋃
n∈Zd Qn, which is

commonly referred to as a Wiener decomposition [53]. In certain contexts, this de-
composition allows for a finer analysis by effectively capturing the time-frequency
concentration of a distribution.

For x,ξ ∈ R
d , let Fu(ξ ) = û(ξ ) =

∫
Rd u(x)e−2π ix·ξ dx denote the Fourier trans-

form of a distribution u. Typically, the (weighted) modulation spaces Mp,q
s (Rd),

p,q > 0,s ∈ R, are defined by imposing the Lp(dx)Lq(〈ξ 〉sdξ ) integrability of

2 For NLW, one needs to specify (u,∂t u)|t=0 as an initial condition. For simplicity of presentation,
we only displayed u|t=0 in (3).
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the short-time (or windowed) Fourier transform of a distribution Vφu(x,ξ ) :=F

(uTxφ )(ξ ). Here, 〈ξ 〉s = (1+ |ξ |2) s
2 , φ is some fixed non-zero Schwartz function,

and Tx denotes the translation defined by Tx(φ)(y) = φ(y−x). When s = 0, one sim-
ply writes Mp,q. Modulation spaces satisfy some desirable properties: they are quasi-
Banach spaces, two different windows φ1,φ2 yield equivalent norms, M2,2

s (Rd)=Hs

(Rd), (Mp,q
s (Rd))′=Mp′,q′

−s (Rd), Mp1,q1
s1 (Rd)⊂Mp2,q2

s2 (Rd) for s1≥ s2, p1≤ p2, and
q1 ≤ q2, and S (Rd) is dense in Mp,q

s (Rd).
We prefer to use an equivalent norm on the modulation space Mp,q

s , which is
induced by a corresponding Wiener decomposition of the frequency space. Given
ψ ∈S (Rd) such that suppψ ⊂ [−1,1]d and ∑n∈Zd ψ(ξ − n)≡ 1, let

‖u‖Mp,q
s (Rd) =

∥∥〈n〉s‖ψ(D− n)u‖Lp
x (Rd)

∥∥
�

q
n(Zd)

. (4)

Note that ψ(D− n) is just a Fourier multiplier with symbol χQn conveniently
smoothed:

ψ(D− n)u(x) =
∫
Rd

ψ(ξ − n)û(ξ )e2π ix·ξ dξ .

It is worthwhile to compare definition (4) with the one for the Besov spaces which
uses a dyadic partition of the frequency domain. Let ϕ0,ϕ ∈ S (Rd) such that
suppϕ0 ⊂{|ξ | ≤ 2}, suppϕ ⊂ { 1

2 ≤ |ξ | ≤ 2}, and ϕ0(ξ )+∑∞
j=1ϕ(2− jξ )≡ 1. With

ϕ j(ξ ) = ϕ(2− jξ ), we define the Besov spaces Bp,q
s via the norm

‖u‖Bp,q
s (Rd) =

∥∥2 js‖ϕ j(D)u‖Lp(Rd)

∥∥
�

q
j (Z≥0)

. (5)

There are several known embeddings between the Besov, Sobolev, and modula-
tion spaces; see, for example, Okoudjou [39], Toft [50], Sugimoto-Tomita [47], and
Kobayashi-Sugimoto [34].

Randomization adapted to the Wiener decomposition

Given a function φ on R
d , we have

φ = ∑
n∈Zd

ψ(D− n)φ ,

where ψ(D− n) is defined above. We introduce a randomization naturally associ-
ated to the Wiener decomposition, and hence to the modulation spaces, as follows.
Let {gn}n∈Zd be a sequence of independent mean zero complex-valued random vari-
ables on a probability space (Ω ,F ,P), where the real and imaginary parts of gn are

independent and endowed with probability distributions μ (1)
n and μ (2)

n . Then, we can
define the Wiener randomization of φ by

φω := ∑
n∈Zd

gn(ω)ψ(D− n)φ . (6)
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In the sequel, we make the following assumption: there exists c > 0 such that∣∣∣∣
∫
R

eγxdμ ( j)
n (x)

∣∣∣∣≤ ecγ2
(7)

for all γ ∈ R, n ∈ Z
d , j = 1,2. Note that (7) is satisfied by standard complex-valued

Gaussian random variables, standard Bernoulli random variables, and any random
variables with compactly supported distributions.

It is easy to see that if φ ∈ Hs(Rd), then the randomized function φω is almost
surely in Hs(Rd); see Lemma 3 below. One can also show that there is no smoothing
upon randomization in terms of differentiability; see, for example, Lemma B.1 in
[14]. Instead, the main point of this randomization is its improved integrability;
if φ ∈ L2(Rd), then the randomized function φω is almost surely in Lp(Rd) for
any finite p ≥ 2; see Lemma 4 below. Such results for random Fourier series are
known as Paley-Zygmund’s theorem [41]; see also Kahane’s book [30] and Ayache-
Tzvetkov [2].

Remark 1. One may fancy a randomization associated to Besov spaces of the form:

φω :=
∞

∑
j=0

gn(ω)ϕ(D)φ .

In view of the Littlewood-Paley theory, such a randomization does not yield any
improvement on differentiability or integrability and thus it is of no interest.

Main results

The Wiener randomization of an initial condition allows us to establish some im-
provements of the Strichartz estimates. In turn, these probabilistic Strichartz esti-
mates yield an almost sure well-posedness result for NLS. First, we recall the usual
Strichartz estimates on R

d for the reader’s convenience. We say that a pair (q,r) is
Schrödinger admissible if it satisfies

2
q
+

d
r
=

d
2

(8)

with 2 ≤ q,r ≤ ∞, and (q,r,d) �= (2,∞,2). Let S(t) = eitΔ . Then, the following
Strichartz estimates are known to hold.

Lemma 1 ([26, 31, 46, 54]). Let (q,r) be Schrödinger admissible. Then, we have

‖S(t)φ‖Lq
t Lr

x(R×Rd) � ‖φ‖L2
x(R

d). (9)

Next, we present improvements of the Strichartz estimates under the Wiener ran-
domization. Proposition 1 will be then used for a local-in-time theory, while Propo-
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sition 2 is useful for small data global theory. The proofs of Propositions 1 and 2 are
presented in section “Probabilistic Strichartz estimates”.

Proposition 1 (Improved local-in-time Strichartz estimate). Given φ ∈ L2(Rd),
let φω be its randomization defined in (6), satisfying (7). Then, given 2 ≤ q,r < ∞,
there exist C,c > 0 such that

P
(
‖S(t)φω‖Lq

t Lr
x([0,T ]×Rd) > λ

)
≤C exp

(
− c

λ 2

T
2
q ‖φ‖2

L2

)
(10)

for all T > 0 and λ > 0.

In particular, by setting λ = T θ‖φ‖L2 , we have

‖S(t)φω‖Lq
t Lr

x([0,T ]×Rd) � T θ‖φ‖L2(Rd)

outside a set of probability at most C exp
(
− cT 2θ− 2

q
)
. Note that as long as θ < 1

q ,
this probability can be made arbitrarily small by letting T → 0. Moreover, for fixed
T > 0, we have the following: given any small ε > 0, we have

‖S(t)φω‖Lq
t Lr

x([0,T ]×Rd) ≤CT

(
log

1
ε

) 1
2 ‖φ‖L2

outside a set of probability < ε .
The next proposition states an improvement of the Strichartz estimates in the

global-in-time setting.

Proposition 2 (Improved global-in-time Strichartz estimate). Given φ ∈ L2(Rd),
let φω be its randomization defined in (6), satisfying (7). Given a Schrödinger
admissible pair (q,r) with q,r < ∞, let r̃ ≥ r. Then, there exist C,c > 0 such that

P
(
‖S(t)φω‖Lq

t Lr̃
x(R×Rd) > λ

)
≤Ce−cλ 2‖φ‖−2

L2 (11)

for all λ > 0. In particular, given any small ε > 0, we have

‖S(t)φω‖Lq
t Lr̃

x(R×Rd) �
(

log
1
ε

) 1
2 ‖φ‖L2

outside a set of probability at most ε .

We conclude this introduction by discussing an example of almost sure local
well-posedness of NLS with randomized initial data below a scaling critical regu-
larity. In the following, we consider the energy-critical cubic NLS on R

4:

i∂t u+Δu =±|u|2u, (t,x) ∈R×R
4. (12)
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Cazenave-Weissler [17] proved local well-posedness of (12) with initial data in the
critical space Ḣ1(R). See Ryckman-Vişan [45], Vişan [51], and Kenig-Merle [32]
for global-in-time results. In the following, we state a local well-posedness result
of (12) with random initial data below the critical space. More precisely, given
φ ∈Hs(R4)\H1(R4), s ∈ ( 3

5 ,1), and φω its randomization defined in (6), we prove
that (12) is almost surely locally well posed with random initial data φω . Although
φ and its randomization φω lie in a supercritical regularity regime, the Wiener ran-
domization essentially makes the problem subcritical. This is a common feature for
many of the probabilistic well-posedness results.

Theorem 1. Let s ∈ ( 3
5 ,1). Given φ ∈ Hs(R4), let φω be its randomization defined

in (6), satisfying (7). Then, the cubic NLS (12) on R
4 is almost surely locally well

posed with respect to the randomization φω as initial data. More precisely, there
exist C,c,γ > 0 and σ = 1+ such that for each T � 1, there exists a set ΩT ⊂ Ω
with the following properties:

(i) P(Ω \ΩT )≤C exp
(
− c

T γ‖φ‖2
Hs

)
,

(ii) For each ω ∈ ΩT , there exists a (unique) solution u to (12) with u|t=0 = φω in
the class

S(t)φω +C([−T,T ] : Hσ (R4))⊂C([−T,T ] : Hs(R4)).

The details of the proof of Theorem 1 are presented in section “Almost sure local
well-posedness”. We discuss here a very brief outline of the argument. Denoting the
linear and nonlinear parts of u by z(t) = zω (t) := S(t)φω and v(t) := u(t)−S(t)φω ,
respectively, we can reduce (12) to{

i∂t v+Δv =±|v+ z|2(v+ z)

v|t=0 = 0.
(13)

We then prove that the Cauchy problem (13) is almost surely locally well posed for
v, viewing z as a random forcing term. This is done by using the standard subcritical
Xs,b spaces with b > 1

2 defined by

‖u‖Xs,b(R×R4) = ‖〈ξ 〉s〈τ+ |ξ |2〉bû(τ,ξ )‖L2
τ,ξ (R×R

4).

We point out that the uniqueness in Theorem 1 refers to uniqueness of the nonlinear
part v(t) = u(t)− S(t)φω of a solution u.

We conclude this introduction with several remarks.

Remark 2. Theorem 1 holds for both defocusing and focusing cases (corresponding
to the + sign and the − sign in (1), respectively) due to the local-in-time nature of
the problem.

Remark 3. Theorem 1 can also be proven with the variants of the Xs,b spaces
adapted to the U p and V p spaces introduced by Koch, Tataru, and their collabo-
rators [28, 29, 35]. These spaces are designed to handle problems in critical regu-
larities. We decided to present the proof with the classical subcritical Xs,b spaces,
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b > 1
2 , to emphasize that the problem has become subcritical upon randomization.

We should, however, point out that with the spaces introduced by Koch and Tataru,
we can also prove probabilistic small data global well-posedness and scattering as a
consequence of the probabilistic global-in-time Strichartz estimates (Proposition 2).
See our paper [3] for an example of such results for the cubic NLS on R

d , d ≥ 3.
It is of interest to consider almost sure global existence for (12). While the mass

of v in (13) has a global-in-time control, there is no energy conservation for v and
thus we do not know how to proceed at this point. In [3], we establish almost sure
global existence for (12), assuming an a priori control on the H1 norm of the non-
linear part v of a solution. We also prove there, without any assumption, global
existence with a large probability by considering a randomization, not on unit cubes
but on dilated cubes this time.

In the context of the energy-critical defocusing cubic NLW on R
4, one can obtain

an a priori bound on the energy of the nonlinear part of a solution, see [15]. As a
consequence, the third author [42] proved almost sure global well-posedness of the
energy-critical defocusing cubic NLW on R

4 below the scaling critical regularity.

Remark 4. In Theorem 1, we simply used σ = 1+ as the regularity of the nonlinear
part v. It is possible to characterize the possible values of σ in terms of the regularity
s < 1 of φ . However, for simplicity of presentation, we omitted such a discussion.

Remark 5. In probabilistic well-posedness results [5, 7, 19, 37] for NLS on T
d ,

random initial data are assumed to be of the following specific form:

uω0 (x) = ∑
n∈Zd

gn(ω)

(1+ |n|2) α2
ein·x, (14)

where {gn}n∈Zd is a sequence of independent complex-valued standard Gaussian
random variables. Expression (14) has a close connection to the study of invariant
(Gibbs) measures and, hence, it is of importance. At the same time, due to the lack
of a full range of Strichartz estimates on T

d , one could not handle a general ran-
domization of a given function as in (3). In Theorem 1, we consider NLS on R

4 and
thus we do not encounter this issue thanks to a full range of the Strichartz estimates.
For NLW, finite speed of propagation allows us to use a full range of Strichartz es-
timates even on compact domains, at least locally in time; thus, in that context, one
does not encounter such an issue.

Remark 6. In a recent preprint, Lührmann-Mendelson [36] considered the defocus-
ing NLW on R

3 with randomized initial data defined in (6) in a supercritical regu-
larity and proved almost sure global well-posedness in the energy-subcritical case,
following the method developed in [19]. For the energy-critical quintic NLW on
R

3, they obtained almost sure local well-posedness along with small data global
existence and scattering.
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Probabilistic Strichartz estimates

In this section, we state and prove some basic properties of the randomized func-
tion φω defined in (6), including the improved Strichartz estimates (Propositions 1
and 2). First, recall the following probabilistic estimate. See [14] for the proof.

Lemma 2. Assume (7). Then, there exists C > 0 such that∥∥∥∥ ∑
n∈Zd

gn(ω)cn

∥∥∥∥
Lp(Ω)

≤C
√

p‖cn‖�2
n(Z

d)

for all p≥ 2 and {cn} ∈ �2(Zd).

Given φ ∈ Hs, it is easy to see that its randomization φω ∈ Hs almost surely, for
example, if {gn} has a uniform finite variance. Under assumption (7), we have a
more precise description on the size of φω .

Lemma 3. Given φ ∈ Hs(Rd), let φω be its randomization defined in (6), satisfy-
ing (7). Then, we have

P
(
‖φω‖Hs(Rd) > λ

)
≤Ce−cλ 2‖φ‖−2

Hs (15)

for all λ > 0.

Proof. By Minkowski’s integral inequality and Lemma 2, we have

(
E‖φω‖p

Hs(Rd)

) 1
p ≤

∥∥‖〈∇〉sφω‖Lp(Ω)

∥∥
L2

x (R
d)
�√p

∥∥‖ψ(D− n)〈∇〉sφ‖�2
n

∥∥
L2

x

∼√p‖φ‖Hs

for any p≥ 2. Thus, we have obtained

E[‖φω‖p
Hs ]≤Cp

0 p
p
2 ‖φ‖p

Hs .

By Chebyshev’s inequality, we have

P
(
‖φω‖Hs > λ

)
<

(
C0 p

1
2 ‖φ‖Hs

λ

)p

(16)

for p ≥ 2.

Let p =
(

λ
C0e‖φ‖Hs

)2
. If p≥ 2, then by (16), we have

P
(
‖φω‖Hs > λ

)
<

(
C0 p

1
2 ‖φ‖Hs

λ

)p

= e−p = e−cλ 2‖φ‖−2
Hs .
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Otherwise, i.e., if p =
(

λ
C0e‖φ‖Hs

)2
≤ 2, we can choose C such that Ce−2 ≥ 1. Then,

we have

P
(
‖φω‖Hs > λ

)
≤ 1≤Ce−2 ≤Ce−cλ 2‖φ‖−2

Hs ,

thus giving the desired result.

The next lemma shows that if φ ∈ L2(Rd), then its randomization φω is almost
surely in Lp(Rd) for any p ∈ [2,∞).

Lemma 4. Given φ ∈ L2(Rd), let φω be its randomization defined in (6), satisfy-
ing (7). Then, given finite p≥ 2, there exist C,c > 0 such that

P
(
‖φω‖Lp(Rd) > λ

)
≤Ce−cλ 2‖φ‖−2

L2 (17)

for all λ > 0. In particular, φω is in Lp(Rd) almost surely.

Proof. By Lemma 2, we have

(
E‖φω‖r

Lp
x (Rd)

) 1
r ≤

∥∥‖φω‖Lr(Ω)

∥∥
Lp

x (Rd)
�
√

r
∥∥‖ψ(D− n)φ‖�2

n

∥∥
Lp

x

≤
√

r
∥∥‖ψ(D− n)φ‖Lp

x

∥∥
�2

n
≤
√

r
∥∥‖ψ(D− n)φ‖L2

x

∥∥
�2

n

∼
√

r‖φ‖L2
x

for any r ≥ p. Then, (17) follows as in the proof of Lemma 3.

We conclude this section by presenting the proofs of the improved Strichartz
estimates under randomization. Before continuing further, we briefly recall the
definitions of the smooth projections from Littlewood-Paley theory. Let ϕ be a
smooth real-valued bump function supported on {ξ ∈ R

d : |ξ | ≤ 2} and ϕ ≡ 1 on
{ξ : |ξ | ≤ 1}. If N > 1 is a dyadic number, we define the smooth projection P≤N

onto frequencies {|ξ | ≤ N} by

P̂≤N f (ξ ) := ϕ
( ξ

N

)
f̂ (ξ ).

Similarly, we can define the smooth projection PN onto frequencies {|ξ | ∼ N} by

P̂N f (ξ ) :=
(
ϕ
( ξ

N

)
−ϕ

(2ξ
N

))
f̂ (ξ ).

We make the convention that P≤1 = P1. Bernstein’s inequality states that

‖P≤N f‖Lq(Rd) � N
d
p−

d
q ‖P≤N f‖Lp(Rd), 1≤ p≤ q≤ ∞. (18)

The same inequality holds if we replace P≤N by PN . As an immediate corollary, we
have

‖ψ(D− n)φ‖Lq(Rd) � ‖ψ(D− n)φ‖Lp(Rd), 1≤ p≤ q≤ ∞, (19)



Randomization on unbounded domains 13

for all n ∈ Z
d . This follows from applying (18) to φn(x) := e2π in·xψ(D−n)φ(x) and

noting that supp φ̂n ⊂ [−1,1]d . The point of (19) is that once a function is (roughly)
restricted to a cube, we do not need to lose any regularity to go from the Lq norm to
the Lp norm, q≥ p.

Proof of Proposition 1. Let q,r ≥ 2. We write Lq
T to denote Lq

t ([0,T ]). By Lemma 2
and (19), we have

(
E‖S(t)φω‖p

Lq
t Lr

x([0,T ]×Rd)

) 1
p ≤

∥∥∥‖S(t)φω‖Lp(Ω)

∥∥∥
Lq

T Lr
x

≤√p
∥∥∥‖ψ(D− n)S(t)φ‖�2

n

∥∥∥
Lq

T Lr
x

≤√p
∥∥∥‖ψ(D− n)S(t)φ‖Lr

x

∥∥∥
Lq

T �
2
n

�√p
∥∥∥‖ψ(D− n)S(t)φ‖L2

x

∥∥∥
Lq

T �
2
n

� T
1
q
√

p‖φ‖L2
x

for p ≥max(q,r). Then, (10) follows as in the proof of Lemma 3.

Proof of Proposition 2. Let (q,r) be Schrödinger admissible and r̃ ≥ r. Then,
proceeding as before, we have

(
E‖S(t)φω‖p

Lq
t Lr̃

x(R×Rd)

) 1
p �√p

∥∥∥‖ψ(D− n)S(t)φ‖Lr̃
x

∥∥∥
�2

nLq
t

�√p
∥∥∥‖ψ(D− n)S(t)φ‖Lq

t Lr
x

∥∥∥
�2

n

.

By Lemma 1,

�√p
∥∥‖ψ(D− n)φ‖L2

x

∥∥
�2

n
∼√p‖φ‖L2

x

for p ≥max(q, r̃). Finally, (11) follows as above.

Remark 7. The Cauchy problem (1) has also been studied for initial data in the
modulation spaces Mp,1

s for 1 ≤ p ≤ ∞ and s ≥ 0; see, for example, [4] and [52].
Thus, it is tempting to consider what happens if we randomize an initial condition
in a modulation space Mp,q

s . In this case, however, there is no improvement in the
Strichartz estimates in terms of integrability, i.e., p, hence, no improvement of well-
posedness with respect to Mp,q

s in terms of differentiability, i.e. in s. Indeed, by
computing the moments of the modulation norm of the randomized function (6),
one immediately sees that the modulation norm remains essentially unchanged due
to the outside summation over n. In the proof of Propositions 1 and 2, the averaging
effect of a linear combination of the random variables gn played a crucial role. For
the modulation spaces, we do not have such an averaging effect since the outside
summation over n forces us to work on a piece restricted to each cube, i.e., each
random variable at a time.
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Almost sure local well-posedness

Given φ ∈ Hs(Rd), let φω be its randomization defined in (6). In the following, we
consider the Cauchy problem (12) with random initial data u|t=0 = φω . By letting
z(t) = zω(t) := S(t)φω and v(t) := u(t)− S(t)φω , we can reduce (1) to{

i∂t v+Δv =±|v+ z|2(v+ z)

v|t=0 = 0.
(20)

By expressing (20) in the Duhamel formulation, we have

v(t) =∓i
∫ t

0
S(t− t ′)N (v+ z)(t ′)dt ′, (21)

where N (u) = |u|2u= uūu. Let η be a smooth cutoff function supported on [−2,2],
η ≡ 1 on [−1,1], and let ηT (t) = η

(
t
T

)
. Note that if v satisfies

v(t) =∓iη(t)
∫ t

0
S(t− t ′)ηT (t

′)N (ηv+ηT z)(t ′)dt ′ (22)

for some T � 1, then it also satisfies (21) on [−T,T ]. Hence, we consider (22) in
the following.

Given z(t) = S(t)φω , define Γ by

Γ v(t) =∓iη(t)
∫ t

0
S(t− t ′)ηT (t

′)N (ηv+ηT z)(t ′)dt ′. (23)

Then, the following nonlinear estimates yield Theorem 1.

Proposition 3. Let s ∈
(

3
5 ,1

)
. Given φ ∈ Hs(R4), let φω be its randomization

defined in (6), satisfying (7). Then, there exists σ = 1+, b = 1
2+, and θ = 0+ such

that for each small T � 1 and R > 0, we have

‖Γ v‖Xσ ,b ≤C1T θ (‖v‖3
Xσ ,b +R3), (24)

‖Γ v1−Γ v2‖Xσ ,b ≤C2T θ (‖v1‖2
Xσ ,b + ‖v2‖2

Xσ ,b +R2)‖v1− v2‖Xσ ,b (25)

outside a set of probability at most C exp
(
− c R2

‖φ‖2
Hs

)
.

We first present the proof of Theorem 1, assuming Proposition 3. Then, we prove
Proposition 3 at the end of this section.

Proof of Theorem 1. Let B1 denote the ball of radius 1 centered at the origin in Xσ ,b.
Then, given T � 1, we show that the map Γ is a contraction on B1. Given T � 1,
we choose R = R(T )∼ T−

γ
2 for some γ ∈ (0, 2θ

3 ) such that

C1T θ (1+R3)≤ 1 and C2T θ (2+R2)≤ 1
2
.
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Then, for v,v1,v2 ∈ B1, Proposition 3 yields

‖Γ v‖Xσ ,b ≤ 1,

‖Γ v1−Γ v2‖Xσ ,b ≤
1
2
‖v1− v2‖Xσ ,b

outside an exceptional set of probability at most

C exp

(
− c

R2

‖φ‖2
Hs

)
=C exp

(
− c

T γ‖φ‖2
Hs

)
.

Therefore, by defining ΩT to be the complement of this exceptional set, it follows
that for ω ∈ΩT , there exists a unique vω ∈ B1 such that Γ vω = vω . This completes
the proof of Theorem 1.

Hence, it remains to prove Proposition 3. Before proceeding further, we first
present some lemmata on the basic Xs,b estimates. See [5, 33, 48] for the basic
properties of the Xs,b spaces.

Lemma 5. (i) Linear estimates: Let T ∈ (0,1) and b ∈
( 1

2 ,
3
2

]
. Then, for s ∈R and

θ ∈
[
0, 3

2 − b
)
, we have

‖ηT (t)S(t)φ‖Xs,b(R×R4) � T
1
2−b‖φ‖Hs(R4), (26)∥∥∥∥η(t)

∫ t

0
S(t− t ′)ηT (t

′)F(t ′)dt ′
∥∥∥∥

Xs,b(R×R4)

� T θ‖F‖Xs,b−1+θ (R×R4).

(ii) Strichartz estimates: Let (q,r) be Schrödinger admissible and p ≥ 3. Then, for
b > 1

2 and N1 ≤ N2, we have

‖u‖Lq
t Lr

x(R×R4) � ‖u‖X0,b(R×R4), (27)

‖u‖Lp
t,x(R×R4) �

∥∥|∇|2− 6
p u
∥∥

X0,b(R×R4)
, (28)

‖PN1u1PN2u2‖L2
t,x(R×R4)

� N1

(
N1

N2

) 1
2

‖PN1u1‖X0,b(R×R4)‖PN2u2‖X0,b(R×R4). (29)

Recall that (27) follows from the Strichartz estimate (9) and (28) follows from
Sobolev inequality and (9), while (29) follows from a refinement of the Strichartz
estimate by Bourgain [8] and Ozawa-Tsutsumi [40].

As a corollary to Lemma 5, we have the following estimates.
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Lemma 6. Given small ε > 0, let ε1 = 2ε+. Then, for N1 ≤ N2, we have

‖u‖
L

3
1+ε1
t,x (R×R4)

� ‖u‖
X0, 1

2−2ε (R×R4)
, (30)

‖PN1u1PN2u2‖L2
t,x(R×R4)

�C(N1,N2)‖PN1u1‖
X0, 1

2 +(R×R4)
‖PN2u2‖

X0, 1
2−2ε (R×R4)

, (31)

where C(N1,N2) is given by

C(N1,N2) =

⎧⎨
⎩N

3
2+ε1+

1 N
− 1

2+ε1
2 if N1 ≤ N2,

N
− 1

2+5ε1+

1 N
3
2−3ε1

2 if N1 ≥ N2.

Proof. The first estimate (30) follows from interpolating (27) with q = r = 3 and
‖u‖L2

t,x
= ‖u‖X0,0 . The second estimate (31) follows from interpolating (29) and

‖PN1u1PN2u2‖L2
t,x
≤ ‖PN1u1‖L∞t,x‖PN2u2‖L2

t,x

� ‖PN1u1‖
X2+, 1

2 +‖PN2u2‖X0,0 .

This completes the proof of Lemma 6.

We are now ready to prove Proposition 3.

Proof of Proposition 3. We only prove (24) since (25) follows in a similar manner.
By Lemma 5 (i) and duality, we have

‖Γ v(t)‖Xσ ,b � T θ‖N (ηv+ηT z)‖Xσ ,b−1+θ

= T θ sup
‖v4‖X0,1−b−θ≤1

∣∣∣∣
∫∫

R×R4
〈∇〉σ

[
N (ηv+ηT z)

]
v4dxdt

∣∣∣∣. (32)

We estimate the right-hand side of (32) by performing case-by-case analysis of
expressions of the form: ∣∣∣∣

∫∫
R×R4

〈∇〉σ (w1w2w3)v4dxdt

∣∣∣∣, (33)

where ‖v4‖X0,1−b−θ ≤ 1 and wj = ηv or ηT z, j = 1,2,3. Before proceeding further,
let us simplify some of the notations. In the following, we drop the complex conju-
gate sign since it plays no role. Also, we often suppress the smooth cutoff function
η (and ηT ) from wj = ηv (and wj = ηT z) and simply denote them by v j (and z j,
respectively). Lastly, in most of the cases, we dyadically decompose wj, j = 1,2,3,
and v4 such that their spatial frequency supports are {|ξ j| ∼ Nj} for some dyadic
Nj ≥ 1 but still denote them by wj, j = 1,2,3, and v4.

Let b = 1
2 +ε and θ = ε for some small ε > 0 (to be chosen later) so that 1−b−

θ = 1
2 − 2ε . In the following, we set ε1 = 2ε+.
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Case (1): vvv case.
In this case, we do not need to perform dyadic decompositions and we divide the

frequency spaces into {|ξ1| ≥ |ξ2|, |ξ3|}, {|ξ2| ≥ |ξ1|, |ξ3|}, and {|ξ3| ≥ |ξ1|, |ξ2|}.
Without loss of generality, assume that |ξ1| � |ξ2|, |ξ3|. By L3L

6
1−ε1 L

6
1−ε1 L

3
1+ε1 -

Hölder’s inequality and Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

〈∇〉σ v1v2v3v4dxdt

∣∣∣∣≤ ‖〈∇〉σv1‖L3
t,x
‖v2‖

L
6

1−ε1
t,x

‖v3‖
L

6
1−ε1
t,x

‖v4‖
L

3
1+ε1
t,x

�
3

∏
j=1
‖v j‖

Xσ , 1
2 +‖v4‖

X0, 1
2−2ε �

3

∏
j=1
‖v j‖Xσ ,b

for σ ≥ 1+ ε1 = 1+ 2ε+.

Case (2): zzz case.
Without loss of generality, assume N3 ≥ N2 ≥ N1.

• Subcase (2.a): N2 ∼ N3.

By L
6

1−2ε1 L4L4L
3

1+ε1 -Hölder’s inequality and Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

z1z2〈∇〉σ z3v4dxdt

∣∣∣∣
� ‖z1‖

L
6

1−2ε1
t,x

‖〈∇〉 σ2 z2
∥∥

L4
t,x
‖〈∇〉 σ2 z3‖L4

t,x
‖v4‖

X0, 1
2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R3 outside
a set of probability

≤C exp

(
− c

R2

T
1−2ε1

3 ‖φ‖2
L2

)
+C exp

(
− c

R2

T
1
2 ‖φ‖2

Hs

)
(34)

provided that s > σ
2 . Note that s needs to be strictly greater than σ

2 due to the sum-
mations over dyadic blocks. For the convenience of readers, we briefly show how
this follows. In summing ‖〈∇〉 σ2 PN3 z3‖L4

t,x
over dyadic blocks in N3, we have

∑
N3≥1
dyadic

‖〈∇〉 σ2 PN3z3‖L4
t,x
≤
(
∑
N3

N0−
3

) 3
4 ‖〈∇〉 σ2 +PN3z3‖�4

N3
L4

t,x

=
(
∑
N3

N0−
3

) 3
4 ‖〈∇〉 σ2 +PN3z3‖L4

t,x�
4
N3

≤
(
∑
N3

N0−
3

) 3
4 ‖〈∇〉 σ2 +PN3z3‖L4

t,x�
2
N3

� ‖〈∇〉 σ2 +z3‖L4
t,x
,

where the last inequality follows from the Littlewood-Paley theory. By Proposition 1
with q = r = 4, we obtain the second term in (34) as long as s > σ

2 . Moreover, while
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the terms with z1 and z2 also suffer a slight loss of derivative, we can hide the loss
in N1 and N2 under the z3 term since N3 ≥ N1,N2. Similar comments also apply in
the sequel.

• Subcase (2.b): N3 ∼ N4 � N1,N2.

◦ Subsubcase (2.b.i): N1,N2 � N
1
3

3 .
We include the detailed calculation only in this case, with similar comments

applicable in the following. By Lemmata 5 (ii) and 6, with b = 1
2+ and δ = 0+,

we have∣∣∣∣
∫
R×R4

z1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖z1〈∇〉σ z3‖L2
t,x
‖z2v4‖L2

t,x

� N
3
2

1 N
− 1

2+σ
3 N

3
2+ε1+δ

2 N
− 1

2+ε1
4

3

∏
j=1
‖z j‖X0,b‖v4‖

X0, 1
2−2ε

� N
3
2−s

1 N
3
2+ε1−s+δ

2 N
− 1

2+σ−s
3 N

− 1
2+ε1

4

3

∏
j=1
‖z j‖Xs,b‖v4‖

X0, 1
2−2ε

By N1,N2,� N
1
3

3 , N3 ∼ N4, and Lemma 5 (i), we have

� T 0−N
− 5

3 s+σ+ 4
3 ε1+

1
3 δ

3

3

∏
j=1
‖PNjφ

ω‖Hs‖v4‖
X0, 1

2−2ε .

Here, we lost a small power of T in applying (26). Note that such a loss in T can
be hidden under T θ in (32) and does not cause a problem. Now, we want the power
of the largest frequency N3 to be strictly negative so that we can sum over dyadic
blocks. This requires

5
3

s > σ +
4
3
ε1. (35)

Provided this condition holds, using Lemma 3, we see that the contribution to (33)
in this case is at most � T 0−R3 outside a set of probability

≤C exp

(
− c

R2

‖φ‖2
Hs

)
.

◦ Subsubcase (2.b.ii): N2 � N
1
3

3 � N1.
By Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

z1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖z2‖L4
t,x
‖〈∇〉σ z3‖L4

t,x
‖z1v4‖L2

t,x

� T 0−N
3
2+ε1−s+

1 N−s
2 N

σ−s− 1
2+ε1

3 ‖PN1φ
ω‖Hs

3

∏
j=2
‖〈∇〉sz j‖L4

t,x
‖v4‖

X0, 1
2−2ε .
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Hence, by Lemma 3 and Proposition 1, the contribution to (33) in this case is at
most � T 0−R3 outside a set of probability

≤C exp

(
− c

R2

‖φ‖2
Hs

)
+C exp

(
− c

R2

T
1
2 ‖φ‖2

Hs

)

provided that (35) is satisfied.

◦ Subsubcase (2.b.iii): N1,N2 ≥ N
1
3

3 .

By L
9

2−ε1 L
9

2−ε1 L
9

2−ε1 L
3

1+ε1 -Hölder’s inequality and Lemmata 5 and 6, we have

∣∣∣∣
∫
R×R4

z1z2〈∇〉σ z3v4dxdt

∣∣∣∣� N
σ− 5

3 s
3

3

∏
j=1

∥∥〈∇〉sz j‖
L

9
2−ε1
t,x

‖v4‖
X0, 1

2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R3 outside
a set of probability

≤C exp

(
− c

R2

T
4−2ε1

9 ‖φ‖2
Hs

)

provided that
5
3

s > σ . (36)

Therefore, given s> 3
5 , we choose σ = 1+ and ε = 0+ for Case (2) such that (35)

and (36) are satisfied.

Case (3): vvz case.
Without loss of generality, assume N1 ≥ N2.

• Subcase (3.a): N1 � N3.

By L3L
6

1−ε1 L
6

1−ε1 L
3

1+ε1 -Hölder’s inequality and Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

〈∇〉σv1v2z3v4dxdt

∣∣∣∣� ‖v1‖
Xσ , 1

2+
‖v2‖

X1+ε1,
1
2 +‖z3‖

L
6

1−ε1
t,x

‖v4‖
X0, 1

2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R∏2
j=1

‖v j‖
Xσ , 1

2 + outside a set of probability

≤C exp

(
− c

R2

T
1−ε1

3 ‖φ‖2
H0+

)
(37)

provided that σ > 1+ ε1 = 1+ 2ε+. Note that we have ‖φ‖H0+ instead of ‖φ‖L2

in (37) due to the summation over N3.



20 Á. Bényi et al.

• Subcase (3.b): N3 ∼ N4 � N1 ≥ N2.
By Lemmata 5 and 6, we have∣∣∣∣

∫
R×R4

v1v2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖v1‖L4
t,x
‖〈∇〉σ z3‖L4

t,x
‖v2v4‖L2

t,x

� N
3
2+ε1−σ+

2 Nσ−s
3 N

− 1
2+ε1

4 ‖v1‖
X

1
2 , 1

2 +‖v2‖
Xσ , 1

2 +‖〈∇〉sz3‖L4
t,x
‖v4‖

X0, 1
2−2ε

� N2−2σ+ε1+
1 N

σ−s− 1
2+ε1

3 ‖v1‖
Xσ , 1

2+
‖v2‖

Xσ , 1
2 +‖〈∇〉sz3‖L4

t,x
‖v4‖

X0, 1
2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R∏2
j=1

‖v j‖
Xσ , 1

2 +
outside a set of probability

≤C exp

(
− c

R2

T
1
2 ‖φ‖2

Hs

)

provided that 2−2σ+ε1 < 0 and s > σ− 1
2 +ε1. Given s > 1

2 , these conditions are
satisfied by taking σ = 1+ and ε = 0+.

Case (4): vzz case.
Without loss of generality, assume N3 ≥ N2.

• Subcase (4.a): N1 � N3.

By L3L
6

1−ε1 L
6

1−ε1 L
3

1+ε1 -Hölder’s inequality and Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

〈∇〉σ v1z2z3v4dxdt

∣∣∣∣� ‖v1‖
Xσ , 1

2 +‖z2‖
L

6
1−ε1
t,x

‖z3‖
L

6
1−ε1
t,x

‖v4‖
X0, 1

2−ε
.

Hence, by Proposition 1, the contribution to (33) in this case is at most � R2‖v1‖

Xσ , 1
2 + outside a set of probability

≤C exp

(
− c

R2

T
1−ε1

3 ‖φ‖2
H0+

)
.

• Subcase (4.b): N3 � N1.
First, suppose that N2 ∼ N3. Then, by Lemmata 5 and 6 (after separating the

argument into two cases: N1 ≤ N4 or N1 ≥ N4), we have∣∣∣∣
∫
R×R4

v1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖〈∇〉 σ2 z2‖L4
t,x
‖〈∇〉 σ2 z3‖L4

t,x
‖v1v4‖L2

t,x

� N1+2ε1−σ+
1 Nσ−2s

3 ‖v1‖
Xσ , 1

2+
‖〈∇〉sz2‖L4

t,x
‖〈∇〉sz3‖L4

t,x
‖v4‖

X0, 1
2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R2‖v1‖

Xσ , 1
2 +

outside a set of probability
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≤C exp

(
− c

R2

T
1
2 ‖φ‖2

Hs

)

provided that σ > 1+ 2ε1 and s > 1
2σ . Given s > 1

2 , these conditions are satisfied
by taking σ = 1+ and ε = 0+.

Hence, it remains to consider the case N3 ∼ N4 � N1,N2.

◦ Subsubcase (4.b.i): N1,N2 � N
1
3

3 .
By Lemmata 5 and 6, we have∣∣∣∣

∫
R×R4

v1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖v1〈∇〉σ z3‖L2
t,x
‖z2v4‖L2

t,x

� T 0−N
3
2−σ

1 N
3
2+ε1−s+

2 N
σ−s− 1

2
3 N

− 1
2+ε1

4

×‖v1‖
Xσ , 1

2 +

3

∏
j=2
‖PNjφ

ω‖Hs‖v4‖
X0, 1

2−2ε

� T 0−N
2
3σ−

4
3 s+ 4

3 ε1+

3 ‖v1‖
Xσ , 1

2 +

3

∏
j=2
‖PNjφ

ω‖Hs‖v4‖
X0, 1

2−2ε .

Hence, by Lemma 3, the contribution to (33) in this case is at most � T 0−R2‖v1‖

Xσ , 1
2 +

outside a set of probability

≤C exp

(
− c

R2

‖φ‖2
Hs

)

provided that

s >
1
2
σ + ε1. (38)

Given s > 1
2 , this condition is satisfied by taking σ = 1+ and ε = 0+.

◦ Subsubcase (4.b.ii): N1 � N
1
3

3 � N2.
By Lemmata 5 and 6, we have∣∣∣∣

∫
R×R4

v1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖z2‖L4
t,x
‖〈∇〉σ z3‖L4

t,x
‖v1v4‖L2

t,x

� N
3
2+ε1−σ+

1 N−s
2 N

σ−s− 1
2+ε1

3 ‖v1‖
Xσ , 1

2+

3

∏
j=2
‖〈∇〉sz j‖L4

t,x
‖v4‖

X0, 1
2−2ε

� N
2
3σ−

4
3 s+ 4

3 ε1+

3 ‖v1‖
Xσ , 1

2 +

3

∏
j=2
‖〈∇〉sz j‖L4

t,x
‖v4‖

X0, 1
2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R2‖v1‖

Xσ , 1
2 +

outside a set of probability
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≤C exp

(
− c

R2

T
1
2 ‖φ‖2

Hs

)

provided that (38) is satisfied.

◦ Subsubcase (4.b.iii): N2 � N
1
3

3 � N1.
By Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

v1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖v1‖L3
t,x
‖〈∇〉σ z3‖L6

t,x
‖z2v4‖L2

t,x

� T 0−N−σ1 N
3
2+ε1−s+

2 N
σ−s− 1

2+ε1
3

×‖v1‖
Xσ , 1

2 +
‖PN2φ

ω‖Hs‖〈∇〉sz3‖L6
t,x
‖v4‖

X0, 1
2−2ε

� T 0−N
2
3σ−

4
3 s+ 4

3 ε1+

3 ‖v1‖
Xσ , 1

2 +‖PN2φ
ω‖Hs‖〈∇〉sz3‖L6

t,x
‖v4‖

X0, 1
2−2ε .

Hence, by Lemma 3 and Proposition 1, the contribution to (33) in this case is at
most � T 0−R2‖v1‖

Xσ , 1
2 + outside a set of probability

≤C exp

(
− c

R2

‖φ‖2
Hs

)
+C exp

(
− c

R2

T
1
3 ‖φ‖2

Hs

)

provided that (38) is satisfied.

◦ Subsubcase (4.b.iv): N1,N2 � N
1
3

3 .

By L3L
6

1−ε1 L
6

1−ε1 L
3

1+ε1 -Hölder’s inequality and Lemmata 5 and 6, we have∣∣∣∣
∫
R×R4

v1z2〈∇〉σ z3v4dxdt

∣∣∣∣� ‖v1‖L3
t,x
‖z2‖

L
6

1−ε1
t,x

‖〈∇〉σ z3‖
L

6
1−ε1
t,x

‖v4‖
L

3
1+ε1
t,x

� N−σ1 N−s
2 Nσ−s

3 ‖v1‖
Xσ , 1

2 +

3

∏
j=2

‖〈∇〉sz j‖
L

6
1−ε1
t,x

‖v4‖
X0, 1

2−2ε

� N
2
3σ−

4
3 s

3 ‖v1‖
Xσ , 1

2 +

3

∏
j=2
‖〈∇〉sz j‖

L
6

1−ε1
t,x

‖v4‖
X0, 1

2−2ε .

Hence, by Proposition 1, the contribution to (33) in this case is at most � R2‖v1‖

Xσ , 1
2 + outside a set of probability

≤C exp

(
− c

R2

T
1−ε1

3 ‖φ‖2
Hs

)

provided that s > 1
2σ . Given s > 1

2 , this condition is satisfied by setting σ = 1+.
This completes the proof of Proposition 3.
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Bridging erasures and the infrastructure
of frames

David Larson and Sam Scholze

Abstract The purpose of this chapter is to give a detailed tutorial-style exposition
of a method we have recently discovered for complete recovery from frame and
sampling erasures by inverting a matrix of dimension the cardinality of the erasure
set. This is usually simpler and more efficient than inverting the frame operator of
the remaining coefficients because the erasure set is usually much smaller than the
dimension of the space. The method is not hard and can be easily implemented on a
computer, even for infinite frames and sampling schemes as long as one is dealing
with only a finite set of erasures. The set of erasures that can be handled in this
way can be very large. We call the method nilpotent bridging. We introduced this
method in a recent research article, along with some new classification results and
methods of measuring redundancy that are based on the matricial infrastructure of
a dual frame pair: the set of all submatrices of the cross-Gramian of the pair. The
first author gave a talk on this material in a conference at Vanderbilt University
in May 2014 entitled “Building bridges (reconstruction from frame and sampling
omissions)”, and this chapter is based on the notes from that talk. In the process
of developing the mathematics underlying the bridging technique, we discovered a
second method for recovery from erasures in finitely many steps, and this chapter
will also discuss this alternate method.
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Introduction

In a recent research article [25] we gave some new methods for perfect reconstruc-
tion from frame and sampling erasures in a small number of steps. This method is
efficient in the sense that it only requires a matrix inversion of size L×L, where L
is the cardinality of the erasure set. The purpose of this chapter is to give a detailed
tutorial-style exposition of this. By bridging an erasure set we mean replacing the
erased Fourier coefficients of a function with respect to a frame by appropriate linear
combinations of the non-erased coefficients. We prove that if a minimal redundancy
condition is satisfied bridging can always be done to make the reduced error oper-
ator nilpotent of index 2 using a bridge set of indices no larger than the cardinality
of the erasure set. This results in perfect reconstruction of the erased coefficients in
one final matricial step. We also obtained a new direct formula for the inverse of an
invertible partial reconstruction operator. This leads to a second method of perfect
reconstruction from frame and sampling erasures in a small number of steps. This
gives an alternative to the bridging method for many (but not all) cases. Our second
method also only requires a matrix inversion of the same size as the cardinality of
the erasure set. The methods we use employ matrix techniques only of the order
of the cardinality of the erasure set and are applicable to rather large finite erasure
sets for infinite frames and sampling schemes as well as for finite frame theory.
Some new classification theorems for frames are obtained and some new methods
of measuring redundancy are introduced based on our bridging theory.

When the first author served in the US Air Force a number of years ago, his unit
worked on projects which essentially amounted to processing numerical data col-
lected by instruments onboard aircraft for the purpose of performing mathematical
and statistical computations relevant to photomapping large areas of rough terrain.
In a given project, it was not uncommon that a number of points of data would be
erased, omitted, or otherwise corrupted, and a work-around-bad-points procedure
became routine and built into the data processing protocol. The data would be col-
lected on a timeline at regular intervals, or at lattice points of a grid, so a common
plan would be to simply replace a bad point with the numerical averaging of neigh-
boring good points, according to an adopted protocol scheme that would ensure that
the same data would be processed in exactly the same way by different units em-
ploying the same protocol. We will use the term bridging for this type of procedure.
At that time, choosing an averaging protocol seemed to belong to the art of the sub-
ject rather than to the science because of the difficulty of proving mathematically
that one choice of a protocol scheme was any better in some strong sense than an-
other. The purpose of this chapter and the recent article [25] on which it is based
is to show that a special bridging method we call nilpotent bridging can be used
to effectively and efficiently achieve perfect reconstruction from erasures in cases
where frame and sampling techniques are employed.

Frame and sampling techniques are often used to analyze and digitize signals
and images when they are represented as vectors or functions in a Hilbert space.
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There is a large literature on the pure and applied mathematics of this subject (cf.
[3, 10, 12, 14, 15, 19]). A number of articles have been written on problems and
methods for reconstruction from erasures (cf. [5, 8, 9, 17, 22]).

Let { f j} be a Parseval frame for a Hilbert spaceH , or more generally let { f j,g j}
be a dual frame pair. (See definitions below.) Let f be a vector in H , and let Λ be
a finite subset of the index set. If f is analyzed with {g j} and if the frame coef-
ficients

〈
f ,g j

〉
for Λ are erased, then by bridging the erasures we mean replacing

the erased coefficients (
〈

f ,g j
〉

for j ∈ Λ ) with appropriate linear combinations of
the non-erased coefficients (

〈
f ,g j

〉
for j ∈ Λ c). As mentioned above, we showed

that bridging can always be done to make the resulting reduced error operator nilpo-
tent of index 2 using a bridge set no larger than the cardinality of the erasure set.
From this, an algorithm for perfect reconstruction from erasures follows in one final
simple step. The resulting algorithms use only finite matrix methods of order the car-
dinality of the erasure set. Frames can be infinite, such as Gabor and wavelet frames.
The only delimiter in a computational sense seems to be the size of the erasure set,
which we take to be finite in this chapter. This method adapts equally well to sam-
pling theory, such as Shannon-Whittaker sampling theory [4, 18, 29]. In the process
of developing the mathematics underlying the bridging technique, we discovered a
second, more direct method for recovery from erasures in finitely many steps, and
we will also discuss this direct method. In [25] we also proved some results about
dual frame pairs which are strongly robust with respect to bridging. These are the
dual frame pairs we defined to have full skew-spark. We describe our results and
include the proof of a new result for Parseval frames (Theorem 7) that was not in-
cluded in [25]. We wanted to include it in [25] but the proof simply eluded us at the
time of writing it. We have since worked out a proof and are pleased to include it in
this chapter.

In government, industrial, and academic organizations, the word “infrastructure”
basically means the set of ways in which separate components of an organization or
a system relate to each other and reinforce each other. In architecture the term refers
to the interrelationship between the different components of a building, the system
of beams, weight-bearing walls, and the foundation, that keeps it standing. An or-
ganization which is simply a union of components that have no strong relationship
with each other is not very “robust”. A building with this kind of problem will col-
lapse. If a component can be “down” for a time with the slack somehow picked up
by the other components, this means the system has a degree of robustness.

For frames, loosely put, infrastructure should translate to redundancy. The con-
cept of redundancy has been widely studied. In particular, the spark of a frame
(cf. [1, 13]) is one measure of redundancy. If F := { f j} j∈J, or more generally if
(F,G) := { f j ,g j} j∈J, is a dual frame pair (see definitions below), then for each
pair of subsets Λ and Ω of the index set J we can consider the cross-Gramian
matrix (〈 fk,g j〉)k∈Λ , j∈Ω and examine its properties. These are just the submatrices
of the full cross-Gramian matrix Gr(F,G) := (〈 fk,g j〉)k, j∈J, which is an idempo-
tent (not-necessarily-self-adjoint projection) since (F,G) is a dual frame pair. We
define the (matricial) infrastructure of a dual frame pair to be the set of all sub-
matrices of Gr(F,G). Each such submatrix gives a concrete matricial link between
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subcollections FΛ := { fk}k∈Λ and GΩ := {g j} j∈Ω . This is the coefficient matrix
(the bridge matrix) for a special system of linear equations (6). When this system
has a solution then Ω strongly reinforcesΛ in the sense that if the frame coefficients
of a signal over Λ are erased, the coefficients over Ω can be used to efficiently rec-
over them. In the case where |Λ | = |Ω | so the bridge matrix is square, invertibility
of the bridge matrix translates to strong infrastructure and leads to our concept of
skew-spark as a measure of redundancy.

As with the article [25], we would like to thank Deguang Han for useful dis-
cussions on this work, and for piquing our interest in frame erasure problems in
the recent interesting article [27]. We thank Stephen Rowe for useful Matlab and
programming advice in the experimental phases of this work. Many of our math-
ematical results were obtained after numerous computer experiments, and we take
the opportunity in this chapter to provide some details on these. Lastly, we thank
the referees of [25] for providing several helpful suggestions for that paper that we
have also incorporated in this chapter.

Preliminaries

A frame F for a Hilbert space H is a sequence of vectors { f j} ⊂H indexed by a
finite or countable index set J for which there exist constants 0 < A ≤ B < ∞ such
that, for every f ∈H ,

A‖ f‖2 ≤∑
j∈J
|〈 f , f j〉|2 ≤ B‖ f‖2. (1)

The constants A and B are known as the lower and upper frame bounds, respectively.
The supremum over all lower frame bounds is called the optimal lower frame bound,
and the infimum over all upper frame bounds is called the optimal upper frame
bound. If the frame { f j} j∈J has optimal frame bounds A0 and B0 and A0 = B0, we
call { f j} j∈J a tight frame. If A0 = B0 = 1, { f j} j∈J is called a Parseval frame. If
we only require that a sequence { f j} satisfies the upper bound condition in (1),
then { f j} is called a Bessel sequence. A frame which is a Schauder basis is called
a Riesz basis. Orthonormal bases are special cases of Parseval frames. A Parseval
frame { f j} for a Hilbert space H is an orthonormal basis if and only if each f j is a
unit vector.

The analysis operatorΘ for a Bessel sequence { f j} is a bounded linear operator
from H to �2(J) defined by

Θ f =∑
j∈J
〈 f , f j〉e j, (2)

where {e j} is the standard orthonormal basis for �2(J). It is easily verified that

Θ ∗e j = f j, ∀ j ∈ J.
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The Hilbert space adjointΘ ∗ is called the synthesis operator for { f j}. The positive
operator S :=Θ ∗Θ : H →H is called the frame operator or sometimes the Bessel
operator if the Bessel sequence is not a frame, and we have

S f =∑
j∈J
〈 f , f j〉 f j , ∀ f ∈H . (3)

In operator theory, rank-one operators are often represented as tensor products of
vectors, and we will find it convenient to use this standard representation throughout
this chapter. The notation x⊗ y will denote the operator that maps a vector z to the
vector 〈z,y〉x. So, (x⊗ y)(z) = 〈z,y〉x. Thus we can write (3) as

S =∑
j∈J

f j⊗ f j.

Similarly, Θ = ∑ j∈J e j ⊗ f j and Θ ∗ = ∑ j∈J f j ⊗ e j. The operator ΘΘ ∗ : �2(J)→
�2(J) is called the Gramian operator (or Gram Matrix) and is denoted Gr(F). Then,

Gr(F) = ∑
j,k∈J

〈
fk, f j

〉
e j⊗ ek = (

〈
fk, f j

〉
) j,k.

An alternative to rank-one notation is outer product notation. Using this, we
can write S = ∑ f j f ∗j , Θ = ∑e j f ∗j , Θ ∗ = ∑ f je∗j , and Gr(F) = ∑ j,k

〈
fk, f j

〉
e je∗k .

Throughout this chapter we will stick with the rank-one notation.
If { f j} j∈J forms a frame, from (3) we obtain the reconstruction formula (or frame

decomposition)

f =∑
j∈J
〈 f ,S−1 f j〉 f j =∑

j∈J
〈 f , f j〉S−1 f j ∀ f ∈H ,

where the convergence is in the norm of H . The frame {S−1 f j} is called the canon-
ical or standard dual of { f j}.

In the case that { f j} is a Parseval frame for H , we have S = I and hence
f = ∑ j∈J〈 f , f j〉 f j , ∀ f ∈H . More generally, if a Bessel sequence {g j} satisfies
a reconstruction formula

f =∑
j∈J
〈 f ,g j〉 f j ∀ f ∈H ,

then {g j} is called an alternate dual of { f j}. (Hence {g j} is also necessarily a
frame.) The canonical and alternate duals are often simply referred to as duals, and
(F,G) := { f j,g j} j∈J is called a dual frame pair. The second frame G in the ordered
pair will be called the analysis frame and the first frame F will be called the synthesis
frame.

It will be convenient to define a frame pair which is not necessarily a dual frame
pair to be simply a pair of frames F = { f j} and G = {g j} indexed by the same set J
for which the operator S̃ f = ∑〈 f ,g j〉 f j is invertible. We will call the operator S̃ the
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cross-frame operator for F and G, and the operator Gr(F,G) = ∑〈 fk,g j〉e j⊗ ek the
cross-Gramian. If { f1, · · · , fL} and {g1, · · · ,gL} are finite sets of vectors, we will
write Gr({ f1, · · · , fL},{g1, · · · ,gL}) for the cross-Gram matrix,

Gr({ f1, · · · , fL},{g1, · · · ,gL}) =
(〈

fk,g j
〉)

j,k :=

⎛
⎜⎜⎜⎝
〈 f1,g1〉 〈 f2,g1〉 · · · 〈 fL,g1〉
〈 f1,g2〉 〈 f2,g2〉 · · · 〈 fL,g2〉

...
...

. . .
...

〈 f1,gL〉 〈 f2,gL〉 · · · 〈 fL,gL〉

⎞
⎟⎟⎟⎠ .

(4)

We will use this notation mainly when { f j} and {g j} are frames or subsets of
frames. It is useful to note that if { f1, · · · , fL} and {g1, · · · ,gL} are two bases for
the same Hilbert space H , then Gr({ f1, · · · , fL},{g1, · · · ,gL}) is invertible. Indeed,
if {e j} is an orthonormal basis for H , and A and B are invertible matrices with
Ae j = f j and Be j = g j, then Gr({ f1, · · · , fL},{g1, · · · ,gL}) is just the matrix of B∗A
with respect to {e j}.

Throughout this chapter, we will include many blocks of Matlab code that im-
plement our algorithms. We utilize a few of Matlab’s built in shortcuts to help with
the creation of vectors. The colon notation a : k : b creates the vector (a,a+ k,a+
2k, · · · ,b). The shortcuts zeros(n,1) and rand(n,1) create the n× 1 column vectors
consisting of zeros, and random numbers from the interval (0,1), respectively. For
n× 1 or 1× n column vectors, v and w, the following table describes some of the
built in Matlab functions we will use.

norm(v) Computes the �2 norm of v.
dot(v,w) Computes the dot product of v and w.
min(v) Finds the smallest component of the vector v.
max(v) Finds the largest component of the vector v.
abs(v) Returns a vector containing the absolute values of the components

of v.
setdi f f (v,w) Computes the set difference of v and w.

To create an m×n matrix consisting of either zeros or randomly selected numbers
from the interval (0,1) we use the shortcuts zeros(m,n) and rand(m,n), respectively.
To create the n× n identity matrix, we use the shortcut eye(n). The following table
lists a few of the basic Matlab commands for m× n matrices A and B. We assume
that the sizes of the matrices are valid for each of the following commands.

norm(A) Computes the operator norm of A.
A\B Computes A−1B.
size(A) Returns the vector (m,n) for an m× n matrix A.
rank(A) Computes the rank of the matrix A.
eigs(A) Computes a vector that contains the largest eigenvalues in magnitude.

To access the submatrix of a matrix A that contains the rows indexed by the vector
v and the columns indexed by the vector w, we use the code A(v,w). If we would like
either all of the rows or all of the columns, we use A(:,w) or A(v, :), respectively.
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The function sinc we use is a user-defined function file that computes sinc(x) for
a number x or applies the sinc function to every component of a vector. We use the
convention sinc(x) = sinx

x for x �= 0 and sinc(x) = 1 for x = 0.
Lastly, in Matlab for loops are indexed by vectors. For example to loop over the

indices 1,5,7,8, and 25, we would use the code f or( j = [1,5,7,8,25]). For more on
Matlab, we refer the reader to [16].

Let F = { f j} j∈J be a frame. An erasure set for F is defined to be simply a
finite subset of J. We say that an erasure set Λ for a frame F satisfies the minimal
redundancy condition if span{ f j : j �∈Λ} =H . This is equivalent to the condition
that the reduced sequence { f j : j ∈Λ c} is still a frame (cf. Theorem 5.4.7 in [14]).

Most of our work will concern dual frame pairs. If (F,G) = { f j,g j} j∈J is a dual
frame pair, then as we did above for single frames, we define an erasure set for
(F,G) to be simply a finite subset of J. We say that Λ satisfies the minimal re-
dundancy condition for the dual frame pair (F,G) if span{g j : j �∈ Λ} = H (or
equivalently if {g j : j ∈ Λ c} is still a frame). We point out that the minimal redun-
dancy condition for a dual frame pair (F,G) as we have defined it is a condition
on only the analysis frame G. The redundancy properties of the synthesis frame F
play a role here only in that it is required to be a dual frame to G. For the special
case where G is the standard dual of F , F and G have the same linear redundancy
properties. The Parseval frame case, where F = G, is a special case of this.

For a dual pair (F,G), ifΛ satisfies the minimal redundancy condition, then since
{g j : j ∈Λ c} is a frame for H it has some frame dual (in general many duals) that
will yield the reconstruction of f from the coefficients over Λ c, so there is enough
information in {

〈
f ,g j

〉
: j ∈ Λ c} to reconstruct f . On the other hand if Λ fails

the minimal redundancy condition then some nonzero vector f will be orthogonal
to g j for all j ∈ Λ c, and hence no reconstruction of f is possible using only the
coefficients {

〈
f ,g j

〉
: j ∈ Λ c}. This justifies the use of the word “minimal” in the

description of the minimal redundancy condition.
Let F be a Parseval frame. If Λ is an erasure set which satisfies the minimal

redundancy condition, then the partial reconstruction operator RΛ :=∑ j∈Λ c f j⊗ f j

is the frame operator for the reduced frame { f j} j∈Λ c , hence it is invertible. Let
fR = RΛ f be the partial reconstruction of the vector f . It is possible to reconstruct
f from the “good” Fourier coefficients by f = R−1

Λ fR. However, given a dual frame
pair (F,G) indexed by J = {1,2, · · · ,N} and an erasure set Λ satisfying the mini-
mal redundancy condition, the partial reconstruction operator RΛ := ∑ j∈Λ c f j ⊗ g j

need not be invertible. In fact invertibility of RΛ can fail even if both F and G
separately satisfy the minimal redundancy condition for Λ . The following simple
example shows that this can happen and RΛ can even be the zero operator.

Example 1. Let { f j,g j}N
j=1 be a dual frame pair. Suppose

f j = f j+N = f j+2N 1≤ j ≤ N

g j+N = −g j 1≤ j ≤ N

g j+2N = g j 1≤ j ≤ N.
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Then, it is easily verified that { f j ,g j}3N
j=1 is a dual frame pair, andΛ = {1,2, · · · ,N}

satisfies the minimal redundancy condition with respect to both frames. However,

RΛ =
3N

∑
j=N+1

f j⊗g j =
2N

∑
j=N+1

f j⊗g j +
3N

∑
j=2N+1

f j⊗g j =
N

∑
j=1

f j⊗ (−g j)+
N

∑
j=1

f j⊗g j = 0.

�

Even when RΛ is invertible, computing R−1
Λ can be a computationally costly

process. The error for the partial reconstruction is fE = f − fR, and the associated
error operator for the partial reconstruction is EΛ = I−RΛ = ∑ j∈Λ f j ⊗ g j. Then,
R−1
Λ = (I−EΛ )

−1, and if the norm, or more generally the spectral radius of EΛ , is
strictly less than 1 then R−1

Λ can be computed using the Neumann series expansion
R−1
Λ = I+E +E2 + · · ·= ∑∞

j=0 E j.
For certain very special cases (F,G), with corresponding erasure set Λ , the error

operator EΛ will be nilpotent of index 2 (i.e., E2
Λ = 0) such as the example below.

In this case, R−1
Λ = I + EΛ , and moreover, the error fE of f can be obtained by

applying the error operator to the partial reconstruction fR instead of f . (That is,
fE = EΛ f = EΛ ( fE + fR) = E2

Λ f +EΛ fR = EΛ fR.)

Example 2. Let {e1,e2} be the standard orthonormal basis for C2. Let
F = {e1,−e1,e1,e2} and G = {e2,e2,e1,e2}. Let Λ = {1}. Then, EΛ = e1⊗ e2. So,

E2
Λ = (e1⊗ e2)(e1⊗ e2) = 〈e1,e2〉 (e1⊗ e2) = 0.

Therefore, R−1
Λ = I +EΛ . �

Bridging

Let (F,G) be a dual frame pair for a Hilbert space H . Let Λ be an erasure set,
Ω ⊂ Λ c, and f ∈ H . The main idea behind bridging is to replace each erased

coefficient
〈

f ,g j
〉

for j ∈Λ with
〈

f ,g′j

〉
for g′j ∈ span{gk : k∈Ω}. (That is,

〈
f ,g′j

〉
is a weighted average of the 〈 f ,gk〉 for k ∈ Ω .) The point of this preconditioning is
to make the inverse problem of recovering f more efficient than simply inverting
RΛ . There are many ways to select the g′j, and we will summarize some of these
strategies after we introduce some useful terminologies.

The partial reconstruction with bridging is

f̃ = fR + fB,

where fB = ∑ j∈Λ

〈
f ,g′j

〉
f j. We call fB the bridging supplement and BΛ :=

∑ j∈Λ f j ⊗ g′j the bridging supplement operator. The reduced error is fẼ := f − f̃ ,

and the associated reduced error operator is ẼΛ = I−RΛ −BΛ . We have
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ẼΛ f = fẼ = ∑
j∈Λ

〈
f ,g j− g′j

〉
f j .

There are two natural types of bridging methods:

• metric bridging. In this case we bridge by attempting to optimize the norm (or
the Hilbert-Schmidt norm) of the reduced error operator. There has been some
work relating to this in the literature (cf. [7]). Perfect reconstruction is not the
goal of metric bridging.

• spectral bridging. In this case we bridge by attempting to optimize the spectral
properties of the reduced error operator.

(1) Nilpotent bridging is the special case of spectral bridging where we bridge
the erased coefficients to make the reduced error operator nilpotent. In this
case the Neumann series for the inverse of the reduced partial reconstruc-
tion operator is a finite sum, so perfect reconstruction can be obtained in
finitely many steps. By k-nilpotent bridging we mean that we bridge to
make the reduced error operator nilpotent of index k. Then, 2-nilpotent
bridging is the best possible case from the point of view of simplicity of
computations.

(2) Cardinal spectral reduction is another case of spectral bridging. The goal
of this method is to decrease the number of nonzero eigenvalues of the
reduced error operator. When we choose a bridge set with smaller than
optimal cardinality, cardinal spectral reduction occurs naturally.

(3) Radial spectral reduction is the last case of spectral bridging. Here the goal
is to reduce the spectral radius of the reduced error operator (cf. [27]).

In [25] we showed that 2-nilpotent bridging is always possible with |Ω | ≤ |Λ |
whenever Λ satisfies the minimal redundancy condition. Moreover, explicit formu-
las for the bridging and for the resultant perfect reconstruction were given. Using
a smaller than optimal bridge set yields cardinal spectral reduction in a systematic
way (see Theorem 4). At the outset of the authors’ investigation of frame erasures,
radial spectral reduction was the goal, and in this respect this project was inspired
by the beautiful paper [27]. We ran into some difficulty here, but we got around
the problem of reducing the spectral radius by figuring out that by using an optimal
bridge set we can actually make the spectral radius zero. Currently the authors’ only
way of systematically reducing the spectral radius of the error operator is to actually
make it zero. It is possible that a method could be devised to systematically shrink
the spectral radius by choosing an appropriate much smaller bridge set. Our present
results yield that such underbridging yields cardinal spectral reduction, but we do
not know how to do it to actually shrink the spectral radius. This is another direction
to pursue.
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2-Nilpotent Bridging

Let (F,G) be a dual frame pair for a Hilbert space H with erasure set Λ and corre-
sponding bridge set Ω . Recall that our reduced error operator is

ẼΛ = ∑
j∈Λ

f j⊗ (g j− g′j)

for some choice of g′j ∈ span{g j : j ∈Ω}. We wish to make the reduced error oper-
ator nilpotent of index 2. To do so, it is easily verified that

f j ⊥ (gk− g′k) ∀ j,k ∈Λ (5)

forces E2
Λ = 0. So, writing

g′k = ∑
�∈Ω

c(k)� g�

we seek coefficients c(k)� so that (5) is satisfied. We have

0 =

〈
f j ,gk− ∑

�∈Ω
c(k)� g�

〉
=
〈

f j,gk
〉
− ∑

�∈Ω
c(k)�

〈
f j,g�

〉
.

For each k ∈Λ , we obtain a system of |Λ | equations with |Ω | unknowns:

〈
f j ,gk

〉
= ∑

�∈Ω
c(k)�

〈
f j ,g�

〉
.

If we enumerate Λ = {λ j}L
j=1 and Ω = {ω j}M

j=1 we get the matrix equation

⎛
⎜⎜⎜⎝
〈

fλ1
,gω1

〉 〈
fλ1

,gω2

〉
· · ·

〈
fλ1

,gωM

〉〈
fλ2

,gω1

〉 〈
fλ2

,gω2

〉
· · ·

〈
fλ2

,gωM

〉
...

...
. . .

...〈
fλL

,gω1

〉 〈
fλL

,gω2

〉
· · ·

〈
fλL

,gωM

〉

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c(k)ω1

c(k)ω2
...

c(k)ωM

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
〈

fλ1
,gk

〉〈
fλ2

,gk
〉

...〈
fλL

,gk
〉

⎞
⎟⎟⎟⎠ (6)

for all k ∈Λ . We call the matrix in (6) the bridge matrix and denote it B(F,G,Λ ,Ω).
Since the bridge matrix does not change depending on k, we can solve for all of the
coefficients simultaneously with the equation

(〈
fλ j

,gωk

〉)
j,k

(
cλk
ω j

)
j,k

=
(〈

fλ j
,gλk

〉)
j,k
. (7)

We can rewrite this equation as

B(F,G,Λ ,Ω)C = B(F,G,Λ ,Λ), (8)
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where C denotes our coefficient matrix (actually, C is the matrix of complex conju-

gates of the coefficients c(λk)
ω j in (7)).

Remark 1. (1) The transpose of the bridge matrix B(F,G,Λ ,Ω) is a skew (i.e.,
diagonal-disjoint) minor of the cross-Gram matrix Gr(F,G) of the frames F and
G, and the transpose of B(F,G,Λ ,Λ) is a principal minor of Gr(F,G).

(2) The form of the bridge matrix in equation (6) depends on the particular enu-
merations one takes of Λ and Ω . However, for two different enumerations one
bridge matrix will transform into the other by interchanging appropriate rows
and columns, and so the norm and the rank of the matrices will be the same. In
particular, one will be invertible if and only if the other is.

Given a dual frame pair (F,G), and an erasure set Λ , a bridge set Ω is said to
satisfy the robust bridging condition (or Ω is a robust bridge set) if equation (8) has
a solution.

To get an idea of what this means, consider the case of one erasure. Let Λ = {k},
and choose a set Ω = {�}. Then, g′k = cg�. For Nilpotent bridging, we require that〈

fk,gk− g′k
〉
= 0. In solving for c, we get

0 =
〈

fk,gk− g′k
〉
= 〈 fk,gk〉− c〈 fk,g�〉 .

So, if 〈 fk,g�〉 �= 0, then Ω is a robust bridge set for Λ and

g′k =
〈gk, fk〉
〈g�, fk〉

g�. (9)

In particular any singleton set {�} is a robust bridge set for Λ provided 〈 fk,g�〉 �= 0.
So, in a suitably random frame, any singleton set disjoint from Λ will be a robust
bridge set. �

Now, given f ∈H , recall that f = fẼ + f̃ . However, ẼΛ ( f − f̃ ) = Ẽ2
Λ f = 0.

Thus, fẼ = ẼΛ f̃ , and we can reconstruct f from the good Fourier coefficients by

f = f̃ + ẼΛ f̃ . (10)

Furthermore, fB ∈ span{ f j : j ∈Λ}, so by (5), ẼΛ fB = 0. Therefore, to reconstruct
f , we have

f = f̃ + ẼΛ fR. (11)

A simple algorithm for erasure recovery using 2-nilpotent bridging

By combining 2-nilpotent bridging and the final computational step using the re-
duced (2-nilpotent) error operator, we can write down a simple algorithm for ac-
complishing perfect reconstruction (or recovery) from erasures.

Let { f j,g j} j∈J be a dual frame pair, Λ be an erasure set, and Ω be a correspond-
ing robust bridge set. For j ∈Λ and f ∈H
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f ,g j

〉
=
〈

f ,g′j
〉
+
〈

f ,g j− g′j
〉

=
〈

f ,g′j
〉
+
〈

f − fR,g j− g′j
〉
+
〈

fR,g j− g′j
〉
.

Since f − fR ∈ span{ f j : j ∈Λ}, equation (5) says that f − fR ⊥ g j− g′j. So,

〈
f ,g j

〉
=
〈

f ,g′j
〉
+
〈

fR,g j− g′j
〉

=
〈

f − fR,g
′
j

〉
+
〈

fR,g j
〉

= ∑
k∈Ω

c( j)
k 〈 f − fR,gk〉+

〈
fR,g j

〉
.

Therefore, we can recover the erased coefficients with the following equation:

(
〈

f ,g j
〉
) j∈Λ =CT (〈 f − fR,gk〉)k∈Ω +(

〈
fR,g j

〉
) j∈Λ . (12)

Remark 2. With the above algorithm, we have simplified the problem of inverting
RΛ (an n×n matrix) to inverting B(F,G,Λ ,Ω) (an L×L matrix). This is particularly
useful when the size of the erasure set is small when compared to the dimension of
our underlying Hilbert space.

Remark 3. Equation (12) shows that an erased (or missing) Fourier coefficient of f
over Λ can be precisely computed as the corresponding Fourier coefficient of the
partial reconstruction fR plus a bridging term which depends only on the Fourier
coefficients of fR and f over the bridge set, Ω . It follows that any noise or error in the
computation of fR can result in an error in the bridging term. This error can be large
if the bridge system is ill conditioned, resulting in a potential error amplification.
The good news is that only the errors in the Fourier coefficients of fR over the
indices in Λ ∪Ω will affect this amplification.

If for notational purposes we set α j =
〈

f ,g j
〉

and β j =
〈

fR,g j
〉
, thenα j for j ∈Ω

are known coefficients, and the β j are all computable because fR is computable.
The above equation states that for j ∈ Λ the erased coefficient α j := 〈 f ,g j〉 can be
computed as

α j = β j + ∑
k∈Ω

c( j)
k (αk−βk).

Implementation

In this subsection, we will implement the algorithm from the previous subsection.
We will give several snippets of code followed by detailed explanations of what
each block of code is used for. For the coding, we assume that the algorithm actually
produces a solution. The section “Generic Duals and Infrastructure” discusses why
in most cases this is a safe assumption.
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n = 2 0 0 ;
N = 3 0 0 ;
L = [ 1 : 1 : 1 0 ] ;
W = [ 1 1 : 1 : 2 0 ] ;

F = ran d ( n ,N ) ;
S = F ∗ F ’ ;
G = S \ F ;

In this first bit of code, we are making a few basic variable declarations and ran-
domly creating a dual frame pair, (F,G). The number n denotes the dimension of
our Hilbert space (here we are using R

n) and N denotes the length of our frame. The
vectors L and W contain the erasure and the bridge indices, respectively. Here we
have selected Λ = {1,2, · · · ,10} and Ω = {11,12, · · · ,20}. Any of these variables
can be modified to the user’s specifications prior to execution. The randomly com-
puted n×N matrix F contains the frame vectors as its columns. Because of this, F
actually denotes the synthesis matrix,Θ ∗

F for our frame F . The matrix S is the frame
operator for F , and G is the synthesis matrix for the standard dual to F .

f = r an d ( n , 1 ) ;
f = f . / norm ( f , 2 ) ;
FC = z e r o s (N , 1 ) ;
f o r ( k = 1 : 1 :N)

FC ( k ) = d o t ( f ,G ( : , k ) ) ;
end
FC (L ) = z e r o s ( s i z e ( L ’ ) ) ;
f R = z e r o s ( n , 1 ) ;
f o r ( k = 1 : 1 :N)

f R = f R + FC ( k ) ∗ F ( : , k ) ;
end

In this piece of code, we create a random, unit norm vector f ∈R
n which will be

our test vector for the reconstruction. The vector FC denotes the Fourier coefficients
for f with respect to the frame G. In the seventh line, we erase the Fourier coeffi-
cients that are indexed by L (the erasure set). In the last three lines, we compute fR,
the partial reconstruction of f .
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FRCL = z e r o s ( s i z e ( L ) ) ’ ;
f o r ( j = 1 : 1 : max ( s i z e (L ) ) )

FRCL ( j , 1 ) = d o t ( f R ,G ( : , L ( j ) ) ) ;
end

FRCW = z e r o s ( s i z e (W) ) ’ ;
f o r ( k = 1 : 1 : max ( s i z e (W) ) )

FRCW( k , 1 ) = d o t ( f R ,G ( : ,W( k ) ) ) ;
end

C = ( F ( : , L ) ’∗G( : ,W) ) \ ( F ( : , L ) ’∗G( : , L ) ) ;

FC (L ) = C’ ∗ (FC (W) − FRCW) + FRCL ;

The main purpose of this code is to recover the missing Fourier coefficients. This
code is a direct implementation of the algorithm in the previous subsection. The
vectors FRCL and FRCW (standing for Fourier coefficients of fR with respect to Λ
and Fourier coefficients of fR with respect to Ω , respectively) denote

(〈
fR,g j

〉)
j∈Λ

and
(〈

fR,g j
〉)

j∈Ω , respectively. In the second to last line we see the bridge equa-
tion written in Matlab code. It is easy to see that the matrix product ΘF,ΛΘ ∗

G,Ω is
the bridge matrix, where ΘF,Λ denotes the minor of ΘF created by only using the
rows indexed by Λ , and Θ ∗

G,Ω denotes the minor of Θ ∗
G formed by only using the

columns indexed by Ω . Thus, we see that F(:,L)′ ∗G(:,W ) computes the bridge
matrix, B(F,G,Λ ,Ω). Similarly, F(:,L)′ ∗G(:,L) computes B(F,G,Λ ,Λ). Thus, the
second to last line is the computation of our coefficient matrix, C. The last line is
equation (12) which recovers the lost coefficient data.

g = f R ;
f o r ( j = L)

g = g + FC ( j ) ∗ F ( : , j ) ;
end

norm ( f − g , 2 )

This last bit of code adds back our lost Fourier coefficient data, and we get the
reconstructed vector g. To test the accuracy of our reconstruction, the last line com-
putes the �2 norm difference of the original vector we randomly selected against our
final reconstructed vector g.
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Numerical Considerations

The main concern about the bridging method is the stability of the bridge matrix
inversion. To examine the stability, we designed an experiment where we use frames
of length N = 3000 in n = 2000 dimensions. For our experiment, we used erasure
set sizes of 1, 100, 250, 500, 750, 800, 850, 900, 950, 975, and 1000. For each
of these sizes, we performed 20 trials. In each trial, we computed a new random
frame F and used the standard dual. We recorded the median of condition number
of B(F,G,Λ ,Ω) from the 20 trials, and due to the high variability of the data we
recorded the standard deviation from the 20 trials. The following is a graph of these
data.

Erasure Set Size vs Condition Number
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Note that |Λ |= 1000 is omitted to avoid distortion. The median condition number
at this point was 6.14×104. As we can see, the condition numbers “blow up” as |Λ |
approaches N− n. It is worth noting that even in the case of |Λ |= 1000, the largest
condition number observed was on the order of 107 and the worst �2 error norm
was on the order of 10−7. Unfortunately, for this method there is a high degree of
variability, with the standard deviation for each set of 20 trials usually exceeding the
median condition number for those 20 trials.

Theoretical Considerations

The following result provides a necessary and sufficient condition for the existence
of a robust bridge set for a given erasure set.

Theorem 1. Let (F,G) be a dual frame pair, and letΛ be an erasure set. Then, there
is a robust bridge set Ω for Λ if and only if Λ satisfies the minimal redundancy
condition for G. In this case we can take |Ω | = dim(F ), where F = span{ f j :
j ∈Λ}.
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For a rigorous proof of the above theorem we refer to Theorem 3.7 in [25]. We
note that the structure of the proof gives some intuition into the role of the bridge
matrix in the theory. Essentially, it is a change of basis matrix modulo the orthogonal
complement of span{ f j : j ∈ Λ}. With some work it can be shown that the rank of
the matrix (

〈
f j ,gk

〉
)1≤ j≤L,1≤k≤M is

dim
(

span{gk}1≤k≤M/
(
span{ f j}1≤ j≤L

)⊥)
= dim

(
span{ f j}1≤ j≤L/(span{gk}1≤k≤M)⊥

)
.

The following is a useful criterion for sufficiency of robustness of a bridge set.
We can compute dim(F ) as the rank of the Gramian of F . So in Matlab one can
simply check whether the rank of B(F,G,Λ ,Ω) equals the rank of Gr(F). If his
happens, then Ω is a robust bridge set. If it fails, it can still happen that Ω is a
robust bridge set. We refer the reader to Theorem 3.8 in [25] for a proof.

Theorem 2. Let (F,G) be a dual frame pair and Λ be an erasure set. If Ω ⊂ Λ c is
a bridge set for which

rank(B(F,G,Λ ,Ω)) = dim(F ) (13)

where F = span{ f j : j ∈Λ}, thenΩ is a robust bridge set. In particular if |Λ |= |Ω |
and B(F,G,Λ ,Ω) is invertible, then Ω is a robust bridge set.

The above theorem says that the rank condition (13) on the bridge matrix is
sufficient for robustness of Ω . In the general case it is not necessary, as shown by
Example 2. In that case, the unreduced error operator is already nilpotent of index
2, so any bridge set is robust for it. From experiments, it appears that the minimal
rank possible of the bridge matrix for a robust bridge set and the minimal size of Ω
is linked to the number of nonzero eigenvalues of the unreduced error operator. (See
Theorem 4 for a result relating to this.) However, for Parseval frames, the converse
of Theorem 2 holds. This is Corollary 3.10 in [25].

Theorem 3. Let F be a Parseval frame. If Λ is an erasure set for F and Ω ⊂ Λ c,
then Ω is a robust bridge set for Λ if and only if rank(B(F,G,Λ ,Ω)) = dim(F ),
where F = span{ f j : j ∈ Λ}. In particular, if { f j : j ∈ Λ} is linearly independent
and |Ω | = |Λ |, then Ω is a robust bridge set for Λ if and only if B(F,G,Λ ,Ω) is
invertible.

We give two examples that illustrate the relationship between the minimal redun-
dancy condition and the invertibility of RΛ . For the examples, we consider the dual
frame pair

F =
{
(1,1)T ,(−1,1)T ,(−1,−1)T ,(1,−1)T}

and

G =

{
(1,0)T ,

(
1
2
,

1
2

)T

,

(
1
2
,−1

2

)T

,(1,0)T

}
.

Our first example is an example where the 2-nilpotent bridging algorithm works,
but RΛ is not invertible.
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Example 3. Let Λ = {1},

RΛ =
4

∑
j=2

f j⊗ g j = I− f1⊗ g1 =

(
1 0
0 1

)
−
(

1 0
1 0

)
=

(
0 0
−1 1

)

is not invertible. Therefore, methods that require the inversion of RΛ will not work.
Furthermore,

EΛ =

(
1 0
1 0

)
is idempotent, so Neumann series approximations also fail. However, since
〈 f1,g2〉 �= 0 and 〈 f1,g4〉 �= 0, equation (9) shows that nilpotent bridging works
with Ω = {2} or Ω = {4}. Note that Ω = {3} will not work for Nilpotent bridging
since 〈 f1,g3〉= 0. �

While for robustness Λ needs to satisfy the minimal redundancy condition with
respect to G, the second example shows that Λ need not satisfy the minimal redun-
dancy condition with respect to F .

Example 4. Let Λ = {2,4} and Ω = {1,3}. Then, Λ does not satisfy the minimal
redundancy condition for F . But, we have

f2, f4 ⊥ g2− 0g1− 0g3 and

f2, f4 ⊥ g4− g1− 0g3.

Letting f = (4,2)T , we get

fR = RΛ f = ( f1⊗ g1)( f )+ ( f3⊗ g3)( f ) = (3,3)T

and
fB = BΛ f = ( f2⊗ 0)( f )+ ( f4⊗ g1)( f ) = (4,−4)T .

So,
f̃ = fR + fB = (7,−1)T .

We have

fẼ = ẼΛ fR = ( f2⊗ (g2−0g1−0g3))( fR)+( f4⊗ (g4−g1−0g3))( fR) = (−3,3)T .

Therefore we recover our original vector as

f̃ + fẼ = (4,2)T .

�

Consider a dual frame pair (F,G) with erasure set Λ and bridge set Ω . Com-
puter experiments indicated that if |Ω | < |Λ |, then |σ(ẼΛ ) \ {0}|= |Λ |− |Ω |. So,
if one chooses a bridge set that is too small, ẼΛ will have nonzero eigenvalues, but
may have fewer nonzero eigenvalues than EΛ (the error operator without bridging).
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This is what we call cardinal spectral reduction. The following gives a mathematical
proof of this fact. It is Theorem 3.13 in [25], but we include the proof here because
the (simple) proof tells the story of why underbridging yields reduction in the size
of the spectrum. We first observed this phenomenon in running some computer ex-
periments with large frames, and it seemed quite mysterious. So, we worked out the
proof.

Theorem 4. Let (F,G) be a dual frame pair. Assume Λ satisfies the minimal redun-
dancy condition with respect to G, and |Λ |= L. Then, there is a bridge set Ω of any
size M ≤ L so that |σ(ẼΛ )\ {0}| ≤ L−M.

Proof. By Theorem 1, we can find a robust bridge set Ω ′ ⊂Λ c satisfying |Ω ′| ≤ L.
That is, for each k ∈Λ we can find

g′k = ∑
j∈Ω ′

c(k)j g j

so that g′k ⊥ span{ f j : j ∈ Λ}. Assume that Ω ′ = {ω1, · · · ,ω|Ω ′ |}. Let Ω =
{ω1, · · · ,ωM} and

g′′k = ∑
j∈Ω

c(k)j g j.

Then,

ẼΛ = ∑
k∈Λ

fk⊗ (gk− g′′k ) = ∑
k∈Λ

fk⊗ (gk− g′k)+ ∑
k∈Λ

fk⊗ (g′k− g′′k).

Let N = ẼΛ = ∑k∈Λ fk⊗ (gk− g′k), and A = ∑k∈Λ fk⊗ (g′k− g′′k). Then, it is easily
verified that N is nilpotent of index 2, and NA = 0. Since range(A∗)⊂ {g′k−g′′k : k ∈
Λ} ⊂ {gωk : k = M+ 1, · · · , |Ω ′|}, the rank of A is at most L−M.

Let λ ∈ σ(N +A)\{0}. Both N and A are finite rank operators, so λ must be an
eigenvalue of N +A. Thus, there exists x ∈H so that

(N +A)x = λx.

Multiplying by N on the left on both sides yields

0 = λNx.

Since λ �= 0, we have Nx = 0. Thus, Ax = λx and λ ∈ σ(A). Since A can have
at most L−M distinct eigenvalues, it follows that ẼΛ has at most L−M nonzero
eigenvalues. �

Applications to Sampling Theory

There are well-known deep established connections between frame theory and mod-
ern sampling theory. We cite for instance the excellent references [4, 18, 29].
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We note that a good account of sampling theory for our purposes is contained in
Chapter 9 of [21]. Let X be a metric space and let μ be a Borel measure on X .
Let H be a closed subspace of L2(X ,μ) consisting of continuous functions. Let
T = {t j} j∈J ⊂ X and define the sampling transform Θ mapping H into the com-
plex sequences by Θ( f ) = ( f (t j)) j∈J. If Θ : H → �2(J) is bounded, then the point
evaluation functionals γ j : H →C defined by γ j( f ) = f (t j) are bounded, and hence
by the Riesz Representation Theorem, γ j( f ) =

〈
f ,g j

〉
for some g j ∈H . If the sam-

pling transform is also bounded below, then {g j} j∈J forms a frame for H , and thus
we can find some dual F := { f j} j∈J. We then have the identity

f =∑
j∈J

〈
f ,g j

〉
f j = ∑

j∈J
f (t j) f j ∀ f ∈H . (14)

We will refer to (X ,F,T ) as a sampling scheme for H . The most well-known
sampling scheme comes from the Shannon-Whittaker Sampling Theorem. For this
scheme, H = PW [−π ,π ], T = pZ (p ∈ (0,1]), and f j = sinc(π(t − jp)). Then,
g j = p sinc(π(t− jp)), where sinc(x) = sinx

x .
Let Λ be an erasure set for a sampling scheme (X ,F,T ), with corresponding

bridge set Ω . We can think of the erased coefficients as either
〈

f ,g j
〉

or f (t j) for
j ∈Λ . For this case, the bridge matrix is

B(F,G,Λ ,Ω) =
(〈

f j,gk
〉)

j∈Λ ,k∈Ω = ( f j(tk)) j∈Λ ,k∈Ω . (15)

Similarly, B(F,G,Λ ,Λ) = ( f j(tk)) j,k∈Λ . Note that these matrices only involve the
sampled values of the { f j} over the points {tk} and do not explicitly involve the
{gk}. Let us simply write B(Λ ,Ω) and B(Λ ,Λ) for these two matrices. Then, the
algorithm in subsection “A simple algorithm for erasure recovery using 2-nilpotent
bridging” becomes the following Theorem:

Theorem 5. Let (X ,F,T ) be a sampling scheme with erasure set Λ satisfying the
minimal redundancy condition, and Ω be a robust bridge set for Λ . Suppose C =(

c(k)j

)
j∈Ω ,k∈Λ

solves the bridging equation

B(Λ ,Ω)C = B(Λ ,Λ),

where B(Λ ,Ω) = ( f j(tk)) j∈Λ ,k∈Ω and B(Λ ,Λ) = ( f j(tk)) j,k∈Λ . Then,

( f (t j)) j∈Λ =CT (( f (t j)) j∈Ω − ( fR(t j)) j∈Ω )+ ( fR(t j)) j∈Λ .

Remark 4. As in Remark 3, the error in the sampled values of the partial recon-
struction fR over the bridge set can result in a potential error amplification in our
reconstruction. Unfortunately, to perfectly compute the sampled values of fR over
the bridge set we require an infinite sum, so a truncation of fR is necessary. Thus, er-
ror amplification is unavoidable. A further analysis of this error term is given in the
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next subsection, and the following subsection discusses methods to improve condi-
tion numbers for sampling schemes, which will lead to less amplification of error in
our reconstruction.

N-Term Approximation Error

In practice we cannot deal with infinite sums. So, we must chop off our infinite sums,
and use N-term approximations. To significantly simplify the computations, we as-
sume that (X ,F,T ) is a sampling scheme and that F is the standard dual to G, where〈

f ,g j
〉
= f (t j) for all j ∈ J. Let S denote the frame operator for G. Throughout this

subsection, we assume that Λ is an omission set satisfying the minimal redundancy

property, that Ω is a robust bridge set forΛ , and that the matrix C =

(
c(n)k

)
k∈Ω ,n∈Λ

solves the bridge equation. We assume Λ ,Ω ⊂ JN ⊂ J, where JN has cardinality N.
We would like to know what the ensuing error in our bridging algorithm is when we
only know f (t j) for j ∈ JN \Λ .

Recall that we have the reconstruction formula f = fR + fB + ẼΛ fR. Thus, it is

natural to expect that f ≈ f̃ := f (N)
R + fB + ẼΛ f (N)

R , where we have

f (N)
R := ∑

j∈JN\Λ
f (t j) f j and

ẼΛ f (N)
R := ∑

n∈Λ

(
f (N)
R (t j)− ∑

k∈Ω
c(n)k f (N)

R (tk)

)
fn.

Note that since Λ ,Ω ⊂ JN , fB is the same as its N-term approximation.
A useful identity for the error bound is the following equality:

‖ f j‖2
L2(μ) =

〈
f j , f j

〉
=
〈

f j,S
−1g j

〉
=
〈
S−1 f j ,g j

〉
= (S−1 f j)(t j). (16)

The following proposition provides an upper bound for the error in our N-term
approximation.

Proposition 1. With the above terminology, we have

‖ f − f̃‖L2(μ) ≤ ∑
j∈Jc

N

∣∣∣∣ f (t j)
√

(S−1 f j)(t j)

∣∣∣∣
+ ∑

j∈Λ
∑

m∈Jc
N

∣∣∣∣∣ f (tm) fm(t j)− ∑
k∈Ω

c( j)
k f (tm) fm(tk)

∣∣∣∣∣
√
(S−1 f j)(t j).
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Proof. We have

‖ f − f̃‖L2(μ) = ‖ fR + fB + ẼΛ fR− f (N)
R − fB− ẼΛ f (N)

R ‖L2(μ)

≤ ‖ fR− f (N)
R ‖L2(μ) + ‖ẼΛ fR− ẼΛ f (N)

R ‖L2(μ).

We first find a bound for the first piece:

| fR− f (N)
R |2 =

∣∣∣∣∣∣ ∑j∈Jc
N

f (t j) f j

∣∣∣∣∣∣
2

≤

⎛
⎝ ∑

j∈Jc
N

∣∣ f (t j) f j
∣∣
⎞
⎠

2

= ∑
j,m∈Jc

N

| f (t j) f (tm)|| f j fm|.

Thus,

‖ fR− f (N)
R ‖2

L2(μ) ≤ ∑
j,m∈Jc

N

| f (t j) f (tm)|‖ f j fm‖L1(μ)

≤ ∑
j,m∈Jc

N

| f (t j) f (tm)|‖ f j‖L2(μ)‖ fm‖L2(μ)

= ∑
j,m∈Jc

N

| f (t j) f (tm)|
√
(S−1 f j)(t j)

√
(S−1 fm)(tm)

=

⎛
⎝ ∑

j∈Jc
N

∣∣∣∣ f (t j)
√

(S−1 f j)(t j)

∣∣∣∣
⎞
⎠

2

.

where the third line holds by equation (16). Hence,

‖ fR− f (N)
R ‖L2(μ) ≤ ∑

j∈Jc
N

∣∣∣∣ f (t j)
√
(S−1 f j)(t j)

∣∣∣∣ . (17)

For the second piece, we have

|ẼΛ fR− ẼΛ f (N)
R |2 =

∣∣∣∣∣∑j∈Λ
{
( fR(t j)− f (N)

R (t j))− ∑
k∈Ω

c( j)
k (( fR(tk)− f (N)

R (tk)))

}
f j

∣∣∣∣∣
2

≤

⎛
⎝∑

j∈Λ

∣∣∣∣∣∣ ∑m∈Jc
N

f (tm) fm(t j)− ∑
k∈Ω

c( j)
k ∑

m∈Jc
N

f (tm) fm(tk)

∣∣∣∣∣∣ | f j|

⎞
⎠

2

≤

⎛
⎝∑

j∈Λ
∑

m∈Jc
N

∣∣∣∣∣ f (tm) fm(t j)− ∑
k∈Ω

c( j)
k f (tm) fm(tk)

∣∣∣∣∣ | f j|

⎞
⎠

2

.
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To simplify the calculation, let

a j = ∑
m∈Jc

N

∣∣∣∣∣ f (tm) fm(t j)− ∑
k∈Ω

c( j)
k f (tm) fm(tk)

∣∣∣∣∣ . (18)

Then, we have
|ẼΛ fR− ẼΛ f (N)

R |2 ≤ ∑
j,�∈Λ

a ja�| f j f�|. (19)

So,

‖ẼΛ fR− ẼΛ f (N)
R ‖2

L2(μ) ≤ ∑
j,�∈Λ

a ja�‖ f j f�‖L1(μ)

≤ ∑
j,�∈Λ

a ja�‖ f j‖L2(μ)‖ f�‖L2(μ)

=

(
∑
j∈Λ

a j‖ f j‖L2(μ)

)2

=

(
∑
j∈Λ

∑
m∈Jc

N

∣∣∣∣∣ f (tm) fm(t j)− ∑
k∈Ω

c( j)
k f (tm) fm(tk)

∣∣∣∣∣
√
(S−1 f j)(t j)

)2

where the last equality holds by (16). Taking square roots gives

‖ẼΛ fR−ẼΛ f (N)
R ‖L2(μ)≤ ∑

j∈Λ
∑

m∈Jc
N

∣∣∣∣∣ f (tm) fm(t j)− ∑
k∈Ω

c( j)
k f (tm) fm(tk)

∣∣∣∣∣
√
(S−1 f j)(t j).

(20)
Therefore, adding (17) and (20) yields the error bound

‖ f − f̃‖L2(μ) ≤ ∑
j∈Jc

N

∣∣∣∣ f (t j)
√

(S−1 f j)(t j)

∣∣∣∣
+ ∑

j∈Λ
∑

m∈Jc
N

∣∣∣∣∣ f (tm) fm(t j)− ∑
k∈Ω

c( j)
k f (tm) fm(tk)

∣∣∣∣∣
√
(S−1 f j)(t j).

�

Numerical Considerations

Not only do we have to look out for truncation error but we also need to be careful
in our choice of bridge set. Consider the Shannon-Whittaker sampling scheme with
p = 1

2 . If we assume Λ and Ω only contain even integers, then

B(Λ ,Ω) = ( f j(tk)) j∈Λ ,k∈Ω =
(

sinc
(π

2
(k− j)

))
j∈Λ ,k∈Ω

.



Bridging erasures and the infrastructure of frames 49

However, k− j is even, and so B(Λ ,Ω) is the zero matrix. Not only this, but in
general, if we randomly select a bridge set for a given erasure set, B(Λ ,Ω) will be
extremely poorly conditioned. For example, when |Λ |= 5 and using 20001 Fourier
coefficients as our truncation we have run experiments where the condition numbers
have been on the order of 1014. This problem can be fixed by choosing a bridge set
which is “close” to our original erasure set. A problem arises when the bridge and
erasure sets are sufficiently separated because the components of the bridge matrix
are of the form sinc

(π
2 (k− j)

)
, and thus the components are very small.

Suppose (X ,F,T ) is a sampling scheme and let d denote the metric on X . We say
that Ω = {ω j : j = 1, · · · ,L} is a close bridge set to Λ = {λ j : j = 1,2, · · · ,L} if it
minimizes

d(Λ ,Ω) :=
L

∑
j=1

d(λ j,ω j),

where we take the minimum over all robust bridge sets, Ω . For example, for the
Shannon-Whittaker sampling scheme with p = 1

2 , Ω = {0,1,2, · · · ,M} is a close

bridge set forΛ = { 2 j+1
2 : j = 0,1, · · · ,M}, provided it is a robust bridge set. Now, if

Ω is a close bridge set forΛ , the components along the diagonal are more dominant,
and the off diagonal entries are smaller in absolute value. That is, the bridge matrix
is diagonally dominant. Therefore, it is reasonable to expect that close bridge sets
are much more well conditioned. Indeed, experimentally even with |Λ |= 1000, for
a truncation using 20001 Fourier coefficients, with 10 runs of our Matlab code, and
Λ chosen randomly, the median condition number of B(Λ ,Ω) was 11.89.

The following algorithm searches for a bridge set Ω that is “near” Λ . We say
near because it does not always attain a close bridge, but is still “good enough for
practical purposes”.

Pos = s e t d i f f ( 1 : 2 ∗N+1 , La ) ;
B = z e r o s (L , L ) ;
f o r ( j = 1 : 1 : L )

[ mini , p o s i t i o n ] = min ( ab s ( Pos−La ( j ) ) ) ;
Om( j ) = Pos ( p o s i t i o n ) ;
Pos = s e t d i f f ( Pos ,Om( j ) ) ;
B ( : , j ) = s i n c ( p i ∗p ∗ (Om( j )−La ) ) ;
w h i l e ( r an k (B ( 1 : j , : ) ) < j )

[ mini , p o s i t i o n ] = min ( ab s ( Pos−La ( j ) ) ) ;
Om( j ) = Pos ( p o s i t i o n ) ;
Pos = s e t d i f f ( Pos ,Om( j ) ) ;
B ( : , j ) = s i n c ( p i ∗p ∗ (Om( j )−La ) ) ;

end
end



50 D. Larson and S. Scholze

In the above code, 2N + 1 denotes the number of sampled values we are using
for our truncation, L = |Λ |, La denotesΛ , the vector Om denotes Ω , B is our bridge
matrix, and Pos is a vector that tells us what values are still eligible for the bridge set.
In our indexing scheme, the index 1 stands for−pN and the index 2N+1 stands for
pN, where N is the number of positive Fourier coefficients we are using. Thus, we
are using 2N+1 total Fourier coefficients. In the notation of the previous subsection,
we are using J2N+1 = {−pN,−(p− 1)N, · · · ,(p− 1)N, pN} as our truncation.

The first line of code throws out the elements of La from the list of possible
candidates of the bridge set, Pos. Inside of the for loop, we are building the matrix
B column by column and ensuring that B has rank j at the end of each iteration.
The first line in the for loop finds the closest element of Pos to the jth element of
the erasure set and stores that index value in the variable position. The next line
assigns the value to the jth entry in Ω . The following line deletes this index from
the possibilities for the next element of the bridge. The next line computes the jth

column of the bridge matrix, and if the first j columns of the matrix have rank less
than j, the while loop keeps repeating the above procedure until it finds an index so
that B has rank j.

Unfortunately, if too many consecutively sampled values are erased, even close
bridges will be poorly conditioned, and a good reconstruction will be impossible.
When considering sampling at the half integers, if we takeΛ = { j

2 : j = 1,2, · · · ,15}
and considering f (t) = sinc(πt), our algorithm gives a reconstruction whose Fourier
coefficients are off by as much as 0.324. The condition number of the bridge matrix
in this case is 7.093× 106.

Generic Duals and Infrastructure

We consider spark, m-linear, and related properties for finite frames with an eye
toward bridging applications. Let H be an n-dimensional Hilbert space. Denote
the set of N-tuples of vectors in H by H N . For a frame F ∈ H N , we define
D(F) = {G ∈H N : (F,G) is a dual frame pair} and call it the dual set of F . It is
easily shown that D(F) is a closed convex subset of H N in any of the equivalent
linear space norms. In this section it will be convenient to adopt the norm ‖F‖ :=
max1≤ j≤N

∥∥ f j
∥∥ for F = { f j}N

j=1 ∈H N , where
∥∥ f j

∥∥ is the usual Hilbert space norm
on H . Since D(F) is closed, it is a complete metric space with the norm topology
inherited from H N .

In the frame literature, a class of frames is sometimes called generic if it is open
and dense in the set of all frames (cf. [1, 2, 26]). We will say that a class of duals to
a given frame F is generic if it is open and dense in the relative topology on D(F)
inherited as a subspace of H N .

The next lemma shows that in the presence of the minimal redundancy condition,
one can explicitly construct “designer duals” that satisfy certain conditions with
respect to Λ .

Lemma 1. Let Λ be an erasure set for a frame F with the minimal redundancy
condition and {g j} j∈Λ be assigned arbitrarily. Then,
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1. {g j} j∈Λ can be extended to {g j}N
j=1 so that ∑N

j=1 f j⊗ g j = 0.

2. {g j} j∈Λ can be extended to {g j}N
j=1 ∈D(F).

Proof. For (1), let A = ∑ j∈Λ f j ⊗ g j. Let {h j} j∈Λ c be a dual to the reduced frame
{ f j} j∈Λ c . Then,

A =

(
∑

j∈Λ c

f j⊗ h j

)
A = ∑

j∈Λ c

f j⊗ (A∗h j).

For each j ∈Λ c, let g j =−A∗h j. Then,

N

∑
j=1

f j⊗ g j = ∑
j∈Λ c

f j⊗ g j + ∑
j∈Λ

f j⊗ g j =− ∑
j∈Λ c

f j⊗A∗h j +A

= A−
(
∑

j∈Λ c

f j⊗ h j

)
A = A− IA = 0.

To prove (2), let {g′j}N
j=1 ∈D(F). Let h j = g j−g′j for j ∈Λ . By the part (1), we

can extend {h j} j∈Λ to {h j}N
j=1 so that ∑N

j=1 f j⊗ h j = 0. For all j, let g̃ j = g′j + h j.
Then,

N

∑
j=1

f j⊗ g̃ j =
N

∑
j=1

f j⊗ g′j +
N

∑
j=1

f j⊗ h j = I+ 0 = I.

Thus, {g̃ j}N
j=1 ∈D(F). Furthermore, for j ∈Λ ,

g̃ j = g′j + h j = g′j + g j− g′j = g j.

Thus, {g̃ j}N
j=1 is the desired extension of {g j} j∈Λ . �

In the frame literature (cf. [1, 13]) a frame F in H is said to have spark k if every
collection of k− 1 vectors in F is linearly independent and there is a collection of
k vectors in F which is linearly dependent, and it is said to be full spark if it has
spark n+ 1, where n is the dimension of H . A frame is said to be m-independent
(cf. [20, 27]) if every collection of m vectors in F is linearly independent. So, spark
k means m-independent for all m < k and not k-independent, and full spark means
n-independent. It is known that the set of full spark frames is an open dense set in
H N (cf. [1, 26]). That is, full spark frames are generic. Note that m-independence
is hereditary in the sense that it implies j-independence for all j ≤ m.

Lemma 2. Let (F,G) be a dual frame pair for an n-dimensional Hilbert space with
length N. Let Λ be a set, and Ω be a bridge set satisfying |Λ | = |Ω |. A necessary
(but not sufficient) condition for B(F,G,Λ ,Ω) to be an invertible matrix is

|Λ | ≤min

{
n,N− n,

N
2

}
(21)

(Note that in case N ≥ 2n this condition reduces to |Λ | ≤ n.)
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Proof. If |Λ |> n, then the rows of the bridge matrix B(F,G,Λ ,Ω) will be linearly
dependent (since H is an n-dimensional space). Thus, B(F,G,Λ ,Ω) will fail to be
invertible.

Assume that B(F,G,Λ ,Ω) is invertible, and |Λ |> N− n. Then, since the bridge
equation B(F,G,Λ ,Ω)C = B(F,G,Λ ,Λ) has a solution (C = B(F,G,Λ ,Ω)−1

B(F,G,Λ ,Λ)), Theorem 1 asserts that Λ satisfies the minimal redundancy condi-
tion with respect to G. Therefore, |Λ c| ≥ n. So, N = |Λ |+ |Λ c| > N− n+ n > N.
This is a contradiction, and therefore if B(F,G,Λ ,Ω) is invertible, then |Λ | ≤N−n.

If |Λ |> N
2 , then |Λ |+ |Ω |>N. This is a contradiction sinceΛ and Ω are disjoint

subsets of {1, · · · ,N}. �

Corollary 1. Assume that F ∈H N is full spark. Let Λ be an erasure set satisfying
|Λ | ≤min{n,N−n, N

2 } and Ω be a bridge set satisfying |Λ |= |Ω | and Λ ∩Ω = /0.
Then, there exists a dual frame G to F so that B(F,G,Λ ,Ω) is invertible.

Proof. Define a bijection ϕ : Ω →Λ . Let {g j} j∈Ω = { fϕ( j)} j∈Ω . By Lemma 1, we
can extend {g j} j∈Ω to a dual frame G for F . Then, B(F,G,Λ ,Ω) is identical to the
Gram matrix of a permutation of the finite sequence { f j : j ∈Λ}, which is invertible
since { f j : j ∈Λ} is linearly independent. �

We say that a dual frame pair (F,G) has skew-spark k if for every erasure set
Λ with |Λ | < k and any bridge set Ω ⊂ Λ c satisfying |Λ | = |Ω |, the bridge ma-
trix B(F,G,Λ ,Ω) is invertible. If (F,G) has skew-spark min{N

2 ,n,N− n}+ 1, then
(F,G) is said to have full skew-spark.

Proposition 2. If the dual frame pair (F,G) for H has skew-spark k, then F and G
each have spark at least k.

Proof. Let Λ be an erasure set of cardinality k− 1. Let Ω be any subset of Λ c of
cardinality k− 1. By hypothesis the matrix B(F,G,Λ ,Ω) is invertible, so its rows
and columns are linearly independent. This implies that { f j : j ∈ Λ} is linearly
independent. Since Λ was arbitrary, this shows that F has spark k. The proof for G
is analogous. �

This also shows that if n ≤ min{N
2 ,N − n}, then full skew-spark implies full

spark.
Let G = {G ∈D(F) : (F,G) has full skew-spark}.

Theorem 6. Assume that F has full spark. Then,

G := {G ∈D(F) : (F,G) has full skew-spark}

is generic in D(F).

Proof. Let Γ = {Λ ⊂ {1, · · · ,N} : |Λ | ≤min{N
2 ,N−n,n}}. For a given Λ ∈ Γ , let

ΦΛ = {Ω ⊂ {1, · · · ,N} : |Ω | = |Λ |,Ω ∩Λ = /0}. Then, G =
⋂
Λ∈Γ

⋂
Ω∈ΦΛ GΛ ,Ω ,

where GΛ ,Ω = {G∈D(F) : det(B(F,G,Λ ,Ω)) �= 0}. Since we are intersecting over
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all possible erasure sets and all corresponding bridge sets, the above intersection is
finite. So, by the Baire Category Theorem, if we show that each GΛ ,Ω is open and
dense, then G will also be open and dense.

Fix an erasure setΛ and a corresponding bridge set Ω . It is easily verified that the
maps G

α�−→ B(F,G,Λ ,Ω) and B(F,G,Λ ,Ω) �→ det(B(F,G,Λ ,Ω)) are continuous.
So, GΛ ,Ω = (det◦α)−1(C\ {0}) is an open set.

To show density of GΛ ,Ω , let ε > 0, and assume that G0 ∈ D(F) \GΛ ,Ω . Since
F has full spark, Λ satisfies the minimal redundancy condition with respect to F .
Thus, by Corollary 1, there is a G1 ∈D(F) so that det(B(F,G1,Λ ,Ω)) �= 0. Let Gt =
(1−t)G0+tG1. By proposition 2, Gt ∈D(F). Furthermore, det(B(F,Gt ,Λ ,Ω)) is a
polynomial in t satisfying det(B(F,Gt ,Λ ,Ω))(0) = 0 and det(B(F,Gt ,Λ ,Ω))(1) �=
0. Thus, det(B(F,Gt ,Λ ,Ω)) has only finitely many zeros. So, we can find 0 < t0 <

ε
‖G1−G0‖ so that Gt0 ∈ GΛ ,Ω . Furthermore,

∥∥Gt0 −G0
∥∥= ‖(1− t0)G0 + t0G1−G0‖= ‖t0(G1−G0)‖ ≤ t0 ‖G1−G0‖< ε.

Hence, GΛ ,Ω is dense in D(F).
Therefore, by the Baire Category Theorem, G is generic in D(F). �

In short, what we have proven in this section so far is that for most frames
F ∈H N , and most duals G to F , the pair (F,G) has full skew-spark. Arguably,
the most important class of dual frame pairs are those of the form (F,F) where F
is a Parseval frame. The above theorem gives little information about this impor-
tant class. Our initial computer experiments largely involved Parseval frames, and
these experiments provided ample evidence to us that randomly computed Parseval
frames probably have full skew-spark. This provided quite a bit of our motivation
for proving the above generic results for dual frame pairs. However, at the time of
writing [25] we did not have a rigorous proof for the class of Parseval frames. We
have since worked out a proof, which we include here:

Full Skew-Spark Parseval Frames

Let
PFN(H ) = {F ∈H N : F is a Parseval frame}.

It is easy to verify that PFN(H ) is a closed subset of H N , and hence it is a complete
metric space with the norm topology induced from H N .

Theorem 7. The set P = {F ∈ PFN(H ) : F has full skew-spark} is generic in
PFN(H ).

To prove this theorem, we require two lemmas.

Lemma 3. There exists a Parseval frame F such that B(F,F,Λ ,Ω) is 1
2 IL (the L×L

identity matrix), where L = |Λ |= |Ω | ≤ min
{

n,N− n, N
2

}
and Ω ∩Λ = /0.
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Proof. Enumerate Λ = {λ j}L
j=1 and Ω = {ω j}L

j=1. Let {e j}L
j=1 be an orthonormal

set in H . For each 1≤ j≤ L, set fλ j
= fω j =

1√
2
e j. Let F = span{ f j : j ∈Λ ∪Ω}.

Then, dim(F⊥) = n−L ≤ N− 2L since n ≤ N−L. So, since |{1,2, · · · ,L} \ (Λ ∪
Ω)| = N− 2L, one can find a Parseval frame { f j : j ∈ (Λ ∪Ω)c} for F⊥. Then,
F = { f j}N

j=1 is a frame for H for which B(F,F,Λ ,Ω) = 1
2 IL. �

Lemma 4. Let F be a Parseval frame for an n-dimensional Hilbert space H . Let
Λ be an erasure set with |Λ | ≤min

{
n,N− n, N

2

}
and Ω be a bridge set for Λ with

Λ ∩Ω = /0 and |Λ | = |Ω |. Then, given ε > 0, there exists a Parseval frame F̃ with
‖F− F̃‖< ε so that B(F̃, F̃ ,Λ ,Ω) is invertible.

Proof. Enumerate Λ = {λ j}L
j=1 and Ω = {ω j}L

j=1. Assume without loss of gener-
ality that B(F,F,Λ ,Ω) is singular. By Lemma 3, there is a Parseval frame F1 =

{ f (1)j }N
j=1 such that B(F1,F1,Λ ,Ω) is invertible. Let F = F0 = { f (0)j }N

j=1. For

0 < t < 1, define Ft = { f (t)j }N
j=1, where f (t)j = (1− t) f (0)j + t f (1)j . Then, for each

t ∈ [0,1], Ft is a set of vectors in H , but they need not span H , and hence are not
necessarily a frame for H . Let St be the frame operator (or Bessel operator in the
case that Ft is not a frame) for Ft . Then,

St =
N

∑
j=1

f (t)j ⊗ f (t)j .

If {e j}n
j=1 is the standard orthonormal basis for H , the matrix coordinate functions

m j,k(t) =
〈
Stek,e j

〉
of the matrix M(t) of St with respect to {e j}n

j=1 are quadratic
functions of t. Thus, detM(t) is a polynomial function of t. Hence, the formal in-
verse matrix valued function, which we denote by Q(t), that is given by the adjoint
formula (or Cramer’s rule) for the inverse of an invertible matrix has the form
Q(t) =

(
q jk(t)

)n
j,k=1, where the coordinate functions q jk(t) are rational functions

of t.

At points where St is invertible, let Pt be the Parseval frame Pt = S
− 1

2
t Ft , where

S
− 1

2
t = (S−1

t )
1
2 is the positive square root of S−1

t . Then, P0 = F0. We have

B(Pt ,Pt ,Λ ,Ω) =

(〈
S
− 1

2
t f (t)λ j

,S
− 1

2
t f (t)ωk

〉)L

j,k=1
=
(〈

S−1
t f (t)λ j

, f (t)ωk

〉)L

j,k=1
.

If [ f (t)λ j
]E denotes the coordinate vector of f (t)λ j

with respect to E = {e j}n
j=1, and we

define [ f (t)ωk
]E similarly, then for points t ∈ [0,1] for which St is invertible,〈

S−1
t f (t)λ j

, f (t)ωk

〉
=
〈

Q(t)[ f (t)λ j
]E , [ f

(t)
ωk
]E

〉
.

Since Q(t) is an n×n matrix valued function with rational coordinate functions, and

[ f (t)λ j
]E and [ f (t)ωk

]E are matrix valued vectors with polynomial coordinate functions,
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this yields a formal rational matrix valued function on [0,1] with rational coordinate
functions

b j,k(t) :=
〈

Q(t)[ f (t)λ j
]E , [ f

(t)
ωk
]E

〉
.

Let b(t) := (b j,k(t))L
j,k=1. Let δ (t) := det(b(t)) denote the formal determinant. At

points t where St is invertible we have δ (t) = det(B(Pt ,Pt ,Λ ,Ω)). By hypothesis,
F0 and F1 are Parseval frames, so S0 = S1 = In (the n× n identity matrix). Thus
P0 = F0 = F and P1 = F1. By hypothesis B(F,F,Λ ,Ω) is singular, so δ (0) = 0. By
construction, B(F1,F1,Λ ,Ω) is invertible, and so δ (1) �= 0. A nonconstant rational
function can have at most finitely many points where it is undefined, and at most
finitely many zeros. So, there is an α > 0 so that δ (t) is defined and nonzero. Since

S0 is invertible and the map t �→ St is continuous at t = 0, the map t �→ S
− 1

2
t is

continuous at t = 0. Thus, the map t �→ Pt is continuous at t = 0. So, there exists
α1 ∈ (0,α) so that ‖F −Pt‖ < ε wherever t ∈ [0,α1]. Choose t̃ ∈ (0,α1) and let
F̃ = P̃t . Then, ‖F− F̃‖< ε and δ (̃t) �= 0, so B(F̃, F̃ ,Λ ,Ω) is invertible as required.

�

Proof (Proof of Theorem 7). LetΓ=
{
Λ ⊂ {1,2, · · · ,N} : |Λ | ≤min

{
n,N−n, N

2

}}
,

and given Λ ∈ Γ , define ΦΛ = {Ω : Ω is a bridge set for Λ}. Then,

P = ∩Ω∈ΦΛ ∩Λ∈Γ P(Λ ,Ω).

By Lemma 4, each P(Λ ,Ω) is dense in PFN(H ).
Define δ(Λ ,Ω) : P(Λ ,Ω)→ C by

δ(Λ ,Ω)(F) = det(B(F,F,Λ ,Ω)).

Then, since δ(Λ ,Ω) is continuous,

P(Λ ,Ω) = δ−1
(Λ ,Ω)(C\ {0}).

Thus, each P(Λ ,Ω) is open.
Therefore, by the Baire Category Theorem, P is open and dense in PFN(H ). �

Remark 5.
Applying the Baire Category Theorem in the above proofs is a bit of overkill: all
one needs is the elementary fact that in any metric space a finite intersection of open
dense sets is open and dense. However, most of the concepts in this section extend
to infinite frames in an infinite dimensional space, as long as the erasure sets are
finite, and we think that it is likely that this type of result will remain true. In this
case an application of the Baire Category Theorem indeed would seem necessary.

Remark 6.
We found it convenient to present and prove the topological results of this section for
the metric topology. A similar argument can be used to obtain these for the Zariski
topology.
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Computing an Inverse for RRRΛΛΛ

In this section, we obtain a basis-free closed-form formula for the inverse of the
partial reconstruction operator RΛ for a finite erasure set. By basis free we mean
that the computations do not depend on any preassigned basis for the space, and by
closed-form we mean that it is of the same general form as RΛ is given in and does
not require an iterative process such as the Neumann series formula. This gives
a second method of perfect reconstruction from frame and sampling erasures in
finitely many steps that applies when R−1

Λ exists. Furthermore, this method only
requires a matrix inversion of size |Λ |× |Λ |, and Neumann series techniques can be
applied to this small matrix to speed up the matrix inversion.

The motivation for this formula comes from an observation that a rank-1 pertur-
bation of the identity operator, A = I− x⊗ y, is invertible if and only if 〈x,y〉 �= 1,
and in this case the inverse is

A−1 = I+
1

1−〈x,y〉x⊗ y. (22)

This formula does not seem to have been used in the frame literature for 1-
erasures. In attempting to generalize this to any finite number of erasures we dis-
covered the general formula in Theorem 8 below.

Let (F,G) be a dual frame pair indexed by J and Λ be an erasure set. Recall that

RΛ = ∑
j∈J\Λ

f j⊗ g j = I− ∑
j∈Λ

f j⊗ g j.

Motivated by this, we derive a simple method for computing inverses of operators
of the form

R = I−
L

∑
j=1

f j⊗ g j.

Remark 7. If R = I−∑L
j=1 f j⊗g j is invertible, an elementary operator theory proof

(cf. Proposition 6.1 in [25]) shows that R−1 has the form I +∑L
j,k=1 c jk f j ⊗ gk for

some c jk ∈ C.

Although the elementary tensors f j⊗ gk in the representation of R−1 in Proposi-
tion 6.1 are generally not linearly independent and hence the coefficients {c jk}L

j,k=1
are not unique, we can derive a simple matricial formula that gives a valid choice of
the c jk.

Theorem 8. Let R = I−∑L
j=1 f j ⊗ g j, where { f j}L

j=1,{g j}L
j=1 are finite sequences

and { f j}L
j=1 is linearly independent. Assume I denotes the L×L identity matrix and

M = Gr({ f1, . . . , fL},{g1, . . . ,gL}) :=

⎛
⎜⎜⎜⎝
〈 f1,g1〉 〈 f2,g1〉 · · · 〈 fL,g1〉
〈 f1,g2〉 〈 f2,g2〉 · · · 〈 fL,g2〉

...
...

. . .
...

〈 f1,gL〉 〈 f2,gL〉 · · · 〈 fL,gL〉

⎞
⎟⎟⎟⎠ . (23)
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Then, R is invertible if and only if (I−M) is invertible. Moreover, if (I−M)−1 exists,
setting

C := (c jk)
L
j,k=1 = (I−M)−1, (24)

we have

R−1 = I +
L

∑
j,k=1

c jk f j⊗ gk. (25)

Proof. Assume R−1 exists. By remark 7 we can write

R−1 = I +
L

∑
j=1

L

∑
k=1

c jk f j⊗ gk

for some c jk ∈ C. Compute

I = R−1R

=

(
I +

L

∑
j=1

L

∑
k=1

c jk f j⊗ gk

)(
I−

L

∑
j=1

f j⊗ g j

)

= I+
L

∑
j=1

L

∑
k=1

c jk f j⊗ gk−
L

∑
j=1

f j⊗ g j−
L

∑
j=1

L

∑
k=1

L

∑
�=1

c jk( f j⊗ gk)( f�⊗ g�)

= I+
L

∑
j=1

L

∑
k=1

c jk f j⊗ gk−
L

∑
j=1

f j⊗ g j−
L

∑
j=1

L

∑
�=1

L

∑
k=1

c jk 〈 f�,gk〉( f j⊗ g�)

= I+
L

∑
j=1

L

∑
k=1

c jk f j⊗ gk−
L

∑
j=1

f j⊗ g j−
L

∑
�=1

L

∑
j=1

L

∑
k=1

c j� 〈 fk,g�〉 ( f j⊗ gk).

In the last sum, we switched indices k and �. Thus,

L

∑
j=1

f j⊗ g j =
L

∑
j=1

L

∑
k=1

c jk f j⊗ gk−
L

∑
�=1

L

∑
j=1

L

∑
k=1

c j� 〈 fk,g�〉 ( f j⊗ gk).

By simply setting the coefficients of the f j⊗ gk equal to δ j,k, we obtain the fol-
lowing system of equations:

c jk−
L

∑
�=1

c j� 〈 fk,g�〉= δ jk. (26)

For a fixed value of j, we have the system

(
δ jk
)T

k=1,··· ,L =

⎛
⎜⎜⎜⎝

1−〈 f1,g1〉 −〈 f1,g2〉 · · · −〈 f1,gL〉
−〈 f2,g1〉 1−〈 f2,g2〉 · · · −〈 f2,gL〉

...
...

. . .
...

−〈 fL,g1〉 −〈 fL,g2〉 · · · 1−〈 fL,gL〉

⎞
⎟⎟⎟⎠
(
c jk
)T

k=1,··· ,L .
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Let C =
(
c jk
)

j,k. Combining the equations for all j gives

I = (I−MT )CT ,

where M = Gr({ f1, . . . , fL},{g1, . . . ,gL}). So, C(I−M) = I.
We will show that under the hypothesis that { f1, · · · fL} is linearly independent

the matrix I−M is invertible, so this system has a unique solution. This will yield a
valid choice of the c jk. If I−M were singular then 1 would be an eigenvalue of M.
So, there would exist a nonzero vector x = (xk)

L
k=1 ∈C

n so that Mx = x. Computing
gives ∑L

j=1

〈
f j ,gk

〉
x j = xk for each k. Let z = ∑L

j=1 x j f j. Since x is nonzero not all
of the x j are zero. By hypothesis { f1, · · · fL} is linearly independent, so z cannot be
the zero vector. Compute

Rz = z−
L

∑
k=1

〈z,gk〉 fk = z−
L

∑
k=1

L

∑
j=1

x j
〈

f j,gk
〉

fk = z−
L

∑
k=1

xk fk = z− z = 0.

So, z is in the kernel of R contradicting our hypothesis that R is invertible. Thus I−M
is a nonsingular matrix, and the system has the unique solution C = (I−M)−1 as
claimed.

Conversely, if (I−M)−1 exists, the above computations give an explicit formula
for R−1. �

Remark 8. If { f j : j ∈Λ} is not linearly independent, to apply Theorem 8, one must
first use linearity of the elementary tensors f ⊗ g in the first component and conju-
gate linearity in the second component to precondition R to the form I−∑L

j=1 f ′j⊗g′j
with the first component set { f ′j : j ∈ Λ} linearly independent. In many cases this
will be simple and even automatic, but in other cases this may be computationally
expensive. The main point is that if R is invertible, the computation above, perhaps
with preconditioning, always yields a formula for the inverse. Furthermore, it may
be useful to note that since we are solving a matrix equation, it follows that the co-
efficients c jk are given by rational functions of the

〈
f j,gk

〉
. In this sense the formula

is indeed basis free.

There are two methods to implement Theorem 8. Notice that we can either di-
rectly invert I−M or we can utilize a Neumann series. The first method we call
the direct inversion method, and the second we call the Neumann iterative method.
The implementation and numerical stability of each of these methods is discussed
below.

Implementation of the Direct Inversion Method

With the exception of the bridge set, the first two code snippets in the bridging
section are also used in the direct inversion method. The next piece is given here.
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M = ( F ( : , L ) ’ ∗ G( : , L ) ) ’ ;
C = ( eye ( max ( s i z e ( L ) ) ) − M) \ eye ( max ( s i z e (L ) ) ) ;

In this block of code, we compute the matrix M from equation (23) (in a similar
way to the creation of the bridging matrix in the implementation section for the
bridging method) and use it to calculate (I −M)−1 to determine the coefficients
given by equation (24).

g = f R ;
f o r ( j = 1 : 1 : max ( s i z e (L ) ) )

f o r ( k = 1 : 1 : max ( s i z e ( L ) ) )
g = g + C( j , k ) ∗ d o t ( f R ,G( : , k ) ) ∗ F ( : , j ) ;

end
end

norm ( f−g , 2 )

Once we know the coefficients as in Theorem 8, the nested for loop above com-
putes

fR + ∑
j,k∈Λ

c j,k 〈 fR,gk〉 f j.

Lastly, to check the accuracy of the method, the last line calculates the �2 norm
of the difference of the reconstructed vector and the original vector. Unfortunately,
the nested for loop slows down the computations. If properly parallelized, this code
could run much more efficiently.

Numerical Considerations

For this method, we are mostly concerned with the stability of the inversion of
I−M. To understand the stability, we designed an experiment with frames of length
N = 3000 in n = 2000 dimensions. For the experiment, we use erasure set sizes of
1, 5, 10, 25, 50, multiples of 100 from 100 to 1000, 850, 925, 950, and 975. For
each size, 10 trials were run and of the 10 trials, the median condition number was
recorded. For each separate trial, we used a new random frame and its standard
dual. The following graph displays the data collected.
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Erasure Set Size vs Condition Number
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Note that the point |Λ |= N−n = 1000 was omitted in the graph to avoid distor-
tion. The median condition number at this point was 1.23× 107. This shows that as
|Λ | gets close to N− n, the condition numbers start to “blow up”. However, we can
still get a reconstruction for |Λ | = N− n as with bridging. In this case, the �2 norm
of the error in the reconstruction of a unit norm vector is still on the order of 10−8.

Implementation of the Neumann Iterative Method

For this method, instead of directly inverting in equation (24), we use the approxi-
mation

(I−M)−1 ≈
J

∑
j=1

M j.

Unfortunately, there is no clear-cut way to get a relation between the number of
iterations used, J, and an upper bound on the error in our reconstruction. However,
it is clear that the smaller the error in the approximation of (I−M)−1, the better
our approximation will be. Notice that in the real case, and using the standard dual
frame, M∗ = M. So, ‖M‖= r(M). Let MJ = ∑J

j=0 M j . If we know r(M) = ‖M‖, we
can compute the corresponding J so that ‖(I−M)−1−MJ‖< ε . We have

‖(I−M)−1−MJ‖ ≤
∞

∑
j=J+1

‖M‖ j =
‖M‖J+1

1−‖M‖ . (27)

Hence, to achieve an ε tolerance a sufficient condition is

‖M‖J+1

1−‖M‖ < ε. (28)
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Therefore, the number of Neumann iterations required to get an ε tolerance is
given by

J > log‖M‖ (ε(1−‖M‖))− 1. (29)

Thus, in place of the second block of code in the direct inversion method we use
the following Matlab code.

t o l e r a n c e = 1 0 ˆ ( −1 0 ) ;

M = ( F ( : , L ) ’ ∗ G( : , L ) ) ’ ;
Mnorm = max ( ab s ( e i g s (M) ) ) ;

J = l o g ( t o l e r a n c e ∗(1−Mnorm ) ) / l o g (Mnorm)−1;
M J = eye ( max ( s i z e (L ) ) ) ;
f o r ( j = 1 : 1 : ( J + 1 ) )

M J = eye ( max ( s i z e (L ) ) ) + M∗M J ;
end

C = M J ;

Here, tolerance is the amount of tolerance we allow in ‖(I−M)−1−MJ‖. The
variable Mnorm is the spectral radius and norm of M. J is given by equation (29).
Lastly, the for loop computes MJ ≈ C. As with the Direct inversion, we still have
the nested for loop slowing down our computations.

Numerical Considerations

Questions we are interested in for this method are the following:

1. How frequently is ‖M‖< 1 or r(M) < 1?
2. How many iterations are needed to get an accurate reconstruction?

To answer our questions, we designed an experiment with frames of length N =
750 on n = 500 dimensions. We used erasure set sizes of 1, 5, 10, and multiples of
25 from 25 to 250. For each size, 10 trials were run and the median spectral radius
was computed. For each trial, we used a new random frame and its standard dual.
Based on the median spectral radius, we then computed the number of iterations
required so that ‖M−MJ‖< 10−10.

To answer question 1, the following graph suggests that as long as |Λ |< N−n =
250, ‖EΛ‖= r(EΛ )< 1.
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Size of Erasure Set vs Spectral Radius

N = 750, n = 500

0.60
0 50 100 150 200 250 300

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

S
pe

ct
ra

l R
ad

iu
s

Size of Erasure Set

For these spectral radii, we can compute the corresponding J from equation (29)
so that ‖M−MJ‖ < 10−10. The following plot is of these computed values of J so
that ‖M−MJ‖< 10−10. It shows that as |Λ | approaches N−n, J evidently increases
without bound.

Size of Erasure Set vs Number of Iterations Required
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Concluding Remarks

The main results in this chapter are presented for reconstruction from finite erasure
subsets of frames, so much of our theory is finite dimensional. However, the re-
construction results can be applied to finite subsets of infinite frames, including the
well-known classes of Gabor (Weyl-Heisenberg) frames, Laurent frames, infinite
group frames, and wavelet frames, as well as abstract sampling theory. There may
be applications to the pure and applied aspects of these classes, including classifi-
cation results. In fact, our initial computer experiments suggest to us that many of
these natural classes of infinite frames may be full skew-spark in the sense that they
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have skew-spark k for all finite k. But mathematical proofs of general theorems on
this have eluded us so far. In addition, there may be applications to the three closely
related topics that deal with frames in blocks: operator-valued frames, fusion frames,
and G-frames (cf. [12, 24, 28]). Finally, we should mention that we expect that there
will be applications to the more abstract theories: frames for Banach spaces and
related topics of Banach frames, atomic decompositions, and framings (cf. [11]),
the theory of frames for Hilbert C* modules, and in the purely algebraic direction:
frames for other fields such as p-adic frames and binary frames (cf. [6, 23]).
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Choosing Function Spaces in Harmonic Analysis

Hans G. Feichtinger

Abstract Without doubt function spaces play a crucial role in Harmonic
Analysis. Moreover many function spaces arose from questions in Fourier anal-
ysis. Here we would like to draw the attention to the question: “Which function
spaces are useful for which problem?” Looking into the books on Fourier analysis
one may come to the conclusion that it has almost become a dogma that one has
to study Lebesgue integration and LLLp-spaces properly in order to have a chance to
understand the Fourier transform. For the study of PDEs one has to resort to Sobolev
spaces, or the Schwartz theory of tempered distribution, where suddenly Lebesgue
spaces play a minor role. Finally, numerical applications make use of the FFT (Fast
Fourier Transform), which has a vast range of applications in signal processing,
but in the corresponding engineering books neither Lebesgue nor Schwartz theory
plays a significant role. “Strange objects” like a Dirac distribution or Dirac combs
(used to prove sampling theorems) are often used in a mysterious way, divergent
integrals are giving magically useful result s. Cautious authors provide some hint to
the fact that “mathematicians know how to give those objects a correct meaning”1

More recently other function systems, such as wavelets and Gabor expansions, have
come into the picture, as well as the theory of spline-type spaces and irregular sam-
pling have gained importance. In this context the classical function spaces such as
LLLp-spaces or even Sobolev and Besov spaces are not really helpful and do not allow
to derive good results. Instead, Wiener amalgam spaces and modulation spaces are
playing a major role there. It is the purpose of this chapter to initiate a discussion
about the “information content” of function spaces and their “usefulness”. In fact,

1 But they are giving the engineering students at the same time the feeling that it is too complicated,
that only the pedantic mathematicians have to take care of such theoretical foundations, while for
them it is not worthwhile the effort, or too time consuming to even try to understand this theory
properly.
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even the discussion of the meaning of such words may be a stimulating challenge for
the community and worth the effort. When I illustrate this circle of problems in the
context of time-frequency analysis, but also with respect to potential usefulness for
the teaching of the subject to engineers, I do not mean to specifically promote my
favorite spaces, but rather show - in a context very familiar to me - how I want to un-
derstand the question. Of course such a description is subjective, while, on the other
hand, it provides a kind of experience report, indicating that I personally found those
spaces useful for many of the things I have been doing in the last decades. It also
favors obviously less popular spaces over the well-known and frequently used ones.

Context and Background Information

This chapter is part of a series of survey papers by the authors (with varying coau-
thors) which tries to lay the ground for an alternative approach to Fourier analysis
overall. It is meant to replace the top-down approach (starting from Lebesgue spaces
over LCA groups and then going to distribution theory) by a bottom-up approach,
starting from finite Abelian groups and linear algebra, going straight to a theory
of generalized functions. The reservoir of objects which can be treated in this way
should be comprehensive enough to cover most cases (e.g., for engineering appli-
cations or for the discussion of questions of abstract harmonic analysis), but still
technically much less involved than the usual theory of (Schwartz-Bruhat) distribu-
tions [22].

The articles published in this (informal) series are the following ones: First [77],
showing an access to Gabor Analysis via linear algebra, followed by the article [78]
describing the theory of Gabor expansions over finite Abelian groups. Here one
finds the algebraic backbone of Gabor analysis (without the trouble of functional
analytic issues arising in the Euclidean context).

The last article published so far is [60], where the idea of Conceptual Har-
monic Analysis (CHA) is introduced. Recall that Abstract Harmonic Analysis (as
promoted, e.g., in [37, 81, 99, 100, 117]) views Fourier analysis over different LCA
groups in parallel and provides consistent terminology, such as characters, the dual
group, orthogonal subgroups, etc. In contrast, CHA takes in addition to this unify-
ing terminology the connections between the different settings into account. How
can we approximate (functions or distribution) on R

d resp. their continuous Fourier
transforms using functions over finite Abelian groups, such as Z

d
N? Can we use

code for Gabor analysis over finite Abelian groups in order to approximately com-
pute approximate dual Gabor windows (see [27, 79])? Typical first answers on such
questions are given, for example, in [108]. Since these results require the operations
of regular sampling and periodization these operations have to be properly described
using Dirac combs within the context of generalized functions.

The papers [69] and [74] which can be considered “classical” by now provide
the technical background in the setting of modulation spaces, specifically the Segal
algebra SSS0(R

d) and its dual space, presented in a more condensed form in [31], fea-
turing specifically Banach Gelfand Triples. A summary of applications and useful
facts concerning this specific topic will also be given in [71].
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Function Spaces: the Current Situation

If we look the publications in the field of function spaces, one can easily come to
the impression that it has become an industry (like many other fields of science),
with comprehensive output, concerning a large variety of (old and new) function
spaces. Individual papers typically compare certain spaces, look at the mapping
properties of concrete (families of) operators on certain spaces, improve the range
of parameters for such operators, reformulate known results in the setting of new
spaces, and so on. It is hard to keep up with these developments and make effective
use of these systematic studies and find the information content (if it is there) hidden
in the various propositions and theorems of the published manuscripts.

It seems that for many authors more and more the main concern in the preparation
of publishable results appears to be this one: “How can I find a question, that has
not been treated in the literature, which is within my reach and hence will lead to a
cited publication?”

This is a mind-set quite different from the “old” one, where one would first for-
mulate a problem, even just out of curiosity, then formulate questions that arise
naturally and which one would like to see answered, and then use the appropriate
function spaces (if appropriate) to describe the solution, or provide new construc-
tions which may allow to answer the pertinent question in a better or more natural
way. In order to make the point let me compare the situation with the situation with
car industry!

Comparison with car industry

I claim that the history of function spaces is - in some sense - comparable with
the history of cars2. Let me try to explain in which sense one can establish parallel
developments in these two apparently different areas of human activity!

First one is glad to work with concrete objects, even before the terminology is
established. This means that people are able to build cars which are really automo-
biles in the sense of being able to move autonomously thanks to a motor, driven by
gasoline (for example). I want to compare this with the following situation in Fourier
analysis: after a long development (starting with J.P. Fourier’s courageous statement
concerning Fourier series) H. Lebesgue has given the community the correct spaces(
LLLp(Rd), ‖·‖p

)
, for 1≤ p≤ ∞, for a proper treatment of Fourier integrals.

Then follows the phase where it was clear what kind of objects one is looking
for, and different inventors developed objects of the kind under consideration which
have different strengths and weaknesses. We have a market of cars and different

2 Of course one can replace cars by “computers” or other objects of daily life, such as “washing
machines” or “HiFi radio devices”. Equally well one could choose other scientific topics, different
from function spaces and still have a very similar situation, the key problem of the information
age: Find the relevant information value (= added value for the customer) in the collection of data
provided by the producers.
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companies praise their products, try to build good and fashionable cars, tell the
users about their great innovations and the advantages which their own brand is pro-
viding to the customers. On the other hand, it becomes more and more clear in this
period what the things are which can be used in the competitive process: Maximal
speed, horse-powers, acceleration parameters, gasoline consumption, trunk-volume,
reliability, look, and so on. Such criteria are then found in the catalogues and shown
in advertisement and are supposed to help the customer to choose in a market of
abundance.

We are probably now in a comparable stage concerning function spaces. In-
dividual results show that one space is strictly larger than another one, therefore
extending an operator from the small to the large space (or in the opposite direction,
demonstrating that the range is in fact in the smaller of two spaces, and not in the
larger) is really logically speaking an improvement. Yes, a car with more horse pow-
ers may really be better when it comes to overtake a heavy track on a cross-country
road. But would we necessarily pay a higher price for this, would we accept the
increased gasoline consumption? The reader may anticipate that at this moment we
are coming to arguments rarely asked in mathematical analysis, but rather familiar
from numerical analysis. It is this area, where one asks not only for the efficiency
of an algorithm (i.e., gain per iteration), but naturally compares it with the compu-
tational costs, the memory requirements. The suitability of a given algorithm will
finally depend on the problem type, the computational environment and other, po-
tentially more subjective parameters, like availability of code, familiarity with the
method, and other more psychological aspects.

To summarize, concerning function spaces we are at the age of informal wis-
dom in the community, which spaces could be good for which kind of applications.
Producers are offering their more and more sophisticated function spaces, demon-
strating their “power” or “strength” through concrete examples, often the traditional
ones. In a way it is a fairground, and journals are the market place to show their
achievements to the public.

Up to this point the development of car industry and function space development
appears to be comparable to me, and concerning function spaces it is the status
quo. But the story concerning cars meanwhile went much further! With time it
became clear, what kind of criteria a “good car” has to satisfy (low gasoline con-
sumption, many horse-powers, spacious trunk, good price or whatever else), and
specialized journals started to offer reports, comparing the different new car mod-
els. They follow more or less standardized tests and combine them with “personal
impressions”. In many cases the test criteria are well described or at least they are
known to car industry (and to the educated costumer, consulting such reports).

In contrast, despite the great variety of function spaces on the “market”, and the
almost industrial production of new spaces we lack a similar guidance, and even
evaluation criteria. We believe that it is time to start this discussion, even if it may
be controversial at times. In any case it will provide valuable insight into what “users
expect”. The final result of a probably longer discussion process will be the identifi-
cation of the “unique best function space”, but - absolutely comparable with a good
consumer report - guidelines which allow to identify those function spaces which
are likely to be useful on a concrete context.
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Having worked myself long enough as a pure mathematician (also with some
function spaces on the records, [47–49, 53, 63]) I have nothing against the invention
of new function spaces, but - if possible - one should see a chance for possible use-
fulness. It does not have to be motivated by real-world applications, but “l’art pour
l’art” may be only interesting if it exhibits unexpected facts, incredible counterex-
amples, or warnings, that one should not try to prove impossible results.

Gabor Analysis and Wavelet Bases

An import “impossibility result” that comes to mind is the well-known Balian-Low
theorem, which tells us that it is impossible to obtain a Gaborian Riesz basis, i.e.
a Riesz basis for LLL2(Rd) which is of the form (π(λ )g)λ∈Λ , where Λ �Rd× R̂

d

and g ∈ S (Rd) (or even g ∈ SSS0(R
d)). There exists meanwhile a substantial body

of literature concerning this specific result (see, e.g., [11, 13, 14, 94, 126]). On the
one hand, it stops of course the search for (orthonormal or Riesz) bases of LLL2(Rd) of
Gaborian type, while, on the other hand, it forces the community to look out for good
Gabor systems (because they are considered valuable due to the interpretation of the
coefficients arising from Gabor expansions) which have one of the two properties
which a basis has (think of linear algebra):

We teach in our linear algebra courses that a basis is the perfect case where a set
is both linear independent and a generating system. Hence every vector in a finite
dimensional Hilbert space will have a unique representation as a finite linear com-
bination of the basis elements. Clearly one comes to a similar notion in the context
of Hilbert spaces, which is exactly the concept of Riesz bases. One way of think-
ing of Riesz basis is to view them as distorted orthonormal bases. In fact, a Riesz
basis in a Hilbert space H is a system (gi)i∈I which can be obtained by the same
bounded and invertible linear mapping T from an orthonormal basis (hi)i∈I . Any
Riesz basis allows for a unique set of coefficients (ci)i∈I in ���2(I) with unconditional
convergence. The mapping f �→ (ci)i∈I is a linear mapping, realized as a family of
linear (!) functionals, or in other words: there is a uniquely determined biorthogonal
system (h̃i)i∈I such that ci = 〈 f , h̃i〉, i ∈ I.

If it is not possible to have a Riesz basis for the Hilbert space
(
LLL2(Rd), ‖·‖2

)
,

then one has to give up some of the requirements. On the one hand, one may look
out for potentially linearly dependent3 generating systems. If one adds the aspect
of numerical stability, one is coming to the - by now well established - concept of
frames in Hilbert spaces. One thus has to ask whether it is possible to have good
Gabor frames (and later on: when is a Gabor frame “better” than another one, and
similar questions). The attempt to answer such questions has led to the meanwhile
comprehensive theory of Gabor frames and Gabor multipliers.

3 in a suitable sense, to be discussed separately, because it is not the classical notion of linear
dependence, but rather a more functional analytic version of it: some - in fact typically any -
element can be written as a well convergent series of the other elements of the system!
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Alternatively one may give up the request to represent all elements of the given
Hilbert space, and try to be rather content with the fact that a Gaborian Riesz basic
sequence is a Riesz basis for a closed (but proper!) subspace of

(
LLL2(Rd), ‖·‖2

)
, let

us call it H0. Such a situation is convenient for mobile communication. Since (mod-
ulated) Gauss functions are good (joint) approximate eigen-vectors for all slowly
varying channels (as they arise in the description of mobile communication chan-
nels) such systems are in fact quite useful for applications in mobile communication.
Assume that the information to be sent is coded using suitable linear combinations
of such a Riesz basic sequence. Then one can hope that after application of such
a linear system (typically an underspread operator) the series is still only slightly
perturbed, such that consequently the use of a biorthogonal Riesz basic sequence
(which happens again to be of Gabor type) can be used to recover the coefficients
(containing the information to be transmitted).

Quite in contrast to this situation it has been possible in wavelet theory (report-
edly to his own surprise, by the pioneering work of Yves Meyer) to find orthonor-
mal bases of constant shape, which are nowadays known as orthonormal wavelet
bases (see [114, 122, 123]). There are various reasons, why the family of wavelet
orthonormal bases has gained so quickly high importance both for applications and
theory. First of all one can interpret the size of a cofficient as an indicator for the
amount of energy within a signal at a given (dyadic) scale and a specified location.
But good wavelet bases (i.e. those having good time decay and satisfying a few
moment conditions) are also well suited to characterize within the realm of tem-
pered distributions those distributions which belong to the classical function spaces,
such as Sobolev or Besov spaces (typically viewed as generalized Lipschitz spaces
with respect to Lp-norms), but also Bessel potential spaces, or more generally the
Triebel-Lizorkin spaces. Since these spaces have been well established tools at the
time when wavelets appeared they found immediate application in many branches
of analysis.

These function spaces are used nowadays in analysis, in particular within the
theory of PDEs, because they appear as the “natural” method to describe the
smoothness, and at first sight it is natural to associate differentiation with the loss of
smoothness. Taking a second order derivative of a C(k)-function on R

d of course re-
sults in a C(k−2)-function. But when it comes to the discussion of pseudo-differential
operators sooner or later the use of the classical function spaces turns out to have its
limitations, and therefore other/new function spaces are needed. And not always is
the link to classical differentiability the most important aspect (although this claim
is certainly a potentially controversial one).

However, the recent development in time-frequency analysis, including the dis-
cussion of pseudo-differential operators and Fourier integral operators indicates
that also in this context modulation spaces might be the more natural spaces
[30, 32–34, 90, 92, 93, 102, 136].
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Consumer Reports Needed

As in the world of consumer goods, where customers are eager to compare the qual-
ity of services or the quality of products, certain standards have to be established.
Hotels have their stars, Vacation on the Farm has its flowers, and restaurants have
their Guide Michelin stars. It is part of the deal that it is generally agreed on the
level of service which is guaranteed by a certain number of “stars”, so that cus-
tomers have a good idea of what they can expect. Despite the large variety of offers
found at different places one can be assured that a high ranking means “highly rec-
ommendable”, but one will not be surprised if it is also very expensive.

Since we want to discuss the quality or level of information provided by the
membership of a function or distribution in a certain function space we will first
require the development of widely accepted criteria for corresponding statements.
The final list is probably the outcome of the longer discussion within the community,
most likely via internet, at conferences or in the common room of a mathematical
faculty anywhere in the world.

Note that we are at a very early phase of this development and the community
has not given much thought to the formulation of such criteria4, but it is clear that a
list (possibly far too short at the moment) of properties are likely to play a role.

One has to say that “as of now” the academic system has not yet established a
system of setting standards in the sense of quality criteria that a good “consumer
report” should satisfy. Since production of new results and originality are these day
the basis for a successful academic career the meaningful collection of information
is not properly recognized as a valuable contribution to the advancement of (math-
ematical) sciences. Nevertheless I am convinced that it will become more and more
important in the coming years.

While cooperative research is getting more and more important, and the share of
single author papers is decreasing (see T. Tao’s talk, cf. below) we still put “origi-
nality” ahead of “usefulness” when we have to judge papers as reviewers. This is -
in the long term - a potentially critical aspect of academic life, which certainly has
not taken into account the current mass-production of “scientific results”.

It is certainly not yet easy nowadays to publish a paper or even a report just
comparing the results obtained by a group of authors, and providing a compara-
tive description of their relevance. Although it might be quite informative for young
researchers in the field to understand the state of the art before starting their own
research, the effort going into the establishment of knowledge of this kind is usually
an individual effort, and the results are most of the time not well documented except
for a short list of references referring to earlier contributions.

We suggest to view this article only as an incentive to the community to work
towards such a slit. If we want to have an idea how it could look like, we only have
to look at modern consumer reports or feedback systems in the internet, which help
users to identify the product optimally matched to the individual need.

4 This challenge is one of the main reasons for the formulation of this chapter!
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Although clearly any envisaged descriptive system which may convey implicit
recommendations about the usefulness and information content provided by the var-
ious function spaces will contain some partial ordering, it is a much more complex
framework. Ideally one would like to provide pre-formulated settings for certain
groups of users, such as “engineering students” or “researchers interested in pseudo-
differential operators”, in the same way as hotel-guides allow to optimize for the
needs of “families with small children” or “young female individual travelers”. In
this sense Hotel booking systems are nowadays much better suited to describe what
this author has in mind. One can look up at which price one can get which service
at a given time and location, and choose a location which is well suited for a family
but maybe completely un-interesting for a young couple, even if it is well priced.

Remember that it is easy to sort cars by horse-powers, the total weight, or just the
price, but this is not at all a good sorting criterion for choosing a car. We also went
beyond the time where a son used to stay with the brand which his father liked, but
in science it appears that the tradition of staying with the function spaces suggested
by the advisors dictates to a surprisingly large extent which function spaces the next
generation is using. It might be an interesting topic for a psychological study to find
out whether it is the primarily the familiarity with the technical details of the subject,
or the understanding that the questions related to a particular area are of specific rel-
evance. In any case, however, the questions suggested above (concerning potential
outside relevance, usefulness of the achieved results, etc.) should be allowed, should
be discussed and inspire a critical and constructive discussion process.

As we tried to explain the local rankings will be only part of an overall and more
complex expert system, which is based on the particular observations. This bigger
picture will need many of the results established in the last decades, but should go
far beyond it.

In addition to the aspect of clarification of concepts and the gain of better insight
into the “information content of function spaces” in a given context the considera-
tion indicated above will have an additional effect. The market will react on needs of
the costumers. Providers delivering better quality at a lower price (this could be easy
to use function spaces with a wide range of applications) would find their products
more and more widely used, whereas fancy offers would have to be really interesting
or really different from existing ones in order to be attractive to the users. No bank
would support the building of a new standard hotel in a bad neighborhood, because
it might not be accepted by the guests and may end up in financial disaster.

To summarize this comparison with the hotel business: We can expect that a good
hotel in an attractive place will be widely accepted, we also can hope that a very nice
hotel in a not-yet attractive neighborhood might be a good idea, if it can offer clean
rooms at a fair rate. But a standard hotel in a bad place may fail to find customers.
But many - especially younger researchers - are in the danger of trying to build a
new hotel, according to standard arguments, and hope to publish results just based
on the fact that such results are (i) new (in the sense of not found in the literature
so far) and (ii) that they are technically feasible, without any motivation, with very
little discussion in which sense the results are a true extension (in the conceptual or
methodological sense) of existing results, not only in a formal, logical sense.
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Towards a Ranking of Spaces

Thinking in general terms of function spaces I found that the following list of prop-
erties might play a role for the ranking:

Property Explanation: how it applies to function spaces
Size of space size of space (big or small);
Universality it can be used in many situations;
Easy to Use it is easy to use;
Standard-Compare it compares well with standard spaces;
Auxiliary it is a good intermediate/auxiliary space;
Needed it is exactly the right space for some applications;
Family it belongs to an important family of spaces;
Variety it allows for a large variety of equivalent descriptions;

Let us just illustrate some of the above-mentioned points, including Pros and Cons:
For many of these properties there is no general claim which of these properties is
important or which version of the property is “more useful”. This clearly depends on
the context. For an operator it is interesting to be able to show that its domain is big.
If one has verified a few properties of a function, then the possibility of concluding
that it must belong to the smaller of two spaces is clearly a stronger statement.

If a linear operator maps two spaces into themselves, one cannot say, which of
these statements is the stronger one. It may be of interest to demonstrate that the
Fourier transform is even well defined on the space S ′(Rd) of tempered distribu-
tions, while, on the other hand, (i.e., that the extended Fourier transform has a large
domain), but if σ ∈ SSS0

′(Rd) � S ′(Rd) it is a stronger claim which says that its
Fourier transform σ̂ belongs to SSS0

′(Rd) as well.
Knowledge about the membership in one of two function spaces BBB1 and BBB2 may

be considered to be more informative if one of these spaces is smaller, say it appears
as more valuable to know that f ∈ BBB2 if BBB2 ⊆ BBB1. But if this extra information is
not used afterwards, and the verification of the claim “ f ∈ BBB1” is much easier to
establish, it may still be preferable to use BBB1, e.g. in order to have an elegant and
simple proof.

Even if there would be a perfect space for each problem arising in analysis, it
would not be very smart (nor feasible) to really use too many of those spaces, be-
cause it makes things very complicated, and only experts can handle this complex
situation. Instead, a small selection, typical for various application areas and with
different functionality is what we look for.

Right now there are certainly some well-established spaces (such as Lebesgue
or Sobolev spaces), so together with any new space it is advisable to list not only
its properties, but also to indicate how it compares to those standard spaces. To
investigate the boundedness of linear operators on LLLp-spaces appears as a natural
“first question”, even if only rarely the usefulness of such theorems is discussed in
a critical way.
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It may be also interesting to know, which role a particular function space has
for a given area of analysis. Having no other choice than using a function space for
the description of a given important operator (a good example is certainly the real
Hardy space with respect to the Hardy-Littlewood maximal function) is certainly a
very strong reason to have some general knowledge about such a space, even if it is
not used regularly.

A space can have a large range of applications and can therefore be extremely
useful if it has a variety of equivalent characterizations. Each of them may be useful
in a different context, but if one knows that they are all equivalent one can use the
same space for many applications.

Construction Principles

While the topics mentioned above indicate why certain spaces could be in use (e.g.,
because they are universally applicable and easy to use) the listing above does not
take into account how those function spaces are constituted. Obviously the history
of construction principles would be another interesting topic, which we do not want
to fully expand here. Nevertheless we believe that there are some fundamental prin-
ciples which come up regularly, while others are only relevant for very specific
situations. Most of the time new constructions are just a simple recombination of
known construction principles, which may lead to almost useless spaces and pos-
sibly also to an elegant new approach to known or stronger results. It is also clear
that a good understanding of construction principles and their mutual compatibility
may help to find orientation within the extended family of function spaces.

Again we cannot try more than just giving a selection of the most important
methods:

1. Rearrangement invariant function spaces (can be defined over general mea-
sure spaces) and allow to create Banach spaces of functions described by the
distribution of their values (how large is the set of points for which a given
function | f | takes values larger than some positive value α > 0. The classical
LLLp-spaces are the prototypes of this family, but also Lorentz- and Orlicz spaces
(see [124, 131, 132]) belong to this class; such spaces are also solid, i.e. satisfy:

f ∈ BBB, |g(x)| ≤ | f (x)| a.e. ⇒ g ∈ BBB and ‖g‖BBB ≤ ‖ f‖BBB.

2. Weighted spaces BBBw := { f | f w ∈ BBB} or obtained from solid spaces, using a
strictly positive weight function w on the same domain; among those weight
functions sub-multiplicative or moderate weights are the most important ones
(see [44, 91]);

3. Mixed norm spaces (the prototypical construction being described in the paper
by Benedek-Panzone, [12]); clearly here the order in which the various p-norms
are used is important for the spaces (and can be seen as responsible for the
difference between Besov and Triebel-Lizorkin spaces);
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4. Another variant of LLLp-theory is the theory of LLLp-spaces with variable exponent,
see [39, 40]. One has seen a number of classical results being adapted to this
case in the last decade, but it may be difficult to appreciate the information com-
ing the membership on one of these spaces. An additional complication might
be their high sensitivity (unlike LLLp-spaces, which are stable under any measure
preserving transformations) to small perturbations, even simple translations.

5. Domains of (unbounded) operators, such as the classical Sobolev spaces: given
an unbounded operator one has most of the time a “natural domain” for such an
operator (e.g., differentiation in LLL2(Rd));

6. Smoothness described by some modulus of continuity: this is the original way
of introducing the Besov spaces as generalized Lipschitz spaces (with respect
to LLLp-norms);

7. Real Hardy spaces
(
HHH1(Rd), ‖·‖H

)
(see [28]) are the prototypical examples

of Banach spaces characterized by atomic decompositions of their elements.
Many “minimal spaces” share this property (see, e.g., [6, 50, 121]) such spaces
are often useful in order to establish boundedness properties of operators. Once
it is possible to verify that a linear operator T on such a space maps atoms into
molecules (which in turn are typically decomposed naturally into a well conver-
gent series of atoms) it is usually not difficult to verify that T acts boundedly on
the given “atomic space”.

8. Taking dual spaces often creates interesting new spaces, but they are function
spaces not always; typically, one obtains Banach spaces of generalized func-
tions if test functions are dense in the given Banach space [21, 138];

9. Real and complex interpolation methods play an important role in generating
families of function spaces (sometimes just scales of spaces) from a given
pair. The complex method appears to be better suited for the interpolation of
Banach algebras, while the real method (most relevant are the K-method and
the J-method, which are, however, equivalent); one can say that Lorentz spaces
LLL(p,q) are obtained from the scale of LLLp-spaces by real interpolation methods
(see [15, 16]);

10. Approximation spaces are characterized by the approximation error of their el-
ements with respect to some given family of subspaces (or a sequence of com-
pact, typically regularizing operators), see S.M. Nikolskij’s book [125], or the
paper by A. Pietsch [130].

11. Decomposition spaces5 (with a local and a global component), among them
Wiener amalgam spaces (see [23, 48, 82]), allow to describe a space by its
global behavior of a certain local property. While Wiener amalgam spaces
rely on uniform decompositions [48, 97] of the underlying group, the Fourier
characterization of Besov spaces uses dyadic partitions of unity (see the work
of Frazier-Jawerth, [83, 84]). The general theory of decomposition spaces al-
lows for a much more general covering situation, using the so-called BAPUs
(bounded, admissible partitions of unity, see [20, 62]). The important property

5 Not to be confused with spaces with atomic decompositions: in the current setting decompositions
are domain decompositions which are used to cut the given function into “pieces”.
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of such partitions is the fact that every element overlaps only with a finite max-
imal number of “neighbors”. Corresponding weights are then called moderate
if they are more or less constant over such clusters (of neighbors), a rather gen-
eral approach is described in [62]. The so-called α-modulation spaces [87] are
just a concrete class within this general context; the so-called Herz-spaces are
special decomposition spaces with local LLLp-components over dyadic intervals
[98, 105].

12. Banach module constructions [21] allow to create “essential parts” and “rel-
ative completions” of Banach modules. In harmonic analysis homogeneous
Banach spaces (as defined by Y. Katznelson in [109], see also [134]) are the
prototypical examples of this kind, with Segal algebra in the sense of Reiter
as a subclass (those which are inside of

(
LLL1(G ), ‖·‖1

)
). By combining two

module actions (e.g., convolution and pointwise multiplication) one can create
from a given space a variety of up to six spaces, all with the same norm! Details
are given in [21].

13. Tensor product constructions have a long tradition in harmonic analysis, es-
pecially in connection with the Eymard’s Fourier algebras [41] AAA(G ) and (for
p �= 2) the Figa-Talamanca-Herz Banach algebras (pointwise) AAAp(G ) defined
over general locally compact groups (see [38, 80, 98, 140]). They are intimately
related to the study of convolution operators on LLLp-spaces;

14. Isomorphic images of given Banach spaces inherit of course most of their
abstract properties. Sometimes the isomorphism in use moves a problem into
a more transparent setting. For example, the transform may turn an abstract
Hilbert space into a RKH (reproducing kernel Hilbert space, [10]). The best
way to understand (fractional) Sobolev spaces is to identify them (via the
Fourier transform, which is an isometric isomorphism on

(
LLL2(Rd), ‖·‖2

)
,

thanks to Plancherel’s theorem) with a corresponding weighted LLL2-space over

the dual group (the Fourier domain, R̂d), see [135]; in a similar way, the space
FLLLp is just the image of

(
LLLp(Rd), ‖·‖p

)
under the (distributional) Fourier

transform, with the norm inherited from the LLLp (over the “time-domain”);
15. A very similar idea can be carried out with, e.g., spaces of multipliers, or some-

times the so-called Fourier multipliers. In the classical setting (see, for example,
[113]) LLLp-Fourier multipliers are just pointwise multipliers of FLLLp(Rd). But
of course one can view them also as those tempered distributions which define
convolution operators on

(
LLLp(Rd), ‖·‖p

)
(with the operator norm as norm);

16. Traces of given function spaces to lower dimensional subspaces are also often
an interesting source for new spaces; in many cases (e.g., Besov or modulation
spaces), they belong to the same family of spaces (and this is then an interesting
property of the family), but it is not always true.

17. Coorbit spaces have been developed in a series of papers [63, 64, 88]. The ele-
ments of such spaces are characterized by a typical behavior (described through
some solid, translation invariant Banach space of function on the group G ) of
the representation coefficients of its elements for a suitable group representa-
tion π of G on some Hilbert space. These representation coefficients are also
called voice transforms or (generalized) continuous wavelet transform and are
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taken with respect to suitably chosen “mother wavelets”. Up to this (typically
isometric) transfer coorbit spaces are thus just isomorphic copies of closed (and
left-invariant) function spaces on the group G .
At the beginning coorbit theory was more about finding a unified approach
to the continuous wavelet transform and the STFT, using group theoretical
methods. It also provided ways to establish by analogy properties of Moebius
invariant Banach spaces of analytic functions (see [7–9]). However, more
recently, other groups and other function spaces (also allowing atomic decom-
positions, frames, etc.) have obtained some attention, among them function
spaces related to the Blaschke group (see [127, 128]) and in particular the
theory of shearlets [35, 36, 112].

18. Intersections (of finitely or even infinite, e.g. parameterized families of spaces,
see [17–19]), or correspondingly the linear sum of two (or more) function
spaces (see [116]) may also generate new spaces; often even the intersection of
two members of a family of spaces is not in the same family of spaces (e.g., the
intersection of two LLLp-spaces, or two Wiener amalgam spaces with different
local resp. global components: one space may have a smaller local component,
the other one a smaller global component). A systematic study of such lattices
of spaces is undertaken in [5].
Another situation where the intersection of LLLp with its multiplier space gives
an interesting new space (called the tempered elements) is given in [42];

19. Given a Banach spaces (such as a weighted LLLp-space LLLp
w(R

d)) one may ask
whether there is a smallest space containing the given space, but which has
better translation properties, e.g. (to take the most simple case) is isometrically
invariant under translation (see, e.g., [106] [43, 47]);

20. In a similar way one can look for the dilation invariant hull of a given space, if it
is not isometrically dilation invariant. The exotic space B0 described in [75] is
an example obtained in this way (using LLL2-normalized dilation, starting from the
space SSS0(R

d), which itself is both an atomic and an amalgam space); the obser-
vation that certain dyadic decomposition spaces can also be described as the di-
lation invariant hull of all functions in the unit ball of some LLLq-space with fixed
support was the key to the proof of Wiener’s Third Tauberian theorem in [51].

21. Function (resp. distribution) spaces correspond sometimes to certain Banach
spaces of operators. For example, it is known via the kernel theorem that func-
tions in LLL2(R2d) are exactly the integral kernels of Hilbert-Schmidt operators
on

(
LLL2(Rd), ‖·‖2

)
; but one can also look at the space of kernels of operators

from LLLp(Rd) to LLLq(Rd), or the space of all Weyl (or Kohn-Nirenberg) symbols
of a class of operators (see [69]); more often function spaces are used in order
to describe the mapping properties, e.g. in the context of quantization, mapping
from function spaces to operator ideals;

22. Capacity based spaces are describing their elements by the capacities of their
level sets (as opposed to the Lebesgue spaces using the measure of these sets);
one may consider these spaces a somewhat less observed family of spaces
([2, 26, 110]).
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23. Quotients and closed resp. complemented subspaces of a given family of spaces
are sometimes also considered.

Out of this (probably still incomplete catalogue) of possible methods of gain-
ing new spaces from given ones let us choose a few examples in order to explain
our understanding of “usefulness” of function spaces, respectively, in order to give
a concrete interpretation of the abstract principles mentioned in the section about
rankings. We are going to talk about Wiener amalgam spaces, because they appear
to be useful for quite a wide range of problems in analysis, but also because they are
not yet so widely known or used, despite the fact that they are easy to understand
and easy to use.

Wiener Amalgam Spaces

Wiener amalgam spaces (introduced as Wiener-type spaces in [48], and renamed
following a suggestion by John Benedetto, see [97] for a gentle introduction) have
been useful in a large number of places and have in some way become the backbone
of many papers by the author concerning coorbit theory [63, 64], or sampling theory
[54, 55, 65, 66] or spline-type space [3, 4, 56].

Wiener Amalgam Spaces require a local component, which can be any double
module space (BBB, ‖·‖BBB) (cf. [61]), and a description of the global behavior of the
local properties of f described by means of the BBB-norm of localized pieces of f . We
restrict our attention here (for simplicity) to global ���p-spaces.

One can define WWW (BBB, ���p) by means of a BUPU, a uniform partition of unity,
ideally a collection of functions (ψi) which have uniformly small compact support
(like cubic B-splines), are bounded in the multiplier algebra AAA of (BBB, ‖·‖BBB), and
have controlled overlap of their supports. Members of this space are functions be-
longing locally to BBB, and have the following (norm) expression finite:

‖ f |WWW (BBB, ���p)‖ :=

(
∑
i∈I
‖ f ·ψi‖p

BBB

)1/p

< ∞.

Especially the choices BBB =CCC0(R
d),LLL2(Rd) and FLLL1(Rd) are useful. We have

SSS0(R
d) =WWW (FLLL1, ���1) and SSS0

′(Rd) =WWW (FLLL∞, ���∞)(Rd).
Previously the corresponding spaces (going in fact back to work of N. Wiener,

e.g. in the context of his book [142]) had been used just with local components of
the form LLLr, for some r ∈ [1,∞], see, e.g., [23, 82, 101].

When LLLp-spaces over Rd are compared the following question arises:
Is it more informative to know that f ∈ LLLr or to know f ∈ LLLs, for s �= r, say r < s?

The answer is of course: this depends on side information that one may have.
If f is compactly supported, f ∈ LLLs is the stronger claim (any bounded function
is integrable, square integrable function as well, etc.). On the other hand, if f is
band-limited, f ∈ LLLr is the stronger statement, because only the global properties
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matter. Certainly such questions can be better answered by means of Wiener amal-
gam spaces, which allow to separate local and global properties (resp. obstacles for
inclusion results).

Standard reference: [43, 48] for Wiener’s algebra resp. Banach conv. algebras.
Wiener amalgam spaces arose as a technique which was supposed to imitate

the construction of Besov spaces in the context of LCA groups (such as G = R
d),

but without the use of dilation. They were designed having already the subsequent
definition of modulation spaces in mind (as inverse images of Wiener amalgams).
From the various descriptions of Besov spaces available at that time the charac-
terization using dyadic partitions of unity (related to Paley-Littlewood theory) it
became soon clear that one needs smooth partitions of unity, which have to be uni-
formly bounded in the Fourier algebra

(
FLLL1(Rd), ‖·‖FLLL1

)
, and so eventually it

turned out that so-called BUPUsΨ = (ψi)i∈I (Uniform Bounded Partitions of Unity)
are the right way to go. Here uniformity refers to the size of the support of the
building blocks ψi, while boundedness refers to boundedness in the Fourier algebra(
FLLL1(Rd), ‖·‖FLLL1

)
.

The model for these spaces have been the (ordinary) amalgam spaces ���q(LLLp)
(generalizing Wiener’s construction) where a kind of trivial (regular) decomposition
of Rd could be used. In principle this two-parameter family of spaces uses local LLLp-
norms with global restrictions in the form of an outer ���q-summability. In this way
one has locally the natural inclusions known from the compact case (e.g., the torus
group, with LLLp1(U) ⊆ LLLp2(U) if and only if p1 ≥ p2, while the opposite inclusion
(same as for the ���q-spaces over Z) is valid in the global components.

Product-convolution operators [23] have motivated the corresponding (and
highly useful) convolution theorem given in [48], showing that local and global
convolution result can be combined to convolution results for Wiener Amalgam
spaces. This in turn is quite useful in order to derive good properties of spaces
of smooth functions. There are also natural results concerning interpolation of
amalgam spaces [46].

On the one hand, one can obtain Plancherel-Polya type theorems for band-limited
functions in LLLp-spaces, on the other hand results of the type of a Sobolev embedding.

In the first case we argue that any band-limited function f with spec( f ) =
supp( f̂ )⊆Ω allows to have some function WWW (CCC0, �

1)(Rd) with ĥ(ω) = 1 forω ∈Ω ,
hence

h = h ∗ f ∈ LLLp ∗WWW (CCC0, �
1)⊂WWW (LLL1, ���p)∗WWW (CCC0, �

1)⊂WWW (CCC0, ���
p).

On the other hand, we have for the case that 1/w ∈ LLL2(Rd) that

LLL2
w(R

d) =WWW (LLL2, �2
w)⊆WWW (LLL2, ���1),

and hence one has for the corresponding Sobolev space HHHw(R
d) :=F−1(LLL2

w(R
d))⊂

WWW (FLLL1, ���2), due to the Wiener amalgam version of the Hausdorff-Young theorem
[53]. It follows therefrom that we have the continuous embedding (under the usual
assumption of Sobolev’s embedding) HHHw(R

d) ↪→WWW (CCC0, �
2)(Rd), and consequently

one can estimate for any lattice Λ �R
d (up to some constant C > 0 depending only

on w and the lattice)
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(
∑
λ∈Λ

| f (λ )|2
)1/2

≤C‖ f‖HHHw ∀ f ∈ HHHw.

Similar estimates hold for “irregular” discrete sets, as long as they are well-spread,
i.e. as long as they are finite unions of δ -separated sets. And of course such re-
sults imply that analogous estimates hold true for band-limited functions (see also
[73]). Since such a claim cannot be deduced from the standard inclusion (Sobolev
embedding theorem) stating HHHw ⊂ LLL2∩CCC0 this is a more informative statement.

Wiener amalgam spaces over locally compact groups (allowing an integrable
representation π) have been the technical cornerstone of coorbit theory (see [63, 64,
88]) but also the decisive tool for the analysis of iterative reconstruction methods
for irregular sampling problems for band-limited or spline-type functions [4, 54, 66,
67, 72, 76].

Outlining a New Approach to Fourier Analysis

If one looks into the (many) classical books about Fourier analysis which have been
published in the last centenary, one finds only relatively little differences. This is
perhaps not surprising, since Fourier analysis is by now a very mature field, with
well-established basic principles, with the “right” function spaces being well known
mostly in the form of Lebesgues spaces). There are also various generalizations
which make Fourier analysis as such also a very important part of the modern the-
ory of PDE (recalling, e.g., the concept of microlocal analysis as introduced by
L. Hörmander) or for the theory of pseudo-differential operators. It has become
common practice to ask about the boundedness of linear operators between (resp.
on) LLLp-spaces, and only the study of Calderón- Zygmund and related operators (like
the Hilbert transform) brought the insight that at least for the limiting cases (which
are LLL1(Rd) and LLL∞(Rd)) one should seek appropriate replacements, namely the real
Hardy space HHH1(Rd) its dual, the BBBMMMOOO(Rd)-space. For details see the seminal pa-
per [28].

The Traditional Approach to Fourier Analysis

Most of the current literature on Fourier analysis takes for granted that the natural
domain for the Fourier transform are simply the Lebesgue spaces

(
LLL1(G ), ‖·‖1

)
of

Lebesgue integrable functions on a group G . This despite the fact that one has to
introduce first the Haar measure on G and then a measure space, whereas bounded
measures could be easily introduced as the dual space of CCC0(G ).

This (by now widely accepted!) viewpoint is based on the observation that the
Fourier transform - as originally defined - is coming up as an integral transform,
and the historical development has shown that obviously the Lebesgue integral (on
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general LCA groups the Haar measure) is the right tool. It does not only provide a
proper domain to the Fourier transform, but it also ensures that

(
LLL1(G ), ‖·‖1

)
is a

Banach space (in contrast to the space of Riemann integrable functions). Further-
more, the Lemma of Riemann-Lebesgue allows to describe the FT as non-expansive
mapping from

(
LLL1(G ), ‖·‖1

)
into CCC0(Ĝ ), endowed with the sup-norm ‖ f̂ ‖∞, since

‖ f̂‖∞ ≤ ‖ f‖1 for any f ∈ LLL1(G ). It is even a very convenient setting to prove the so-
called convolution theorem, because it only requires to make proper use of Fubini’s
Theorem in order to find out that convolution, given by

f ∗ g(x) :=
∫

G
g(x− y) f (y)dy ∀ f ,g ∈ LLL1(G ), (1)

is well defined (almost everywhere), satisfies the submultiplicativity property

‖ f ∗ g‖1 ≤ ‖ f‖1‖g‖1 f ,g ∈ LLL1(G ).

On the other hand, Fubini’s Theorem is also the key ingredient for the proof of the
so-called convolution theorem, stating that

F( f ∗ g) =F( f ) ·F(g) ∀ f ,g ∈ LLL1(G ). (2)

For many applications this is a good choice, but there come also several restric-
tions with this approach. First of all it makes the Fourier transform, although it
can be extended to a unitary operator on

(
LLL2(G ), ‖·‖2

)
(Plancherel’s theorem) not

symmetric, because the domain of the inverse Fourier transform, which should be
of course FLLL1(Ĝ ) := { f̂ | f ∈ LLL1(G )}, is not in general contained in LLL1(Ĝ ), and
hence the inverse Fourier transform (although it has almost the same integral kernel
as the forward FT) has problems to be realized as a true Lebesgue integral, despite
the good properties of this integral. In fact, even for LLL2(Rd) the realization of the
Fourier-Plancherel Transform requires an approximation argument and cannot be
carried out as a “literal integral transform”.

There is another important area where convolution and Fourier transforms play a
role: the theory of translation invariant linear systems T (TILS). Here one expects
(looking at the discrete situation) that every such operator is a convolution operator
with some impulse response (or mathematically speaking convolution kernel) or
equivalently, that such systems can be described as Fourier multipliers, or a so-called
transfer function h(ω), which can be any bounded function, in fact an arbitrary
element from LLL∞(Ĝ ). Thus T is either of the form T ( f ) = σ ∗ f (for “some” impulse
response functionσ (thought as σ = T (δ0) whenever it makes sense) or equivalently
(in which sense) F(T ( f )) = h · f̂ .

Even for simple cases one can see the limitation of the viewpoint restricting the
attention to Lebesgue integrals: Given χ(x) = eix2

(a so-called chirp signal) on R

one can show that the operator, well defined on functions with compact support,
extends in a unique way to bounded (in fact unitary) convolution operator on LLL2(R),
with transfer h =F(χ) = χ (see [25]). But for a function such as the well-known
SINC-function (inverse Fourier transform of a box-function) the convolution χ ∗sinc
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cannot be written as a convolution integral, and also the claim the chirp function is
invariant under the Fourier transform cannot be shown if one is restricted to the
Lebesgue viewpoint.

Although detailed investigations of the classical Fourier transform are a valuable
contribution to mathematical analysis, one has to see that the modeling of real-
world problems must not make unnatural restrictions which are purely based on the
method that mathematicians would like to use. So we come to the conclusion that a
more general perspective on the Fourier transform has to be taken, in order to give
a good and clear meaning of the ingredients needed for a proper description.

What is Fourier Analysis all about?

Even if it may be considered a strange question in this context let us nevertheless
ask the question: What are the main applications of Fourier analysis? Is it just an
exciting chapter of mathematical analysis, or does it have applications in the real
world?

Of course the answers to this question will depend very much on the individuals
providing the answer, and thus be to some extent subjective answers. But there are
some common reasons, why it is good to have the Fourier transform, and why it is
playing a natural role in many places.

First of all one should recognize that any linear system (linear mapping between
function spaces on a group) which commutes with translations can be thought of as
a convolution operator, at least in a sufficiently general context. In the engineering
literature, or properly speaking in the context of discrete groups one can define the
impulse response of the system T as the output which is generated from the unit
vector at the neutral element (the Dirac measure at zero, if you want so). By making
use of the translation invariance of the system (often justified by the time-invariance
of physical laws) one can then show that the action of T on a general input signal
can be described as a convolution of the input signal with that impulse response
function. Especially when it comes to the question of inversion of such an operator
(or other symbolic operators, such as the square root) it is important to know that the
Fourier transform is diagonalizing all those operators and consequently inversion is
easy via pointwise inversion on the Fourier transform side. In fact, the composition
of systems corresponds to pointwise multiplication of the corresponding transfer
functions, which can be defined as the Fourier transforms of the individual impulse
response objects (functions, measures, or distributions).
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Classical Fourier Analysis and LLLp-spaces

In this section we are taking a short “tour d’horizon” through the early history of
Fourier analysis and discuss some aspects of the theory of function spaces connected
with Fourier analysis. Classical Fourier analysis starts with Fourier series. Since the
Fourier coefficients of a Z-periodic function f are given by an integral of the form

f̂ [k] :=
∫ 1

0
f (t)χk(t)dt =

∫ 1

0
f (t)e−2π iktdt (3)

where χk(t) = e2π ikt is the pure frequency, it is reasonable to consider the Lebesgue
space LLL1([0,1]) or in fact better

(
LLL1(U), ‖·‖1

)
as the natural domain for the Fourier

transform, with the norm ‖ f‖1 :=
∫ 1

0 | f (t)|dt, and verify that

‖ f̂‖∞ := sup
k∈Z
| f (k)| ≤ ‖ f‖1. (4)

Unfortunately it is not completely clear how to come back from the Fourier coef-
ficients to the original function f ∈ LLL1(U). The fact that one has for decent func-
tions (e.g., twice continuously differentiable ones) the possibility of synthesizing the
function from its pure frequencies χk,k ∈ Z (with amplitudes obtained through the
Fourier analysis described by formula (4) above), namely

f (t) = ∑
k∈Z

f̂ [k]χk(t), (5)

with absolute (hence unconditional) and uniform convergence, suggested to focus
on the most general circumstances where this sum is convergent (at which points t,
depending on the local behavior of f near t), either directly or via the use of various
kinds of sophisticated summability procedures.

These summability methods, associated with famous names in the history of
Fourier analysis (such as Fejer, De La Vallee Poissin, Weierstrass and others) pro-
vide more stable methods of reconstruction than just the partial sums (which are fine
in the LLL2-sense, but not for other norms!). Typically they work like this: multiply the
Fourier coefficients with a family of sequences which have properties of converging
to the constant (1)k∈Z sequence, while decaying to zero in a more decent way than
just the sequence which represents the indicator function of [−n,n]∩Z.

During this (still) early phase of Fourier analysis the discovery that one has a
fairly simple situation if one views everything for the space LLL2(U) of (locally)
square integrable, periodic functions. Nowadays we would say that this is clear,
because

(
LLL2(U), ‖·‖2

)
is a Hilbert space with respect to the scalar product

〈 f ,g〉LLL2(U) :=
∫ 1

0
f (t)g(t)dt. (6)

Within this separable Hilbert space the family (χk)k∈Z forms a complete orthonor-
mal basis and therefore it is clear that one has (recalling corresponding statements
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which are well known nowadays in the context of linear algebra) the following un-
conditional expansion:

f = ∑
k∈Z
〈 f ,χk〉χk = ∑

k∈Z
f̂ [k]χk (7)

where the sum is unconditionally6 convergent with respect to the norm of the Hilbert
space

(
LLL2(U), ‖·‖2

)
. Due to Euler’s formula

eix = cos(x)+ isin(x), (8)

resp. the (equivalent) pair of equations

cos(x) = (eix + e−ix)/2; sin(x) = (eix− e−ix)/(2i) (9)

it is clear that one can rewrite Fourier series also in a more classical form, using as
building blocks the system of functions (cos (2πkt))k∈N0 together with the system
(sin (2πkt))k∈N, with similar properties.

As it turned out the question of pointwise (obviously only to be expected in the
almost everywhere sense, i.e. up to some set of measures zero, depending on f ) was
much harder to tackle, and was solved only half a century later by Lennart Carleson
[24] in the context of LLL2.

Our first summary of classical Fourier analysis already indicates that the spaces
LLL1(U) and LLL2(U) play an important role, and hence it is not surprising that the
space “in between those spaces” also came quickly into the focus of people working
in analysis, the so-called LLLp-spaces.

Obviously they are very important, among others because they have been among
the first Banach spaces to be treated as such, including the characterization of the
dual spaces (LLLq is dual to LLLp for 1≤ p < ∞, with 1/q+ 1/p= 1), or the discussion
of reflexive Banach spaces. In the Fourier context one has the so-called Hausdorff-
Young inequality, which states that for p ∈ [1,2] one can control the �q-norm (again
for 1/q+ 1/p= 1) of the sequence of Fourier coefficients:

‖ f̂‖�q(Z) ≤ ‖ f‖LLLp(U) :=

(∫ 1

0
| f (t)|p

)1/p

. (10)

Unfortunately p = 2 is the only case where the mapping from LLLp(U) to ���q(Z) is
surjective, while for p > 2 not more than square summability of f̂ can be claimed.

Fourier Analysis over Euclidean Spaces and LCA groups

The first decades of the 20th century saw the development of Fourier analysis
over the real line (non-periodic functions) and over Rd , closely connected with the

6 i.e., independent of the enumeration of Z, etc.
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beginning of functional analysis as we know it these days. It was this time when
the Lebesgue spaces gained their importance as a well-defined family (closed under
complex interpolation) of Banach spaces, which is closed under duality. The mul-
tiplier question (characterization of linear operators on LLLp-spaces commuting with
translations) resp. of the identification of LLLp-Fourier multipliers were challenging
problems, with ground-breaking results by Marcinkiewicz.

In the middle of the last century after Rudolf Lipschitz and Antoni Zygmund a
more detailed analysis of smoothness was undertaken, nowadays associated with the
names of Sergei Lwowitsch Sobolev, Oleg Besov, Sergei Michailowitsch Nikolskii,
Elias Stein, Jaak Peetre [129], Hans Triebel [137, 139], and many others. Smooth-
ness was then understood as a fine form of differentiability. Among others the ex-
pression of “generalized Lipschitz spaces” was used for spaces not known as Besov
spaces. They have been characterized in many different ways, mostly using moduli
of continuity, or higher order differences. Only later (and in the attempt to better
understand the interpolation theoretic properties of this family) the intensive use
of dyadic Fourier decompositions (Paley-Littlewood) theory came into place (see
the books of Triebel, or the precursors of wavelet theory by Frazier-Jawerth, see
[83–85]).

Once it was clear that there are lot of analogies between the classical theory of
Fourier series for periodic functions (of one or several variables), or equivalently for
functions defined on the torus group and the corresponding theory of functions over
R

d it was natural to ask for the most general context in which Fourier analysis could
take place.

There are essentially two ways into this direction. The book by A. Weil [141]
starts from A. Haar’s invariant integral for locally compact groups G [96], and uses
the existence of sufficiently many characters (pure frequencies) for the Abelian case
in order to do Fourier analysis over LCA groups G .

Another approach comes from Gelfand’s theory of commutative Banach algebras
with involution, which - when applied to LLL1(G ), for some LCA group G - provides
another abstract approach to Fourier analysis over Abelian groups.

Theory of Generalized Functions

There is no doubt that a proper treatment of the Fourier transform will require some
form of distribution theory. It is fair to speak of a theory of generalized functions,
because many manipulations which can be carried out for ordinary functions using
pointwise operators (such as affine transformation of the argument, rotation, and
others) have a natural extension to the setting of distributions. Even the meaning of
the support of a distribution is well defined.

When it comes to Fourier analysis the theory of tempered distributions, intro-
duced by L. Schwartz in ([133]) appears to be the natural one. It is also the basis for
dealing with PDEs in an appropriate context, and was the foundation for the work
of Lars Hörmander in this field (see, e.g., [103]).
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Unfortunately it requires a bit of theory concerning topological vector spaces
which is normally not studied by engineers, and therefore only the basics of this
theory of generalized functions is discussed in the corresponding courses.

The attempts by Lighthill ([115]) of a simplified approach (pursued later by
Jones, [107]), or the approach by Howell ([104]) have not really changed the sit-
uation.

The Banach Gelfand Triple (SSS0,LLL
2,SSS0

′) may provide a good compromise in this
context as well. At least it allows to define the Fourier transform, the sampling or
periodization procedures in a mathematical clean way (in the context of SSS0

′(Rd))
without reference to the theory of topological vector spaces.

Fourier Analysis and LLLp-spaces

Overall the previous subsection indicates that, on the one hand, the theory of LLLp-
spaces plays an important role for the development of functional analysis in general,
and in particular for Fourier analysis, but overall the family of LLLp-spaces as such is
not really well suited for a description of properties of the Fourier transforms in
terms of properties of the function (and vice versa), through the membership in one
of the spaces

(
LLLp(Rd), ‖·‖p

)
, for 1≤ p≤ ∞, for example.

This is in fact not surprising, because it is easy to note that the decay of the
Fourier transform is (both qualitatively and quantitatively) related to the smooth-
ness of a function. It is a simple consequence of the mean-value theorem that for a
function which does not deviate much (locally) from its mean-value (due to smooth-
ness) the integral against a highly oscillating exponential function will be close to
zero. On the other hand, one can expect rightfully that a function which synthesized
mostly from low frequencies (to use engineering terminology at this place) will be-
have like a linear combination of pure frequencies up to some maximal frequency,
hence will show a lot of smoothness.

This situation also does not change too much if one allows for weighted LLLp-
spaces (on both sides). Only in rare cases one can characterize the membership
of a function in one of the smoothness spaces by the membership of its Fourier
transform in such a weighted LLLp-space. The only really important subfamily is the
family of Sobolev spaces (p = 2), where one has an exact match between a space
(typically denoted by (Hs(R

d), ‖·‖Hs

)
) and its Fourier image, the space LLL2

w(R
d),

with w(ω) =ws(ω) = (1+ |ω |2)s/2. These spaces are very useful, e.g. in the context
of PDE. Moreover one can show that for s > d/2 they are continuously embedded
into

(
CCC0(R

d), ‖·‖∞
)
, hence point-evaluations are continuous linear functionals, i.e.

the spaces Hs(R
d) are in fact a so-called RKH (reproducing kernel Hilbert space).

Furthermore, under the same condition they are Banach algebras under pointwise
multiplication.
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Time-Frequency Analysis and Function Spaces

Time-Frequency analysis (see [89] for a comprehensive mathematical introduction
to the field) has become a flourishing branch of mathematical analysis in the last
three decades. Sometimes it is described as the branch of mathematics which is
based on the two basic operations arising in the context of Fourier analysis, namely
the time- and the frequency shifts (which are shift operators on the FT side, resp.
modulation operators, doing a multiplication with a complex exponential function,
a so-called pure frequency). There are also obvious connections to the Schrödinger
representation of the (reduced) Heisenberg group.

One of the basic objects of a subfield of analysis called “time-frequency analysis”
is the Short Time Fourier Transform (STFT) or sliding window Fourier transform,
which requires to choose some so-called window function g (well localized near 0),
which we assume to be a bounded, continuous function with good decay, perhaps
with compact support and ‖g‖2 = 1, in order to define the STFT Vg( f ) , the localized
Fourier transform or sliding window FT of f by the following scalar product in the
LLL2-sense:

Vg( f )(t,ω) := 〈 f ,MωTtg〉 (11)

According to Moyal’s equality one has then

‖Vg( f )‖2 = ‖g‖2‖ f‖2 for f ,g ∈ LLL2(G). (12)

which in turn implies (under the assumption ‖g‖2 = 1) the weak reconstruction
formula

f =
∫
G×Ĝ

Vg( f )(λ )π(λ )g dλ . (13)

with π(λ )(g) = π(t,ω)(g) = MωTtg.
Although these results may give the impression that again the Hilbert space(

LLL2(Rd), ‖·‖2
)

is the right setting to formulate questions in time-frequency analy-
sis, it turns out that this is more or less the only Lebesgue space which is relevant for
TF-analysis. Also the first impression that (in contract to wavelet theory) no admis-
sibility condition is required, because (13) is valid for arbitrary pairs f ,g ∈ LLL2(G )

One of the fundamental papers in this field is due to D. Gabor [86] who claimed
that “every complex-valued function” on R can be written as a superposition (in
fact a double series) of the Gauss-function, shifted “in time and frequency” along
the integer lattice Λ = Z×Z. Nowadays so-called atomic decompositions of this
form, i.e. of the form

f = ∑
λ∈Λ

cλπ(λ )g (14)

are called regular Gabor expansions of the function or distribution f wheneverΛ is
a lattice in R

d× R̂
d , i.e. a discrete and co-compact subgroup of phase-space, resp. a

set of the form Å∗Z2d , for some non-singular matrix Å, and the building block g (not
necessarily the Gauss-function, but typically a function well concentrated near zero
and of some smoothness) is termed Gabor atom (or Gabor-window) (see e.g. [52]).
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The study of the convergence of such series, the determination of suitable coef-
ficients and the comparison of properties of the function and the (global, i.e. decay
and summability) properties of the coefficient sequence (cλ )λ∈Λ requires to work
with suitable sequence spaces, in order to define the appropriate function spaces
(again it is more proper to talk of the Banach space of distributions).

Depending on the viewpoint and the circumstances one makes use of small or
comprehensive families of such function spaces, which are nowadays summarized
under the name of modulation spaces. While the (now classical) modulation spaces
MMMs

p,q(R
d) (see [49, 52]) are modeled as a family of spaces with maximal similarity

to the well established family of Besov spaces BBBs
p,q(R

d), with s ∈ R,1 ≤ p,q ≤ ∞,
the general class of modulation spaces allows much for freedom in the choice
of weights, including radial symmetric weights (leading to the so-called Shubin
classes) or weights which allow to model the idea of variable band-width ([1]), but
also to choose weighted variants with moderate weight functions growing exponen-
tially.

The Linear Algebra Background

When we deal with questions of Fourier analysis or Time-Frequency analysis over
finite Abelian groups [78] all the function spaces are finite dimensional, and thus
questions about linear operators can be handled in the setting of linear algebra, us-
ing matrices. This allows to compute eigenvalues of hermitian matrices, apply the
FFT to signals of finite length (resp. the FFT 2 for digital images) and one does
not have to deal with convergence issues. However it is still of interest to take the
analytic viewpoint as suggested by the functional analytic questions which have to
be considered in the continuous case, because it is not irrelevant to know whether
a matrix (e.g., the matrix describing the frame operator of some Gabor system) is
badly conditioned or not. Clearly it is important to the user to have well-conditioned
systems and efficient algorithms, which are often derived using algebraic properties
of the setting. The theory of Banach Gelfand triples (SSS0,LLL

2,SSS0
′)(G ) [31, 59, 71]

allows to transfer this situation into the realm of continuous variables, in particular
to the setting of continuous variables in the following way:

• Whatever result is valid in the context of finite Abelian groups can be expected
to provide valid claims in for nice test functions, i.e. functions from SSS0(G );

• most of the time corresponding statements can be expanded (using abstract ap-
proximation principles) to the Hilbert space setting (i.e., to LLL2(G );

• the further extension to SSS0
′(G ) is entailed using the w∗-density of SSS0(G ) or

LLL2(G ) in SSS0
′(G ).

Just to give a simple example: In the context of the Banach Gelfand triple
(SSS0,LLL

2,SSS0
′)(Rd) the Fourier transform is considered as a unitary Banach Gelfand

triple automorphism, which means simply that
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1. The Fourier transform is well defined (together with its inverse Fourier trans-
form, taken as integrals in the traditional Riemann sense!) as an isometric map-
ping on

(
SSS0(R

d),‖·‖SSS0

)
;

2. It is shown to be isometric also with respect to the standard LLL2-norm,
hence by a simple density argument it can be extended to in fact a unitary
automorphism of the Hilbert space

(
LLL2(Rd), ‖·‖2

)
; this step only requires to

interpret
(
LLL2(Rd), ‖·‖2

)
as the completion of (SSS0(R

d),‖ · ‖2);
3. Finally, by duality the Fourier transform of σ ∈ SSS0

′(Rd) is given by

σ̂( f ) = σ( f̂ ), f ∈ SSS0(R
d),

describing also the unique w∗ − w∗ continuous extension of the Fourier-
Plancherel transform to a linear automorphism of (SSS0

′(Rd),‖·‖SSS0
′).

Among all the Banach Gelfand triples one can characterize then F (the Fourier
transform) by its characteristic property (known from the FFT):

F(χs) = δs, s ∈ R
d ,

i.e. the Fourier transform (and also its inverse, up to change of signs) identifies pure
frequencies with Dirac measures. Such a statement would be expressed by a theo-
retical physicist as the claim that it performs a change of basis from the continuous
family of pure frequencies to the basis of Diracs (and vice versa).

When it comes to realization of such an abstract mapping it is important to have
a good way of expressing the connection between this continuous (generalized or
classical) Fourier transform and corresponding linear mappings which can be per-
formed on the computer. Clearly the FFT algorithm by Cooley-Tukey ([29]) comes
to mind, which is an efficient way of realizing the DFT (discrete Fourier transform,
resp. the abstract Fourier transform over the cyclic group of order n, especially for
n being rich of divisors, such as n = 2k, for some k, such as n = 1024 or 512).

Although one may expect that the application of the FFT algorithm applied to
regular samples taken from a nice function has something to do with the samples
of the Fourier transform (understood as integral transform), this is not true in the
strict sense. In fact, only the combination of sampling and periodization allows to
make the link to the FFT. Details concerning this questions are found in a paper
by N. Kaiblinger ([108]), based on [68]. It shows that - suitable positioned - among
others: The piecewise linear interpolators to the FFT-transformed values of a regular
sampled function f ∈ SSS0(R) converge to f̂ in the space

(
SSS0(R),‖·‖SSS0

)
. No similar

result (without even stronger assumptions) appears to be known in the literature for
the standard spaces (most likely because it is not possible to prove such results, or
only under some much stronger assumptions). Note that SSS0(R)-convergence implies
the convergence in

(
LLLp(Rd), ‖·‖p

)
, for any p ∈ [1,∞]. In [108] it is also shown

that Gabor analysis computations for Rd can be approximately be performed using
corresponding finite Gabor families (hence discrete versions of the STFT).
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Modulation Spaces

The first extensive report on modulation spaces was formulated in 1983 and
published in 2003 [57]. The link to Gabor expansions and the resulting atomic
decompositions (comparable to the Frazier-Jawerth Theory for Besov-Triebel-
Lizorkin spaces as given in [83]) was given in [52] (making a result public which
was presented at a conference in 1986 in Edmonton). Only slowly it appeared that
modulation spaces can be characterized not only by very specific atomic decom-
positions of Gaborian type, but also through a continuous transform, namely the
STFT. In this way the connection to representation theory of the Heisenberg group
was established.

Later on the comparison between the family of function spaces (mostly Besov-
Triebel-Lizorkin spaces) characterized via expansions and the corresponding char-
acterization of modulation spaces using the STFT led to the creation of coorbit
theory (see [63, 64, 88]), which is still expanding and exploited more and more, in
order to create a more systematic approach to the large variety of function spaces.

In this context the by now classical modulation spaces
(
MMMs

p,q(R
d), ‖·‖MMMs

p,q

)
and

their various generalizations, including Shubin classes QQQ(Rd) or functions of vari-
able bandwidth [1] are obtained as special coorbit spaces from the Schrödinger
representation of the Heisenberg group, or more practically speaking they are
characterized by the membership of their STFT (with respect to some Schwartz
window g) in some solid and translation invariant function space (YYY , ‖·‖YYY ) over the
time-frequency plane Rd× R̂

d .
As suggested in [58] we will call all the spaces arising in this way as modula-

tion spaces. The most important are the space
(
MMMp(Rd), ‖·‖MMMp

)
, with p ∈ [1,∞].

These spaces are all Fourier invariant and can be characterized by the fact that their
elements allow for a Gabor expansion (with respect to any good Gabor system)
with ���p-coefficients. Specifically the space MMM1(Rd) = SSS0(R

d),MMM2(Rd) = LLL2(Rd)
and MMM∞(Rd) = SSS0

′(Rd) are relevant. MMM1(Rd) = SSS0(R
d) (cf. [47, 89]) is the small-

est space in the family of all Banach spaces with are isometrically TF-invariant,
i.e. which satisfy ‖π(λ )g‖BBB = ‖g‖BBB. It also appears to be one of the most useful
spaces, not only for TF-analysis, but also for classical Fourier analysis (in the form
of classical Fourier analysis).

Banach Gelfand Triples

Although modulation spaces as described in the previous section form a compre-
hensive family of function spaces, or more correctly, a family of Banach spaces
of (ultra-) distributions it is sometimes beneficial to restrict the attention to a so-
called Banach Gelfand triple, typically the Banach Gelfand triple (SSS0,LLL2,SSS0

′)(Rd),
consisting of the Segal algebra SSS0(R

d) (which coincides with the modulation space
MMM1(Rd), and is used with this symbol in [89] extensively), the Hilbert space LLL2(Rd)



Choosing Function Spaces in Harmonic Analysis 91

and the dual space SSS0
′(Rd). We also like to think of this triple as a rigged Hilbert

space, i.e. an enrichment of the Hilbert space structure.
An indication of the usefulness of this particular Banach Gelfand triple and expla-

nations, why it is a convenient setting for many basic facts, including a so-called ker-
nel theorem or the description of the (extended) Fourier transform can be found in
[31] and [71]. While Plancherel’s theorem is just describing the preservation of en-
ergy, making the Fourier transform a unitary automorphism of LLL2(Rd), the extended
setting provides the information that it maps a pure frequency (t �→ exp(2π ist) ex-
actly to the corresponding Dirac measure δs ∈ SSS0

′(Rd), a statement which cannot
be made using only LLL2(Rd), because both of these objects are not belonging to this
Hilbert space. However, when it comes to realize the Fourier transform (or its in-
verse) as an integral transform or to explicitly describe the transition from the kernel
K ∈ SSS0(R

2d) to the corresponding Kohn-Nirenberg symbol it is very convenient to
use functions from the space of test functions, because due to the good properties
of the functor G �→

(
SSS0(G),‖·‖SSS0

)
it is no problem to carry out all the necessary

operations (automorphisms, partial Fourier transforms) without problems, all the
integrals converge in the best possible way (namely as absolutely convergent Rie-
mannian sums) and no discussion of sets of measure zero nor the application of
summability methods is required.

Let us just mention that we compare in our teaching the situation with the treat-
ment of the fields Q⊂R⊂C. When we do computations using these different field
we normally do not distinguish anymore between the different objects, although
a priori they are constituted in a completely different way. Rational numbers are
described as pairs of integers, while real numbers are typically viewed as infinite
decimal expressions. But since there are natural embeddings of the smaller struc-
ture into the larger all the relevant structures of a field can be used at any level, in
fact one will typically work at the most convenient level. Certainly the completeness
makes R the favorite setting (comparable to the Hilbert space with the triple), while
certain operations, such as forming the multiplicative inverse: x → 1/x are done
more accurately and swiftly within Q (and are extended in a unique, but in practice
cumbersome way to R). It is a fantastic achievement of analysis that we have the
field of real numbers, and that we know that γ = 1/π2 is a well-defined number,
even if we never think about this in a constructive way, meaning how to compute
the “infinite decimal expression” representing this number γ ∈ R! It should suffice
to mention Moivre’s formulas as a convenient tool to derive the addition theorem for
the trigonometric functions via Euler’s formula from the exponential law, also valid
over the field C. In the same way the “outer level” of the Banach Gelfand triple gives
us the right perspective and the most elegant way of proving (and understanding or
interpreting) things, which are often obvious for the case of finite Abelian groups,
resp. for discrete and periodic signals (where the FFT is a unitary matrix mapping
discrete pure frequencies to unit vectors and vice versa).
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Outlook and Further Aspects

The information age is not only influencing the way how science in general is per-
formed, it also enables and encourages alternative forms of knowledge accumula-
tion, respectively, information processing.

For this reason we want to mention at the end of this article some of them, be-
cause we think that some aspects of this change have to do with the considerations
formulated in the early part of this article.

Once it is agreed within a community of researchers that a concrete question is of
great relevance, that a certain area should be explored more systematically, or that
one needs function spaces with certain prescribed properties, it is also very likely
that especially young researchers will be motivated to go into such a direction. Such
choices may be more fruitful than just following the advice of their advisors (who
may like to see their own, old problems solved), but one has also to be aware that at
the same time the movement towards “fashion” or “bubbles” arise. But the follow-
ing might help to discriminate between potentially more relevant and less interesting
questions, which could be given as a recommendation: Would I be interested in the
answer to the question I formulate and answer in my manuscript BEYOND the pos-
sibility of having a publication? Why would the answer provided (as complicated
as it may be) be interesting to anyone?

Meta-Studies and Survey Activities

There is an interesting development in the medical sciences, where it has been real-
ized quite a while ago that despite the large number research projects it is very hard
for a normal member of the medical service to keep up with the amount of informa-
tion available concerning medications and therapies. One consequence is increasing
specialization, but this does not necessarily lead to a better treatment, because the
specialist in one field may not see the connections between different symptoms or
may not be aware of the effects arising from the combination of different therapies.

In order to fight this problem the Cochrane Institute was created, see www.
cochrane.org, which is supported by a group of top scientists. They have estab-
lished a system of information condensation suitable for the practitioner, who can
find well-prepared meta-studies concerning concrete questions, with well-structured
information about the studies which have been used to prepare a given report, and
the evaluation criteria used to establish the comparison.

According to their own web-page Cochrane is a global independent network
of health practitioners, researchers, patient advocates, and others, responding to the
challenge of making the vast amounts of evidence generated through research useful
for informing decisions about health. We are a not-for-profit organization with col-
laborators from over 120 countries working together to produce credible, accessible
health information that is free from commercial sponsorship and other conflicts of
interest. They write further:

www.cochrane.org
www.cochrane.org
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Our vision is a world of improved health where decisions about health and health
care are informed by high-quality, relevant and up-to-date synthesized research ev-
idence.

Our mission is to promote evidence-informed health decision-making by pro-
ducing high-quality, relevant, accessible systematic reviews and other synthesized
research evidence.

Our work is internationally recognized as the benchmark for high quality infor-
mation about the effectiveness of health care.

They provide an answer to the following key question: What is a systematic
review? For this question they provide the following answer: A systematic review
summarizes the results of available carefully designed healthcare studies (controlled
trials) and provides a high level of evidence on the effectiveness of healthcare inter-
ventions. Judgments may be made about the evidence and inform recommendations
for healthcare.

These reviews are complicated and depend largely on what clinical trials are
available, how they were carried out (the quality of the trials) and the health out-
comes that were measured. Review authors pool numerical data about effects of the
treatment through a process called meta-analyses. Then authors assess the evidence
for any benefits or harms from those treatments. In this way, systematic reviews are
able to summarise the existing clinical research on a topic.

When we think of pioneering work in the mathematical sciences our first ideas
are typically related to the level of originality and difficulty of a problem that has
been solved. The quality of the presentation, the level of information provided to the
community by the article is often considered secondary. Fortunately some publishers
promote the publication of good summaries and compilations of material, even if it
is not completely new.

Writing a good survey is in many cases equally challenging (and sometimes even
more useful for others) than just adding a few more details to an existing body of
knowledge, hoping that “some day somebody may make use of it”. In reality such
small pieces of information get rather lost and results needed in a concrete situation
will be easily reproved whenever they occur, and nobody will search resp. find those
results in the huge pile of general publications. In signal processing one would call
this publication noise, i.e. “noise” which makes it in fact more difficult to find the
relevant information, the “true signal” in the avalanche of technical details.

We are not saying that all such results are useless. According to the terminology
established by Thomas Kuhn ([111]) they constitute standard research which may
prepare the ground for real innovation, the so-called change of paradigms. In fact,
the partial results making up the main body of published research nowadays should
go into more systematic summaries of Cochrane type.

Unfortunately such summaries are not (!yet) highly valuated within the mathe-
matical community, nor can we find many activities within our field that would be
comparable with the Cochrane Institute. Of course I do not ignore the valuable con-
tributions of learned societies such as SIAM, AMS, EMS, and so on, but finding
ways to improve the situation, to open appropriate platforms, to have a discussion
on such issues, should certainly be intensified.
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Collaborative Research Efforts

As a last topic I would like to mention the style of cooperation which may also carry
some of the spirit I try to support. If we have common goals, if a free exchange of
ideas is the best way to get good results which are also useful for science, tech-
nology, or for the quality of life, then we have to work together. This is a change of
paradigm in the workstyle within the mathematical community, where achievements
by great individuals mark the history.

In his talk at the occasion of the 2015 Breakthrough Prize in Mathematics Sym-
posium Terence Tao was reporting on the experiences of the POLYMATH project
which he has been involved (together with Timothy Gowers) in the last year.

It provides another model for cooperative research which might also be useful in
the context of function spaces. See for details http://youtube/elWIDVI6b18

https://www.youtube.com/watch?v=elWIDVI6b18
I would like to leave this to discussions in the community and thank the reader

who has read the article to this point for her/his patience. Feedback to the author is
welcome (hans.feichtinger@univie.ac.at).
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9. J. Arazy, S. Fisher, J. Peetre, Möbius invariant spaces of analytic functions, in Complex Anal-
ysis I. Proc Spec Year, College Park/Md 1985-86, ed. by C.A. Berenstein. Lecture Notes in
Mathematics, vol. 1275 (Springer, Berlin, 1987), pp. 10–22

10. N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
11. G. Ascensi, H.G. Feichtinger, N. Kaiblinger, Dilation of the Weyl symbol and Balian-low

theorem. Trans. Am. Math. Soc. 366(7), 3865–3880 (2014)
12. A. Benedek, R. Panzone, The space Lp, with mixed norm. Duke Math. J. 28(3), 301–324

(1961)
13. J.J. Benedetto, C. Heil, D.F. Walnut, Differentiation and the Balian-low theorem. J. Fourier

Anal. Appl. 1(4), 355–402 (1995)
14. J.J. Benedetto, W. Czaja, A.M. Powell, J. Sterbenz, An endpoint (1,∞) Balian-low theorem.

Math. Res. Lett. 13(3), 467–474 (2006)
15. C. Bennett, R.C. Sharpley, Interpolation of Operators (Academic, London, 1988)



96 H.G. Feichtinger
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76. H.G. Feichtinger, K. Gröchenig, T. Strohmer, Efficient numerical methods in non-uniform
sampling theory. Numer. Math. 69(4), 423–440 (1995)

77. H.G. Feichtinger, F. Luef, T. Werther, A guided tour from linear algebra to the foundations
of Gabor analysis, in Gabor and Wavelet Frames. Lecture Notes Series, Institute for Math-
ematical Sciences, National University of Singapore, vol. 10 (World Scientific Publishing,
Hackensack, 2007), pp. 1–49

78. H.G. Feichtinger, W. Kozek, F. Luef, Gabor Analysis over finite Abelian groups. Appl.
Comput. Harmon. Anal. 26(2), 230–248 (2009)

79. H.G. Feichtinger, A. Grybos, D. Onchis, Approximate dual Gabor atoms via the adjoint
lattice method. Adv. Comput. Math. 40(3), 651–665 (2014)

80. A. Figa Talamanca, Translation invariant operators in Lp. Duke Math. J. 32, 495–501 (1965)
81. G.B. Folland, A Course in Abstract Harmonic Analysis (CRC Press, Boca Raton, 1994)
82. J.J.F. Fournier, J. Stewart, Amalgams of Lp and �q. Bull. Amer. Math. Soc. (N.S.) 13, 1–21

(1985)
83. M. Frazier, B. Jawerth, Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799

(1985)
84. M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution spaces. J.

Funct. Anal. 93(1), 34–170 (1990)
85. M.W. Frazier, B.D. Jawerth, G. Weiss, Littlewood-Paley Theory and the Study of Function

Spaces (American Mathematical Society, Providence, RI, 1991)
86. D. Gabor, Theory of communication. J. IEE 93(26), 429–457 (1946)
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94. K. Gröchenig, D. Han, C. Heil, G. Kutyniok, The Balian-Low theorem for symplectic lattices
in higher dimensions. Appl. Comput. Harmon. Anal. 13(2), 169–176 (2002)

95. A. Gronskiy, J. Buhmann, How informative are Minimum Spanning Tree algorithms? in
IEEE International Symposium on Information Theory (ISIT), 2014, pp. 2277–2281, IEEE,
June 2014

96. A. Haar, Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. 34(1),
147–169 (1933)

97. C. Heil, An introduction to weighted Wiener amalgams, in Wavelets and Their Applications
(Chennai, January 2002), ed. by M. Krishna, R. Radha, S. Thangavelu (Allied Publishers,
New Delhi, 2003), pp. 183–216

98. C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier trans-
forms. J. Math. Mech. 18, 283–323 (1968)

99. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Analysis for
Compact Groups. Analysis on Locally Compact Abelian Groups (Springer, Berlin/Heidel-
berg/New York, 1970)

100. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups;
Integration Theory; Group Representations, 2nd edn. (Springer, Berlin/Heidelberg/New
York, 1979)

101. F. Holland, Harmonic analysis on amalgams of Lp and �q. J. Lond. Math. Soc. 10, 295–305
(1975)

102. A. Holst, J. Toft, P. Wahlberg, Weyl Product Algebras and Classical Modulation Spaces (Pol-
ish Academy of Sciences, Institute of Mathematics, Banach Center Publications, Warszawa,
2010)
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Existence of frames with prescribed norms
and frame operator

Marcin Bownik and John Jasper

Abstract In this chapter we survey several recent results on the existence of frames
with prescribed norms and frame operator. These results are equivalent to Schur-
Horn type theorems which describe possible diagonals of positive self-adjoint op-
erators with specified spectral properties. The first infinite dimensional result of
this type is due to Kadison who characterized diagonals of orthogonal projections.
Kadison’s theorem automatically gives a characterization of all possible sequences
of norms of Parseval frames. We present some generalizations of Kadison’s result
such as (a) the lower and upper frame bounds are specified, (b) the frame operator
has two point spectrum, and (c) the frame operator has a finite spectrum.

Key words: Frame, Frame operator, Diagonals of self-adjoint operators, The
Schur-Horn theorem, The Pythagorean theorem, The Carpenter theorem, Spectral
theory

Frames and the Schur-Horn Theorem

The concept of frames in Hilbert spaces was originally introduced in the context of
nonharmonic Fourier series by Duffin and Schaeffer [18] in the 1950’s. The advent
of wavelet theory brought a renewed interest in frame theory as is attested by now
classical books of Daubechies [16], Meyer [31], and Mallat [30]. For an introduction
to frame theory we refer to the book by Christensen [15].
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Definition 1. A sequence { fi}i∈I in a Hilbert space H is called a frame if there
exists 0 < A≤ B < ∞ such that

A|| f ||2 ≤∑
i∈I
|〈 f , fi〉|2 ≤ B|| f ||2 for all f ∈H . (1)

The numbers A and B are called the frame bounds. The supremum over all As and
infimum over all Bs which satisfy (1) are called the optimal frame bounds. If A = B,
then { fi} is said to be a tight frame. In addition, if A = B = 1, then { fi} is called a
Parseval frame. The frame operator is defined by

S f =∑
i∈I
〈 f , fi〉 fi.

It is well known that S is a self-adjoint operator satisfying AI≤ S ≤ BI.

The construction of frames with desired properties is a vast subject that is central
to frame theory. Among the recently studied classes of frames with desired features
are Grassmanian frames, equiangular frames, equal norm tight frames, finite frames
for sigma-delta quantization, fusion frames, and frames for signal reconstruction
without the phase. In particular, the construction of frames with prescribed norms
and frame operator has been studied by many authors.

Problem 1. Characterize all possible sequences of norms {|| fi||}i∈I of frames
{ fi}i∈I with prescribed frame operator S.

In the finite dimensional case Casazza and Leon [12, 13] gave explicit and al-
gorithmic construction of tight frames with prescribed norms. Moreover, Casazza,
Fickus, Kovačević, Leon, and Tremain [14] characterized norms of finite tight
frames in terms of their “fundamental frame inequality” using frame potential meth-
ods of Benedetto and Fickus [5]. An alternative approach using projection decom-
position was undertaken by Dykema, Freeman, Kornelson, Larson, Ordower, and
Weber [19], which yields some necessary and some sufficient conditions for infi-
nite dimensional Hilbert spaces [29]. A significantly refined eigenstep method for
constructing finite frames with prescribed spectrum and diagonal was recently in-
troduced by Cahill, Fickus, Mixon, Poteet, and Strawn [11, 20]. These results are
described in Section “Finite dimensional frames”.

Significant progress in the area became possible thanks to the Schur-Horn the-
orem as noted by Antezana, Massey, Ruiz, and Stojanoff [1] and Tropp, Dhillon,
Heath, and Strohmer [34]. In particular, the authors of [1] established the following
connection between Schur-Horn-type theorems and the existence of frames with
prescribed norms and frame operator, see [1, Proposition 4.5] and [6, Proposition
2.3].

Theorem 1 (Antezana-Massey-Ruiz-Stojanoff). Let S be a positive self-adjoint
operator on a Hilbert space H . Let {di}i∈I be a bounded sequence of positive
numbers. Then the following are equivalent:

1. there exists a frame { fi}i∈I in H with the frame operator S such that di = || fi||2
for all i ∈ I,
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2. there exists a larger Hilbert space K ⊃H and a self-adjoint operator E acting
on �2(I), which is unitarily equivalent with S⊕ 0, where 0 is the zero operator
acting on K �H , such that its diagonal 〈Eei,ei〉= di for all i ∈ I.

Thus, Problem 1 of characterizing sequences {‖ fi‖2}i∈I for all frames { fi}i∈I

with frame operator S is subsumed by the Schur-Horn problem:

Problem 2. Characterize diagonals {〈Eei,ei〉}i∈I of a self-adjoint operator E , where
{ei}i∈I is any orthonormal basis of H .

In Section “Finite dimensional frames” we discuss the finite dimensional Schur-
Horn theorem and its connection to finite dimensional frames. In Section “Infinite
dimensional frames” we present the infinite dimensional results. A beautifully sim-
ple and complete characterization of Parseval frame norms was given by Kadison
[25, 26], which easily extends to tight frames by scaling. The authors [6] have ex-
tended this result to the non-tight setting by characterizing frame norms with pre-
scribed optimal frame bounds. The second author [24] has characterized diagonals
of self-adjoint operators with three points in the spectrum. This yields a character-
ization of frame norms whose frame operator has two point spectrum. Finally, the
authors [7, 10] have recently extended this result to operators with finite spectrum.

Finite dimensional frames

The classical Schur-Horn theorem [22, 33] characterizes diagonals of self-adjoint
(Hermitian) matrices with given eigenvalues. It can be stated as follows, where HN

is N-dimensional Hilbert space over R or C, i.e., HN = R
N or CN .

Theorem 2 (Schur-Horn). Let {λi}N
i=1 and {di}N

i=1 be real sequences in nonin-
creasing order. There exists a self-adjoint operator E : HN →HN with eigenvalues
{λi} and diagonal {di} if and only if

N

∑
i=1

λi =
N

∑
i=1

di and
n

∑
i=1

di ≤
n

∑
i=1

λi for all 1≤ n≤ N. (2)

The necessity of (2) is due to Schur [33] and the sufficiency of (2) is due to Horn
[22]. It should be noted that (2) can be stated by the equivalent convexity condition

(d1, . . . ,dN) ∈ conv{(λσ(1), . . . ,λσ(N)) : σ ∈ SN}, (3)

where SN is a permutation group on N elements.
Using Theorem 1 we obtain a complete solution to Problem 1 for finite frames.
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Theorem 3. Let S be a positive self-adjoint invertible M×M matrix with eigen-
values {λi}M

i=1 in nonincreasing order. Let {di}N
i=1 be a nonnegative nonincreasing

sequence. There exists a frame { fi}N
i=1 for HM with frame operator S and ‖ fi‖2 = di

for each i = 1, . . . ,N if and only if

N

∑
i=1

di =
M

∑
i=1

λi and
k

∑
i=1

di ≤
k

∑
i=1

λi for all 1≤ k≤M.

Though this completely answers the question of existence of a frame with pre-
scribed norms and frame operator, it does not give a construction of the desired
frame. Indeed, the early proofs of the Schur-Horn theorem were existential, and
there have been several recent papers [12, 13, 17, 20] on algorithms for the con-
struction of the matrices in Theorem 2. Therefore, Theorem 3 is not the final word
on constructing frames with a given frame operator and set of lengths.

Example 1. Let {e1,e2} be an orthonormal basis for C2. Consider the frames { fi}4
i=1

and {gi}4
i=1 given by

f1 = e1, f2 = e2, f3 = e1, f4 = e2

and
g1 = e1, g2 = e2, g3 = 2−1/2(e1 + e2), g4 = 2−1/2(e1− e2).

A simple calculation shows that each is a frame with frame operator 2I and the
norms of the frame vectors are all 1. However, these frames are fundamentally dif-
ferent. Indeed, {gi} is not unitarily equivalent (or even isomorphic) to any reordering
of { fi}.

Example 1 shows that for a given positive invertible operator S and a sequence of
lengths {di} there may be many different frames with frame operator S and lengths
{di}. To understand the set of all frames with a given frame operator and set of
lengths authors of [11] consider the problem of constructing every such frame.

For a given vector f in a Hilbert space H , let f f ∗ denote the rank one operator
given by

f f ∗(g) = 〈g, f 〉 f for all g ∈H .

We will use the following standard result from linear algebra [23, Propositions
4.3.4 and 4.3.10].

Proposition 1. Let S be an M×M self-adjoint matrix with eigenvalue list λ1≥ . . .≥
λM. If f ∈ C

M with γ = ‖ f‖2 and μ1 ≥ . . . ≥ μM is the eigenvalue list of S+ f f ∗,
then

μ1 ≥ λ1 ≥ μ2 ≥ λ2 ≥ . . .≥ μM ≥ λM (4)

and
M

∑
i=1

μi = γ+
M

∑
i=1

λi. (5)



Existence of frames with prescribed norms and frame operator 107

Conversely, for any sequence {μi}M
i=1 and γ satisfying (4) and (5), there exists a

vector f ∈ C
M with ‖ f‖2 = γ such that S+ f f ∗ has eigenvalue list {μi}M

i=1.

Two sequences {λi}M
i=1 and {μi}M

i=1 satisfying (4) are said to interlace, in sym-
bols {λi}M

i=1  {μi}M
i=1. For a frame { fi}N

i=1 define the jth partial frame operator

S j =
j

∑
i=1

fi f ∗i .

By applying Proposition 1 to the partial frame operators, starting with the zero
operator, we obtain the following result [11, Theorem 2].

Theorem 4 (Cahill-Fickus-Mixon-Poteet-Strawn). Let S be a positive self-adjoint
operator with eigenvalue list λ1 ≥ . . . ≥ λM > 0. Let {di}N

i=1 be a nonnegative se-
quence.

(i) If there is a sequence of nonincreasing nonnegative sequences {{λi, j}M
i=1}N

j=0
such that

λi,0 = 0 and λi,N = λi for all i = 1, . . . ,M, (6)

{λi, j}M
i=1  {λi, j+1}M

i=1, (7)

M

∑
i=1

λi, j =
j

∑
i=1

di for each j = 0, . . . ,N− 1, (8)

then there exists a frame { fi}N
i=1 with ‖ fi‖2 = di such that {λi, j}M

i=1 is the eigen-
value sequence of the jth partial frame operator.

(ii) Conversely, if there exists a frame { fi}N
i=1 with frame operator S, ‖ fi‖2 = di for

i = 1, . . . ,N, and {λi, j}M
i=1 is the eigenvalue sequence of the jth partial frame

operator, then {{λi, j}M
i=1}N

j=0 satisfies (6), (7), and (8).

A doubly indexed sequence {{λi, j}M
i=1}N

j=0 satisfying (6), (7), and (8) is called a
sequence of eigensteps. In Example 1 we saw that a given frame operator and set
of lengths does not determine a frame. In light of Theorem 4 one might think that
for a given sequence of eigensteps {{λi, j}M

i=1}N
j=0 there is a unique (up to unitarily

equivalence) frame such that {λi, j}M
i=1 is the eigenvalue sequence of the jth partial

frame operator. The following simple example shows that this is not true.

Example 2. Let di = 2 for i = 1,2,3. Let λ1 = 3, λ2 = 2, and λ3 = 1. A sequence of
eigensteps is given by the following table

j 0 1 2 3
λ3, j 0 0 0 1
λ2, j 0 0 2 2
λ1, j 0 2 2 3

We may choose f1 ∈ C
3 to be any vector with ‖ f1‖2 = 2. Next, we may choose

f2 to be any vector with ‖ f2‖2 = 2 in span{ f1}⊥. Finally, let f3 = x + y where
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x ∈ span{ f1, f2} with ‖x‖2 = 1
2 , and y ∈ span{ f1, f2}⊥ with ‖y‖2 = 3

2 . A simple
calculation shows that {λi, j}3

i=1 is the eigenvalue sequence of the jth partial frame
operator of { fi}3

i=1.

In [11, Theorem 2], Cahill, Fickus, Mixon, Poteet, and Strawn give an algorithm
to prove Theorem 4(ii), that is, an algorithm to produce a frame from a given se-
quence of eigensteps. At step j the vector f j is chosen and added to the frame so
that the partial frame operator has the desired spectrum. As we see in Example 2,
at each step there will be a set of choices for the next frame vector. Crucially, their
algorithm identifies all choices for the jth frame vector, and thus the algorithm con-
structs all finite frames. In [20, Theorem 5], Fickus, Mixon, Poteet, and Strawn give
an explicit algorithm for producing a sequence of eigensteps which they dubbed Top
Kill since it iteratively “kills” as much as possible from the top portion of staircases
starting with the final eigenvalue sequence {λi,N}M

i=1 and proceeding backward to
the zero sequence {λi,0}M

i=1. Finally, in [20, Theorem 2] they gave an explicit de-
scription of all possible sequences of eigensteps as in Theorem 4(i). For details we
refer to [11] and [20].

Infinite dimensional frames

The infinite dimensional case of Problem 1 was considered by Kornelson and Larson
in [29]. Their result gives a sufficient condition for the sequence of frame norms in
terms of the essential norm of the frame operator

‖S‖ess = inf{‖S+K‖ : K a compact operator}.

We observe that in light of Kadison’s Theorem 6, [29, Proposition 7 and Corollaries
8 and 9] are incorrect as stated, see Example 3. However, this does not affect the
correctness of [29, Theorem 6] which can be stated as follows.

Theorem 5 (Kornelson-Larson). Let S be a positive invertible operator on a
Hilbert space H . Suppose that {di}i∈I is a sequence in [0,∞) such that

∑
i∈I

di = ∞ and sup
i∈I

di < ||S||ess.

Then, there exists a frame { fi}i∈I ⊂H with di = || fi||2 for all i ∈ I such that its
frame operator is S.

Antezana, Massey, Ruiz, and Stojanoff have refined Theorem 5 by giving a nec-
essary condition [1, Theorem 5.1] and some sufficient conditions [1, Theorem 5.4]
for the sequence of frame norms with a given frame operator. Thus, these results
give a partial answer to Problem 1.
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Kadison’s Pythagorean Theorem

The first complete characterization of frame norms was achieved by Kadison for
Parseval frames, i.e., when the frame operator S = I, which easily extends to tight
frames by scaling. In his influential work [25, 26] Kadison discovered a characteri-
zation of diagonals of orthogonal projections acting on H .

Theorem 6 (Kadison). Let {di}i∈I be a sequence in [0,1] and α ∈ (0,1). Define

C(α) = ∑
di<α

di, D(α) = ∑
di≥α

(1− di).

Then the following are equivalent:

1. there exists an orthogonal projection of �2(I) onto a subspace H with diagonal
{di}i∈I ,

2. there exists a Parseval frame { fi}i∈I on a Hilbert space H such that || fi||2 = di

for all i ∈ I,
3. we have C(α) = ∞ or D(α) = ∞, or

C(α)< ∞ and D(α)< ∞ and C(α)−D(α) ∈ Z. (9)

One can easily show that if (9) is satisfied for some α ∈ (0,1), then (9) holds for
all α ∈ (0,1). Hence, Kadison’s Theorem is often formulated for a specific choice
of α = 1/2. Alternative proofs of Theorem 6 were provided by the authors [8] and
Argerami [2].

Example 3. For a given η ∈ [0,1] define a sequence {di}i∈Z by(
. . . ,

1
2n , . . . ,

1
8
,

1
4
,

1
2
,η ,

1
2
,

3
4
,

7
8
, . . . ,

2n− 1
2n , . . .

)
. (10)

Since this sequence is symmetric around 1/2 with the exception of the entry η , we
have C(1/2)−D(1/2)≡ η mod 1. Hence, by Theorem 6, {di}i∈Z is a diagonal of
projection if and only if η = 0 or η = 1.

Characterization of frame norms from frame bounds

The non-tight extension of Theorem 6 was considered by the authors [6] who
characterized all possible sequences of norms of a frame with prescribed optimal
bounds A < B. The special tight case A = B follows immediately from Kadison’s
Pythagorean Theorem 6 by scaling. Theorem 7 can be also thought as an infinite di-
mensional Schur-Horn theorem for a class of self-adjoint operators with prescribed
lower and upper bounds and with zero in the spectrum.
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Theorem 7. Let 0 < A < B < ∞ and {di} be a nonsummable sequence in [0,B].
Define the numbers

C(A) = ∑
di<A

di and D(A) = ∑
di≥A

(
B− di). (11)

Then the following are equivalent:

1. there exists a positive operator E on �2(I) with the spectrum satisfying {A,B} ⊆
σ(E)⊆ {0}∪ [A,B] and the diagonal {di}i∈I ,

2. there exists a frame { fi}i∈I on some Hilbert space H with optimal frame bounds
A and B, and di = || fi||2 for all i ∈ I,

3. one of the following holds:

a. C(A) = ∞,
b. D(A) = ∞,
c. C(A),D(A)< ∞ and there exists n ∈N0 such that

nA≤C(A)≤ A+B(n− 1)+D(A). (12)

Note that the assumption of {di} being nonsummable in Theorem 7 is not a true
limitation. Indeed, the summable case requires more restrictive conditions which
are omitted here. One should also emphasize that the non-tight case is not a mere
generalization of the tight case A= B, since it is qualitatively different from the tight
case. Indeed, by setting A = B in Theorem 7 we do not get the correct necessary and
sufficient condition (9) previously discovered by Kadison.

Example 4. For a given nonsummable sequence {di}i∈N in [0,1] we define

A = {A ∈ (0,1] : ∃ frame { fi}i∈N with || fi||2 = di

that has optimal frame bounds A and 1}.

Without loss of generality we can assume that supdi = 1. Indeed, if supdi < 1, then
by Theorem 7 we have always A = (0,1], and this case is not interesting.

In [6, Theorem 7.1] the authors have shown the set A ∪{0,1} is always closed.
In general, determining the set A is not an easy task since it boils down to check-
ing condition (12) for all possible values of 0 < A < 1 by computing countably
many infinite series (11). If {di}i∈N happens to be a geometric series this task actu-
ally reduces to checking a finite number of conditions, see [6]. Indeed, for a given
β ∈ (0,1) define a sequence {di}i∈N by

di = 1−β i for i = 1,2, . . .

Using Theorem 7 the authors have shown [6] that

A = [(1− 2β )/(1−β ),1−β ] for 0 < β < 1/2.
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Theorem 7 has an analogue for operators without the zero in the spectrum. This
result is much easier to show and it leads to a characterization of norms of Riesz
bases with prescribed bounds.

Theorem 8. Let 0 < A ≤ B < ∞ and {di}i∈I be a sequence in [A,B]. Then the fol-
lowing are equivalent:

1. there exists a positive operator E on �2(I) with the spectrum satisfying {A,B} ⊆
σ(E)⊆ [A,B] and the diagonal {di}i∈I ,

2. there exists a Riesz basis { fi}i∈I with optimal bounds A and B and di = || fi||2 for
all i ∈ I,

3. we have
C(A),D(A)≥ B−A. (13)

Characterization of frame norms with finite spectrum frame
operator

Another extension of Kadison’s result [25, 26] was obtained by the second author
[24] who characterized the set of diagonals of operators with three points in the
spectrum.

Theorem 9. Let 0 < A < B < ∞ and {di}i∈I be a sequence in [0,B] with ∑di =

∑(B−di) =∞. Define C(A) and D(A) as in (11). Then the following are equivalent:

1. there exists a self-adjoint operator E with diagonal {di}i∈I and spectrum σ(E) =
{0,A,B},

2. there exists a frame { fi}i∈I on some Hilbert space H with di = || fi||2 for all i∈ I
such that its frame operator S has spectrum σ(S) = {A,B},

3. one of the following holds:

a. C(A) = ∞,
b. D(A) = ∞,
c. C(A),D(A)< ∞ and there exists N ∈ N and k ∈ Z such that

C(A)−D(A) = NA+ kB and C(A)≥ (N + k)A.

By combining Theorems 6 and 9 we can show the existence of frames with at
most two point spectrum for every nonsummable sequence of frame norms.

Theorem 10. Let {di}i∈I be a sequence in [0,B] such that ∑di = ∑(B− di) = ∞,
where B > 0. Then, there exists a frame { fi}i∈I with || fi||2 = di for all i∈ I such that
its frame operator S satisfies either:

1. S = BI, i.e., { fi}i∈I is a tight frame with frame bounds A = B, or
2. S has spectrum σ(S) = {A,B} for some 0 < A < B.
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Proof. If C(B/2) = ∞ or D(B/2) = ∞, then by Kadison’s Theorem 6, there exists
a tight frame { fi}i∈I with frame bounds A = B. The same conclusion holds when
C(B/2)< ∞ and D(B/2)< ∞, and C(B/2)−D(B/2)∈ BZ. Hence, without loss of
generality we can assume that C(B/2)< ∞, D(B/2)< ∞, and

C(B/2)−D(B/2)≡ η mod B for some 0 < η < B.

Using Theorem 9 the authors have shown in [9, Theorem 3.4] that there exists a self-
adjoint operator E on �2(I) with diagonal {di}i∈I and spectrum σ(S) = {0,A,B},
where A = η . Applying Theorem 1 yields conclusion 2 of Theorem 10.

Finally, the authors [7] showed the following characterization of diagonals of
self-adjoint operators with finite spectrum. A variant of Theorem 11 with prescribed
multiplicities, which has a more complicated statement and proof, was shown by the
authors in [10]. In light of Theorem 1, the results in [7, 10] answer Problem 1 in the
case when frame operator S has finite spectrum.

Theorem 11. Let {A j}n+1
j=0 be an increasing sequence of real numbers such that

A0 = 0 and An+1 = B, n ∈ N. Let {di}i∈I be a sequence in [0,B] with ∑di =

∑(B− di) = ∞. For each α ∈ (0,B), define

C(α) = ∑
di<α

di and D(α) = ∑
di≥α

(B− di). (14)

Then the following are equivalent:

1. there exists a self-adjoint operator E with diagonal {di}i∈I and σ(E) = {A0,A1,
. . . ,An+1},

2. there exists a frame { fi}i∈I on some Hilbert space H with di = || fi||2 for all i∈ I
such that its frame operator S has spectrum σ(S) = {A1, . . . ,An+1},

3. one of the following holds:

a. C(B/2) = ∞,
b. D(B/2) = ∞,
c. C(B/2)< ∞ and D(B/2)< ∞ (and thus C(α),D(α) < ∞ for all α ∈ (0,B)),

and there exist N1, . . . ,Nn ∈ N and k ∈ Z such that

C(B/2)−D(B/2) =
n

∑
j=1

A jNj + kB, (15)

and for all r = 1, . . . ,n,

(B−Ar)C(Ar)+ArD(Ar)≥ (B−Ar)
r

∑
j=1

A jNj +Ar

n

∑
j=r+1

(B−A j)Nj . (16)

We remark that the assumption ∑di = ∑(B− di) = ∞ is not a true limitation of
Theorems 9 and 11. Indeed, the summable case ∑di < ∞, or its symmetric vari-
ant ∑(B− di) < ∞, leads to a finite rank Schur-Horn theorem. This case requires
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a different set of conditions which are closely related to the classical Schur-Horn
majorization. Finally, the assumption A0 = 0 is made only for simplicity; the gen-
eral case follows immediately by a translation argument.

We shall illustrate Theorem 11 by considering the problem of describing possible
frame operators with prescribed frame norms. This can be thought as the converse to
Problem 1. A rigorous formulation of this problem and a solution was shown by the
authors in [10, Theorem 8.2]. Here we shall concentrate only on the spectral variant
of this problem studied in [9].

Definition 2. Suppose that {di}i∈I is a sequence in [0,1]. For a given n ∈ N and a
sequence {di}i∈I in [0,1] we consider the set

An({di}) =
{
(A1, . . . ,An) ∈ (0,1)n : ∀ j �=k A j �= Ak ∃ frame { fi}i∈I s. t.

∀i∈I di = || fi||2 and spectrum of frame operator σ(S) = {A1, . . . ,An,1}
}
.

Subsequently we shall assume that ∑di = ∑(1− di) = ∞, so that we can apply
Theorem 11. The authors have shown in [9, Theorem 3.8] that the sets An({di})
are nonempty for each n ≥ 2 provided that infinitely many dis satisfy di ∈ (0,1).
However, the set A1({di}) might be empty as illustrated by Example 5. Moreover,
the second author [24, Theorem 7.1] has shown that

A1({di}) =
{
(0,1) if C(1/2) = ∞ or D(1/2) = ∞,
a finite set if C(1/2),D(1/2)< ∞.

Example 5. Let β ∈ (0,1/2) and define the sequence {di}i∈Z\{0} by

di =

{
1−β i i > 0

β−i i < 0.

Using Theorem 9 the second author has shown in [24] that

A1({di}) =

⎧⎪⎨
⎪⎩
{ 1

3 ,
1
2 ,

2
3}

−1+
√

13
6 ≤ β < 1/2,

{ 1
2} 1/3≤ β < −1+

√
13

6 ,

∅ 0 < β < 1/3.

The following result [9, Corollary 3.13] describes the spectral sets A2({di}).

Theorem 12. Let {di}i∈I be a sequence in [0,1]. If C(1/2)=∞ or D(1/2) =∞, then

A2({di}) = (0,1)2 \Δ , where Δ = {(x,x) : x ∈ (0,1)}.

Otherwise, if C(1/2),D(1/2)<∞, then the set A2({di}) is nonempty and it consists
of a countable union of line segments. Moreover, one end point of each of these line
segments must lie in the boundary of the unit square.
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Example 6. For a given η ∈ [0,1] consider the sequence {di}i∈Z\{0} from Exam-
ple 3. Using the characterization from Theorem 11 and numerical calculations per-
formed with Mathematica, Figures 1, 2, 3, and 4 depict the set A2({di}) for different
values of the parameter η .
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Fig. 1 The set A2({di}) for the sequence (10) with η = 1
8 .

Other Schur-Horn-type theorems

We shall finish this chapter by mentioning other important developments in extend-
ing the Schur-Horn Theorem 2 to infinite dimensional Hilbert spaces. Neumann [32]
gave an infinite dimensional version of the Schur-Horn theorem phrased in terms of
�∞ closure of the convexity condition (3). Neumann’s result can be considered an
initial, albeit somewhat crude, solution to Problem 2. The first fully satisfactory
progress was achieved by Kadison [25, 26] who solved Problem 2 for orthogonal
projections. The work by Gohberg and Markus [21] and Arveson and Kadison [4]
extended the Schur-Horn Theorem 2 to positive trace class operators. This has been
further extended to compact positive operators by Kaftal and Weiss [28]. These re-
sults are stated in terms of majorization inequalities as in (2). Other notable progress
includes the work of Arveson [3] on diagonals of normal operators with finite spec-
trum. For a detailed survey of recent progress on infinite Schur-Horn majorization
theorems and their connections to operator ideals we refer to the paper of Kaftal and
Weiss [27].
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Fig. 2 The set A2({di}) for the sequence (10) with η = 1
4 .
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Fig. 3 The set A2({di}) for the sequence (10) with η = 3
8 .
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Fig. 4 The set A2({di}) for the sequence (10) with η = 1
2 .
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Analysis (Birkhäuser Boston Inc., Boston, MA, 2003)

16. I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
Mathematics, vol. 61 (SIAM, Philadelphia, PA, 1992)

17. I.S. Dhillon, R.W. Heath Jr., M. Sustik, J.A. Tropp, Generalized finite algorithms for con-
structing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal.
Appl. 27, 61–71 (2005)

18. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72,
341–366 (1952)

19. K. Dykema, D. Freeman, K. Kornelson, D. Larson, M. Ordower, E. Weber, Ellipsoidal tight
frames and projection decompositions of operators. Illinois J. Math. 48, 477–489 (2004)

20. M. Fickus, D.G. Mixon, M.J. Poteet, N. Strawn, Constructing all self-adjoint matrices with
prescribed spectrum and diagonal. Adv. Comput. Math. 39, 585–609 (2013)

21. I.C. Gohberg, A.S. Markus, Some relations between eigenvalues and matrix elements of linear
operators. Mat. Sb. (N.S.) 64, 481–496 (1964)

22. A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76,
620–630 (1954)

23. R. Horn, C. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)
24. J. Jasper, The Schur-Horn theorem for operators with three point spectrum. J. Funct. Anal.

265, 1494–1521 (2013)
25. R. Kadison, The Pythagorean theorem. I. The finite case. Proc. Natl. Acad. Sci. USA 99,

4178–4184 (2002)
26. R. Kadison, The Pythagorean theorem. II. The infinite discrete case. Proc. Natl. Acad. Sci.

USA 99, 5217–5222 (2002)
27. V. Kaftal, G. Weiss, A survey on the interplay between arithmetic mean ideals, traces, lattices

of operator ideals, and an infinite Schur-Horn majorization theorem, in Hot Topics in Operator
Theory, ed. by R.G. Douglas, J. Esterle, D. Gaspar, D. Timotin, F.-H. Vasilescu. Theta Series
in Advanced Mathematics, vol. 9 (Theta, Bucharest, 2008), pp. 101–135

28. V. Kaftal, G. Weiss, An infinite dimensional Schur-Horn theorem and majorization theory.
J. Funct. Anal. 259, 3115–3162 (2010)

29. K. Kornelson, D. Larson, Rank-one decomposition of operators and construction of frames,
in Wavelets, Frames and Operator Theory, ed. by C. Heil, P.E.T Jorgensen, D.R. Larson. Con-
temporary Mathematics, vol. 345 (American Mathematical Society, Providence, RI, 2004),
pp. 203–214

30. S. Mallat, A Wavelet Tour of Signal Processing (Academic, San Diego, CA, 1998)
31. Y. Meyer, Wavelets and Operators (Cambridge University Press, Cambridge, 1992)
32. A. Neumann, An infinite-dimensional version of the Schur-Horn convexity theorem. J. Funct.

Anal. 161, 418–451 (1999)
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The notion of sparsity plays a fundamental role in modern harmonic analysis. In
common English its meaning is often described as small in numbers or amount, or
thinly dispersed or scattered over a large area. The mathematical understanding of
sparsity, although similar in principle, has a much more positive outlook: it means
that the analyzed signal can be represented in such a way that only a few coefficients
may play a significant role in the description of the data.

Examples of areas of mathematics which depend on sparse representations
abound. Besides data compression (naturally), they include sampling theory, com-
pressed sensing, and various topics in numerical linear algebra. Although the im-
portance of sparsity became truly evident with the emergence of Big Data or Data
Science, the theory is deeply rooted in classical mathematics. For example, the sim-
plex algorithm of George Dantzig (who received his bachelor’s degrees in mathe-
matics and physics from the University of Maryland) has been an inspiration for
many optimization problems that rely on sparsity of the underlying data.

The phase retrieval problem is another example of a scientific field, where spar-
sity made an enormous impact. Phase retrieval deals with the loss of information
about the phase, which may occur in physical measurements. The problem arose in
x-ray crystallography, where it appears in the context of determining the structure
of a crystal from the diffraction data. It was solved by Hebert Hauptman (another
alumnus of the University of Maryland, with a Ph.D. in mathematics under the di-
rection of Professor Richard Good) and Jerome Karle, who were awarded the Nobel
Prize in Chemistry for their discovery. The problem also appears naturally in such
diverse fields as electron microscopy, quantum state tomography, and diffraction
imaging. DUSTIN MIXSON discusses some of these most recent applications of the
phase retrieval problem, together with a detailed survey of the most recent mathe-
matical results in phase retrieval. In this chapter the reader is presented with some
of the state-of-the-art results on the role of injectivity in phase transition, rich in
mathematical details and bibliographic references.

PHILIP SCHNITER and SUNDEEP RANGAN continue with the themes of sparsity
and phase retrieval, detailing for us a novel, probabilistic approach to the phase
retrieval problem. Their approach is based on the generalized approximate message
passing algorithm, which is an example of Bayesian inference strategy and which
helps reveal probabilistic structures in analyzed problems. The performance of the
algorithm is illustrated with many numerical results, which show its excellent phase
transition behavior, robustness, and low computational complexity.

Another important application of sparsity is proposed in the next chapter, where
IVAN W. SELESNICK discusses its role in signal denoising. Denoising (also known
as noise reduction) is another example of a classical problem, which we can now
view in a new light thanks to results from sparse sampling and compressive sensing.
SELESNICK introduces sparsity-assisted signal smoothing - a new algorithm for de-
noising of 1-dimensional signals. Thanks to formulating the problem of noise reduc-
tion as a sparse-regularized linear inverse problem, he is able to take advantage of
existing fast solvers, producing as a result a computationally efficient algorithm. The
chapter provides a high level of mathematical detail, together with well-explained
applications.
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The last chapter in this part focuses on the relationship between sparsity assump-
tions and sampling strategies. RACHEL WARD introduces here the concept of im-
portance sampling. This intuitive idea of sampling signals with respect to a density
which takes into account the significance of certain regions for the given signal is
presented from the perspective of its applications to three important problems in
modern signal processing: stochastic optimization, compressive sensing, and low-
rank matrix approximation.



Phase Transitions in Phase Retrieval

Dustin G. Mixon

Abstract Consider a scenario in which an unknown signal is transformed by a
known linear operator, and then the pointwise absolute value of the unknown output
function is reported. This scenario appears in several applications, and the goal is to
recover the unknown signal – this is called phase retrieval. Phase retrieval has been a
popular subject of research in the last few years, both in determining whether com-
plete information is available with a given linear operator and in finding efficient
and stable phase retrieval algorithms in the cases where complete information is
available. Interestingly, there are a few ways to measure information completeness,
and each way appears to be governed by a phase transition of sorts. This chapter
will survey the state of the art with some of these phase transitions, and identify a
few open problems for further research.

Key words: Phase retrieval, Phase transition, Informationally complete, Full spark,
Almost injectivity, Unit norm tight frames

Introduction

Various applications feature an inverse problem called phase retrieval, in which
one is given the pointwise absolute value of a known linear transformation of the
desired signal. Note that such information will never completely determine the un-
known signal since, for example, negating the input will lead to the same output.
Indeed, the best one can do is recover {ωx : |ω | = 1} if x is the unknown signal,
but this global phase factor of ambiguity tends not to be an issue in application (for
example, in some applications, the true signal is actually nonnegative everywhere,
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thereby removing all ambiguity). What follows is a brief overview of some of the
applications of phase retrieval:

• Coherent diffractive imaging. This is a technique to image a nanoscale object
by striking it with a highly coherent beam of X-rays to produce a diffraction
pattern. The diffraction pattern is the Fourier transform of the object, but only
the intensity of the pattern can be physically measured (by counting photons in
different regions) [11, 33, 39, 41].

• Optics. This application enjoys various instances of phase retrieval: (1) When
imaging a star by a lens, one receives the pointwise absolute value of the Fourier
transform of the desired pupil distribution [53]. (2) For a high-resolution im-
age, one can apply interferometric techniques to approximate the spatial coher-
ence function (which is the Fourier transform of the desired object intensity),
though the phase of this function is difficult to estimate accurately, so it is dis-
carded [21]. (3) Soon after NASA launched its Hubble Space Telescope, they
discovered that the primary mirror in the telescope suffered from a large spher-
ical aberration; the extent of this aberration was established by determining the
pupil function from the intensity of its Fourier transform (the point spread func-
tion) [29].

• Quantum state tomography. When measuring a pure state (i.e., a unit vector) x
with a positive operator–valued measure of rank-1 elements {ϕnϕ∗n}N

n=1 (i.e., the
outer products of Parseval frame elements), the random outcome Z of the mea-
surement has a distribution given by Pr(Z = n) = |〈x,ϕn〉|2. As such, repeated
measurements will produce an empirical estimate of the distribution, which is
the pointwise absolute value (squared) of a linear transformation of the desired
signal x [30, 31, 35].

• Speech processing. One common method of speech signal denoising is to take
the short-time Fourier transform (STFT) and perform a smoothing operation on
the magnitudes of the coefficients [4]. Instead of inverting the STFT with the
noisy phases, one can recover the denoised version by phase retrieval [49].

Though there are many applications of phase retrieval, the task is often impossi-
ble; in particular, discarding the phases of the Fourier transform is not at all injec-
tive. This fact has led many researchers to invoke a priori knowledge of the desired
signal, since injectivity might be gotten by restricting to a smaller signal class. For
example, for the optics applications, the pupil distribution is only supported within
the aperture of the optical system, and so this compact-support constraint combined
with the intensity measurements might uniquely determine the desired signal. In-
troducing such information has led to various ad hoc phase retrieval algorithms,
and while they have found some success (e.g., in correcting the Hubble Space Tele-
scope), such algorithms often fail to work unexpectedly. Overall, this route has yet
to produce algorithms with practical performance guarantees.

Thankfully, an alternative route was introduced in 2006 by Balan, Casazza, and
Edidin [4]: Seek injectivity, not by restricting to a smaller signal class, but rather
by designing a larger ensemble of measurement vectors. Unbeknownst to Balan et
al. at the time, this idea had already been in the air in the quantum community (for
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quantum state tomography [30, 31]), but posing the idea to the signal processing
community led to a flurry of research in search of practical phase retrieval guar-
antees [2, 3, 5, 7, 13–16, 23, 26, 51, 52]. One popular method called PhaseLift
recasts phase retrieval as a semidefinite program [13–16], another called PhaseCut
reformulates it in terms of MaxCut [51, 52], and yet another uses the polarization
identity along with angular synchronization to quickly solve certain instances [2, 7].
In this same line of research, a new methodology for coherent diffractive imaging
emerged [15]: Instead of taking a single exposure and attempting phase retrieval
with possibly incomplete information, take multiple exposures of the same object
with different masks or diffraction gratings. Not only can such a process produce
complete information, there are also provably efficient (and apparently stable) phase
retrieval algorithms for this setting [7, 14]. Considering phase retrieval has a wide
range of applications, it would be interesting to find other areas to apply this philos-
ophy of taking more measurements to obtain injectivity.

Another effect of the paper [4] by Balan, Casazza, and Edidin was the commu-
nity’s desire for a deeper understanding of injectivity for phase retrieval. In par-
ticular, what are the conditions for injectivity, and how many measurements are
required? Understanding this will help in determining how many (and what type of)
exposures are necessary for coherent diffractive imaging; also, such phase retrieval
results can be directly interpreted as fundamental limits of quantum state tomogra-
phy. The purpose of this chapter is to survey several results along these lines, and to
identity some remaining open problems. Section “Injectivity” focuses on injectivity
in both the real and complex cases, and then the third section considers a relaxed
version of injectivity called almost injectivity. First, we discuss the notation we use
throughout this chapter as well as some preliminaries:

Notation and Preliminaries

Given a collection of vectors Φ = {ϕn}N
n=1 in V =R

M or CM , we will identify such
a collection with the M×N matrix whose columns form the collection. Consider
the intensity measurement process defined by

(A (x))(n) := |〈x,ϕn〉|2.

Note that A (x) =A (y) whenever y= cx for some scalar c of unit modulus. As such,
the mapping A : V → R

N is necessarily not injective. To resolve this (technical)
issue, throughout this chapter, we consider sets of the form V/S, where V is a vector
space and S is a multiplicative subgroup of the field of scalars. By this notation,
we mean to identify vectors x,y ∈ V for which there exists a scalar c ∈ S such that
y = cx; we write y≡ x mod S to convey this identification. Most (but not all) of the
time, V/S is either RM/{±1} or CM/T (here, T is the complex unit circle), and we
view the intensity measurement process as a mapping A : V/S→ R

N ; it is in this
way that we will consider the measurement process to be injective.
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As the title suggests, the focus of this chapter is phase transitions in phase re-
trieval. As an example of a phase transition, consider what it takes for a collection
of members of a vector space V to span V . Certainly, no collection of size less than
the dimension of V has a chance of spanning, and we expect most collections of size
at least the dimension to span. As such, we might say that the notion of spanning V
exhibits a phase transition at the dimension of V . We make this definition explicit in
the following:

Definition 1. Let A[Φ;FM×N ] be a statement about a matrix Φ ∈ F
M×N , and con-

sider a function f : N → N. We say A[Φ;FM×N ] exhibits a phase transition at
N = f (M) if for each M ≥ 2,

(a) A[Φ;FM×N ] does not hold whenever N < f (M), and
(b) for each N ≥ f (M), there exists an open, dense subset S ⊆ F

M×N such that
A[Φ;FM×N ] holds for every Φ ∈ S.

Based on experience, both parts (a) and (b) of a phase transition are established
by first studying necessary and sufficient conditions for the property of interest
A[Φ;FM×N ]. For part (b) in particular, algebraic geometry consistently plays a key
role. Viewing Φ ∈ F

M×N as a point in real Euclidean space, consider the collection
of Φ’s for which A[Φ;FM×N ] does not hold. If there exists a real, nontrivial alge-
braic variety that contains these points (which is often the case), then every point
Φ in the complement of the variety (which is open and dense in F

M×N) satisfies
A[Φ;FM×N ]. As such, for part (b), it suffices to identify the appropriate variety.

Throughout this chapter, we will continually follow a certain procedure for study-
ing phase transitions. Given a property A[Φ;FM×N ], we start by studying various
necessary and sufficient conditions for that property. We then attempt to prove a
phase transition N = f (M) using the conditions available. Later, we consider ex-
plicit constructions of M× f (M) matrices which satisfy A[Φ;FM× f (M)]; these mini-
mal constructions are certainly mathematically interesting, and they are also optimal
measurement designs for applications like quantum state tomography.

Injectivity

In this section, we study the phase transition for injectivity. As we will see, this
phase transition is much better understood in the real case than in the complex case,
and the distinction is rather interesting. It is highly recommended that the reader
enjoys the real case before venturing into the complex case.

Injectivity in the Real Case

We start by defining the important concepts of this subsection:
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Definition 2.

(a) Inj[Φ;RM×N ] denotes the statement that A : R
M/{±1} → R

N defined by
(A (x))(n) := |〈x,ϕn〉|2 is injective, where Φ = {ϕn}N

n=1 ⊆ R
M .

(b) CP[Φ;FM×N ] denotes the statement that Φ = {ϕn}N
n=1 ⊆ F

M satisfies the
complement property: for every S ⊆ {1, . . . ,N}, either {ϕn}n∈S or {ϕn}n∈Sc

spans FM .

Interestingly, the complement property characterizes injectivity in the real case.
Much of the work in this chapter was inspired by the proof of the following result:

Theorem 1 (Theorem 2.8 in [4]). Inj[Φ;RM×N ] if and only if CP[Φ;RM×N ]. In
words, A is injective if and only if Φ satisfies the complement property.

Proof. We will prove both directions by obtaining the contrapositives.
(⇒) Assume Φ does not satisfy the complement property. Then there exists S ⊆

{1, . . . ,N} such that neither {ϕn}n∈S nor {ϕn}n∈Sc spans RM . This implies that there
are nonzero vectors u,v ∈ R

M such that 〈u,ϕn〉= 0 for all n ∈ S and 〈v,ϕn〉= 0 for
all n ∈ Sc. For each n, we then have

|〈u± v,ϕn〉|2 = |〈u,ϕn〉|2± 2Re〈u,ϕn〉〈v,ϕn〉+ |〈v,ϕn〉|2

= |〈u,ϕn〉|2 + |〈v,ϕn〉|2.

Since |〈u+ v,ϕn〉|2 = |〈u− v,ϕn〉|2 for every n, we have A (u+ v) = A (u− v).
Moreover, u and v are nonzero by assumption, and so u+ v �=±(u− v).

(⇐) Assume that A is not injective. Then there exist vectors x,y ∈ R
M such

that x �= ±y and A (x) =A (y). Taking S := {n : 〈x,ϕn〉= −〈y,ϕn〉}, we have 〈x+
y,ϕn〉= 0 for every n ∈ S. Otherwise when n ∈ Sc, we have 〈x,ϕn〉= 〈y,ϕn〉 and so
〈x− y,ϕn〉 = 0. Furthermore, both x+ y and x− y are nontrivial since x �= ±y, and
so neither {ϕn}n∈S nor {ϕn}n∈Sc spans RM .

Having identified an equivalent condition (the complement property) to injectiv-
ity in the real case, we now use this condition to identify the phase transition. First,
we note that a spanning set for RM must have size at least M. As such, we know
CP[Φ;RM×N ] does not hold whenever N < 2M− 1, since taking S to be the first
M− 1 members will leave Sc with ≤M− 1 members. This suggests a phase transi-
tion of N = 2M− 1, but it remains to prove part (b). To get this, we first introduce
the notion of full spark: An M×N matrix with M ≤ N is said to be full spark if
every M×M submatrix is invertible. Note that any full spark Φ with N ≥ 2M− 1
necessarily satisfies the complement property, since the larger of S and Sc neces-
sarily has at least M elements, which necessarily span. As such, it suffices to show
that full spark matrices form an open and dense subset. To this end, we note that
the product of the determinants of all M×M submatrices forms a polynomial of
the matrix entries whose zero set contains every Φ such that CP[Φ;RM×N ] does not
hold. Moreover, this polynomial is nonzero since the Vandermonde matrix
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⎢⎢⎢⎣

1 1 · · · 1
1 2 · · · N
...

...
...

1M−1 2M−1 · · · NM−1

⎤
⎥⎥⎥⎦

is full spark. The complement of this polynomial’s zero set is therefore open and
dense, as desired. This implies our first phase transition result:

Theorem 2 ([4]). Inj[Φ;RM×N ] exhibits a phase transition at N = 2M− 1.

Now that we have identified the phase transition, we consider the minimal con-
structions, i.e., the M× (2M− 1) real matrices which satisfy the complement prop-
erty. Here, we note that for every S of size M, Sc has size M− 1, meaning S must
index a spanning set. As such, the matrices in this extreme case are precisely the
M× (2M− 1) full spark matrices. For more information about full spark matrices,
see [1].

Injectivity in the Complex Case

In the previous subsection, we quickly identified a characterization of injectivity in
the real case that enabled the phase transition of interest to be completely studied.
The complex case appears to be a bit more involved. For example, the actual phase
transition is the subject of an open conjecture, though there has been a lot of progress
on this conjecture recently. Since the complex case is so much more involved, this
subsection is broken into different labeled parts, concerning necessary and sufficient
conditions, the phase transition, and minimal constructions.

Conditions for Injectivity in the Complex Case

We begin by defining our symbol for injectivity in the complex case:

Definition 3. Inj[Φ;CM×N ] denotes the statement that A : CM/T→ R
N defined by

(A (x))(n) := |〈x,ϕn〉|2 is injective, where Φ = {ϕn}N
n=1 ⊆ C

M.

What follows is a characterization of injectivity in the complex case:

Theorem 3 (Theorem 4 in [6]). Consider Φ = {ϕn}N
n=1 ⊆ C

M, and viewing
{ϕnϕ∗n u}N

n=1 as vectors in R
2M, denote S(u) := spanR{ϕnϕ∗n u}N

n=1. Then the follow-
ing are equivalent:

(a) Inj[Φ;CM×N ].
(b) dimS(u)≥ 2M− 1 for every u ∈C

M \ {0}.
(c) S(u) = spanR{iu}⊥ for every u ∈ C

M \ {0}.
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Before proving this theorem, note that unlike the characterization in the real case,
it is not clear whether this characterization can be tested in finite time; instead of be-
ing a statement about all (finitely many) partitions of {1, . . . ,N}, this is a statement
about all u ∈ C

M \ {0}. However, we can view this characterization as an analog
to the real case in some sense: In the real case, the complement property is equiva-
lent to having span{ϕnϕ∗n u}N

n=1 = R
M for all u ∈ R

M \ {0}. As the following proof
makes precise, the fact that {ϕnϕ∗n u}N

n=1 fails to span all of R2M is rooted in the fact
that more information is lost with phase in the complex case. There is actually a
nice differential geometric interpretation of this result, and we will discuss it after
the proof:

Proof (Proof of Theorem 3). (a) ⇒ (c): Suppose A is injective. We need to show
that {ϕnϕ∗n u}N

n=1 spans the set of vectors orthogonal to iu. Here, orthogonality is
with respect to the real inner product, which can be expressed as 〈a,b〉R = Re〈a,b〉.
Note that

|〈u± v,ϕn〉|2 = |〈u,ϕn〉|2± 2Re〈u,ϕn〉〈ϕn,v〉+ |〈v,ϕn〉|2,

and so subtraction gives

|〈u+ v,ϕn〉|2−|〈u− v,ϕn〉|2 = 4Re〈u,ϕn〉〈ϕn,v〉= 4〈ϕnϕ∗n u,v〉R. (1)

In particular, if the right-hand side of (1) is zero, then injectivity implies that there
exists some ω of unit modulus such that u+ v = ω(u− v). Since u �= 0, we know
ω �=−1, and so rearranging gives

v =−1−ω
1+ω

u =− (1−ω)(1+ω)
|1+ω |2 u =− 2Imω

|1+ω |2 iu.

This means S(u)⊥ ⊆ spanR{iu}. To prove spanR{iu} ⊆ S(u)⊥, take v = αiu for
some α ∈R and define ω := 1+α i

1−α i , which necessarily has unit modulus. Then

u+ v = u+αiu = (1+αi)u =
1+αi
1−αi

(u−αiu) = ω(u− v).

Thus, the left-hand side of (1) is zero, meaning v ∈ S(u)⊥.
(b) ⇔ (c): First, (b) immediately follows from (c). For the other direction, note

that iu is necessarily orthogonal to every ϕnϕ∗n u:

〈ϕnϕ∗n u, iu〉R = Re〈ϕnϕ∗n u, iu〉= Re〈u,ϕn〉〈ϕn, iu〉=−Rei|〈u,ϕn〉|2 = 0.

Thus, spanR{iu} ⊆ S(u)⊥, and by (b), dimS(u)⊥ ≤ 1, both of which gives (c).
(c) ⇒ (a): This portion of the proof is inspired by Mukherjee’s analysis in [45].

Suppose A (x) =A (y). If x = y, we are done. Otherwise, x− y �= 0, and so we may
apply (c) to u = x− y. First, note that

〈ϕnϕ∗n (x− y),x+ y〉R = Re〈ϕnϕ∗n (x− y),x+ y〉= Re(x+ y)∗ϕnϕ∗n (x− y),
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and so expanding gives

〈ϕnϕ∗n (x− y),x+ y〉R = Re
(
|ϕ∗n x|2− x∗ϕnϕ∗n y+ y∗ϕnϕ∗n x−|ϕ∗n y|2

)
= Re

(
− x∗ϕnϕ∗n y+ x∗ϕnϕ∗n y

)
= 0.

Since x+ y ∈ S(x− y)⊥ = spanR{i(x− y)}, there exists α ∈ R such that x+ y =
αi(x− y), and so rearranging gives y = 1−α i

1+α i x, meaning y≡ x mod T.

To better understand the above result, we will first develop a deeper understand-
ing of the set CM/T. If we remove zero, this set happens to be something called a
smooth manifold, which means we can cover the set with overlapping patches, each
with smooth coordinates, and with smooth coordinate transformations between the
overlapping portions. To see this, consider the patches defined by

Um := {Z ∈ (CM \ {0})/T : Zm �= 0}, m = 1, . . . ,M.

We define the following coordinates over the patch Um:

(z1, . . . ,zM) =
|Zm|
Zm

(Z1, . . . ,ZM),

where (Z1, . . . ,ZM) ∈ C
M \ {0} denotes any representative of the corresponding

point in (CM \{0})/T. As such, each patch has its own homeomorphism to a set of
coordinates, which is an open subset of R2M−1 (we lost a degree of freedom since
the mth complex coordinate has no imaginary part). If we denote the mth homeomor-
phism by fm : Um → R

2M−1, then it is not difficult to show that each fm, and as the
transition maps τm,m′ : fm(Um∩Um′)→ fm′(Um∩Um′) defined by τm,m′ := fm′ ◦ f−1

m
are all smooth.

So we now understand that (CM \ {0})/T is a smooth manifold with 2M− 1
real dimensions. If we consider the function A over (CM \ {0})/T, we can take its
derivative at a given point u in terms of some chosen local coordinates. This amounts
to taking the Jacobian at u ∈Um, whose rows are {2ϕnϕ∗n u}N

n=1 as vectors in R
2M ,

but with the column corresponding to the mth imaginary component removed. With
this in mind, and using ideas from the proof of Lemma 22 in [6], Theorem 3 can be
reinterpreted as follows:

Theorem 4. A is injective if and only if the derivative of A is injective at every
point in (CM \ {0})/T.

This says quite a bit about the intensity measurement mapping A . Indeed, one
can imagine a smooth mapping of a circle to a figure-eight curve, in which the
derivative is injective at every point of the circle, but the mapping is certainly not
injective. One could identify injectivity of the derivative as a local form of injectiv-
ity, and so it is rather surprising to have this be equivalent to the traditional (global)
form of injectivity. Unfortunately, it is not clear what one can glean from such a
feature of A . Indeed, the above theorems leave a lot to be desired; compared to
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the complement property in the real case, it is still unclear what it takes for a com-
plex ensemble to yield injective intensity measurements. While in pursuit of a more
clear understanding, the following bizarre characterization was stumbled upon: A
complex ensemble yields injective intensity measurements precisely when it yields
injective phase-only measurements (in some sense). This is made more precise in
the following theorem statement:

Theorem 5 (Theorem 5 in [6]). Consider Φ = {ϕn}N
n=1 ⊆ C

M and the mapping
A : CM/T→ R

N defined by (A (x))(n) := |〈x,ϕn〉|2. Then A is injective if and
only if the following statement holds: If for every n= 1, . . . ,N, either arg(〈x,ϕn〉2) =
arg(〈y,ϕn〉2) or one of the sides is not well defined, then x = 0, y = 0, or y≡ x mod
R\ {0}.

Proof. By Theorem 3, A is injective if and only if

∀x ∈C
M \ {0}, spanR{ϕnϕ∗n x}N

n=1 = spanR{ix}⊥. (2)

Taking orthogonal complements of both sides, note that regardless of x ∈C
M \{0},

we know spanR{ix} is necessarily a subset of (spanR{ϕnϕ∗n x}N
n=1)

⊥, and so (2) is
equivalent to

∀x ∈ C
M \ {0}, Re〈ϕnϕ∗n x, iy〉= 0 ∀n = 1, . . . ,N

=⇒ y = 0 or y≡ x mod R\ {0}.

Thus, we need to determine when Im〈x,ϕn〉〈y,ϕn〉 = Re〈ϕnϕ∗n x, iy〉 = 0. We claim
that this is true if and only if arg(〈x,ϕn〉2) = arg(〈y,ϕn〉2) or one of the sides is
not well defined. To see this, we substitute a := 〈x,ϕn〉 and b := 〈y,ϕn〉. Then to
complete the proof, it suffices to show that Imab= 0 if and only if arg(a2)= arg(b2),
a = 0, or b = 0.

(⇐) If either a or b is zero, the result is immediate. Otherwise, if 2arg(a) =
arg(a2) = arg(b2) = 2arg(b), then 2π divides 2(arg(a)− arg(b)), and so arg(ab) =
arg(a)− arg(b) is a multiple of π . This implies that ab ∈ R, and so Imab = 0.

(⇒) Suppose Imab = 0. Taking the polar decompositions a = reiθ and b = seiφ ,
we equivalently have that rssin (θ −φ) = 0. Certainly, this can occur whenever r or
s is zero, i.e., a= 0 or b= 0. Otherwise, a difference formula then gives sinθ cosφ =
cosθ sinφ . From this, we know that if θ is an integer multiple of π/2, then φ is as
well, and vice versa, in which case arg(a2) = 2arg(a) = π = 2arg(b) = arg(b2).
Else, we can divide both sides by cosθ cosφ to obtain tanθ = tanφ , from which it
is evident that θ ≡ φ mod π , and so arg(a2) = 2arg(a) = 2arg(b) = arg(b2).

The notion of injective phase-only measurements appears similar to the notion of
parallel rigidity in certain location estimation problems (for example, see [46] and
the references therein). It would be interesting to further investigate this relationship,
but at the very least, it is rather striking that injectivity in one setting is equivalent to
injectivity in the other. In [6], this equivalence is used to prove that the complement
property is necessary for injectivity in the complex case. Contrary to what is claimed
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in [4], the first part of the proof of Theorem 1 does not suffice: It demonstrates that
u+ v �= ±(u− v), but fails to establish that u+ v �≡ u− v mod T; for instance, it
could very well be the case that u+ v = i(u− v), and so injectivity would not be
violated in the complex case. Overall, the complement property is necessary but
not sufficient for injectivity. To see that it is not sufficient, consider measurement
vectors (1,0), (0,1) and (1,1). These certainly satisfy the complement property, but
A ((1, i)) = (1,1,2) = A ((1,−i)), despite the fact that (1, i) �≡ (1,−i) mod T; in
general, real measurement vectors fail to yield injective intensity measurements in
the complex setting since they do not distinguish complex conjugates.

The theorem that follows provides one last characterization of injectivity in the
complex case, and it will play a key role in our understanding of the phase transition.
Before stating the result, define the real M2-dimensional space HM×M of self-adjoint
M×M matrices; note that this is not a vector space over complex scalars since the
diagonal of a self-adjoint matrix must be real. Given an ensemble of measurement
vectors {ϕn}N

n=1 ⊆ C
M , define the super analysis operator A : HM×M → R

N by
(AH)(n) = 〈H,ϕnϕ∗n 〉HS; here, 〈·, ·〉HS denotes the Hilbert-Schmidt inner product,
which induces the Frobenius matrix norm. Note that A is a linear operator, and yet

(Axx∗)(n) = 〈xx∗,ϕnϕ∗n 〉HS = Tr[ϕnϕ∗n xx∗]

= Tr[ϕ∗n xx∗ϕn] = ϕ∗n xx∗ϕn = |〈x,ϕn〉|2 = (A (x))(n).

In words, the class of vectors identified with x modulo T can be “lifted” to xx∗,
thereby linearizing the intensity measurement process at the price of squaring the
dimension of the vector space of interest; this identification has been exploited by
some of the most noteworthy strides in modern phase retrieval [5, 16]. As the fol-
lowing lemma shows, this identification can also be used to characterize injectivity:

Theorem 6 (Lemma 9 in [6], cf. Corollary 1 in [35]). A is not injective if and
only if there exists a matrix of rank 1 or 2 in the null space of A.

Proof. (⇒) If A is not injective, then there exist x,y ∈ C
M/T with x �≡ y mod T

such that A (x) =A (y). That is, Axx∗ = Ayy∗, and so xx∗ − yy∗ is in the null space
of A.

(⇐) First, suppose there is a rank-1 matrix H in the null space of A. Then there
exists x ∈C

M such that H = xx∗ and (A (x))(n) = (Axx∗)(n) = 0 = (A (0))(n). But
x �≡ 0 mod T, and so A is not injective. Now suppose there is a rank-2 matrix H in
the null space of A. Then by the spectral theorem, there are orthonormal u1,u2 ∈C

M

and nonzero λ1 ≥ λ2 such that H = λ1u1u∗1 +λ2u2u∗2. Since H is in the null space of
A, the following holds for every n:

0 = 〈H,ϕnϕ∗n 〉HS

= 〈λ1u1u∗1 +λ2u2u∗2,ϕnϕ∗n 〉HS = λ1|〈u1,ϕn〉|2 +λ2|〈u2,ϕn〉|2. (3)

Taking x := |λ1|1/2u1 and y := |λ2|1/2u2, note that y �≡ x mod T since they are
nonzero and orthogonal. We claim that A (x) = A (y), which would complete the
proof. If λ1 and λ2 have the same sign, then by (3), |〈x,ϕn〉|2 + |〈y,ϕn〉|2 = 0
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for every n, meaning |〈x,ϕn〉|2 = 0 = |〈y,ϕn〉|2. Otherwise, λ1 > 0 > λ2, and so
xx∗−yy∗ = λ1u1u∗1+λ2u2u∗2 = A is in the null space of A, meaning A (x) = Axx∗ =
Ayy∗ =A (y).

Of the three characterizations of injectivity in the complex case that we provided,
this is by far the easiest to grasp, and perhaps due to its simplicity, much of our
current understanding of the phase transition is based on this one. Still, comparing
to our understanding in the real case helps to identify areas for improvement. For
example, it is unclear how to test whether matrices of rank 1 or 2 lie in the null
space of an arbitrary super analysis operator. Indeed, we have yet to find a “good”
sufficient condition for injectivity in the complex case like the complement property
or full spark provide in the real case.

The Phase Transition for Injectivity in the Complex Case

At this point, we wish to study the phase transition (presuming it exists) for
Inj[Φ;CM×N ]. To this end, we introduce the following subproblem (i.e., part (a)
of the phase transition):

Problem 1. For any dimension M, what is the smallest number N∗(M) of injective
intensity measurements?

Interestingly, this problem has some history in the quantum mechanics litera-
ture. For example, [50] presents Wright’s conjecture that three observables suffice to
uniquely determine any pure state. In phase retrieval parlance, the conjecture states
that there exist unitary matrices U1, U2, and U3 such that Φ = [U1 U2 U3] yields in-
jective intensity measurements. Note that Wright’s conjecture actually implies that
N∗(M) ≤ 3M− 2; indeed, U1 determines the norm (squared) of the signal, render-
ing the last column of both U2 and U3 unnecessary. Finkelstein [30] later proved
that N∗(M)≥ 3M−2; combined with Wright’s conjecture, this led many to believe
that N∗(M) = 3M−2 (for example, see [15]). However, both this and Wright’s con-
jecture were recently disproved in [35], in which Heinosaari, Mazzarella, and Wolf
invoked embedding theorems from differential geometry to prove that

N∗(M)≥

⎧⎨
⎩

4M− 2α(M− 1)− 3 for all M,
4M− 2α(M− 1)− 2 if M is odd, α(M− 1)≡ 2 mod 4,
4M− 2α(M− 1)− 1 if M is odd, α(M− 1)≡ 3 mod 4,

(4)

where α(M−1)≤ log2(M) is the number of 1’s in the binary representation of M−
1; apparently, this result had previously appeared in [43, 44] as well. By comparison,
Balan, Casazza, and Edidin [4] proved that N∗(M)≤ 4M−2, and so we at least have
the asymptotic expression N∗(M) = (4+ o(1))M.

At this point, we should clarify some intuition for N∗(M) by explaining the na-
ture of these best known lower and upper bounds. First, the lower bound (4) fol-
lows from an older result that complex projective space CPn does not smoothly
embed into R

4n−2α(n) (and other slight refinements which depend on n); this is
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due to Mayer [38], but we highly recommend James’s survey on the topic [36].
To prove (4) from this, suppose A : CM/T→ R

N were injective. Then E defined
by E (x) :=A (x)/‖x‖2 embeds CPM−1 into R

N , and as Heinosaari et al. show, the
embedding is necessarily smooth; considering A (x) is made up of rather simple
polynomials, the fact that E is smooth should not come as a surprise. As such, the
nonembedding result produces the best known lower bound. To evaluate this bound,
first note that Milgram [40] constructs an embedding of CPn into R

4n−α(n)+1, es-
tablishing the importance of the α(n) term, but the constructed embedding does
not correspond to an intensity measurement process. In order to relate these em-
bedding results to our problem, consider the real case: It is known that for odd
n ≥ 7, real projective space RPn smoothly embeds into R

2n−α(n)+1 [48], which
means the analogous lower bound for the real case would necessarily be smaller
than 2(M−1)−α(M−1)+1 = 2M−α(M−1)−1 < 2M−1. This indicates that
the α(M− 1) term in (4) might be an artifact of the proof technique, rather than of
N∗(M).

We now consider our previous analysis of injectivity to help guide intuition about
the possible phase transition. Theorem 6 indicates that we want the null space of A to
avoid nonzero matrices of rank ≤ 2. Intuitively, this is easier when the “dimension”
of this set of matrices is small. To get some idea of this dimension, let’s count real
degrees of freedom. By the spectral theorem, almost every matrix in H

M×M of rank
≤ 2 can be uniquely expressed as λ1u1u∗1 +λ2u2u∗2 with λ1 ≤ λ2. Here, (λ1,λ2) has
two degrees of freedom. Next, u1 can be any vector in C

M, except its norm must
be 1. Also, since u1 is only unique up to global phase, we take its first entry to be
nonnegative without loss of generality. Given the norm and phase constraints, u1 has
a total of 2M− 2 real degrees of freedom. Finally, u2 has the same norm and phase
constraints, but it must also be orthogonal to u1, that is, Re〈u2,u1〉= Im〈u2,u1〉= 0.
As such, u2 has 2M−4 real degrees of freedom. All together, we can expect the set
of matrices in question to have 2+(2M−2)+(2M−4) = 4M−4 real dimensions.

If the set S of matrices of rank≤ 2 formed a subspace of HM×M (it doesn’t), then
we could expect the null space of A to intersect that subspace nontrivially when-
ever dimnull(A) + (4M− 4) > dim(HM×M) = M2. By the rank-nullity theorem,
this would indicate that injectivity requires

N ≥ rank(A) = M2− dimnull(A)≥ 4M− 4. (5)

Of course, this logic is not technically valid since S is not a subspace. It is, however, a
special kind of set: a real projective variety. To see this, let’s first show that it is a real
algebraic variety, specifically, the set of members of HM×M for which all 3× 3 mi-
nors are zero. Of course, every member of S has this minor property. Next, we show
that members of S are the only matrices with this property: If the rank of a given ma-
trix is≥ 3, then it has an M×3 submatrix of linearly independent columns, and since
the rank of its transpose is also≥ 3, this M×3 submatrix must have 3 linearly inde-
pendent rows, thereby implicating a full-rank 3×3 submatrix. This variety is said to
be projective because it is closed under scalar multiplication. If S were a projective
variety over an algebraically closed field (it’s not), then the projective dimension
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theorem (Theorem 7.2 of [34]) says that S intersects null(A) nontrivially whenever
the dimensions are large enough: dimnull(A)+dimS > dimH

M×M , thereby imply-
ing that injectivity requires (5). Unfortunately, this theorem is not valid when the
field is R; for example, the cone defined by x2 + y2− z2 = 0 in R

3 is a projective
variety of dimension 2, but its intersection with the 2-dimensional xy-plane is trivial,
despite the fact that 2+ 2 > 3.

In the absence of a proof, we pose the natural conjecture:

Conjecture 1 (The 4M− 4 conjecture). Inj[Φ;CM×N ] exhibits a phase transition at
N = 4M− 4.

As incremental progress toward solving the 4M− 4 conjecture, we offer the fol-
lowing result:

Theorem 7 (Theorem 10 in [6]). The 4M− 4 conjecture is true when M = 2.

In this case, injectivity is equivalent to A having a trivial null space by Theorem 6,
meaning A must have rank M2 = 4 = 4M− 4 for injectivity, implying part (a). For
N = 4M− 4, A has a square matrix representation, and so injectivity is equivalent
to having detA �= 0. As such, part (b) is proved by considering the real algebraic
variety V := {A : RedetA = ImdetA = 0} and showing that V c is nonempty.

We can also prove the M = 3 case, but we first introduce Algorithm 1, namely
the HMW test for injectivity; this is named after Heinosaari, Mazarella, and Wolf,
who implicitly introduce this algorithm in their paper [35].

Algorithm 1 The HMW test for injectivity when M = 3
Input: Measurement vectors {ϕn}N

n=1 ⊆C
3

Output: Whether A is injective
Define A : H3×3 → R

N such that AH = {〈H,ϕnϕ∗n 〉HS}N
n=1

if dimnull(A) = 0 then
“INJECTIVE” {if A is injective, then A is injective}

else
Pick H ∈ null(A), H �= 0
if dimnull(A) = 1 and det(H) �= 0 then

“INJECTIVE” {if A only maps nonsingular matrices to zero, then A is injective}
else

“NOT INJECTIVE” {in the remaining case, A maps differences of rank-1 matrices to zero}
end if

end if

Theorem 8 (Theorem 11 in [6], cf. Proposition 6 in [35]). When M = 3, the HMW
test correctly determines whether A is injective.

Proof. First, if A is injective, then A (x) = Axx∗ = Ayy∗ = A (y) if and only if
xx∗ = yy∗, i.e., y≡ x mod T. Next, suppose A has a 1-dimensional null space. Then
Lemma 6 gives that A is injective if and only if the null space of A is spanned
by a matrix of full rank. Finally, if the dimension of the null space is 2 or more,
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then there exist linearly independent (nonzero) matrices A and B in this null space.
If det(A) = 0, then it must have rank 1 or 2, and so Lemma 6 gives that A is not
injective. Otherwise, consider the map

f : t �→ det(Acost +Bsint) ∀t ∈ [0,π ].

Since f (0) = det(A) and f (π) = det(−A) = (−1)3 det(A) =−det(A), the interme-
diate value theorem gives that there exists t0 ∈ [0,π ] such that f (t0) = 0, i.e., the
matrix Acost0 +Bsint0 is singular. Moreover, this matrix is nonzero since A and B
are linearly independent, and so its rank is either 1 or 2. Lemma 6 then gives that A
is not injective.

As an example, we may run the HMW test on the columns of the following
matrix:

Φ =

⎡
⎣ 2 1 1 0 0 0 1 i
−1 0 0 1 1 −1 −2 2

0 1 −1 1 −1 2i i −1

⎤
⎦ . (6)

In this case, the null space of A is 1-dimensional and spanned by a nonsingular
matrix. As such, A is injective. We are now ready to approach the 4M−4 conjecture
in the M = 3 case:

Theorem 9 (Theorem 12 in [6]). The 4M− 4 conjecture is true when M = 3.

This is proved using the HMW test. In this case, 4M−4 = 8 = M2−1, meaning
when N = 4M− 4, the null space of A should typically be 1-dimensional. As such,
the null space can be described algebraically in terms of a generalized cross product,
and this is leveraged along with the HMW test to construct a real algebraic variety
containing all A’s which are not injective; the construction in (6) is then used to
prove that the complement of this variety is nonempty, thereby proving part (b).

Recently, the American Institute of Mathematics hosted a workshop called
“Frame Theory Intersects Geometry”, where experts from the two communities dis-
cussed various problems, including the 4M− 4 conjecture. One outcome of this
workshop was a paper by Conca, Edidin, Hering, and Vinzant [20], which makes a
major stride toward solving the 4M− 4 conjecture:

Theorem 10 (Theorem 1.1 and Proposition 5.4 in [20]).

(a) Part (a) of the 4M− 4 conjecture is true whenever M = 2k + 1.
(b) Part (b) of the 4M− 4 conjecture is true.

Proof (sketch). The proof of (a) uses certain integrality conditions, similar to the
proofs of embedding results for complex projective space. Part (b) is proved using
the following basic ideas: Consider the set of all M×N complex matrices Φ . This
set has real dimension 2MN. The goal is to show that the set of “bad” Φ’s (those
which fail to yield injectivity) has strictly smaller dimension. To do this, note from
Theorem 6 that Φ = {ϕn}N

n=1 is bad precisely when there is an M×M matrix Q of
rank≤ 2 and Frobenius norm 1 such that ϕ∗n Qϕn = 0 for every n= 1, . . . ,N. As such,
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we lift to the set of pairs (Φ,Q) which satisfy this relation. Counting the dimension
of this lifted set, we note that the set of Q’s has 4M−5 real dimensions, and for each
Q and each n, there is a (2M−1)-dimensional set of ϕn’s such thatϕ∗n Qϕn = 0. Thus,
the total dimension of bad pairs (Φ,Q) is 4M− 5+(2M− 1)N. Recall that the bad
set we care about is the set of Φ’s for which there exists a Q such that (Φ,Q) is bad,
and so we get our set by projection. Also, projections never increase the dimension
of a set, and so the dimension of our set of bad Φ’s is ≤ 4M− 5+ (2M− 1)N.
As such, to ensure that this dimension is less than the ambient dimension 2MN, it
suffices to have 4M− 5+(2M− 1)N < 2MN, or equivalently, N ≥ 4M− 4. Thus,
generic M×N Φ’s with N ≥ 4M− 4 are not bad.

Note that this result contains the previous cases where M = 2,3, and the first
remaining open case is M = 4. On my blog, I offer a US$100 prize for a proof of
the 4M− 4 conjecture, and a can of Coca-Cola for a disproof [42].

Minimal Constructions with Injectivity in the Complex Case

In the absence of a “good” characterization of injectivity in the complex case, it is
interesting to see explicit minimal constructions, as these shed some insight into the
underlying structure of such ensembles. To this end, there are presently two general
constructions, which we describe here.

The construction of Bodmann and Hammen [10] considers the case where
the measurement vectors form a certain harmonic frame. Specifically, take the
(2M−1)× (2M−1) discrete Fourier transform matrix and collect the first M rows;
then, the resulting columns are the M-dimensional measurement vectors. Note that
if the original signal is known to be real, then 2M− 1 measurements are injective
whenever the measurement vectors are full spark, as this particular harmonic frame
is (since all M×M submatrices are Vandermonde with distinct bases). Analogously,
Bernhard and Hammen exploit the Fejer–Riesz spectral factorization theorem to
say that these measurements completely determine signals from another interesting
class. To be clear, identify a vector (cm)

M−1
m=0 with the polynomial ∑M−1

m=0 cmzm; then,
Bernhard and Hammen uniquely determine the vector if the roots of the correspond-
ing polynomial all lie outside the open unit disk in the complex plane. In general,
they actually say the polynomial is one of 2M possibilities; here, the only ambiguity
is whether a given root is at zm or 1/zm, that is, we can flip any root from outside
to inside the disk. Note that this is precisely how much ambiguity we have in the
real case after taking only M measurements, and in that case, we know it suffices to
take only M− 1 additional measurements. Next, in addition to taking these 2M− 1
measurements from before (viewed as equally spaced points on the complex unit
circle), they also take 2M−1 measurements corresponding to equally spaced points
on another unit circle in the complex plane, this one being the image of the real line
under a specially chosen (think “sufficiently irrational”) Cayley map. However, this
makes a total of 4M−2 measurements, whereas the goal is to find 4M−4 injective
measurements – to fix this, they actually pick the second circle in such a way that
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it intersects the first at two points, and that these intersection points correspond to
measurements from both circles, so we might as well throw two of them away.

The second known construction is due to Fickus, Nelson, Wang, and the au-
thor [27]. Here, we apply two main ideas: (1) a signal’s intensity measurements
with the Fourier transform is the Fourier transform of the signal’s autocorrelation;
and (2) if a real, even function is sufficiently zero-padded, then it can be recovered
(up to a global sign factor) from its autocorrelation. (Verifying (2) in small dimen-
sions is a fun exercise.) In [27], we show how to generalize (2) to completely deter-
mine zero-padded complex functions, and then we identify these autocorrelations
as the inverse Fourier transforms of intensity measurements with 4M− 2 truncated
and modulated discrete cosine functions. At this point, we identify certain redun-
dancies in our intensity measurements – two of them are completely determined by
the others, so we can remove them.

Considering these minimal constructions, it is striking that they both come from
a construction of size 4M−2. This begs the following question: Does every injective
ensemble of size 4M− 2 contain an injective ensemble of size 4M− 4?

Almost Injectivity

In both the real and complex cases, there appears to be a phase transition which gov-
erns how many intensity measurements are necessary and generically sufficient for
injectivity. Interestingly, one can save a factor of 2 in this number of measurements
by slightly weakening the desired notion of injectivity [4, 31]. To be explicit, we
start with the following definition:

Definition 4. The intensity measurement mapping A is said to be almost injec-
tive if A −1(A (x)) = {ωx : |ω | = 1} for every x in an open, dense subset of FM .
AlmInj[Φ,FM×N ] denotes the statement that the intensity measurement mapping A
associated with Φ is almost injective.

This section studies the phase transition for almost injectivity. Much like injec-
tivity, we have a much better understanding of the real case than the complex case,
and we consider these separately.

Almost Injectivity in the Real Case

In this section, we start by characterizing ensembles of measurement vectors which
yield almost injective intensity measurements, and similar to the characterization of
injectivity, the basic idea behind the analysis is to consider sums and differences of
signals with identical intensity measurements. Our characterization starts with the
following lemma:
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Theorem 11 (Lemma 9 in [27]). Consider Φ = {ϕn}N
n=1 ⊆ R

M and the intensity
measurement mapping A : RM/{±1} → R

N defined by (A (x))(n) := |〈x,ϕn〉|2.
Then A is almost injective if and only if almost every x∈R

M is not in the Minkowski
sum span(ΦS)

⊥ \ {0}+ span(ΦSc)⊥ \ {0} for all S ⊆ {1, . . . ,N}. More precisely,
A −1(A (x)) = {±x} if and only if x /∈ span(ΦS)

⊥ \{0}+ span(ΦSc)⊥ \{0} for any
S⊆ {1, . . . ,N}.

Proof. By the definition of the mapping A , for x,y ∈ R
M we have A (x) = A (y)

if and only if |〈x,ϕn〉| = |〈y,ϕn〉| for all n ∈ {1, . . . ,N}. This occurs precisely when
there is a subset S ⊆ {1, . . . ,N} such that 〈x,ϕn〉 = −〈y,ϕn〉 for every n ∈ S and
〈x,ϕn〉 = 〈y,ϕn〉 for every n ∈ Sc. Thus, A −1(A (x)) = {±x} if and only if for
every y �= ±x and for every S ⊆ {1, . . . ,N}, either there exists an n ∈ S such that
〈x+ y,ϕn〉 �= 0 or an n ∈ Sc such that 〈x− y,ϕn〉 �= 0. We claim that this occurs if
and only if x is not in the Minkowski sum span(ΦS)

⊥ \{0}+ span(ΦSc)⊥ \{0} for
all S⊆ {1, . . . ,N}, which would complete the proof. We verify the claim by seeking
the contrapositive in each direction.

(⇒) Suppose x ∈ span(ΦS)
⊥ \ {0}+ span(ΦSc)⊥ \ {0}. Then there exists u ∈

span(ΦS)
⊥ \ {0} and v ∈ span(ΦSc)⊥ \ {0} such that x = u+ v. Taking y := u− v,

we see that x+y = 2u∈ span(ΦS)
⊥ \{0} and x−y = 2v∈ span(ΦSc)⊥ \{0}, which

means that there is no n∈ S such that 〈x+y,ϕn〉 �= 0 nor n∈ Sc such that 〈x−y,ϕn〉 �=
0. Furthermore, u and v are nonzero, and so y �=±x.

(⇐) Suppose y �=±x and for every S⊆{1, . . . ,N} there is no n∈ S such that 〈x+
y,ϕn〉 �= 0 nor n∈ Sc such that 〈x−y,ϕn〉 �= 0. Then x+y∈ span(ΦS)

⊥\{0} and x−
y ∈ span(ΦSc)⊥ \{0}. Since x = 1

2(x+ y)+ 1
2 (x− y), we have that x ∈ span(ΦS)

⊥ \
{0}+ span(ΦSc)⊥ \{0}.

The above characterization can be simplified to form the following partial char-
acterization of almost injectivity:

Theorem 12 (Theorem 10 in [27]). Consider Φ = {ϕn}N
n=1⊆R

M and the intensity
measurement mapping A : RM/{±1} → R

N defined by (A (x))(n) := |〈x,ϕn〉|2.
Suppose Φ spans R

M and each ϕn is nonzero. Then A is almost injective if and
only if the Minkowski sum span(ΦS)

⊥+ span(ΦSc)⊥ is a proper subspace of RM for
each nonempty proper subset S ⊆ {1, . . . ,N}.

Note that the above result is not terribly surprising considering Theorem 11, as
the new condition involves a simpler Minkowski sum in exchange for additional
(reasonable and testable) assumptions on Φ . The proof of this theorem amounts to
measuring the difference between the two Minkowski sums:

Proof (Proof of Theorem 12). First note that the spanning assumption on Φ implies

span(ΦS)
⊥∩ span(ΦSc )⊥ =

(
span(ΦS)+ span(ΦSc)

)⊥
= span(Φ)⊥ = {0},

and so one can prove the following identity:

span(ΦS)
⊥ \{0}+ span(ΦSc)⊥ \{0}
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=
(

span(ΦS)
⊥+ span(ΦSc)⊥

)
\
(

span(ΦS)
⊥ ∪ span(ΦSc)⊥

)
. (7)

From Theorem 11 we know that A is almost injective if and only if almost ev-
ery x ∈ R

M is not in the Minkowski sum span(ΦS)
⊥ \ {0}+ span(ΦSc)⊥ \ {0}

for any S ⊆ {1, . . . ,N}. In other words, the Lebesgue measure (which we denote
by Leb[·]) of this Minkowski sum is zero for each S ⊆ {1, . . . ,N}. By (7), this
equivalently means that the Lebesgue measure of

(
span(ΦS)

⊥+ span(ΦSc)⊥
)
\(

span(ΦS)
⊥ ∪ span(ΦSc)⊥

)
is zero for each S ⊆ {1, . . . ,N}. Since Φ spans R

M ,
this set is empty (and therefore has Lebesgue measure zero) when S = /0 or
S = {1, . . . ,N}. Also, since each ϕn is nonzero, we know that span(ΦS)

⊥ and
span(ΦSc)⊥ are proper subspaces of RM whenever S is a nonempty proper subset of
{1, . . . ,N}, and so in these cases both subspaces must have Lebesgue measure zero.
As such, we have that for every nonempty proper subset S ⊆ {1, . . . ,N},

Leb
[(

span(ΦS)
⊥+ span(ΦSc)⊥

)
\
(

span(ΦS)
⊥∪ span(ΦSc )⊥

)]
≥ Leb

[
span(ΦS)

⊥+ span(ΦSc )⊥
]
−Leb

[
span(ΦS)

⊥
]
−Leb

[
span(ΦSc)⊥

]
= Leb

[
span(ΦS)

⊥+ span(ΦSc )⊥
]

≥ Leb
[(

span(ΦS)
⊥+ span(ΦSc)⊥

)
\
(

span(ΦS)
⊥ ∪ span(ΦSc)⊥

)]
.

In summary,
(
span(ΦS)

⊥+ span(ΦSc)⊥
)
\
(
span(ΦS)

⊥∪ span(ΦSc)⊥
)

having
Lebesgue measure zero for each S ⊆ {1, . . . ,N} is equivalent to span(ΦS)

⊥ +
span(ΦSc)⊥ having Lebesgue measure zero for each nonempty proper subset
S ⊆ {1, . . . ,N}, which in turn is equivalent to the Minkowski sum span(ΦS)

⊥ +
span(ΦSc)⊥ being a proper subspace of R

M for each nonempty proper subset
S⊆ {1, . . . ,N}, as desired.

At this point, consider the following stronger restatement of Theorem 12: “Sup-
pose each ϕn is nonzero. Then A is almost injective if and only if Φ spans R

M

and the Minkowski sum span(ΦS)
⊥+ span(ΦSc)⊥ is a proper subspace of RM for

each nonempty proper subset S⊆ {1, . . . ,N}”. Note that we can move the spanning
assumption into the condition because if Φ does not span, then we can decompose
almost every x ∈ R

M as x = u+ v such that u ∈ span(Φ) and v ∈ span(Φ)⊥ with
v �= 0, and defining y := u− v then gives A (y) =A (x) despite the fact that y �=±x.
As for the assumption that the ϕn’s are nonzero, we note that having ϕn = 0 amounts
to having the nth entry of A (x) be zero for all x. As such, Φ yields almost injectiv-
ity precisely when the nonzero members of Φ together yield almost injectivity. With
this identification, the stronger restatement of Theorem 12 above can be viewed as a
complete characterization of almost injectivity. Next, we will replace the Minkowski
sum condition with a rather elegant condition involving the ranks of ΦS and ΦSc :

Theorem 13 (Theorem 11 in [27]). Consider Φ = {ϕn}N
n=1⊆R

M and the intensity
measurement mapping A : RM/{±1} → R

N defined by (A (x))(n) := |〈x,ϕn〉|2.
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Suppose each ϕn is nonzero. Then A is almost injective if and only if Φ spans RM

and rankΦS + rankΦSc > M for each nonempty proper subset S ⊆ {1, . . . ,N}.

Proof. Considering the discussion after the proof of Theorem 12, it suffices to as-
sume that Φ spans RM. Furthermore, considering Theorem 12, it suffices to charac-
terize when dim

(
span(ΦS)

⊥+ span(ΦSc )⊥
)
< M. By the inclusion-exclusion prin-

ciple for subspaces, we have

dim
(

span(ΦS)
⊥+ span(ΦSc )⊥

)
= dim

(
span(ΦS)

⊥
)
+ dim

(
span(ΦSc)⊥

)
− dim

(
span(ΦS)

⊥∩ span(ΦSc)⊥
)
.

Since Φ is assumed to span R
M , we also have that span(ΦS)

⊥∩ span(ΦSc)⊥ = {0},
and so

dim
(

span(ΦS)
⊥+ span(ΦSc)⊥

)
=
(

M− dim(span(ΦS))
)
+
(

M− dim(span(ΦSc ))
)
− 0

= 2M− rankΦS− rankΦSc .

As such, dim
(
span(ΦS)

⊥+ span(ΦSc)⊥
)
< M precisely when rankΦS + rank

ΦSc > M.

At this point, we point out some interesting consequences of Theorem 13. First
of all, Φ cannot be almost injective if N < M+ 1 since rankΦS + rankΦSc ≤ |S|+
|Sc| = N. Also, in the case where N = M + 1, we note that Φ is almost injective
precisely when Φ is full spark, that is, every size-M subcollection is a spanning set
(note this implies that all of the ϕn’s are nonzero). In fact, every full spark Φ with
N≥M+1 yields almost injective intensity measurements, which in turn implies that
a generic Φ yields almost injectivity when N ≥M+ 1 [4]. This is in direct analogy
with injectivity in the real case; here, injectivity requires N ≥ 2M− 1, injectivity
with N = 2M− 1 is equivalent to being full spark, and being full spark suffices for
injectivity whenever N ≥ 2M− 1 [4]. Another thing to check is that the condition
for injectivity implies the condition for almost injectivity (it does). Overall, we have
the following phase transition result:

Theorem 14 ([4]). AlmInj[Φ,RM×N ] exhibits a phase transition at N = M+ 1.

Having established that full spark ensembles of size N ≥ M + 1 yield almost
injective intensity measurements, we note that checking whether a matrix is full
spark is NP-hard in general [37]. Granted, there are a few explicit constructions
of full spark ensembles which can be used [1, 47], but it would be nice to have a
condition which is not computationally difficult to test in general. We provide one
such condition in the following theorem, but first, we briefly review the requisite
frame theory.

A frame is an ensemble Φ = {ϕn}N
n=1⊆R

M together with frame bounds 0 < A≤
B < ∞ with the property that for every x ∈R

M ,
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A‖x‖2 ≤
N

∑
n=1
|〈x,ϕn〉|2 ≤ B‖x‖2.

When A = B, the frame is said to be tight, and such frames come with a painless
reconstruction formula:

x =
1
A

N

∑
n=1

〈x,ϕn〉ϕn.

To be clear, the theory of frames originated in the context of infinite-dimensional
Hilbert spaces [22, 24], and frames have since been studied in finite-dimensional
settings, primarily because this is the setting in which they are applied computation-
ally. Of particular interest are so-called unit norm tight frames (UNTFs), which are
tight frames whose frame elements have unit norm: ‖ϕn‖= 1 for every n= 1, . . . ,N.
Such frames are useful in applications; for example, if one encodes a signal x us-
ing frame coefficients 〈x,ϕn〉 and transmits these coefficients across a channel, then
UNTFs are optimally robust to noise [32] and one erasure [17]. Intuitively, this op-
timality comes from the fact that frame elements of a UNTF are particularly well-
distributed in the unit sphere [8]. Another pleasant feature of UNTFs is that it is
straightforward to test whether a given frame is a UNTF: Letting Φ = [ϕ1 · · ·ϕN ]
denote an M×N matrix whose columns are the frame elements, then Φ is a UNTF
precisely when each of the following occurs simultaneously:

(a) the rows have equal norm
(b) the rows are orthogonal
(c) the columns have unit norm

(This is a direct consequence of the tight frame’s reconstruction formula and the fact
that a UNTF has unit-norm frame elements; furthermore, since the columns have
unit norm, it is not difficult to see that the rows will necessarily have norm

√
N/M.)

In addition to being able to test that an ensemble is a UNTF, various UNTFs can
be constructed using spectral tetris [18] (though such frames necessarily have N ≥
2M), and every UNTF can be constructed using the recent theory of eigensteps [12,
28]. Now that UNTFs have been properly introduced, we relate them to almost
injectivity for phase retrieval:

Theorem 15 (Theorem 12 in [27]). If M and N are relatively prime, then every
unit norm tight frame Φ = {ϕn}N

n=1 ⊆R
M yields almost injective intensity measure-

ments.

Proof. Pick a nonempty proper subset S⊆ {1, . . . ,N}. By Theorem 13, it suffices to
show that rankΦS + rankΦSc > M, or equivalently, rankΦSΦ∗S + rankΦScΦ∗Sc > M.
Note that since Φ is a unit norm tight frame, we also have

ΦSΦ∗S +ΦScΦ∗Sc =ΦΦ∗ = N
M I,

and so ΦSΦ∗S and ΦScΦ∗Sc are simultaneously diagonalizable, i.e., there exists a uni-
tary matrix U and diagonal matrices D1 and D2 such that
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UD1U∗+UD2U
∗ =ΦSΦ∗S +ΦScΦ∗Sc = N

M I.

Conjugating by U∗, this then implies that D1+D2 =
N
M I. Let L1⊆{1, . . . ,M} denote

the diagonal locations of the nonzero entries in D1, and L2 ⊆ {1, . . . ,M} similarly
for D2. To complete the proof, we need to show that |L1|+ |L2| > M (since |L1|+
|L2|= rankΦSΦ∗S + rankΦScΦ∗Sc ). Note that L1∪L2 �= {1, . . . ,M} would imply that
D1 +D2 has at least one zero in its diagonal, contradicting the fact that D1 +D2 is
a nonzero multiple of the identity; as such, L1∪L2 = {1, . . . ,M} and |L1|+ |L2| ≥
M. We claim that this inequality is strict due to the assumption that M and N are
relatively prime. To see this, it suffices to show that L1 ∩L2 is nonempty. Suppose
to the contrary that L1 and L2 are disjoint. Then since D1 +D2 =

N
M I, every nonzero

entry in D1 must be N/M. Since S is a nonempty proper subset of {1, . . . ,N}, this
means that there exists K ∈ (0,M) such that D1 has K entries which are N/M and
M−K which are 0. Thus,

|S|= Tr[Φ∗SΦS] = Tr[ΦSΦ∗S ] = Tr[UD1U∗] = Tr[D1] = K(N/M),

implying that N/M = |S|/K with K �= M and |S| �= N. Since this contradicts the
assumption that N/M is in lowest form, we have the desired result.

In general, whether a UNTF Φ yields almost injective intensity measurements is
determined by whether it is orthogonally partitionable: Φ is orthogonally partition-
able if there exists a partition S$Sc = {1, . . . ,N} such that span(ΦS) is orthogonal
to span(ΦSc). Specifically, a UNTF yields almost injective intensity measurements
precisely when it is not orthogonally partitionable. Historically, this property of
UNTFs has been pivotal to the understanding of singularities in the algebraic va-
riety of UNTFs [25], and it has also played a key role in solutions to the Paulsen
problem [9, 19]. However, it is not clear in general how to efficiently test for this
property; this is why Theorem 15 is so powerful.

Almost Injectivity in the Complex Case

The complex case is not understood nearly as well as the real case, but the phase
transition is arguably better understood than the one for injectivity in the complex
case. However, almost injectivity hasn’t received as much attention, so there are no
known characterizations in the complex case, let alone “useful” ones. To begin our
discussion of the phase transition, we consider the following lemma (the proof is
enjoyable):

Theorem 16. Suppose A : RP → R
N has a continuous Jacobian J over some open

set U ⊆ R
P. If rank(J(x)) < P for every x ∈ U, then A is not injective when re-

stricted to U.

Proof. Let z be a point in U which maximizes rank(J(x)), and let K denote the
rank of J(z). Then there are K linearly independent columns of J(z) forming the
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submatrix JK (z). Furthermore, these columns remain linearly independent in any
sufficiently small neighborhood B of z in U . (This can be established using the con-
tinuous mapping x �→ det[(JK (x))∗JK (x)].) As such, we can define the continuous
mapping

x �→ P(x) := I− JK (x)[(JK (x))∗JK (x)]−1(JK (x))∗

for all x ∈ B. By construction, P(x) is the orthogonal projection onto the null space
of J(x). Pick some nonzero member v of the null space of J(z), and consider the
continuous vector field x �→ P(x)v over B. By the Peano existence theorem, there
exists ε > 0 and γ : [0,ε]→ B such that γ(0) = z and γ ′(t) = P(γ(t))v for every
t ∈ [0,ε]. Since γ ′(t) = P(γ(t))v is in the null space of J(γ(t)), we then have

0 = J(γ(t))γ ′(t) =
d
dt

(
A (γ(t))

)
for every t ∈ [0,ε], meaning A (x) is constant over all x ∈ γ([0,ε]). Furthermore,
γ([0,ε]) contains more than a single point, since otherwise γ is constant, contradict-
ing γ ′(0) = v �= 0. As such, A is not injective over any sufficiently small neighbor-
hood of z, let alone U .

Take an almost injective intensity measurement mapping A and restrict it to an
open set S of x’s for which A −1(A (x)) = {ωx : |ω | = 1}. Note that A is injec-
tive over S by assumption. Considering (CM \ {0})/T is a smooth manifold of real
dimension P = 2M− 1, we can intersect S with a patch to get an open set U , and
consider the Jacobian of A in the patch’s local coordinates. By the contrapositive of
Theorem 16, we have that N ≥ rank(J(x))≥ P = 2M−1 for some x ∈U . This may
lead one to believe that AlmInj[Φ,CM×N ] exhibits a phase transition at N = 2M−1,
but there is evidence to suggest that is this off by 1 due to algebraic properties of
intensity measurements:

Conjecture 2. AlmInj[Φ,CM×N ] exhibits a phase transition at N = 2M.

To be clear, part (b) of this conjecture was proved by Balan, Casazza, and
Edidin [4], whereas a sketch of the proof of part (a) is provided in [31]. However,
the latter sketch leaves much to be desired – while the argument is believable in
principle, it is unclear whether their use of real algebraic geometry is sufficiently
rigorous. For explicit minimal constructions in this case (assuming the conjecture is
true), see [30, 31].
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Sparsity-Assisted Signal Smoothing

Ivan W. Selesnick

Abstract This chapter describes a method for one-dimensional signal denoising
that simultaneously utilizes both sparse optimization principles and conventional
linear time-invariant (LTI) filtering. The method, called ‘sparsity-assisted signal
smoothing’ (SASS), is based on modeling a signal as the sum of a low-pass com-
ponent and a piecewise smooth component. The problem is formulated as a sparse-
regularized linear inverse problem. We provide simple direct methods to set the
regularization and non-convexity parameters, the latter if a non-convex penalty is
utilized. We derive an iterative optimization algorithm that harnesses the computa-
tional efficiency of fast solvers for banded systems. The SASS approach performs
a type of wavelet denoising, but does so through sparse optimization rather than
through wavelet transforms. The approach is relatively free of the pseudo-Gibbs
phenomenon that tends to arise in wavelet denoising.

Key words: Filtering, Total variation denoising, Wavelet denoising, Convex opti-
mization, Sparse optimization

Introduction

This chapter develops a method for noise reduction, called ‘sparsity-assisted signal
smoothing’ (SASS). The proposed SASS approach models the unknown signal of
interest, x(t), as the sum

x(t) = f (t)+ g(t), (1)
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where f (t) is a low-pass signal and g(t) has a sparse order-K derivative. We consider
the problem of estimating x(t) from noisy data y(t) = x(t) +w(t), where w(t) is
white Gaussian noise. The SASS denoising approach combines the principles of
sparse optimization with conventional linear time-invariant (LTI) filtering.1

The SASS method involves low-pass filtering and the minimization of a non-
differentiable objective function that promotes sparsity of the order-K derivative
of g(t). We formulate the SASS approach as a sparse-regularized linear inverse
problem, which, after a change of variables, is shown to be a sparse deconvolu-
tion problem. Both convex and non-convex regularizations are considered. In both
cases, we provide a simple, direct method to set the regularization parameter. In the
non-convex case, we also provide a method to set the parameter that controls the
degree of non-convexity.

A computationally efficient iterative optimization algorithm is developed for
the SASS approach. The SASS approach is intentionally constructed using banded
matrices exclusively, so fast solvers for banded systems can be used for its imple-
mentation. The optimization algorithm calls for no parameters (step sizes, etc.). In
addition, we describe a method for dealing with the zero-locking issue, which can
arise in the non-convex case. The method detects and corrects zero locking, when it
occurs.

The SASS approach builds upon and extends the practice and capabilities of con-
ventional low-pass filtering [44]. The first step of the method involves the specifica-
tion of a low-pass filter, the cutoff frequency of which can be set as usual, according
to knowledge of the frequency spectrum of the signals in question. In one limiting
case (λ→∞), SASS amounts to low-pass filtering. In another limiting case (λ → 0),
SASS performs no filtering and the output of the method is the noisy input data. For
practical values of λ , the SASS approach can be understood as an enhancement of
the low-pass filter, as will be illustrated.

Related work

Several recent works have utilized an approach wherein a signal is explicitly exp-
ressed as the sum of a low-pass signal and a piecewise constant (i.e., sparse-
derivative) signal [30, 52, 53]. In each approach, an inverse problem is formulated
where total variation regularization [49] is used to estimate the piecewise constant
signal component. These methods differ in the way the low-pass signal component is
modeled and estimated. The low-pass component is modeled as locally polynomial
in [52], while Tikhonov regularization is used in [30] and conventional low-pass
filtering in [53].

The signal model used in these works (low-pass plus piecewise constant) is well
suited for applications where additive step discontinuities are observed in the pres-
ence of a relatively slow varying signal. For example, the methods described in [52]

1 Software is available at http://eeweb.poly.edu/iselesni/sass/.

http://eeweb.poly.edu/iselesni/sass/
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and [53] are demonstrated, respectively, on data produced by a nanoparticle biosen-
sor [16] and a near-infrared spectroscopic (NIRS) imaging device [1]. However, this
model is limited because many natural (e.g., physiological) signals do not exhibit
additive step discontinuities. Instead, they are more accurately modeled as having
discontinuities in a higher order derivative.

The problem addressed in this chapter is an extension of one of the problems
addressed in [53]. Specifically, SASS extends the ‘LPF/TVD’ problem [53] from
K = 1 to K > 1, where K is the order of the sparse derivative. The LPF/TVD
algorithm in [53] is not effective for the case K > 1 because it estimates the sparse-
derivative component by the integration of a sparse signal. Using this approach for
K > 1 leads to K-order integration which is very unstable; the obtained sparse order-
K derivative component will inevitably be unbounded. The SASS approach in this
chapter circumvents this problem by estimating the sum x = f + g in (1), without
estimating f and g individually.

The SASS approach can also be viewed as an extension of one-dimensional total
variation (TV) denoising [8, 9, 49]. TV denoising is based on the assumption that
the derivative of x(t) is sparse, i.e., that x(t) is approximately piecewise constant.
Total variation denoising is notable due to its ability to preserve discontinuities and
the absence of pseudo-Gibbs phenomenon. However, TV denoising is afflicted by
staircase artifacts and performs poorly for more general signals. Hence, numerous
generalizations for TV have been proposed to make TV denoising more widely
effective, e.g., higher-order TV and directional TV. [3, 32, 34, 39]. The proposed
SASS approach also uses higher-order TV, but in contrast to these methods, SASS
incorporates a low-pass filter (LPF). The incorporation of the low-pass filter en-
hances both the prospective sparsity of the order-K derivative and the flexibility of
high-order TV regularization. In effect, the LPF lifts some of the burden off the
high-order total variation regularization.

Wavelet-based signal denoising is also suitably applied to signals of the form
considered in this work. Several wavelet-domain algorithms have been developed
specifically to account for the presence of singularities (i.e., discontinuities in the
signal or its derivatives). In order to suppress spurious oscillations (the pseudo-
Gibbs phenomenon) around singularities, which arise due to the modification of
wavelet coefficients, these algorithms generally impose some model or constraints
in the wavelet domain. Examples of such approaches include wavelet hidden
Markov tree (HMT) [15], singularity detection [31, 33], wavelet footprints [20, 56],
total variation regularization [21, 22], and singularity approximation [4, 5]. The
proposed SASS approach is similar to these techniques in that it accounts for sin-
gularities in the signal; however, it does so through sparse optimization instead of
wavelet transforms.
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Preliminaries

Notation

We represent finite-length discrete-time signals as vectors and denote them in lower
case, e.g., we represent the N-point signal x ∈ R

N as

x = [x(0), . . . , x(N− 1)]T, (2)

where [ · ]T denotes the transpose. Matrices are denoted in upper case, e.g.,
H ∈ R

L×N .
The notations ‖v‖1 and ‖v‖2 denote the �1 and �2 norms of the vector v, respec-

tively, i.e.,

‖v‖1 =∑
n
|v(n)|, ‖v‖2

2 =∑
n
|v(n)|2. (3)

We denote the order-K difference matrix by D. For example, the second-order
difference matrix (K = 2) is given by

D =

⎡
⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
1 −2 1

⎤
⎥⎥⎥⎦ , (4)

where D is of size (N− 2)×N. The second-order difference of an N-point signal x
is then given by Dx.

In general, D is a Toeplitz matrix of size (N−K)×N. For K = 1, the first row of
D is [−1, 1]. For K = 3, the first row is [−1, 3,−3, 1]. In general, the first row of D
consists of the coefficients of (1− z)K. The order-K difference, D : RN →R

N−K , is
precisely defined by y = Dx, where

y(n) =
K

∑
k=0

(−1)k
(

K
k

)
x(n+K− k),

for 0 � n � N−K− 1. Note that D annihilates polynomial of degree K− 1.

Filters

LTI filters are usually implemented via recursive difference equations [44]; however,
in this work, we use banded Toeplitz matrices. We do so because this facilitates
incorporating LTI filtering into the sparse optimization framework. It also provides
a simple mechanism to perform zero-phase noncausal recursive filtering of finite-
length signals. For example, the difference equation

a1y(n+ 1)+ a0y(n)+ a1y(n− 1) = b1x(n+ 1)+ b0x(n)+ b1x(n− 1) (5)
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can be written and implemented as

y = A−1Bx, (6)

where A is a square banded Toeplitz matrix of the form

A =

⎡
⎢⎢⎢⎢⎢⎣

a0 a1

a1 a0 a1
. . .
a1 a0 a1

a1 a0

⎤
⎥⎥⎥⎥⎥⎦ , (7)

and B is similarly a banded Toeplitz matrix (not necessarily square), e.g.,

B =

⎡
⎢⎢⎢⎣

b1 b0 b1

b1 b0 b1
. . .
b1 b0 b1

⎤
⎥⎥⎥⎦ . (8)

We define the filter matrix, H, as

H = A−1B, (9)

which can be implemented using fast solvers for banded systems [46, Sect 2.4].
Note that the order-K difference matrix, D, represents the filter with transfer function
D(z) = (1− z−1)K .

In this work, we use the high-pass filter

H(z) =
B(z)
A(z)

=
(−z+ 2− z−1)d

(−z+ 2− z−1)d +α (z+ 2+ z−1)d
, (10)

where α > 0 is used to set the cutoff frequency. This is a zero-phase Butterworth
filter of order 2d. The filter has a zero at z = 1 of order 2d. We implement this filter
as H = A−1B.

Note that, if K � 2d, then the numerator, B, of this high-pass filter satisfies

B = B1D, (11)

where B1 is banded and D is the order-K difference matrix. In terms of transfer func-
tions, (11) means that B(z) = B1(z)D(z), and hence B1(z) has a zero of multiplicity
2d−K at z = 1.

In Section. “Change of Variables”, the filter A−1B1 will arise, which we denote
as H1.The transfer function of this filter, H1(z), is the same as H(z) in (10), but with
K fewer zeros at z = 1. Further details about the filters are given in [53].

The implementation of a filter as y = A−1Bx does tend to produce transients at
the beginning and end of the signal. In practice, we alleviate these transients by
polynomial smoothing of the first and last few signal values prior to filtering, as
discussed in Section “Preprocessing to avoid start and end transients”.
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Problem Formulation

In the sparsity-assisted signal smoothing (SASS) approach, it is assumed that the
N-point discrete-time data, y, is of the form

y = f+ g+w, y, f,g,w ∈ R
N , (12)

where f is a low-pass signal, g is a signal with (approximately) sparse order-K
derivative, and w is white Gaussian noise. The assumption that the order-K deriva-
tive of g is sparse implies that g is (approximately) piecewise polynomial, where
each polynomial segment is of degree K−1. However, the approach described here
does not explicitly parameterize the signal in terms of its polynomial coefficients,
nor does it explicitly segment the signal into polynomial segments (cf. splines).

We further assume that if the signal component g were absent in (12), then a low-
pass filter can be used to satisfactorily estimate f from the data, y. That is, denoting
the low-pass filter as LPF, we assume that f ≈ LPF{ f +w}. Such a low-pass filter
should have a zero-phase frequency response (otherwise phase distortion precludes
an accurate approximation).

Given the signal y in (12), we aim to estimate the noise-free signal, i.e., x = f +g.
We note that the approach taken here does not ultimately estimate f and g individ-
ually. There is an inherent nonuniqueness regarding f and g: they are each defined
only up to an additive piecewise polynomial signal (with polynomial segments of
degree K− 1). This is because a piecewise polynomial signals is both low-pass and
has a sparse order-K derivative. By estimating the sum f +g, instead of f and g ind-
ividually, we avoid this ambiguity and improve the conditioning of the estimation
problem.

Our approach to estimate x (x = f + g) from y is based on the low-pass filter,
LPF, which we assume is known. Note that, if an estimate ĝ were available, then we
may estimate f by low-pass filtering, i.e., f̂ = LPF{y− ĝ}. Then, an estimate x̂ is
given by

x̂ = f̂ + ĝ (13)

= LPF{y− ĝ}+ ĝ (14)

= LPF{y}+HPF{ĝ}, (15)

where HPF is the high-pass filter defined by HPF= I−LPF. Here, I is the identity
operator.

It remains to estimate g. We assumed above that f ≈ LPF{ f}, therefore we have
HPF{ f} ≈ 0. Consequently, applying the high-pass filter to (12), we obtain

HPF{y− ĝ} ≈ w. (16)

Equation (16) implies that an accurate estimate of g is one that, when subtracted
from the data y, yields a signal similar to noise, subsequent to high-pass filter-
ing. Formulating the estimation of g as a linear inverse problem, (16) suggests the
data fidelity term should have the form ‖H(y− g)‖2

2 where H is the high-pass filter
matrix.
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Cost function

Based on the foregoing discussion, we formulate the estimation of g as a penalized
least squares problem. The penalty term is chosen to promote the behavior of g
that we have assumed, i.e., the order-K derivative of g is sparse. Specifically, we
formulate SASS as the problem

g∗ = argmin
g

1
2
‖H(y− g)‖2

2 +λ∑
n
φ([Dg]n), (17)

where λ > 0, g ∈ R
N , and D is the order-K difference matrix. In (17), the notation

[v]n denotes the nth component of vector v.
We take H to be a high-pass filter of the form H = A−1B where A and B are

banded and where, furthermore, B = B1D where D is the order-K difference matrix
and B1 is banded (cf. (9) and (11)). Using the high-pass filter in (10), these condi-
tions are satisfied when K ≤ 2d.

The penalty function φ : R→R is chosen so as to promote sparsity. Examples of
sparsity-promoting functions include

φ(u) = |u| and φ(u) =
1
a

log(1+ a|u|). (18)

Numerous other penalty functions have also been utilized for sparse optimization
[10, 42]. If φ(u) is convex, then the optimization problem (17) is convex.

Formulation (17) generalizes the LPF/TVD problem in [53] to the higher-order
case (K > 1) and to more general (non-convex) penalty functions.

Change of variables

We use a change of variables that simplifies problem (17) in two ways. First, note
that the value of the cost function in (17) is unaffected if a polynomial of degree
K − 1 is added to g. This is because D annihilates such polynomials, as does H
(because D is a right factor of H). Hence, the minimizer of (17) is unique only up
to an additive polynomial. Note in addition that the penalty term in (17) is non-
separable; i.e., the elements of g are coupled. This coupling complicates the opti-
mization problem and optimality conditions.

Both issues are eliminated by the change of variables

u = Dg, u ∈R
N−K , g ∈ R

N , (19)

where D is the order-K difference matrix of size (N−K)×N. Note that

Hg = A−1Bg = A−1B1Dg = A−1B1u. (20)
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Hence, the optimization problem (17) becomes

u∗ = argmin
u

{
F(u) =

1
2
‖Hy−A−1B1u‖2

2 +λ∑
n
φ(u(n))

}
. (21)

Note that the cost function, F : RN−K → R, is non-differentiable.
The change of variables (19) effectively eliminates D from both the penalty term

and H. As a result, the solution u∗ is unique and the elements of u in the penalty
term of (21) are decoupled.

Note that, given u, the signal g cannot be uniquely determined by (19). Hence,
we are unable to accurately determine g. However, as we now show, this poses no
issue in the estimation of the sum x = f+ g. From (15), we estimate x as

x̂ = Ly+Hg, (22)

where L is the low-pass filter matrix, L = Ĩ−H. Note that because H is not quite
square, Ĩ cannot be exactly the identity matrix. Instead, Ĩ is obtained from the iden-
tity matrix by removing the first and last few rows [53]. The matrix Ĩ truncates a
signal to be compatible with H. Using (20), we have

x̂ = Ly+A−1B1u, (23)

where u is the sparse signal obtained by minimizing F . Hence, we estimate x (i.e.,
f+ g) without estimating f and g individually.

The change of variables (19) was also used in [53] for the special case K = 1.
However, in that work, the component g was explicitly estimated by integration. For
K > 1, that procedure is very unstable as it leads to K-order integration. The SASS
method solves that problem by avoiding the explicit estimation of g; instead, the
sum x̂ = f̂ + ĝ is estimated (using (23)).

Optimality condition

When φ is convex, then u∗ ∈ R
N−K minimizes F in (21) if and only if

0 ∈ ∂F(u∗), (24)

where ∂F is the subgradient of F [26]. The subgradient of F is given by

∂F(u) = H1
T(A−1B1u−Hy)+λ ∂φ(u), (25)

where H1 = A−1B1. So, the optimality condition (24) can be written as

1
λ

BT
1 (AAT)−1(By−B1u∗) ∈ ∂φ(u∗). (26)
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For �1 norm regularization, i.e., φ(u) = |u|, we have ∂φ(u) = sign(u) where sign
is the set-valued function,

sign(u) =

⎧⎪⎨
⎪⎩
{1}, u > 0

[−1,1], u = 0

{−1}, u < 0.

(27)

In this case, the optimality condition (26) can be written as

1
λ

[
BT

1 (AAT)−1(By−B1u∗)
]

n

⎧⎪⎨
⎪⎩
∈ [−1, 1], u∗(n) = 0

= 1, u∗(n)> 0

=−1, u∗(n)< 0,

(28)

for all 0� n�N−K−1. This condition can be used to easily validate the optimality
of a solution produced by a numerical algorithm. It can also be used to gauge the
convergence of an algorithm minimizing F .

This optimality condition can be illustrated graphically as a scatter plot. The val-
ues in (28), when plotted versus u(n), must lie on the graph of the sign function; for
example, see Fig. 4(a). We used such a scatter plot also in [53] to verify optimality
in the convex case (i.e., �1 norm). Here, we use a scatter plot of this form also in
the non-convex case, to verify that the solution is (locally) optimal (see Fig. 4(b)),
and more importantly in the non-convex case, to identify and correct falsely locked
zeros arising in the optimization process (see Fig. 8), as described in Sec. .

Setting λ

The solution u∗ depends significantly on the regularization parameter, λ . Several
methods can be used to set λ . Following [27], we describe a simple method for
setting λ . The derivation is based on the optimality condition (28). We used this
approach in [53] for the convex case; here we use it also for the non-convex case,
as described in Sec. , which is justified if the non-convex regularizer is suitably
constrained [51].

Suppose, in some realization of y in (12), that g is identically zero. In this case,
we hope that u∗ is also identically zero. Equivalently, using (28),

1
λ
[
BT

1 (AAT)−1By
]

n ∈ [−1, 1], ∀n, (29)

with y = f+w, where f and w are the low-pass signal and the additive noise signal,
respectively (g being zero). Note that the matrix in (29) incorporates the high-pass
filter H as a factor; hence, BT

1 (AAT)−1Bf ≈ 0 because the high-pass filter anni-
hilates the low-pass signal, f. Therefore, replacing y in (29) by w, (29) still holds
approximately. Hence, (29) suggests that λ be set as

λ ≈max
n

∣∣[BT
1 (AAT)−1Bw

]
n

∣∣ . (30)
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Equation (30) can be interpreted in the sense of the ‘three-sigma’ rule, i.e., most
observations of a random variable fall within three standard deviations of its mean.
Accordingly, we approximate (30) as

λ ≈ 3std{BT
1 (AAT)−1Bw}. (31)

We define r as the random signal r = BT
1 (AAT)−1Bw. If the noise w is zero-

mean white Gaussian with standard deviation σ , then, disregarding start and end
transients, the signal r is stationary and its standard deviation, σr, is given by
σr = ‖p‖2σ where p represents the impulse response of the LTI system P =
BT

1 (AAT)−1B = HT
1 H. Hence, in the case of additive white Gaussian noise, (31)

can be written as
λ ≈ 3‖p‖2σ . (32)

This approach sets λ proportional to the noise standard deviation, σ .

Optimization Algorithm

In this section, we describe an iterative algorithm for sparsity-assisted signal
smoothing (SASS). The algorithm minimizes F in (21). Numerous algorithmic
frameworks for sparse optimization can be used, e.g., FOCUSS [47], iterative
reweighted least squares (IRLS) [19], generalizations of IRLS [48, 59], ISTA
[18, 23], and proximal splitting methods [13, 14], among others.

The SASS algorithm we propose takes advantage of the fact that the filter
matrices, A and B, and the order-K difference matrix, D, are all banded. As a result,
the algorithm is computationally efficient because it can be implemented using fast
solvers for banded systems. The algorithm does not require the user to specify add-
itional parameters.

Majorization-minimization

We use the majorization-minimization (MM) optimization framework [25] to dev-
elop an iterative algorithm to minimize (21). The MM procedure minimizes a func-
tion F by defining an iterative algorithm via

u(i+1) = argmin
u

G(u,u(i)), (33)

where i is the iteration index and G is some suitably chosen majorizer of F . Specif-
ically, G should satisfy G(u,v)� F(u)∀u, and G(v,v) = F(v). The MM process is
most effective when the chosen majorizer, G, is easily minimized. With initializa-
tion u(0), the update (33) produces a sequence u(i) converging to a minimizer of F
under mild assumptions (or a local minimizer, if F is not convex). Here we use the
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MM procedure for both convex and non-convex cases. In either case, the MM pro-
cedure ensures the cost function decreases each iteration. For more details, see [25]
and references therein.

To construct an easily minimized majorizer of F in (21), we define a quadratic
majorizer of the penalty term, λ ∑n φ(u(n)). Assuming the penalty function, φ(u),
is concave on R+, symmetric, and differentiable for u �= 0, such as the those in
(18), a quadratic majorizer can be readily found. Specifically, a majorizer of φ(u) is
given by

g(u,v) =
φ ′(v)

2v
u2 +φ(v)− v

2
φ ′(v), (34)

as derived in [50] and illustrated in Fig. 1. That is, for v �= 0,

g(u,v)� φ(u), for all u ∈ R (35)

g(v,v) = φ(v). (36)

Note that g(u,v) is quadratic in u.

−15 −10 −5 0 5 10 15
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Majorization of a penalty function

u

g(u, 5)

φ(u)

Fig. 1 Majorization of penalty function. The function g(u,v) majorizes the function φ (u) and is
equal to φ (u) at u = v. In the figure, v = 5, at which point the two functions are tangent.

The majorizer g can be used to obtain a majorizer for F in (21). If u and v are
vectors, then

λ∑
n

g(u(n),v(n))� λ∑
n
φ(u(n)), (37)

with equality if u = v. That is, the left-hand side of (37) is a majorizer of
λ ∑n φ(u(n)). Moreover, the left-hand side of (37) can be written compactly as

λ∑
n

g(u(n),v(n)) =
1
2

uT[ΛΛΛ(v)]−1 u+ c, (38)



160 I.W. Selesnick

where ΛΛΛ(v) is a diagonal matrix defined by

[ΛΛΛ(v)]n,n =
1
λ

v(n)
φ ′(v(n))

, (39)

and c is a constant that does not depend on u. Therefore, using (37), a majorizer of
F in (21) is given by

G(u,v) =
1
2
‖Hy−A−1B1u‖2

2 +
1
2

uT[ΛΛΛ(v)]−1 u+ c.

G(u,v) is quadratic in u. Hence, minimizing G(u,v) with respect to u can be
achieved by setting the gradient to zero and solving the resulting linear system.
Hence, the MM update equation, (33), leads to

u(i+1) = argmin
u

G(u,u(i)) (40)

=
(

BT
1 (AAT)−1 B1 +[ΛΛΛ(u(i))]−1

)−1
BT

1 (AAT)−1 By (41)

where ΛΛΛ(u(i)) depends on u(i) per (39).
There are two numerical complications with (41). First, it calls for the solution to

a large (N×N) dense system of equations, which is computationally costly. Second,
the elements of the diagonal matrix ΛΛΛ go to zero as u(i) converges to a sparse vector.
Therefore, many ‘divide-by-zero’ errors arise in practice when implementing (41)
directly.

To avoid both problems, the matrix inverse lemma (MIL) can be used as des-
cribed in [24]. Using the MIL, the inverse of the system matrix can be rewritten as

(
BT

1 (AAT)−1 B1 +[ΛΛΛ(i)]−1
)−1

= ΛΛΛ(i)−ΛΛΛ(i)BT
1

(
AAT+B1ΛΛΛ(i)BT

1

)−1
B1ΛΛΛ(i),

(42)

where we use the abbreviation ΛΛΛ(i) := [ΛΛΛ(u(i))], i.e.,

[ΛΛΛ(i)]n,n =
1
λ

u(i)(n)

φ ′(u(i)(n))
. (43)

Therefore, (41) can be implemented as

b = BT
1 (AAT)−1 By (44)

Q(i) = AAT+B1ΛΛΛ(i)BT
1 (45)

u(i+1) = ΛΛΛ(i)[b−BT
1 [Q

(i)]−1B1ΛΛΛ(i)b]. (46)

Note that the matrices, AAT in (44) and Q(i) in (45), are banded. Therefore, the
inverses in (44) and (46) can be implemented very efficiently using fast solvers for
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Table 1 Sparsity-assisted signal smoothing (SASS) algorithm

Input: y ∈ R
N,K,λ ,φ ,A,B

1. b = BT
1 (AAT)−1 By

2. u = Dy (initialization)

repeat

3. ΛΛΛn,n =
1
λ

u(n)
φ ′(u(n))

(ΛΛΛ is diagonal)

4. Q = AAT+B1ΛΛΛBT
1 (Q is banded)

5. u = ΛΛΛ[b−BT
1 Q−1B1ΛΛΛb] (MM update)

until convergence

6. x = Ĩy−A−1By+A−1B1u.

output: x, u

banded systems [46, Sect. 2.4]. The complexity of these algorithms are linear in N.
In addition, all other matrices appearing in (44)–(46) are diagonal or banded; hence,
the matrix multiplications are also efficiently implemented.

The SASS algorithm is summarized in Table 1. Note that the algorithm does not
require the user to specify any parameters, such as a step-size parameter. The only
parameters are those that define the objective function, (21), i.e., K, λ , φ , A, B.

Non-convex penalty functions

Non-convex penalty functions can promote sparsity more strongly than convex
penalty functions; hence, they can yield superior results in some sparse optimization
problems. Generally, non-convex penalty functions lead to non-convex optimization
problems (see [51] for exceptions). Consequently, algorithms have been developed
specifically for the non-convex case, based on iterative reweighted �1 and/or least
squares [7, 37, 41, 55, 57, 58], splitting [11, 29], and other optimization methods
[28, 42]. Several methods target �0 pseudo-norm minimization, for example, by sin-
gle best replacement (SBR) [54] or iterative thresholding [2, 36, 45]. Most of these
methods could be applied to the minimization of (21).

We apply the SASS algorithm in both the convex and non-convex cases, the case
depending on φ . Note that φ influences the algorithm only in line 3 of Table 1, i.e.,
equation (43). So, if we define ψ : R→ R as

ψ(u) :=
u

φ ′(u)
, (47)

then ψ encapsulates the role of the penalty function in the algorithm.
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Table 2 Sparse penalties and corresponding weight functions

Penalty, φ (u) Weight, ψ(u)

|u| (i.e., �1 norm) |u|

1
a

log(1+a|u|) |u|(1+a|u|)

2
a
√

3

(
tan−1

(
1+2a|u|√

3

)
− π

6

)
|u|(1+a|u|+a2|u|2)

Three penalty functions and the corresponding weight functions are summarized
in Table 2. The second and third penalties, involving the logarithmic (log) and arct-
angent (atan) functions, are both non-convex (strictly concave on R+) and parame-
terized by the parameter a > 0. Increasing a increases the non-convexity of φ . The
atan penalty, derived in [51] as a natural extension of the log penalty, promotes
sparsity more strongly than the log penalty. Compared to the commonly used �p

psuedo-norm with p < 1, the log and atan functions have the advantage that for suit-
ably constrained a, the penalized least squares problem (e.g., (21)) can be convex
even when the penalty function is not [51]. For the �p pseudo-norm, this possibility
is precluded due to the fact that the derivative of |u|p goes to infinity at zero for
p < 1.

Unfortunately, the use of a general non-convex penalty function complicates
the setting of the regularization parameter, λ . For the non-convex case, the sim-
ple guideline (32) is not valid in general because that equation is derived based on
�1 norm regularization, i.e., convex regularization. However, if F is convex (even if
φ is not convex), then the guideline (32) is still valid [51]. Specifically, if the log
or atan penalty is used and if a is suitably constrained, then (32) is still useful for
setting λ .

When using the logarithmic (log) and arctangent (atan) penalty functions, how
should the parameter a be specified? Note that a controls the extent to which the
functions are non-convex. As a → 0, the log and atan penalties approach the �1

norm. For a > 0, the log and atan penalties are strictly concave on R+. An upper
bound on a guaranteeing F is convex, can be obtained by semidefinite programming
(SDP) [51]. Here, we describe a heuristic to set a, so as to avoid the computational
complexity of SDP.

To derive a heuristic to set the non-convexity parameter, a, in the log and atan
functions, we make a simplifying assumption. Namely, we assume the sparse vec-
tor, u∗, minimizing F , contains only a single nonzero entry. While not satisfied in
practice, with this assumption we obtain a value for a above which F is definitely
non-convex. Using corollary 1 of [51], this assumption leads to an upper bound on a
of ‖h1‖2

2/λ where h1 represents the impulse response of the system H1 := A−1B1.
(In computing the impulse response, start and end transients due to signal bound-
aries should be omitted.) Because the assumption is idealized, this upper bound is
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expected to be too high (i.e., not guaranteeing convexity of F); hence a smaller,
more conservative value of a is appropriate. In the examples below, we use half this
value; i.e., we set

a = 0.5‖h1‖2
2/λ . (48)

Zero locking

The SASS algorithm in Table 1 is susceptible to ‘zero-locking’ behavior. That is, if
a component u(i)(m) is zero on some iteration i for some m, then it will be zero for
all subsequent iterations, i.e., u(k)(m) = 0 for all k > i. The zero is “locked in”. This
occurs because if u(i)(m) = 0, then [ΛΛΛ(i)]m,m = 0, and consequently u(i+1)(m) = 0.
For this reason, the algorithm should be initialized with nonzeros.

This zero-locking behavior (or ‘singularity issue’) is a well-known phenomenon
in reweighted methods for sparse optimization [25, 27, 43]. But it does not necessar-
ily impede the convergence of algorithms in which it occurs [25, 27, 43]. We have
found that in the convex case (i.e., �1 norm regularization), the algorithm converges
reliably to an optimal solution in practice. We validate optimality using (28).

In the non-convex case, convergence to only a local optimal solution can be ex-
pected. We have found experimentally that in the non-convex case, the zero-locking
issue sometimes causes the algorithm to converge to a solution that is not locally
optimal. This can be recognized using condition (26). Graphically, some points in
the scatter plot will lie off the graph of φ ′(u), as illustrated in Example 2 (Fig. 8(a))
below.

In this way, we identify those values, u(n), if any, that are incorrectly locked
to zero. Those values can then be perturbed, and the SASS algorithm can be run
a second time. In our implementation, we perturb these values using least squares.
Specifically, we hold the other components of u fixed, and solve Hy ≈ A−1Bu in
the least squares sense over the components of u that are identified as incorrectly
locked to zero. (In our experiments, there are few, if any, incorrectly locked zeros;
hence, the least squares problem is small in size, and computationally negligible.)
After running the SASS algorithm a second time, we obtain a new sparse vector, u,
then we generate a new scatter plot and check for incorrectly locked zeros. In our
experiments, we have found that, if λ is set according to (32), then only a second or
third run of SASS is sufficient to correct all falsely locked zeros, when they occur. In
Example 2 below, we illustrate the use of this process to overcome the zero-locking
issue.

Preprocessing to avoid start and end transients

The implementation of a recursive digital filter as H = A−1B, where A and B are
banded matrices, can induce undesirable transients at the start and end of the signal.
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In the examples, we alleviate this issue using a simple preprocessing step. Namely,
we perform low-order least squares polynomial approximation on the first and last
segments of the noisy data, before using the SASS algorithm. In particular, we rep-
lace the first and last 15 points of the noisy signal by polynomials of degree r. In
Examples 1 and 2, we use polynomials of degree 1 and 2, respectively. In Example 1,
we use a second-order high-pass filter, H, (with d = 1), which perfectly annihilates
the degree 1 polynomial. Likewise, in Example 2, we use a fourth-order high-pass
filter (d = 2) which annihilates the degree 2 polynomial. Hence, transients due to
the signal boundaries are avoided. This is effective, provided the signal has no sin-
gularities too close to either of its end points.

Example 1

This example illustrates sparsity-assisted signal smoothing (SASS) to estimate the
piecewise smooth signal, of the form f + g, shown in Fig. 2(a). The signal, f , con-
sists of several low-frequency sinusoids; g is piecewise linear.

The noisy signal, y = f +g+w, illustrated in Fig. 2(b), has additive white Gaus-
sian noise (AWG) with standard deviation σ = 0.5. We set the low-pass filter,
L = I−H = I−A−1B, to be a second-order zero-phase Butterworth filter (d = 1)
with a cutoff frequency of fc = 0.02 cycles/sample (10) [53]. The cutoff frequency
is set so that the pass-band encompasses the sinusoidal components in f . The output
of the low-pass filter, shown in Fig. 2(c), is relatively free of noise. However, parts
of the signal are heavily distorted, specifically those parts where the derivative is
discontinuous, due to the piecewise linear component, g.

To use the SASS algorithm, the parameters K and λ must be set. In this example,
we set K = 2; that is, we model g as having a sparse order-2 derivative. Implicitly,
we model g as approximately piecewise linear. To set the regularization parameter,
λ , we use (32). For the logarithmic and arctangent penalties, we also need to spec-
ify the additional parameter, a, which controls the degree of non-convexity of the
penalty function. We set a using (48) as described in Section “Non-convex penalty
functions”. In this example, we have run SASS for 100 iterations. The run time was
36 milliseconds, measured on a 2013 MacBook Pro (2.5 GHz Intel Core i5) running
Matlab R2011a.

The output of the SASS algorithm using the �1 norm penalty is shown in Fig. 2(d).
Note that the signal is similar to the low-pass filtered signal, but it exhibits sharp
features not possible with low-pass filtering. The RMSE (root-mean-square error)
is also substantially better than the RMSE of the low-pass filter. The output of the
SASS algorithm using the logarithmic penalty function is shown in Fig. 2(e). The
result is similar to that obtained with the �1 norm, but the sharp features are of
somewhat greater amplitude; it also has a lower RMSE. Note that the SASS output
signals, in Fig. 2(d, e), are relatively free of Gibbs’ phenomenon. There is negligi-
ble ringing around the singularities of the signal. This is due, in part, to the SASS



Sparsity-Assisted Signal Smoothing 165

0 100 200 300 400 500

−2

0

2
Noise−free signal

0 100 200 300 400 500

−2

0

2
Noisy data

0 100 200 300 400 500

−2

0

2
Low−pass filter

RMSE = 0.251

0 100 200 300 400 500

−2

0

2
SASS with L1 penalty

RMSE = 0.143

0 100 200 300 400 500

−2

0

2

Time (samples)

SASS with logarithmic penalty

RMSE = 0.128

a

b

c

d

e

Fig. 2 Example 1. Sparsity-assisted signal smoothing (SASS). (a) Noise-free signal. (b) Noisy
data, y. (c) Output of low-pass filter, Ly. (d, e) Output of SASS algorithm with �1 norm and
logarithmic penalties, respectively.
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L y + A−1 B1 u

Fig. 3 Example 1. Components of the SASS output shown in Fig. 2(e). The sparse signal, u, is
obtained by sparse optimization. The SASS output is given by (23).

approach being based on total variation (TV) denoising, which is free of Gibbs’
phenomenon.

We illustrate the SASS solution further in Fig. 3. The sparse vector, u, minimizing
F in (21), with the logarithmic penalty, is shown in the figure. Once u is obtained,
we compute A−1B1u in (23). As shown in the figure, this signal exhibits points
where the derivative is discontinuous. The final SASS output is then obtained by
adding the low-pass filtered signal, Ly, and A−1B1u, according to (23). Note that the
signal, A−1B1u, can be considered an additive correction, or enhancement, obtained
via sparse optimization, of the conventional low-pass filter output.

The optimality of the SASS solutions is validated in Fig. 4. Specifically, the
points in the scatter plot lie on the graph of ∂φ , which, for the �1 norm, is the
(set-valued) sign function, as illustrated in Fig. 4(a). The preponderance of points
on the line, u = 0, corresponds to the fact that u is sparse.

For the logarithmic penalty, which is not convex, the scatter plot can be used
to validate locally optimality, only. The points in the scatter plot should lie on the
graph of φ ′ for u �= 0, and in the interval [−1, 1] for u = 0. For the log penalty, we
have

φ ′(u) =
1

a|u|+ 1
sign(u), u �= 0. (49)

As Fig. 4(b) shows, the scatter plot conforms to this condition.
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Fig. 4 Example 1: Scatter plots to validate optimality. (a) Optimality of the �1 norm solution.
(b) Local optimality of the logarithmic penalty solution.

For the purpose of comparison, Fig. 5 shows the result of several other tech-
niques suitable for piecewise smooth signal denoising. Fig. 5(a) shows the res-
ult of LASIP, which is based on local polynomial approximation over adaptively
determined windows [35]. Fig. 5(b) shows the result of discrete wavelet transform
hard-thresholding. Fig. 5(c) shows the result of wavelet denoising using a hidden
Markov tree (HMT) model [15], which performs substantially better than simple
thresholding. Fig. 5(d) shows the result of translation-invariant denoising using an
undecimated wavelet transform (UDWT) [12, 38], which also performs well, among
wavelet-based methods. For each wavelet method, we used a 5-level transform and
the orthonormal Daubechies wavelet with three-vanishing moments [17].

Note that the HMT and UDWT results are qualitatively quite different from each
other, although they are based on the same wavelet transform and achieve approxi-
mately the same RMSE, which shows the influence of the utilized wavelet-domain
model (implicit or explicit). A main issue in obtaining good denoising results using
wavelet transforms is the suppression of the pseudo-Gibbs phenomenon which tends
to arise in wavelet denoising. This requires using the wavelet transform in conjunc-
tion with additional models, penalty terms, constraints, etc. Since the SASS app-
roach does not utilize wavelet transforms, and is based on a simple, explicit model
(cf. (1)), it is relatively unaffected by the pseudo-Gibbs phenomenon.
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Fig. 5 Example 1. (a) LASIP (local approximation) [35]. (b) DWT (discrete wavelet transform).
(c) Wavelet-HMT (hidden Markov tree) [15]. (d) Undecimated wavelet [12]. Compare with Fig. 2.

Example 2 (ECG Denoising)

This example illustrates sparsity-assisted signal smoothing (SASS) on the prob-
lem of denoising electrocardiogram (ECG) signals. We use the ECG waveform
simulator, ECGSYN [40], to generate synthetic ECG signals, with a sampling rate
of 256 samples/second. An example of two seconds of simulated ECG is shown in
Fig. 6(a).

The noisy signal, shown in Fig. 6(b), has AWGN with σ = 0.1. In this example,
we set the filter to be a fourth-order zero-phase Butterworth filter (d = 2) with a
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Fig. 6 Example 2. Sparsity-assisted signal smoothing (SASS). (a) Noise-free signal. (b) Noisy
data, y. (c) Output of low-pass filter, Ly. (d, e) Output of SASS algorithm with �1 norm and
arctangent penalties, respectively.
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cutoff frequency of fc = 0.03 cycles/sample (10). The output of the low-pass filter,
shown in Fig. 6(c), is relatively free of noise; however, the peaks of the two QRS
complexes are substantially attenuated. The peak-to-peak (P-P) amplitude of the
first QRS complex is indicated in the figure. The peaks can be better preserved by
using a low-pass filter with a higher cutoff frequency; however, the filter will then
let more noise through.

For the SASS algorithm, we use K = 3 in this example, which corresponds to
modeling the component g as having a sparse order-3 derivative (i.e., approximately
piecewise polynomial with polynomial segments of order 2). We set λ using (32)
and a using (48). To obtain the atan solution, we initialize the SASS algorithm with
the �1 norm solution.

Figure 6(d, e) shows the output of the SASS algorithm using both the �1 norm
and the arctangent penalty functions. As can be seen, SASS preserves the QRS
waveform much more accurately than the low-pass filter. The �1 solution has a P-P
amplitude of 1.30, almost twice that of the LPF. The atan solution has an even higher
P-P amplitude of 1.45. The atan penalty function induces less bias and promotes
sparsity more strongly, than the �1 norm penalty. The solution obtained with the
logarithmic penalty (not shown) is similar to the atan solution (the P-P amplitude of
the log solution is 1.43).

We illustrate, in Fig. 7, the components of the SASS solution obtained using the
arctangent penalty. As shown, u is sparse, and the signal, A−1B1u, is composed of a
few zero-mean oscillatory waveforms. The final SASS output is obtained by adding
the low-pass filtered signal, Ly, and A−1B1u, according to (23).

The optimality scatter plot and zero-correction procedure are illustrated in Fig. 8
for the SASS solution obtained using the arctangent penalty. For the arctangent

0 100 200 300 400 500

Time (samples)
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A−1 B1 u

L y

L y + A−1 B1 u

Fig. 7 Example 2. Components of the arctangent solution shown in Fig. 6(e).
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Fig. 8 Example 2: Correction of zero-locking phenomenon. (a) Some points in the scatter plot do
not lie on the graph of φ ′(u). The solution is not optimal. (b) After the zero-locking correction
procedure, all points in the scatter plot lie on the graph of φ ′(u). The solution is locally optimal.

penalty, which is not convex, the scatter plot can be used to validate locally opti-
mality, only. The points in the scatter plot should lie on the graph of φ ′ for u �= 0,
and in [−1, 1] for u = 0. For the atan penalty, we have

φ ′(u) =
1

a2u2 + a|u|+ 1
sign(u), u �= 0. (50)

The output of the SASS algorithm with the arctangent penalty yields the scatter
plot shown in Fig. 8(a). Note, Fig. 8(a) shows that four components of u are positive
(dots on the graph of φ ′(u), with u > 0). Upon close inspection, as shown in the area
of detail, it can be seen that three points lie off the graph, on the line, u = 0. These
values are incorrectly locked to zero, due to the zero-locking phenomena discussed
above. Hence, the SASS algorithm has converged to a solution that is not a local
optimum. Having identified, in this way, a set of points falsely locked to zero, we
perturb these points away from zero and run the SASS algorithm a second time. The
perturbation is performed using least squares. The result of the second run is shown
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in Fig. 8(b). As can be seen, the points in the scatter plot are entirely on the graph of
φ ′, i.e., no values are found to be incorrectly locked to zero. Note, Fig. 8(b) shows
that five components of u are positive. That is, one of the components of u which
was incorrectly locked to zero in the first solution is positive in the second solution.
The atan solution shown in Fig. 6(e) is the optimal solution obtained as the result
of the second run. We comment that the two atan solutions (local optimum and not)
are visually quite similar.

Wavelet Functions

The SASS denoising algorithm can be viewed in terms of wavelet denoising. Both
methods are based on the same basic signal model; namely, the representation of a
signal as the sum of a low-pass (coarse) component and a piecewise smooth (detail)
component [6, 17], i.e., f and g, respectively, in (1).

The similarity can be further illustrated by exhibiting the wavelet-like functions
of the SASS algorithm. Note from (23) that the low-pass (coarse) component is
given by Ly, i.e., low-pass filtering of the data, y. The piecewise smooth (detail)
component is given by A−1B1u, where u is obtained by sparse optimization. That
is, the detail component is a weighted superposition of translations of the impulse
response of the filter H1 = A−1B1. Hence, the impulse response of H1, denoted h1,
can be considered a “wavelet”. The detail component, i.e., H1u, is a linear combi-
nation of translations of the wavelet. In a wavelet transform, the detail component
is a linear combination of both translations and dilations of the wavelet. Hence, the
SASS approach lacks the multiscale properties of wavelet denoising.

It is informative to examine the wavelet, as it determines the characteristics of the
detail component. Figure 9 shows the wavelet for several values of the parameters, d
and K. In the SASS approach, the parameter, K, is the order of the difference matrix,
D. The parameter, d, determines the order of the high-pass filter H, i.e., H is of order
2d, see (10). Both d and K should be small positive integers, with 1 � K � 2d.

As Fig. 9 illustrates, K determines the regularity of the wavelet. For K = 1, the
wavelet is discontinuous. For K = 2, the wavelet is continuous but its derivative
is not. For K = 3, both the wavelet and its derivative are continuous. The number
of vanishing wavelet moments can also be expressed in terms of K and d. Note
that the transfer function, H1(z), has a zero of multiplicity 2d−K zeros at z = 1;
therefore, convolution with the impulse response, h1, annihilates polynomials of
degree 2d−K− 1. Hence, the wavelet can be understood to have 2d−K vanishing
moments. Note that when K = 2d, the wavelet has no vanishing moments; but, as
illustrated in Example 1, this does not preclude its effectiveness as it would for
a wavelet transform, due to the role of sparse optimization in SASS. The cutoff
frequency, fc, of the filter, H, influences the scale (width) of the wavelet. Varying fc

has the effect of dilating/contracting the wavelet.
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Fig. 9 Impulse response of H1 = A−1B1 for several values of (d,K), i.e., “wavelets”.

Suitable values for d and K, for a particular class of signals, can be chosen based
on the characteristics of the wavelet. For example, if it is known that the signals of
interest contain additive step discontinuities, then it is reasonable to set K = 1, as in
[53]. For many signals (e.g., ECG signals), better denoising results are obtained with
K > 1. (Similarly, wavelets with more than one vanishing moment often produce
better results than the Haar wavelet.)

Conclusion

We have described a method for signal denoising that utilizes both conventional fil-
tering principles and sparse optimization principles. The method, ‘sparsity-assisted
signal smoothing’ (SASS), is applicable for denoising signals that are piecewise
smooth in a general sense, i.e., for which the order-K derivative can be modeled as
(approximately) sparse. The SASS approach is based on the formulation of a sparse-
regularized linear inverse problem. We provide simple direct approaches to specify
the regularization parameter, λ , and the non-convexity parameter, a, the latter if a
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non-convex penalty is utilized. The reweighted least squares algorithm we present,
derived using the majorization-minimization principle, is devised so as to maintain
the banded property of the involved matrices. Hence, the algorithm is computation-
ally efficient due to the use of fast solvers for banded systems. The optimization
algorithm calls for no additional parameters (step sizes, etc.).

The underlying signal model, i.e., a low-pass (coarse) component plus a piece-
wise smooth (detail) component, also underlies wavelet signal representations. The
effectiveness of wavelet-based signal processing is largely due to the sparsity of
the wavelet representation of piecewise smooth signals. The proposed SASS ap-
proach exploits sparse representations directly via optimization, rather than indi-
rectly through a wavelet transform. Although SASS is not multi-scale, it is rela-
tively free of pseudo-Gibbs phenomenon (oscillations around singularities) that of-
ten arises in wavelet processing.

Note that the SASS approach will likely be suboptimal for signals having singu-
larities of two (or more) distinct orders (e.g., signals with both additive step discon-
tinuities and ‘ramp’ discontinuities). The denoising of signals, having singularities
of multiple orders, calls for a generalization of SASS.
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A Message-Passing Approach to Phase Retrieval
of Sparse Signals

Philip Schniter and Sundeep Rangan

Abstract In phase retrieval, the goal is to recover a signal xxx ∈ C
N from the mag-

nitudes of linear measurements AAAxxx ∈ C
M. While recent theory has established that

M ≈ 4N intensity measurements are necessary and sufficient to recover generic xxx,
there is great interest in reducing the number of measurements through the exp-
loitation of sparse xxx, which is known as compressive phase retrieval. In this work,
we detail a novel, probabilistic approach to compressive phase retrieval based on
the generalized approximate message passing (GAMP) algorithm. We then present
a numerical study of the proposed PR-GAMP algorithm, demonstrating its excel-
lent phase-transition behavior, robustness to noise, and runtime. For example, to
successfully recover K-sparse signals, approximately M ≥ 2K log2(N/K) intensity
measurements suffice when K � N and AAA has i.i.d Gaussian entries. When rec-
overing a 6k-sparse 65k-pixel grayscale image from 32k randomly masked and
blurred Fourier intensity measurements, PR-GAMP achieved 99% success rate with
a median runtime of only 12.6 seconds. Compared to the recently proposed CPRL,
sparse-Fienup, and GESPAR algorithms, experiments show that PR-GAMP has a
superior phase transition and orders-of-magnitude faster runtimes as the problem
dimensions increase.

Key words: Phase retrieval, Compressed sensing, Sparsity, Belief propagation,
Message passing

P. Schniter (�)
Department of Electrical and Computer Engineering, The Ohio State University,
Columbus, OH 43202, USA
e-mail: schniter@ece.osu.edu

S. Rangan
Department of Electrical and Computer Engineering, Polytechnic Institute of
New York University, Brooklyn, NY 11201, USA
e-mail: srangan@poly.edu

© Springer International Publishing Switzerland 2015
R. Balan et al. (eds.), Excursions in Harmonic Analysis, Volume 4,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-20188-7 7

177

mailto:schniter@ece.osu.edu
mailto:srangan@poly.edu


178 P. Schniter and S. Rangan

1 Introduction

1.1 Phase retrieval

In phase retrieval, the goal is to recover a signal xxx ∈ C
N from the magnitudes

ym = |um| of possibly noisy linear measurements uuu = [u1, . . . ,uM]T = AAAxxx+www ∈C
M .

This problem is motivated by the fact that it is often easier to build detectors (e.g.,
photographic plates or CCDs) that measure intensity rather than phase [1, 2]. Imag-
ing applications of phase retrieval include X-ray diffraction imaging [3], X-ray crys-
tallography [4, 5], array imaging [6], optics [7], speckle imaging in astronomy [8],
and microscopy [9]. Nonimaging applications include acoustics [10], interferometry
[11], and quantum mechanics [12].

To reconstruct xxx ∈ C
N (up to a global phase uncertainty), it has been recently

established that M ≥ 4N − o(N) intensity measurements are necessary [13] and
M ≥ 4N− 4 are sufficient [14] through appropriate design of the linear transform
AAA. Meanwhile, to reconstruct xxx ∈ R

N (up to a global sign uncertainty), it has been
shown that M ≥ 2N−1 measurements are both necessary and sufficient [10]. How-
ever, there exist applications where far fewer measurements are available, such as
sub-wavelength imaging [15, 16], Bragg sampling from periodic crystalline struc-
tures [17], and waveguide-based photonic devices [18]. To facilitate these compres-
sive phase retrieval tasks, it has been proposed to exploit sparsity1 in xxx. In fact,
very recent theory confirms the potential of this approach: to reconstruct K-sparse
N-length xxx using a generic (e.g., i.i.d Gaussian) AAA, only M ≥ 4K− 2 intensity mea-
surements suffice in the complex case and M ≥ 2K suffice in the real case (where
M ≥ 2K is also necessary) when K < N [19]. While these bounds are extremely
encouraging, achieving them with a practical algorithm remains elusive.

To our knowledge, the first algorithm for compressive phase retrieval was pro-
posed by Moravec, Romberg, and Baraniuk in [20] and worked by incorporating
an �1 norm constraint into a traditional Fienup-style [1] iterative algorithm. How-
ever, this approach requires that the �1 norm of the true signal is known, which is
rarely the case in practice. Recently, a more practical sparse-Fienup algorithm was
proposed by Mukherjee and Seelamantula [21], which requires knowledge of only
the signal sparsity K but is applicable only to measurement matrices AAA for which
AAAHAAA = III. Although this algorithm guarantees that the residual error ‖yyy−|AAAx̂xx(t)|‖2

2
is nonincreasing over the iterations t, it succumbs to local minima and, as we show
in Section 4.4, is competitive only in the highly sparse regime.

To circumvent the local minima problem, Ohlsson, Yang, Dong, and Sastry pro-
posed the convex relaxation known as Compressive Phase Retrieval via Lifting
(CPRL) [22], which adds �1 regularization to the well-known PhaseLift algorithm
[6, 23]. Both CPRL and PhaseLift “lift” the unknown vector xxx ∈ C

N into the space

1 xxx may represent the sparse transform coefficients of a non-sparse signal-of-interest sss =ΨΨΨxxx in a
sparsifying basis (or frame) ΨΨΨ , in which case the intensity measurements would be yyy = |ΦΦΦsss+www|
and AAA � ΦΦΦΨΨΨ .
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of N ×N rank-one matrices and solve a semidefinite program in the lifted space,
requiring O(N3) complexity, which is impractical for practical image sizes N. Sub-
sequent theoretical analysis [19] revealed that while M �O(K2 logN) intensity mea-
surements suffice for CPRL when xxx ∈ R

N , M � O(K2/ log2 N) measurements are
necessary, which is disappointing because this greatly exceeds the 2K measure-
ments that suffice for the optimal solver [19]. More recently, a cleverly initialized
alternating minimization (AltMin) approach was proposed by Natrapalli, Jain, and
Sanghavi in [24] that gives CPRL-like guarantees/performance with only O(NK3)
complexity, but this is still too complex for practical sparsities K (which tend to
grow linearly with image size N).

Recently, Shechtman, Beck, and Eldar proposed the GrEedy Sparse PhAse Re-
trieval (GESPAR) algorithm [25], which applies fast 2-opt local search [26] to a
sparsity constrained nonlinear optimization formulation of the phase-retrieval prob-
lem. Numerical experiments (see Section 4.4) show that GESPAR handles higher
sparsities K than the sparse-Fienup technique from [21], but at the cost of signif-
icantly increased runtime. In fact, due to the combinatorial nature of GESPAR’s
support optimization, its complexity scales rapidly in K, making it impractical for
many problems of interest.

In this work, we describe a novel2 approach to compressive retrieval that is based
on loopy belief propagation and, in particular, the generalized approximate mes-
sage passing (GAMP) algorithm from [27]. In addition to describing and deriving
our phase retrieval GAMP (PR-GAMP) algorithm, we present a detailed numerical
study of its performance. For i.i.d Gaussian, Fourier, and masked Fourier matrices AAA,
we demonstrate that PR-GAMP performs far better than existing compressive phase
retrieval algorithms in terms of both success rate and runtime for large values K and
N. Interestingly, we find that PR-GAMP requires approximately 4× the number of
measurements as phase-oracle GAMP (i.e., GAMP given the magnitude-and-phase
measurements uuu = AAAxxx+www), which generalizes what is known about phase retrieval
of non-sparse signals in C

N , where the ratio of magnitude-only to magnitude-and-
phase measurements necessary and sufficient for perfect recovery is also 4 for large
N [13, 14]. We also find that PR-GAMP is robust to additive noise, giving mean-
squared error that is only 3 dB worse than phase-oracle GAMP over a wide SNR
range.

Notation: For matrices, we use boldface capital letters like AAA, and we use AAAT,
AAAH, and ‖AAA‖F to denote the transpose, Hermitian transpose, and Frobenius norm,
respectively. For vectors, we use boldface small letters like xxx, and we use ‖xxx‖p =

(∑n |xn|p)1/p to denote the �p norm, with xn = [xxx]n representing the nth element of xxx.
For random variable X , we write the pdf as pX(x), the expectation as E{X}, and the
variance as var{X}. In some cases where it does not cause confusion, we drop the
subscript on pX(x) and write the pdf simply as p(x). For a circular-Gaussian random
variable X with mean m and variance v, we write the pdf as pX(x) =N (x;m,v) �
1
πv exp(−|x−m|2/v). For the point mass at x = 0, we use the Dirac delta distribution

2 We previously described PR-GAMP in the conference paper [28] and the workshop presentation
[29].
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δ (x). Finally, we use R for the real field, C for the complex field, Re{x} and Im{x}
for the real and imaginary parts of x, and x∗ for the complex conjugate of x.

2 Background on GAMP

The approximate message passing (AMP) algorithm was recently proposed by
Donoho, Maleki, and Montanari [30, 31] for the task of estimating a signal vector
xxx ∈ R

N from linearly transformed and additive-Gaussian-noise corrupted measure-
ments3

yyy = AAAxxx+www ∈C
M. (1)

The Generalized-AMP (GAMP) algorithm proposed by Rangan [27] then extends
the methodology of AMP to the generalized linear measurement model

yyy = q(AAAxxx+www) ∈C
M, (2)

where q(·) is a component-wise nonlinearity. This nonlinearity affords the applica-
tion of AMP to phase retrieval.

Both AMP and GAMP can be derived from the perspective of belief propaga-
tion [32], a Bayesian inference strategy that is based on a factorization of the sig-
nal posterior pdf p(xxx|yyy) into a product of simpler pdfs that, together, reveal the
probabilistic structure in the problem. Concretely, if we model the signal coeffi-
cients in xxx and noise samples in www from (1)-(2) as statistically independent, so that
p(xxx) =∏N

n=1 pXn(xn) and p(yyy|zzz) =∏M
m=1 pY |Z(ym|zm) for zzz � AAAxxx, then we can factor

the posterior pdf as

p(xxx|yyy) ∝ p(yyy|xxx)p(xxx) (3)

=
M

∏
m=1

pY |Z
(
ym
∣∣[AAAxxx]m

) N

∏
n=1

pXn(xn),
(4)

yielding the factor graph in Fig. 1.
In belief propagation [32], beliefs about the unknown variables are passed among

the nodes of the factor graph until all agree on a common set of beliefs. The set of
beliefs passed into a given variable node are then used to determine the posterior
pdf of that variable, or an approximation thereof. The sum-product algorithm [33]
is perhaps the most well-known incarnation of belief propagation, wherein the mes-
sages take the form of pdfs and exact posteriors are guaranteed whenever the graph
does not have loops. For graphs with loops, exact inference is known to be NP hard,

3 Here and elsewhere, we use yyy when referring to the M measurements that are available for signal
reconstruction. In the canonical (noisy) compressive sensing problem, the measurements take the
form yyy= AAAxxx+www, but in the (noisy) compressive phase retrieval problem, the measurements instead
take the form yyy = |AAAxxx+www|.
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pyz x pxh

Fig. 1 GAMP factor graph, with white circles denoting random variables and black squares denot-
ing pdf factors, for the case M = 3 and N = 4.

and so loopy belief propagation (LBP) is not guaranteed to produce correct poste-
riors. Still, LBP has shown state-of-the-art performance on many problems in, e.g.,
decoding, computer vision, and compressive sensing [34].

The conventional wisdom surrounding LBP says that accurate inference is pos-
sible only when the circumference of the loops is relatively large. With (1)-(2), this
would require that AAA is a sparse matrix, which precludes most interesting cases of
compressive inference, including compressive phase retrieval. Hence, the recent re-
alization by Donoho, Maleki, Montanari, and Bayati that LBP-based compressive
sensing is not only feasible [30] for dense matrices AAA, but provably accurate [35, 36],
was a breakthrough. In particular, they established that, in the large system limit
(i.e., as M,N →∞ with M/N fixed) and under i.i.d sub-Gaussian AAA, the iterations of
AMP are governed by a state evolution whose fixed points describe the algorithm’s
performance. To derive the AMP algorithm, Donoho et al. [30] proposed an inge-
nious set of message-passing approximations that become exact in the limit of large
sub-Gaussian AAA.

Remarkably, the “approximate message passing” (AMP) principles in [30]—
including the state evolution—can be extended from the linear model (1) to the
generalized linear model in (2), as established in [27]. The GAMP algorithm from
[27] is summarized in Table 1, where N (z; ẑ,νz) is used to denote the circular-
Gaussian pdf in variable z with mean ẑ and variance νz. In the sequel, we detail
how GAMP and some extensions of GAMP, allow us to tackle the phase retrieval
problem.

3 Phase Retrieval GAMP

To apply the GAMP algorithm outlined in Table 1 to compressive phase retrieval,
we specify a measurement likelihood function pY |Z(ym|·) that models the lack of
phase information in the observations ym and a signal prior pdf pXn(·) that facilitates
measurement compression, e.g., a sparsity-inducing pdf. In addition, we propose
several modifications to the GAMP algorithm that aim to improve its robustness,



182 P. Schniter and S. Rangan

and we propose an expectation-maximization method to learn the noise variance
that parameterizes pY |Z(ym|·).

Table 1 The GAMP Algorithm from [27] with Tmax iterations.

input AAA,{pXn(·), x̂n(1),νx
n(1)}N

n=1,{pY |Z(ym|·), ŝm(0)}M
m=1

define
pZ|Y,P(z|y, p̂;ν p) =

pY |Z (y|z)N (z; p̂,ν p)∫
z′ pY |Z(y|z′)N (z′ ; p̂,ν p) (D1)

gout,m(p̂,ν p) = 1
ν p

(
EZ|Y,P{Z|ym, p̂;ν p}− p̂

)
(D2)

g′out,m(p̂,ν p) = 1
ν p

(
varZ|Y,P{Z|ym, p̂;ν p}

ν p −1
)

(D3)

pXn|Rn(x|r̂;ν r) =
pXn(x)N (x;r̂,νr)∫

x′ pXn(x
′)N (x′ ;r̂,νr) (D4)

gin,n(r̂,ν r) = EXn|Rn{Xn|r̂;ν r} (D5)
g′in,n(r̂,ν

r) = varXn|Rn{Xn|r̂;ν r} (D6)

for t = 1,2,3, . . .,Tmax

∀m : ν p
m(t) = ∑N

n=1 |amn|2νx
n(t) (R1)

∀m : p̂m(t) = ∑N
n=1amnx̂n(t)−ν p

m(t) ŝm(t−1) (R2)
∀m : ŝm(t) = gout,m(p̂m(t),ν p

m(t)) (R3)
∀m : ν s

m(t) = −g′out,m(p̂m(t),ν p
m(t)) (R4)

∀n : ν r
n(t) =

(
∑M

m=1 |amn|2ν s
m(t)

)−1
(R5)

∀n : r̂n(t) = x̂n(t)+ν r
n(t)∑

M
m=1a∗mnŝm(t) (R6)

∀n : νx
n(t+1) = ν r

n(t)g
′
in,n(r̂n(t),ν r

n(t)) (R7)
∀n : x̂n(t+1) = gin,n(r̂n(t),ν r

n(t)) (R8)
end

output {x̂n(Tmax+1),νx
n(Tmax+1)}N

n=1,{ŝm(Tmax)}M
m=1

3.1 Likelihood function

Before deriving the likelihood function pY |Z(ym|·), we introduce some notation.
First, we will denote the noiseless transform outputs by

zm � aaaH
mxxx = |zm|e jφm with φm ∈ [0,2π), (5)

where aaaH
m is the mth row of AAA and j �

√
−1. Next, we will assume the presence of

additive noise wm and denote the noisy transform outputs by

um � zm +wm = |um|e jθm with θm ∈ [0,2π). (6)

Our (noisy) intensity measurements are then

ym = |um| for m = 1, . . . ,M, (7)
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Henceforth, we assume additive white circular-Gaussian noise (AWGN) wm ∼
N (0,νw). Thus, if we condition on zm, then um is circular Gaussian with mean zm

and variance νw, and ym is Rician with pdf [37]

pY |Z(ym|zm;νw) =
2ym

νw exp

(
− y2

m + |zm|2
νw

)
I0

(
2ym|zm|
νw

)
1ym≥0, (8)

where I0(·) is the 0th-order modified Bessel function of the first kind.
The functions gout,m(·, ·) and g′out,m(·, ·) defined in steps (D1)–(D3) of Table 1

can be computed using the expressions

EZ|Y,P{Z|ym, p̂m;ν p
m}=

∫
C

z pY |Z(ym|z;νw)N (z; p̂m,ν p
m)dz∫

C
pY |Z(ym|z′;νw)N (z′; p̂m,ν p

m)dz′
(9)

=

(
ym

1+νw/ν p
m

R0(ρm)+
|p̂m|

ν p
m/νw + 1

)
p̂m

|p̂m|
(10)

and

varZ|Y,P{Z|ym, p̂m;ν p
m}

=

∫
C
|z|2 pY |Z(ym|z;νw)N (z; p̂m,ν p

m)dz∫
C

pY |Z(ym|z′;νw)N (z′; p̂m,ν p
m)dz′

− |EZ|Y,P{Z|ym, p̂m;ν p
m}|2 (11)

=
y2

m

(1+νw/ν p
m)2

+
|p̂m|2

(ν p
m/νw + 1)2

+
1+ρmR0(ρm)

1/νw + 1/ν p
m

−|EZ|Y,P{Z|ym, p̂m;ν p
m}|2, (12)

where

R0(ρm)�
I1(ρm)

I0(ρm)
and ρm � 2ym |p̂m|

νw +ν p
m
, (13)

as shown in Appendix A.

3.2 EM update of the noise variance

Above, the noise variance νw was treated as a known parameter. In practice, how-
ever, νw may be unknown, in which case it is not clear what value to use in (10)
and (12). To address this problem, we now describe how νw can be learned using an
expectation-maximization (EM) [38] procedure. The methodology is similar to that
proposed in [39] for the case of a Gaussian pY |Z(ym|·), but the details differ due to
the form of pY |Z(ym|·) in (8).

Choosing xxx as the hidden data, the ith iteration EM update of the νw estimate
is [38]

ν̂w[i+1] = arg max
νw≥0

E
{

ln p(yyy,xxx;νw)
∣∣yyy; ν̂w[i]

}
, (14)
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where square brackets are used to distinguish EM iterations from GAMP iterations
(recall Table 1). After a somewhat lengthy derivation, Appendix B shows that the
EM update can be approximated as

ν̂w[i+1]≈ 2
M

M

∑
m=1

(
ym−|aaaH

mx̂xx[i]|
)2
, (15)

where x̂xx[i] denotes the posterior mean of xxx under the hypothesis νw = ν̂w[i]. In prac-
tice, we use GAMP’s estimate of the posterior mean (i.e., the GAMP output x̂xx(t)
from Table 1 after the final GAMP iteration t = Tmax) in place of the true one, bec-
ause computation of the latter is NP hard in general [40].

3.3 Signal prior distribution

GAMP offers great flexibility with respect to the choice of prior distribution on the
signal vector xxx. In this work, we focus on separable priors, which have the form
p(xxx) = ∏N

n=1 pXn(xn) with arbitrary pXn(·) (recalling (4)), but we note that various
forms of non-separable priors can be supported using the “turbo GAMP” formula-
tion proposed in [41] or the “analysis GAMP” formulation proposed in [42].

For separable priors, pXn(·) should be chosen to reflect whatever form of proba-
bilistic structure is known about coefficient xn. For example, if xxx ∈ C

N is known to
be K-sparse, but nothing is know about the support, then it is typical to choose the
Bernoulli-Gaussian (BG) model

pXn(xn) = (1−λ )δ (xn)+λN (xn;0,ϕ), (16)

with sparsity rate λ = K
N and nonzero coefficient variance ϕ that, if unknown, can

be estimated from the observations via [39, eqn. (71)]

ϕ =
‖yyy‖2

2−Mνw

λ‖AAA‖2
F

, (17)

where ‖ · ‖F denotes the Frobenius norm. For this BG prior, expressions for the
thresholding functions gin,n(·, ·) and g′in,n(·, ·) defined in steps (D5)–(D6) of Table 1
were given in [41]. When the sparsity rate λ in (16) is unknown, it can be learned
using the EM-BG procedure described in [39]. In most cases, improved performance
is obtained when a Gaussian mixture (GM) pdf is used in place of the Gaussian pdf
in (16) [39].

Various extensions of the above are possible. For example, when all coefficients
xn are known to be real valued or positive, the circular-Gaussian pdf in (16) should
be replaced by a real-Gaussian or truncated-Gaussian pdf, respectively, or even a
truncated-GM [43]. Furthermore, when certain coefficient subsets are known to be
more or less sparse than others, a nonuniform sparsity [44] rate λn should be used
in (16).
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Table 2 GAMP steps with variance normalization α(t) and damping parameter β ∈ (0,1].

for t=1,2,3, . . .,Tmax

∀m : ν p
m(t)=β ∑N

n=1 |amn|2νx
n(t)+(1−β )ν p

m(t−1) (S1)
α(t)= 1

M ∑M
m=1ν

p
m(t) (S2)

∀m : p̂m(t)=∑N
n=1amnx̂n(t)− ν p

m(t)
α(t) ŝm(t−1) (S3)

∀m : ŝm(t)=βα(t)gout,m(p̂m(t),ν p
m(t))+(1−β )ŝm(t−1) (S4)

∀m : ν s
m(t)=−βα(t)g′out,m(p̂m(t),ν p

m(t))+(1−β )ν s
m(t−1) (S5)

∀n : ν r
n(t)=

(
∑M

m=1 |amn|2νs
m(t)

)−1 (S6)
∀n : x̄n(t)=β x̂n(t)+(1−β )x̄n(t−1) (S7)
∀n : r̂n(t)=x̄n(t)+νr

n(t)∑
M
m=1a∗mnŝm(t) (S8)

∀n : νx
n(t+1)=α(t)ν r

n(t)g
′
in,n

(
r̂n(t),α(t)νr

n(t)
)

(S9)
∀n : x̂n(t+1)=gin,n

(
r̂n(t),α(t)νr

n(t)
)

(S10)
end

3.4 GAMP normalization and damping

To increase the numerical robustness of GAMP, it helps to normalize certain int-
ernal GAMP variables. To do this, we define α(t) � 1

M ∑M
m=1 ν

p
m(t) (which tends

to grow very small with t at high SNR), normalize both ŝm(t) and νs
m(t) (which

tend to grow very large) by 1/α(t), and normalize νr
n(t) (which tends to grow very

small) by α(t). The resulting GAMP iterations are shown in Table 2, with normal-
ized quantities denoted by underbars. We note that, under infinite precision, these
normalizations would cancel each other out and have no effect.

To reduce the chance of GAMP misconvergence, we find that it helps to “damp”
the iterations. Damping helps to slow the algorithm using a stepsize β ∈ (0,1] that
is incorporated into GAMP as shown in Table 2. Based on our experiments, the
value β = 0.25 seems to work well for phase retrieval. One consequence of the
damping modification is the existence of additional state variables like x̄n(t). To
avoid the need to initialize these variables, we use β = 1 during the first iteration.
We note that the damping modifications described here are the ones included in the
public domain GAMPmatlab implementation,4 which differ slightly from the ones
described in [45].

3.5 Avoiding bad local minima

As is well known, the compressive phase retrieval problem is plagued by bad local
minima. We now propose methods to initialize and restart PR-GAMP that aims to
avoid these local minima. Based on our experience (see Section 4), these methods
are much more important for Fourier AAA than randomized (e.g., i.i.d Gaussian or
masked Fourier) AAA.

4 http://sourceforge.net/projects/gampmatlab/.

http://sourceforge.net/projects/gampmatlab/
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3.5.1 GAMP initialization

The GAMP algorithm in Table 1 requires an initialization of the signal coef-
ficient estimates {x̂n(1)}N

n=1, their variances {νx
n(1)}N

n=1, and the state variables
{ŝm(0)}M

m=1 (which can be interpreted as Lagrange multipliers [45]). As recom-
mended in [27], the standard procedure uses the fixed choices x̂n(1) = E{Xn},
νx

n(1) = var{Xn}, ŝm(0) = 0. For phase retrieval, we instead suggest to set each
x̂n(1) using an independent draw of the random variable Xn and to set νx

n(1) =
1
N ∑N

k=1 |x̂k(1)− E{Xk}|2 ∀n. This initialization, however, only applies to the first
EM iteration; for subsequent EM iterations, GAMP should be warm started using
the outputs of the previous EM iteration.

3.5.2 EM initialization

For the EM algorithm described in Section 3.2, we must choose the initial noise-
variance estimate ν̂w[0]. Even when accurate knowledge of νw is available, we find
that setting ν̂w[0] at a large value helps to avoid bad local minima. In particular, our
empirical experience leads us to suggest setting ν̂w[0] in correspondence with an

initial SNR estimate of 10, i.e., ν̂w[0] = ‖yyy‖2
2

M(SNRinit+1) with SNRinit = 10.

3.5.3 Multiple restarts

To further facilitate the avoidance of bad local minima, we propose to run mul-
tiple attempts of EM-GAMP, each using a different random GAMP initialization
(constructed as above). The attempt leading to the lowest normalized residual
(NR � ‖yyy− |AAAx̂xx|‖2

2/‖yyy‖2
2) is then selected as the algorithm output. The efficacy of

multiple attempts is numerically investigated in Section 4.
Furthermore, to avoid unnecessary restarts, we allow the algorithm to be stopped

as soon as the NR drops below a user-defined stopping tolerance of NRstop. When
the true SNR is known, we suggest setting NRstopdB =−(SNRtruedB+ 2).

3.5.4 Algorithm summary

The PR-GAMP algorithm is summarized in Table 3, where Amax controls the num-
ber of attempts, SNRinit controls the initial SNR, and NRstop controls the stopping
tolerance.
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Table 3 The proposed PR-GAMP algorithm with Amax attempts, SNR initialization SNRinit, and
stopping residual NRstop.

input yyy,AAA,{pXn(·)}N
n=1,SNRinit,NRstop

ν̂w[0] =
‖yyy‖2

2

M(SNRinit +1)
∀m : ŝm[0] = 0
NRbest = ∞
for a = 1,2,3, . . . ,Amax,
draw random x̂xx[0]
∀n : νx

n [0] = ‖x̂xx[0]‖2
2/N

for i = 1,2,3, . . ., Imax(
x̂xx[i], ν̂ννx

[i], ŝss[i]
)
= GAMP

(
AAA,{pXn(·)}N

n=1,

{pY |Z(ym|·; ν̂w[i−1])}M
m=1,

x̂xx[i−1], ν̂ννx
[i−1], ŝss[i−1]

)
ν̂w[i] = 2

M ‖yyy−|AAAx̂xx[i]|‖2
2

end
NR = ‖yyy−|AAAx̂xx[i]|‖2

2/‖yyy‖2
2

if NR < NRbest
x̂xxbest = x̂xx[Imax]
NRbest = NR
end
if NR < NRstop
stop
end
end

output x̂xxbest

4 Numerical Results

In this section, we numerically investigate the performance of PR-GAMP5 under
various scenarios and in comparison to several existing algorithms: Compressive
Phase Retrieval via Lifting (CPRL) [22], GrEedy Sparse PhAse Retrieval (GES-
PAR) from [25], and the sparse-Fienup technique from [21], As a benchmark,
we also compare to “phase oracle” (PO) GAMP, i.e., GAMP operating on the
magnitude-and-phase measurements uuu = AAAxxx+www rather than on the intensity mea-
surements yyy = |uuu|.

Unless otherwise noted, we generated random realizations of the true signal vec-
tor xxx as K-sparse length N with support chosen uniformly at random and with
nonzero coefficients drawn i.i.d zero-mean circular-Gaussian. Then, for a given ma-
trix AAA, we generated M noisy intensity measurements yyy = |AAAxxx+www|, where www was
i.i.d circular-Gaussian with variance selected to achieve a target signal-to-noise ratio
of SNR � ‖AAAxxx‖2

2/E{‖www‖2
2}. Finally, each algorithm computed an estimate x̂xx from

(yyy,AAA) in an attempt to best match xxx up to a tolerated ambiguity. For AAA with i.i.d

5 PR-GAMP is part of the GAMPmatlab package at http://sourceforge.net/projects/gampmatlab/.

http://sourceforge.net/projects/gampmatlab/
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random entries, we tolerate only a phase rotation on x̂xx, while for Fourier AAA and real-
valued xxx, we tolerate a flip, circular shift, and phase rotation on x̂xx. Performance was
then assessed using normalized mean-squared error on the disambiguated estimate:

NMSE(x̂xx)� min
ΘΘΘ

‖xxx−disambig(x̂xx,ΘΘΘ)‖2
2

‖xxx‖2
2

, (18)

whereΘΘΘ are the ambiguity parameters. When computing empirical phase-transition
curves, we defined a “successful” recovery as one that produced NMSE < 10−6.

4.1 Empirical phase transitions: i.i.d Gaussian AAA

First we investigated the phase-transition performance of PR-GAMP with i.i.d
circular-Gaussian sensing matrices AAA. Figure 2 plots the empirical success rate
(averaged over 100 independent problem realizations) as a function of signal spar-
sity K and measurement length M for a fixed signal length of N = 512. Here
we used SNR = 100 dB, which makes the observations essentially “noiseless”,
and we allowed PR-GAMP up to 10 attempts from random initializations (i.e.,
Amax = 10 in Table 3). The figure shows a “phase-transition” behavior that sepa-
rates the (K,M) plane into two regions: perfect recovery in the top-left and failure
in the bottom-right. Moreover, the figure shows that, for K � N, approximately
M ≥ 2K log2(N/K) measurements suffice for PR-GAMP.

To see how well (versus how often) PR-GAMP recovers the signal, we plot the
median NMSE over the same problem realizations in Fig. 3. There we see that the
signal estimates are extremely accurate throughout the region above the phase tran-
sition.

To investigate the effect of number of attempts Amax, we extracted the 50%-
success contour (i.e., the phase-transition curve) from Fig. 2 and plotted it in Fig. 4,
along with the corresponding contours obtained under different choices of Amax.
Figure 4 shows that in the case of i.i.d AAA, there is relatively little to gain from mul-
tiple restarts from random realizations. With Fourier AAA, however, we will see in the
sequel that multiple restarts are indeed important.

Figure 4 also plots the phase-transition curve of phase-oracle (PO)-GAMP cal-
culated from the same problem realizations. Comparing the PO-GAMP phase tran-
sition to that of PR-GAMP, we conclude that PR-GAMP requires approximately
4× the number of measurements as PO-GAMP, regardless of sparsity rate K. Rem-
arkably, this “4×” rule generalizes what is known about the recovery of non-sparse
signals in C

N , where the ratio of (necessary and sufficient) magnitude-only to
magnitude-and-phase measurements is also 4 (as N → ∞) [13, 14].

Overall, Figures 2–4 demonstrate that PR-GAMP is indeed capable of compres-
sive phase retrieval, i.e., successful C

N-signal recovery from M � 4N intensity
measurements, when the signal is sufficiently sparse. Moreover, to our knowledge,
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these phase transitions are far better than those of any other algorithm reported in
the literature.

4.2 Robustness to noise

We now demonstrate the robustness of PR-GAMP to nontrivial levels of additive
white circular-Gaussian noise www in the M intensity measurements yyy = |AAAxxx+www|. As
before, we use an N = 512-length K-sparse signal with an i.i.d Gaussian AAA, but now
we focus on the case (K,M) = (4,256), which is on the good side of the phase tran-
sition in Fig. 2. Figure 5 shows median NMSE performance over 200 independent

prGAMP10 : success@−60dB, iid, N=512, snr=100dB, xreal=0, avg=98

signal sparsity K

nu
m

be
r 

of
 m

ea
su

re
m

en
ts

 M

2  4  8  16 32 64 128 256 512

16  

32  

64  

128 

256 

512 

1024

2048

em
pi

ric
al

 p
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2K log2(N/K)

Fig. 2 Empirical probability of successful PR-GAMP recovery of an N = 512-length signal versus
signal sparsity K and number of intensity measurements M, using i.i.d Gaussian AAA at SNR =
100 dB. Here, PR-GAMP was allowed up to 10 attempts from different random initializations.

problem realizations as a function of SNR� ‖AAAxxx‖2
2/‖www‖2

2. At larger values of SNR
(i.e., SNR≥ 30 dB), there we see that throughout the tested SNR range, PR-GAMP
performs only about 3 dB worse than PO-GAMP. The existence of a 3-dB gap can
be explained by the fact that PO-GAMP is able to average the noise over twice as
many real-valued measurements as PR-GAMP (i.e., {Re{um}, Im{um}}M

m=1 versus
{|um|}M

m=1).

4.3 Comparison to CPRL

In this section, we present compare PR-GAMP to the state-of-the-art convex-
relaxation approach to compressive phase retrieval, CPRL [22]. To implement
CPRL, we used the authors’ CVX-based matlab code6 under default algorithmic

6 http://users.isy.liu.se/rt/ohlsson/code/CPRL.zip.

http://users.isy.liu.se/rt/ohlsson/code/CPRL.zip
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Fig. 3 Median NMSE for PR-GAMP recovery of an N=512-length signal versus signal sparsity
K and number of intensity measurements M, using i.i.d Gaussian AAA at SNR=100 dB. Here, PR-
GAMP was allowed up to 10 attempts from different random initializations.
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Fig. 4 50%-success contours for PR-GAMP and phase-oracle GAMP recovery of an N = 512-
length signal versus signal sparsity K and number of intensity measurements M, using i.i.d Gaus-
sian AAA at SNR=100 dB. PR-GAMP-Amax denotes PR-GAMP under a maximum of Amax attempts.

settings. We also tried the authors’ ADMM implementation, but found that it gave
significantly worse performance. As before, we examine the recovery of a K-sparse
signal in C

N from M intensity measurements yyy = |AAAxxx+www|, but now we use AAA=ΦΦΦFFF
with i.i.d circular-Gaussian ΦΦΦ and discrete Fourier transform (DFT) FFF , to be con-
sistent with the setup assumed in [22].

Table 4 shows empirical success7 rate and runtime (on a standard personal com-
puter) for a problem with sparsity K = 1, signal lengths N ∈ {32,48,64}, and com-
pressive measurement lengths M ∈ {20,30,40}. The table shows that, over 100

7 Since CPRL rarely gave NMSE< 10−6, we reduced the definition of “success” to NMSE< 10−4

for this subsection only.
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Fig. 5 Median NMSE for PR-GAMP and phase-oracle GAMP recovery of an N = 512-length
K=4-sparse signal versus SNR, from M=256 measurements and i.i.d Gaussian AAA.

problem realizations, both algorithms were 100% successful in recovering the signal
at all tested combinations of (M,N). But the table also shows that CPRL’s runtime
increases rapidly with the signal dimensions, whereas that of PR-GAMP remains
orders of magnitude smaller and independent of (M,N) over the tested range.8

Table 5 repeats the experiment carried out in Table 4, but at the sparsity K = 2.
For this more difficult problem, the table shows that CPRL is much less success-
ful at recovering the signal than PR-GAMP. Meanwhile, the runtimes reported in
Table 5 again show CPRL complexity scaling rapidly with the problem dimension,
whereas GAMP complexity stays orders-of-magnitudesmaller and constant over the
tested problem dimensions. In fact, the comparisons conducted in this section were
restricted to very small problem dimensions precisely due to the poor complexity
scaling of CPRL.

Table 4 Empirical success rate and median runtime over 100 problem realizations for several
combinations of signal length N, measurement length M, and signal sparsity K = 1.

(M,N) = (20,32) (M,N) = (30,48) (M,N) = (40,64)

CPRL 1.00 (3.4 sec) 1.00 (37 sec) 1.00 (434 sec)
PR-GAMP 1.00 (0.22 sec) 1.00 (0.20 sec) 1.00 (0.18 sec)

8 Although the complexity of GAMP is known to scale as O(MN) for this type of AAA, the values of
M and N in Table 4 are too small for this scaling law to manifest.
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Table 5 Empirical success rate and median runtime over 100 problem realizations for several
combinations of signal length N, measurement length M, and signal sparsity K = 2.

(M,N) = (20,32) (M,N) = (30,48) (M,N) = (40,64)

CPRL 0.55 (4.1 sec) 0.65 (42 sec) 0.66 (496 sec)
PR-GAMP 0.99 (0.28 sec) 0.99 (0.24 sec) 1.00 (0.22 sec)

4.4 Comparison to sparse-Fienup and GESPAR: Fourier AAA

In this section, we compare PR-GAMP to the sparse-Fienup [21] and GESPAR9

[25] algorithms, which requires10 us to restrict our attention to Fourier-based AAA and
real-valued sparse vectors xxx. For the experiments below, we generated realizations
of xxx the same was as above, but with the nonzero elements drawn from a real-
Gaussian distribution. Also, we used IT ER = 6400 in GESPAR as recommended
by the authors in [25], and we allowed sparse-Fienup 1000 attempts from random
initializations.

We first consider 2D Fourier AAA, which is especially important for imaging app-
lications. In particular, we repeat an experiment from [25], where the measure-
ment and signal lengths were fixed at M = N and the signal sparsity K was var-
ied. For N = 1024, Fig. 6 shows the empirical success rate (over 200 realizations)
for PR-GAMP, GESPAR, and sparse-Fienup. Meanwhile, Fig. 7 shows the corre-
sponding median runtime for each algorithm, where all algorithms leveraged fast
Fourier transform (FFT) implementations of AAA. From Fig. 6, we can see that PR-
GAMP yields a significantly better phase transition than GESPAR and sparse-
Fienup. Meanwhile, from Fig. 7 we see that for the challenging case of K ≥ 40,
PR-GAMP-10 has uniformly better runtime and success rate than GESPAR and
sparse-Fienup.

Next we consider 1D Fourier AAA. Again, we repeat an experiment from [25], where
the measurement and signal lengths were fixed at M = 2N and the signal sparsity K
was varied. For N = 1024, Fig. 8 shows the empirical success rate (over 200 real-
izations) for PR-GAMP, GESPAR, and sparse-Fienup, and Fig. 7 shows the corre-
sponding median runtimes. From Fig. 8, we can see that PR-GAMP yields a signif-
icantly better phase transition than GESPAR and sparse-Fienup. Meanwhile, from
Fig. 9 we see that for the challenging case of K ≥ 40, PR-GAMP-20 has uniformly
better runtime and success rate than GESPAR and sparse-Fienup.

Comparing the results in this section to those in Section 4.1, we conclude that
compressive phase retrieval is much more difficult with Fourier matrices AAA than
with i.i.d matrices AAA. This phenomenon has been noticed by other authors as well,

9 For GESPAR, we used the November 2013 version of the Matlab code provided by the authors
at https://sites.google.com/site/yoavshechtman/resources/software.
10 The sparse-Fienup from [21] requires AAAHAAA to be a (scaled) identity matrix. Although GESPAR
can in principle handle generic AAA, the implementation provided by the authors is based on 1D and
2D Fourier AAA and is not easily modified.

https://sites.google.com/site/yoavshechtman/resources/software
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Fig. 6 Empirical success rate versus sparsity K in the recovery of an N=1024-length real-valued
signal from M=1024 2D-Fourier intensities at SNR = 100dB. PR-GAMP-A denotes PR-GAMP
under a maximum of A attempts.
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Fig. 7 Median runtime versus sparsity K in the recovery of an N=1024-length real-valued signal
from M=1024 2D-Fourier intensities at SNR = 100dB. PR-GAMP-A denotes PR-GAMP under
a maximum of A attempts.

which has led to proposals for randomized Fourier-based phase retrieval (e.g., using
binary masks [46]). Also, we notice that the use of multiple restarts in PR-GAMP is
much more important with Fourier AAA than it is with i.i.d AAA.



194 P. Schniter and S. Rangan

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

signal sparsity K

em
pi

ric
al

 p
ro

ba
bi

lit
y

success@−60dB, odft, N=512, M=1024, snr=100dB, xreal=1, avg=195

prGAMP200

prGAMP100

prGAMP50

prGAMP20

GESPAR

Fienup1000

Fig. 8 Empirical success rate versus sparsity K in the recovery of an N =512-length real-valued
signal from M=1024 1D-Fourier intensities at SNR = 100dB. PR-GAMP-A denotes PR-GAMP
under a maximum of A attempts.
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Fig. 9 Median runtime versus sparsity K in the recovery of an N =512-length real-valued signal
from M=1024 1D-Fourier intensities at SNR = 100dB. PR-GAMP-A denotes PR-GAMP under
a maximum of A attempts.

4.5 Practical image recovery with masked Fourier AAA

Finally, we demonstrate practical image recovery from compressed intensity mea-
surements. For this experiment, the signal xxx was the N = 65536-pixel grayscale
image shown on the left of Fig. 10, which has a sparsity of K = 6678. Since this
image is real and nonnegative, we ran PR-GAMP with a nonnegative-real-BG prior
[43], as opposed to the BG prior (16) used in previous experiments.
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For the first set of experiments, we used a “masked” Fourier transformation AAA ∈
C

M×N of the form

AAA =

⎡
⎢⎢⎣

JJJ1FFFDDD1

JJJ2FFFDDD2

JJJ3FFFDDD3

JJJ4FFFDDD4

⎤
⎥⎥⎦ , (19)

where FFF was a 2D DFT matrix of size N×N, DDDi were diagonal “masking” matrices
of size N ×N with diagonal entries drawn uniformly at random from {0,1}, and
JJJi were “selection” matrices of size M

4 ×N constructed from rows of the identity
matrix drawn uniformly at random. The matrices DDDi and JJJi help to “randomize”
the DFT, and they circumvent unicity issues such as shift and flip ambiguities. For
phase retrieval, the use of image masks was discussed in [46]. Note that because DDDi

and JJJi are sparse and FFF has a fast FFT-based implementation, the overall matrix AAA
has a fast implementation.

To eliminate the need for the expensive matrix multiplications with the element-
wise-squared versions of AAA and AAAH, as specified in steps (S1) and (S6) of
Table 2, GAMP was run in “uniform variance” mode, meaning that {ν p

m(t)}M
m=1

were approximated by ν p(t)� 1
M ∑M

m′=1 ν
p
m′(t); similar was done with {νs

m(t)}M
m=1,

{νr
n(t)}N

n=1, and {νx
n(t)}N

n=1. The result is that lines (S1)–(S2) in Table 2 become
ν p(t) = β‖AAA‖2

Fνx(t)/M + (1 − β )ν p(t − 1) = α(t) and line (S6) becomes

νr(t) =
(
‖AAA‖2

Fν s(t)/N
)−1

.
As before, the observations took the form yyy = |AAAxxx+www|, but now the noise vari-

ance was adjusted to yield a nontrivial SNR = 30 dB. To demonstrate compressive
phase retrieval, only M = N = 65536 intensity measurements were used. Running
PR-GAMP on 100 problem realizations (each with different random AAA and www, and
allowing at most 10 restarts per realization), a 99% success rate was observed, where
for this noisy problem “success” was defined as NMSE < SNR−1 = −30 dB. Fur-
thermore, PR-GAMP’s median runtime over these realizations was only 8.4 sec-
onds. The right subplot in Fig. 10 shows a typical PR-GAMP recovery.

For the second set of experiments, we “blurred” the masked Fourier outputs to
further randomize AAA, which allowed us to achieve similar recovery performance
using half the intensity measurements, i.e., M = N/2 = 32768. In particular, we
used a linear transformation AAA ∈C

M×N of the form

AAA =

[
BBB1FFFDDD1

BBB2FFFDDD2

]
, (20)

where FFF and DDDi were as before11 and BBBi were banded12 matrices of size M
2 ×N

with 10 nonzero i.i.d circular-Gaussian entries per column. The use of blurring to

11 Here, since we used only two masks, we ensured invertibility by constructing the diagonal of
DDD1 using exactly N/2 unit-valued entries positioned uniformly at random and constructing the
diagonal of DDD2 as its complement, so that DDD1 +DDD2 = III.
12 Since each BBBi was a wide matrix, its nonzero band was wrapped from bottom to top when
necessary.
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Fig. 10 Original image (left) and a typical PR-GAMP recovery (right) from M=N masked Fourier
intensity measurements at SNR=30 dB, which took 2.2 seconds.

enhance phase retrieval was discussed in [47]. As with (19), the AAA in (20) has a
fast implementation. Running PR-GAMP as before on 100 problem realizations at
SNR= 30 dB, a 99% success rate was observed with a median runtime of only 12.6
seconds.

To our knowledge, no existing algorithms are able to perform compressive phase
retrieval on images of this size and sparsity with such high speed and accuracy.
To put our results in perspective, we recall the image recovery experiment in [25],
which shows an example of GESPAR taking 80 seconds to recover a K = 15-sparse
image whose support was effectively constrained to N = 225 pixels from M = 38025
2D Fourier intensity measurements. In contrast, Fig. 10 shows PR-GAMP taking
2.2 seconds to recover a K = 6678-sparse image whose support was constrained to
N = 65536 pixels from M = 65536 masked 2D Fourier intensity measurements.

5 Conclusions

In this chapter, we proposed a novel approach to compressive phase retrieval based
on the generalized approximate message passing (GAMP) algorithm. Numerical re-
sults showed that the proposed PR-GAMP algorithm has excellent phase-transition
behavior, noise robustness, and runtime. In particular, for successful recovery of
synthetic K-sparse signals PR-GAMP requires approximately 4 times the number
of measurements as phase-oracle GAMP and achieves NMSE that is only 3 dB
worse than phase-oracle GAMP. For recovery of a real-valued 65532-pixel image
from 32768 pre-masked and post-blurred Fourier intensities, PR-GAMP was suc-
cessful 99% of the time with a median runtime of only 12.6 seconds. Comparison
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to the recently proposed CPRL, sparse-Fienup, and GESPAR algorithms revealed
PR-GAMP’s superior phase transitions and orders of magnitude faster runtimes at
large K.

Appendix A: Output Thresholding Rules

In this appendix, we derive expressions (10) and (12) that are used to compute the
functions gout,m and g′out,m defined in lines (D2) and (D3) of Table 1.

To facilitate the derivations in this appendix,13 we first rewrite pY |Z(y|z) in a form
different from (8). In particular, recalling that—under our AWGN assumption—
the noisy transform outputs u = z + w are conditionally distributed as p(u|z) =
N (u;z,νw), we first transform u = ye jθ from rectangular to polar coordinates to
obtain

p(y,θ |z) = 1y≥01θ∈[0,2π)N (ye jθ ;z,νw)y, (21)

where y is the Jacobian of the transformation, and then integrate out the unobserved
phase θ to obtain

pY |Z(y|z) = 1y≥0 y
∫ 2π

0
N (ye jθ ;z,νw)dθ . (22)

We begin by deriving the integration constant

C(y,νw, p̂,ν p)�
∫
C

pY |Z(y|z)N (z; p̂,ν p)dz

= y1y≥0

∫ 2π

0

∫
C

N (ye jθ ;z,νw)N (z; p̂,ν p)dzdθ (23)

= y1y≥0

∫ 2π

0
N (ye jθ ; p̂,νw +ν p)dθ , (24)

where we used the Gaussian-pdf multiplication rule14 in (24). Noting the similarity
between (24) and (22), the equivalence between (22) and (8) implies that

C(y,νw, p̂,ν p) =
2y

νw +ν p exp

(
− y2 + |p̂|2

νw +ν p

)
I0

(
2y|p̂|

νw +ν p

)
1y≥0. (25)

In the sequel, we make the practical assumption that y > 0, allowing us to drop the
indicator “1y≥0” and invert C.

Next, we derive the conditional mean

EZ|Y,P{Z|y, p̂;ν p}=C(y,νw, p̂,ν p)−1
∫
C

z pY |Z(y|z;νw)N (z; p̂,ν p)dz. (26)

13 For notational brevity, the subscript “m” is omitted throughout this appendix.
14 N (z;a,A)N (z;b,B)=N

(
z;

a
A + b

B
1
A + 1

B
, 1

1
A + 1

B

)
N (a;b,A+B).
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Plugging (22) into (26) and applying the Gaussian-pdf multiplication rule,

EZ|Y,P{Z|y, p̂;ν p}

=C−1y
∫ 2π

0

∫
C

zN (z;ye jθ ,νw)N (z; p̂,ν p)dzdθ (27)

=C−1y
∫ 2π

0

∫
C

zN

(
z;

ye jθ/νw + p̂/ν p

1/νw + 1/ν p ,
1

1/νw + 1/ν p

)
×N (ye jθ ; p̂,νw+ν p)dzdθ (28)

=C−1y
∫ 2π

0

ye jθ/νw + p̂/ν p

1/νw + 1/ν p N (ye jθ ; p̂,νw+ν p)dθ (29)

=
y/νw

1/νw + 1/ν pC−1y
∫ 2π

0
e jθN (ye jθ ; p̂,νw+ν p)dθ

+
p̂/ν p

1/νw + 1/ν pC−1y
∫ 2π

0
N (ye jθ ; p̂,νw+ν p)dθ (30)

=
y

νw/ν p + 1
C−1y

∫ 2π

0
e jθN (ye jθ ; p̂,νw+ν p)dθ +

p̂
ν p/νw + 1

. (31)

Expanding the N term, the integral in (31) becomes

∫ 2π

0
e jθN (ye jθ ; p̂,νw+ν p)dθ

=
1

π(νw +ν p)
exp

(
− y2 + |p̂|2

νw +ν p

)∫ 2π

0
e jθ exp

(
2y|p̂|

νw +ν p cos(θ −ψ)

)
dθ (32)

=
1

π(νw +ν p)
exp

(
− y2 + |p̂|2

νw +ν p

)
e jψ

∫ 2π

0
e jθ ′ exp

(
2y|p̂|

νw +ν p cos(θ ′)
)

dθ ′ (33)

=
2e jψ

νw +ν p exp

(
− y2 + |p̂|2

νw +ν p

)
I1

(
2y|p̂|

νw +ν p

)
, (34)

where ψ denotes the phase of p̂, and where the integral in (33) was resolved using
the expression in [48, 9.6.19]. Plugging (34) into (31) gives

EZ|Y,P{Z|y, p̂;ν p}= p̂
ν p/νw + 1

+
ye jψ

νw/ν p + 1

I1
( 2y| p̂|
νw+ν p

)
I0
( 2y| p̂|
νw+ν p

) , (35)

which agrees with (10).
Finally, we derive the conditional covariance

varZ|Y,P{Z|y, p̂;ν p}=C(y,νw, p̂,ν p)−1
∫
C

|z|2 pY |Z(y|z;νw)N (z; p̂,ν p)dz

−|EZ|Y,P{Z|y, p̂;ν p}|2. (36)
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Focusing on the first term in (36), if we plug in (22) and apply the Gaussian-pdf
multiplication rule, we get

C(y,νw, p̂,ν p)−1
∫
C

|z|2 pY |Z(y|z;νw)N (z; p̂,ν p)dz

=C−1y
∫ 2π

0

∫
C

|z|2N
(

z;
ye jθ/νw + p̂/ν p

1/νw + 1/ν p ,
1

1/νw + 1/ν p

)
dz

×N (ye jθ ; p̂,νw+ν p)dθ (37)

=C−1y
∫ 2π

0

(∣∣ye jθ/νw + p̂/ν p

1/νw + 1/ν p

∣∣2 + 1
1/νw + 1/ν p

)
N (ye jθ ; p̂,νw+ν p)dθ

(38)

=C−1y
∫ 2π

0

|y|2/(νw)2 + |p̂|2/(ν p)2 + 2y|p̂|/(νwν p)Re{e j(θ−ψ)}
(1/νw + 1/ν p)2

×N (ye jθ ; p̂,νw+ν p)dθ +
1

1/νw + 1/ν p (39)

=
|y|2/(νw)2 + |p̂|2/(ν p)2

(1/νw + 1/ν p)2 +
1

1/νw + 1/ν p

+
2y|p̂|/(νwν p)

(1/νw + 1/ν p)2 C−1yRe

{
e− jψ

∫ 2π

0
e jθN (ye jθ ; p̂,νw+ν p)dθ

}
(40)

=
|y|2/(νw)2 + |p̂|2/(ν p)2

(1/νw + 1/ν p)2 +
1

1/νw + 1/ν p

+
2y|p̂|/(νwν p)

(1/νw + 1/ν p)2 C−1y
2

νw +ν p exp

(
− y2 + |p̂|2

νw +ν p

)
I1

(
2y|p̂|

νw +ν p

)
(41)

=
|y|2/(νw)2 + |p̂|2/(ν p)2

(1/νw + 1/ν p)2 +
1

1/νw + 1/ν p +
2y|p̂|/(νwν p)

(1/νw + 1/ν p)2

I1
( 2y| p̂|
νw+ν p

)
I0
( 2y| p̂|
νw+ν p

) , (42)

where (41) used (34) and (42) used (25). By plugging (42) back into (36), we obtain
the expression given in (12).

Appendix B: EM Update for Noise Variance

Noting that

ln p(yyy,xxx;νw) = ln p(yyy|xxx;νw)+ ln p(xxx;νw) (43)

=
M

∑
m=1

ln pY |Z(ym|aaaH
mxxx;νw)+ const (44)

=
M

∑
m=1

ln
(

ym

∫ 2π

0
N (yme jθm ;aaaH

mxxx,νw)dθm

)
+ const, (45)
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where (45) used the expression for pY |Z from (22), we have

E
{

ln p(yyy,xxx;νw)
∣∣yyy; ν̂w[i]

}
=

∫
CN

p(xxx|yyy; ν̂w[i])
M

∑
m=1

ln
(∫ 2π

0
N (yme jθm ;aaaH

mxxx,νw)dθm

)
dxxx. (46)

To circumvent the high-dimensional integral in (46), we use the same large sys-
tem limit approximation used in the derivation of GAMP [27]: for sufficiently
dense AAA, as N → ∞, the central limit theorem (CLT) suggests that aaaH

mxxx = zm will
become Gaussian. In particular, when xxx ∼ p(xxx|yyy; ν̂w[i]), the CLT suggests that
aaaH

mxxx∼N (ẑm,νz
m), where

ẑm[i]�
N

∑
n=1

amnx̂n[i], (47)

νz
m[i]�

N

∑
n=1

|amn|2νx
n [i], (48)

such that x̂n[i] and νx
n [i] are the mean and variance of the marginal posterior pdf

p(xn|yyy; ν̂w[i]). In this case,

E
{

ln p(yyy,xxx;νw)
∣∣yyy; ν̂w[i]

}
=

M

∑
m=1

∫
C

N (zm; ẑm[i],νz
m[i]) ln

∫ 2π

0
N (yme jθm ;zm,νw)dθmdzm. (49)

From (14), we see that any solution ν̂w[i+1] > 0 is necessarily a value of νw that
zeros the derivative of the expected log-pdf. Thus, using the expected log-pdf ex-
pression from (49),

0 =
M

∑
m=1

∫
C

N (zm; ẑm[i],νz
m[i])

∫ 2π
0

∂
∂νw N (yme jθm ;zm, ν̂w[i+1])dθm∫ 2π

0 N (yme jθ ′m ;zm, ν̂w[i+1])dθ ′m
dzm. (50)

Plugging the derivative expression (see [39])

∂
∂νwN (yme jθm ;zm, ν̂w[i+1])

=
N (yme jθm ;zm, ν̂w[i+1])

ν̂w[i+1]2
(
|yme jθm− zm|2− ν̂w[i+1]

)
, (51)

into (50) and multiplying both sides by ν̂w[i+1]2, we find

ν̂w[i+1] =
1
M

M

∑
m=1

∫
C

N (zm; ẑm[i],νz
m[i])
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×
∫ 2π

0 |yme jθm− zm|2N (yme jθm ;zm, ν̂w[i+1])dθm∫ 2π
0 N (yme jθ ′m ;zm, ν̂w[i+1])dθ ′m

dzm (52)

=
1
M

M

∑
m=1

∫
C

N (zm; ẑm[i],νz
m[i])

×
∫ 2π

0
|yme jθm− zm|2 p(θm;zm, ν̂w[i+1])dθmdzm (53)

with the newly defined pdf

p(θm;zm, ν̂w[i+1])� N (yme jθm ;zm, ν̂w[i+1])∫ 2π
0 N (yme jθ ′m ;zm, ν̂w[i+1])dθ ′m

(54)

∝ exp
(
− |zm− yme jθm |2

ν̂w[i+1]

)
(55)

∝ exp
(
κm cos(θm−φm)

)
for κm � 2|zm|ym

ν̂w[i+1]
, (56)

where φm is the phase of zm (recall (5)). The proportionality (56) identifies this pdf
as a von Mises distribution [49], which can be stated in normalized form as

p(θm;zm, ν̂w[i+1]) =
exp(κm cos(θm−φm))

2πI0(κm)
. (57)

Expanding the quadratic in (53) and plugging in (57), we get

ν̂w[i+1] =
1
M

M

∑
m=1

∫
C

N (zm; ẑm[i],νz
m[i])

(
y2

m + |zm|2

− 2ym|zm|
∫ 2π

0
cos(θm−φm)

exp(κm cos(θm−φm))

2πI0(κm)
dθm

)
dzm (58)

=
1
M

M

∑
m=1

∫
C

N (zm; ẑm[i],νz
m[i])

×
(

y2
m + |zm|2− 2ym|zm|R0

(
2|zm|ym

ν̂w[i+1]

))
dzm, (59)

where R0(·) is the modified Bessel function ratio defined in (13) and (59) follows
from [48, 9.6.19]. To proceed further, we make use of the expansion R0(κ) = 1−
1

2κ −
1

8κ2 − 1
8κ3 +o(κ−3) from [50, Lemma 5] to justify the high-SNR approximation

R0(κ)≈ 1− 1
2κ

, (60)
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which, when applied to (59), yields

ν̂w[i+1]≈ 2
M

M

∑
m=1

∫
C

(
ym−|zm|

)2
N (zm; ẑm[i],νz

m[i])dzm. (61)

Although (61) can be reduced to an expression that involves the mean of a Rician
distribution, our empirical experience suggests that it suffices to assume νz

m[i] ≈ 0
in (61), after which we obtain the much simpler expression given in (15).
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Importance sampling in signal processing
applications

Rachel Ward

Abstract Importance sampling is a technique originating in Monte Carlo simulation
whereby one samples from a different, weighted distribution, in order to reduce vari-
ance of the resulting estimator. More recently, variations of importance sampling
have emerged as a means for reducing computational and sample complexity in
different problems of modern signal processing. Here we review importance sam-
pling as it is manifested in three such problems: stochastic optimization, compres-
sive sensing, and low-rank matrix approximation. In keeping with a general trend
in convex optimization towards the analysis of phase transitions for exact recov-
ery, importance sampling in compressive sensing and low-rank matrix recovery can
be used to effectively push the phase transition for exact recovery towards fewer
measurements.

Key words: Complexity, Compressive sensing, Importance sampling, Matrix com-
pletion, Measurements, Stochastic gradient, Weighted sampling

Introduction

Importance sampling in simulation

The usual setup for importance sampling is in Monte Carlo simulation: one wants to
compute an integral of the form

∫
D f (x)p(x)dx, where p(x) is a probability density:∫

D p(x)dx = 1. An easy and computationally efficient way to approximate such an
integral is to consider the integral as an expectation, μ = E( f (x)) =

∫
D f (x)p(x)dx,

and approximate the expectation as a sample average,
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∫
D

f (x)dx ≈ 1
m

m

∑
i=1

f (xi), xi ∼ p,

where the random variables xi are independent and ideally distributed. Validity of
this approximation is ensured by the law of large numbers, but the number of sam-
ples m needed for a given approximation accuracy grows with the variance of the
random variable f (x). In particular, if f (x) is nearly zero on its domain D except in
a region A ⊂ D for which P(x ∈ A) is small, then such standard Monte Carlo sam-
pling may fail to have even one point inside the region A. It is clear intuitively that in
this situation, we would benefit from getting some samples from the interesting or
important region A. What importance sampling means is to sample from a different
density q(x) which overweights this region, rescaling the resulting quantity in order
that the estimate remain unbiased.

More precisely, if x has probability density p(x), then

μ = E[ f (x)] =
∫
D

f (x)p(x)dx

=
∫
D

f (x)
p(x)
q(x)

q(x)dx = Eq[ f (x)w(x)], (1)

where w(·) ≡ p(·)
q(·) is the weighting function. By (1), the estimator

μ̂ =
1
m

m

∑
i=1

f (xi)w(xi), xi ∼ q, (2)

is also an unbiased estimator for μ . The importance sampling problem then focuses
on finding a biasing density q(x) which overweights the important region close to
an “optimal” way, at least such the variance of the importance sampling estimator
is smaller than the variance of the general Monte Carlo estimate, so that fewer sam-
ples m are required to achieve a prescribed estimation error. In general, the density
q∗ with minimal variance σ2

q∗ is proportional to | f (x)|p(x), which is unknown a
priori; still, there are many techniques for estimating or approximating this optimal
distribution, see [31, Chapter 9].

Importance sampling beyond simulation

In recent times, probabilistic and stochastic algorithms have seen an explosion of
growth as we move towards bigger data problems in higher dimensions. Indeed, we
are often in the situation where at least one of the following is true:

1. Taking measurements is expensive, and we would like to reduce the number of
measurements needed to reach a prescribed approximation accuracy
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2. Optimizing over the given data is expensive, and we would like to reduce the
number of computations needed to get within a prescribed tolerance of the opti-
mal solution.

Importance sampling has proved to be helpful in both regimes. Whereas in simula-
tion, importance sampling has traditionally been used for approximating linear es-
timates such as expectations/integrals, recent applications in signal processing and
machine learning have considered importance sampling in approximating or even
exactly recovering nonlinear estimates as well.

We consider here three case studies where the principle of importance sampling
has been applied; this is by no means a complete list of all applications of impor-
tance sampling to machine learning and signal processing problems.

1. Stochastic optimization: Towards minimizing F : Rn → R of the form F(x) =
∑m

i=1 fi(x) via stochastic gradient descent, one iterates xk+1 = xk−γw(ik)∇ fik (xk)
with ik randomly chosen from {1,2, . . . ,m} so that

Eik [xk+1] = xk− γ
m

∑
i=1

∇ fi(xk);

that is, one implements a full gradient descent update at each iteration, in ex-
pectation. Standard procedure is to sample indices from {1,2, . . . ,m} uniformly,
and the resulting convergence rate is limited by the worst-case Lipschitz con-
stant associated with the component gradient functions. If however one has prior
knowledge about the component Lipschitz constants, and has the liberty to draw
indices proportionately to the associated Lipschitz constants, then the conver-
gence rate of stochastic gradient can be improved so as to depend on the average
Lipschitz constant among the components. This is in line with the principle of
importance sampling: if ∇ fi has a larger Lipschitz constant, then this component
is contributing more in content, and should be sampled with higher probability.
We review some results of this kind in more detail below. For more details, see
Section “Importance sampling in Stochastic Optimization”.

2. Compressive sensing: Consider an orthonormal matrixΦ ∈R
n×n (orΦ ∈C

n×n),
along with a vector x ∈ R

n. Then clearly

Φ∗Φx = x;

moreover, if ϕik ∈ R
1,n is a randomly selected row from Φ , drawn such that row

i is sampled with probability p(i), then also

Ep

[
1

[p(ik)]2
(
ϕ∗ikϕik

)]
x = x.

Compressive sensing shows that if x is s-sparse, with s � n, then for certain
orthonormal Φ , as few as m ∝ s log4(n) i.i.d. samples of the form 〈ϕik ,x〉 can
suffice to exactly recover x as the solution to a convex optimization program. For
instance, such results hold if all of the rows of Φ are “equally important” (i.e., Φ
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has uniformly bounded entries), and if rows are drawn i.i.d. uniformly from Φ .
One may also incorporate importance sampling: if rows are drawn i.i.d. propor-
tionately to their squared Euclidean norm, and if the average Euclidean row norm
is small, then m∝ s log4(n) i.i.d. samples still suffice for exact reconstruction. For
more details, see Section “’Importance sampling in compressive sensing’.

3. Low-rank matrix approximations: Consider a matrix M ∈ R
n1×n2 of rank

r � min{n1,n2}, and a subset Ω ⊂ [n1]× [n2] of |Ω | = m revealed entries
Mi, j. If the entries are revealed as i.i.d. draws where Prob[(i, j)] = pi, j, then

E

[
1

pi, j
Mi, j

]
= M. Importance sampling here corresponds to putting more weight

pi, j on “important” entries in order to exactly recover M using fewer samples.
We will see that if entries are drawn from a weighted distribution based on ma-
trix leverage scores, then m = r log2(max{n1,n2}) revealed entries suffices for M
to be exactly recoverable as the solution to a convex optimization problem.

Importance sampling in Stochastic Optimization

Gradient descent is a standard method for solving unconstrained optimization
problems of the form

min
x∈Rn

F(x); (3)

gradient descent proceeds as follows: initialize x0 ∈ R
n, and iterate along the direc-

tion of the negative gradient of F (the direction of “steepest descent”) until conver-
gence

xk+1 = xk− γk∇F(xk). (4)

Here γk is the step-size which may change at every iteration. For optimization prob-
lems of very big size, however, even a full gradient computation of the form ∇F(xk)
can require substantial computational efforts and full gradient descent might not be
feasible. This has motivated recent interest in random coordinate descent or stochas-
tic gradient methods (see [3, 28, 29, 35, 36, 40], to name just a few), where one
descends along gradient directions which are cheaper to compute. For example,
suppose that F to be minimized is differentiable and admits a decomposition of the
form

F(x) =
m

∑
i=1

fi(x). (5)

Since ∇F(x) = ∑m
i=1∇ fi(x), a full gradient computation involves computing all m

gradients ∇ fi(x); still, one could hope to get close to the minimum, at a much
smaller expense, by instead selecting a single index ik at random from {1,2, . . . ,m}
at each iteration. This is the principle behind stochastic gradient descent.
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(5) Stochastic Gradient (SG)

Consider the minimization of F : Rn → R of the form F(x) = ∑m
i=1 fi(x).

Choose x0 ∈ R
n.

For k≥ 1 iterate until convergence criterion is met:

1. Choose ik ∈ [m] according to the rule Prob[ik = k] = w(k)

2. Update xk+1 = xk− γ 1
w(ik)

∇ fik (xk).

We have set the step-size γ to be constant for simplicity. Note that with the nor-
malization in the update rule,

E
(w)[xk+1] = xk− γ

m

∑
i=1

∇ fik (xk)

= xk− γ∇F(xk). (6)

Thus, we might hope for convergence in expectation of such stochastic iterations
to the minimizer of (5) under similar conditions guaranteeing convergence of full
gradient descent, namely, when F is convex (so that every minimizer is a global
minimizer) and ∇F is Lipschitz continuous [30]. That is, we will assume
1. F is convex with convexity parameter μ = μ(F)≥ 0: for any x and y from R

n we
have

F(y)≥ F(x)+ 〈∇F(x),y− x〉+ 1
2
μ‖y− x‖2. (7)

When μ > 0 strictly, we say that F is μ-strongly convex.
2. The component functions fi are continuously differentiable and satisfy

‖∇ fi(x)−∇ fi(y)‖ ≤ Li‖y− x‖, i = 1,2, . . . ,m, x,y ∈ R
n. (8)

We refer to Li as the Lipschitz constant of ∇ fi.

The default sampling strategy in stochastic gradient methods is to sample uniformly,
taking w(i) = 1

m in (5). In cases where the component functions fi are only observed
sequentially or in a streaming fashion, one does not have the freedom to choose
a different sampling strategy. But if one does have such freedom, and has prior
knowledge about the distribution of the Lipschitz constants Li associated with the
component function gradients, choosing probabilities w(i) ∝ Li can significantly
speed up the convergence rate of stochastic gradient. This is in line with the principle
of importance sampling: if ∇ fi has a larger Lipschitz constant, it is contributing
more in content, and should be sampled with higher probability. We review some
results of this kind in more detail below.
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Stochastic Gradient (SG) with Importance Sampling

For strongly convex functions, a central quantity in the analysis of stochastic de-
scent is the conditioning of the problem, which is, roughly speaking, the ratio of
the Lipschitz constant to the parameter of strong convexity. Recall that for a convex
quadratic F(x) = 1

2 x′Hx, the Lipschitz constant of the gradient is given by the max-
imal eigenvalue of the Hessian H while the parameter of strong convexity is given
by its minimal eigenvalue, and so in this case the conditioning reduces to the con-
dition number of the Hessian matrix. In the general setting where F(x) =∑m

i=1 fi(x)
is strongly convex, the Hessian can vary with x, and the results will depend on the
Lipschitz constants Li of the ∇ fi and not only of the aggregate ∇F .

In short: with importance sampling, the convergence rate of stochastic descent is
proportional to the average conditioning L/μ = 1

m ∑m
i=1 Li/μ of the problem; with-

out importance sampling, the convergence rate must depend on the uniform con-
ditioning supi Li/μ . Thus, importance sampling has the highest potential impact if
the Lipschitz constants are highly variable. This is made precise in the following
theorem from [26], which in the case of uniform sampling, improves on a previous
result of [2].

Theorem 1. Let each fi be convex where ∇ fi has Lipschitz constant Li, with Li ≤
supL, and let F(x) = E fi(x) be μ-strongly convex. Set σ2 = E‖∇ fi(x∗)‖2, where
x∗ =argminx F(x). Suppose that γ ≤ 1

μ . Then the SG iterates in (5) satisfy:

E‖xk− x∗‖2 ≤
[
1− 2γμ(1− γ supL)

)]k
‖x0− x∗‖2 +

γσ2

μ
(
1− γ supL

) . (9)

where the expectation is with respect to the sampling of {ik} in (5).

The parameter σ2 should be thought of as a ‘residual’ parameter measuring the ex-
tent to which the component functions fi share a common minimizer. As a corollary
of Theorem 1, if one pre-specifies a target accuracy ε > 0, then the optimal step-size
γ∗ = γ∗(ε,μ ,σ2,supL) is such that

k = 2log(ε0/ε)
(

supL
μ

+
σ2

μ2ε

)
(10)

SG iterations suffice so that E‖xk− x∗‖2
2 ≤ ε,. See [26] for more details.

To see what this result implies for importance sampling, consider the stochas-
tic gradient algorithm (5) with weights w(k). Then, when expectation is taken with

respect to the sampling of {ik}, we have F(x) = E f (w)i (x) where f (w)i = 1
w(k) fi has

Lipschitz constant L(w)
i = 1

w(i)Li. The supremum of L(w)
i is then given by:

supL(w) = sup
i

L(w)
i = sup

i

Li

w(i)
. (11)

It is easy to verify that (11) is minimized by the weights
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w(i) =
Li

L
, so that supL(w) = sup

i

Li

Li/L
= L. (12)

Since μ is invariant to choice of weights, we find that in the “realizable” regime
where σ2 = 0, and hence σ2

(w) = 0, then choosing the weights w(i) as in (11) gives

linear convergence with a linear dependence on the average conditioning L/μ , and
a number of iterations,

k(w) ∝ log(1/ε)L/μ ,

to achieve a target accuracy ε . This strictly improves over the best possible results
with uniform sampling, where the linear dependence is on the uniform conditioning
supL/μ (see [26] for more details).

However, when σ2 > 0, we get a potentially much worse scaling of the second
term, by a factor of L/infL:

σ2
(w) = E

(w)[‖∇ f (w)i (x)‖2
2]≤

L
infL

σ2. (13)

Fortunately, we can easily overcome this factor by sampling from a mixture of the
uniform and fully weighted sampling, referred to as partially biased sampling. Us-
ing the weights

w(i) =
1
2

Li

L
+

1
2

m,

we have

supL(w) = sup
i

1
1
2 +

1
2 ·

Li
L

Li ≤ 2L (14)

and

σ2
(w) = E

[
1

1
2 +

1
2 ·

Li
L

‖∇ fi(x)‖2
2

]
≤ 2σ2. (15)

In this sense, under the assumptions of Theorem 1, partially biased sampling will
never be worse in terms of convergence rate than uniform sampling, up to a factor
of 2, but can potentially have much better convergence.

Remark 1. An important example where all of these parameters have explicit forms
is the least squares problem, where

F(x) =
1
2
‖Ax− b‖2

2 =
1
2

m

∑
i=1

(〈ai,x〉− bi)
2, (16)

with b an m-dimensional vector, A an m × n matrix with rows ai, and x∗ =
argminx

1
2‖Ax− b‖2

2 is the least-squares solution. The Lipschitz constants of the
components fi =

m
2 (〈ai,x〉− bi)

2 are Li = m‖ai‖2
2, and the average Lipschitz con-

stant is 1
m ∑i Li = ‖A‖2

F where ‖ · ‖F denotes the Frobenius norm. If A is full-rank
and overdetermined, then F is strongly convex with strong convexity parameter
μ = ‖(AT A)−1‖−1

2 , so that the average condition number is L/μ=‖A‖2
F‖(AT A)−1‖2.
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Moreover, the residual is σ2 = m∑i ‖ai‖2|〈ai,x〉 − bi|2. Observe the bounds
σ2 ≤ n‖A‖2

F supi |〈ai,x〉− bi|2 and σ2 ≤msupi ‖ai‖2‖Ax∗ − b‖2
2.

Importance Sampling for SG in other regimes

Theorem 1 is stated for smooth and strongly convex objectives, and is particularly
useful in the regime where the residual σ2 is low, and the linear convergence term
is dominant. But importance sampling can be incorporated into SG methods also in
other regimes, and we now briefly survey some of these possibilities.

Smooth, Not Strongly Convex

When each component fi is convex, non-negative, and has an Li-Lipschitz gradient,
but the objective F(x) is not necessarily strongly convex, then after

k = O

(
(supL)‖x∗‖2

2

ε
· F(x∗)+ ε

ε

)
(17)

iterations of SGD with an appropriately chosen step-size we will have F(x) ≤
F(x∗)+ ε , where x is an appropriate averaging of the k iterates [43]. The relevant
quantity here determining the iteration complexity is again supL. Furthermore, the
dependence on the supremum is unavoidable and cannot be replaced with the av-
erage Lipschitz constant L [43]: if we sample gradients according to the uniform
distribution, we must have a linear dependence on supL.

The only quantity in (17) that changes with a re-weighting is supL—all other
quantities (‖x∗‖2

2, F(x∗), and the sub-optimality ε) are invariant to re-weightings.
We can therefore replace the dependence on supL with a dependence on supL(w) by
using a weighted SGD as in (12). As we already calculated, the optimal weights are
given by (12), and using them we have supL(w) = L. In this case, there is no need
for partially biased sampling and we obtain that

k = O

(
L‖x∗‖2

2

ε
· F(x∗)+ ε

ε

)
(18)

iterations of weighed SGD updates (5) using the weights (12) suffice.

Non-Smooth Objectives

We now turn to non-smooth objectives, where the components fi might not be
smooth, but each component is Gi-Lipschitz. Roughly speaking, Gi is a bound on the
first derivative (gradient) of fi, while Li is a bound on the second derivatives of fi.
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Here, the performance of SGD depends on the second moment G2 = E[G2
i ]. The

precise iteration complexity depends on whether the objective is strongly convex or
whether x∗ is bounded, but in either case depends linearly on G2.

Using weighted SGD, we get linear dependence on:

G2
(w) = E

(w)
[
(F (w)

i )2
]
= E

(w)
[

G2
i

w(i)2

]
= E

[
G2

i

w(i)

]
, (19)

where F (w)
i = Gi/w(i) is the Lipschitz constant of the scaled f (w)i . This is mini-

mized by the weights w(i) = Gi/G, where G = E[Gi], yielding G2
(w) = G

2
. Using

importance sampling, we reduce the dependence on G2 to a dependence on G
2
. It is

helpful to recall that G2 = G
2
+Var[Gi]. What we save is thus exactly the variance

of the Lipschitz constants Gi. For more details, see [46].

Importance sampling in random coordinate descent

A related stochastic optimization problem is randomized coordinate descent, where
one minimizes F : Rn → R, not necessarily having the form F(x) = ∑m

i=1 fi(x), but
still assumed to be strongly convex, by decomposing its gradient (5) into its coordi-
nate directions

∇F(x) =
n

∑
i=1

∇iF(x)

and performing the stochastic updates:

1. Choose coordinate i ∈ [n] according to rule Prob[ik = k] = w(k)

2. Update xk+1 = xk− γ 1
w(ik)

∇ik F(xk).

The motivation is that a coordinate directional derivative can be much simpler
than computation of either function value, or a directional derivative along an arbi-
trary direction.

Actually, Theorem 1 can also be applied to this setting; its proof from [26] uses
only that

∇F(x) = E[∇ fi(x)], (20)

and the fact that for, given any x,y ∈ R
n,

‖∇ fi(x)−∇ fi(y)‖2
2 ≤ Li〈x− y,∇ fi(x)−∇ fi(y)〉. (21)

which follows from the assumption that fi is smooth with Lipschitz continuous gra-
dient by the so-called co-coercivity Lemma, see [26, Lemma A.1]. Note that (20) still
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holds in the setting of randomized coordinate descent, and (21) holds if F : Rn →R

has component-wise Lipschitz continuous gradient:

|∇iF(x+ hei)−∇iF(x)| ≤ Li|h|, x ∈ R
n, h ∈ R, i ∈ [n], (22)

Under these assumptions, one may consider importance sampling for random coor-
dinate descent with weights w(k) = Lk/∑ j L j, then we may apply Theorem 1 to get
a linear convergence rate depending on L/μ as opposed to supL/μ . This is because
coordinate descent falls into the realizable regime, as ∇iF(x∗) = 0 for each i, and
hence also σ2 =E‖(∇F)i(x∗)‖2 = 0. Coordinate descent with importance sampling
was considered before SG with importance sampling, originating in the works of
[29] and [35]. One may consider the extension of randomized coordinate descent
(8) to randomized block coordinate descent, descending in blocks of coordinates at
a time. Then, the important Lipschitz constants are those associated with the partial
gradients of F as opposed to the component-wise gradients [29].

Notes and extensions

Several aspects of importance sampling in stochastic optimization were not covered
here, but we point out further results and references.

1. If the Lipschitz constants are not known a priori, then one could still consider
doing importance sampling via rejection sampling, simulating sampling from
the weighted distribution; this can be done by accepting samples with probability
proportional to Li/sup j L j. The overall probability of accepting a sample is then
L/supLi, introducing an additional factor of supLi/L, and thus again obtaining
a linear dependence on supLi. Thus, if we are only presented with samples from
the uniform distribution, and the cost of obtaining the sample dominates the cost
of taking the gradient step, we do not gain (but do not lose much either) from
rejection sampling. We might still gain from rejection sampling if the cost of
operating on a sample (calculating the actual gradient and taking a step according
to it) dominates the cost of obtaining it and (a bound on) the Lipschitz constant.

2. All of the convergence results we stated in this section were with respect to the
expected value. Nevertheless, all these rates extend to high probability results
using Chebyshev’s inequality. See [29] for more details.

3. Recently, several hybrid full-gradient/stochastic gradient methods have emerged
which, as opposed to pure SG as in (5), have the advantage of progressively re-
ducing the variance of the stochastic gradient with the iterations [19, 37, 41, 42],
thus allowing convergence to the true minimizer. These algorithms can further be
applied to the more general class of composite problems,

minimizex∈Rn {P(x) = F(x)+R(x)} , (23)

where F(x) is the average of many smooth component functions fi(x) whose gra-
dients have Lipschitz constants Li as in (5) and R(x) is relatively simple but can
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be non-differentiable. These algorithms have the added complexity of requiring
a single pass over the data, all having complexity O((n+ supL/μ) log(1/ε)).
As shown in [45], importance sampling can also be applied in this more
general setting to speed up convergence: sampling component functions
proportional to their Lipschitz constants, this complexity bound becomes
O((n+L/μ) log(1/ε)).

4. An observation that is important not only for this chapter but also for the entire
discussion on importance sampling is the computational cost of implementing a
random counter, that is, given values L1,L2, . . . ,Lm, generate efficiently random
integer numbers i ∈ {1,2, . . . ,m} with probabilities

Prob[i = k] =
Lk

∑m
j=1 Lj

, k = 1,2, . . . ,m. (24)

Using a tree search algorithm [29], such a counter can be implemented with
log(m) operations, and by generating one random number.

Importance sampling in compressive sensing

Introduction

The emerging area of mathematical signal processing known as compressive sensing
is based on the observation that a signal which allows for an approximately sparse
representation in a suitable basis or dictionary can be recovered from relatively few
linear measurements via convex optimization, provided these measurements are suf-
ficiently incoherent with the basis in which the signal is sparse [8, 10, 38]. In this
section we will see how importance sampling can be used to enhance the incoher-
ence between measurements and signal basis, again, allowing for recovery from
fewer linear measurements.

We illustrate the power of importance sampling through two examples: com-
pressed sensing imaging and polynomial interpolation. In compressed sensing imag-
ing, coherence-based sampling provides a theoretical justification for empirical
studies [23, 24] pointing to variable-density sampling strategies for improved MRI
compressive imaging. In polynomial interpolation, coherence-based sampling im-
plies that sampling points drawn from the Chebyshev distribution are better suited
for the recovery of polynomials and smooth functions than uniformly distributed
sampling points, aligning with classical results on Lagrange interpolation [5].

Before continuing, let us fix some notation. A vector x ∈ C
N is called s-sparse

if ‖x‖0 = #{x j : x j �= 0} ≤ s, and the best s-term approximation of a vector x ∈ C
N

is the s-sparse vector xs ∈ C
N satisfying xs = infu:‖u‖0≤s ‖x− u‖p. Clearly, xs = x

if x is s-sparse. Informally, x is called compressible if ‖x− xs‖ decays quickly as s
increases.
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Incoherence in compressive sensing

Here we recall sparse recovery results for structured random sampling schemes cor-
responding to bounded orthonormal systems, of which the partial discrete Fourier
transform is a special case. We refer the reader to [15] for an expository article
including many references.

Definition 1 (Bounded orthonormal system (BOS)). Let D be a measurable sub-
set of Rd .

• A set of functions {ψ j : D→C, j ∈ [N]} is called an orthonormal system with
respect to the probability measure ν if

∫
D ψ̄ j(u)ψk(u)dν(u) = δ jk, where δ jk

denotes the Kronecker delta.
• Let μ be a probability measure on D . A random sample of the orthonormal

system {ψ j} is the random vector (ψ1(T ), . . . ,ψN(T )) that results from drawing
a sampling point T from the measure μ .

• An orthonormal system is said to be bounded with bound K if
sup j∈[N] ‖ψ j‖∞ ≤ K.

Suppose now that we have an orthonormal system {ψ j} j∈[N] and m random sam-
pling points T1,T2, . . . ,Tm drawn independently from some probability measure μ .
Here and throughout, we assume that the number of sampling points m � N. As
shown in [15], if the system {ψ j} is bounded, and if the probability measure μ from
which we sample points is the orthogonalization measure ν associated with the sys-
tem, then the (underdetermined) structured random matrix A :CN →C

m whose rows
are the independent random samples will be well conditioned, satisfying the so-
called restricted isometry property [11] with nearly order-optimal restricted isome-
try constants with high probability. Consequently, matrices associated with random
samples of bounded orthonormal systems have nice sparse recovery properties.

Proposition 1 (Sparse recovery through BOS). Consider the matrix A ∈ C
m×N

whose rows are independent random samples of an orthonormal system {ψ j , j ∈
[N]} with bound sup j∈[N] ‖ψ j‖∞ ≤ K, drawn from the orthogonalization measure ν
associated with the system. If the number of random samples satisfies

m � K2s log3(s) log(N), (25)

for some s � log(N), then the following holds with probability exceeding 1−
N−C log3(s) : For each x ∈ C

N, given noisy measurements y = Ax +
√

mη with
‖η‖2 ≤ ε , the approximation

x# = arg min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤
√

mε

satisfies the error guarantee ‖x− x#‖2 � 1√
s
‖x− xs‖1 + ε.

An important special case of such a matrix construction is the subsampled discrete
Fourier matrix, constructed by sampling m � N rows uniformly at random from
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the unitary discrete Fourier matrixΨ ∈ C
N×N with entries ψ j,k =

1√
N

ei2π( j−1)(k−1).

Indeed, the system of complex exponentialsψ j(u) = ei2π( j−1)u, j ∈ [N], is orthonor-
mal with respect to the uniform measure over the discrete set D = {0, 1

N , . . . ,
N−1

N },
and is bounded with optimally small constant K = 1. In the discrete setting, we may
speak of a more general procedure for forming matrix constructions adhering to the
conditions of Proposition 1: given any two unitary matrices Φ andΨ , the composite
matrix Φ∗Ψ is also a unitary matrix, and this composite matrix will have uniformly
bounded entries if the orthonormal bases (φ j) and (ψk), corresponding to the rows
of Φ andΨ , respectively, are mutually incoherent:

μ(Φ,Ψ ) :=
√

N sup1≤ j,k≤N |〈φ j ,ψk〉| ≤ K. (26)

Indeed, if Φ and Ψ are mutually incoherent, then the rows of B =
√

NΨ∗Φ con-
stitute a bounded orthonormal system with respect to the uniform measure on
D = {0, 1

N , . . . ,
N−1

N }. Proposition 1 then implies a sampling strategy for reconstruct-
ing signals x∈C

N with assumed sparse representation in the basisΨ , that is x =Ψb
and b≈ bs (the s-sparse vector corresponding to its best s-term approximation), from
a few linear measurements: form a sensing matrix A∈C

m×N by sampling rows i.i.d.
uniformly from an incoherent basis Φ , collect measurements y = Ax+η , ‖η‖2 ≤ ε ,
and solve the �1 minimization program,

x# = arg min
z∈CN

‖Ψ∗z‖1 subject to ‖Az− y‖2 ≤
√

mε.

This scenario is referred to as incoherent sampling.

Importance sampling via local coherences

Consider more generally the setting where we aim to compressively sense signals
x ∈C

N with assumed sparse representation in the orthonormal basisΨ ∈C
N×N , but

our sensing matrix A∈C
m×N can only consist of rows from some fixed orthonormal

basis Φ ∈ C
N×N that is not necessarily incoherent with Ψ . In this setting, we ask:

Given a fixed sensing basisΨ and sparsity basis Φ , how should we sample rows of
Ψ in order to make the resulting system as incoherent as possible? We will answer
this question by introducing the concept of local coherence between two bases as
described in [21, 32], whereby in the discrete setting the coherences of individual
elements of the sensing basis are calculated and used to derive the sampling strategy.

The following result quantifies how regions of the sensing basis that are more
coherent with the sparsity basis should be sampled with higher density: they should
be given more “importance”. The following is essentially a generalization of Theo-
rem 2.1 in [32], but for completeness, we include a short self-contained proof.

Theorem 2 (Sparse recovery via local coherence sampling). Consider a measur-
able set D and a system {ψ j, j ∈ [N]} that is orthonormal with respect to a measure
ν on D which has square-integrable local coherence,
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sup
j∈[N]

|ψ j(u)| ≤ κ(u),
∫

u∈D
|κ(u)|2ν(u)du = B. (27)

We can define the probability measure μ(u) = 1
Bκ

2(u)ν(u) on D . Draw m sam-
pling points T1,T2, . . . ,Tm independently from the measure μ , and consider the ma-
trix A ∈ C

m×N whose rows are the random samples ψ j(Tk), j ∈ [N]. Consider also
the diagonal preconditioning matrix P ∈ C

m×m with entries pk,k = 1/μ(Tk). If the
number of sampling points

m � B2s log3(s) log(N), (28)

for some s � log(N), then the following holds with probability exceeding 1−
N−C log3(s).

For each x∈C
N, given noisy measurements y=Ax+

√
mη with ‖Pη‖2≤

√
mε ,

the approximation

x# = arg min
z∈CN

‖z‖1 subject to ‖PAz−Py‖2 ≤
√

mε

satisfies the error guarantee

‖x− x#‖2 �
1√
s
‖x− xs‖1 + ε.

The proof is a simple change-of-measure argument following the lines of stan-
dard importance sampling principle:

Proof. Consider the functions Q j(u) =
√

B
κ(u)ψ j(u). The system {Q j} is bounded

with sup j∈[N] ‖Q j‖∞ ≤
√

B, and this system is orthonormal on D with respect to the
sampling measure μ :∫

u∈D
Q̄ j(u)Qk(u)μ(u)du

=
∫

u∈D

(
1

κ(u)
ψ̄ j(u)

)(
1

κ(u)
ψk(u)

)(
κ2(u)ν(u)

)
du

=

∫
u∈D

ψ̄ j(u)ψk(u)ν(u)du = δ jk. (29)

Thus we may apply Proposition 1 to the system {Q j}, noting that the matrix of
random samples of the system {Q j} may be written as PA.

In the discrete setting where {ψ j} j∈[N] and {φk} are rows of unitary matricesΨ
and Φ , and ν is the uniform measure over the set D = {0, 1

N , . . . ,
N−1

N }, the integral
in condition (27) reduces to a sum,

sup
k∈[N]

√
N|〈ψ j,φk〉| ≤ κ j,

1
N

N

∑
j=1

κ2
j = B. (30)
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This motivates the introduction of the local coherence of an orthonormal basis
{φ j}N

j=1 of CN with respect to the orthonormal basis {ψk}N
k=1 of CN :

Definition 2. The local coherence of an orthonormal basis {φ j}N
j=1 of CN with re-

spect to the orthonormal basis {ψk}N
k=1 of C

N is the function μ loc = (μ j) ∈ R
N

defined coordinate-wise by

μ j = sup
1≤k≤N

√
N|〈ϕ j,ψk〉|.

We have the following corollary of Theorem 2.

Corollary 1. Consider a pair of orthonormal basis (Φ,Ψ ) with local coherences
bounded by μ j ≤ κ j. Let s≥ 1, and suppose that

m � s

(
1
N

N

∑
j=1

κ2
j

)
log4(N).

Select m (possibly not distinct) rows of Φ∗ independent and identically distributed
from the multinomial distribution on {1,2, . . . ,N} with weights cκ2

j to form the

sensing matrix A : CN → C
m. Consider also the diagonal preconditioning matrix

P ∈ C
m×m with entries pk,k =

1√
cκ j

. Then the following holds with probability ex-

ceeding 1−N−C log3(s) : For each x ∈ C
N, given measurements y = Ax+ η , with

‖Pη‖2 ≤
√

mε , the approximation

x# = arg min
u∈CN

‖Ψ∗u‖1 subject to ‖y−PAu‖2≤
√

mε

satisfies the error guarantee ‖x− x#‖2 � 1√
s
‖Ψ∗x− (Ψ∗x)s‖1 + ε.

Remark 2. Note that the local coherence not only influences the embedding dimen-
sion m, it also influences the sampling measure. Hence a priori, one cannot guar-
antee the optimal embedding dimension if one only has suboptimal bounds for the
local coherence. That is why the sampling measure in Theorem 2 is defined via the
(known) upper bounds κ and ‖κ‖2 rather than the (usually unknown) exact values
μloc and ‖μloc‖2, showing that local coherence sampling is robust with respect to
the sampling measure: suboptimal bounds still lead to meaningful bounds on the
embedding dimension.

We now present two applications where local-coherence sampling enables a sam-
pling scheme with sparse recovery guarantees.

Remark 3. The log(N)4 factor in the required number of measurements, m, can be
reduced to a single log(N) factor if one asks not for uniform sparse recovery (of the
form “with high probability, this holds for all x”) but rather a with-high probability
result holding only for a particular x (of the form “for this x, recovery holds with
high probability”). See [18] for more details.
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Variable-density sampling for compressive sensing MRI

In Magnetic Resonance Imaging, after proper discretization, the unknown image
(x j1, j2) is a two-dimensional array in R

n×n, and allowable sensing measurements
are two-dimensional Fourier transform measurements 1:

φk1,k2 =
1
n ∑j1, j2

x j1, j2 e2π i(k1 j1+k2 j2)/n, −n/2+ 1≤ k1,k2 ≤ n/2.

Natural sparsity domains for images, such as discrete spatial differences, are not
incoherent to the Fourier basis.

A number of empirical studies, including the very first papers on compressed
sensing MRI, observed that image reconstructions from compressive frequency
measurements could be significantly improved by variable-density sampling.

Note that lower frequencies are more coherent with wavelets and step functions
than higher frequencies. In [21], the local coherence between the two-dimensional
Fourier basis and bivariate Haar wavelet basis was calculated:

Proposition 2. The local coherence between frequency φk1,k2 and the bivariate Haar
wavelet basisΨ = (ψI) can be bounded by

μ(φk1,k2 ,Ψ)�
√

N

(|k1 + 1|2 + |k2 + 1|2)1/2
.

Note that this local coherence is almost square integrable independent of discretiza-
tion size n2, as

1
N

N

∑
j=1

μ2
j � log(n).

Applying Corollary 1 to compressive MRI imaging, we then have

Corollary 2. Let n ∈ N. Let Ψ be the bivariate Haar wavelet basis and let Φ =
(φk1,k2) be the two-dimensional discrete Fourier transform. Let s ≥ 1, and suppose
that m � s log5(N). Select m (possibly not distinct) frequencies (φk1,k2) indepen-
dent and identically distributed from the multinomial distribution on {1,2, . . . ,N}
with weights proportional to the inverse squared Euclidean distance to the origin,

1
(|k1+1|2+|k2+1|2) , and form the sensing matrix A :CN →C

m. Then the following holds

with probability exceeding 1−N−C log3(s) : for each image x ∈C
n×n, given measure-

ments y = Ax, the approximation

x# = arg min
u∈Cn×n

‖Ψ∗u‖1 subject to ‖Dy−Au‖2≤ ε

satisfies the error guarantee ‖x− x#‖2 � 1√
s
‖Ψ∗x− (Ψ∗x)s‖1 + ε.

1 The unknown might also be higher-dimensional, and is often 3-dimensional, but the ideas are
analogous and we focus on the 2D example for simplicity.
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Remark 4. This result was generalized to multidimensional wavelet and Fourier
bases (not just two dimensions as considered above), and to any Daubechies wavelet
basis in [20].

Remark 5. One can prove similar guarantees as in (2) using total variation mini-
mization reconstruction, see [21, 25].

Sparse orthogonal polynomial expansions

Here we consider the problem of recovering polynomials g from m sample val-
ues g(x1),g(x2) . . . ,g(xm), with sampling points x� ∈ [−1,1] for �= 1, . . . ,m. If the
number of sampling points is less or equal to the degree of g, then in general such
reconstruction is impossible due to dimension reasons. However, the situation be-
comes tractable if we make a sparsity assumption. In order to introduce a suitable
notion of sparsity, we consider the orthonormal basis of Legendre polynomials.

Definition 3. The (orthonormal) Legendre polynomials P0,P1, . . . ,Pn, . . . are
uniquely determined by the following conditions:

• Pn(x) is a polynomial of precise degree n in which the coefficient of xn is positive,
• the system {Pn}∞n=0 is orthonormal with respect to the normalized Lesbegue mea-

sure on [−1,1]: 1
2

∫ 1
−1 Pn(x)Pm(x)dx = δn,m, n,m = 0,1,2, . . .

Since the interval [−1,1] is symmetric, the Legendre polynomials satisfy Pn(x) =
(−1)nPn(−x). For more information see [44].

An arbitrary real-valued polynomial g of degree N−1 can be expanded in terms
of Legendre polynomials,

g(x) =
N−1

∑
j=0

c jPj(x), x ∈ [−1,1]

with coefficient vector c ∈ R
N . The vector is s-sparse if ‖c‖0 ≤ s. Given a set of

m sampling points (x1,x2, . . . ,xm), the samples yk = g(xk), k = 1, . . . ,m, may be
expressed concisely in terms of the coefficient vector according to

y =Φc,

where φk, j = Pj(xk). If the sampling points x1, . . . ,xm are random variables, then the
matrix Φ ∈ R

m×N is exactly the sampling matrix corresponding to random sam-
ples from the Legendre system {Pj}N

j=1. This is not a bounded orthonormal system,
however, as the Legendre polynomials grow like

|Pn(x)| ≤ (n+ 1/2)1/2, −1≤ x≤ 1.

Nevertheless the Legendre system does have bounded local coherence. A classic
result from [44] follows.
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Proposition 3. For all n > 0 and for all x ∈ [−1,1], |Pn(x)| < κ(x) = 2π−1/2(1−
x2)−1/4. Here, the constant 2 π−1/2 cannot be replaced by a smaller one.

Indeed, κ(x) is a square integrable function proportional to the Chebyshev measure
π−1(1−x2)−1/2. We arrive at the following result for Legendre polynomial interpo-
lation as a corollary of Theorem 2.

Corollary 3. Let x1, . . . ,xm be chosen independently at random on [−1,1] according
to the Chebyshev measure π−1(1− x2)−1/2dx. Let Ψ be the matrix with entries
Ψk, j =

√
π/2(1− x2

k)
1/4Pn(xk). Suppose that

m � s log3(N).

Consider the matrix A ∈ C
m×N whose rows are independent random vectors

(ψ j(Xk)) drawn from the measure μ . If

m � B2s log3(s) log(N), (31)

for some s � log(N), then the following holds with probability exceeding 1−
N−C log3(s). Let D ∈ C

m×m be the diagonal matrix with entries dk,k = 1
μ(Xk)

. For

each x ∈ C
N, given noisy measurements y = Ax+

√
mη with ‖Dη‖2 ≤

√
mε , the

approximation

x# = arg min
u∈CN

‖u‖1 subject to ‖DAu−Dy‖2 ≤
√

mε

satisfies the error guarantee ‖x−x#‖2 � 1√
s
‖x−xs‖1+ε where xs is the best s-term

approximation to x.

In fact, more general theorems exist: the Chebyshev measure is a universal sampling
strategy for interpolation with any set of orthogonal polynomials [32]. An exten-
sion to the setting of interpolation with spherical harmonics, and more generally,
to the eigenfunctions corresponding to smooth compact manifolds, can be found
in [6, 32], respectively. For extensive numerical illustrations comparing Chebyshev
vs. uniform sampling, also for high-dimensional tensor-product polynomial expan-
sions, we refer the reader to [18].

Structured sparse recovery

Often, the prior of sparsity can be refined, and additional structure of the support
set is known. In the MRI example where one senses with Fourier measurements sig-
nals which are sparse in Wavelets, the sparsity level will be higher for higher-order
wavelets. One may consider sampling strategies based on a more refined notion of
local coherence – based not only on μ j = sup1≤k≤N

√
N|〈φ j,ψk〉|, but also coher-

ences of sub-blocks μ j,Bk = supk∈Bk

√
N|〈φ j ,ψk〉|. For more information, we refer

the reader to the survey article [1] and the references therein.
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In fact, we also have more information about the sparsity structure in the set-
ting of function interpolation. It is well known that the smoothness of a function is
reflected in the rate of decay of its Fourier coefficients / orthonormal Legendre poly-
nomial coefficients, and vice versa. Thus, smooth functions have directional sparsity
in their orthonormal polynomial expansions: low-order and low-degree polynomi-
als are more likely to contribute to the representation. Another way to account for
directional sparsity is in the reconstruction method itself. A more general theory
of sparse recovery involves weighted �1 minimization as a reconstruction strategy,
which serves as a weighted sparse prior, and the incorporation of importance sam-
pling there, can be found in [33].

One of the motivating applications of sparse orthogonal polynomial expansions
is toward the setting of Polynomial Chaos expansions in the area of Uncertainty
Quantification (UQ), which involves high-dimensional expensive random inputs
and modeling the output as having approximately sparse expansion in a tensorized
orthogonal polynomial expansion. As shown in [18], in high dimensions, local co-
herence sampling strategy will depend on how high is the dimension compared to
the maximal order of orthogonal polynomial considered; for higher-order models,
Chebyshev sampling is a good strategy; for low-order, high-dimensional problems,
uniform sampling outperforms Chebyshev sampling. For a detailed overview and
more results, we refer the reader to [18].

Importance sampling in low-rank matrix recovery

Low-rank matrix completion

The task of low-rank matrix completion concerns the recovery of a low-rank matrix
from a subset of its revealed entries, and nuclear norm minimization has emerged
as an effective surrogate for this combinatorial problem. In fact, nuclear norm mini-
mization can recover an arbitrary n×n matrix of rank r from O(nr log2(n)) revealed
entries, provided that revealed entries are drawn proportionally to the local row and
column coherences (closely related to leverage scores) of the underlying matrix.
Matrix completion has been the subject of much recent study due to its applica-
tion in myriad tasks: collaborative filtering, dimensionality reduction, clustering,
non-negative matrix factorization and localization in sensor networks. Clearly, the
problem is ill-posed in general; correspondingly, analytical work on the subject has
focused on the joint development of algorithms, and sufficient conditions under
which such algorithms are able to recover the matrix.

If the true matrix is M with entries Mi j, and the set of observed elements is Ω ,
this method guesses as the completion the optimum of the convex program:

min
X

‖X‖∗

s.t. Xi j = Mi j for (i, j) ∈Ω .
(32)



224 R. Ward

where the “nuclear norm” ‖ · ‖∗ of a matrix is the sum of its singular values2.
Throughout, we use the standard notation f (n) = Θ(g(n)) to mean that cg(n) ≤
f (n)≤Cg(n) for some positive constants c,C.

We focus on the setting where matrix entries are revealed from an underlying
probability distribution. To introduce the distribution of interest, we first need a
definition.

Definition 4. For an n1× n2 real-valued matrix M of rank r with SVD given by
UΣV%, the local coherences3 – μi for any row i, and ν j for any column j - are
defined by the following relations

∥∥∥U%ei

∥∥∥=

√
μir
n1

, i = 1, . . . ,n1

∥∥∥V%e j

∥∥∥=

√
ν jr
n2

, j = 1, . . . ,n2.

(33)

Note that the μi,ν js are non-negative, and since U and V have orthonormal columns
we always have ∑i μir/n1 = ∑ j ν jr/n2 = r.

The following theorem is from [13].

Theorem 3. Let M = (Mi j) be an n1× n2 matrix with local coherence parameters
{μi,ν j}, and suppose that its entries Mi j are observed only over a subset of elements
Ω ⊂ [n1]× [n2]. There are universal constants c0,c1,c2 > 0 such that if each element
(i, j) is independently observed with probability pi j, and pi j satisfies

pi j ≥ min

{
c0
(μi +ν j)r log2(n1 + n2)

min{n1,n2}
, 1

}
, (34)

pi j ≥
1

min{n1,n2}10 ,

then M is the unique optimal solution to the nuclear norm minimization prob-
lem (32) with probability at least 1− c1(n1 + n2)

−c2 .

We will refer to the sampling strategy (34) as local coherence sampling. Note that
the expected number of observed entries is ∑i, j pi j, and this satisfies

∑
i, j

pi j ≥max

{
c0

r log2(n1 + n2)

min{n1,n2} ∑
i, j
(μi +ν j),∑

i, j

1
n10

}

= 2c0 max{n1,n2}r log2(n1 + n2),

2 This becomes the trace norm for positive-definite matrices. It is now well recognized to be a
convex surrogate for rank minimization.
3 In the matrix sparsification literature [4, 14] and beyond, the quantities

∥∥U%ei
∥∥2

and
∥∥V%e j

∥∥2

are referred to as the leverage scores of M.
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independent of the coherence, or indeed any other property, of the matrix. Hoeffd-
ing’s inequality implies that the actual number of observed entries sharply concen-
trates around its expectation, leading to the following corollary:

Corollary 4. Let M = (Mi j) be an n1× n2 matrix with local coherence parameters
{μi,ν j}. Draw a subset of its entries by local coherence sampling according to the
procedure described in Theorem 3. There are universal constants c′1,c

′
2 > 0 such

that the following holds with probability at least 1− c′1(n1 + n2)
−c′2 : the number m

of revealed entries is bounded by

m≤ 3c0 max{n1,n2}r log2(n1 + n2),

and M is the unique optimal solution to the nuclear norm minimization pro-
gram (32).

(A) Roughly speaking, the condition given in (34) ensures that entries in im-
portant rows/columns (indicated by large local coherences μi and ν j) of the matrix
should be observed more often. Note that Theorem 3 only stipulates that an in-
equality relation hold between pi j and

{
μi,ν j

}
. This allows for there to be some

discrepancy between the sampling distribution and the local coherences. It also has
the natural interpretation that the more the sampling distribution

{
pi j
}

is “aligned”
to the local coherence pattern of the matrix, the fewer observations are needed.

(B) Sampling based on local coherences provides close to the optimal number of
sampled elements required for exact recovery (when sampled with any distribution).
In particular, recall that the number of degrees of freedom of an n× n matrix with
rank r is 2nr(1− r/2n). Hence, regardless how the entries are sampled, a minimum
of Θ(nr) entries is required to recover the matrix. Theorem 3 matches this lower
bound, with an additional O(log2(n)) factor.

(C) Theorem 3 is from [13] and improves on the first results of matrix completion
[7, 9, 17, 34] which assumed uniform sampling and incoherence i.e. every μi ≤ μ0

and every ν j ≤ μ0 – and an additional joint incoherence parameter μstr defined by

‖UV%‖∞ =
√

rμstr
n1n2

. The proof of Theorem 3 involves an analysis based on bounds

involving the weighted �∞,2 matrix norm, defined as the maximum of the appro-
priately weighted row and column norms of the matrix. This differs from previous
approaches that use �∞ or unweighted �∞,2 bounds [12, 17]. In some sense, using
the weighted �∞,2-type bounds is natural for the analysis of low-rank matrices, be-
cause the rank is a property of the rows and columns of the matrix rather than its
individual entries, and the weighted norm captures the relative importance of the
rows/columns.

(D) If the column space of M is incoherent with maxi μi ≤ μ0 and the row space
is arbitrary, then one can randomly pick Θ(μ0r logn) rows of M and observe all
their entries, and compute the local coherences of the space spanned by these rows.
These parameters will be equal to the ν j’s of M with high probability. Based on
these values, we can perform non-uniform sampling according to (34) and exactly
recover M. Note that this procedure does not require any prior knowledge about the
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local coherences of M. It uses a total of Θ(μ0rn log2 n) samples. This was observed
in [22].

Theorem 3 has some interesting consequences, discussed in detail in [13] and
outlined below.

• Theorem 3 can be turned on its head, and used to quantify the benefit of weighted
nuclear norm minimization over standard nuclear norm minimization, and pro-
vide a strategy for choosing the weights in such problems given non-uniformly
distributed samples so as to reduce the sampling complexity of weighted nuclear
norm minimization to that of standard nuclear norm minimization. In particular,
these results can provide exact recovery guarantees for weighted nuclear norm
minimization as introduced in [16, 27, 39], thus providing theoretical justifica-
tion for its good empirical performance.

• Numerical evidence suggests that a two-phase adaptive sampling strategy, which
assumes no prior knowledge about the local coherences of the underlying matrix
M, can perform on par with the optimal sampling strategy in completing coherent
matrices, and significantly outperform uniform sampling. Specifically, [13] con-
siders a two-phase sampling strategy whereby given a fixed budget of m samples,
one first draws a fixed proportion of samples uniformly at random, and then draw
the remaining samples according to the local coherence structure of the resulting
sampled matrix.
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This part contains four chapters devoted to applications of harmonic analysis
to signal processing and sampling theory. The contributions are written by leading
experts in this field from academia.

The first chapter of this part is by STEPHEN D. CASEY who develops a numeri-
cally attractive method to partition the time-frequency plane. He uses bounded par-
titions of unity to obtain adaptive coverings of the phase plane. The correspond-
ing bounded adaptive partition of unity gives rise to an orthonormal basis for the
Paley-Wiener space of bandlimited functions. Next the author develops an almost
orthogonal system for the same space of bandlimited functions using the biorthog-
onal systems theory. The last part of this chapter develops a signal adaptive frame
theory. The main application of this framework is analog-to-digital conversion of
ultra-wideband signals and software-defined radios.

DAVID WALNUT, GÖTZ E. PFANDER, and THOMAS KAILATH review the iden-
tification theory of a class of time-varying linear systems. Specifically, the authors
consider the class of sampling operators, namely the linear operators whose Kohn-
Nirenberg symbols are bandlimited. The chapter begins with a very nice historical
note on early time-frequency doubly dispersive communication channel systems
(the RAKE receiver). Next the authors present the more recent results on sampling
of operators using periodically weighted delta-trains and the Zak transform. The last
part of the chapter introduces novel results on operator sampling in higher dimen-
sions. The authors discuss also connections with stochastic operators and review
implications to MIMO systems.

AKRAM ALDROUBI, ILYA KRISHTAL, and ERIC WEBER develop a novel math-
ematical framework for time-space sampling, called dynamical sampling. A system
state is characterized by a space-dependent function that changes over time by the
action of a family of known time-evolution operators. At each time instant only a
compressed state measurement is observed. Additionally the measurement opera-
tor is allowed to vary over time. The authors develop in details the case of uniform
space-subsampling for time-invariant systems. They obtain necessary and sufficient
conditions for perfect reconstruction in such cases. The two key ingredients of this
theory are the Poisson summation formula and a well-mixing property of the evo-
lution operator. Next the authors extend this construction to a special case of space-
nonuniform sampling. In the final sections of this chapter, the authors connect dy-
namical sampling to an unsupervised system identification problem followed by a
brief discussion of extensions to an infinite dimensional setting.

In the last chapter of this part, ALIAKSEI SANDRYHAILA and JELENA

KOVAČEVIĆ describe a signal processing framework for signals defined on
weighted line graphs. Two signal processing methods are known in literature
for graph-supported signals: one method is based on the adjacency matrix of the
underlying graph, the other method is based on the graph Laplacian matrix. Follow-
ing previous results of the first author, this chapter develops further the adjacency
matrix-based approach. In particular they present definitions of fundamental con-
cepts of signals, filters, z-transform, Fourier transform, frequency, and spectrum
for the class of weighted line graphs. They also present some applications to signal
representation and compression using fast algorithms.



Finite Dimensional Dynamical Sampling:
An Overview

Akram Aldroubi, Ilya Krishtal, and Eric Weber

Abstract Dynamical sampling is an emerging paradigm for studying signals that
evolve in time. In this chapter we present many of the available results pertaining to
dynamical sampling in the finite dimensional setting. We also provide a brief survey
of the latest results in the infinite dimensional setting.

Key words: Sampling and reconstruction, evolution systems, sampling schemes,
system identification

Introduction

The typical sampling and reconstruction problem consists of recovering a function
f from its samples f (X) = { f (x j)}x j∈X . There are many situations in which the
function f is an initial distribution that is evolving in time under the action of a
family of evolution operators {At}t∈[0,∞):

ft(x) = (At f )(x). (1)

The standard approaches to solving the reconstruction problem, however, are not
designed to take into account this time dependency [4, 10, 11, 15, 17, 18, 20, 21,
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and references therein]. As a result, using the standard techniques may lead to an
unnecessary bloating of the sampling set X = {x j}, create a deluge of data, and
drive up the costs of data acquisition and processing. In some cases obtaining the
samples at a sufficient rate at time t = 0 may not even be possible. Recently, there
started to develop a new mathematical framework which allows one to utilize not
only the spatial samples f (X) but also the temporal samples ft (Xt) to recover f ,
At , and ft , and, at the same time, keep the sampling procedure manageable. In this
chapter we present an overview of this new mathematical framework, which we call
Dynamical Sampling [1, 2, 6–9]. Various dynamical sampling problems exhibit fea-
tures that are similar to many other fundamental problems: deconvolution [25, 26],
filter banks [22, 24], sampling and reconstruction in shift-invariant spaces [3–6, 23],
super-resolution [13, 19], etc. However, even in the most basic cases, the dynami-
cal sampling problems are different and necessitate new theoretical and algorithmic
techniques.

In general, we consider the problem of spatiotemporal sampling in which an ini-
tial state f of an evolution process { ft}t≥0 is to be recovered from a set of samples
{ ft(Xt)}t∈T at different time levels, i.e., t ∈ T = {t0 = 0, t1, . . . , tN}. Typical evo-
lution processes are driven by well-studied families of evolution operators as in (1).
A common example is provided by diffusion and is modeled by the heat equation.
Sampling is done by sensors or measurement devices that are placed at various loc-
ations and can be activated at different times. Clearly for the problem to be well
posed (outside of a finite dimensional context), certain assumptions on f are neces-
sary. A standard assumption (consistent with the nature of signals) is that f belongs
to a reproducing Kernel Hilbert space (RKHS) such as a Paley-Wiener space or
some other shift invariant spaces (SIS) V [16, 23]. The first general problem of dyn-
amical sampling can be stated as follows

Problem 1 (Spaciotemporal trade-off). Assume f ∈ V satisfies (1) for some fam-
ily of evolution operators {At}, t ≥ 0. Describe all spatiotemporal sampling sets
(X ,T ) = {Xt , t ∈ T } such that any f ∈V can be stably recovered from the sam-
ples ft (Xt), t ∈ T .

The name of the above problem [7] comes from the fact that in many cases it
is possible to provide the same information about the initial state from a reduced
number of devices activated more frequently. In Section “Time-space trade-off in
dynamical sampling” we provide several examples illustrating this idea.

Another important problem arises when the evolution operators are themselves
unknown (or partially unknown).

Problem 2 (Unsupervised system identification). Assume f ∈ V satisfies (1) for
an unknown family of evolution operators {At}, t ≥ 0. Describe all spatiotemporal
sampling sets (X ,T ) = {Xt , t ∈ T } and classes of evolution operator families
such that the family {At} or its key parameters can be identified from almost any
f ∈V .

In Section “Unsupervised system identification” we describe a few results which
provide a solution to a few special cases of the above problem.
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Time-space trade-off in dynamical sampling

In this section we discuss various instances of Problem 1 in a finite dimensional
setting.

Let x ∈ C
d and A be a d × d invertible matrix with complex entries. We seek

to recover vector x from subsampled versions of the vectors x, Ax, A2x, etc. More
precisely, we let S(Ωn) be diagonal idempotent matrices so that sii = 1 if and only
if i ∈Ωn ⊆ {1, . . . ,d}, and

yn = S(Ωn)A
n−1x, n = 1, . . . ,N. (2)

We would like to know under which conditions we can recover x from yn, n =
1, . . . ,N, or, in other words, what information about x, Ax, . . . , AN−1x, we need
in order to make the recovery possible. By x ∈ C

d , we model an unknown spatial
signal at time t = 0, and the matrix A represents an evolution operator so that Anx
is the signal at time t = n. Then the vectors yn, n = 1, . . . ,N, give the samples of
the evolving system at time t = n− 1 at a (possibly) reduced number of locations
(given by the sum of the ranks of the matrices S(Ωn)). We typically assume that
rank(S(Ωn)) < d, n = 1, . . . ,N so that at any time t = n the signal is undersampled
and cannot be recovered. This situation arises when there is a restriction on sampling
locations or when we would like to keep at a minimum the information we need to
sample and store. The latter would reduce the number of measuring devices and,
thus, make the sampling process cheaper.

We write the problem in the following matrix form

y = Ax, (3)

where y =

⎛
⎝ y1

y2

...
yN

⎞
⎠ and A =

⎛
⎜⎝

S(Ω1)
S(Ω2)A

...
S(ΩN)A

N−1

⎞
⎟⎠ is an Nd× d matrix which we call the

dynamical sampling matrix. The choice of the sets Ωk, k = 1, . . . ,N, will be referred
to as the dynamical sampling procedure. Thus, the first dynamical sampling problem
is to establish conditions under which this procedure is admissible, i.e., which would
ensure that the matrix A has full rank d. In this case A has a left inverse and the
recovery of x is possible.

The above linear algebraic formulation of the problem can be restated in terms
of frame theory as follows: given a frame Φ for C

d that consists of all rows of
matrices I, A, . . . , AN−1, describe all subsets of Φ that are themselves frames for
C

d . A related problem is to describe all matrices A for which a fixed dynamical
sampling procedure is admissible.

Example 1 (Sampling at one node). Assume that Ωk = { j} for all k = 1, . . . ,d, and
some j ∈ {1, . . . ,d}. In other words, we would like to recover the original signal
x from its temporal samples at a single spatial location. One would expect this to
be possible only if the system is “well mixed”, and, in fact, in some sense this is
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sufficient. To see this, let us assume that A=UDU∗ is positive definite and U =(u jk)
is the unitary that diagonalizes A so that D is a diagonal matrix with eigenvalues
λ1, . . .λd . Then the reduced dynamical sampling matrix Ar obtained from A by
eliminating the zero rows satisfies

Ar =

⎛
⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λd
...

... . . .
...

λ d−1
1 λ d−1

2 . . . λ d−1
d

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

u j1 0 . . . 0
0 u j2 . . . 0
...

...
. . .

...
0 0 . . . u jd

⎞
⎟⎟⎟⎠U∗.

Since the first of the matrices in the above product is Vandermonde, Ar is invertible
if and only if all eigenvalues of A are distinct and the jth row of the “mixing” matrix
U has no zero entries.

The case of sampling at two nodes already presents a far less trivial problem.
We will describe results related to this problem in Section “Non-uniform sampling
in the general case”. Before doing that we consider other, slightly simpler, special
cases of the dynamical sampling problem.

Uniform subsampling in invariant evolution systems

In practice, one of the most important cases of the dynamical sampling problem is
represented by (spatially) invariant evolution systems in which the matrix A is cir-
cular and the subsampling is uniform and independent of n. In this case, the ma-
trix A represents the (circular) convolution operator with a fixed vector a ∈ C

d

and S(Ωn) is an operator of subsampling by some fixed factor m ∈ N. Thus,
Ωn = {mx : x = 0, . . . , d

m − 1} for n = 1, . . . ,N, where we assume m|d, and we will
denote S(Ωn) = Sm. This special case will be referred to as the uniform invariant
dynamical sampling problem. There, a vector x ∈C

d representing the signal at time
t = 0 is sampled only at a fraction J = d/m of its components, and subsequently the
vectors An−1x, n = 2, . . . ,N, are sampled at the same locations. It is not difficult to
see that, in order to recover x we would need a minimum of m time levels so that
N ≥m. Note that the number of sampling devices that are needed for measurements
is reduced from d to J, but the devices have to be activated m times more frequently.

For technical reasons we let N = m, d = 2K + 1, and assume that J is an integer
(so that d, m, and J are odd). Then the (k,k) entry of the matrix Sm equals 1 if m
divides K +1− k and is 0 otherwise. Clearly, in practice, any reasonable model can
be tweaked to satisfy these conditions.

The following proposition is the key to the solution of the dynamical sampling
problem in this special case. In its formulation, we shall use the notation â = Fda
for the d-dimensional discrete Fourier transform (DFT) of a:

â(k) = (Fda)(k) =
d−1

∑
�=0

a(�)e−
2πik�

d , k = 1, . . . ,d.
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The proof is based on the Poisson summation formula

(Smz)∧(k) =
1
m

m−1

∑
�=0

ẑ(k+ J�), k = 1, . . . ,d, z ∈ C
d . (4)

The proof of this result is contained in [7]. A more general version of this proposi-
tion below is Theorem 2 in the following section, which we shall prove there.

Proposition 1 ([7]). A uniform dynamical sampling procedure in an invariant prob-
lem is admissible if and only if the J = d/m matrices

Am(k) =

⎛
⎜⎜⎜⎝

1 1 . . . 1
â(k) â(k+ J) . . . â(k+(m− 1)J)

...
...

...
...

â(m−1)(k) â(m−1)(k+ J) . . . â(m−1)(k+(m− 1)J)

⎞
⎟⎟⎟⎠ , (5)

k = 0, . . . ,J− 1, are invertible.

Since each matrix Am(k) in (5) is a Vandermonde matrix, it is invertible if and
only if the values {â(k+ �J) : �= 0, . . . ,m− 1} are distinct. If some of these values
coincide, the signal x cannot be recovered unless we take extra spatial samples.

The procedure that allows one to prescribe which extra spatial samples may be
taken is outlined in [7]. For example, when the kernel a is real symmetric and â is
strictly monotonic on {0, . . . ,K}, all matrices Am(k), k = 1, . . . ,J−1, are invertible
but the matrix Am(0) is not. Such kernels are realistic in applications because they
correspond to isotropic symmetric processes such as diffusion in isotropic media.

The following result characterizes extra sampling sets which make the recovery
possible in this case.

Theorem 1 ([7]). Consider an invariant dynamical sampling problem with a real
symmetric kernel a such that â is strictly monotonic on {0, . . . ,K}. Then the uniform
dynamical sampling procedure augmented by a set Ω0 ⊆ {1, . . . ,d} is admissible if
and only if Ω0 contains a set of cardinality m−1

2 such that no two of its elements are
m-congruent or have a sum divisible by m.

A natural choice of Ω0 in the above theorem is

Ω0 =

{
−K,−K + 1, . . . ,−K +

m− 1
2

,K− m− 1
2

, . . . ,K− 1,K

}
.

Alternatively, we may assume that suppx⊆
[
−K + m−1

2 ,K− m−1
2

]
.

It can also be shown [7] that if the vector x is (J − 1)-sparse, that is, has at
most J− 1 nonzero components, then it is completely recoverable via the uniform
dynamical sampling procedure (without the extra samples) in an invariant dynamical
sampling problem with a real symmetric kernel a such that â is strictly monotonic
on {0, . . . ,K}.
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Generically, the number of extra samples ν needed for the recovery in the uni-
form case satisfies ν � d, that is the oversampling factor is typically negligible. It
is also clear from the Vandermonde structure of the matrices (5) that adding more
time samples at the same locations provides no additional information about x, thus
justifying our choice of N = m. On the other hand, in the presence of noise and
once an appropriate set Ω0 is chosen, additional time samples may be used to imp-
rove stability of the estimation of x. We refer to [7] for additional information and
stability estimates for the uniform dynamical sampling procedure.

Nonuniform sampling in a special case

In this section we consider a more general case of Problem 1 which can be solved
by a method that is very similar to the one outlined in the previous section. Here the
subsampling is no longer uniform but the class of admissible evolution operators
remains fairly small and depends heavily on the set of measurement locations Ω , or
conversely determines what Ω must be.

As we hinted in Example 1 and remarks preceding Proposition 1 the key ingre-
dients in solving some cases of Problem 1 are the Poisson summation formula (4)
and the well-mixing property of the evolution operator A. Motivated by these obser-
vations we make the following definitions.

For k ∈ N we let Pk be the k× k matrix given by

Pk =
1
k

⎛
⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎞
⎟⎟⎟⎠ .

We say that a d× d matrix P is a Poisson projection if P is a block diagonal matrix
of the form

P =

⎛
⎜⎜⎜⎝

Pk1 0 . . . 0
0 Pk2 . . . 0
...

...
. . .

...
0 0 . . . Pk�

⎞
⎟⎟⎟⎠ (6)

with k1 + k2 + . . .+ k� = d. We shall denote by P the set of all Poisson projections.
Clearly, P in (6) is an orthogonal projection of rank �. Hence, it is unitarily equiv-

alent to a subsampling projection SΩ with |Ω |= �.

Definition 1. Let P ∈P and U be a unitary matrix such that P =USΩU∗ for some
Ω ⊆ {1, . . . ,d}. We say that a d×d matrix A is well mixing with respect to P and U
if A is diagonalized by U∗, i.e., A =U∗DU for some diagonal matrix
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D =

⎛
⎜⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λd

⎞
⎟⎟⎟⎠ .

Given A, P, U , and Ω as in the above definition, an (A,P,U) dynamical sam-
pling problem consists of finding a vector x ∈ C

d from the samples SΩx, SΩAx, . . . ,
SΩANx.

Theorem 2. Assume that P ∈P , U is a unitary matrix such that P = USΩU∗ for
some Ω ⊆ {1, . . . ,d}, and A is well mixing with respect to P and U. Then the
(A,P,U) dynamical sampling problem is solvable for N = max{kr,r = 1, . . . , �}−1
if and only if the eigenvalues of A satisfy λi �= λ j for all ∑r−1

m=0 km < i < j≤∑r
m=1 km,

r = 1,2, . . . , � with k0 = 0.

Proof. Observe that SΩAnx = U∗PDnUx, n ∈ N. Thus, the matrix A in (3) can be
written in the form U∗PU , where

P =

⎛
⎜⎜⎜⎝

P
PD

...
PDN

⎞
⎟⎟⎟⎠ .

Hence, the (A,P,U) problem is solvable if and only if the matrix P has a left
inverse. The matrix P has the following as a d× d submatrix

Pr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λk1

...
...

. . .
...

λ k1−1
1 λ k1−1

2 . . . λ k1−1
k1

0 . . . 0

0

1 1 . . . 1
λk1+1 λk1+2 . . . λk1+k2

...
...

. . .
...

λ k2−1
k1+1 λ k2−1

k1+2 . . . λ k2−1
k1+k2

. . . 0

...
...

. . .
...

0 0 . . .

1 1 . . . 1
λd−k�+1 λd−k�+2 . . . λd

...
...

. . .
...

λ k�−1
d−k�+1 λ k�−1

d−k�+2 . . . λ k�−1
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

after rescaling the rows appropriately. The hypotheses regarding the λ js guarantee
that each Vandermonde block is invertible. Hence, P has full rank, and thus has a
left inverse.
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In Theorem 2, we began with a sampling set Ω and determined for which A
the (A,P,U) dynamical sampling problem is solvable. The proof of Theorem 2 also
gives a way of reversing this process, i.e., starting with A which satisfies the app-
ropriate hypotheses, we can determine a sampling set Ω such that the (A,P,U) dy-
namical sampling problem is solvable. To do so, we take a closer look at a Poisson
projection. If P ∈P , we can write P as a sum of rank one projections (or tensor
products):

P =
�

∑
r=1

vr ·vT
r , (7)

where vr is the column vector whose qth coordinate is 1√
kr

if
r−1
∑

s=0
ks < q≤

r
∑

s=0
ks and is

0 otherwise. Thus, vr has the form 1√
kr

(
0 . . . 0 1 . . . 1 0 . . . 0

)T
. We will call a vec-

tor of this form a Poisson vector, and we will call {v1,v2, . . . ,v�} a Poisson ensemble
if they are Poisson vectors, and the corresponding sum of rank one projections gives
a Poisson projection. Note that a Poisson ensemble is an orthonormal set.

Theorem 3. Suppose A is a d× d matrix. Suppose also

1. U is a unitary matrix such that UAU∗ = D (D diagonal);
2. the column vectors {u1, . . . ,ud} of U contain a Poisson ensemble {u j1 , . . . ,u j�};
3. P is the Poisson projection obtained from {u j1 , . . . ,u j�} as in (7).

Then if we choose Ω = { j1, . . . , j�}, we have that A = U∗DU and P = USΩU∗. In
other words, A is well mixing with respect to P and U.

Proof. Let Ω = { j1, . . . , j�}. Note that for the Poisson projection

P = ∑
j∈Ω

u j ·uT
j ,

we have that Pu j = u j if j ∈Ω , and is 0 if j /∈Ω . Therefore, the jth column of PU
is u j if j ∈Ω and 0 otherwise, from which it follows that U∗PU is a diagonal matrix
such that the jth diagonal entry is 1 if j ∈Ω and 0 otherwise. Thus,

U∗PU = SΩ

as required by Theorem 2.

Corollary 1. Suppose A is an invertible d× d matrix with distinct eigenvalues and
satisfies the conditions of Theorem 3. Then the (A,P,U) dynamical sampling prob-
lem is solvable.

Proof. We choose Ω as prescribed in Theorem 3 and apply Theorem 2.
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Example 2. Suppose the diagonalizer U∗ for the matrix A has the form

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ ∗ 1√
3

∗ 0 ∗ ∗ 1√
3

∗ 0 ∗ ∗ 1√
3

∗ 1√
2
∗ ∗ 0

∗ 1√
2
∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Then we choose P as

P =

⎛
⎜⎜⎜⎜⎝

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

1
3

1
3

1
3 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

⎞
⎟⎟⎟⎟⎠ .

We have

U∗PU =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

and so Ω = {2,5}.

Nonuniform sampling in the general case

In this subsection we present two results about the necessary and sufficient condi-
tions for the solvability of Problem 1 in a general finite dimensional setting. The
proofs of these results appear in [9].

Assume that a d × d matrix A is such that A∗ = B−1DB, where B is a d × d
invertible matrix, D is a diagonal matrix of the form

D =

⎛
⎜⎜⎜⎝
λ1I1 0 · · · 0

0 λ2I2 · · · 0
...

...
. . .

...
0 0 · · · λkIk

⎞
⎟⎟⎟⎠ , (8)

and Ik is an �k× �k identity matrix for some �k.
Thus, A∗ is a diagonalizable matrix with eigenvalues {λ1, . . . ,λk}, and with cor-

responding eigenvectors being the column vectors of B.
Here we use (arbitrary) irregular sampling sets Ω ⊂ {1, . . . ,d} and may use a

different number of time samples at each point i ∈ Ω . For each i ∈ Ω we denote
by Li the number of time samples we take. Our collected data for each sampling
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point i ∈ Ω consists of {x(i),Ax(i), . . . ,ALi x(i)}. Our goal is to find necessary and
sufficient conditions on Ω , Li, and A for the recovery of x. We reorganize the data
by letting y1( j) = x( j), j ∈Ω1 =Ω ; y2( j) = Ax( j), j ∈Ω2, Ω2 = { j ∈Ω : Lj ≥ 1};
and, in general, yk( j) = Ak−1x( j), j ∈ Ωk, Ωk = { j ∈ Ω : Lj ≥ k− 1}. It is clear
that in this case we have Ω = Ω1 ⊇ ·· · ⊇ ΩLmax where Lmax = max{Li : i ∈ Ω}.
Thus, we need to solve the system y =Ax described by (3) with the aforementioned
Ω j, j = 1, . . . ,Lmax. For this system to be solvable, the rows of I,A, . . . ,ALmax cor-
responding to Ω1, . . . ,ΩL, must form a frame for Cd . Equivalently, the columns of
I,A∗, . . . ,(A∗)Lmax corresponding to Ω1, . . . ,ΩLmax , must form a frame for Cd . Let-
ting bi denote the column vector of B, and using the fact that frames of Cd remain
frames if an invertible transformation is applied to them, we observe that solving (3)
is equivalent to having the set {Dnbi : i ∈ Ω ,n = 0, . . . ,Li} be a frame for Cd . Let
f b
D be the minimal polynomial in D that annihilates b, and let ri be the degree of f bi

D ,
i ∈ {1, . . . ,d}. In the following theorem we denote by Pj, j = 1, . . . ,k, the projection
operators with d× d matrices given by

Pj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

. . .
I j

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Theorem 4 ([9]). Let {bi : i ∈ Ω} be the column vectors of B corresponding to Ω .
Then

1. If x can be recovered from y then {Pjbi : i ∈Ω} is a frame for Pj(C
d), j = 1, . . .k.

2. If {Pjbi : i ∈Ω} is a frame for Pj(C
d), j = 1, . . .k and Li ≥ ri−1 for every i ∈Ω ,

then x can be recovered from y.

If we fix L≤ Lmax and let Ω j =Ω for every j = 1, . . . ,L, we obtain the following
result.

Theorem 5 ([9]). Let {bi : i ∈ Ω} be the column vectors of B corresponding to
Ω and let L be any fixed integer. Then x can be recovered from y if and only
if {Pjb1, . . . ,Pjbm} form a frame for Pj(C

d), j = 1, . . .k, and {DLbi : i ∈ Ω} ⊂
span(E), where E =

⋃
i∈Ω
{bi,Dbi, . . . ,DL−1bi}.

Note that conditions of Theorem 5 imply that if x can be recovered, the cardi-
nality of Ω (minimal number of measurement devices) may not be smaller than the
(largest) multiplicity of an eigenvalue of A. Applying Theorem 5 to Example 1, we
can deduce that to recover x from sampling at one point j it is necessary and suffi-
cient that u ji �= 0 for i= 1, . . . ,d and that L≥ d, as we stated in the example. It is also
not hard to see that Proposition 1 and Theorem 2 are special cases of Theorem 5.

We also note that similar results for non-diagonalizable matrices A can be found
in [9].
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Unsupervised system identification

In this section we discuss a few instances of Problem 2 in a finite dimensional set-
ting. In particular, given the samples (2) with both x and A unknown, we would like
to recover as much information about them as we can, given various priors. As in the
previous section, we first discuss the results for invariant systems in case of uniform
subsampling and then exhibit a more general result.

Filter recovery in the invariant uniform case.

Recall that in this setting the evolution operator A is given by a (circular) convolution
matrix so that Ax = a ∗ x, a,x ∈ C

d . In the uniform sampling case, our problem
consists of finding both a and x from partial observations

y� = SmA�x, �= 0, . . . ,N, (9)

of the evolving signal x, where m is, as before, an odd integer that divides d and

Sm : �2(Zd)→ �2(Zd), (Smx)(n) = δ(n mod m),0x(n), (10)

is an operator of subsampling by a factor of m. Also as before, for computational
simplicity we assume that J = d/m is odd.

Theorem 6 ([6]). Assume also that the unknown evolution filter a ∈ R
d is such

that its Fourier transform â ∈ C
d is nonvanishing, real, and strictly decreasing on

{0, . . . , m−1
2 }. Then for almost every x ∈ C

d the filter a can be recovered from the
measurements y� defined in (9) with N ≥ 2m− 1.

The proof is based on a nonlinear method which is a generalization of the clas-
sical Prony’s method [12] for finding an s-sparse vector from 2s of its consecutive
Fourier coefficients. Our method allows us to first find the spectrum of A, i.e., the
range of â and then use other assumptions to recover â completely. In the next sub-
section we provide a result about the spectrum recovery in a more general case.

Spectrum recovery of general evolution operators

As in Subsection “Non-uniform sampling in the general case”, we let b = bi be the
ith column vector of B where A∗ = B−1DB, and let ri be the degree of the minimal
polynomial in D that annihilates b = bi.

Theorem 7 ([6]). Let bi be the ith column vector of B for some i = 1, . . . ,d and let
Λ = { j : Pjbi �= 0}. Then for almost every x ∈C

d the subsetΘ = {λ j : j ∈Λ} of the
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spectrum of A can be recovered from the measurements {Akx(i) : k = 0, . . . ,2ri−1}.
In particular, if the sampling set Ω is such that {Pjbi : i ∈Ω} is a frame for Pj(C

d),
then the spectrum of A can be recovered from {Akx(i) : i ∈Ω ,k = 0, . . . ,2ri−1} for
almost every x ∈ C

d.

For the case in which we stop at a fixed time level L with L <max{ri−1 : i∈Ω}
we can still recover the spectrum of A if the conditions of Theorem 5 are satisfied:

Theorem 8 ([6]). Let {bi : i ∈ Ω} be the column vectors of B corresponding to Ω
and let L be any fixed integer. Assume that {Pjb1, . . . ,Pjbm} form a frame for Pj(C

d),
j = 1, . . .k, and {DLbi : i ∈ Ω} ⊂ span(E), where E =

⋃
i∈Ω
{bi,Dbi, . . . ,DL−1bi}.

Then the spectrum of A can be recovered from {Akx(i) : i ∈ Ω ,k = 0, . . . ,(|Ω |+
1)L− 1} for almost every x ∈ C

d.

Dynamical sampling in the infinite dimensional case

In this section we provide a brief account of other available research on dynamical
sampling. Apart from the finite dimensional theory outlined in the previous sections,
several infinite dimensional results have also been worked out. The �2(Z) theory, for
example, parallels that of the finite dimensional case. In this case, a ∈ �2(Z) is the
kernel of an evolution system so that the signal x ∈ �2(Z) at time t = n is given by
Anx = (a ∗ . . .∗ a︸ ︷︷ ︸

n

) ∗ x. If Sm : �2(Z)→ �2(Z) denotes the operator of subsampling

by a factor of m, (Smz)(k) = z(mk), and SmnTc represents shifting by c followed by
sampling by mn for some positive integer n, then the analog of Theorem 1 becomes

Theorem 9 ([8, 14]). Suppose â is real, symmetric, continuous, and strictly decreas-
ing on [0, 1

2 ], n is odd, and Ω = {1, . . . , m−1
2 }. Then, for any N ≥ m− 1, any x ∈

�2(Z) can be recovered in a stable way from the samples {Smx,SmAx, . . . ,SmANx}
and the additional samples given by either {SmnTcx}c∈Ω or {SmnTcx,SmnTcAx, . . . ,
SmnTcANx}c/∈mZ.

In the above theorem n can be taken arbitrarily large so that the oversampling
factor is negligible just like the finite dimensional case. However, taking larger and
larger n adversely affects the stability of the reconstruction. Estimates on the stabil-
ity can be found in [7] in the finite dimensional case and [8] in the infinite dimen-
sional case.

The �2(Z) theory leads to dynamical sampling in shift-invariant spaces which
is an important setting for any sampling theory. Specifically, for an appropriate
φ ∈ L2(R), a principal shift invariant space (PSIS) V (φ) is the space defined by

V (φ) =

{
∑
k∈Z

ckφ(·− k) : (ck)k∈Z ∈ �2(Z)

}
. (11)
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For the case in which a ∗φ ∈ V (φ), the theory for �2(Z) can be applied directly
via an isomorphism. For example, when φ = sinc then V (φ) is the Paley-Wiener
space and the �2 theory applies directly. A characterization of the condition a ∗φ ∈
V (φ) appears in [2]. The same paper also provides results for the dynamical sam-
pling when a∗φ /∈V (φ). Similar results are also proved in the case of the so-called
hybrid shift-invariant spaces in [1].
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Signal Processing on Weighted Line Graphs

Aliaksei Sandryhaila and Jelena Kovačević

Abstract This chapter describes a signal processing framework for signals that are
represented, or indexed, by weighted line graphs, which are a generalization of di-
rected line graphs used for representation of time signals in classical signal process-
ing theory. The presented framework is based on the theory of discrete signal pro-
cessing on graphs and on algebraic signal processing theory. It defines fundamental
signal processing concepts, such as signals and filters, z-transform, frequency and
spectrum, Fourier transform and others, in a principled way. The framework also
illustrates a strong connection between signal processing on weighted line graphs
and signal representation based on orthogonal polynomials.

Key words: Signal processing on graphs, Algebraic signal processing, Orthogonal
polynomials, Graph filter, Graph Fourier transform, Graph frequency

Introduction

Classical discrete signal processing (DSP) theory is based on a set of fundamental
concepts that include signals, shift, filters, z-transform, convolution, spectrum, fre-
quency, and Fourier transform [18, 36]. DSP assumes, sometimes implicitly, that
signals are either infinite or periodically extended finite time series. As such, they
can be visualized with graphs shown in Fig. 1. These are directed line graphs, where
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each node indicates a point in time and edge direction corresponds to the time flow
from past to future. These graphs are unweighted, that is, all edges have weight 1.

t1t–1 t0
“past” “future”

Infinitetime

t0 t1 tN-1tN–2

periodic extension

Finitetime

a b

Fig. 1 Graph representations for infinite and finite discrete time signals.

In many applications, however, it is convenient and useful to represent signals
using graphs. These signals cannot be viewed as time series and do not reside on di-
rected unweighted line graphs. Examples include processing of measurements col-
lected by networks of sensors; analysis of information and interactions in social and
economic networks; research in collaborative activities, such as paper co-authorship
and citations; topics and relevance of documents in the World Wide Web; interac-
tions in molecular and gene regulatory networks; and many others.

To analyze and process such signals, a theory of signal processing on graphs has
been developed that extends DSP concepts and techniques to signals represented by
graphs. Presently, two main approaches to signal processing on graphs are based on
the adjacency matrix of the underlying graph [27, 28] or the graph Laplacian matrix
(see [33] and the references therein). Both frameworks define fundamental signal
processing concepts on graphs, but the difference in their foundation leads to differ-
ent definitions and techniques for signal analysis and processing. Moreover, due to
the properties of the graph Laplacian, the latter approach is restricted to undirected
graphs with nonnegative real weights.

The adjacency matrix-based approach was proposed in [27, 28]. Called discrete
signal processing on graphs (DSPG), it has been motivated by the algebraic sig-
nal processing theory [20–22]. Algebraic signal processing is a formal approach
to signal processing that uses an algebraic representation of signals and filters as
polynomials to derive fundamental signal processing concepts. This framework has
been used for discovery of fast computational algorithms for discrete signal trans-
forms [19, 23, 30]. It was extended to multidimensional signals and nearest neighbor
graphs [24, 31] and used for signal compression [26, 29, 32]. The DSPG framework
generalizes and extends the algebraic approach to signals represented with arbitrary
graphs. It uses the weighted adjacency matrix of the representation graph as the
basic shift operator and develops appropriate concepts of z-transform, impulse and
frequency response, filtering, convolution, and Fourier transform.

In this chapter, we illustrate the DSPG framework by instantiating it for a special
family of weighted line graphs, as shown in Fig. 2. These graphs generalize the rep-
resentation graphs for discrete time signals in Fig. 1. We discuss how DSPG frame-
work leads to appropriate definitions of fundamental signal processing concepts for
these graphs and demonstrate that it naturally connects them to signal representation
with orthogonal polynomials.
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a0 a1 a2v0 v1 v2
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Infinite
a0 a1 aN-3 aN-2v0 v1 vN-1vN–2

b0 b1 bN-2 bN-1
c0 c1 cN-3 cN-2

Finite

Fig. 2 Weighted line graphs.

Weighted Line Graphs

Weighted line graphs, such as those shown in Fig. 2, are infinite or finite graphs in
which vertices are connected sequentially, so that each vertex vn can only be con-
nected to its neighbors vn−1 and vn+1 as well as to itself. For the clarity of discussion,
we focus on finite weighted line graphs, such as those shown in Fig. 2(b). The signal
model discussed here can be extended to infinite weighted line graphs using results
from [31].

Consider a finite weighted line graph G = (V ,A), where V = {v0, . . . ,vN−1} is
a set of N vertices and A is a weighted adjacency matrix. The value An,m describes
the weight of the edge from vm to vn. In particular, in finite weighted line graphs,
each vertex vn is connected to its neighbors vn−1 and vn+1 by edges with weights
an−1 and cn, respectively, as well as to itself by an edge with weight bn. Hence, the
adjacency matrix of this graph has the form

A =

⎛
⎜⎜⎜⎜⎝

b0 a0

c0 b1
. . .

. . .
. . . aN−2

cN−2 bN−1

⎞
⎟⎟⎟⎟⎠ . (1)

We assume that an,bn,cn ∈ R and an �= 0, cn �= 0 for all n.
Matrices of the form (1) are strongly related to a special class of polynomials

called orthogonal polynomials. In particular, consider a set of polynomials pn(x),
n≥ 0, that satisfy the three-term recurrence

x · pn(x) = an−1 pn−1(x)+ bnpn(x)+ cn pn+1(x), (2)

with initial conditions p0(x) = 1 and p−1(x) = 0, where an,bn,cn ∈R and ancn > 0
for all values of n. There exists a real interval I ⊆ R and a real-valued weight
function μ(x) nonnegative on I , such that pn(x) satisfy∫

I
pn(x)pm(x)μ(x)dx = μnδn−m, (3)

that is, these are orthogonal polynomials defined by the recurrence (3). A thorough
discussion of orthogonal polynomials can be found in [4, 35].

Orthogonal polynomials possess a number of important properties. Each poly-
nomial pn(x) has exactly n real distinct roots λ0, . . . ,λn−1 that lie within the



248 A. Sandryhaila and J. Kovačević

interval I , that is, λk ∈I for all 0≤ k < n. Hence, orthogonal polynomials satisfy
deg pn(x) = n and are linearly independent. Furthermore, if the weights an and bn

in recurrence (2) are the same as in the adjacency matrix (1), then the polynomial
pN(x) is equal (up to a scalar factor) to the characteristic polynomial of A, and
the roots of pN(x) are the eigenvalues of A. Hence, the adjacency matrix (1) of a
weighted line graph has N distinct, simple eigenvalues and its eigendecomposition
is [7]

A = VΛΛΛV−1, (4)

where ΛΛΛ = diag(λ0, . . . ,λN−1) is a diagonal matrix of eigenvalues and V is a
non-singular eigenvector matrix, so that the nth column of V is the eigenvector cor-
responding to the nth eigenvalue.

Fig. 3 Finite weighted line graph that corresponds to Chebyshev polynomials of the second kind.

As an example, consider the weighted line graph in Fig. 3 with edge weights
an = cn = 1/2 and bn = 0. Orthogonal polynomials that correspond to this graph are
Chebyshev polynomials of the second kind, one of the most well-known and widely
used family of orthogonal polynomials [14]. They are denoted by Un(x) and satisfy
the recurrence

x ·Un(x) =
1
2

Un−1(x)+
1
2

Un+1(x), (5)

with initial conditions U0(x) = 1 and U−1(x) = 0. Chebyshev polynomials of the
second kind are orthogonal over the interval I = [−1,1] with respect to the weight
function μ(x) =

√
1− x2.

Signal Model

In this section, we define the model for signals represented by weighted line graphs.
We do so by introducing appropriate concepts of the DSPG framework and instanti-
ating them for this class of graphs. A complete introduction to the DSPG theory can
be found in [27, 28].

Graph Signals

Signal processing on graphs is concerned with the analysis and processing of
signals, in which signal values can be connected to each other according to some
relation, such as physical proximity in sensor networks or friendship between
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individuals in a social network. This relation is expressed though a graph G =
(V ,A) with vertices V = {v0, . . . ,vN−1} and a weighted adjacency matrix A. Each
signal value corresponds to vertex vn, that is, it is indexed by vn; and each weight
An,m of a directed edge from vm to vn reflects the degree of relation between the mth
and nth signal values. In particular, for weighted line graphs the adjacency matrix is
given by (1).

A graph signal represented by a weighted line graph is a mapping

s : V → C,

vn �→ sn. (6)

Although a graph signal (6) can also be written as a complex-valued vector

s =
[
s0 s1 . . . sN−1

]T ∈C
N ,

one should view graph signals not merely as vectors, but as signal values sn indexed
by vertices vn of the associated graph, as defined by (6).

Graph Filters

In general, a filter is a system that takes a signal as input, processes it, and produces
another signal as output. Hence, DSPG defines a graph filter as a system H(·) that
takes a graph signal s as an input and outputs a graph signal s̃ = H(s).

The same way that time shift, or delay, is the basic filter in DSP, a basic non-trivial
filter defined on a weighted line graph G = (V ,A) is the graph shift. It is a local
operation that replaces a signal sample sn at vertex vn with the linear combination
of values at the neighbors of vertex vn weighted by the corresponding edge weights:

s̃n =
N−1

∑
m=0

An,msm = cn−1sn−1 + bnsn + ansn+1. (7)

Using the adjacency matrix (1), the output of the graph shift for a weighted line
graph can also be written as the product of the input signal (6) with the adjacency
matrix of the graph:

s̃ =
[
s̃0 . . . s̃N−1

]T
= As. (8)

All linear, shift-invariant1 graph filters on weighted line graphs are polynomials
in the adjacency matrix (1) of the form [27]

h(A) = h0I+ h1A+ . . .+ hLAL. (9)

1 Filters are linear if for a linear combination of inputs they produce the same linear combination
of outputs. Filters are shift-invariant if the result of consecutive processing of a signal by multiple
graph filters does not depend on the order of processing; that is, shift-invariant filters commute
with each other.
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The output of the filter (9) is the signal

s̃ = H(s) = h(A)s.

Linear, shift-invariant graph filters possess a number of useful properties. They
have at most L ≤ NA taps h�, where NA = degmA(x) is the degree of the minimal
polynomial2 mA(x) of A. If a graph filter (9) is invertible, that is, matrix h(A) is
non-singular, then its inverse is also a graph filter g(A) = h(A)−1 on the same graph
G = (V ,A). Finally, the space of graph filters is an algebra, that is, a vector space
that is simultaneously a ring.

Graph z-transform

In DSP, z-transform provides a generalization to the Fourier transform as well as
a means to express filtering through multiplication of series or polynomials in the
time shift z−1 [18, 36].

DSPG extends the concepts of the z-transform to signals and filters on graphs.
The graph z-transform of the signal (6) is defined as a mapping

s = (s0, . . . ,sN−1)
T �→ s(x) =

N−1

∑
n=0

snqn(x). (10)

Here, x stands for z−1, and polynomials q0(x), . . . ,qN−1(x) are linearly independent
polynomials of degree at most N− 1. Their exact structure and computation is dis-
cussed in Theorem 6 in [27].

The z-transform for graph filters is defined by the mapping A �→ x, or

h(A) �→ h(x). (11)

Filtering using z-transform is performed through multiplication of z-transforms
modulo characteristic polynomial3 pA(x) of A. Namely, if s̃ = h(A)s is the output
signal of the filter h(A), then its z-transform is given by the product

s̃ �→ s̃(x) =
N−1

∑
n=0

s̃nqn(x) = h(x)s(x) mod pA(x). (12)

It follows from Theorem 6 in [27] that for weighted line graphs, the basis polyno-
mials qn(x) in the signal z-transform (10) satisfy the following property: the vector(

q0(λm) . . . qN−1(λm)
)T

(13)

2 The minimal polynomial of A is the unique monic polynomial of the smallest degree that anni-
hilates A, that is, mA(A) = 0 [7].
3 The characteristic polynomial of a matrix A is defined as pA(x) = det(xI−A) =∏N−1

n=0
(x−λn) [7].
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of polynomials qn(x) evaluated at the eigenvalue λm is exactly the eigenvector of
AT that corresponds to λm. Hence, vector (13) satisfies

AT (q0(λm) . . . qN−1(λm)
)T

= λm
(
q0(λm) . . . qN−1(λm)

)T
,

which, given the structure (1) of matrix A, is equivalent to

b0q0(λm)+ c0q1(λm) = λmq0(λm)

a0q0(λm)b1q1(λm)+ c1q2(λm) = λmq1(λm)

... (14)

aN−3qN−3(λm)bN−2qN−2(λm)+ cN−2qN−2(λm) = λmqN−2(λm)

aN−2qN−2(λm)+ bN−1qN−1(λm) = λmqN−1(λm).

Comparing the system of equations (14) to the recurrence (2) for orthogonal poly-
nomials pn(x) and recalling from the discussion in Section that λm is a root of the
orthogonal polynomial pN(x), we conclude that qn(x) = pn(x) for 0≤ n < N.

Hence, the graph z-transform for weighted line graphs with adjacency matri-
ces (1) has the form

s = (s0, . . . ,sN−1)
T �→ s(x) =

N−1

∑
n=0

sn pn(x), (15)

where pn(x) are orthogonal polynomials that satisfy the recurrence (2). Since the
characteristic polynomial of A in (1) is pN(x), we also conclude that filtering (12)
using z-transforms on weighted line graphs is performed as

s̃ �→ s̃(x) =
N−1

∑
n=0

s̃n pn(x) = h(x)s(x) mod pN(x). (16)

Frequency Analysis

In this section, we continue to build the signal processing framework on weighted
line graphs. We introduce the DSPG notions of frequency, spectrum, Fourier trans-
form, and signal variation and instantiating them for weighted line graphs. These
concepts are defined and discussed in detail in [27, 28].

Graph Fourier transform

In finite-time signal processing, a Fourier transform is the decomposition of a sig-
nal into a Fourier basis of signals that are invariant to filtering [18, 36]. In DSPG,
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a graph Fourier basis is given by the Jordan basis of the adjacency matrix A. Since
weighted line graphs have diagonalizable adjacency matrices (4), for them the Jor-
dan decomposition coincides with the eigendecomposition and it suffices to discuss
the graph Fourier transforms in terms of the eigenvectors of A.

Given the eigendecomposition (4), the graph Fourier basis is given by the eigen-
vectors of A. Hence, the graph Fourier transform of a graph signal s is defined as

ŝ = Fs = V−1s, (17)

where F=V−1 denotes the graph Fourier transform matrix. The values ŝn in (17) are
called the spectrum of the signal s. The inverse graph Fourier transform, given by

s = F−1ŝ = Vŝ,

reconstructs the signal from its spectrum.
The graph Fourier transform on weighted line graphs has a number of useful

properties. Recall that the vector (13) is the eigenvector of AT with the eigenvalue
λm. Hence, the eigendecomposition (4) of A is

A =
(
AT )T

=

(
PT

p,λΛΛΛ
(

PT
p,λ

)−1
)T

= P−1
p,λΛΛΛPp,λ ,

where ΛΛΛ is the diagonal eigenvalue matrix from (4) and Pp,λ is the polynomial
transform matrix

Pp,λ =

⎛
⎜⎝

p0(λ0) . . . pN−1(λ0)
...

...
...

p0(λN−1) . . . pN−1(λN−1)

⎞
⎟⎠ . (18)

The (m,k)th element of Pp,λ is the kth orthogonal polynomial pk(x) evaluated at the
mth eigenvalue λm.

Hence, the graph Fourier transform (17) on weighted line graphs is given by the
polynomial transform (18):

F = Pp,λ . (19)

The inverse Fourier transform matrix, in turn, is given by F−1 = P−1
p,λ . As

Theorem 4 in [31] demonstrates, the Fourier transform matrix is “almost”
orthogonal, which may simplify the computation of its inverse. Here, we restate this
theorem for convenience.

Theorem 1. Define ηm =∏m−1
k=0 (ck/ak) and diagonal matrices

D = cN−1ηN−1

⎛
⎜⎝

pN−1(λ0)p′N(λ0)
. . .

pN−1(λN−1)p′N(λN−1)

⎞
⎟⎠
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E =

⎛
⎜⎝
η0

. . .
ηN−1

⎞
⎟⎠ ,

where p′N(x) denotes the derivative of the Nth orthogonal polynomial pN(x). Then
the matrix

D−1/2Pp,λE1/2 (20)

is orthogonal.

As an example, consider the graph in Fig. 3 and the corresponding Chebyshev
polynomials Un(x) defined by (5). The roots of the Nth polynomial UN(x) are

λm = cos
πm

N + 1
(21)

and Chebyshev polynomials satisfy the property [14]

Un

(
cos

πm
N + 1

)
=

sin(πm(n+ 1)/(N+ 1))
sin (πm/(N + 1))

,

we obtain that the graph Fourier transform (18) associated with the weighted line
graph in Fig. 3 is the discrete sine transform of type I [19, 22]. Moreover, for this
graph we obtain ηm =∏m−1

k=0 (ck/ak) = 1, and the nth diagonal elements of the cor-
responding matrices D and E are, respectively, UN−1(λn)U ′

N(λn)/2 and 1, that is, E
is an identity matrix.

Frequency Response

The graph Fourier transform also characterizes the effect of the filter on the fre-
quency content of an input signal. It follows from (4), (9) and (17) that

s̃ = h(A)s = F−1h(ΛΛΛ)Fs ⇔ Fs̃ = h(ΛΛΛ)̂s. (22)

Thus, the spectrum of the output signal is the spectrum of the input signal multiplied
by the diagonal matrix h(ΛΛΛ). This matrix is called the graph frequency response of
the filter h(A).

Note that (22) extends the convolution theorem from DSP [18] to graphs: filtering
a signal on a graph is equivalent in the frequency domain to multiplying the signal’s
spectrum by the frequency response of the filter.
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Signal Variation on Graphs

In DSP, signal frequencies are often described as “low” or “high”. For time signals,
these concepts have a simple interpretation, since their frequency contents are de-
scribed by complex or real sinusoids that oscillate at different rates [9]. Frequency
components oscillating with low or high rates correspond, respectively, to low or
high frequencies.

On graphs, frequency components are characterized based on how much they
vary with respect to the underlying graph, that is, how much they change from a
vertex to its neighbors. This characteristic is quantified by the total variation on
graphs defined as

TVG(s) = ||s−Anorms||1 , (23)

where

Anorm =
1

|λmax|
A (24)

is the graph shift matrix normalized by the eigenvalue of A with the largest magni-
tude, that is |λmax| ≥ |λn| for all 0≤ n≤ N− 1.

Weighted line graphs have real spectra of simple, distinct eigenvalues, as dis-
cussed in Section . In this case, the ordering of frequencies from the lowest to the
highest is opposite to the eigenvalue ordering [28]: if eigenvalues are ordered as
λ0 < λ1 < .. . < λN−1, then λN−1 corresponds to the lowest frequency and λ0 corre-
sponds to the highest one.
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Fig. 4 Frequency components for the graph in Fig. 3 with N = 20 vertices that correspond to
different frequencies λ . Larger values of λ represent “lower” graph frequencies that are smoother
with respect to the underlying graph, and smaller values of λ represent “higher” graph frequencies.

As an illustration, consider again the graph in Fig. 3. The eigenvalues (21) of
its adjacency matrix are real numbers in the interval [−1,1]. Fig. 4 shows several
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frequency components for the graph with N = 20 vertices. As can be immediately
observed, the low-frequency components change significantly less between con-
nected vertices than the high-frequency components, supporting the intuition behind
the definition of signal variation on graphs.

Applications

In this section, we discuss potential applications for signal processing framework
for weighted line graphs. Some of the orthogonal polynomials mentioned in this
section, such as Chebyshev, Hermite, and Laguerre ones, are well known [4, 14,
35]; others can be constructed with the recurrence (2) using application-specific
coefficients an, b, and cn.

Signal representation

One motivation for novel signal models is their suitability for the description and
analysis of certain classes of signals. The advantage of proposed models can be re-
lated to the improved characterization of signal properties and efficient signal pro-
cessing tools they produce.

Bases of orthogonal polynomials for the representation of diverse functions have
been proposed in numerous studies, some of which we discuss below. Two com-
mon applications are the representation of continuous functions using orthogonal
polynomials and the representation of discrete functions using sampled orthogonal
polynomials. The properties of these bases, including the calculation of projection
coefficients and approximation error analysis, are discussed in [4, 5, 35]. Further-
more, for different functions, the choice of orthogonal polynomials may not be ob-
vious and may depend on the application.

The projection coefficients in both cases can be viewed and manipulated as sig-
nals residing on infinite or finite weighted line graphs. Besides deeper insight, this
framework offers additional tools for the processing of signals based on orthogo-
nal polynomials. For instance, since the framework defines the concepts of filtering,
spectrum, and frequency response, one can potentially construct frequency-selective
filters, or even filter banks, to facilitate signal analysis and processing [25].

Below, we discuss several applications that are based on the expansion of finite
discrete functions into sampled orthogonal polynomials.

Electrocardiographic signal processing

Hermite polynomials, denoted as Hn(x), satisfy the recurrence (2) with coefficients
an = n+1, bn = 0, and cn = 1/2. They are orthogonal over the entire real line I =R

with respect to the weight function μ(x) = e−x2
.
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The expansion of signals into continuous and sampled Hermite polynomials has
been proposed for image analysis and processing [12, 13] and electrophysiologi-
cal signal compression [6, 8, 29, 32, 34]. In particular, an interesting observation
resulting from [29, 32] was that sampling the electrocardiographic signals at time
points proportional to the roots of Hermite polynomials is more efficient than sam-
pling at equal time intervals. Moreover, the proposed expansion led to a significantly
improved compression algorithm for electrocardiographic signals.

Speech signal analysis

Similarly to the above expansion of signals into Hermite polynomials, signals can
also be expanded into Laguerre polynomials. These polynomials, denoted as Ln(x),
satisfy the recurrence (2) with coefficients an = −(n+ 1), bn = 2n+ 1, and cn =
−(n+ 1). They are orthogonal over the semi-infinite interval I = R+ with respect
to the weight function μ(x) = e−x.

Speech coding and a representation of exponentially decaying signals using sam-
pled Laguerre polynomials has been studied in [10, 11]. The analysis of the cor-
responding signal models may offer valuable insights for improved analysis and
efficient processing of these classes of signals.

Image compression

Image compression is an extensive research area in signal processing (see [2] and
the references therein). Compression of multiple images with similar structure, such
as collections of faces, handwritten digits, etc., using weighted line graphs and as-
sociated signal models was considered in [26]. Since images are finite discrete two-
dimensional signals that reside on rectangular lattices, these lattices can be repre-
sented as a tensor product of two 1-D weighted line graphs [3, 20]. For both graphs,
the coefficients ak, bk, ck in (2), can be obtained by solving an �2-minimization
problem, and are dependent on images of interest.

Correlation analysis of Gauss-Markov random fields

Signal models for weighted line graphs can also be relevant to the analysis of Gauss-
Markov random fields [15, 16, 20]. Consider N random variables ξ0, . . . ,ξN−1 that
satisfy the difference equation

ξn = vn−1ξn−1 + unξn + vnξn+1 +νn, (25)

where νn is a zero-mean Gaussian noise, and vn,un ∈R are real-valued coefficients.
The set {ξn}0≤n<N is called a first-order Gauss-Markov random field defined on the
finite lattice 0 ≤ n < N. We assume zero (Dirichlet) boundary conditions ξ−1 = 0
and ξN = 0.

The Karhunen-Loève transform (KLT), described by the eigenvector matrix of
the covariance matrix ΣΣΣ , decorrelates the signal s =

(
ξ0 . . . ,ξN−1

)T
. Under certain
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conditions, it is considered to be the optimal transform for signal compression;
however, there is no general efficient algorithm to compute this transform [1].

As demonstrated in [15, 16], the inverse of the covariance matrix ΣΣΣ for the above
Gauss-Markov random field is

ΣΣΣ−1 =

⎛
⎜⎜⎜⎜⎝

u0 v0

v0 u1
. . .

. . .
. . . vN−2

vN−2 uN−1

⎞
⎟⎟⎟⎟⎠ .

We can set the values of coefficients in the recurrence (2) to an = cn = vn and
bn = un, and construct the corresponding family of orthogonal polynomials. In this
case, the orthogonalized graph Fourier transform (20) is precisely the KLT for the
above random field [31]. This result implies that an instantiation of the random
variables ξ0, . . . ,ξN−1 can be viewed, analyzed, and processed as Fourier transform
coefficients in the constructed signal model.

Fast signal transforms

Invertible linear transforms are widely used in signal processing. Examples include
discrete Fourier transform, discrete cosine and sine transforms, discrete wavelet
transform, KLT, and many others.

Efficient and fast implementations of these transforms is an important research
problem that can be addressed using multiple approaches. One of them is based on
the recognition of a transform as a polynomial transform (18) for an appropriate sig-
nal model. In this case, a decomposition of the model into a combination of simpler
models corresponds to a factorization of the transform into a series of simpler trans-
forms that may yield efficient and fast computational algorithms. The general theory
of this approach has been discussed in [23, 30, 37]; early work on using polynomial
transforms to derive algorithms for this was done in [17].

Fast algorithms for discrete cosine and sine transforms

It was demonstrated in [22, 23] that the discrete cosine and sine transforms are
Fourier transforms for the 1-D space signal model, which is a signal model for sig-
nals residing on graphs with edge weights an = cn = 1/2, such as the graph in Fig. 3,
with possible exceptions for boundary vertices. These graphs are associated Cheby-
shev polynomials of four kinds. By exploiting the structure of the underlying signal
models, a large number of fast algorithms for discrete cosine and sine transforms
was derived that require significantly fewer operations than direct computations of
these transforms.
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Conclusion

We have described a signal processing framework for signals that are represented
by weighted line graphs—a generalization of directed line graphs used for repre-
sentation of time signals in the classical DSP theory. The presented framework is
built on the theory of discrete signal processing on graphs and on algebraic sig-
nal processing theory. We presented definitions of fundamental signal processing
concepts, such as signals and filters, z-transform, frequency and spectrum, Fourier
transform and others, for the class of weighted line graphs. We illustrated a con-
nection between signal processing on weighted line graphs and representation of
signals using on orthogonal polynomials. We also discussed potential applications
of the presented framework to signal representation and compression and to design
of fast algorithms for certain linear transforms.
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19. M. Püschel, J.M.F. Moura, The algebraic approach to the discrete cosine and sine transforms
and their fast algorithms. SIAM J. Comput. 32(5), 1280–1316 (2003)

20. M. Püschel, J.M.F. Moura, Algebraic signal processing theory (2005), http://arxiv.org/abs/cs.
IT/0612077
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Adaptive Signal Processing

Stephen D. Casey

Abstract Adaptive frequency band (AFB) and ultra-wideband (UWB) systems
require either rapidly changing or very high sampling rates. Conventional analog-
to-digital devices are nonadaptive and have limited dynamic range. We investigate
AFB and UWB sampling via a basis projection method. The method decomposes
the signal into a basis over time segments via a continuous-time inner product op-
eration and then samples the basis coefficients in parallel. The signal may then be
reconstructed from the basis coefficients to recover the signal in the time domain.
The overarching goal of the theory developed in this chapter is to develop a com-
putable atomic decomposition of time-frequency space. The idea is to come up with
a way of nonuniformly tiling time and frequency so that if the signal has a burst
of high-frequency information, we tile quickly and efficiently in time and broadly
in frequency, whereas if the signal has a relatively low-frequency segment, we can
tile broadly in time and efficiently in frequency. Computability is key; systems are
designed so that they can be constructed using splines and implemented in circuitry.

Key words: interpolation theory, Shannon Sampling, irregular sampling, Gabor
systems, wavelets, splines, frame theory.

1 Introduction

Adaptive frequency band (AFB) and ultra-wideband (UWB) systems, requiring
either rapidly changing or very high sampling rates, stress classical sampling
approaches. At UWB rates, conventional analog-to-digital devices have limited
dynamic range and exhibit undesired nonlinear effects such as timing jitter.
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Increased sampling speed leads to less accurate devices that have lower preci-
sion in numerical representation. This motivates alternative sampling schemes that
use mixed-signal approaches, coupling analog processing with parallel sampling,
to provide improved sampling accuracy and parallel data streams amenable to more
efficient (parallel) digital computation. Wideband problems continue to hit barriers
in sample and hold architectures and analog-to-digital conversion, especially with
regard to energy. Digital circuitry has provided dramatically enhanced digital sig-
nal processing operation speeds, but there has not been a corresponding dramatic
energy capacity increase in batteries to operate these circuits; there is no Moore’s
Law for batteries or analog-to-digital conversion.

This chapter presents a different approach to sampling developed to address the
challenges of AFB and UWB signals. We investigate sampling for these classes of
signals by a basis projection method. The method represents a change of view1 in
sampling, from that of a stationary view of a signal used in classical sampling to
an “adaptive windowed stationary” view. This viewpoint, in the AFB case, gives
that the time and frequency space “tile” occupied by the signal changes in time.
The windows give us the tools to partition time-frequency so that the signal can be
sampled efficiently. The UWB case takes advantage of the windowing to partition
the signal uniformly but also quickly and efficiently. With the blocks, the signal can
be sampled in parallel.

The method was introduced as a means of UWB parallel sampling by Hoyos
et. al. [17] and applied to UWB communications systems [5, 8, 18–20]. The method
first systematically windows the signal in time. It then decomposes the windowed
signal into a basis over time segments via a continuous-time inner product oper-
ation and then samples the basis coefficients in parallel. The signal may then be
reconstructed from the basis coefficients to recover time domain samples, or further
processing may be carried out in the new domain [8, 17]. We address several issues
associated with the basis expansion and sampling procedure, including windowing
systems, choice of basis, truncation error, rate of convergence, and segmentation of
the signal. We develop the theory in truncated and overlapping domains, using the
theory of splines to get smoothness in time and decay in frequency. We employ the
theory of lapped orthogonal transforms to preserve the orthogonality of basis ele-
ments in the overlapping regions. We compute exact truncation error bounds and
compare the method with traditional sampling. We close by putting the theory in
the context of general methods for time-frequency analysis.

1.1 Preliminary Definitions

In this chapter, all functions considered are absolutely and square integrable func-
tions on the real line ( f ∈ L1 ∩L2(R)), unless noted otherwise. Likewise, all inte-
grals are assumed to be over the whole domain (either R or C depending on the

1 Meyer [28] gives an excellent overview of these different points in Chapter 1 of his book.
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context) unless noted otherwise. References for the material on harmonic analy-
sis and sampling include Benedetto [1], Dym and McKean [12], Grafakos [13],
Higgins [15], Hömander [16], Jerri [22], Körner [24], Levin [25], Meyer [28], Pa-
poulis [31, 32], and Young [41]. Background for the work on splines can be found
in Nürnberger [29], Prenter [33], and Schoenberg [34].

Fourier series and Fourier transforms play key roles in our work. Their defini-
tions, from [1] and [12], follow. Let exp(·) = e(·).

Definition 1 (Fourier Series). Let f be a periodic, integrable function on R, with
period 2Φ , i.e., f ∈ L1(T2Φ ). The Fourier coefficients of f , f̂ [n], are defined by

f̂ [n] =
1

2Φ

∫ Φ

−Φ
f (t)exp(−iπnt/Φ)dt .

If { f̂ [n]} is absolutely summable ({ f̂ [n]} ∈ l1), then the Fourier series of f is

f (t) = ∑
n∈Z

f̂ [n]exp(iπnt/Φ) .

For f ∈ L1, the Fourier transform f̂ (ω) is given as follows.

Definition 2 (Fourier Transform and Inversion Formulae). Let f be a function
in L1. The Fourier transform of f is defined as

f̂ (ω) =

∫
R

f (t)e−2π itωdt

for t ∈ R (time), ω ∈ R̂ (frequency). The inversion formula, for f̂ ∈ L1(R̂), is

f (t) = ( f̂ )
∨
(t) =

∫
R̂

f̂ (ω)e2π iωt dω .

Formally, we can think of the transform and the coefficient integral as analysis, and
the inverse transform and series as synthesis. The choice to have 2π in the exponent
simplifies certain expressions, e.g., for f ,g ∈ L1∩L2(R), f̂ , ĝ∈ L1∩L2(R̂), we have
the Parseval – Plancherel equations –

‖ f‖L2(R) = ‖ f̂‖L2(R̂)
and 〈 f ,g〉 = 〈 f̂ , ĝ〉 .

We extend the transform from L1∩L2 to L2 via a density argument. We also need to
define the periodization of a function of finite support.

Definition 3 (Periodization). Let T > 0 and let g(t) be a function such that suppg⊆
[0,T ]. The T -periodization of g is [g]◦(t) = ∑∞

n=−∞g(t− nT) .
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1.2 W-K-S Sampling

Classical sampling theory applies to square integrable bandlimited functions.
A function that is both Ω bandlimited and L2 has several smoothness and growth
properties given in the Paley-Wiener Theorem (see, e.g., [12]). We denote this class
of functions by PWΩ . The Whittaker-Kotel’nikov-Shannon (W-K-S) Sampling
Theorem [23, 35, 39, 40] applies to functions in PWΩ .

Definition 4 (Paley-Wiener Space PWΩ ).

PWΩ = { f : f , f̂ ∈ L2,supp( f̂ )⊂ [−Ω ,Ω ]}.

Theorem 1 (W-K-S Sampling Theorem). Let f ∈ PWΩ , sincT (t) =
sin( πT t)

πt and
δnT (t) = δ (t− nT).

a.) If T ≤ 1/2Ω , then for all t ∈ R,

f (t) = T ∑
n∈Z

f (nT )
sin( πT (t− nT))

π(t− nT )
= T

([
∑
n∈Z

δnT

]
f

)
∗ sinc

T
(t) . (1)

b.) If T ≤ 1/2Ω and f (nT ) = 0 for all n ∈ Z, then f ≡ 0.

A beautiful way to prove the W-K-S Sampling Theorem is to use the Pois-
son Summation Formula (PSF). Let T > 0 and for f ∈ L1([0,T )), let [ f ]◦(t) =
∑n∈Z f (t−nT ) be the T -periodization of f . We can then expand [ f ]◦(t) in a Fourier
series. The sequence of Fourier coefficients of this T -periodic function are given by
(̂ f )◦[n] = 1

T f̂
(
− n

T

)
. We have

T ∑
n∈Z

f (t + nT ) = ∑
n∈Z

f̂ (n/T )e2π int/T . (PSF1)

Therefore,
T ∑

n∈Z
f (nT ) = ∑

n∈Z
f̂ (n/T ) .

Thus, the Poisson Summation Formula allows us to compute the Fourier series of
[ f ]◦ in terms of the Fourier transform of f at equally spaced points. This extends to
the Schwartz class of distributions as

̂∑
n∈Z

δnT =
1
T ∑

n∈Z
δn/T . (PSF2)

If f ∈ PWΩ and T ≤ 1/2Ω ,

f̂ (ω) =

(
∑
n∈Z

f̂ (ω− n
T
)

)
· χ [−1/2T,1/2T)(ω) .
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But, by computing transforms and applying PSF2,

f̂ (ω) =

(
∑
n∈Z

f̂ (ω− n
T
)

)
· χ [−1/2T,1/2T)(ω) =

(
∑
n∈Z

[
δn/T

]
f̂

)
· χ [−1/2T,1/2T)(ω)

if and only if

f (t) = T

([
∑
n∈Z

δnT

]
f

)
∗ sinc

T
(t)

(see [1], pp. 254–257). An additional bonus to this derivation is that it gives a direct
method for analyzing reconstruction errors.

Complete reconstruction requires samples over all time. If only a finite number of
the samples are used, we get truncation error EN . This can be computed for uniform
truncation as follows. Define

fN(t) = T
N

∑
n=−N

f (nT )
sin( πT (t− nT))

π(t− nT)
.

The L2 truncation error for f is EN = ‖ f − fN‖2
2 = T ∑|n|>N | f (nT )|2 (see [32],

p. 142)2. The function f − fN is bandlimited with finite energy. Therefore, we have
the pointwise estimate

EN = sup | f (t)− fN(t)| ≤ (TEN)
1/2

(see [32], p. 142). More sophisticated analysis is needed for non-uniform truncation
and/or missing sample blocks (see [15], Chapter 11, and/or [22], Section 4).

The sampling rate 1/2Ω is called the Nyquist rate. Sampling sub-Nyquist results
in aliasing error EA, described in the following. If f has bandlimit Ω , and we sam-
ple at rate T > 1/2Ω , high frequencies of one block of e2πnt/T f (t) intersect with
low frequencies of the next block e2π(n+1)t/T f (t). Aliasing results in a stroboscopic
effect [1, pg. 258], an effect which is visualized as jumps in the output signal. The
high and low frequencies of adjacent blocks alias each other. To analyze aliasing er-
ror, we compute the pointwise estimate. For simplicity, assume f ∈ PW1. If T = 1

2 ,
applying PSF1 and integrating gives∫ 1/2

−1/2
[ f̂ ]◦(ω)e2π itω dω = ∑

n∈Z
f (n)

∫ 1/2

−1/2
e2π i(t−n)ω dω = ∑

n∈Z
f (n)

sin(π(t− n)
π(t− n)

.

If T > 1
2 , then

∫ 1/2

−1/2
[ f̂ ]◦(ω)e2π itω dω = ∑

n∈Z

∫ 1/2

−1/2
f̂ (ω+ n)e2π itω dω

= ∑
n∈Z

∫ n+1/2

n−1/2
f̂ (u)e2π it(u−n)du = ∑

n∈Z
e2π it(−n)

∫ n+1/2

n−1/2
f̂ (u)e2π itu du .

2 Computations throughout the chapter have been adjusted to compensate for our definition of the
Fourier transform.
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Now,

f (t) = ∑
n∈Z

∫ n+1/2

n−1/2
f̂ (u)e2π itu du .

Thus,

EA = sup

∣∣∣∣ f (t)−
∫ 1/2

−1/2
[ f̂ ]◦(ω)e2π itω dω

∣∣∣∣
= sup

∣∣∣∣∑
n �=0

(
1− e2π it(−n)

)∫ n+1/2

n−1/2
f̂ (u)e2π it(u) du

∣∣∣∣
≤ 2 sup

[
∑
n �=0

∫ n+1/2

n−1/2
| f̂ (u)|du

]
= 2

∫
|u|≥1/2

| f̂ (u)|du .

The constant 2 is sharp. An analysis of this error bound in terms of operators can be
found in Chapter 11 of [15].

If sample values are not measured at intended points, we can get jitter error EJ .
Let {εn} denote the error in the nth sample point. First we note that if f ∈ PW(1),
then, by Kadec’s 1/4 Theorem, the set {n± εn}n∈Z is a stable sampling set if |εn|<
1/4. Moreover, this bound is sharp. Jitter error is given by

EJ = sup

∣∣∣∣ f (t)−T

([
∑
n∈Z

δnT±εn

]
f

)
∗ sinc

T
(t)

∣∣∣∣ .
If we assume |εn| ≤ J ≤ min{1/(4Ω),e−1/2} , then [15] (Chapter 11) shows that
EJ ≤ KJ log(1/J) , where K is a constant expressed in terms of the sup norm of f
and f ′.

2 Sampling via Projection

Adaptive frequency band and ultra-wideband systems require either rapidly chang-
ing or very high sampling rates. These rates stress signal reconstruction in a variety
of ways. Clearly, sub-Nyquist sampling creates aliasing error, but error would also
show up in truncation, jitter and amplitude, as computation is stressed. The W-K-
S Sampling Theorem does not have a way to accurately reconstruct the signal for
sub-Nyquist samples nor adjust the sampling rate for variable bandwidth signals.
We can think of this as follows. Truncation loses the energy in the lost samples,
aliasing introduces ambiguous information in the signal and extremely high sam-
pling increases the likelihood of jitter error. In fact, perturbations of sampling sets of
ultra-wideband signals can result in unstable sampling sets. Developing a sampling
theory for adaptive frequency band and ultra-wideband systems is the motivation for
the methods in this chapter. Two of the key items needed for this approach are quick
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and accurate computations of Fourier coefficients, which are computed in parallel
[8, 18–20], and effective adaptive windowing systems [5], described in section 3.

2.1 An Introduction to the Projection Method

We start with a few “back of the envelope computations”. Let χS denote the
characteristic (or indicator) function of the set S. Let f be a signal of finite
energy in the Paley-Wiener class PWΩ . For a block of time T , let f (t) =

∑k∈Z f (t)χ [(k)T,(k+1)T ](t) . If we take a given block fk(t) = f (t)χ [(k)T,(k+1)T ](t),
we can T -periodically continue the function, getting

[ fk]
◦(t) = [ f (t)χ [(k)T,(k+1)T ](t)]

◦ .

Expanding ( fk)
◦(t) in a Fourier series, we get

[ fk]
◦(t) = ∑

n∈Z
[̂ fk]◦[n]exp(2π int/T) .

The original function f is Ω bandlimited; however, the truncated block functions fk

are not. Using the original Ω bandlimit gives us a lower bound on the number of
nonzero Fourier coefficients [̂ fk]◦[n] as follows. We have n

T ≤ Ω , i.e., ,n ≤ T ·Ω .
So, choose N = )T ·Ω*, where )·* denotes the ceiling function. For this choice of
N, we compute

f (t) = ∑
k∈Z

f (t)χ [(k)T,(k+1)T ](t) = ∑
k∈Z

[
[ fk]

◦(t)

]
χ
[(k)T,(k+1)T ](t)

≈ ∑
k∈Z

[ n=N

∑
n=−N

[̂ fk]◦[n]exp(2π int/T)

]
χ
[(k)T,(k+1)T ](t) .

Note that for this choice of the standard (sines, cosines) basis, we can, for a
fixed value of N, adjust to a large bandwidth Ω by choosing small time blocks T .
Also, after a given set of time blocks, we can deal with an increase or a decrease
in bandwidth Ω by again adjusting the time blocks, e.g., given an increase in Ω ,
decrease T , and vice versa. There is, of course, a price to be paid. The quality of
the signal, as expressed in the accuracy the representation of f , depends on N, Ω ,
and T . The basic projection formula is given as follows.

Proposition 1. Let f ∈ PWΩ and let T be a fixed block of time. Then, for N =
)T ·Ω*,

f (t) ≈ fp(t) = ∑
k∈Z

[ N

∑
n=−N

[̂ fk]◦[n]exp(2π int/T)

]
χ
[kT,(k+1)T ](t). (2)
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It is now evident how this method approximates the signal. Unlike the Shannon
method which examined the function at specific points, then used those individual
points to recreate the curve, the projection method breaks the signal into time blocks
and then approximates their respective periodic expansions with a Fourier series.
This process allows the system to individually evaluate each piece and base its cal-
culation on the needed bandwidth. The individual Fourier series are then summed,
recreating a close approximation of the original signal. It is important to note that
instead of fixing T , the method allows us to fix one of the parameters (N, Ω , or T )
while allowing the other two to fluctuate. From the design point of view, the easiest
and most practical parameter to fix is N. For situations in which the bandwidth does
not need flexibility, it is possible to fix Ω and T by the equation N = )T ·Ω*. For
fixed N, to increase bandwidth Ω , decrease the time blocks T .

The projection method can adapt to changes in the signal. Suppose that the
signal f (t) has a bandlimit Ω(t) which changes with time. This change effects
the time blocking τ(t) and the number of basis elements N(t). This, of course,
makes the analysis more complicated, but is at the heart of the advantage the pro-
jection method has over conventional methods. During a given τ(t), let Ω(t) =
max{Ω(t) : t ∈ τ(t)}. For a signal f that is Ω(t) band-limited, we can estimate

the value of n for which [̂ fk]◦[n] is nonzero. At minimum, [̂ fk]◦[n] is non-zero if
n

τ(t) ≤Ω (t), or equivalently, n≤ τ(t) ·Ω (t). Let N(t) = )τ(t) ·Ω(t)*. For this choice

of N(t), we get the basic adaptive projection formula.

Proposition 2. Let f , f̂ ∈ L2(R) and f have a variable but bounded band-
limit Ω(t). Let τ(t) be an adaptive block of time. Given τ(t), let Ω(t) =
max{Ω(t) : t ∈ τ(t)}. Then, for N(t) = )τ(t) ·Ω(t)* , f (t)≈ fP (t) , where

fP (t) = ∑
k∈Z

[ N(t)

∑
n=−N(t)

[̂ fk]◦[n]e
(2π int/τ)

]
χ
[kτ,(k+1)τ](t). (3)

The projection method also adapts to general orthonormal systems, much as
Kramer-Weiss extends sampling to general orthonormal bases [22]. Given a func-
tion f such that f ∈ PWΩ , let T be a fixed time block. Define f (t) and fk(t)
as in the beginning of the computation above. Now, let {ϕn} be a general or-
thonormal system for L2[0,T ], and let {ϕn,k(t)} = {ϕn(t− kT )}. Since f ∈ PWΩ ,
there exists N = N(T,Ω) such that f̂k[n] = 〈 f ,ϕn,k〉 = 0 for all n > N. In fact,
let N = maxn〈 f ,ϕn,k〉 �= 0 . Expanding in a Fourier series relative to {ϕn,k} gives
fk(t) = ∑n∈Z f̂k[n]ϕn,k(t), where f̂k[n] = 〈 fk,ϕn,k〉 . Summing over all blocks gives
the following.

Proposition 3. Let {ϕn} be a general orthonormal system for L2[0,T ] and let
{ϕn,k(t)} = {ϕn(t − kT )}. Let N = N(T,Ω) be such that f̂k[n] = 0 for all n > N.
Therefore, f (t)≈ fP (t), where

fP (t) =
∞

∑
k=−∞

[ N

∑
n=−N

〈 fk,ϕn,k〉ϕn,k(t)

]
χ
[kT,(k+1)T ](t) . (4)
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Given characteristics of the class of input signals, the choice of basis functions
used in the projection method can be tailored to optimal representation of the signal
or a desired characteristic in the signal.

2.2 Error Analysis

To compute truncation error, we calculate the Fourier transform of both sides of the
projection formula. Let f ∈ PWΩ , so f ∈ L2 and Ω bandlimited. For N = )T ·Ω*,
we have f (t)≈ fp(t), where

fp(t) = ∑
k∈Z

[ N

∑
n=−N

(̂ fk)◦[n]exp(2π int/T)

]
χ
[kT,(k+1)T ](t).

Taking the transform of both sides of this last equation and evoking the relationship
between the transform and convolution gives

f̂ p(ω) = ∑
k∈Z

[ N

∑
n=−N

[(̂ fk)◦[n] (exp(2π int/T)) ]̂∗
[
χ
[kT,(k+1)T ](t)

]̂
(ω)

]
.

Performing the indicated transforms results in

f̂ p(ω) = ∑
k∈Z

[ N

∑
n=−N

(̂ fk)◦[n]
(
δ (ω− n

T
)
)]
∗ exp(2π i(k− (1/2))Tω)

sin(πTω)

πω
.

Applying
(
δ (ω− n

T )
)
, we get the following.

Proposition 4. Let f ∈ PWΩ and let T be a fixed block of time. Then, for N =
)T ·Ω*,

f̂p(ω) = ∑
k∈Z

[ N

∑
n=−N

(̂ fk)◦[n]exp(2π i(k− (1/2))T)(ω− n
T
)

(
sin(π(ω− n

T ))

π(ω− n
T )

)]
.

(5)

The sharp truncations f ·χ [kT,(k+1)T ] introduce high-frequency modulation terms
into the signal. These terms are the primary source of error in the projection method
and the motivation for developing the windowing system discussed in Section 3.

The number N in the projection formula is the number of Fourier series compo-
nents chosen in the sum on each block. In order to ensure maximum utility from
the formula, the difference between the infinitely summed series and the truncated
series must be made a minimum. We calculate the mean square error as a truncation
error on the number of Fourier coefficients used to represent a given block fk. For a
fixed N, the mean square error is

E2
N = ‖ fk− fk,N‖2

2 = ‖ f̂k− f̂k,N‖2
2.
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Computing and then simplifying gives

E2
N =

1
T

∫ (k+1)T

kT
| fk
◦(t)− ∑

|n|≤N

f̂k[n]exp(2π itn/T)|2dt

=
1
T

∫ (k+1)T

kT
| ∑
|n|>N

f̂k[n]exp(2π itn/T)|2dt = ∑
|n|>N

| f̂k[n]|2 .

Truncation error perpetuates over all the blocks.
Given a general orthonormal system {ϕ j} for L2[0,T ], we can create an orthonor-

mal system for L2(R) by translating, getting {ϕn,k(t)}= {ϕn(t−kT )}. We can then
analyze error generated by projection as

EP = ‖ f (t)−∑
k∈Z

[ N

∑
j=−N

〈 fk,ϕn,k〉ϕn,k(t)

]
χ
[kT,(k+1)T ](t)‖2

= ‖∑
k∈Z

[
∑
|n|>N

〈 fk,ϕn,k〉ϕn,k(t)

]
χ
[kT,(k+1)T ](t)‖2 .

The sharp cut-offs χ
[kT,(k+1)T ] have a decay of only O(1/ω) in frequency3. The

windowing systems introduced in the next section greatly diminish this error.

3 Bounded Adaptive Partitions

This section introduces methods for segmenting time-frequency (R− R̂) space that
are developed to minimize the “ringing” in the signal introduced by sharp cutoffs.
We develop windowing systems have variable partitioning length, variable roll-off,
and variable smoothness. Three types of systems are constructed. The first systems
preserve orthogonality of any orthonormal systems between adjacent blocks. These
are used to develop tiling systems which cut up time into segments of possibly vary-
ing length, where the length is determined by signal bandwidth. The techniques
developed give control over smoothness in time and corresponding decay in fre-
quency. We also develop our systems so that the orthogonality of bases in adja-
cent and possible overlapping blocks is preserved. The “Achilles heel” of these
systems is that they are difficult to compute. We then construct smooth Bounded
Adaptive Partitions of unity using B-splines. These systems give flexible adaptive
partitions of unity of variable smoothness. Finally, we use the concept of almost
orthogonality (Cotlar, Knapp and Stein) [13] and our B-spline techniques to create
almost orthogonal windowing systems that are more computable/constructible than
the orthogonality preserving systems.

3 Given two functions f and g, we say that f =O(g) if there exists a positive constant K such that
f (ω)< Kg(ω) for ω sufficiently large.
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Our first windowing system uses sine, cosine, and linear functions. This was
created because it is relatively easy to implement, cuts down on frequency error and
preserves orthogonality. Consider a signal block of length T + 2r centered at the
origin. Let 0 < r� T/2. Define Cap(t) as follows:

Cap(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 |t| ≥ T/2+ r
1 |t| ≤ T/2− r
sin( π

4r (t +(T/2+ r))) −T/2− r < t <−T/2+ r
cos( π

4r (t− (T/2− r))) T/2− r < t < T/2+ r .

(6)

Given Cap, we form a system {Capk(t)} such that supp(Capk(t))⊆ [kT − r,(k+
1)T + r] for all k. Note that the Cap window has several properties that make it a
good window for our purposes. It has a partition property in that it windows the
signal in [−T/2− r,T/2+ r] and is identically 1 on [−T/2+ r,T/2− r]. It has a
continuous roll-off at the endpoints. Finally, it has the property that for all t ∈ R

∑
k

[Capk(t)]
2 ≡ 1 .

This last condition is needed to preserve the orthogonality of basis elements between
adjacent blocks. Additionally, it has O(1/ω2) decay in frequency space, and, when
one time block is ramping down, the adjacent block is ramping up at exactly
the same rate. The system using overlapping Cap functions has the advantage of
O(1/ω2) decay in frequency. We have that, for example, letting T = 2 and r = 1

Cap̂ (ω) =

[
sin(2πω)+ 4ω cos(4πω)

πω(16ω2− 1)

]
. (7)

Again let [ f ]◦ be the T + 2r periodization of f . Because both [ f ]◦ and Cap have
absolutely converging Fourier series,

̂[ f ·Cap]◦[n] =∑
m
[̂ f ]◦[n−m]Ĉap[m] = [̂ f ]◦ ∗Cap̂ [n] .

3.1 Orthogonality Preserving Systems

The theory of splines and some techniques from ordinary differential equations give
us the tools to generalize this system. The idea is to cut up the time domain into
perfectly aligned segments so that there is no loss of information. We want the
systems to be smooth, so as to provide control over decay in frequency, have variable
cutoff functions for flexibility in design, and adaptive, so as to adjust accordingly to
changes in frequency. We also want to develop our systems so that the orthogonality
of bases in adjacent and possible overlapping blocks is preserved.
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Definition 5 (ON Window System). Let 0 < r � T . An ON Window System is a
set of functions {Wk(t)} such that for all k ∈ Z

(i.) supp(Wk(t))⊆ [kT − r,(k+ 1)T + r] ,

(ii.) Wk(t)≡ 1 for t ∈ [kT + r,(k+ 1)T − r] ,

(iii.) Wk((kT +T/2)− t) =Wk(t− (kT +T/2)) for t ∈ [0,T/2+ r] ,

(iv.) ∑ [Wk(t)]
2 ≡ 1 ,

(v.) {[̂Wk]◦[n]} is absolutely summable, i.e., {[̂Wk]◦[n]} ∈ l1 . (8)

Conditions (i.) and (ii.) are partition properties in that they give an exact snap-
shot of the input function f on [kT + r,(k + 1)T − r], with smooth roll-off at the
edges. Condition (iii.) is needed to preserve orthogonality between adjacent blocks.
Condition (iv.) simplifies computations, and condition (v.) is needed for the compu-
tation of Fourier coefficients.

We will generate our systems by translations and dilations of a given window
WI , where supp(WI) = [−T/2− r,T/2+ r]. Condition (v.) gives, for f ∈ PWΩ
and {Wk(t)} an ON Window System with generating window WI , that

1
T + 2r

∫ T/2+r

−T/2−r
[ f ·WI]

◦(t)exp(−2π int/[T + 2r])dt = [̂ f ]◦ ∗ ŴI[n] . (9)

Examples:

• {Wk(t)}=
⋃

k∈Z χ [(k)T,(k+1)T ](t) .
• {Wk(t)}=

⋃
k∈Z Cap[(k)T−r,(k+1)T+r](t) .

The first example has jump discontinuities at all segment boundaries and has
O(1/ω) decay in frequency. The second is continuous but not differentiable and
has overlaps at segment boundaries. This system has O(1/ω2) decay in frequency.

The general window function WI is k-times differentiable, has supp(WI) =
[−T/2− r,T/2+ r] , and has values

WI =

⎧⎨
⎩

0 |t| ≥ T/2+ r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t|< T/2+ r .
(10)

We solve for ρ(t) by solving the Hermite interpolation problem⎧⎨
⎩

(a.) ρ(T/2− r) = 1 ,
(b.) ρ (n)(T/2− r) = 0 , n = 1,2, . . . ,k ,
(c.) ρ (n)(T/2+ r) = 0 , n = 0,1,2, . . . ,k ,

with the conditions that ρ ∈Ck and

[ρ(t)]2 +[ρ(−t)]2 = 1 for [T/2− r]≤ |t| ≤ [T/2+ r] . (11)
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We refer to (11) as the sin−cos condition. It directs us to get solutions expressed
in terms of sin(t) and cos(t). Therefore, a way to solve this interpolation problem is
the method of undetermined coefficients. We demonstrate by solving for ρ so that
we have a C1 window. Start by assuming that

ρ(t) = Asin(B[T/2− t])+C , T/2≤ t ≤ T/2+ r .

Since ρ is C1, ρ ′(T/2+ r) = 0, and so ABcos(B[r]) = 0, giving B = π/2r. Window
condition (iv.) gives that 2[ρ(t/2)]2 = 1, and so C =

√
2/2. Finally, ρ(T/2+r) = 0,

and so A =−
√

2/2.
To extend ρ onto T/2−r≤ t ≤T/2, we again use window condition (iv.), getting

ρ(t) =

√[
1− 1

2

[
1− sin(

π
2r

(
T
2
− t))

]2]
,

T
2
− r≤ t ≤ T

2
.

Finally, we use window conditions (ii.) and (iii.), getting

ρ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

2

[
1− sin( π

2r (
T
2 − t))

]
−T
2 − r ≤ t ≤ −T

2√[
1− 1

2

[
1− sin( π

2r (t−
T
2 ))

]2]
−T
2 ≤ t ≤ −T

2 + r

1 −T
2 + r < t < T

2 − r

√[
1− 1

2

[
1− sin( π

2r (
T
2 − t))

]2]
T
2 − r ≤ t ≤ T

2

1√
2

[
1− sin( π

2r (t−
T
2 ))

]
T
2 ≤ t ≤ T

2 + r .

(12)

With each degree of smoothness, we get an additional degree of decay in frequency.

3.2 Orthogonality Between Blocks

An ON Window System {Wk(t)} preserves orthogonality of basis element of over-
lapping blocks. Because of the partition properties of these systems, we need only
check orthogonality of adjacent overlapping blocks. Our construction involves the
folding technique developed by Malvar [26, 27], Coifman and Meyer [9] and Jaw-
erth and Sweldens [21]. We develop our systems constructively by using spline the-
ory. The best way to think about the construction is to visualize how one would do
the extension for a system of sines and cosines. We would extend the odd reflections
about the left endpoint and the even reflections about the right.
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Let {ϕ j(t)} be an orthonormal basis for L2[−T/2,T/2]. Define

ϕ̃ j(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 |t| ≥ T/2+ r
ϕ j(t) |t| ≤ T/2

−ϕ j(−T − t) −T/2− r < t <−T/2
ϕ j(T − t) T/2 < t < T/2+ r .

(13)

Theorem 2 (The Orthogonality of Overlapping Blocks). The collection
{Ψk, j}= {Wkϕ̃ j(t)} forms an orthonormal basis for L2(R).

Proof. Since WI ∈ L2[−T/2− r,T/2+ r],

‖Ψk, j‖2 = ‖WI‖2‖ϕ̃ j‖2 < ∞ .

We want to show that
〈
Ψk, j,Ψm,n

〉
= δk,m · δ j,n. The partitioning properties of the

windows give that we need only check overlapping and adjacent windows. If k = m,
we can consider the window centered at the origin and the basis ϕ̃ j. We want to
show

〈
WI ϕ̃i,WI ϕ̃ j

〉
= δi, j. Computing, we have

〈
WI ϕ̃i,WI ϕ̃ j

〉
=

∫ −T/2

−T/2−r
(WI(t))

2ϕi(−T − t)ϕ j(−T − t)dt

+
∫ −T/2+r

−T/2
((WI(t))

2− 1)ϕi(t)ϕ j(t)dt

+

∫ T/2−r

−T/2+r
ϕi(t)ϕ j(t)dt

+

∫ T/2

T/2−r
((WI(t))

2− 1)ϕi(t)ϕ j(t)dt

+

∫ T/2+r

T/2
(WI(t))

2ϕi(T − t)ϕ j(T − t)dt . (14)

Since {ϕ j} in an orthonormal basis, the third integral equals 1. We apply the linear
change of variables t =−T/2−τ to the first integral and t =−T/2+τ to the second
integral. We then add these two integrals together to get∫ r

0
[(WI(T/2− τ))2+(WI(τ−T/2))2− 1]ϕi(−T/2+ τ)ϕ j(−T/2+ τ)dτ .

Conditions (iii.) and (iv.) of our windowing system give that the expression

[(WI(T/2− τ))2 +(WI(τ−T/2))2− 1]

equals zero, and therefore this integral equals zero. Applying the linear change of
variables t = T/2−τ to the fourth integral and t = T/2+τ to the fifth integral gives
that these two integrals also sum to zero by essentially the same argument.

We now need to verify that
〈
Wkϕ̃i,Wl ϕ̃ j

〉
= δk,l ·δi, j. The partitioning properties

of the windows give that we need only check adjacent windows. The symmetry of
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our construction allows us to check W−1 and W0, where we need to only check the
overlapping region t ∈ [−r,r]. We have that

〈
W−1ϕ̃i,W0ϕ̃ j

〉
= 0+

∫ 0

−r
(W−1(t))ϕi(t)(W0(t))(−ϕ j(−t))dt

+

∫ r

0
(W−1(t))ϕi(−t)(W0(t))ϕ j(t)dt . (15)

Applying the linear change of variables t = −τ to the first integral and substituting
the variable τ and adding gives∫ r

0
[−W−1(−τ)W0(−τ)+W−1(τ)W0(τ)]ϕi(−τ)ϕ j(τ)dτ .

Condition (iii.) of our windowing system gives that the expression

[−W−1(−τ)W0(−τ)+W−1(τ)W0(τ)]

equals zero, and so the integral equals zero. Combining these two computations
shows that 〈

Ψk, j,Ψm,n
〉
= δk,m ·δ j,n .

To finish we have to show that {Ψk, j} spans L2(R). Given any function f ∈ L2,
consider the windowed element fk(t) =Wk(t) · f (t). We first consider the expansion
in the window WI symmetric to the origin. Let fI(t) = WI(t) · f (t). We have that
{ϕ j(t)} is an orthonormal basis for L2[−T/2,T/2]. Given fI , define

f̄I(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 |t| ≥ T/2+ r
fI(t) |t| ≤ T/2

fI(t)− fI(−T − t) −T/2− r < t <−T/2
fI(t)+ fI(T − t) T/2 < t < T/2+ r .

(16)

Since f̄I ∈ L2[−T/2,T/2], we may expand it as

∞

∑
j=1

〈
f̄I ,ϕ j

〉
ϕ j(t) .

To extend this to L2[−T/2− r,T/2+ r], we expand using {ϕ̃ j(t)}, getting

˜̄fI =
∞

∑
j=1

〈
f̄I ,ϕ j

〉
ϕ̃ j(t) . (17)

where

˜̄fI(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 |t| ≥ T/2+ r
fI(t) |t| ≤ T/2

fI(t)− fI(−T − t) −T/2− r < t <−T/2
fI(t)+ fI(T − t) T/2 < t < T/2+ r .

(18)
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This construction preserves orthogonality between adjacent blocks.
To finish, let f be any function in L2. Consider the windowed element fk(t) =

Wk(t) · f (t). Repeat the construction above for this window. This shows that for
fixed k, {Ψk, j} spans L2([kT − r,(k + 1)T + r]) and preserves orthogonality be-
tween adjacent blocks on either side. Summing over all k ∈ Z gives that {Ψk, j}
is an orthonormal basis for L2(R). �

Recall that an operator U is unitary if its transpose is its inverse, i.e., U∗ =U−1.
The folding operation used in Theorem 2 can be written down as a unitary operator.
Jawerth and Sweldens [21] wrote the operator down as a product of operators. Fix a
point α in R, and define the reflection, or mirror in α as Mα f (t) = f (2α − t). Let
χ l
α = χ

(−∞,α ] and χr
α = χ

(α ,∞) be the left and right cutoff functions, and let ρu
α and

ρd
α be the up and down ramp functions. In terms of these operators, M0WI(t) =

WI(t) and M0ρu(t) = ρd(t).

Definition 6 (Folding). The folding operation about a point α is given by

Fα = χ l
α(1+Mα)ρu

α + χr
α(1−Mα)ρd

α . (19)

Lemma 1. The folding operator is unitary if and only if the sin-cos condition
holds, i.e.,

(ρu
α)

2 +(ρd
α)

2 = 1 . (20)

Proof. The adjoint of Fα is given by

F ∗
α = χ l

α(1−Mα)ρu
α + χr

α(1+Mα)ρd
α = ρu

α(1+Mα)χ l
α +ρd

α(1−Mα)χr
α .

Thus,

F ∗
αFα = ρu

α(1+Mα)χ l
α(1+Mα)ρu

α +ρd
α(1−Mα)χr

α(1−Mα)ρd
α

= (ρu
α)

2[χ l
α + χr

α ]+ρu
αχ

r
αρ

d
αMα +ρu

αχ
l
αρ

d
αMα

+(ρd
α)

2[χ l
α + χr

α ]−ρu
αχ

r
αρ

d
αMα −ρu

αχ
l
αρ

d
αMα

= FαF
∗
α . �

We now have the results to state two of the main theorems of the chapter. Given
characteristics of the class of input signals, the choice of basis functions used in the
projection method can be tailored to optimal representation of the signal or a desired
characteristic in the signal.

Theorem 3 (Projection Formula for ON Windowing). Let {Wk(t)} be an ON
Window System, and let {Ψk, j} be an orthonormal basis that preserves orthogonality
between adjacent windows. Let f ∈ PWΩ and N = N(T,Ω) be such that 〈 f ,Ψk,n〉=
0 for all n > N and all k. Then, f (t)≈ fP (t), where

fP (t) = ∑
k∈Z

[ N

∑
n=−N

〈 f ,Ψk,n〉Ψk,n(t)

]
. (21)
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Given the flexibility of our windowing system, we can also formulate an adaptive
projection system for the ON Window Systems.

Theorem 4 (Adaptive Projection Formula for ON Windowing). Let f , f̂ ∈ L2(R)
and f have a variable but bounded bandlimit Ω(t). Let τ(t) be an adaptive block
of time. Let {Wk(t)} be an ON Window System with window size τ(t) + 2r on
the kth block, and let {Ψk, j} be an orthonormal basis that preserves orthogonal-
ity between adjacent windows. Given τ(t), let Ω(t) = max{Ω(t) : t ∈ τ(t)}. Let
N(t) = N(τ(t),Ω(t)) be such that 〈 f ,Ψk,n〉= 0. Then, f (t)≈ fP (t), where

fP (t) = ∑
k∈Z

[ N(t)

∑
n=−N(t)

〈 f ,Ψk,n〉Ψk,n(t)

]
. (22)

Examples:
Let Tα be the translation operator, i.e., Tα [ f ](t) = f (t −α) . All of the basis ele-
ments are presented in the interval [T/2− r,T/2+ r] centered at the origin. There-
fore, the operator τ[(k)T+T/2] will place the basis in the interval [(k)T − r,(k + 1)
T + r]. In the following, WI(t) is the window centered at the origin, and ϕ j is a
basis element in that window.

• {Ψk, j}= {T[(k)T+T/2][WIϕ j](t)} , where WI(t) = χ
[−T/2,T/2](t) and

ϕ j(t) = exp(i
2π j
T

(t−T/2)) .

• {Ψk, j}= {T[(k)T+T/2][WIϕ̃ j](t)} , where WI(t) = Cap(t) and

ϕ j(t) =

√
2
T

sin

(
π( j+ 1/2)

(t+T/2)
T

)
.

The first example has jump discontinuities at all segment boundaries and has
O(1/ω) decay in frequency. Note, as there is no overlap, basis elements are not
folded. The second is continuous but not differentiable and has overlaps at segment
boundaries. This system has O(1/ω2) decay in frequency.

The development of a C1 system involves solving a Hermite interpolation prob-
lem for not only the window but also the folded basis elements. Using undetermined
coefficients we solve for ρ so that the window is C1, getting

ρ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√[
1− 1

2

[
1− sin( π2r (

T
2 − t))

]2]
T
2 − r ≤ t ≤ T

2 .

1√
2

[
1− sin( π

2r (t−
T
2 ))

]
T
2 ≤ t ≤ T

2 + r .
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We then use the same technique to solve for C1 folded basis elements {ϕ̃ j}.
The constraints that make C1 folded basis elements are⎧⎨

⎩
(a.) ϕ j(−T/2) = 0
(b.) ϕ j

′(−T/2) exists
(c.) ϕ j

′(T/2) = 0
(23)

Constraint (23) directs us to get solutions expressed in terms of sin(t) and cos(t).
Solving (23) for ϕ j, we get

ϕ j(t) =

√
2
T

sin

(
π( j+ 1/2)

(t+T/2)
T

)
. (24)

Example: A C1 system – {Ψk, j}= {T[(k)T+T/2][WIϕ̃ j](t)} , where

WI =

⎧⎨
⎩

0 |t| ≥ T/2+ r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t|< T/2+ r ,

with

ρ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√[
1− 1

2

[
1− sin( π

2r (
T
2 − t))

]2]
T
2 − r ≤ t ≤ T

2

1√
2

[
1− sin( π

2r (t−
T
2 ))

]
T
2 ≤ t ≤ T

2 + r

and

ϕ j(t) =

√
2
T

sin

(
π( j+ 1/2)

(t+T/2)
T

)
.

The computations become increasingly complicated as the parameter k increases.
This is the motivation for creating “almost orthogonal” windowing systems using B-
spline constructions. These B-spline constructions allow for a direct computation of
the Fourier coefficients.

The analysis of the error generated by the projection method involves looking at
the decay rates of the Fourier coefficients. If we are working with the standard basis,
for f ∈C(T2Φ ), we can define the modulus of continuity as

μ(δ ) = sup
|x−y|≤δ

| f (x)− f (y)|

and have that

| f̂ [n]| ≤ 1
2
μ(1/n) .

We say that f satisfies a Hölder condition with exponent α if there exists a constant
K such that

| f (x+ δ )− f (x)| ≤ Kδα .
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If f is k-times continuously differentiable and f k satisfies a Hölder condition with
exponent α , then there exists a constant K such that

| f̂ [n]| ≤ K
1

nk+α .

The sharp cutoffs χ
[kT,(k+1)T ] have a decay of only O(1/ω) in frequency. We

designed the ON windowing systems so that the windows have decay O(1/(ω)k+2)
in frequency. Thus makes the error on each block summable.

We assume Wk is Ck. Therefore, Ŵk(ω) = O(1/(ω)k+2). We will analyze the
error EkP on a given block. Let M = ‖( f ·Wk)‖2. Then,

EkP = ‖( f (t) ·Wk)−
[ N

∑
n=−N

〈 f ,Ψn,k〉Ψn,k(t)

]
Wk(t)‖2

= ‖ ∑
|n|>N

〈 f ,Ψn,k〉Ψn,k(t)Wk(t)‖2 ≤
[
∑
|n|>N

M
nk+2

]
.

3.3 Partition of Unity Systems

We can construct partition of unity windowing systems using similar techniques as
those used in ON Window Systems. The theory of B-splines gives us the tools to
create these systems.

The most straightforward system is created by {χ [(k)T,(k+1)T ](t)} for k ∈ Z.
A second example can be developed by studying the de la Vallée-Poussin kernel
used in Fourier series (see [24]). Consider a signal block of length T + 2r at the
origin. Let 0 < r� T/2. Let

TriL(t) = max{[((T/(4r))+ r)−|t|/(2r)],0} ,
TriS(t) = max{[((T/(4r))+ r− 1)−|t|/(2r)],0} and

Trap[−T/2−r,T/2+r](t) = TriL(t)−TriS(t) . (25)

The Trap function has perfect overlay in the time domain and O(1/ω2) decay in fre-
quency space. When one time block is ramping down, the adjacent block is ramping
up at exactly the same rate. The system using overlapping Trap functions has the ad-
vantage ofO(1/ω2) decay in frequency. Let βL =

√
T/(4r)+ r, αL = T/(4r)+r/2,

βS =
√

T/(4r)+ r− 1, αS = T/(4r)− r/2. The Fourier transform of Trap is

Trap̂ (ω) =

[
(βL)

sin(2παLω)

πω

]2

−
[
(βS)

sin(2παSω)

πω

]2

. (26)

Definition 7 (Bounded Adaptive Partition of Unity). Let 0 < r� T . A Bounded
Adaptive Partition of Unity is a set of functions {Bk(t)} such that
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(i.) supp(Bk(t))⊆ [kT − r,(k+ 1)T + r] for all k ,

(ii.) Bk(t)≡ 1 for t ∈ [kT + r,(k+ 1)T − r] for all k ,

(iii.) ∑Bk(t)≡ 1 ,

(iv.) {[̂Bk]◦[n]} is absolutely summable, i.e. {[̂Bk]◦[n]} ∈ l1 . (27)

Conditions (i.),(ii.), and (iii.) make {Bk(t)} a bounded partition of unity. Con-
dition (iv.) is needed for the computation of Fourier coefficients. We have that

1
T + 2r

∫ T/2+r

−T/2−r
[ f ·BI]

◦(t)exp(−2π int/[T + 2r])dt = [̂ f ]◦ ∗ B̂I[n] . (28)

Examples:

• {Bk(t)}=
⋃

k∈Z χ [(k)T,(k+1)T ](t)
• {Bk(t)}=

⋃
k∈Z Trap[(k)T−r,(k+1)T+r](t) .

The first example has jump discontinuities at all segment boundaries and has
O(1/ω) decay in frequency. The second is continuous but not differentiable and
has overlaps at segment boundaries. This system has O(1/ω2) decay in frequency.

We will generate our general systems by translations and dilations of a given win-
dow BI , where supp(BI) = [−T/2− r,T/2+ r]. The generating window function
BI is k-times differentiable, has supp(BI) = [−T/2− r,T/2+ r], and has values

BI =

⎧⎨
⎩

0 |t| ≥ T/2+ r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t|< T/2+ r.
(29)

We solve for ρ(t) by solving the Hermite interpolation problem⎧⎨
⎩

(a.) ρ(T/2− r) = 1
(b.) ρ (n)(T/2− r) = 0 , n = 1,2, . . . ,k
(c.) ρ (n)(T/2+ r) = 0 , n = 0,1,2, . . . ,k ,

with the conditions that ρ ∈Ck and

[ρ(t)]+ [ρ(−t)] = 1 for t ∈ [T/2− r,T/2+ r] . (30)

We use B-splines as our cardinal functions. Let 0 < α� β and consider χ [−α ,α ].
We want the n-fold convolution of χ [α ,α ] to fit in the interval [−β ,β ]. Then, we
choose α so that 0 < nα < β , and let

Ψ(t) = χ
[−α ,α ] ∗ χ [−α ,α ] ∗ · · · ∗ χ [−α ,α ](t)︸ ︷︷ ︸

n−times

.
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The β -periodic continuation of this function,Ψ ◦(t), has the Fourier series expansion

∑
k �=0

α
nβ

[
sin(πkα/nβ )

2πkα/nβ

]n

exp(π ikt/β ) .

The Ck solution for ρ is given by a theorem of Schoenberg (see [34],
pp. 7–8). Schoenberg solved the Hermite interpolation problem with endpoints
−1 and 1. An interpolant that minimizes the Chebyshev norm is called the perfect
spline. The perfect spline S(t) for Hermite problem with endpoints −1 and 1 such
that

S(1) = 1 , S(n)(1) = 0 , n = 1,2, . . . ,k , S(n)(−1) = 0 , n = 0,1,2, . . . ,k

is given by the integral of the function

M(x) = (−1)n
k

∑
j=0

Ψ(t− t j)

φ ′(t j)
,

where Ψ is the k− 1 convolution of characteristic functions, the knot points are
t j =−cos(π j

n ), j = 0,1, . . . ,n, and φ(t) =∏k
j=0(t− t j). Given these knots, we have

to choose α sufficiently large, e.g., α > 1. If k is even, the midpoint occurs at the k/2
knot point. If k is odd, the midpoint occurs at the midpoint between the k/2 and
(k+ 1)/2 knot points. We then have that

ρ(t) = S ◦ �(t) , where �(t) =−1
r

t +
T
2r

.

For this ρ , and for

BI =

⎧⎨
⎩

0 |t| ≥ T/2+ r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t|< T/2+ r

we have that B̂I(ω) is given by the antiderivative of a linear combination of func-
tions of the form [

sin(πkαω/nT)
2πkαω/nT

]n

,

and therefore has decay O(1/ωn+1) in frequency.

3.4 Almost Orthogonal Systems

The partition of unity systems do not preserve orthogonality between blocks. How-
ever, they are easier to compute in both time and frequency. Therefore, these systems
can be used to approximate the Cap system with B-splines. We get windowing
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systems that nearly preserve orthogonality. Each added degree of smoothness in
time adds to the degree of decay in frequency.

Cotlar, Knapp and Stein introduced almost orthogonality via operator inequali-
ties (see [13]). The concept allows us to create windowing systems that are more
computable/constructible such as the Bounded Adaptive Partition of Unity Systems
{Bk(t)} with the orthogonality preservation of the ON Window Systems {Wk(t)}.

Definition 8 (Almost ON System). Let 0 < r� T . An Almost ON System for adap-
tive and ultra-wideband sampling is a set of functions {Ak(t)} for which there exists
δ , 0≤ δ < 1/2 such that

(i.) supp(Ak(t))⊆ [kT − r,(k+ 1)T + r] for all k ,

(ii.) Ak(t)≡ 1 for t ∈ [kT + r,(k+ 1)T − r] for all k ,

(iii.) Ak((kT +T/2)− t) = Ak(t− (kT +T/2)), t ∈ [0,T/2+ r] ,

(iv.) 1− δ ≤ [Ak(t))]
2 +[Ak+1(t))]

2 ≤ 1+ δ for t ∈ [kT,(k+ 1)T ] ,

(v.) {Âk
◦[n]} ∈ l1 . (31)

We start with Cap(t), where

Cap(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 |t| ≥ T/2+ r
1 |t| ≤ T/2− r
sin( π

4r (t +(T/2+ r))) −T/2− r < t <−T/2+ r
cos( π

4r (t− (T/2− r))) T/2− r < t < T/2+ r .

Let Δ(T,r) =
T+2r

m . By placing equidistant knot points

−T/2− r = x0,−T/2− r+Δ(T,r) = x1, . . . ,T/2+ r = xm,

we can construct Cm−1 polynomial splines Sm+1 approximating

Cap(t) in [(−T/2− r),(T/2+ r)] .

A theorem of Curry and Schoenberg gives that the set of B-splines

{B(m+1)
−(m+1), . . . ,B

(m+1)
k }

forms a basis for the space of degree m + 1 polynomial splines Sm+1 (see [29],
pp. 98–99). Therefore,

Cap(t)≈
k

∑
i=−(m+1)

aiB
(m+1)
i .

Let

δ =

∥∥∥∥ k

∑
i=−(m+1)

aiB
(m+1)
i −Cap(t)

∥∥∥∥
∞
.
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Then, δ < 1/2, with the largest value for the piecewise linear spline approximation.
Moreover, δ −→ 0 as m and k increase. Thus, we get computable windowing sys-
tems that nearly preserve orthogonality. Each added degree of smoothness in time
adds to the degree of decay in frequency.

4 Biorthogonal Constructions

The collection {Ψk, j} = {Wkϕ̃ j(t)} forms an orthonormal basis for L2(R). In this
section, we develop the biorthogonal basis to {Ψk, j}.

Let H be a Hilbert space with norm ‖·‖. We say that a sequence of vectors {xn} in
H is complete if given and x∈H such that 〈x,xn〉= 0 implies that x = 0. A sequence
{xn} is minimal if every element in the sequence lies outside of the closed linear
span of the other elements. A sequence that is both minimal and complete is called
exact. Clearly, a basis is exact.

Definition 9 (Biorthogonal). A sequence {ym}∞m=1 in a Hilbert space H is biorthog-
onal to a sequence {xn}∞n=1 if

〈xn,ym〉= δn,m .

By the Hahn-Banach theorem, a given {xn} will have a biorthogonal sequence
{ym} if and only if {xn} is minimal. Thus, a basis B = {xn}∞n=1 for H possesses a
biorthogonal basis B∗ = {ym}∞m=1, Also, there exists M such that for all n

1≤ ‖xn‖‖yn‖ ≤M

(see [41], pp. 19–20). Two bases A = {xn}∞n=1 and B = {ym}∞m=1 are said to be
equivalent if

∑
n

cnxn is convergent if and only if ∑
n

cnyn is convergent.

Equivalent bases have equivalent biorthogonal bases.
A sequence {xn} ∈H is called a Bessel sequence if there is a constant B such that

for all x ∈H, ∑n |〈x,xn〉|2 ≤ B‖x‖2. A Riesz basis B = {xn}∞n=1 for H is a bounded
basis. It is also unconditional in that for all x ∈ H, x = ∑n 〈x,xn〉xn converges un-
conditionally, i.e., regardless of the order in which the terms are summed. There are
many characterizations of Riesz bases. A set B is a Riesz basis if and only if it is
equivalent to E , an orthonormal basis for H. Also, B is a Riesz basis if and only if
there exists A,B > 0 such that

A‖x‖2 ≤∑
n
|〈x,xn〉|2 ≤ B‖x‖2
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(see [41], pp. 26–30). If B∗ = {ym}∞m=1 is biorthogonal to B, then B∗ is a basis
and, for every x ∈H,

x =∑
n
〈x,yn〉xn =∑

n
〈x,xn〉yn

where both sums converge unconditionally.
Given a Riesz basis B = {xn}∞n=1 with bounds A,B > 0 such that

A‖x‖2 ≤∑
n
|〈x,xn〉|2 ≤ B‖x‖2 ,

there exists a biorthogonal Riesz basis B∗ = {ym}∞m=1 with bounds B−1,A−1 > 0
such that

B−1‖x‖2 ≤∑
m
|〈x,ym〉|2 ≤ A−1‖x‖2.

The collection {Ψk, j} = {Wkϕ̃ j(t)} forms an orthonormal basis for L2(R).
Therefore, it has a biorthogonal Riesz basis {Ψ∗

k, j}. The basis is uniquely deter-
mined by the biorthogonality relationship

〈{Ψm,n},{Ψ∗
k, j}〉= δm,k ·δn, j.

Theorem 5 (Biorthogonal Basis). The Riesz basis {Ψk, j} = {Wkϕ̃ j(t)} has a
unique biorthogonal Riesz basis {Ψ∗

k, j}, with uniqueness given by the biorthogo-
nality relationship

〈{Ψm,n},{Ψ∗
k, j}〉= δm,k ·δn, j .

The basis {Ψ∗
k, j} is given by

{Ψk, j}= {W̃kϕ̃ j(t)} ,

where W̃k is the translation of the window

W̃I =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 |t| ≥ T/2+ r ,
1 |t| ≤ T/2− r ,

ρu
0 (t)

ρu
0

2+ρd
0

2 −T/2− r < t <−T/2+ r ,

ρd
0 (t)

ρu
0

2+ρd
0

2 T/2− r < t < T/2+ r .

(32)

Proof. Recall that the folding operator about a point α is given by

Fα = χ l
α(1+Mα)ρu

α + χr
α(1−Mα)ρd

α .

Lemma 2. Assume 0 < m≤ 1≤M, and that

m≤ (ρu
α)

2 +(ρd
α)

2 ≤M . (33)
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Then for

m = mint

√
(ρu

α)
2 +(ρd

α)
2 , M = maxt

√
(ρu

α)
2 +(ρd

α)
2 , (34)

m‖ f‖2
2 ≤ ‖Fα f‖2

2 ≤M‖ f‖2
2 . (35)

Proof of Lemma. ∫
R

|Fα f |2dt =
∫
R

(ρu
α)

2 +(ρd
α)

2| f |2dt .

The result follows by estimating the integral. �

Lemma 3. The inverse of the folding operator is again a folding operator.

Proof of Lemma. Let g =Fα f . Writing this in matrix form,

χ l
α

[
g

Mαg

]
=

[
ρu
α ρd

α
−ρd

α ρu
α

]
︸ ︷︷ ︸

(∗)

χ l
α

[
f

Mα f

]
. (36)

Inverting (∗), we have that

ρ̃u
α =

ρu
α

ρu
α

2 +ρu
α

2 , ρ̃
d
α =

ρu
α

ρu
α

2 +ρu
α

2 , (37)

and that F̃αg = f

F̃α = χ l
α(1+Mα)ρ̃u

α + χr
α(1−Mα)ρ̃d

α . (38)

�
The result follows by combining the two lemmas. �

5 Signal Adaptive Frame Theory

The theory of frames gives us the mathematical structure in which to express sam-
pling via the projection method. All nonuniform sampling schemes could be ex-
pressed in terms of the language of frames. The work we discuss in this section is
preliminary and will be developed in subsequent papers.

5.1 Frame Theory

The concept of a frame goes back to the work of Duffin and Schaeffer [11].
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Definition 10 (Frame). A sequence of elements F = { fn}n∈Z in a Hilbert space H
is a frame if there exist constants A and B such that

A‖ f‖2 ≤ ∑
n∈Z
|〈 f , fn〉|2 ≤ B‖ f‖2 .

A and B are called the upper and lower frame bounds, respectively. Also, Ã =
sup{A}, B̃ = inf{B} are called the optimal frame bounds. A frame is called tight if
A = B, and normalized tight if A = B = 1. A frame is called exact if it ceases to be a
frame when any of its elements are removed. Thus, an ON basis E for H is an exact
normalized tight frame for H.

5.2 W, B, and A Frames

The windowing systems above allow us to develop Signal Adaptive Frame Theory.
The idea is as follows. If we work with the ON windowing system {Wk(t)}, let
{Ψk, j} be an orthonormal basis that preserves orthogonality between adjacent win-
dows. Let f ∈ PWΩ and N = N(T,Ω) be such that 〈 f ,Ψn〉= 0 for all n > N. Then,

f (t) = ∑
k∈Z

[
∑
n∈Z
〈 f ,Ψn,k〉Ψn,k(t)

]
. (39)

This also gives

‖ f‖2
2 = ∑

k∈Z

[
∑
n∈Z
|〈 f ,Ψn,k〉|2

]
. (40)

Given the flexibility of our windowing system, we can also formulate an adaptive
projection system for the ON Window Systems. Let f , f̂ ∈ L2(R) and f have a
variable but bounded bandlimit Ω(t). Let τ(t) be an adaptive block of time. Let
{Wk(t)} be an ON Window System with window size τ(t)+ 2r on the kth block,
and let {Ψk, j} be an orthonormal basis that preserves orthogonality between adjacent
windows.

Given τ(t), let Ω(t) = max{Ω(t) : t ∈ τ(t)}. Let N(t) = N(τ(t),Ω(t)) be such
that 〈 f ,Ψn,k〉= 0. Then,

f (t) = ∑
k∈Z

[
∑
n∈Z
〈 f ,Ψn,k〉Ψn,k(t)

]
. (41)

Again we have

‖ f‖2
2 = ∑

k∈Z

[
∑
n∈Z
|〈 f ,Ψn,k〉|2

]
. (42)

In both of these cases, given that {Ψk, j} = {Wkϕ̃ j(t)} is an orthonormal ba-
sis for L2(R), we have a representation of a given function f in L2. The set
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{Ψk, j} = {Wkϕ̃ j(t)} is an exact normalized tight frame for L2. The restriction that
these basis elements present is computability. They become increasing difficult to
compute as the smoothness in time/decay in frequency increases.

A way around this is to connect the Bounded Adaptive Partition of Unity systems
{Bk(t)} to frame theory. The ideas behind this connection go back to the curvelet
work of Candès and Donoho. The paper of Borup and Neilsen [2] gives a nice
overview of this connection, and we will refer to that paper for the background from
which we develop our approach. The set {Bk(t)} forms an admissible cover in that
they form a partition of unity and have overlap with only their immediate neighbors.

For each window Bk(t), let φn,k(t) be the shifted exp[π itT/n] centered in the
window. Then, define

Φn,k =Bk(t)φn,k(t) .

Given an f ∈ L2 we can write

f (t)≈ ∑
k∈Z

[
∑
n∈Z
〈 f ,Φn,k〉Φn,k(t)

]
. (43)

For this system we can compute

A‖ f‖2
2 ≤ ∑

k∈Z

[
∑
n∈Z
|〈 f ,Φn,k〉|2

]
≤ B‖ f‖2

2 .

The signal will be underrepresented on some blocks, overrepresented on others.
This is a function of how much of the signal is concentrated in the overlap regions.
The frame bounds will be tightened for the almost orthogonal windowing systems.
The fact that the almost ON windows {Ak(t)} approximate the ON windowing sys-
tem will result in approximating the expansion of the signal contained in the over-
lapping region in an ON basis. The closer the approximation, the better the frame
bounds. Developing these signal adaptive frames, their bounds and the associated
frame operators will be a major point of emphasis in future work.

6 Remarks on Applications

Despite extensive advances in integrated circuit design and fabrication processes,
wideband problems continue to hit barriers in sample and hold architectures and
analog-to-digital conversion (ADC). ADC signal-to-noise and distortion ratio, the
effective number of resolution bits, declines with sampling rate due to timing jit-
ter, circuit imperfections, and electronic noise. ADC performance (speed and total
integrated noise) can be improved to some extent, e.g., by cooling and therefore low-
ering the system temperature. However, the energy cost may be significant, and this
presents a major hurdle for implementation in miniaturized devices. Digital circuitry
has provided dramatically enhanced digital signal processing operation speeds, but
there has not been a corresponding dramatic energy capacity increase in batteries to
operate these circuits; there is no Moore’s Law for batteries or ADCs.
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A growing number of applications face this challenge, such as miniature and
hand-held devices for communications, robotics, and micro- aerial vehicles. Very
wideband sensor bandwidths are desired for dynamic spectrum access and cog-
nitive radio, radar, and ultra-wideband systems. Multi-channel and multi-sensor
systems, array processing and beamforming, multi-spectral imaging, and vision sys-
tems compound the issue. All of these rely on analog sensing and a digital interface,
perhaps with feedback. This motivates mixed-signal circuit designs that tightly cou-
ple the analog and digital portions and operate with parallel reduced bandwidth
paths to relax ADC requirements. The goal of such wideband integrated circuit de-
signs is to achieve good trade-offs in dynamic range, bandwidth, and parallelization,
while maintaining low energy consumption. This requires a careful balance of ana-
log and digital functionality. We address this in [8].

From a signal processing perspective, we have approached this problem by
implementing an appropriate signal decomposition in the analog portion that pro-
vides parallel outputs for integrated digital conversion and processing. This natu-
rally leads to an architecture with windowed time segmentation and parallel analog
basis expansion. In this chapter we viewed this from the sampling theory perspec-
tive, including segmentation and window design, achieving orthogonality between
segments, basis expansion and choice of basis, signal filtering, and reconstruction.
The approach we have developed in this chapter is tailored toward strong connec-
tions to circuit design considerations and applications.
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Abstract This paper reviews some results on the identifiability of classes of
operators whose Kohn-Nirenberg symbols are band-limited (called band-limited
operators), which we refer to as sampling of operators. We trace the motivation and
history of the subject back to the original work of the third-named author in the late
1950s and early 1960s, and to the innovations in spread-spectrum communications
that preceded that work. We give a brief overview of the NOMAC (Noise Mod-
ulation and Correlation) and Rake receivers, which were early implementations
of spread-spectrum multi-path wireless communication systems. We examine in
detail the original proof of the third-named author characterizing identifiability of
channels in terms of the maximum time and Doppler spread of the channel, and do
the same for the subsequent generalization of that work by Bello. The mathematical
limitations inherent in the proofs of Bello and the third author are removed by
using mathematical tools unavailable at the time. We survey more recent advances
in sampling of operators and discuss the implications of the use of periodically
weighted delta-trains as identifiers for operator classes that satisfy Bello’s criterion
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for identifiability, leading to new insights into the theory of finite-dimensional Ga-
bor systems. We present novel results on operator sampling in higher dimensions,
and review implications and generalizations of the results to stochastic operators,
MIMO systems, and operators with unknown spreading domains.

Key words: Sampling, Gabor frame, Delta trains, Kohn-Nirenberg symbol,
Spreading function, Operator Paley-Wiener space, Operator identification, Op-
erator sampling, Channel identification, Channel measurement, Rake receiver,
Time-variant filters, Band-limited operators, Gabor matrices, Stochastic operator,
Compressive sensing, Matrix probing, MIMO channel

Introduction

The problem of identification of a time-variant communication channel arose in the
1950s as the problem of secure long-range wireless communications became in-
creasingly important due to the geopolitical situation at the time. Some of the theo-
retical and practical advances made then are described in this paper, and more recent
advances extending the theory to more general operators, and onto a more rigorous
mathematical footing, known as sampling of operators are developed here as well.

The launching point for the theory of operator sampling is the early work of the
third-named author in his Master’s thesis at MIT, entitled “Sampling models for lin-
ear time-variant filters” [19], see also [22, 23], and [21] in which he reviews the iden-
tification problem for time-variant channels. The third named author as well as Bello
in subsequent work [6] were attempting to understand and describe the theoretical
limits of identifiability of time-variant communication channels. Section “Histori-
cal Remarks” of this paper describes in some detail their work and explores some
of the important mathematical challenges they faced. In Section “Operator Sam-
pling”, we describe the more recently developed framework of operator sampling.
Results addressing the problem considered by Bello are based on insights on finite
dimensional Gabor systems which are presented in Section “Linear Independence
Properties of Gabor Frames”. Malikiosis’s recent result [32] allows for the general-
ization of those results to a higher-dimensional setting, these are stated and proven in
Section “Generalizations of operator sampling to higher dimensions”. We conclude
the paper in Section “Further results on operator sampling” with a short summary of
the sampling of operators literature, that is, of results presented in detail elsewhere.

Historical Remarks

The Cold War Origins of the Rake System

In 1958, Price and Green published A Communication Technique for Multi-path
Channels in Proc. IRE [56], in which they describe a communication system called
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Rake, designed to solve the multi-path problem. When a wireless transmitter does
not have line-of-sight with the receiver, the transmitted signal is reflected possi-
bly multiple times before reaching the receiver. Reflection by stationary objects
such as the ground or buildings introduces random time delays to the signal, and
reflection or refraction by moving objects such as clouds, the troposphere, iono-
sphere, or a moving vehicle produce random frequency or Doppler shifts in the
signal as well. Due to scattering and absorption, the reflected signals are randomly
amplitude-attenuated too. The problem is to recover the transmitted signal as accu-
rately as possible from the superposition of time-frequency-shifted and randomly
amplitude-attenuated versions of it. Since the location and velocities of the reflect-
ing objects change with time, the effects of the unknown, time-variant channel must
be estimated and compensated for.

Price and Green’s paper [56] was the disclosure in the literature of a long-distance
system of wide-band or spread-spectrum communications that had been developed
in response to strategic needs related to the Cold War. This fascinating story has
been described in several articles by those directly involved [12, 55, 57, 58]. We
present a summary of those remarks and of the Rake system below. The goal is to
motivate the original work of the third-named author on which the theory of operator
sampling is based.

In the years following World War II, the Soviet Union was exercising its power
in Eastern Europe with a major point of contention being Berlin, which the Soviets
blockaded in the late 1940s. This made secure communication with Berlin a top
priority. As Paul Green describes it,

[T]he Battle of Berlin was raging, the Russians having isolated the city physically on land,
so that the Berlin Airlift was resorted to, and nobody knew when all the communication
links would begin to be subjected to heavy Soviet jamming. [12]

By 1950, with a shooting war in Korea about to begin, the Army Signal Corps ap-
proached researchers at MIT to develop secure, and reliable wireless communication
with the opposite ends of the world. According to Green,

It is difficult today to recall the fearful excitement of those times. The Russians were thought
to be 12 feet high in anything having to do with applying mathematics to communication
problems (“all Russians were Komogorovs or Kotelnikovs”)....[T]here was a huge backlog
of unexploited theory lying around, and people were beginning to build digital equipment
with the unheard of complexity of a hundred or so vacuum tube-based bits (!). And the
money flowed. [12]

The effort was called Project Lincoln (precursor to Lincoln Laboratory). The re-
searchers were confronted by two main problems: 1) making a communications
system robust to noise and deliberate jamming, and 2) enabling good signal recov-
ery from multiple paths.

Spread Spectrum communications and NOMAC

The technique chosen to address the first problem is an application of the no-
tion, already well understood and used by that time, that combatting distortions
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from noise and jamming can be achieved by spreading the signal over a wide fre-
quency band. The idea of spreading the spectrum had been around for a long time
[51, 55, 63] and can be found even in a now famous Hedy Lamarr-George Antheil
patent of 1942 [33, 55], which introduced the concept later called “frequency hop-
ping”. The system called NOMAC (Noise Modulation and Correlation) was devel-
oped in the early 1950s and used noise-like (pseudo-noise or PN) signals to achieve
spectrum spreading. Detailed discussion of its history can be found in [12, 55, 64].

The huge backlog of “unexploited theory” mentioned above included the re-
cent work of Claude Shannon on communication theory [61], of Norbert Wiener
on correlation functions and least mean squares prediction and filtering [65], and
recent applications of statistical decision theory to detection problems in radar and
communications.

The communication problem addressed by NOMAC was to encode data rep-
resented by a string of ones and zeros into analog signals that could be electro-
magnetically transmitted over a noisy communication channel in a way that foiled
“jamming” by enemies. The analog signals x1(·) and x0(·), commonly called Mark
and Space, associated with the data digits 1 and 0, were chosen to be waveforms of
approximate bandwidth B, and with small cross correlation. The target application
was 60 wpm teletype, with 22 msec per digit (called a baud), which corresponds
to a transmission rate of 1/0.022sec = 45 Hz. The transmitted signals were chosen
to have a bandwidth of 10 KHz, which was therefore expected to yield a “jamming
suppression ratio” of 10,000/45 = 220, or 23 db [12, 64]. The jamming ratio is of-
ten called the “correlation gain”, because the receiver structure involves cross cor-
relation of the received signal with each of the possible transmitted signals. If the
correlation with the signal x1(·) is larger than the one with the signal x0(·), then it
is decided that the transmitted signal corresponded to the digit 1. This scheme can
be shown to be optimum in the sense of minimum probability of error provided that
the transmitted signals are not distorted by the communications channel and that
the receiver noise is white Gaussian noise (see, for example, [16]). The protection
against jamming is because unless the jammer has good knowledge of the noise-like
transmitted signals, any jamming signals would just appear as additional noise at the
output of the crosscorrelations.

More details on the nontrivial ideas required for building a practical system can
be found in the references. We may mention that the key ideas arose from three
classified MIT dissertations by Basore [4], Pankowski [34], and Green [10], in fact,
documents on NOMAC remained classified until 1961 [12].

A transcontinental experiment was run on a NOMAC system, but was found to
have very poor performance because of the presence of multiple paths; the signals
arriving at the receiver by these different paths sometimes interfere destructively.
This is the phenomenon of “fading”, which causes self-jamming of the system.
Some improvement was achieved by adding additional circuitry and the receiver
to separately identify and track the two strongest signals and combine them after
phase correction; this use of time and space diversity enabled a correlation gain of
17 db, 6 db short of the expected performance. It was determined that this loss was
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because of the neglected weaker paths, of which there could be as many as 20 or 30.
So attention turned to a system that would allow the use of all the different paths.

The RAKE system

One conceptual basis for this new system was provided by the doctoral thesis of
Robert Price [52], the main results of which were published in 1956 [53]. In a chan-
nel with severe multi-path the signal at the receiver is composed of large number of
signals of different amplitudes and phases and so Price made the assumption that
the received “signal” was a Gaussian random process. He studied the problem of
choosing between the hypothesis

Hi : w(·) = Axi(·)+ n(·), i = 0,1,

where the random time variant linear communication channel A is such that the
{Axi(·)} are Gaussian processes. In this case, the earlier cross correlation detection
scheme makes no sense, because the “signal” arriving at the receiver is not deter-
ministic but is a sample function of a random process, which is not available to the
receiver because it is corrupted by the additive noise. Price worked out the opti-
mum detection scheme and then ingeniously interpreted the mathematical formulas
to conclude that the new receiver forms least mean-square estimates of the {Axi(·)}
and then crosscorrelates the w(·) against these estimates. In practice of course, one
does not have enough statistical information to form these estimates and therefore
more heuristic estimates are used and this was done in the actual system that was
built. The main heuristic, from Wiener’s least mean-square smoothing filter solu-
tion and earlier insights, is that one should give greater weight to paths with higher
signal-to-noise ratio.

So Price and Green devised a new receiver structure comprised of a delay line
of length 3 ms intervals (the maximum expected time spread in their channel), with
30 taps spaced every 1/10 Khz, or 100μs. This would enable the capture of all the
multi-path signals in the channel. Then the tap gains were made proportional to the
strength of the signal received at that tap. Since a Mark/Space decision was only
needed every 22 ms (for the transmission rate of 60 wpm), and since the fading rate
of the channel was slow enough that the channel characteristics remain constant over
even longer than 22 ms, tap gains could be averaged over several 3 ms intervals. The
new system was called “Rake”, because the delay line structure resembled that in a
typical garden rake!

Trials showed that this scheme worked well enough to recover the 6 db loss expe-
rienced by the NOMAC system. The system was put into production and was suc-
cessfully used for jam-proof communications between Washington DC and Berlin
during the “Berlin crisis” in the early 60s.

HF communications is no longer very significant, but the Rake receiver has found
application in a variety of problems such as sonar, the detection of underground



296 D. Walnut et al.

nuclear explosions, and planetary radar astronomy (pioneered by Price and Green,
[11, 54]) and currently it is much used in mobile wireless communications. It is
interesting to note that the eight racks of equipment needed to build the Rake system
in the 1960s is now captured in a small integrated circuit chip in a smart phone!

However the fact that the Rake system did not perform satisfactorily when the
fading rates of the communication channel were not very slow led MIT professor
John Wozencraft, (who had been part of the Rake project team at Lincoln Lab) to
suggest in 1957 (even before the open 1958 publication of the Rake system) to his
new graduate student Thomas Kailath a fundamental study of linear time-variant
communication channels and their identifiability for his Masters thesis. While time-
variant linear systems had begun to be studied at least as early as 1950 (notably
by Zadeh [66]), in communication systems there are certain additional constraints,
notably limits on the bandwidths of the input signal and the duration of the channel
memory. So a more detailed study was deemed to be worthwhile.

Kailath’s Time-Variant Channel Identification Condition

In the paper [19], the author considers the problem of measuring a channel whose
characteristics vary rapidly with time. He considers the dependence of any theoret-
ical channel estimation scheme on how rapidly the channel characteristics change
and concludes that there are theoretical limits on the ability to identify a rapidly
changing channel. He models the channel A as a linear time-variant filter and
defines

A(λ , t) = response of A, measured at time t to a unit impulse input at time t−λ .

A(λ , t) is one form of the time-variant impulse response of the linear channel that
emphasizes the role of the “age” variable λ . The channel response to an input signal
x(·) is

Ax(t) =
∫

A(λ , t)x(t−λ )dλ .

An impulse response A(λ , t) = A(λ ) represents a time-invariant filter. Further, the
author states

Therefore the rate of variation of A(λ , t) with t , for fixed λ , is a measure of the rate of
variation of the filter. It is convenient to measure this variation in the frequency domain by
defining a function A

A(λ , f ) =
∫ ∞

−∞
A(λ , t)e−2πi f tdt

Then he defines

B = max
λ

[b− a, whereA(λ , f ) = 0 for f /∈ [a,b] ].
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While symmetric support is assumed in the paper, this definition makes clear that
non-rectangular regions of support are already in view. Additionally, he defines the
memory as the maximum time-delay spread in response to an impulse of the chan-
nel as

L = max
t
[min
λ ′

such that A(λ , t) = 0, λ ≥ λ ′].

In short, the assumption in the continuation of the paper is that

suppA(λ , f ) ⊆ [0,L]× [−W,W ]

where W = B/2. The functionA(λ , f ) is often called the spreading function of the
channel. He then asks under what assumptions on L and B = 2W can such a channel
be measured? In the context of the Rake system, this translates to the question of
whether there are limits on the rate of variation of the filter that can assure that the
measurement filter can be presumed to be effective.

The author’s assertion is that as long as BL ≤ 1, then a “simple measurement
scheme” is sufficient.

We have assumed that the bandwidth of any “tap function”, Aλ (·) [= A(λ , ·)] , is limited to
a frequency region of width B, say a low-pass region (−W,W ) for which B = 2W . Such
band-limited taps are determined according to the Sampling theorem, by their values at the
instants i/2W , i = 0,±1,±2, . . ..

If the memory, L, of the filter, A(λ , t) is less than 1/2W these values are easily determined:
we put in unit impulses to A(λ , t) at instants 0, 1/2W, 2/2W, . . . ,T , and read off from the
responses the desired values of the impulse response A(λ , t). [...] If L≤ 1/2W , the responses
to the different input impulses do not interfere with one another and the above values can
be unambiguously determined.

In other words, sufficiently dense samples of the tap functions can be obtained
by sending an impulse train ∑n δn/2W through the channel. Indeed,

A
(
∑
n
δn/2W

)
(t) =∑

n

∫
A(λ , t)δn/2W (t−λ )dλ =∑

n
A(t− n/2W, t).

Evaluating the operator response at t = λ0 + n0/2W , n0 ∈ Z, we obtain

A
(
∑
n
δn/2W

)
(λ0 + n0/2W) =∑

n
A(λ0 +(n0− n)/2W,λ0+ n0/2W)

= A(λ0,λ0 + n0/2W)

since L ≤ 1/2W implies that A(λ0 +(n0− n)/2W,λ0 + n0/2W) = 0 if n �= n0. In
short, for each λ , the samples A(λ ,λ + n/2W) for n ∈ Z can be recovered.

The described Kailath sounding procedure is depicted in Figure 1. In this visual-
ization, we plot the kernel κ(s, t) = A(t− s, t) of the operator A, that is,

Ax(t) =
∫

A(λ , t)x(t−λ )dλ =

∫
A(t− s, t)x(s)ds =

∫
κ(t,s)x(s)ds.
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Fig. 1 Kailath sounding of A with suppA(λ , f ) ⊆ [0,L]× [−W,W ] and L = 1/2W . The kernel
κ(t, s) is displayed on the (t, s) plane, the impulse train ∑n δn/2W (s) on the s-axis, and the output
signal Ax(t) = A

(
∑n δn/2W

)
(t) =∑n A(t−n/2W, t) =∑n κ(t,n/2W ). The sample values of the tab

functions Aλ (t) = A(λ , t) = κ(t, t−λ ) can be read off Ax(t).

Necessity of Kailath’s Condition for Channel Identification

For the “simple measurement scheme” to work, BL ≤ 1 is sufficient but could be
restrictive.

We need, therefore, to devise more sophisticated measurement schemes. However, we have
not pursued this question very far because for a certain class of channels we can show that
the condition

L≤ 1/2W, i.e. ,BL≤ 1

is necessary as well as sufficient for unambiguous measurement of A(λ , t). The class of
channels is obtained as follows: We first assume that there is a bandwidth constraint on the
possible input signals to A(λ , t), in that the signals are restricted to (−Wi,Wi) in frequency.
We can now determine a filter AWi (λ , t) that is equivalent to A(λ , t) over the bandwidth
(−Wi,Wi), and find necessary and sufficient conditions for unambiguous measurement of
AWi (λ , t). If we now let Wi → ∞, this condition reduces to condition (1), viz: L ≤ 1/2W .
Therefore, condition (1) is valid for all filters A(λ , t) that may be obtained as the limit
of band-limited channels. This class includes almost all filters of physical interest. The
argument is worked out in detail in Ref. 6 1 but we give a brief outline here.

The class of operators in view here can be described as limits (in some unspeci-
fied sense) of operators whose impulse response A(λ , t) is bandlimited to [−Wi,Wi]
in λ for each t and periodic with period T > 0 in t for each λ . Here, T is assumed
to have some value larger than the maximum time over which the channel will be
operated. We could take it as the duration of the input signal to the channel.

1 Ref. 6 is [19].
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The restriction to input signals bandlimited to (−Wi,Wi) indicates that it suffices
to know the values of A(λ , t) orA(λ , f ) for a finite set of values of λ : λ = 0, 1/2Wi,
2/2Wi, . . ., L, assuming for simplicity that L is a multiple of 1/2Wi. Therefore, we
can write

A(λ , t) =∑
n

A(n/2Wi, t)sincWi(λ − n/2Wi),

where sincWi(t) = sin(2πWit)/(2πWit) so that as Wi → ∞, sincWi(t) becomes more
concentrated at the origin.

Also, T -periodicity in t allows us to write

A(λ , t) =∑
k

A(λ ,k/T )e2π ikt/T ,

so that combining gives

A(λ , t) =∑
n
∑
k

A(n/2Wi,k/T )sincWi(λ − n/2Wi)e2π ikt/T .

Based on the restriction to bandlimited input signals which are T periodic, we
have obtained a representation of A which is neither compactly supported in λ nor
bandlimited in t. However, the original restriction that

suppA(λ , f ) ⊆ [0,L]× [−W,W ]

motivates the assumption that we are working with finite sums, viz.

A(λ , t) = ∑
n/2Wi∈[0,L]

∑
k/t∈[−W,W ]

A(n/2Wi,k/T )sincWi(λ − n/2Wi)e2π ikt/T .

This is how the author obtains the estimate that there are at most (2WiL+1)(2WT+1)
degrees of freedom in any impulse response A in the given class.

For any input signal x(t) bandlimited to [−Wi,Wi], the output will be bandlimited
to [−W −Wi,W +Wi]. Specifically,

Ax(t) =
∫

A(λ , t)x(t−λ )dλ

= ∑
n/2Wi∈[0,L]

∑
k/T∈[−W,W ]

A(n/2Wi,k/T )e2π ikt/T

∫
x(t−λ )sincWi(λ − n/2Wi)dλ

= ∑
n/2Wi∈[0,L]

∑
k/T∈[−W,W ]

A(n/2Wi,k/T )e2π ikt/T

(x∗ sincWi)(t− n/2Wi).

Since e2π ikt/T (x∗ sincWi)(t− n/2Wi) is bandlimited to [−Wi,Wi]+ (k/T) for k/T ∈
[−W,W ], it follows that Ax(t) is bandlimited to [−W −Wi,W +Wi].
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If we restrict our attention to signals x(t) time-limited to [0,T ], the output signal
Ax(t) will have duration T + L, and Ax(·) will be completely determined by its
samples at n

2(W+Wi)
∈ [0,T +L], from which we can identify 2(T +L)(W +Wi)+ 1

degrees of freedom.
In order for identification to be possible, the number of degrees of freedom of the

output signal must be at least as large as the number of degrees of freedom of
the operator, i.e.

2WiT + 2WiL+ 2WT + 2WL+ 1 =

2(T +L)(Wi +W)+ 1≥ (2WT + 1)(2WiL+ 1)

= 2WT + 2WiL+ 1+ 4WiWT L

which reduces ultimately to

1
1− 1/(2WiT )

≥ 2WL = BL.

That is, BL needs to be strictly smaller than 1 in the approximation while BL = 1
may work in the limiting case Wi → ∞ (and/or T → ∞).

This result got a lot of attention because it corresponded with experimental evi-
dence that Rake did not function well when the condition BL < 1 was violated. It led
to the designation of “underspread” and “overspread” channels for which BL was
less than or greater than 1.

Some Remarks on Kailath’s Results

This simple argument is surprising, particularly in light of the fact that the author
obtained a deep result in time-frequency analysis with none of the tools of modern
time-frequency analysis at his disposal. He very deftly uses the extremely useful en-
gineering “fiction” that the dimension of the space of signals essentially bandlimited
to [−W,W ] and time-limited to [0,T ] is approximately 2WT . The then recent papers
of Landau, Slepian, and Pollak [28, 29], which are mentioned explicitly in [19],
provided a rigorous mathematical framework for understanding the phenomenon
of essentially simultaneous band- and time-limiting. While the existence of these
results lent considerable mathematical heft to the argument, they were not incorpo-
rated into a fully airtight mathematical proof of his theorem.

In the proof we have used a degrees-of-freedom argument based on the sampling theorem
which assumes strictly bandlimited functions. This is an unrealistic assumption for physical
processes. It is more reasonable to call a process band (or time) limited if some large fraction
of its energy, say 95%, is contained within a finite frequency (or time) region. Recent work
by Landau and Slepian has shown the concept of approximately 2TW degrees of freedom
holds even in such cases. This leads us to believe that our proof of the necessity of the
BL ≤ 1 condition is not merely a consequence of the special properties of strictly band-
limited functions. It would be valuable to find an alternative method of proof.

While Kailath’s Theorem is stated for channel operators whose spreading func-
tions are supported in a rectangle, it is clear that the later work of Bello [6] was
anticipated and more general regions were in view. This is stated explicitly.
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We have not discussed how the bandwidth, B is to be defined. There are several possibilities:
we might take the nonzero f -region of A(λ , f ); or use a “counting” argument. We could
proceed similarly for the definition of L. As a result of these several possibilities, the value 1,
of the threshold in the condition BL≤ 1 should be considered only as an order of magnitude
value.

...constant and predictable variations in B and L, due for example to known Doppler shifts
or time displacements, would yield large values for the absolute values of the time and
frequency spreadings. However such predictable variations should be subtracted out before
the BL product is computed; what appears to be important is the area covered in the time-
and frequency-spreading plane rather than the absolute values of B and L. (emphasis added)

The reference to “counting” as a definition of bandwidth clearly indicates that
essentially arbitrary regions of support for the operator spreading function were in
view here, and that a necessity argument relying on degrees of freedom and not
the shape of the spreading region was anticipated. The third-named author did not
pursue the measurement problem studied in his MS thesis because he went on in
his PhD dissertation to study the optimum (in the sense of minimum probability of
error) detector scheme of which Rake is an intelligent engineering approximation.
See [20, 21, 23].

The mathematical limitations of the necessity proof in [19] can be removed by
addressing the identification problem directly as a problem on infinite-dimensional
space rather than relying on finite-dimensional approximations to the channel.
This approach also avoids the problem of dealing with simultaneously time and
frequency-limited functions. In this way, the proof can be made completely mathe-
matically rigorous. This approach is described in Section “Kailath’s necessity proof
and operator identification”.

Bello’s time-variant Channel Identification Condition

Kailath’s Theorem was generalized by Bello in [6] along the lines anticipated in
[19]. Bello’s argument follows that of [19] in its broad outlines but with some sig-
nificant differences. Bello clearly anticipates some of the technical difficulties that
have been solved more recently by the authors and others and which have led to the
general theory of operator sampling.

Continuing with the notation of this section, Bello considers channels with
spreading function A(λ , f ) supported in a rectangle [0,L]× [−W,W ]. If L and W
are all that is known about the channel, then Kailath’s criterion for measurability re-
quires that 2WL ≤ 1. Bello considers channels for which 2WL may be greater than
1 but for which

SA = |suppA(λ , f )| ≤ 1

and argues that this is the most appropriate criterion to assess measurability of the
channel modeled by A.

In order to describe Bello’s proof we will fix parameters T � L and Wi �W
and following the assumptions earlier in this section, assume that inputs to the
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channel are time-limited to [0,T ] and (approximately) bandlimited to [−Wi,Wi].
Under this assumption, Bello considers the spreading function of the channel to
be approximated by a superposition of point scatterers, viz.

A(λ , f ) =∑
n
∑
k

An,k δ ( f − (k/T))δ (λ − (n/2Wi)).

Hence the response of the channel to an input x(·) is given by

Ax(t) =
∫ ∫

x(t−λ )e2π i f (t−λ )A(λ , f )dλ d f (1)

=∑
n
∑
k

An,k x(t− (n/2Wi))e2π i(k/T)(t−(n/2Wi)).

Note that this is a continuous-time Gabor expansion with window function x(·) (see,
e.g., [13]). By standard density results in Gabor theory, the collection of functions
{x(t − (n/2Wi))e2π i(k/T )(t−(n/2Wi))} is overcomplete as soon as 2TWi > 1. Conse-
quently, without further discretization, the coefficients An,k are in principle unrecov-
erable. Taking into consideration support constraints onA, we assume that the sums
are finite, viz. (

n
2Wi

,
k
T

)
∈ suppA.

Hence determining the channel characteristics amounts to finding An,k for those
pairs (n,k). It should be noted that for a given spreading functionA(λ , f ) for which
suppA is a Lebesgue measurable set, given ε > 0, there exist T and Wi sufficiently
large that the number of such (n,k) is no more than 2SAWiT (1+ ε). On the other
hand, for a given T and Wi, there exist spreading functionsA(λ , f ) with arbitrarily
small non-convex SA for which the number of nonzero coefficients An,k can be large.
For example, given T and Wi, SA could consist of rectangles centered on the points
(n/(2Wi),k/T ) with arbitrarily small total area.

By sampling, (1) reduces to a discrete, bi-infinite linear system, viz.

Ax

(
p

2Wi

)
=∑

n
∑
k

An,k x

(
p− n
2Wi

)
e

2π i k
T ( p−n

2Wi
) (2)

for p ∈ Z. Note that (2) is the expansion of a vector in a discrete Gabor system
on �2(Z), a fact not mentioned by Bello, and of which he was apparently unaware.
Specifically, defining the translation operator T and the modulation operatorM on
�2 by

T x(n) = x(n− 1), and Mx(n) = eπ in/(TWi)x(n), (3)

(2) can be rewritten as

Ax

(
p

2Wi

)
=∑

n
∑
k

(T nMkx)(p)An,k. (4)
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Since there are only finitely many nonzero unknowns in this system, Bello’s analysis
proceeds by looking at finite sections of (4) and counting degrees of freedom.

Necessity. Following the lines of the necessity argument in [19], we note that there
are at least 2(T +L)(W +Wi) degrees of freedom in the output vector Ax(t), that
is, at least that many independent samples of the form Ax(p/2Wi), and as observed
above, no more than 2SAWiT (1+ε) nonzero unknowns An,k. Therefore, in order for
the An,k to be determined in principle, it must be true that

2WiT (1+ ε)SA ≤ 2(T +L)(W +Wi)

or

SA ≤
(T +L)(W +Wi)

WiT (1+ ε)
.

Letting T,Wi → ∞ and ε → 0, we arrive at SA ≤ 1.

Sufficiency. Considering a section of the system (4) based on the assumption that
suppA ⊆ [0,L]× [−W,W ], the system has approximately 2Wi(T +L) equations in
(2WiT )(2WL) unknowns. Since L and 2W are simply the dimensions of a rectangle
that encloses the support of A, 2WL may be quite large and independent of SA.
Hence the system will not in general be solvable. However by assuming that SA < 1,
only approximately SA(2WiT ) of the An,k do not vanish and the system reduces to
one in which the number of equations is roughly equal to the number of unknowns.
In this case it would be possible to solve (4) as long as the collection of appropriately
truncated vectors {T nMkx : An,k �= 0} forms a linearly independent set for some
vector x.

In his paper, Bello was dealing with independence properties of discrete Gabor
systems apparently without realizing it, or at least without stating it explicitly. In-
deed, he argues in several different ways that a vector x that produces a linearly
independent set should exist, and intriguingly suggests that a vector consisting of
±1 should exist with the property that the Grammian of the Gabor matrix corre-
sponding to the section of (4) being considered is diagonally dominant.

The setup chosen below to prove Bello’s assertion leads to the consideration of
a matrix whose columns stem from a Gabor system on a finite-dimensional space,
not on a sequence space.

Operator Sampling

The first key contribution of operator sampling is the use of frame theory and time-
frequency analysis to remove assumptions of simultaneous band- and time-limiting,
and also to deal with the infinite number of degrees of freedom in a functional ana-
lytic setting (Section “Operator classes and operator identification”). A second key
insight is the development of a “simple measurement scheme” of the type used by
the third-named author but that allows for the difficulties identified by Bello to be re-
solved. This insight is the use of periodically weighted delta-trains as measurement
functions for a channel. Such measurement functions have three distinct advantages.
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First, they allow for the channel model to be essentially arbitrary and clarify
the reduction of the operator identification problem to a finite-dimensional setting
without imposing a finite dimensional model that approximates the channel. Second,
it combines the naturalness of the simple measurement scheme described earlier
with the flexibility of Bello’s idea for measuring channels with arbitrary spreading
support. Third, it establishes a connection between identification of channels and
finite-dimensional Gabor systems and allows us to determine windowing vectors
with appropriate independence properties.

In Section “Operator classes and operator identification”, we introduce some
operator-theoretic descriptions of some of the operator classes that we are able to
identify, and discuss briefly different ways of representing such operators. Such a
discussion is beneficial in several ways. First, it contains a precise definition of iden-
tifiability, which comes into play when considering the generalization of the neces-
sity condition for so-called overspread channels (Section “Kailath’s necessity proof
and operator identification”). Second, we can extend the necessity condition to a
very large class of inputs. In other words, we can assert that in a very general sense,
no input can identify an overspread channel. Third, it allows us to include both con-
volution operators and multiplication operators (for which the spreading functions
are distributions) in the operator sampling theory. The identification of multipli-
cation operators via operator sampling reduces to the classical sampling formula,
thereby showing that classical sampling is a special case of operator sampling. In
Section “Kailath’s necessity proof and operator identification” we present a natural
formalization of the original necessity proof of [19] (Section “Necessity of Kailath’s
Condition for Channel Identification”) to the infinite-dimensional setting, which in-
volves an interpretation of the notion of an under-determined system to that setting.
Finally, in Section “Identification of operator Paley-Wiener spaces by periodically
weighted delta-trains” we present the scheme given first in [41, 45] for the identi-
fication of operator classes using periodically weighted delta trains and techniques
from modern time-frequency analysis.

Operator classes and operator identification

We formally consider an arbitrary operator as a pseudodifferential operator repre-
sented by

H f (x) =
∫
σH(x,ξ ) f̂ (ξ )e2π ixξ dξ , (5)

where σH(x,ξ ) ∈ L2(R2) is the Kohn-Nirenberg (KN) symbol of H. The spreading
function ηH(t,ν) of the operator H is the symplectic Fourier transform of the KN
symbol, viz.

ηH(t,ν) =
∫∫

σH(x,ξ )e−2π i(νx−ξ t) dxdξ (6)
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and we have the representation

H f (x) =
∫∫

ηH(t,ν)TtMν f (x)dν dt (7)

where Tt f (x) = f (x− t) is the time-shift operator and Mν f (x) = e2π iνx f (x) is the
frequency-shift operator.

This is identical to the representation given in [19] where ηH(t,ν) =A(ν, t), see
Section “Kailath’s Time-Variant Channel Identification Condition”.

To see more clearly where the spreading function arises in the context of com-
munication theory, we can define the impulse response of the channel modeled by
H, denoted hH(x, t), by

H f (x) =
∫

hH(x, t) f (x− t)dt.

Note that if hH were independent of x, then H would be a convolution operator and
hence a model for a time-invariant channel. In fact, with κH(x, t) being the kernel of
the operator H,

H f (x) =
∫
κH(x, t) f (t)dt (8)

=
∫

hH(x, t) f (x− t)dt (9)

=

∫∫
ηH(t,ν)e2π iν(x−t) f (x− t)dν dt (10)

=

∫
σH(x,ξ ) f̂ (ξ )e2π ixξ dξ , (11)

where

hH(x, t) = κH(x,x− t)

=

∫
σH(x,ξ )e2π iξ t dξ ,

=

∫
ηH(t,ν)e2π iν(x−t) dν. (12)

With this interpretation, the maximum support of ηH(t,ν) in the first variable corre-
sponds to the maximum spread of a delta impulse sent through the channel and the
maximum support of ηH(t,ν) in the second variable corresponds to the maximum
spread of a pure frequency sent through the channel.

Since we are interested in operators whose spreading functions have small sup-
port, it is natural to define the following operator classes, called operator Paley-
Wiener spaces (see [38]).

Definition 1. For S ⊆ R
2, we define the operator Paley-Wiener spaces OPW (S) by

OPW (S) = {H ∈ L(L2(R),L2(R)) : suppηH ⊆ S, ‖σH‖L2 < ∞}.
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Remark 1. In [38, 42], the spaces OPW p,q(S), 1≤ p, q<∞, were considered, where
L2-membership of σH is replaced by

‖σH‖Lp,q =
(∫ (∫

|σH(x,ξ )|qdξ
)p/q

dx
)1/p

with the usual adjustments made when either p = ∞ or q = ∞. OPW p,q(S) is
a Banach space with respect to the norm ‖H‖OPW p,q = ‖σH‖Lp,q . Note that if S
is bounded, then OPW∞,∞(S) consists of all bounded operators whose spreading
function is supported on S. In fact, the operator norm is then equivalent to the
OPW∞,∞(S) norm, where the constants depend on S [26].

The general definition is beneficial since it also allows the inclusion of convo-
lution operators with kernels whose Fourier transforms lie in Lq(R) (OPW∞,q(R))
and multiplication operators whose multiplier is in Lp(R) (OPW p,∞(R)).

The goal of operator identification is to find an input signal g such that each
operator H in a given class is completely and stably determined by Hg. In other
words, we ask that the operator H �→ Hg be continuous and bounded below on its
domain. In our setting, this translates to the existence of c1, c2 > 0 such that

c1 ‖σH‖L2 ≤ ‖Hg‖L2 ≤ c2 ‖σH‖L2 , H ∈OPW (S). (13)

This definition of identifiability of operators originated in [24]. Note that (13) im-
plies that the mapping H �→ Hg is injective, that is, that Hg = 0 implies that H ≡ 0,
but is not equivalent to it. The inequality (13) adds to injectivity the assertion that
H is also stably determined by Hg in the sense that a small change in the output Hg
would correspond to a small change in the operator H. Such stability is also neces-
sary for the existence of an algorithm that will reliably recover H from Hg. In this
scheme, g is referred to as an identifier for the operator class OPW (S) and if (13)
holds, we say that operator identification is possible.

In trying to find an explicit expression for an identifier, we use as a starting point
the “simple measurement scheme” of [19], in which g is a delta train, viz. g =

∑n δnT for some T > 0. In the framework of operator identification the channel
measurement criterion in [19] takes the following form [24, 38, 41].

Theorem 1. For H ∈ OPW
(
[0,T ]×[−Ω/2,Ω/2]

)
with TΩ≤1, we have

‖H ∑
k∈Z

δkT ‖L2(R) = T‖σH‖L2 ,

and H can be reconstructed by means of

κH(x+ t,x) = χ[0,T ](t)∑
n∈Z

(
H ∑

k∈Z
δkT

)
(t + nT)

sin(πT (x− n))
πT (x− n)

(14)

where χ[0,T ](t) = 1 for t ∈ [0,T ] and 0 elsewhere and with convergence in the L2

norm and uniformly in x for every t.
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As was observed earlier, the key feature of this scheme is that the spacing of
the deltas in the identifier is sufficiently large so as to allow the response of the
channel to a given delta to “die out” before the next delta is sent. In other words, the
parameter T must exceed the time-spread of the channel. On the other hand, the rate
of change of the channel, as measured by its bandwidth Ω , must be small enough
that its impulse response can be recovered from “samples” of the channel taken T
time units apart. In particular, the samples of the impulse response T units apart can
be easily determined from the output. In the general case considered by Bello, in
which the spreading support of the operator is not contained in a rectangle of unit
area, this intuition breaks down.

Specifically, suppose that we consider the operator class OPW (S) where S ⊆
[0,T0]× [−Ω0/2,Ω0/2] and T0Ω0� 1 but where |S|< 1. Then sounding the channel
with a delta train of the form g = ∑n δnT0 would severely undersample the impulse
response function. Simply increasing the sampling rate, however, would produce
overlap in the responses of the channel to deltas close to each other. An approach to
the undersampling problem in the literature of classical sampling theory is to sample
at the low rate transformed versions of the function, chosen so that the interference
of the several undersampled functions can be dealt with. This idea has its most
classical expression in the Generalized Sampling scheme of Papoulis [35]. Choosing
shifts and constant multiples of our delta train results in an identifier of the form
g = ∑n cn δnT where the weights (cn) have period P (for some P ∈ N) and T > 0
satisfies PT > T0.

If g is discretely supported (for example, a periodically-weighted delta-train),
then we refer to operator identification as operator sampling. The utility of peri-
odically weighted delta trains for operator identification is a cornerstone of oper-
ator sampling and has far-reaching implications culminating in the developments
outlined in Sections “Generalizations of operator sampling to higher dimensions”
and “Further results on operator sampling”.

Kailath’s necessity proof and operator identification

In Section “Necessity of Kailath’s Condition for Channel Identification” we pre-
sented the proof of the necessity of the condition BL ≤ 1 for channel identification
as given in [19]. The argument consisted of finding a finite-dimensional approxi-
mation of the channel H, and then showing that, given any putative identifier g, the
number of degrees of freedom present in the output Hg must be at least as large
as the number of degrees of freedom in the channel itself. For this to be true in
any finite-dimensional setting, we must have BL < 1 and so in the limit we require
BL ≤ 1. In essence, if BL > 1, we have a linear system with fewer equations than
unknowns which necessarily has a nontrivial nullspace. The generalization of this
notion to the infinite-dimensional setting is the basis of the necessity proof that ap-
pears in [24]. In this section, we present an outline of that proof, and show how the
natural tool for this purpose once again comes from time-frequency analysis.
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To see the idea of the proof, assume that BL > 1 and for simplicity let S =
[− L

2 ,
L
2 ]× [−B

2 ,
B
2 ]. The goal is to show that for any sounding signal s in an appropri-

ately large space of distributions2, the operator Φs : OPW (S)−→ L2(R), H �→ Hs,
is not stable, that is, it does not possess a lower bound in the inequality (13).

First, define the operator E : l0(Z2) −→ OPW (S), where l0(Z2) is the space of
finite sequences equipped with the l2 norm, by

E(σ) = E({σk,l}) =∑
k,l

σk,lMkλ/LTlλ/B PT−lλ/BM−kλ/L

where 1 < λ is chosen so that 1 < λ 4 < BL and where P is a time-frequency local-
ization operator whose spreading function ηP(t,ν) is infinitely differentiable, sup-
ported in S, and identically one on [− L

2λ ,
L

2λ ]× [− B
2λ ,

B
2λ ]. It is easily seen that the

operator E is well defined and has spreading function

ηE(σ)(t,ν) = ηP(t,ν)∑
k,l

σk,l e2π i(kλ t/L−lλν/B).

By construction, it follows that for some constant c1, ‖E(σ)‖OPW(S) ≥ c1‖σ‖l2(Z2),
for all σ , and that for any distribution s, Ps decays rapidly in time and in frequency.

Next define the Gabor analysis operator Cg : L2(R)−→ l2(Z2) by

Cg(s) = {〈s,Mkλ 2/LTlλ 2/Bg〉}k,l∈Z

where g(x) = e−πx2
. A well-known theorem in Gabor theory asserts that

{MkαTlβg}k,l∈Z is a Gabor frame for L2(R) for every αβ < 1 [31, 59, 60].
Consequently Cg satisfies, for some c2 > 0, ‖Cg(s)‖l2(Z2) ≥ c2 ‖s‖L2(R) for all s,

since λ 2/L ·λ 2/B = λ 4/BL < 1.
For any s, consider the composition operator

Cg ◦Φs ◦E : l0(Z
2)−→ l2(Z2).

The crux of the proof lies in showing that this composition operator is not stable,
that is, it does not have a lower bound. Since Cg and E are both bounded below, it
follows that Φs cannot be stable. Since s ∈ S′0(R) was arbitrary, this completes the
proof.

To complete this final step we examine the canonical bi-infinite matrix repre-
sentation of the above defined composition of operators, that is, the matrix M =
(mk′,l′,k,l) that satisfies

(Cg ◦Φs ◦E(σ))k′,l′ =∑
k,l

mk′,l′,k,l σk,l .

2 S′0(R), the dual space of the Feichtinger algebra S0(R) [13], or S ′(R), the space of tempered
distributions [42]. These spaces are large enough to contain weighted infinite sums of delta distri-
butions.
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It can be shown that M has the property that for some rapidly decreasing function
w(x),

|mk′,l′,k,l | ≤ w(max{|λk′ − k|, |λ l′ − l|}). (15)

The proof is completed by the following Lemma. Its proof can be found in [24] and
generalizations can be found in [37].

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2 A 1/λ−slanted matrix M. The matrix is dominated by entries on a slanted diagonal
of slope 1/λ .

Lemma 1. Given M = (m j′, j) j′, j∈Z2 . If there exists a monotonically decreasing

function w : R+
0 −→ R+

0 with w= O(x−2−δ ), δ > 0, and constants λ > 1 and K0 > 0
with |m j′, j|< w(‖λ j′ − j‖∞) for ‖λ j′ − j‖∞ > K0, then M is not stable.

Intuitively, this result asserts that a bi-infinite matrix whose entries decay rapidly
away from a skew diagonal behaves like a finite matrix with more rows than columns
(see Figure 2). Such a matrix will always have a nontrivial nullspace. In the case of
an infinite matrix what can be shown is that at best its inverse will be unbounded.

We can make a more direct connection from this proof to the original necessity
argument in [19] in the following way. If we restrict our attention to sequences
{σk,l} with a fixed finite support of size say N, then the image of this subspace of
sequence space under the mapping E is an N-dimensional subspace of OPW (S).
The operator P is essentially a time-frequency localization operator. This fact is
established in [24] and follows from the rapid decay of the Fourier transform of ηP.
Since ηP itself is concentrated on a rectangle of area BL/λ 2, its Fourier transform
will be concentrated on a rectangle of area λ 2/BL. From this it follows that for σ
as described above, the operator E(σ) essentially localizes a function to a region in
the time-frequency plane of area N(λ 2/BL).

Considering now the Gabor analysis operator Cg, we observe that the Gaussian
g(x) essentially occupies a time-frequency cell of area 1, and that this function is
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shifted in the time-frequency plane by integer multiples of (λ 2/B,λ 2/L). Hence
to “cover” a region in the time-frequency plane of area N(λ 2/BL) would require
only about

N(λ 2/BL)
λ 4/BL

=
N
λ 2

time-frequency shifts. So roughly speaking, in order to resolve N degrees of freedom
in the operator E(σk,l), we have only N/λ 2 < N degrees of freedom in the output
of the operator E(σk,l)s.

Identification of operator Paley-Wiener spaces
by periodically weighted delta-trains

Theorem 1 is based on arguments outlined in Section “Kailath’s Time-Variant Chan-
nel Identification Condition” and applies only to OPW (S) if S is contained in a rect-
angle of area less than or equal to one. In the following, we will develop the tools
that allow us to identify OPW (S) for any compact set S of Lebesgue measure less
than one.

In our approach we discretize the channel by covering the spreading support S
with small rectangles of fixed sidelength, which we refer to as a rectification of S.
As long as the measure of S is less than one, it is possible to do this in such a way
that the total area of the rectangles is also less than one. This idea seems to bear
some similarity to Bello’s philosophy of sampling the spreading function on a fixed
grid but with one fundamental difference. Bello’s approach is based on replacing t
and x by samples, thereby approximating the channel. For a better approximation,
sampling on a finer grid is necessary, which results in a larger system of equations
that must be solved. In our approach, as soon as the total area of the rectification
is less than one, the operator modeling the channel is completely determined by
the discrete model. Once this is achieved, identification of the channel reduces to
solving a single linear system of equations at each point (Figure 3).

Given parameters T > 0 and P ∈ N, we assume that S is rectified by rectangles
of size T ×Ω , where Ω = 1/(TP), such that the total area of the rectangles is less
than one. Given a period-P sequence c = (cn)n∈Z, we then define the periodically
weighted delta-train g by g =∑n∈Z cn δnT . The goal of this subsection is to describe
the scheme by which a linear system of P equations in a priori P2 unknowns can be
derived by which an operator H ∈OPW (S) can be completely determined by Hg(x).
In this sense, the “degrees of freedom” in the operator class OPW(S), and that of
the output function Hg(x) are precisely defined and can be effectively compared
(Figure 4).

The basic tool of time-frequency analysis that makes this possible is the Zak
transform (see [13]).
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Fig. 3 A set not satisfying Kailath’s condition is rectified with 1/(TΩ) = P ∈N, the rectification
has area ≤ 1, Ωmax ≤ 1/T , and Tmax ≤ 1/Ω .

Definition 2. The non-normalized Zak Transform is defined for f ∈ S(R)3, and
a > 0 by

Za f (t,ν) = ∑
n∈Z

f (t− an)e2π ianν.

Za f (t,ν) satisfies the quasi-periodicity relations

Za f (t + a,ν) = e2π iaν Za f (t,ν)

and
Za f (t,ν + 1/a) = Za f (t,ν).

√
aZa can be extended to a unitary operator from L2(R) onto L2([0,a]×[0,1/a]).
A somewhat involved but elementary calculation yields the following

(see [44, 46] and Section “Proof of Lemma 2”).

Lemma 2. Let T > 0, P∈N, c = (cn), and g be given as above. Then for all (t,ν) ∈
R

2, and p = 0, 1, . . . , P−1,

e−2π iνT p (ZT P ◦H)g(t +T p,ν)

=Ω
P−1

∑
q,m=0

(T q Mmc)p e−2π iνT qηQ
H (t +Tq,ν+m/TP). (16)

Here T and M are the translation and modulation operators given in Definition 3,
and ηQ

H (t,ν) is the quasiperiodization of ηH ,

ηQ
H (t,ν) =∑

k
∑
�

ηH(t + kTP,ν+ �/T)e−2π iνkT P (17)

whenever the sum is defined (Figure 4).
Under the additional simplifying assumption that the spreading function ηH(t,ν)

is supported in the large rectangle [0,T P]× [0,1/T ], and by restricting (16) to the
rectangle [0,T ]× [0,1/(TP)], we arrive at the P×P2 linear system

3 S(R) denotes the Schwartz class of infinitely differentiable, rapidly decreasing functions.
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Fig. 4 Channel sounding of OPW ([0,2/3]×[−1/4,1/4] ∪ [4/3,2]×[−1/2,1/2]) using a P-
periodically weighted delta train g. The kernel κ(x,y) takes values on the (x,y)-plane, the
sounding signal g, a weighted impulse train, is defined on the y-axis, and the output signal
Hg(x) =

∫
κ(x,y)g(y)dy is displayed on the x-axis. Here, the sample values of the tab functions

h(x, t) = κ(x, t− x) are not easily read of the response Hg(x) as, for example, for x ∈ [2T,3T ] =
[4/3,2] we have Hg(x) = 0.7κ(x,0)+0.6κ(x,2T ) = 0.7h(x,x)+ .6h(x,2T −x). In detail, we have
g = . . .+ 0.7δ−2 + 0.5δ−4/3 + 0.6δ−2/3 + 0.7δ0 + 0.5δ2/3 + 0.6δ4/3 + 0.7δ2 + 0.5δ8/3 + . . ., so
P = 3, T = 2/3, Ω = 1/PT = 1/2, cn = 0.7 if n mod 3 = 0, cn = 0.5 if n mod 3 = 1, cn = 0.6 if n
mod 3 = 2.

ZHg(t,ν)p =
P−1

∑
q,m=0

G(c)p,(q,m)ηηηH(t,ν)(q,m) (18)

where
ZHg(t,ν)p = (ZT P ◦H)g(t + pT,ν)e−2π iν pT , (19)

ηηηH(t,ν)(q,m) =Ω ηH(t + qT,ν+m/TP)e−2π iνqT e−2π iqm/P, (20)

and where G(c) is a finite Gabor system matrix (23). If (18) can be solved for each
(t,ν) ∈ [0,T ]× [0,1/(TP)], then the spreading function for an operator H can be
completely determined by its response to the periodically weighted delta-train g.

As anticipated by Bello, two issues now become relevant. (1) We require that
suppηH occupy no more than P of the shifted rectangles [0,T ]× [0,1/(TP)] +
(qT,k/(TP)), so that (18) has at least as many equations as unknowns. This forces
|suppηH | ≤ 1. (2) We require that c be chosen in such a way that the P×P system
formed by removing the columns of G(c) corresponding to vanishing components
of ηηηH is invertible. That such c exist is a fundamental cornerstone of operator sam-
pling and is the subject of the next section.
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Based on the existence of c such that any set of P columns of G(c) form a linearly
independent set, we can prove the following [45].

Theorem 2. For S⊆ (0,∞)×R compact with |S|< 1, there exists T > 0 and P ∈N,
and a period-P sequence c = (cn) such that g = ∑n cn δnT identifies OPW(S). In
particular, there exist period-P sequences b j = (b j,k), and integers 0 ≤ q j, m j ≤
P−1, for 0≤ j ≤ P−1 such that

h(x, t) = e−π it/T ∑
k

P−1

∑
j=0

[
b j,k Hg(t− (q j− k)T )

e2π imj(x−t)/PT φ((x− t)+ (q j− k)T )r(t− q jT )
]

(21)

where r,φ ∈ S(R) satisfy

∑
k∈Z

r(t + kT ) = 1 = ∑
n∈Z

φ̂(γ+ n/PT), (22)

where r(t)φ̂ (γ) is supported in a neighborhood of [0,T ]×[0,1/PT ], and where the
sum in (21) converges unconditionally in L2 and for each t uniformly in x.

Equation (21) is a generalization of (14) which is easily seen by choosing φ(x) =
sin(πPTx)/(πPTx) and r(t) to be the characteristic function of [0,T ).

Linear Independence Properties of Gabor Frames

Finite Gabor Frames

Definition 3. Given P ∈ N, let ω = e2π i/P and define the translation operator T on
(x0, . . . , xP−1) ∈ C

P by

T x = (xP−1,x0, x1, . . . ,xP−2),

and the modulation operatorM on C
P by

Mx = (ω0x0,ω1x1, . . . , ωP−1xP−1).

Given a vector c ∈ C
P the finite Gabor system with window c is the collection

{T qMpc}P−1
q,p=0. Define the full Gabor system matrix G(c) to be the P×P2 matrix

G(c) = [ D0 WP D1 WP · · · DP−1WP ] (23)

where Dk is the diagonal matrix with diagonal

T kc = (cP−k, . . . , cP−1, c0, . . . , cP−k−1),

and WP is the P×P Fourier matrix WP = (e2π inm/P)P−1
n,m=0.



314 D. Walnut et al.

Remark 2. (1) For 0≤ q, p≤ P− 1, the (q+ 1)st column of the submatrix DpWP is
the vectorMpT qc where the operatorsM and T are as in Definition 3. This means
that each column of the matrix G(c) is a unimodular constant multiple of an element
of the finite Gabor system with window c, namely {e−2π ipq/PT qMpc}P−1

q,p=0.

(2) Note that the finite Gabor system defined above consists of P2 vectors in C
P

which form an overcomplete tight frame for CP [30]. For details on Gabor frames
in finite dimensions, see [9, 27, 30] and the overview article [39].

(3) Note that we are abusing notation slightly by identifying a vector c ∈ C
P with a

P-periodic sequence c = (cn) in the obvious way.

Definition 4. [8] The Spark of an M×N matrix F is the size of the smallest linearly
dependent subset of columns, i.e.,

Spark(F) = min{‖x‖0 : Fx = 0, x �= 0}

where ‖x‖0 is the number of nonzero components of the vector x. If Spark(F) =
M + 1, then F is said to have full Spark. Spark(F) = k implies that any collection
of fewer than k columns of F is linearly independent.

Finite Gabor frames are generically full Spark

The existence of Gabor matrices with full Spark has been addressed in [30, 32]. The
results in these two papers are as follows.

Theorem 3. [30] If P ∈N is prime, then there exists a dense, open subset of c ∈C
P

such that every minor of the Gabor system matrix G(c) is nonzero. In particular, for
such c, G(c) has full Spark.

Theorem 4. [32] For every P ∈ N, there exists a dense, open subset of c ∈ C
P such

that the Gabor system matrix G(c) has full Spark.

The goal of this subsection is to outline the proof of Theorems 3 and 4. We will
adopt some of the following notation and terminology of [32].

Let P ∈ N and let M be an P×P submatrix of G(c). For 0≤ κ < P let �κ be the
number of columns of M chosen from the submatrix DκWP of (23). While the vector
� = (�κ)

P−1
κ=0 does not determine M uniquely, it describes the matrix M sufficiently

well for our purposes. Define Mκ to be the P×�κ matrix consisting of those columns
of M chosen from DκWP. Given the ordered partition B= (B0, B1, . . . , BP−1) where
{B0, B1, . . . , BP−1} forms a partition of {0, . . . , P−1}, and where for each 0≤ κ <
P, |Bκ |= �κ , let Mκ(Bκ) be the �κ × �κ submatrix of Mκ whose rows belong to Bκ .
Then det(M) = ∑∏P−1

κ=0 det(Mκ(Bκ)) where the sum is taken over all such ordered
partitions B. This formula is called the Lagrange expansion of the determinant.

Each ordered partition B corresponds to a permutation on ZP as follows. Define
the trivial partition A = (A0, A1, . . . , AP−1) by
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A j = {
j−1

∑
i=0

�i,
( j−1

∑
i=0

�i
)
+ 1, . . . ,

( j

∑
i=0

�i
)
− 1}

so that A0 = [0, �0− 1], A1 = [�0, �0 + �1 + 1], . . . , AP−1 = [�0 + · · · + �P−2,P− 1].
Then given B= (B0, B1, . . . , BP−1) there is a permutation σ ∈ SP such that σ(Aκ) =
Bκ for all κ . This σ is unique up to permutations that preserve A, that is, up to τ ∈ SP

such that τ(Aκ) = Aκ for all κ . Call such a permutation trivial and denote by Γ the
subgroup of SP consisting of all trivial permutations. Then the ordered partitions B
of ZP can be indexed by equivalence classes of permutations σ ∈ SP/Γ .

The key observation is that det(M) is a homogeneous polynomial in the P vari-
ables c0, c1, . . . , cP−1 and we can write

det(M) = ∑
σ∈SP/Γ

aσ Cσ (24)

where the monomial Cσ is given by

Cσ =
P−1

∏
κ=0

∏
j∈σ(Aκ)

c( j−κ)(mod P).

If it can be shown that this polynomial does not vanish identically, then we can
choose a dense, open subset of c ∈ C

P for which det(M) �= 0. Since there are only
finitely many P×P submatrices of G(c) it follows that there is a dense, open subset
of c for which det(M) �= 0 for all M, and we conclude that, for these c, G(c) has full
Spark.

Following [32], we say that a monomial Cσ0 appears uniquely in (24) if for ev-
ery σ ∈ SP/Γ such that σ �= σ0, Cσ �= Cσ0 . Therefore, in order to show that the
polynomial (24) does not vanish identically, it is sufficient to show that (1) there
is a monomial Cσ that appears uniquely in (24) and (2) the coefficient aσ of this
monomial does not vanish.

Obviously, whether or not (24) vanishes identically does not depend on how the
variables ci are labelled. More specifically, if the variables are renamed by a cyclical
shift of the indices, viz., ci �→ c(i+γ)mod P for some 0≤ γ < P, then

det(M)(cγ+1, . . . , cP−1, c0, . . . , cγ) =± det(M′)(c0, . . . , cP−1)

where M′ is a P×P submatrix described by the vector

�′ = (�γ+1, . . . , �P−1, �0, . . . , �γ).

The lowest index monomial

In [30], a monomial referred to in [32] as the lowest index (LI) monomial is defined
that has the required properties when P is prime. In order to see this, note first that
each coefficient aσ in the sum (24) is the product of minors of the Fourier matrix



316 D. Walnut et al.

WP and since P is prime, Chebotarev’s Theorem says that such minors do not vanish
[62]. More specifically,

aσ Cσ =±
P−1

∏
κ=0

det(Mκ(σ(Aκ)))

and for each κ , the columns of Mκ are columns of WP where each row has been
multiplied by the same variable c j and Mκ(σ(Aκ)) is a square matrix formed by
choosing �κ rows of Mκ . Hence for each κ , det(Mκ (σ(Aκ))) is a monomial in c
with coefficients a constant multiple of a minor of WP. Since aσ is the product of
those minors, it does not vanish.

Note moreover that each submatrix Mκ(σ(Aκ)) is an �κ × �κ matrix, so that
det(Mκ (σ(Aκ))) is the sum of a multiple of the product of �κ! diagonals of
Mκ(σ(Aκ)). Hence aσ Cσ is the sum of multiples of the product of ∏P−1

κ=0 �κ ! gener-
alized diagonals of M.

We define the LI monomial as in [30] as follows. If M is 1× 1, then det(M) is
a multiple of a single variable c j and we define the LI monomial, pM by pM = c j.
If M is d× d, let c j be the variable of lowest index appearing in M. Choose any
entry of M in which c j appears, eliminate the row and column containing that entry,
and call the remaining (d− 1)× (d− 1) matrix M′. Define pM = c j pM′ . It is easy
to see that the monomial pM is independent of the entry of M chosen at each step.
In order to show that the LI monomial appears uniquely in (24), we observe as in
[30] that the number of diagonals in det(M) that correspond to the LI monomial
is ∏P−1

κ=0 �κ !. Since this is also the number of generalized diagonals appearing in
the calculation of each det(Mκ (σ(Aκ))), it follows that this monomial appears only
once. The details of the argument can be found in Section “Proof of Theorem 3”.
Note that because P is prime, this argument is valid no matter how large the matrix
M is. In other words, M does not have to be a P×P submatrix in order for the result
to hold. Consequently, given k < P and M an arbitrary P× k submatrix of G(c), we
can form the k× k matrix M0 by choosing k rows of M in such a way that the LI
monomial of M0 contains at most only the variables c0, . . . , ck−1. This observation
leads to the following theorem for matrices with arbitrary Spark.

Theorem 5. [46] If P ∈ N is prime, and 0 < k < P, there exists an open, dense
subset of c ∈ Ck×{0} ⊆ C

P with the property that Spark(G(c)) = k+ 1.

This result has implications for relating the capacity of a time-variant communi-
cation channel to the area of the spreading support, see [46].

The consecutive index monomial

In [32], a monomial referred to as the consecutive index (CI) monomial is defined
that has the required properties for any P ∈ N. The CI monomial, CI , is defined
as the monomial corresponding to the identity permutation in SP/Γ , that is, to the
equivalence class of the trivial partition A = (A0, A1, . . . , AP−1). Hence
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CI =
P−1

∏
κ=0

∏
j∈Aκ

c( j−κ)mod P.

For each κ , the monomial appearing in det(Mκ(Aκ)), ∏ j∈Aκ c( j−κ)mod P, consists of
a product of �k variables c j with consecutive indices modulo P.

That aI �= 0 follows from the observation that for each κ , det(Mκ (Aκ)) is a
monomial whose coefficient is a nonzero multiple of a Vandermonde determi-
nant and hence does not vanish (for details, see [32]). The proof that CI appears
uniquely in (24) amounts to showing that, with respect to an appropriate cyclical
renaming of the variables ci, the CI monomial uniquely minimizes the quantity
Λ(Cσ ) = ∑P−1

i=0 i2αi, where αi is the exponent of the variable ci in Cσ . An abbrevi-
ated version of the proof of this result as it appears in [32] is given in Section “Proof
of Theorem 4”.

As a final observation, we quote the following corollary that provides an explicit
construction of a unimodular vector c such that G(c) has full Spark.

Corollary 1. [32] Let ζ = e2π i/(P−1)4
or any other primitive root of unity of order

(P− 1)4 where P≥ 4. Then the vector

c = (1, ζ , ζ 4, ζ 9, . . . , ζ (P−1)2
)

generates a Gabor frame for which G(c) has full Spark.

Generalizations of operator sampling to higher
dimensions

The operator representations (5), (6), and (7) hold verbatim for higher dimensional
variables x,ξ , t,ν ∈ R

d . In this section, we address the identifiability of

OPW (S) = {H ∈ L(L2(Rd),L2(Rd)) : suppFsσH ⊆ S, ‖σH‖L2 < ∞}

where S ⊆ R
2d .

Looking at the components of the multidimensional variables separately, Theo-
rem 1 easily generalizes as follows.

Theorem 6. For H ∈ OPW
(
∏d

�=1[0,T�]×∏d
�=1[−Ω�/2,Ω�/2]

)
with T�Ω�≤1,

�= 1, . . . ,d, we have

‖H ∑
k1∈Z

. . . ∑
kd∈Z

δ(k1T1,...,kd Td)‖L2(R) = T1 . . .Td‖σH‖L2 ,
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and H can be reconstructed by means of

κH(x+ t,x) = χ∏d
�=1[0,T�]

(t) ∑
n1∈Z

. . . ∑
nd∈Z(

H ∑
k1∈Z

. . . ∑
kd∈Z

δ(k1T1,...,kd Td)

)
(t +(n1T1, . . . ,ndTd)

sin(πT1(x1− n1))

πT1(x1− n1)
. . .

sin(πTd(xd− nd))

πTd(xd− nd)

with convergence in the L2 norm.

In the following, we address the situation where S is not contained in a set
∏d

�=1[0,T�]×∏d
�=1[−Ω�/2,Ω�/2] with T�Ω�≤1, � = 1, . . . ,d. For example, S =

[0,1]× [0,2]× [0, 1
4 ]× [0,1]⊆ R

4 of volume 1
2 is not covered by Theorem 6.

To give a higher dimensional variant of Theorem 2, we shall denote pointwise
products of finite and infinite length vectors k and T by k � T , that is, k � T =
(k1T1, . . . ,kdTd) for k,T ∈C

d . Similarly, k/T = (k1/T1, . . . ,kd/Td).

Theorem 7. If S⊆ (0,∞)d×Rd is compact with |S|< 1, then OPW(S) is identifiable.
Specifically, there exist T1, . . . ,Td > 0 and pairwise relatively prime natural numbers
P1, . . . ,Pd such that

S ⊆
d

∏
�=1

[0,P�T�]×
d

∏
�=1

[−1/(2T�),1/(2T�)],

and a sequence c = (cn) ∈ �∞(Zd) which is P� periodic in the �-th component n�
such that g = ∑n∈Zd cn δn�T identifies OPW (S). In fact, for such g there exists for
each j ∈ J =∏d

�=1{0,1, . . . ,P�−1} a sequence b j = (b j,k) which is P� periodic in k�
and 2d-tuples (q j,m j) ∈ J× J with

h(x, t) = e−π i∑d
�=1 t�/T� ∑

k∈Zd
∑
j∈J

[
b j,k Hg(t− (q j− k)�T)

e2π imj ·((x−t)/P�T ) φ((x− t)+ (q j− k)�T)r(t− q j �T )
]
. (25)

The functions r,φ ∈ S(Rd) are assumed to satisfy

∑
k∈Zd

r(t + k �T) = 1 = ∑
n∈Zd

φ̂(γ+(n/(P�T )), (26)

and r(t)φ̂ (γ) is supported in a neighborhood of ∏d
�=1[0,T�]×∏d

�=1[0,1/P�T�]. The
sum in (25) converges unconditionally in L2 and for each t uniformly in x.

This result follows from adjusting the proof of Theorem 7 to the higher dimen-
sional setting. For example, it will employ the Zak transform

ZT�P f (t,ν) = ∑
n∈Zd

f (t− n �P�T )e2π iν·(P�T),
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where P = (P1, . . . ,Pd). We are then led again to a system of linear equations of the
form

ZHg(t,ν)p = ∑
q∈J

∑
m∈J

G(c)p,(q,m)ηηηH(t,ν)(q,m) (27)

where as before

ZHg(t,ν)p = (ZT�P ◦H)g(t + p �T,ν)e−2π iν p�T ,

ηηηH(t,ν)(q,m) = (T1P1 . . .TdPd)
−1ηH(t + q �T,ν+(m/(T �P))

e−2π iν·(q�T) e−2π iq·(m/P),

and where G(c) is now a multidimensional finite Gabor system matrix similar
to (23).

In order to show that the spreading function for operator H can be com-
pletely determined by its response to the periodically weighted d-dimensional
delta-train g, we need to show that (27) can be solved for each (t,ν) ∈
∏d

�=1[0,T�]×∏d
�=1[0,1/(T�P�)] if c ∈ C

P1×...×Pd is chosen appropriately.
To see that a choice of c is possible, observe that the product groupZP1× . . .×ZPd

is isomorphic to the cyclic group ZP1·...·Pd since the P� are chosen pairwise relatively
prime. Theorem 4 applied to the cyclic group ZP1·...·Pd guarantees the existence of
c̃ ∈ C

P1·...·Pd so that the Gabor system matrix G(c̃) is full spark. We can now define
c ∈ C

P1×...×Pd by setting

cn1,...,nd = c̃n1+n2 P1+n3 P1P2+...+nd P1...Pd−1 , n = (n1, . . . ,nd) ∈ J

and observe that G(c) is simply a rearrangement of G(c̃), hence, G(c) is full spark.

Further results on operator sampling

The results discussed in this paper are discussed in detail in [6, 22, 24, 38, 41]
and [46]. The last listed article contains the most extensive collection of operator
reconstruction formulas, including extensions to some OPW(S) with S unbounded.
Moreover, some hints on how to use parallelograms to rectify a set S for operator
sampling efficiently are given.

A central result in [46] is the classification of all spaces OPW (S) that are identi-
fiable for a given g = ∑n∈Z cnδnT for cn being P-periodic.

The papers [38, 42] address some functional analytic challenges in operator sam-
pling, and [26] focuses on the question of operator identification if we are restricted
to using more realizable identifiers, for example, truncated and modified versions of
g, namely, g̃(t) = ∑N

n=0 cnϕ(t− nT ). The problem of recovering parametric classes
of operators in OPW (S) is discussed in [2, 3].

In the following, we briefly review literature that address some other directions
in operator sampling.
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Multiple Input Multiple Output

A Multiple Input Multiput Output (MIMO) channel H with N transmitters and M re-
ceivers can be modeled by an N×M matrix whose entries are time-varying channel
operators Hmn ∈OPW (Smn). For simplicity, we write H ∈ OPW (S). Assuming that
the operators Hmn are independent, a sufficient criterion for identifiability is given
by ∑N

n=1 |Smn| ≤ 1 for m = 1, . . . ,M. Conversely, if for a single m, ∑N
n=1 |Smn| > 1,

then OPW(S) is not identifiable by any collection s1, . . . ,sN of input signals [36, 43].
A somewhat dual setup was considered in [18]. Namely, a Single Input Sin-

gle Output (SISO) channel with S being large, say S = [0,M]× [−N/2,N/2] with
N,M ≥ 2. As illustrated above, OPW([0,M]× [−N/2,N/2]) is not identifiable,
but if we are allowed to use MN (infinite duration) input signals g1, . . . ,gMN ,
then H ∈ OPW ([0,M]× [−N/2,N/2]) can be recovered from the MN outputs
Hg1, . . . ,HgMN .

Irregular Sampling of Operators

The identifier g = ∑n∈Z cnδnT is supported on the lattice TZ in R. In general, for
stable operator identification, choosing a discretely supported identifier is reason-
able, indeed, in [26] it is shown that identification for OPW (S) in full requires the
use of identifiers that neither decay in time nor in frequency. (Recovery of the char-
acteristics of H during a fixed transmission band and a fixed transmission interval
can be indeed recovered when using Schwartz class identifiers [26].)

In irregular operator sampling, we consider identifiers of the form g=∑n∈Z cnδλn

for nodes λn that are not necessarily contained in a lattice. If such g identifies
OPW (S), then we refer to suppg = {λn} as a sampling set for OPW (S), and simi-
larly, the sampling rate of g is defined to be

D(g) = D(suppg) = D(Λ) = lim
r→∞

n−(r)
r

where
n−(r) = inf

x∈R
#{Λ ∩ [x,x+ r]}

assuming that the limit exists [18, 46].
To illustrate a striking difference between irregular sampling of functions and

operators, note that Z is a sampling set for OPW ([0,1]× [− 1
2 ,

1
2 ]) as well as for

the Paley Wiener space PW ([− 1
2 ,

1
2 ]), but the distribution g = c0δλ0

+∑n∈Z\{0} cnδn

does not identify OPW ([0,1]× [− 1
2 ,

1
2 ]), regardless of our choice of cn and λ0 �= 0.

This shows that, for example, Kadec’s 1
4 th theorem does not generalize to the oper-

ator setting [18].
In [46] we give with D(g) =D(Λ)≥ B(S) a necessary condition on the (operator)

sampling rate based on the bandwidth B(S) of OPW (S) which is defined as



Cornerstones of Sampling of Operator Theory 321

B(S) = sup
t∈R
|suppη(t,ν)|=

∥∥∥∫
R

χS(·,ν)dν
∥∥∥
∞
. (28)

Here, χS denotes the characteristic function of S. This quantity can be interpreted as
the maximum vertical extent of S and takes into account gaps in S. Moreover, in [46]
we discuss the goal of constructing {λn} of small density, and/or large gaps in order
to reserve time-slots for information transmission. Results in this direction can be
interpreted as giving bounds on the capacity of a time-variant channel in OPW (S)
in terms of |S| [46].

Finally, we give in [46] an example of an operator class OPW (S) that cannot
be identified by any identifier of the form g = ∑n∈Z cnδnT with T > 0 and periodic
cn, but requires coefficients that form a bounded but non-periodic sequence. In this
case, S is a parallelogram and B(S) = D(g) (see Figure 5)

t

ν

1 2 3 4

1

2

3

4

Fig. 5 The operator class OPW (S) with S = (2, 2 ;
√

2,
√

2+1/2)[0,1]2 whose area equals 1 and
bandwidth equals 1/2 is identifiable by a (non-periodically) weighted delta train with sampling
density 1/2. It is not identifiable using a periodically weighted delta train.

Sampling of OPW (S) with unknown S

In some applications, it is justified to assume that the set S has small area, but its
shape and location are unknown. If further S satisfies some basic geometric assump-
tions that guarantee that S is contained in [0,TP]× [−1/2T,1/2T] and only meets
few rectangles of the rectification grid [kT,(k+1)T ]× [q/TP,(q+1)/TP], then re-
covery of S and, hence, an operator in OPW (S) is possible [15, 46].

The independently obtained results in [15, 46] employ the same identifiers g =

∑n∈Z cnδλn as introduced above. Operator identification is therefore again reduced
to solving (18), that is, the system of P linear equations

Z(t,ν) = G(c)ηηη(t,ν) (29)
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for the vector ηηη(t,ν) ∈ C
P2

for (t,ν) ∈ [0,T ]× [−1/2TP,1/2TP]. While the zero
components of ηηη(t,ν) are not known, the vector is known to be very sparse. Hence,
for fixed (t,ν), we can use the fact that G(c) is full spark and recover ηηη(t,ν) if it
has at most P/2 nonzero entries. Indeed, assume ηηη(t,ν) and η̃ηη(t,ν) solve (29) and
both have at most P/2 nonzero entries. Then ηηη(t,ν)− η̃ηη(t,ν) has at most P nonzero
entries and the fact that G(c) is full spark indicates that G(c)(ηηη(t,ν)− η̃ηη(t,ν)) = 0
implies ηηη(t,ν)− η̃ηη(t,ν) = 0.

Clearly, under the geometric assumptions alluded to above, the criterion that at
most P/2 rectangles in the grid are met can be translated to the unknown area of S
has measure less than or equal to 1/2.

In [15], this area 1/2 criterion is improved by showing that H can be identified
whenever at most P− 1 rectangles in the rectification grid are met by S. This result
is achieved by using a joint sparsity argument, based on the assumption that for all
(t,ν), the same cells are active.

Alternatively, the “area 1/2” result can be strengthened by not assuming that for
all (t,ν), the same cells are active. This requires solving (29), for ηηη(t,ν) sparse, for
each considered (t,ν) independently, see Figure 6 and [46].

It must be added though, that solving (29) for ηηη(t,ν) being P/2 sparse is not
possible for moderately sized P, for example for P > 15. If we further reduce the
number of active boxes, then compressive sensing algorithms such as Basis Pursuit
and Orthogonal Matching Pursuit become available, as is discussed in the following
section.

t

ν

T

Ω

LT

LΩ

Fig. 6 For S the union of the colored sets, OPW (S) is identifiable even though 7 > 3 boxes are
active, implying that S cannot be rectified with P = 3 and T = 1 (see Section “Identification of
operator Paley-Wiener spaces by periodically weighted delta-trains”). Recovering η from Hg re-
quires solving three systems of linear equations, one to recover η on the yellow support set, one to
recover η on the red support set, and one to recover η on the blue support set. The reconstruction
formula (21) does not apply for this set S.
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Finite dimensional operator identification and compressive sensing

Operator sampling in the finite dimensional setting translates into the following
matrix probing problem [5, 7, 49]. For a class of matrices M∈ C

P×P, find c ∈ C
P

so that we can recover M ∈M from Mc (Figure 7).

Fig. 7 The matrix probing problem: find c so that the map M −→ C
P, M �→Mc is injective and

therefore invertible.

The classes of operator considered here are of the form Mηηη = ∑λ ηηηλBλ with
Bλ = Bp,q = T pMq, and the matrix identification problem is reduced to solving

ZZZ = Mηηηc =
P−1

∑
p,q=0

ηηη p,q

(
T pMqc

)
= G(c)ηηη , (30)

where c is chosen appropriately; this is just (29) with the dependence on (t,ν)
removed.

If ηηη is assumed to be k-sparse, (Figure 8) we arrive at the classical compres-
sive sensing problem with measurement matrix G(c) ∈ C

P×P2
which depends on

c = (c0,c1, . . . ,cP−1). To achieve recovery guarantees for Basis Pursuit and Orthog-
onal Matching Pursuit, averaging arguments have to be used that yield results on the
expected qualities of G(c). This problem was discussed in [40, 49, 50] as well as, in
slightly different terms, in [1, 17] (Figure 9). The strongest results were achieved in
[25] by estimating Restricted Isometry Constants for c being a Steinhaus sequence.
These results show that with high probability, G(c) has the property that Basis Pur-
suit recovers ηηη from G(c)ηηη for every k sparse ηηη as long as k≤C P/ log2 P for some
universal constant C.

Fig. 8 Time-frequency structured measurement matrix G(c) with c randomly chosen.
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Stochastic operators and channel estimation

It is common that models of wireless channels and radar environments take the
stochastic nature of the medium into account. In such models, the spreading func-
tion η(t,ν) (and therefore the operator’s kernel and Kohn–Nirenberg symbol) are
random processes, and the operator is split into the sum of its deterministic portion,
representing the mean behavior of the channel, and its zero-mean stochastic portion
that represents the noise and the environment.

(t, ν)

(t′, ν′) (t′, ν′) (t′, ν′)

(t, ν) (t, ν)

Fig. 9 Support sets of autocorrelation functions, the general case, the WSSUS case, and the tensor
case.

The detailed analysis of the stochastic case was carried out in [47, 48]. One of
the foci of these works lies in the goal of determining the second-order statistics of
the (zero mean) stochastic process η(τ,ν), that is, its so-called covariance function
R(τ,ν,τ ′,ν ′) = E{η(τ,ν)η(τ ′,ν ′)}. In [47, 48], it was shown that a necessary but
not sufficient condition for the identifiability of Rη(τ,ν,τ ′,ν ′) from the output co-
variance A(t, t ′) = E{Hg(t)Hg(t ′)} is that R(τ,ν,τ ′,ν ′) is supported on a bounded
set of 4-dimensional volume less than or equal to one. Unfortunately, for some sets
S ⊆ R

4 of arbitrary small measure, the respective stochastic operator Paley–Wiener
space StOPW(S) of operators with Rη supported on S is not identifiable; this is a
striking difference to the deterministic setup where the geometry of S does not play
a role at all.

In [67, 68] the special case of wide-sense stationary operators with uncorrelated
scattering, or WSSUS operators is considered. These operators are characterized by
the property that

Rη(t,ν, t ′,ν ′) =Cη (t,ν)δ (t− t ′)δ (ν −ν ′).

The function Cη(t,ν) is then called the scattering function of H. Our results on the
identifiability of stochastic operator classes allowed for the construction of two es-
timators for scattering functions [67, 68]. The estimator given in [67] is applicable,
whenever the scattering function of H has bounded support. Note that the autocor-
relation of a WSSUS operator is supported on a two-dimensional plane in R

4 which
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therefore has 4D volume 0, a fact that allows us to lift commonly assumed restric-
tions on the size of the 2D area of the support of the scattering function.

For details, formal definitions of identifiability and detailed statements of results
we refer to the papers [47, 48, 67, 68].

Appendix: Proofs of Theorems

Proof of Lemma 2

In order to see how the time-frequency shifts of c arise, we will briefly outline the
calculation that leads to (16). It can be seen by direct calculation using the represen-
tation given by (7), that if g = ∑n δnT P then 〈Hg,s〉 = 〈ηH ,ZT Ps〉 for all s ∈ S(R)
where the bracket on the left is the L2 inner product on R and that on the right the
L2 inner product on the rectangle [0,TP]×[0,1/(TP)]. Periodizing the integral on
the left gives

〈ηH ,ZT Ps〉=
∫ 1/(TP)

0

∫ T P

0
∑
k
∑
m
ηH(t + kTP,ν+m/(TP))

e−2π iνkT PZT Ps(t,ν)dt dν.

Since this holds for every s ∈ S(R), we conclude that

(ZT P ◦H)g(t,ν)

= 1/(TP)∑
k
∑
m
ηH(t + kTP,ν+m/(TP))e−2π iνkTP.

Given g =∑n∈Z cn δnT , for a period-P sequence c = (cn), and letting n = mP−q
for m ∈ Z and 0≤ q < P, we obtain

g =∑cn δnT =
P−1

∑
q=0

∑
m∈Z

cmP−qδmPT−qT

=
P−1

∑
q=0

c−qT−qT

(
∑

m∈Z
δmPT

)
.

Since for α ∈R, the spreading function of H ◦Tα is ηH(t−α,ν)e2π iνα , we arrive at

(ZT P ◦H)g(t,ν)

= 1/(TP)
P−1

∑
q=0

c−q ∑
k
∑
m
ηH(t + kTP+ qT,ν+m/(TP))

e−2π i(ν+m/(TP))qT e−2π iνkT P. (31)
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Letting m = jP+ � for j ∈ Z and 0≤ � < P, we obtain

(ZT P ◦H)g(t,ν)

= 1/(TP)
P−1

∑
q=0

c−q ∑
k
∑

j

P−1

∑
�=0

ηH(t + kTP+ qT,ν+ j/T + �/(TP))

e−2π iνqT e−2π i�q/P e−2π iνkTP

= 1/(TP)
P−1

∑
q=0

P−1

∑
�=0

(
c−q e−2π i�q/P)e−2π iνqT ηQ

H (t +Tq,ν+ �/TP).

Finally, replacing t by t + pT for p = 0, 1, . . . , P−1, and changing indices by
replacing q by q− p, we obtain

(ZT P ◦H)g(t + pT,ν)

= 1/(TP)
P−1

∑
q=0

P−1

∑
�=0

(
c−q e−2π i�q/P)e−2π iνqT ηQ

H (t +(q+ p)T,ν+ �/TP)

= 1/(TP)
P−1

∑
q=0

P−1

∑
�=0

(
c−(q−p) e−2π i�(q−p)/P)

e−2π iν(q−p)T ηQ
H (t + qT,ν+ �/TP).

The observation that (T qMmc)p = cp−q e2π im(p−q)/P completes the proof.

Proof of Theorem 3

To see why this is true, define μ(M) to be the number of diagonals of M whose
product is a multiple of pM, and proceed by induction on the size of the matrix M.
If M is 1× 1, then the result is obvious. Suppose that M is n× n and that it is
described by the vector �= (�0, . . . , �P−1). Assuming without loss of generality that
the variable of smallest index in pM with a nonzero exponent is c0, there is a row
of M in which the variable c0 appears � j times for some index j. Choose one of
these terms and delete the row and column in which it appears. Call the remaining
matrix M′. The vector � describing M′ is (�0, . . . , � j−1, � j− 1, � j+1, . . . , �P−1), and
is independent of which term was chosen from the given row to form M′. By the
construction of the LI monomial, pM = c0 pM′ and by the induction hypothesis

μ(M′) = �0! · · · � j−1!(� j− 1)!� j+1! · · · �P−1!.

Since there are � j ways to choose a term from the given row to produce M′ we have
that

μ(M) = � j μ(M′) = �0! · · · � j−1!� j(� j− 1)!� j+1! · · · �P−1! =
P−1

∏
κ=0

�κ!

which was to be proved.
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Since each term aσ Cσ in (24) is made up of a sum of precisely this many terms,
it follows that exactly one of these terms is a multiple of the LI monomial. Alterna-
tively, we can think of the LI monomial as the one corresponding to the σ ∈ SP/Γ
that minimizes the functional Λ0(Cσ ) = ∑L−1

i=0 i2 H(αi) where αi is the exponent of
ci in Cσ and where H(αi) = 0 if αi = 0 and 1 otherwise.

Because by Chebotarev’s Theorem, aσ �= 0 for all σ the proof works for any
square submatrix M, no matter what size. This gives us Theorem 3.

Proof of Theorem 4

We first need to assert the existence of a cyclical renumbering of the variables such
that with respect to the new trivial partition A′ = (A′κ)

P−1
κ=0, the CI monomial is

given by

CI =
P−1

∏
κ=0

∏
j∈A′κ

c j−κ

in other words, if j ∈ A′κ then 0≤ j−κ < P. Note first that since min(A′κ) =∑κ−1
i=0 �′i

for all κ , j ∈A′κ implies that j≥∑κ−1
i=0 �′i. Therefore, it will suffice to find a 0≤ γ <P

such that for all κ , ∑κ−1
i=0 �′i−κ ≥ 0 so that j−κ ≥ ∑κ−1

i=0 �′i−κ ≥ 0.

Let 0≤ γ < P be such that the quantity ∑γ−1
i=0 �i− γ is minimized, let

�′ = (�′i)
L−1
i=0 = (�(i+γ)mod P)

P−1
i=0 ,

and let A′ = (A′κ)
P−1
κ=0 be the corresponding trivial partition. Now fix κ and assume

that κ+ γ ≤ P. Then

κ−1

∑
i=0

�′i−κ =
κ−1

∑
i=0

�(i+γ)−κ

=

(κ+γ−1

∑
i=0

�i− (κ+ γ)
)
−
( γ−1

∑
i=0

�i− γ
)

≥ 0

since the second term in the difference is minimal. If κ + γ ≥ P+ 1, then remem-
bering that ∑P−1

i=0 �i = L

κ−1

∑
i=0

�′i−κ =
κ−1

∑
i=0

�(i+γ)mod P−κ

=
P−1

∑
i=γ

�i +
κ+γ−P−1

∑
i=0

�i−κ
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=
P−1

∑
i=0

�i−
γ−1

∑
i=0

�i +
κ+γ−P−1

∑
i=0

�i−κ

=

( (κ+γ−P)−1

∑
i=0

�i− (κ+ γ−P)

)
−
( γ−1

∑
i=0

�i− γ
)

≥ 0.

In order to complete the proof, we must show that Λ(Cσ ) ≥ Λ(CI) for all σ ∈
SP/Γ with equality holding if and only if σ is trivial. This will follow by direct
calculation together with the following lemma which follows from a classical result
on rearrangements of series [14, Theorems 368, 369]. This result is Lemma 3.3
in [32].

First, however, we adopt the following notation. For 0 ≤ n < P, let bn = κ if
n ∈ Aκ . With this notation, given σ ∈ SP/Γ ,

Cσ =
P−1

∏
n=0

c(σ(n)−bn) mod P

and under the above assumptions,

CI =
P−1

∏
n=0

c(n−bn).

Moreover,

Λ(Cσ ) =
P−1

∑
i=0

i2αi

=
P−1

∑
i=0

i2 (#{n : (σ(n)− bn) mod P = i})

=
P−1

∑
i=0

(
(σ(n)− bn) mod P

)2
.

Lemma 3. Given two finite sequences of real numbers (αn) and (βn) defined up to
rearrangement, the sum

∑
n
αn βn

is maximized when α and β are both monotonically increasing or monotonically
decreasing. Moreover, if for every rearrangement α ′ of α ,

∑
n
α ′nβn ≤∑

n
αnβn

then α and β are similarly ordered, that is, for every j, k,

(α j−αk)(β j−βk)≥ 0.
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In particular, for every σ ∈ SP,

P−1

∑
n=0

nbn ≥
P−1

∑
n=0

σ(n)bn

with equality holding if and only if σ is trivial.

Proof. The first part of the lemma is simply a restatement of Theorems 368 and 369
of [14]. To prove the second part, note first that bn is a non-decreasing sequence
and in particular is constant on each Aκ . Theorem 368 in [14] states that a sum of
the form ∑P−1

n=0 σ(n)bn is maximized when σ(n) is monotonically increasing, which
proves the given inequality. Since bn is constant on each Aκ , it follows that if σ is
trivial, then we have equality.

If σ is not trivial, then we will show that the sequences σ(n) and bn are not
similarly ordered. Letting κ be the minimal index such that Aκ is not left invariant
by σ , there exists m ∈ Aκ such that σ(m) ∈ Aμ for some μ > κ , and for some λ > κ
there exists k ∈ Aλ such that σ(k) ∈ Aκ . Therefore, bm = κ < λ = bk but since
μ > κ , σ(m)> σ(k), and so σ(n) and bn are not similarly ordered.

In order to complete the proof, define C1, C2 ⊆ {0, . . . , P− 1} by n ∈ C1 if 0 ≤
σ(n)−bn < P, and n∈C2 if−P+1≥ σ(n)−bn < 0 (note that always |σ(n)−bn|<
P) so that when n ∈ C2, (σ(n)− bn) mod P = σ(n)− bn +P. Let σ ′(n) = σ(n) if
n∈C1 and σ(n)+P if n∈C2, and let (an)

P−1
n=0 be an increasing sequence enumerating

the set σ(C1)∪ (σ(C2)+P). Therefore,

Λ(Cσ )−Λ(CI) =
P−1

∑
n=0

(σ ′(n)− bn)
2−

P−1

∑
n=0

(n− bn)
2

=

[P−1

∑
n=0

(σ ′(n)− bn)
2−

P−1

∑
n=0

(an− bn)
2
]

+

[P−1

∑
n=0

(an− bn)
2−

P−1

∑
n=0

(n− bn)
2
]

= 2

[P−1

∑
n=0

anbn−σ ′(n)bn

]
+

[P−1

∑
n=0

(an− bn)
2− (n− bn)

2
]

= I+ II.

Since an is increasing, I ≥ 0 by Lemma 3, and since an ≥ n for all n, (an− bn) ≥
(n−bn)≥ 0 so that (an−bn)

2 ≥ (n−bn)
2 and hence II ≥ 0. It remains to show that

equality holds only if σ is trivial. If Λ(Cσ ) =Λ(CI), then I = II = 0. Since II = 0,
C2 = /0 for if an ∈ σ(C2)+P then an > n and we would have II > 0. Since C2 = /0,
σ ′(n) = σ(n) so that
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0 = Λ(Cσ )−Λ(CI)

=
P−1

∑
n=0

(σ(n)− bn)
2−

P−1

∑
n=0

(n− bn)
2

= 2
P−1

∑
n=0

(nbn−σ(n)bn)

which by Lemma 3 implies that σ is trivial. The proof is complete.
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Analysis (Birkhäuser, Boston, 2001)
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Part XVI is concerned with spectral analysis broadly construed. Spectral analysis
and the study of signals/functions correlations are very intertwined topics and are
partially rooted in harmonic analysis with pioneering contributions from N. Wiener,
and A. Khinchin. In addition, these ever-present topics are also part of an important
class of tools used in a number of areas of sciences and engineering. While some of
the chapters in this part can be directly related to either spectral analysis or corre-
lation analysis, others are only loosely related. But in either case, these two topics
lie in the background of most of the following chapters. In the first chapter, HAMED

FIROUZI, DENNIS WEI, and ALFRED O. HERO III consider a spectral analysis of
the correlation of stationary multivariate Gaussian time series. This problem focuses
on identifying those time series that are highly correlated with a specified number
of other time series. They use an independent correlation analysis method in the
Fourier domain. This allows them to handle the computational complexity usually
associated with the analysis of high-dimensional time series.

In the second chapter of this part, R. A. BAILEY , PERSI DIACONIS , DANIEL

N. ROCKMORE, and CHRIS ROWLEY introduce a spectral analysis approach that
generalizes the classical analysis of variance (ANOVA)-based techniques used for
studying data from designed experiments. Designed experiments are widely used in
many fields, and this chapter offers a very self-contained introduction to the spectral
analysis of the data obtained from such experiments. In particular, using the repre-
sentation theory of certain groups related to the designed experiments, the chapter
considers in details various examples.

In the third chapter, GAURAV THAKUR surveys recent developments related to
the Synchrosqueezing transform. This is a nonstationary time-frequency method
used to analyze complex signals in terms of their time-varying oscillatory com-
ponents. Moreover, the Synchrosqueezing transform can be viewed as a sparse
and invertible time-frequency reassignment technique that leads to the recovery of
the signal. The chapter focusses on the theory and the stability properties of Syn-
chrosqueezing, while indicating some applications in areas such as cardiology, cli-
mate science, and economics.

In the fourth chapter of this part, PABLO SPRECHMANN, ALEX M. BRONSTEIN,
and GUILLERMO SAPIRO start with an overview of nonnegative matrix factorization
(NMF) algorithms for solving source separation problems. These (difficult) prob-
lems with a number of applications in areas such as mobile telephony are prevalent
in signal (audio) processing and often involve extracting or enhancing an audio sig-
nal recorded in a noisy environment. The main contribution is the introduction of
an alternative supervised training technique in the NMF algorithms to solve the
aforementioned problem. This new methodology is cast as an optimization problem
solved using stochastic gradient descent.
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Abstract This chapter discusses correlation analysis of stationary multivariate
Gaussian time series in the spectral or Fourier domain. The goal is to identify the
hub time series, i.e., those that are highly correlated with a specified number of
other time series. We show that Fourier components of the time series at different
frequencies are asymptotically statistically independent. This property permits in-
dependent correlation analysis at each frequency, alleviating the computational and
statistical challenges of high-dimensional time series. To detect correlation hubs at
each frequency, an existing correlation screening method is extended to the com-
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Introduction

Correlation analysis of multivariate time series is important in many applications
such as wireless sensor networks, computer networks, neuroimaging, and finance
[1–5]. This chapter focuses on the problem of detecting hub time series, ones that
have a high degree of interaction with other time series as measured by correlation
or partial correlation. Detection of hubs can lead to reduced computational and/or
sampling costs. For example, in wireless sensor networks, the identification of hub
nodes can be useful for reducing power usage and adding or removing sensors from
the network [6, 7]. Hub detection can also give new insights about underlying struc-
ture in the data set. In neuroimaging for instance, studies have consistently shown
the existence of highly connected hubs in brain graphs (connectomes) [8]. In fi-
nance, a hub might indicate a vulnerable financial instrument or a sector whose
collapse could have a major effect on the market [9].

Correlation analysis becomes challenging for multivariate time series when the
dimension p of the time series, i.e., the number of scalar time series, and the num-
ber of time samples N are large [4]. A naive approach is to treat the time series as
a set of independent samples of a p-dimensional random vector and estimate the
associated covariance or correlation matrix, but this approach completely ignores
temporal correlations as it only considers dependences at the same time instant and
not between different time instants. The work in [10] accounts for temporal corre-
lations by quantifying their effect on convergence rates in covariance and precision
matrix estimation; however, only correlations at the same time instant are estimated.
A more general approach is to consider all correlations between any two time in-
stants of any two series within a window of n ≤ N consecutive samples, where the
previous case corresponds to n = 1. However, in general this would entail the esti-
mation of an np× np correlation matrix from a reduced sample of size m = N/n,
which can be computationally costly as well as statistically problematic.

In this chapter, we propose spectral correlation analysis as a method of over-
coming the issues discussed above. As before, the time series are divided into m
temporal segments of n consecutive samples, but instead of estimating temporal
correlations directly, the method performs analysis on the Discrete Fourier Trans-
forms (DFT) of the time series. We prove in Theorem 1 that for stationary, jointly
Gaussian time series under the mild condition of absolute summability of the auto-
and cross-correlation functions, different Fourier components (frequencies) become
asymptotically independent of each other as the DFT length n increases. This prop-
erty of stationary Gaussian processes allows us to focus on the p× p correlations at
each frequency separately without having to consider correlations between different
frequencies. Moreover, spectral analysis isolates correlations at specific frequen-
cies or timescales, potentially leading to greater insight. To make aggregate infer-
ences based on all frequencies, straightforward procedures for multiple inference
can be used as described in Section “Application to Spectral Screening of Multivari-
ate Gaussian Time Series”.

The spectral approach reduces the detection of hub time series to the independent
detection of hubs at each frequency. However, in exchange for achieving spectral
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resolution, the sample size is reduced by the factor n, from N to m = N/n. To confi-
dently detect hubs in this high-dimensional, low-sample regime (large p, small m),
as well as to accommodate complex-valued DFTs, we develop a method that we call
complex-valued (partial) correlation screening. This is a generalization of the cor-
relation and partial correlation screening method of [9, 11, 12] to complex-valued
random variables. For each frequency, the method computes the sample (partial)
correlation matrix of the DFT components of the p time series. Highly correlated
variables (hubs) are then identified by thresholding the sample correlation matrix at
a level ρ and screening for rows (or columns) with a specified number δ of nonzero
entries.

We characterize the behavior of complex-valued correlation screening in the
high-dimensional regime of large p and fixed sample size m. Specifically, Theo-
rem 2 and Corollary 2 give asymptotic expressions in the limit p→ ∞ for the mean
number of hubs detected at thresholds ρ ,δ , and the probability of discovering at
least one such hub. Bounds on the rates of convergence are also provided. These
results show that the number of hub discoveries undergoes a phase transition as ρ
decreases from 1, from almost no discoveries to the maximum number, p. An ex-
pression (33) for the critical threshold ρc,δ is derived to guide the selection of ρ
under different settings of p, m, and δ . Furthermore, given a null hypothesis that
the population correlation matrix is sufficiently sparse, the expressions in Corol-
lary 2 become independent of the underlying probability distribution and can thus
be easily evaluated. This allows the statistical significance of a hub discovery to be
quantified, specifically in the form of a p-value under the null hypothesis. We note
that our results on complex-valued correlation screening apply more generally than
to spectral correlation analysis and thus may be of independent interest.

The remainder of the chapter is organized as follows. Section “Spectral
Representation of Multivariate Time Series” presents notation and definitions
for multivariate time series and establishes the asymptotic independence of spec-
tral components. Section “Complex-Valued Correlation Hub Screening” describes
complex-valued correlation screening and characterizes its properties in terms of
numbers of hub discoveries and phase transitions. Section “Application to Spec-
tral Screening of Multivariate Gaussian Time Series” discusses the application of
complex-valued correlation screening to the spectra of multivariate time series.
Finally, Section “Experimental Results” illustrates the applicability of the proposed
framework through simulation analysis.

Notation

A triplet (Ω ,F ,P) represents a probability space with sample space Ω , σ -algebra
of events F , and probability measure P. For an event A ∈F , P(A) represents the
probability of A. Scalar random variables and their realizations are denoted with up-
per case and lower case letters, respectively. Random vectors and their realizations
are denoted with bold upper case and bold lower case letters. The expectation opera-
tor is denoted as E. For a random variable X , the cumulative probability distribution
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(cdf) of X is defined as FX(x) = P(X ≤ x). For an absolutely continuous cdf FX(.)
the probability density function (pdf) is defined as fX (x) = dFX(x)/dx. The cdf
and pdf are defined similarly for random vectors. Moreover, we follow the defini-
tions in [13] for conditional probabilities, conditional expectations, and conditional
densities.

For a complex number z = a+ b
√
−1 ∈ C, Re(z) = a and Im(z) = b represent

the real and imaginary parts of z, respectively. A complex-valued random variable
is composed of two real-valued random variables as its real and imaginary parts.
A complex-valued Gaussian variable has real and imaginary parts that are Gaus-
sian. A complex-valued (Gaussian) random vector is a vector whose entries are
complex-valued (Gaussian) random variables. The covariance of a p-dimensional
complex-valued random vector Y and a q-dimensional complex-valued random vec-
tor Z is a p× q matrix defined as

cov(Y,Z) = E
[
(Y−E[Y])(Z−E[Z])H] ,

where H denotes the Hermitian transpose. We write cov(Y) for cov(Y,Y) and
var(Y ) = cov(Y,Y ) for the variance of a scalar random variable Y . The correlation
coefficient between random variables Y and Z is defined as

cor(Y,Z) =
cov(Y,Z)√

var(Y )var(Z)
.

Matrices are also denoted by bold upper case letters. In most cases the distinction
between matrices and random vectors will be clear from the context. For a matrix A
we represent the (i, j)th entry of A by ai j. Also DA represents the diagonal matrix
that is obtained by zeroing out all but the diagonal entries of A.

Spectral Representation of Multivariate Time Series

Definitions

Let X(k) = [X (1)(k),X (2)(k), · · ·X (p)(k)], k ∈ Z, be a multivariate time series with
time index k. We assume that the time series X (1),X (2), · · ·X (p) are second-order
stationary random processes, i.e.,

E[X (i)(k)] = E[X (i)(k+Δ)] (1)

and

cov[X (i)(k),X ( j)(l)] = cov[X (i)(k+Δ),X ( j)(l +Δ)] (2)

for any integer time shift Δ .
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For 1 ≤ i ≤ p, let X(i) = [X (i)(k), · · · ,X (i)(k + n− 1)] denote any vector of n
consecutive samples of time series X (i). The n-point Discrete Fourier Transform
(DFT) of X(i) is denoted by Y(i) = [Y (i)(0), · · · ,Y (i)(n− 1)] and defined by

Y(i) = WX(i), 1≤ i≤ p

in which W is the DFT matrix:

W =
1√
n

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 ω · · · ωn−1

...
...

. . .
...

1 ωn−1 · · · ω(n−1)2

⎤
⎥⎥⎥⎦ ,

where ω = e−2π
√
−1/n.

We denote the n×n population covariance matrix of X(i) as C(i,i) = [c(i,i)kl ]1≤k,l≤n

and the n× n population cross-covariance matrix between X(i) and X( j) as C(i, j) =

[c(i, j)kl ]1≤k,l≤n for i �= j. The translation invariance properties (1) and (2) imply that

C(i,i) and C(i, j) are Toeplitz matrices. Therefore, c(i,i)kl and c(i, j)kl depend on k and l
only through the quantity k− l. Representing the (k, l)th entry of a Toeplitz matrix
T by t(k− l), we write

c(i,i)kl = c(i,i)(k− l) and c(i, j)kl = c(i, j)(k− l),

where k− l takes values from 1− n to n− 1. In addition, C(i,i) is symmetric.

Asymptotic Independence of Spectral Components

The following theorem states that for stationary time series, DFT components at
different spectral indices (i.e., frequencies) are asymptotically uncorrelated under
the condition that the auto-covariance and cross-covariance functions are absolutely
summable. This theorem follows directly from the spectral theory of large Toeplitz
matrices, see, for example, [14] and [15]. However, for the benefit of the reader we
give a self-contained proof of the theorem.

Theorem 1. Assume limn→∞∑n−1
t=0 |c(i, j)(t)|= M(i, j) <∞ for all 1≤ i, j ≤ p. Define

err(i, j)(n) = M(i, j) −∑n−1
m′=0 |c

(i, j)(m′)| and avg(i, j)(n) = 1
n ∑

n−1
m′=0 err(i, j)(m′). Then,

for k �= l, we have

cor
(

Y (i)(k),Y ( j)(l)
)
= O(max{1/n,avg(i, j)(n)}).

In other words Y (i)(k) and Y ( j)(l) are asymptotically uncorrelated as n→ ∞.
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Proof. Without loss of generality we assume that the time series have zero mean
(i.e., E[X (i)(k)] = 0,1≤ i≤ p,0≤ k ≤ n− 1). We first establish a representation of
E[Z(i)(k)Z( j)(l)∗] for general linear functionals:

Z(i)(k) =
n−1

∑
m′=0

gk(m
′)X (i)(m′),

in which gk(.) is an arbitrary complex sequence for 0≤ k ≤ n− 1. We have

E[Z(i)(k)Z( j)(l)∗]

= E

[(
n−1

∑
m′=0

gk(m
′)X (i)(m′)

)(
n−1

∑
n′=0

gl(n
′)X ( j)(n′)

)∗]

=
n−1

∑
m′=0

gk(m
′)

n−1

∑
n′=0

gl(n
′)∗E[X (i)(m′)X ( j)(n′)∗]

=
n−1

∑
m′=0

gk(m
′)

n−1

∑
n′=0

gl(n
′)∗c(i, j)m′n′ (3)

Now for a Toeplitz matrix T, define the circulant matrix DT as

DT =

⎡
⎢⎢⎢⎢⎢⎣

t(0) t(−1)+ t(n− 1) · · · t(1− n)+ t(1)
t(1)+ t(1− n) t(0) · · · t(2− n)+ t(2)

...
...

. . .
...

t(n− 2)+ t(−2) t(n− 3)+ t(−3) · · · t(−1)+ t(n− 1)
t(n− 1)+ t(−1) t(n− 2)+ t(−2) · · · t(0)

⎤
⎥⎥⎥⎥⎥⎦

We can write

C(i, j) = DC(i, j) +E(i, j)

for some Toeplitz matrix E(i, j). Thus, c(i, j)(m′ −n′) = d(i, j)(m′ −n′)+e(i, j)(m′ −n′)
where d(i, j)(m′ − n′) and e(i, j)(m′ − n′) are the (m′,n′) entries of DC(i, j) and E(i, j),
respectively. Therefore, (3) can be written as

n−1

∑
m′=0

gk(m
′)

n−1

∑
n′=0

gl(n
′)∗d(i, j)(m′ − n′)+

n−1

∑
m′=0

n−1

∑
n′=0

gk(m
′)gl(n

′)∗e(i, j)(m′ − n′)

The first term can be written as:

n−1

∑
m′=0

gk(m
′)
(

g∗l 	 d(i, j)
)
(m′) =

n−1

∑
m′=0

gk(m
′)v(i, j)l (m′)
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where we have recognized v(i, j)l (m′) = g∗l 	 d(i, j) as the circular convolution of
g∗l (.) and d(i, j)(.) [16]. Let Gk(.) and D(i, j)(.) be the DFT of gk(.) and d(i, j)(.),
respectively. By Plancherel’s theorem [17] we have

n−1

∑
m′=0

gk(m
′)v(i, j)l (m′) =

n−1

∑
m′=0

gk(m
′)
(

v(i, j)l (m′)∗
)∗

=
n−1

∑
m′=0

Gk(m
′)
(

Gl(m
′)D(i, j)(−m′)∗

)∗

=
n−1

∑
m′=0

Gk(m
′)Gl(m

′)∗D(i, j)(−m′). (4)

Now let gk(m′) = ωkm′/
√

n for 0 ≤ k,m′ ≤ n− 1. For this choice of gk(.) we have
Gk(m′) = 0 for all m′ �= n− k and Gk(n− k) = 1. Hence, for k �= l the quantity (4)
becomes 0. Therefore, using the representation E(i, j) = C(i, j)−DC(i, j) we have

|cov
(

Y (i)(k),Y ( j)(l)
)
| = |E[Y (i)(k)Y ( j)(l)∗]|

= |
n−1

∑
m′=0

n−1

∑
n′=0

gk(m
′)gl(n

′)∗e(i, j)(m′ − n′)|

≤ 1
n

n−1

∑
m′=0

n−1

∑
n′=0

|e(i, j)(m′ − n′)|

=
2
n

n−1

∑
m′=0

m′|c(i, j)(m′)|, (5)

in which the last equation is due to the fact that |c(i, j)(−m′)|= |c(i, j)(m′)|.
Now using (4) and (5) we obtain expressions for var

(
Y (i)(k)

)
and var

(
Y ( j)(l)

)
.

Letting j = i and l = k in (4) and (5) gives

var
(

Y (i)(k)
)
= cov

(
Y (i)(k),Y (i)(k)

)

=
n−1

∑
m′=0

Gk(m
′)Gk(m

′)∗D(i,i)(−m′)+
n−1

∑
m′=0

n−1

∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′)

= n.
1√
n
.

1√
n

D(i,i)(k)+
n−1

∑
m′=0

n−1

∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′)

= D(i,i)(k)+
n−1

∑
m′=0

n−1

∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′), (6)
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in which the magnitude of the summation term is bounded as

|
n−1

∑
m′=0

n−1

∑
n′=0

gk(m
′)gk(n

′)∗e(i,i)(m′ − n′)|

≤ 1
n

n−1

∑
m′=0

n−1

∑
n′=0

|e(i,i)(m′ − n′)|

=
2
n

n−1

∑
m′=0

m′|c(i,i)(m′)|. (7)

Similarly,

var
(

Y ( j)(l)
)
= D( j, j)(l)+

n−1

∑
m′=0

n−1

∑
n′=0

gl(m
′)gl(n

′)∗e( j, j)(m′ − n′), (8)

in which

|
n−1

∑
m′=0

n−1

∑
n′=0

gl(m
′)gl(n

′)∗e( j, j)(m′ − n′)|

≤ 2
n

n−1

∑
m′=0

m′|c( j, j)(m′)|. (9)

To complete the proof the following lemma is needed.

Lemma 1. If {am′}∞m′=0 is a sequence of nonnegative numbers such that∑∞
m′=0 am′ =

M < ∞. Define err(n) = M − ∑n−1
m′=0 am′ and avg(n) = 1

n ∑
n−1
m′=0 err(m′). Then,

| 1n ∑
n−1
m′=0 m′am′ | ≤M/n+ err(n)+ avg(n).

Proof. Let S0 = 0 and for n≥ 1 define Sn = ∑n−1
m′=0 am′ . We have

n−1

∑
m′=0

mam′ = (n− 1)Sn− (S0 + S1 + . . .+ Sn−1).

Therefore,

1
n

n−1

∑
m′=0

m′am′ =
n− 1

n
Sn−1−

1
n

n−1

∑
m′=0

Sm′ .

Since M−M/n−err(n)≤ n−1
n Sn−1 ≤M and M−avg(n)≤ 1

n ∑
n−1
m′=0 Sm′ ≤M, using

the triangle inequality the result follows. �

Now let am′ = |c(i, j)(m′)|. By assumption limn→∞∑n−1
m′=0 am′ =M(i, j) <∞. Therefore,

Lemma 1 along with (5) concludes

cov
(

Y (i)(k),Y ( j)(l)
)
= O(max{1/n,err(i,j)(n),avg(i,j)(n)}). (10)
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err(i, j)(n) is a decreasing function of n. Therefore, avg(i, j)(n)≥ err(i, j)(n), for n≥ 1.
Hence

cov
(

Y (i)(k),Y ( j)(l)
)
= O(max{1/n,avg(i, j)(n)}).

Similarly using Lemma 1 along with (6), (7), (8), and (9) we obtain

|var
(

Y (i)(k)
)
−D(i,i)(k)|= O(max{1/n,avg(i,i)(n)}) (11)

and

|var
(

Y ( j)(l)
)
−D( j, j)(l)|= O(max{1/n,avg( j, j)(n)}). (12)

Using the definition

cor
(

Y (i)(k),Y ( j)(l)
)
=

cov
(

Y (i)(k),Y ( j)(l)
)

√
var

(
Y (i)(k)

)√
var

(
Y ( j)(l)

)
and the fact that as n→ ∞, D(i,i)(k) and D( j, j)(l) converge to constants C(i,i)(k) and
C( j, j)(l), respectively, equations (10), (11), and (12) conclude

cor
(

Y (i)(k),Y ( j)(l)
)
= O(max{1/n,avg(i, j)(n)}).

�
As an example we apply Theorem 1 to a scalar auto-regressive (AR) process

X(k) specified by

X(k) =
L

∑
l=1

ϕlX(k− l)+ ε(k),

in which ϕl are real-valued coefficients and ε(.) is a stationary process with no
temporal correlation. The auto-covariance function of an AR process can be written
as [18]

c(t) =
L

∑
l=1

αl r
|t|
l ,

in which r1, . . . ,rl are the roots of the polynomial β (x) = xL−∑L
l=1ϕlxL−l . It is

known that for a stationary AR process, |rl | < 1 for all 1 ≤ l ≤ L [18]. Therefore,
using the definition of err(.) we have

err(n) =
∞

∑
t=n
|c(t)|=

∞

∑
t=n
|

L

∑
l=1

αlr
t
l | ≤

L

∑
l=1

|αl |
∞

∑
t=n
|rl |t

=
L

∑
l=1

|αl |
|rl |n

1−|rl|
≤Cζ n,
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in which C = ∑L
l=1 |αl |/(1−|rl|) and ζ = max1≤l≤L |rl |< 1. Hence,

avg(n) =
1
n

n−1

∑
m′=0

err(m′)≤ 1
n

n−1

∑
m′=0

Cζm′ ≤ C
n(1− ζ )

.

Therefore, Theorem 1 concludes

cor(Y (k),Y (l)) = O(1/n), k �= l,

where Y (.) represents the n-point DFT of the AR process X(.).
In the sequel, we assume that the time series X is multivariate Gaussian, i.e.,

X (1), . . . ,X (p) are jointly Gaussian processes. It follows that the DFT components
Y (i)(k) are jointly (complex) Gaussian as linear functionals of X. Theorem 1 then
immediately implies asymptotic independence of DFT components through a well-
known property of jointly Gaussian random variables.

Corollary 1. Assume that the time series X is multivariate Gaussian. Under the
absolute summability conditions in Theorem 1, the DFT components Y (i)(k) and
Y ( j)(l) are asymptotically independent for k �= l and n→ ∞.

Corollary 1 implies that for large n, correlation analysis of the time series X can
be done independently on each frequency in the spectral domain. This reduces the
problem of screening for hub time series to screening for hub variables among the
p DFT components at a given frequency. A procedure for the latter problem and a
corresponding theory are described next.

Complex-Valued Correlation Hub Screening

This section discusses complex-valued correlation hub screening, a generalization
of real-valued correlation screening in [9, 11], for identifying highly correlated com-
ponents of a complex-valued random vector from its sample values. The method
is applied to multivariate time series in Section “Application to Spectral Screen-
ing of Multivariate Gaussian Time Series” to discover correlation hubs among the
spectral components at each frequency. Sections “Statistical Model” and “Screening
Procedure” describe the underlying statistical model and the screening procedure.
Sections “U-score Representation of Correlation Matrices” and “Properties of U-
scores” provide background on the U-score representation of correlation matrices
and associated definitions and properties. Section “Number of Hub Discoveries in
the High-Dimensional Limit” contains the main theoretical result characterizing the
number of hub discoveries in the high-dimensional regime, while Section “Phase
Transitions and Critical Threshold” elaborates on the phenomenon of phase transi-
tions in the number of discoveries.
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Statistical Model

We use the generic notation Z = [Z1,Z2, · · · ,Zp]
T in this section to refer to a

complex-valued random vector. The mean of Z is denoted as μμμ and its p× p nonsin-
gular covariance matrix is denoted as ΣΣΣ . We assume that the vector Z follows a com-
plex elliptically contoured distribution with pdf fZ(z) = g

(
(z− μμμ)HΣΣΣ−1(z− μμμ)

)
,

in which g : R≥0 →R
>0 is an integrable and strictly decreasing function [19]. This

assumption generalizes the Gaussian assumption made in Section “Spectral Repre-
sentation of Multivariate Time Series”, as the Gaussian distribution is one example
of an elliptically contoured distribution.

In correlation hub screening, the quantities of interest are the correlation
matrix and partial correlation matrix associated with Z. These are defined as

ΓΓΓ = D
− 1

2
ΣΣΣ ΣΣΣD

− 1
2

ΣΣΣ and ΩΩΩ = D
− 1

2

ΣΣΣ−1ΣΣΣ−1D
− 1

2

ΣΣΣ−1 , respectively. Note that ΓΓΓ and ΩΩΩ are
normalized matrices with unit diagonals.

Screening Procedure

The goal of correlation hub screening is to identify highly correlated components
of the random vector Z from its sample realizations. Assume that m samples
z1, . . . ,zm ∈ R

p of Z are available. To simplify the development of the theory, the
samples are assumed to be independent and identically distributed (i.i.d.) although
the theory also applies to dependent samples.

We compute sample correlation and partial correlation matrices from the samples
z1, . . . ,zm as surrogates for the unknown population correlation matrices ΓΓΓ and ΩΩΩ
in Section “Statistical Model”. First define the p× p sample covariance matrix S as
S= 1

m−1 ∑
m
i=1(zi−z)(zi−z)H , where z is the sample mean, the average of z1, . . . ,zm.

The sample correlation and sample partial correlation matrices are then defined as

R = D
− 1

2
S SD

− 1
2

S and P = D
− 1

2
R† R†D

− 1
2

R† , respectively, where R† is the Moore-Penrose
pseudo-inverse of R.

Correlation hubs are screened by applying thresholds to the sample (partial) cor-
relation matrix. A variable Zi is declared a hub screening discovery at degree level
δ ∈ {1,2, . . .} and threshold level ρ ∈ [0,1] if

|{ j : j �= i, |ψi j| ≥ ρ}| ≥ δ ,

whereΨΨΨ = R for correlation screening andΨΨΨ = P for partial correlation screening.
We denote by Nδ ,ρ ∈ {0, . . . , p} the total number of hub screening discoveries at
levels δ ,ρ .

Correlation hub screening can also be interpreted in terms of the (partial) cor-
relation graph Gρ(ΨΨΨ), depicted in Fig. 1 and defined as follows. The vertices of
Gρ(ΨΨΨ) are v1, · · · ,vp which correspond to Z1, · · · ,Zp, respectively. For 1≤ i, j ≤ p,
vi and v j are connected by an edge in Gρ(ΨΨΨ) if the magnitude of the sample (partial)
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correlation coefficient between Zi and Zj is at least ρ . A vertex of Gρ(ΨΨΨ) is called a
δ -hub if its degree, the number of incident edges, is at least δ . Then, the number of
discoveries Nδ ,ρ defined earlier is the number of δ -hubs in the graph Gρ(ΨΨΨ).

v3

v2v1

vp

vj
vi

Fig. 1 Complex-valued (partial) correlation hub screening thresholds the sample correlation or
partial correlation matrix, denoted generically by the matrixΨΨΨ , to find variables Zi that are highly
correlated with other variables. This is equivalent to finding hubs in a graph Gρ (ΨΨΨ ) with p vertices
v1, · · · ,vp. For 1≤ i, j≤ p, vi is connected to v j in Gρ (ΨΨΨ) if |ψi j| ≥ ρ .

U-score Representation of Correlation Matrices

Our theory for complex-valued correlation screening is based on the U-score repre-
sentation of the sample correlation and partial correlation matrices. Similarly to the
real case [9], it can be shown that there exists an (m− 1)× p complex-valued ma-

trix UR with unit-norm columns u(i)
R ∈ C

m−1 such that the following representation
holds:

R = U
H
RUR. (13)

Similar to Lemma 1 in [9] it is straightforward to show that

R† = U
H
R(URU

H
R)
−2
UR.

Hence, by defining UP = (URU
H
R)
−1
URD

− 1
2

UH
R (URU

H
R )−2UR

we have the representation

P = U
H
P UP, (14)

where the (m− 1)× p matrix UP has unit-norm columns u(i)
P ∈ C

m−1.
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Properties of U-scores

The U-score factorizations in (13) and (14) show that sample (partial) correla-
tion matrices can be represented in terms of unit vectors in C

m−1. This subsec-
tion presents definitions and properties related to U-scores that will be used in Sec-
tion “Number of Hub Discoveries in the High-Dimensional Limit”.

We denote the unit spheres in R
m−1 and C

m−1 as Sm−1 and Tm−1, respectively.
The surface areas of Sm−1 and Tm−1 are denoted as am−1 and bm−1, respectively.
Define the interleaving function h : R2m−2 →C

m−1 as below:

h([x1,x2, · · · ,x2m−2]
T ) =

[x1 + x2
√
−1,x3 + x4

√
−1, · · · ,x2m−3 + x2m−2

√
−1]T .

Note that h(.) is a one-to-one and onto function and it maps S2m−2 to Tm−1.
For a fixed vector u ∈ Tm−1 and a threshold 0≤ ρ ≤ 1 define the spherical cap in

Tm−1:

Aρ(u) = {y : y ∈ Tm−1, |yHu| ≥ ρ}.

Also define P0 as the probability that a random point Y that is uniformly distributed
on Tm−1 falls into Aρ(u). Below we give a simple expression for P0 as a function of
ρ and m.

Lemma 2. Let Y be an (m− 1)-dimensional complex-valued random vector that is
uniformly distributed over Tm−1. We have P0 = P

(
Y ∈ Aρ(u)

)
= (1−ρ2)m−2.

Proof. Without loss of generality we assume u = [1,0, · · · ,0]T . We have

P0 = P(|Y1| ≥ ρ) = P(Re(Y1)
2 + Im(Y1)

2 ≥ ρ2).

Since Y is uniform on Tm−1, we can write Y = X/‖X‖2, in which X is complex-
valued random vector whose entries are i.i.d. complex-valued Gaussian variables
with mean 0 and variance 1. Thus,

P0 = P
((

Re(X1)
2 + Im(X2

1 )
)
/‖X‖2

2 ≥ ρ2)
= P

(
(1−ρ2)

(
Re(X1)

2 + Im(X1)
2)≥ ρ2

m−1

∑
k=2

Re(Xk)
2 + Im(Xk)

2

)
.

Define V1 = Re(X1)
2 + Im(X1)

2 and V2 = ∑m−1
k=2 Re(Xk)

2 + Im(Xk)
2. V1 and V2 are

independent and have chi-squared distributions with 2 and 2(m−2) degrees of free-
dom, respectively [20]. Therefore,

P0 =

∫ ∞

0

∫ ∞

ρ2v2/(1−ρ2)
χ2

2 (v1)χ2
2(m−2)(v2)dv1dv2

=
∫ ∞

0
χ2

2(m−2)(v2)
∫ ∞

ρ2v2/(1−ρ2)

1
2

e−v1/2dv1dv2
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=

∫ ∞

0

1
2m−2Γ (m− 2)

vm−3
2 e−v2/2e

− ρ2

2(1−ρ2)
v2 dv2

=
1

Γ (m− 2)
(1−ρ2)m−2

∫ ∞

0
xm−3e−xdx

=
1

Γ (m− 2)
(1−ρ2)m−2Γ (m− 2) = (1−ρ2)m−2,

in which we have made a change of variable x = v2
2(1−ρ2)

. �

Under the assumption that the joint pdf of Z exists, the p columns of the U-
score matrix have joint pdf fU1,...,Up(u1, . . . ,up) on T p

m−1 = ×
p
i=1Tm−1. The follow-

ing (δ+1)-fold average of the joint pdf will play a significant role in Section “Num-
ber of Hub Discoveries in the High-Dimensional Limit”. This (δ + 1)-fold average
is defined as

fU∗1,...,U∗δ+1
(u1, . . . ,uδ+1) =

1

(2π)δ+1 p
(p−1

δ
) ×

∑
1≤i1<···<iδ≤p,iδ+1/∈{i1,··· ,iδ }

∫ 2π

0

∫ 2π

0
· · ·

∫ 2π

0

fUi1 ,...,Uiδ ,Uiδ+1
(e
√
−1θ1u1, . . . ,e

√
−1θδ uδ ,e

√
−1θuδ+1) dθ1 · · ·dθδ dθ .

Also for a joint pdf fU1,...,Uδ+1
(u1, . . . ,uδ+1) on T δ+1

m−1 define

J( fU1,...,Uδ+1
) = aδ2m−2

∫
S2m−2

fU1,...,Uδ+1
(h(u), . . . ,h(u))du.

Note that J( fU1,...,Uδ+1
) is proportional to the integral of fU1,...,Uδ+1

over the man-
ifold u1 = . . . = uδ+1. The quantity J( fU∗1,...,U∗(δ+1)

) is key in determining the
asymptotic average number of hubs in a complex-valued correlation network. This
will be described in more detail in Sec. “Number of Hub Discoveries in the High-
Dimensional Limit”.

Let i = (i0, i1, . . . , iδ ) be a set of distinct indices, i.e., 1 ≤ i0 ≤ p,1 ≤ i1 <
.. . < iδ ≤ p, and i1, . . . , iδ �= i0. For a U-score matrix U define the dependency
coefficient between the columns Ui = {Ui0 ,Ui1 , . . . ,Uiδ } and their complementary
k-NN (k-nearest neighbor) set Ak(i) defined in (29) and Fig. 2 as

Δp,m,k,δ (i) =
∥∥∥( fUi |UAk (i)

− fUi)/ fUi

∥∥∥
∞
,

where ‖·‖∞ denotes the supremum norm. The average of these coefficients is
defined as

‖Δp,m,k,δ‖1 =
1

p
(p−1

δ
) p

∑
i0=1

∑
i1,...,iδ �=i0

1≤i1<...<iδ≤p

Δp,m,k,δ (i). (15)
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Number of Hub Discoveries in the High-Dimensional Limit

We now present the main theoretical result on complex-valued correlation screening.
The following theorem gives asymptotic expressions for the mean number of δ -hubs
and the probability of discovery of at least one δ -hub in the graph Gρ(ΨΨΨ). It also
gives bounds on the rates of convergence to these approximations as the dimension p
increases and ρ→ 1. We use U= [U1, · · · ,Up] as a generic notation for the U-score
representation of the sample (partial) correlation matrix. The asymptotic expression
for the mean E[Nδ ,ρ ] is denoted by Λ and is given by

Λ = p

(
p− 1
δ

)
Pδ

0 J( fU∗1,...,U∗(δ+1)
). (16)

Define ηp,δ as

ηp,δ = p1/δ (p− 1)P0 = p1/δ (p− 1)(1−ρ2)(m−2), (17)

where the last equation is due to Lemma 2. The parameter k below represents an
upper bound on the true hub degree, i.e., the number of nonzero entries in any row
of the population covariance matrix ΣΣΣ . Also let ϕ(δ ) be the function that takes
values ϕ(δ ) = 2 for δ = 1 and ϕ(δ ) = 1 for δ > 1.

Theorem 2. Let U = [U1, . . . ,Up] be a (m− 1)× p random matrix with Ui ∈ Tm−1

where m > 2. Let δ ≥ 1 be a fixed integer. Assume the joint pdf of any subset of the
Uis is bounded and differentiable. Then, with Λ defined in (16),

∣∣E[Nδ ,ρ ]−Λ
∣∣≤ O

(
ηδ

p,δ max
{
ηp,δ p−1/δ ,(1−ρ)1/2

})
. (18)

Furthermore, let N∗δ ,ρ be a Poisson distributed random variable with rate E[N∗δ ,ρ ] =
Λ/ϕ(δ ). If (p− 1)P0 ≤ 1, then∣∣∣P(Nδ ,ρ > 0)−P(N∗δ ,ρ > 0)

∣∣∣≤⎧⎨
⎩

O
(
ηδ

p,δ max
{
ηδ

p,δ (k/p)δ+1 ,Qp,k,δ ,‖Δp,m,k,δ‖1, p−1/δ ,(1−ρ)1/2
})

, δ > 1

O
(
ηp,1 max

{
ηp,1 (k/p)2 ,‖Δp,m,k,1‖1, p−1,(1−ρ)1/2

})
, δ = 1

,

(19)

with Qp,k,δ = ηp,δ
(
k/p1/δ)δ+1

and ‖Δp,m,k,δ‖1 defined in (15).

Proof. The proof is similar to the proof of proposition 1 in [9]. First we prove (18).
Let φi = I(di ≥ δ ) be the indicator of the event that di ≥ δ , in which di represents
the degree of the vertex vi in the graph Gρ(ΨΨΨ). We have Nδ ,ρ = ∑p

i=1 φi. With φi j

being the indicator of the presence of an edge in Gρ(ΨΨΨ) between vertices vi and v j

we have the relation
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φi =
p−1

∑
l=δ

∑
k∈C̆i(p−1,l)

l

∏
j=1

φik j

p−1

∏
q=l+1

(1−φikq) (20)

where we have defined the index vector k = (k1, . . . ,kp−1) and the set

C̆i(p− 1, l) =

{k : k1 < .. . < kl ,kl+1 < .. . < kp−1 k j ∈ {1, . . . , p}−{i},k j �= k j′ }.

The inner summation in (20) simply sums over the set of distinct indices not equal
to i that index all

(p−1
l

)
different types of products of the form:∏l

j=1φik j ∏
p−1
q=l+1(1−

φikq). Subtracting ∑k∈C̆i(p−1,δ )∏
δ
j=1 φik j from both sides of (20)

φi− ∑
k∈C̆i(p−1,δ )

δ

∏
j=1

φik j

=
p−1

∑
l=δ+1

∑
k∈C̆i(p−1,l)

l

∏
j=1

φik j

p−1

∏
q=l+1

(1−φikq)

+ ∑
k∈C̆i(p−1,l)

p−1

∑
q=δ+1

(−1)q−δ

∑
k′δ+1<...<k′q,{k′δ+1,...,k

′
q}⊂{kδ+1,...,kp−1}

l

∏
j=1

φik j

q

∏
s=δ+1

φik′s (21)

in which we have used the expansion

p−1

∏
q=δ+1

(1−φikq) = 1+
p−1

∑
q=δ+1

(−1)q−δ ∑
k′δ+1<...<k′q,{k′δ+1,...,k

′
q}⊂{kδ+1,...,kp−1}

q

∏
s=δ+1

φik′s .

The following simple asymptotic representation will be useful in the sequel. For
any i1, . . . , ik ∈ {1, . . . , p}, i1 �= · · · �= ik �= i, k ∈ {1, . . . , p− 1},

E

[
k

∏
j=1

φii j

]
=
∫

S2m−2

∫
h−1(Aρ (vvv))

· · ·
∫

h−1(Aρ (vvv))

fUi1 ,...,Uik
,Ui(h(v1), · · · ,h(vk),h(v)) dv1 · · ·dvk dv

≤ Pk
0 ak

2m−2Mk|1, (22)

where P0,Aρ(u), and the function h(.) are defined in Sec. “Properties of U-scores”.
Moreover,

Mk|1 = max
i1 �=···�=ik+1

∥∥∥ fUUUi1
,...,UUUik

|UUUik+1

∥∥∥
∞
.
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The following simple generalization of (22) to arbitrary product indices φi j will also
be needed

E

[
q

∏
l=1

φil jl

]
≤ Pq

0 aq
2m−2M|Q|, (23)

where Q =unique({il, jl}q
l=1) is the set of unique indices among the distinct pairs

{(il , jl)}q
l=1 and M|Q| is a bound on the joint pdf of UQ.

Define the random variable

θi =

(
p− 1
δ

)−1

∑
k∈C̆i(p−1,δ )

δ

∏
j=1

φik j .

We show below that for sufficiently large p∣∣∣∣E[φi]−
(

p− 1
δ

)
E[θi]

∣∣∣∣ ≤ γp,δ ((p− 1)P0)
δ+1, (24)

where γp,δ =maxδ+1≤l<p{al
2m−2Ml|1}

(
e−∑δ

l=0
1
l!

)(
1+(δ !)−1

)
and Ml|1 is a least

upper bound on any l-dimensional joint pdf of the variables {Ui}p
j �=i conditioned

on Ui.
To show inequality (24) take expectations of (21) and apply the bound (22) to

obtain∣∣∣∣E[φi]−
(

p− 1
δ

)
E[θi]

∣∣∣∣≤∣∣∣∣∣
p−1

∑
l=δ+1

(
p− 1

l

)
Pl

0al
2m−2Ml|1 +

(
p− 1
δ

) p−1−δ

∑
l=1

(
p− 1− δ

l

)
Pδ+l

0 aδ+l
2m−2Mδ+l|1

∣∣∣∣∣
≤ A(1+(δ !)−1), (25)

where

A =
p−1

∑
l=δ+1

(
p− 1

l

)
((p− 1)P0)

lal
2m−2Ml|1.

Line (25) follows from the identity
(p−1−δ

l

)(p−1
δ
)
=
(p−1

l+δ
)(l+δ

l

)
and a change of

index in the second summation on the previous line. Since (p− 1)P0 < 1

|A| ≤ max
δ+1≤l<p

{al
2m−2Ml|1}

p−1

∑
l=δ+1

(
p− 1

l

)
((p− 1)P0)

l

≤ max
δ+1≤l<p

{al
2m−2Ml|1}

(
e−

δ

∑
l=0

1
l!

)
((p− 1)P0)

δ+1.
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Application of the mean value theorem to the integral representation (22) yields∣∣∣E[θi]−Pδ
0 J( fU∗1−i,...,U∗δ−i,Ui)

∣∣∣ ≤ γ̃p,δ ((p− 1)P0)
δ r, (26)

where

fU∗1−i,...,U∗δ−i,Ui(u1, . . . ,uδ+1) =

1

(2π)δ
(p−1

δ
) ∑

1≤i1<···<iδ≤p

i/∈{i1,··· ,iδ }

∫ 2π

0
· · ·

∫ 2π

0

fUi1 ,...,Uiδ ,Ui(e
√
−1θ1u1, . . . ,e

√
−1θδ uδ ,uδ+1) dθ1 · · ·dθδ ,

r =
√

2(1−ρ), γ̃p,δ = 2aδ+1
2m−2Ṁδ+1|1/δ !, and Ṁδ+1|1 is a bound on the norm of the

gradient
∇ui1

,...,uiδ
fU∗1−i ,...,U∗δ−i|Ui

(ui1 , . . . ,uiδ |ui).

Combining (24)–(26) and the relation r = O((1−ρ)1/2),∣∣∣∣E[φi]−
(

p− 1
δ

)
Pδ

0 J( fU∗1,...,U∗(δ+1)
)

∣∣∣∣
≤ O

(
((p− 1)P0)

δ max
{
(p− 1)P0,(1−ρ)1/2

})
.

Summing over i and recalling definitions (16) and (17) of Λ and ηp,δ ,

∣∣E[Nδ ,ρ ]−Λ
∣∣ ≤ O

(
p((p− 1)P0)

δ max
{
(p− 1)P0,(1−ρ)1/2

})
= O

(
ηδ

p,δ max
{
ηp,δ p−1/δ ,(1−ρ)1/2

})
.

This establishes the bound (18).
Next we prove bound (19) by using the Chen-Stein method [21]. Define

Ñδ ,ρ =
1

ϕ(δ )

p

∑
i0=1

∑
1≤i1<...<iδ≤p

δ

∏
j=1

φi0i j , (27)

where the second sum is over the indices 1≤ i1 < .. . < iδ ≤ p such that i j �= i0,1≤
j≤ δ . For i def

= (i0, i1, . . . , iδ ) define the index set Bi = Bi0,i1,...,iδ = {( j0, j1, . . . , jδ ) :
jl ∈Nk(il)∪{il}, l = 0, . . . ,δ}∩C< where C< = {( j0, . . . , jδ ) : 1 ≤ j0 ≤ p,1 ≤
j1 < · · · < jδ ≤ p, jl �= j0,1 ≤ l ≤ δ}. These index the distinct sets of points Ui =
{Ui0 ,Ui1 , . . . ,Uiδ } and their respective k-NNs. Note that |Bi| ≤ kδ+1. Identifying
Ñδ ,ρ = ∑i∈C< ∏δ

l=1 φi0il and N∗δ ,ρ , a Poisson distributed random variable with rate

E[Ñδ ,ρ ], the Chen-Stein bound [21, Theorem 1] is
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2max
A
|P(Ñδ ,ρ ∈ A)−P(N∗δ ,ρ ∈ A)| ≤ b1 + b2 + b3, (28)

where

b1 = ∑
i∈C<

∑
j∈Bi

E

[
δ

∏
l=1

φi0il

]
E

[
δ

∏
q=1

φ j0 jq

]
,

b2 = ∑
i∈C<

∑
j∈Bi−{i}

E

[
δ

∏
l=1

φi0il

δ

∏
q=1

φ j0 jq

]
,

and, for pi = E[∏δ
l=1 φi0il ],

b3 = ∑
i∈C<

E

[
E

[
δ

∏
l=1

φi0il − pi

∣∣∣∣∣φj : j �∈ Bi

]]
.

Over the range of indices in the sum of b1 E[∏δ
l=1 φiil ] is of order O(Pδ

0 ), by (23),
and therefore

b1 ≤ O
(

pδ+1kδ+1P2δ
0

)
= O

(
η2δ

p,δ (k/p)δ+1
)
,

which follows from definition (17). More care is needed to bound b2 due to the
repetition of characteristic functions φi j. Since i �= j, E[∏δ

l=1 φi0il ∏
δ
q=1φ j0 jq ] is a

multiplication of at least δ + 1 different characteristic functions, hence by (23),

E[
δ

∏
l=1

φi0il

δ

∏
q=1

φ j0 jq ] = O
(

Pδ+1
0

)
.

Therefore, we conclude that

b2 ≤ O
(

pδ+1kδ+1Pδ+1
0

)
.

Next we bound the term b3 in (28). The set

Ak(i) = Bc
i −{i} (29)

indexes the complementary k-NN of Ui (see Fig. 2) so that, using the representation
(23),

b3 = ∑
i∈C<

E

[
E

[
δ

∏
l=1

φi0il − pi

∣∣∣∣∣UAk(i)

]]

= ∑
i∈C<

∫
S
|Ak(i)|
2m−2

duuuAk(i)

(
δ

∏
l=1

∫
S2m−2

duuui0

∫
A(r,uuui0

)
duuuil

)
(

fUUU i|UUUAk
(uuui|uuuAk(i))− fUUU i(uuui)

fUUU i(uuui)

)
fUUU i(uuui) fUUUAk(i)

(uuuAk(i))
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i1i0

Fig. 2 The complementary k-NN set Ak(i) illustrated for δ = 1 and k = 5. Here we have i= (i0, i1).
The vertices i0, i1, and their k-NNs are depicted in black and blue, respectively. The complement
of the union of {i0, i1} and its k-NNs is the complementary k-NN set Ak(i) and is depicted in red.

≤ O
(

pδ+1Pδ
0 ‖Δp,m,k,δ‖1

)
= O

(
ηδ

p,δ‖Δp,m,k,δ‖1

)
.

Note that by definition of Ñδ ,ρ we have Ñδ ,ρ > 0 if and only if Nδ ,ρ > 0. This yields

∣∣P(Nδ ,ρ > 0)− (1− exp(−Λ))
∣∣≤ ∣∣∣P(Ñδ ,ρ > 0)−P(Nδ ,ρ > 0)

∣∣∣+∣∣∣P(Ñδ ,ρ > 0)−
(

1− exp(−E[Ñδ ,ρ ])
)∣∣∣+ ∣∣∣exp(−E[Ñδ ,ρ ])− exp(−Λ)

∣∣∣
≤ b1 + b2 + b3 +O

(∣∣∣E[Ñδ ,ρ ]−Λ
∣∣∣) . (30)

Combining the above inequalities on b1, b2, and b3 yields the first three terms in the
argument of the “max” on the right side of (19).

It remains to bound the term |E[Ñδ ,ρ ]−Λ |. Application of the mean value
theorem to the multiple integral (23) gives∣∣∣∣∣E

[
δ

∏
l=1

φiil

]
−Pδ

0 J
(

fUUUi1 ,...,UUUiδ ,UUUi

)∣∣∣∣∣ ≤ O
(

Pδ
0 r
)
.

Applying relation (27) yields∣∣∣∣E[Ñδ ,ρ ]− p

(
p− 1
δ

)
Pδ

0 J
(

fU∗1,...,U∗(δ+1)

)∣∣∣∣ ≤ O
(

pδ+1Pδ
0 r
)
= O

(
ηδ

p,δ r
)
.

Combine this with (30) to obtain bound (19). This completes the proof of
Theorem 2. �
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An immediate consequence of Theorem 2 is the following result, similar to
Proposition 2 in [9], which provides asymptotic expressions for the mean number
of δ -hubs and the probability of the event Nδ ,ρ > 0 as p goes to ∞ and ρ converges
to 1 at a prescribed rate.

Corollary 2. Let ρp ∈ [0,1] be a sequence converging to one as p→ ∞ such that
ηp,δ = p1/δ (p− 1)(1−ρ2

p)
(m−2)→ em,δ ∈ (0,∞). Then,

lim
p→∞

E[Nδ ,ρp ] =Λ∞ = eδm,δ /δ ! lim
p→∞

J( fU∗1,...,U∗(δ+1)
). (31)

Assume that k = o(p1/δ ) and that for the weak dependency coefficient ‖Δp,m,k,δ‖1,
defined via (15), we have limp→∞ ‖Δp,m,k,δ‖1 = 0. Then,

P(Nδ ,ρp > 0)→ 1− exp(−Λ∞/ϕ(δ )). (32)

Corollary 2 shows that in the limit p→ ∞, the number of detected hubs depends
on the true population correlations only through the quantity J( fU∗1,...,U∗(δ+1)

). In

some cases J( fU∗1,...,U∗(δ+1)
) can be evaluated explicitly. Similar to the argument

in [9], it can be shown that if the population covariance matrix ΣΣΣ is sparse in the
sense that its nonzero off-diagonal entries can be arranged into a k× k submatrix by
reordering rows and columns, then

J( fU∗1,...,U∗(δ+1)
) = 1+O(k/p).

Hence, if k = o(p) as p→ ∞, the quantity J( fU∗1,...,U∗(δ+1)
) converges to 1. If ΣΣΣ is

diagonal, then J( fU∗1,...,U∗(δ+1)
) = 1 exactly. In such cases, the quantityΛ∞ in Corol-

lary 2 does not depend on the unknown underlying distribution of the U-scores. As
a result, the expected number of δ -hubs in Gρ(ΨΨΨ) and the probability of discovery
of at least one δ -hub do not depend on the underlying distribution. We will see in
Sec. “Application to Spectral Screening of Multivariate Gaussian Time Series” that
this result is useful in assigning statistical significance levels to vertices of the graph
Gρ(ΨΨΨ).

Phase Transitions and Critical Threshold

It can be seen from Theorem 2 and Corollary 2 that the number of δ -hub discoveries
exhibits a phase transition in the high-dimensional regime where the number of vari-
ables p can be very large relative to the number of samples m. Specifically, assume
that the population covariance matrix ΣΣΣ is block sparse as in Section “Number of
Hub Discoveries in the High-Dimensional Limit”. Then, as the correlation thresh-
old ρ is reduced, the number of δ -hub discoveries abruptly increases to the maxi-
mum, p. Conversely as ρ increases, the number of discoveries quickly approaches
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zero. Similarly, the family-wise error rate (i.e., the probability of discovering at least
one δ -hub in a graph with no true hubs) exhibits a phase transition as a function of
ρ . Figure 3 shows the family-wise error rate obtained via expression (32) for δ = 1
and p = 1000, as a function of ρ and the number of samples m. It is seen that for a
fixed value of m there is a sharp transition in the family-wise error rate as a function
of ρ .

Applied Threshold ρ 
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Fig. 3 Family-wise error rate as a function of correlation threshold ρ and number of samples m
for p = 1000,δ = 1. The phase transition phenomenon is clearly observable in the plot.

The phase transition phenomenon motivates the definition of a critical threshold
ρc,δ as the threshold ρ satisfying the following slope condition:

∂E[Nδ ,ρ ]/∂ρ =−p.

Using (16) the solution of the above equation can be approximated via the
expression below:

ρc,δ =
√

1− (cm,δ(p− 1))−2δ/(δ (2m−3)−2), (33)

where cm,δ = bm−1δJ( fU∗1,...,U∗(δ+1)
). The screening threshold ρ should be chosen

greater than ρc,δ to prevent excessively large numbers of false positives. Note that
the critical threshold ρc,δ also does not depend on the underlying distribution of the
U-scores when the covariance matrix ΣΣΣ is block sparse.

Expression (33) is similar to the expression obtained in [9] for the critical thresh-
old in real-valued correlation screening. However, in the complex-valued case the
coefficient cm,δ and the exponent of the term cm,δ (p− 1) are different from the real
case. This generally results in smaller values of ρc,δ for fixed m and δ .

Figure 4 shows the value of ρc,δ obtained via (33) as a function of m for dif-
ferent values of δ and p. The critical threshold decreases as either the sample size
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m increases, the number of variables p decreases, or the vertex degree δ increases.
Note that even for ten billion (1010) dimensions (upper triplet of curves in the figure)
only a relatively small number of samples are necessary for complex-valued corre-
lation screening to be useful. For example, with m = 200 one can reliably discover
connected vertices (δ = 1 in the figure) having correlation greater than ρc,δ = 0.5.
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Fig. 4 The critical threshold ρc,δ as a function of the sample size m for δ = 1,2,3 (curve labels)
and p= 10,1000,1010 (bottom to top triplets of curves). The figure shows that the critical threshold
decreases as either m or δ increases. When the number of samples m is small the critical threshold is
close to 1 in which case reliable hub discovery is impossible. However, a relatively small increment
in m is sufficient to reduce the critical threshold significantly. For example, for p = 1010, only
m = 200 samples are enough to bring ρc,1 down to 0.5.

Application to Spectral Screening of Multivariate
Gaussian Time Series

In this section, the complex-valued correlation hub screening method of Sec-
tion “Complex-Valued Correlation Hub Screening” is applied to stationary multi-
variate Gaussian time series. Assume that the time series X (1), · · · ,X (p) defined in
Section “Spectral Representation of Multivariate Time Series” satisfy the conditions
of Corollary 1. Assume also that a total of N = n×m time samples of X (1), · · · ,X (p)

are available. We divide the N samples into m parts of n consecutive samples and we
take the n-point DFT of each part. Therefore, for each time series, at each frequency
fi = (i−1)/n, 1≤ i≤ n, m samples are available. This allows us to construct a (par-
tial) correlation graph corresponding to each frequency. We denote the (partial) cor-
relation graph corresponding to frequency fi and correlation threshold ρi as G fi,ρi .
G fi,ρi has p vertices v1,v2, · · · ,vp corresponding to time series X (1),X (2), · · · ,X (p),
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respectively. Vertices vk and vl are connected if the magnitude of the sample (par-
tial) correlation between the DFTs of X (k) and X (l) at frequency fi (i.e. the sample
(partial) correlation between Y (k)(i− 1) and Y (l)(i− 1)) is at least ρi.

Consider a single frequency fi and the null hypothesis, H0, that the cor-
relations among the time series X (1),X (2), · · · ,X (p) at frequency fi are block
sparse in the sense of Section “Number of Hub Discoveries in the High-
Dimensional Limit”. As discussed in Sec. “Number of Hub Discoveries in the
High-Dimensional Limit”, under H0 the expected number of δ -hubs and the prob-
ability of discovery of at least one δ -hub in graph G fi,ρi are not functions of the
unknown underlying distribution of the data. Therefore, the results of Corollary 2
may be used to quantify the statistical significance of declaring vertices of G fi,ρi

to be δ -hubs. The statistical significance is represented by the p-value, defined in
general as the probability of having a test statistic at least as extreme as the value
actually observed assuming that the null hypothesis H0 is true. In the case of cor-
relation hub screening, the p-value pvδ ( j) assigned to vertex v j for being a δ -hub
is the maximal probability that v j maintains degree δ given the observed sample
correlations, assuming that the block-sparse hypothesis H0 is true. The detailed
procedure for assigning p-values is similar to the procedure in [9] for real-valued
correlation screening and is illustrated in Fig. 5. Equation (33) helps in choosing the
initial threshold ρ∗.

Fig. 5 Procedure for assigning p-values to the vertices of Gρ∗ (ΨΨΨ).

Given Corollary 1, for i �= j the correlation graphs G fi,ρi and G f j ,ρ j and their
associated inferences are approximately independent. Thus, we can solve multiple
inference problems by first performing correlation hub screening on each graph as
discussed above and then aggregating the inferences at each frequency in a straight-
forward manner. Examples of aggregation procedures are described below.
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Disjunctive Hubs

One task that can be easily performed is finding the p-value for a given time series
to be a hub in at least one of the graphs G f1,ρ1 , · · · ,G fn,ρn . More specifically, for each
j = 1, . . . , p denote the p-values for vertex v j being a δ -hub in G f1,ρ1 , · · · ,G fn,ρn

by pv f1,ρ1,δ ( j), · · · , pv fn,ρn,δ ( j), respectively. These p-values are obtained using the
method of Fig. 5. Then, pvδ ( j), the p-value for the vertex v j being a δ -hub in at
least one of the frequency graphs G f1,ρ1 , · · · ,G fn,ρn , can be approximated as

P(∃i : d j, fi ≥ δ |H0)≈ p̂vδ ( j) = 1−
n

∏
i=1

(1− pv fi,ρi,δ ( j)),

in which d j, fi is the degree of v j in the graph G fi,ρi .

Conjunctive Hubs

Another property of interest is the existence of a hub at all frequencies for a partic-
ular time series. In this case we have

P(∀i : d j, fi ≥ δ |H0)≈ p̌vδ ( j) =
n

∏
i=1

pv fi,ρi,δ ( j).

General Persistent Hubs

The general case is the event that at least K frequencies have hubs of degree at least
δ at vertex v j. For this general case we have

P(∃i1, . . . , iK : d j, fi1
≥ δ , . . .d j, fiK

≥ δ |H0) =

n

∑
k′=K

∑
i1<...<ik′ ,ik′+1<...<in

{i1,...,in}={1,...,n}

k′

∏
l=1

pv fil ,ρil
,δ ( j)

n

∏
l′=k′+1

(
1− pv fil′ ,ρil′ ,δ

( j)
)
.

Experimental Results

Phase Transition Phenomenon and Mean Number of Hubs

We first performed numerical simulations to confirm Theorem 2 and Corollary 2 for
complex-valued correlation screening. Samples were generated from p uncorrelated
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complex Gaussian random variables. Figure 6 shows the number of discovered
1-hubs for p = 1000 and several sample sizes m. The plots from left to right corre-
spond to m = 2000,1000,500,100,50,20,10,6 and 4, respectively. The phase tran-
sition phenomenon is clearly observed in the plot. Table 1 shows the predicted value
obtained from formula (33) for the critical threshold. As can be seen in Fig. 6, the
empirical phase transition thresholds approximately match the predicted values of
Table 1. Moreover, to confirm the accuracy of equation (31) in Corollary 2, we list
the number of hubs for m = 100 in Table 2. The left column shows the empirical av-
erage number of hubs of degree at least δ = 1,2,3,4 in a network of i.i.d. complex
Gaussian random variables. The numbers in this column are obtained by averag-
ing 1000 independent experiments. The right column shows the predicted value of
E[Nδ ,ρ ] obtained via formula (31) with J( fU∗1,...,U∗(δ+1)

) = 1 for the i.i.d. case. As we
see the empirical and predicted values are close to each other.

Table 1 The value of critical threshold ρc,δ obtained from formula (33) for p = 1000 complex
variables and δ = 1. The predicted ρc,δ approximates the phase transition thresholds in Fig. 6.

m 2000 1000 500 100 50 20 10 6 4
ρc,δ 0.05 0.07 0.10 0.24 0.35 0.56 0.78 0.94 0.99

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

ρ
Fig. 6 Phase transition phenomenon: the number of 1-hubs in the sample correlation graph cor-
responding to uncorrelated complex Gaussian variables as a function of correlation threshold ρ .
Here, p= 1000 and the plots from left to right correspond to m= 2000,1000,500,100,50,20,10,6,
and 4, respectively.
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Table 2 Empirical average number of discovered hubs vs. predicted average number of discovered
hubs in an uncorrelated complex Gaussian network. Here p = 1000, m = 100, ρ = 0.28. The
empirical values are obtained by performing 1000 independent experiments.

degree threshold empirical (E[Nδ ,ρ ]) predicted (E[Nδ ,ρ ])
di ≥ δ = 1 284 335
di ≥ δ = 2 45 56
di ≥ δ = 3 5 6
di ≥ δ = 4 0 0

Asymptotic Independence of Spectral Components for AR(1) Model

To illustrate the asymptotic independence property and convergence rate of Theo-
rem 1, we considered the simple case of an AR(1) process,

X(k) = ϕ1X(k− 1)+ ε(k), k ≥ 1, (34)

in which X(0) = 0,ϕ1 = 0.9 and ε(.) is a stationary Gaussian process with no tem-
poral correlation and standard deviation 1. We performed Monte Carlo simulations
to compute the correlation between spectral components at different frequencies for
window sizes n = 10,20, . . . ,250. More specifically, we set k = 1 and l = 2 and em-
pirically estimated |cor(Y (k),Y (l)) | using 50000 Monte Carlo trials for each value
of window size n. Figure 7 shows the result of this experiment. It is observable
that the magnitude of cor(Y (k),Y (l)) is bounded above by the function 10/n. This
observation is consistent with Theorem 1.

Spectral Correlation Screening of a Band-Pass
Multivariate Time Series

Next we analyzed the performance of the proposed complex-valued correlation
screening framework on a synthetic data set for which the expected results are
known.

We synthesized a multivariate stationary Gaussian time series using the following
procedure. Here we set p = 1000,N = 12000, and m = n = 100. The discrepancy
between N and the product mn is explained below. Let X(k),0 ≤ k ≤ N − 1 be a
sequence of i.i.d. zero-mean Gaussian random variables (i.e. white Gaussian noise)
with standard deviation of 1. The p time series X (1)(k), . . . ,X (p)(k),0 ≤ k ≤ N− 1
are obtained from X(k) by band-pass filtering and adding independent white Gaus-
sian noise. Specifically,

X (i)(k) = hi(k)�X(k)+Ni(k), 1≤ i≤ p,0≤ k ≤ N− 1,
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Fig. 7 Correlation coefficient |cor(Y (1),Y (2)) | as a function of window size n, empirically es-
timated using 50000 Monte Carlo trials. Here Y (.) is the DFT of the AR(1) process (34). The
magnitude of the correlation for n = 10,20, . . . ,250 is bounded above by the function 10/n. This
observation is consistent with the convergence rate in Theorem 1.

in which � represents the convolution operator, hi(.) is the impulse response of
the ith band-pass filter, and Ni(.) is an independent white Gaussian noise series
whose standard deviation is 0.1. Since stable filtering of a stationary series results
in another stationary series, the obtained series X (1)(k), . . . ,X (p)(k) are stationary
and Gaussian. For i = 10l,1 ≤ l ≤ 50, hi(k) is the impulse response of a band-
pass filter with pass band f ∈ [(4l − 1)/400,4l/400]. We approximate the ideal
band-pass filters with finite impulse response (FIR) Chebyshev filters [16]. Also
for i = 500+ 10l,1≤ l ≤ 50 we set hi(k) = hi−500(k). For all of the other values of
i (i.e., i �= 10l) we set hi(k) = 0,0≤ k≤ N− 1.

Figure 8 shows the signal part of the time series (i.e., hi(k) � X(k)) for
i = 100,200,300,400. It is seen that the first 2000 samples of the signals reflect the
transient response of the filters. These 2000 samples are not included for the pur-
pose of correlation screening. Hence, the actual number of time samples considered
is mn = 10000. Figure 9 shows the magnitude of the DFTs of the signals, Y (i)(k),
for i = 50,100, . . . ,500. The band-pass structure of the signals is clearly observable
in the figure.

We first constructed a correlation matrix for the time series X (1)(k), . . . , X (p)(k)
from their simultaneous time samples. Figure 10 illustrates the structure of the
thresholded sample correlation matrix and the corresponding correlation graph.
Note that this is a real-valued correlation screening problem in the time domain. The
correlation threshold used here is ρ = 0.2 which is well above the critical threshold
ρc,1 = 0.028 obtained via formula (10) in [9] for p = 1000 and N = 10000.
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Fig. 8 Signal part of the band-pass time series X(i)(k) (i.e., hi(k)�X(k)) for i = 100,200,300,400.
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Fig. 9 DFT magnitude of the band-pass signals hi(k)�X(k) (i.e., 20 log10(|Y (i)(.)|)) as a function
of frequency for i = 50,100, . . . ,500.

To examine the spectral structure of the correlations in Fig. 10, we then per-
formed complex-valued correlation screening on the spectra of the time series
X (1)(k), . . . ,X (p)(k). Figure 11 shows the constructed correlation graphs G f ,ρ for
f = [0.1,0.2,0.3,0.4] and correlation threshold ρ = 0.9, which corresponds to a
δ = 1 false positive rate P(Nδ ,ρ > 0) ≈ 10−65 (using δ = 1 in the asymptotic
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Fig. 10 (Left) The structure of the thresholded sample correlation matrix in the time domain.
(Right) The correlation graph corresponding to the thresholded sample correlation matrix in the
time domain.

relation (32) with Λ∞ = eδm,δ/δ ! as specified by (31)). Note that the value of the
correlation threshold is set to be higher than the critical threshold ρc = 0.24. It can
be observed that performing complex-valued spectral correlation screening at each
frequency correctly discovers the correlations between the time series which are
active around that frequency. As an example, for f = 0.2 the discovered hubs (for
δ = 1) are the time series X (i)(k) for i ∈ {200,700}. These time series are the ones
that are active at frequency f = 0.2. Under the null hypothesis of diagonal covari-
ance matrices, the p-values for the discovered hubs are of order 10−65 or smaller.
These results show that complex-valued spectral correlation screening is able to re-
solve the sources of correlation between time series in the spectral domain.

Conclusion

This chapter presented a spectral method for correlation analysis of stationary mul-
tivariate Gaussian time series with a focus on identifying correlation hubs. The
asymptotic independence of spectral components at different frequencies allows the
problem to be decomposed into independent problems at each frequency, thus im-
proving computational and statistical efficiency for high-dimensional time series.
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Fig. 11 Spectral correlation graphs G f ,ρ for f = [0.1,0.2,0.3,0.4] and correlation threshold ρ =

0.9, which corresponds to a false positive probability of 10−65. The data used here are a set of
synthetic time series obtained by band-pass filtering of a Gaussian white noise series with the
band-pass filters shown in Fig. 9. As can be seen, complex correlation screening is able to extract
the correlations at specific frequencies. This is not directly feasible in the time domain analysis.

The method of complex-valued correlation screening is then applied to detect hub
variables at each frequency. Using a characterization of the number of hubs discov-
ered by the method, thresholds for hub screening can be selected to avoid an exces-
sive number of false positives or negatives, and the statistical significance of hub dis-
coveries can be quantified. The theory specifically considers the high-dimensional
case where the number of samples at each frequency can be significantly smaller
than the number of time series. Experimental results validated the theory and il-
lustrated the applicability of complex-valued correlation screening to the spectral
domain.
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A Spectral Analysis Approach
for Experimental Designs

R.A. Bailey, Persi Diaconis, Daniel N. Rockmore, and Chris Rowley

Abstract In this paper we show how the approach of spectral analysis
generalizes the standard ANOVA-based techniques for studying data from designed
experiments. Several examples are worked out in detail, including a thorough
analysis of Calvin’s famous ice cream data.

Key words: analysis of variance, block design, designed experiment, diallel exper-
iment, irreducible subspace, orthogonal decomposition, permutation representation

Introduction

Designed experiments are used in many fields of enquiry. Government scientists
may wish to compare the effects of different insecticides (including no insecticide)
on colonies of bumble bees close to the fields where the insecticides are sprayed.
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Pharmaceutical companies experiment with new drugs, in various doses, to cure
certain diseases, or alleviate symptoms. Psychologists may run a trial to see which
of three teaching methods is most effective in helping autistic children to under-
stand emotions in other people. In the manufacturing industry, there are frequent
experiments to investigate how the process may be improved by changing the raw
materials, changing their quantities, or altering parts of the process. (See [36] for
examples and a classical statistical approach.)

For all of these, the items being compared, such as insecticides, drugs, teaching
methods, or raw materials, are called treatments. There may be a single treatment
factor, or treatments may consist of all combinations of two or more factors: for ex-
ample, five varieties of cow-peas with three different methods of cultivation, giving
fifteen treatments altogether. One of the treatments may also be “untreated”.

In order to compare the treatments, they have to be applied to something or some-
body: for example, a treatment may be applied to a field, a whole farm, an ill person
for a certain amount of time, a child, a group of children, one part of the factory for
a month, and so on. Measurements are made on these, either on each whole item, or
on smaller units, such as each child in the class. We call these observational units.

We now formalize these ideas. In a designed experiment, a finite set Γ of treat-
ments is applied to a finite set Ω of observational units. A measurement yω is made
on each unit ω in Ω, thus giving a data vector y in the vector space R

Ω of all real
functions on Ω. Twin problems are how to design the experiment and how to analyze
the data that it produces.

There is a long history of group theory being used to develop and design the
combinatorial structures used in such experiments (see, for example, [1, 26]). As
proposed by Diaconis in [23] and the many references therein, spectral analysis
(that is, Fourier analysis for the symmetry group of choice) is a non-model-based
approach to analyzing data that may be carried out in the presence a natural sym-
metry group. Spectral analysis seeks to approximate the data vector as a sum of
its projections into orthogonal, symmetry-invariant, and naturally interpretable sub-
spaces of RΩ, where orthogonality is with respect to the standard inner product. The
paper [24] contains several spectral analysis examples as well as other examples of
ways in which group theory enters statistical analysis.

In this paper we explore some new ideas relating to the spectral analysis of data
from a designed experiment. We connect it to classical theory and show how, in a
number of cases, this approach provides new information. Necessarily, this analy-
sis depends on the representation theory of the associated symmetry group, and the
attendant calculations depend on certain representation (Fourier) theoretic computa-
tions and algorithms. All of this is developed as we go along; the book [23] contains
all the necessary representation-theoretic background.

In Section “Treatments” we look at families of subspaces of RΓ that may be used
to model expectation, introducing several examples. In Section “Treatment Permu-
tations” we introduce a group of permutations of Γ, and compare the decomposition
into irreducible subspaces with that obtained from the modeling approach.

Section “Observational Units” takes a similar approach to R
Ω, where structure

on Ω might suggest models for the expectation of a random vector Y on Ω or for
its variance-covariance matrix Var(Y ). Again, these may be linked to a group of
permutations of Ω.
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The following sections combine these decompositions of RΓ and R
Ω when an al-

location of treatments to observational units effectively makes RΓ a subspace of RΩ.
The overall philosophy of analysis of variance is summarized in Section “Analysis
of Variance”. In the most straightforward case, treated in Section “The Orthogo-
nal Case”, there is geometric orthogonality between all subspaces. Otherwise, as
explained in Section “The General Non-Orthogonal Case”, more complicated al-
gebra is needed. In Section “Incomplete-Block Designs” we restrict attention to
incomplete-block designs, which avoid some of the complications of the general
case while still showing interesting behavior.

Section “Ice Cream Data” introduces the subgroup of both previous groups that
preserves structure on Γ and Ω as well as preserving the embedding of RΓ in R

Ω. An
example discussed in depth shows the utility of the approach from spectral analysis.

Finally, Sections “Strong symmetries of orthogonal designs” and “Strong sym-
metries of incomplete-block designs” consider this subgroup in the contexts of or-
thogonal designs and incomplete-block designs. This subgroup is usually smaller
than the previous ones, so its decomposition may have more subspaces. What mean-
ing can we attach to them?

Treatments

In this section we ignore the observational units, and pretend temporarily that there
is only one observation on each treatment. Different structure on the set of treat-
ments can lead to different plausible models for the response. Under suitable condi-
tions, a family of models leads to an orthogonal decomposition of the vector space
of real functions on the treatments.

Let Γ be the finite set of treatments. A linear model is typically a subspace V
of RΓ: if a measurement is made on each treatment, then we expect the resulting
vector of measurements to lie in V or close to V . In fact, linear models are frequently
presented in notation that is shorthand for saying that a whole (finite) family F of
subspaces is being considered. It is usual to assume that this family is closed under
intersection and under vector-space summation.

Two subspaces V1 and V2 are defined in [54] to be geometrically orthogonal
to each other if V1 ∩ (V1 ∩V2)

⊥ is orthogonal to V2 ∩ (V1 ∩V2)
⊥ (here ⊥ denotes

orthogonal complement). If F is closed under ∩ and + and every pair of subspaces
in F is geometrically orthogonal, then there is a collection of pairwise orthogonal
subspaces {Wj : j ∈ J} such that ∑V∈F V =

⊕
j∈J Wj and every subspace in F is a

direct sum of some of the spaces Wj. This is called orthogonal treatment structure
in [5, 6]. Not all sums of Wj spaces need occur in F .

Denote by V0 the 1-dimensional subspace consisting of constant vectors. It is
usually assumed that V0 belongs to F .

Example 1. Suppose that Γ consists of all combinations of the n levels of treatment
factor C with the m levels of treatment factor D. For example, factor C might be
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three different non-zero quantities of aspirin and factor D might give two different
times of day for taking the aspirin.

One obvious model subspace is VC (of dimension n), which consists of all vectors
which are constant on each level of C. This model is appropriate when the factor D
has no effect. The m-dimensional subspace VD is defined similarly. Then VC ∩VD =
V0 and VC is geometrically orthogonal to VD. The subspace VC +VD is called the
additive model. If this is appropriate, then the difference between two given levels
of C does not depend on the level of D. Finally, the whole nm-dimensional space RΓ

is the full model, allowing unrelated measurements on all treatments.
Figure 1 shows the Hasse diagram for this family of subspaces. The dimension

of each is shown beside the corresponding dot.
Put W0 = V0, WC = VC ∩V⊥0 , WD = VD ∩V⊥0 , and WCD = (VC +VD)

⊥. These
spaces are called the grand mean, the main effect of C, the main effect of D, and
the C-by-D interaction, respectively. Strictly speaking, it is the orthogonal projec-
tion of the vector of measurements onto each W -subspace that has this name. Now
dim(W0) = 1, dim(WC) = n−1, dim(WD) = m−1 and dim(WCD) = (n−1)(m−1).
These subspaces are mutually orthogonal. Furthermore, V0 = W0, VC = W0⊕WC,
VD =W0⊕WD and R

Γ =W0⊕WC⊕WD⊕WCD.

Fig. 1 Hasse diagram of subspaces in Example 1

Example 2. The half-diallel. Let Γ consist of all unordered pairs from a set of size n.
This occurs in so-called half-diallel experiments in plant breeding, where {i, j} de-
notes the cross between parental lines i and j (see [28]). Another example with
n = 5 is an experiment to compare all fruit-juices made from equal quantities of two
of orange, grapefruit, mango, pineapple, and passionfruit, to find the effect on the
drinker’s blood-pressure.

The family of model subspaces consists of V0, V1 and R
Γ, where V1 consists of all

functions f of the form f ({i, j}) =ψi+ψ j. Figure 2 gives the Hasse diagram. Since
each pair of subspaces is related by inclusion, geometric orthogonality is assured,
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Fig. 2 Hasse diagram of subspaces in Example 2

and the whole space is decomposed as W0⊕W1⊕W2, where W0 = V0, W1 = V1 ∩
V⊥0 and W2 = V⊥1 . The last two are called general combining ability and specific
combining ability, respectively. Now dim(W0) = 1, dim(W1) = n−1 and dim(W2) =
n(n− 3)/2.

Example 3. Now let Γ consist of all ordered pairs of distinct elements from a set of
size n. This occurs in breeding if the gender of the parents is relevant. It occurs in
a modification of the fruit-juice example if the treatments consist of all instructions
like “drink orange juice at breakfast and mango juice at lunch”.

One model subspace is the space VS of symmetric functions f , for which
f ((i, j)) = f (( j, i)) for all i and j. Another is the space VA of antisymmetric
functions f , for which f ((i, j)) =− f (( j, i)) for all i and j. A further obvious space
VP consists of parental effects: f is in VP if there are constants αi and β j such
that f ((i, j)) = αi + β j for all i and j, which is similar to the additive model in
Example 1.

There are (at least) four interesting subspaces of VP: f ∈ VP ∩VS if αi = βi for
all i; f ∈VP∩VA if αi =−βi for all i; f ∈V1 if β j = 0 for all j; and f ∈V2 if αi = 0
for all i. Now the four subspaces VP ∩VS ∩V⊥0 , VP ∩VA, V1 ∩V⊥0 and V2 ∩V⊥0 all
have dimension n− 1; the sum of any two is VP∩V⊥0 ; and no pair is geometrically
orthogonal except for the first two.

On the other hand, V⊥P is the orthogonal direct sum of WS and WA, where WS =
VS∩V⊥P , which has dimension n(n−3)/2 and is analogous to W2 in Example 2, and
WA =VA∩V⊥P , which has dimension (n− 1)(n− 2)/2. See Figure 3.

Now the lack of a canonical orthogonal decomposition of VP ∩V⊥0 can lead to
difficulties in model choice.

Example 4. Suppose that we wish to compare six makes of strawberry ice cream.
Sixty people take part in the experiment, so that each tastes four makes and rates one
of these, giving it a score out of 100. Note that each make is tasted in the presence of
all possible triples of other makes. Thus Γ consists of the 60 pairs (i,{ j,k, l}) where
i is rated in the presence of j, k, and l. One model subspace V consists of functions f
for which f ((i,{ j,k, l})) = γi+θi j +θik +θil , where θi j,θik,θil each account for the
effect of tasting i in the presence of j,k and l. Note that V has dimension 30 because
the subspace V1 with θi j = αi for all i and j is the same as the subspace with θi j = 0
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Fig. 3 Hasse diagram of subspaces in Example 3: Z is (VP ∩VA)+V0

for all i and j. If we consider only subspaces of V , we appear to obtain the same
family of models as in Example 3; however, their interpretation as subspaces of RΓ

is different.

Figure 4 represents the elements of Γ in Examples 3 and 4 when n = 6. Elements
of Γ are identified by the labels of the rows and columns with “×” marks those
cells for pairings that do not occur as elements. The real numbers in the other cells
thus represent a function in R

Γ: in both cases it is the function in VP ∩VA with
α1 =−β1 = 1 and αi = βi = 0 if i �= 1. In Example 3, this function is orthogonal to
VS∩VP; in Example 4, it is not. In Example 3, there seems to be no reason to prefer
the orthogonal decomposition (V1∩V⊥0 )⊕ (VP∩V⊥1 ) over (V2 ∩V⊥0 )⊕ (VP∩V⊥2 ),
whereas in Example 4 the explicit inclusion of γi in the formula seems to favor the
former. In Example 4 there is a function h in V1∩V⊥0 with γ1 =−10/3 and γi = 2/3
if i �= 1: when this is added to the function f shown in Figure 4(b), the result is
constant on each column.

Treatment Permutations

Often, the set Γ of treatments has some combinatorial symmetry which is preserved
by a group G1 of permutations of Γ. In this section we see how this may be used to
derive an orthogonal decomposition of RΓ. We write the elements of G1 on the right
of their arguments, so that composition is done from left to right.

The permutation representation of G1 associated with its action on Γ is an iso-
morphism ρ1 from G1 to group of permutation matrices in R

Γ×Γ, whose rows and
columns are indexed by Γ: for g in G1, the (α,β )-entry of ρ1(g) is 1 if αg = β and
is 0 otherwise. These matrices act on R

Γ, which can be decomposed as a direct sum
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1 2 3 4 5 6

1 × 1 1 1 1 1
2 −1 × 0 0 0 0
3 −1 0 × 0 0 0
4 −1 0 0 × 0 0
5 −1 0 0 0 × 0
6 −1 0 0 0 0 ×

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 3 3 3 3 3 3 3 3 3 3 × × × × ×
2 −1 −1 −1 −1 −1 −1 × × × × 0 0 0 0 ×
3 −1 −1 −1 × × × −1 −1 −1 × 0 0 0 × 0
4 −1 × × −1 −1 × −1 −1 × −1 0 0 × 0 0
5 × −1 × −1 × −1 −1 × −1 −1 0 × 0 0 0
6 × × −1 × −1 −1 × −1 −1 −1 × 0 0 0 0

a b

Fig. 4 A function in R
Γ: (a) Example 3 (b) Example 4

of subspaces which are invariant under G1 and irreducible under G1. The centralizer
algebra C (G1) of G1 is the set of matrices in R

Γ×Γ which commute with ρ1(g) for
all g in G1.

Recall that, in general, a representation of degree N of a group G over a field F
is just a homomorphism from G to the general linear group GL(N,F), where N is
a non-negative integer. Two such representations are equivalent if and only if they
differ by a change of basis. Thus, the trace function is an invariant of any equiv-
alence class of representations. A representation is irreducible if and only if it
is not equivalent to a direct sum of (non-trivial) representations. Up to equiva-
lence, there are only a finite number of irreducible representations of a given group
over a given field. Following community standards, we refer to both the collection
of matrices and the underlying vector space with associated group action as “the
representation”.

Since every representation over R can also be considered to be a representation
over C, we sometimes need to write words like “real-irreducible” or “complex-
irreducible” to make clear which field we are talking about. General theory is usu-
ally expressed over the complex numbers, giving decompositions of CΓ. However,
only R

Γ occurs for actual data so we use real representations. See Section “Strong
symmetries of incomplete-block designs” for the modification from C

Γ to R
Γ.

Let π1 be the permutation character of G1, so that π1(g) = trace(ρ1(g)) for g
in G1. Let {χi : i ∈I } be the real-irreducible characters of G1. Then there are non-
negative integers mi for i in I such that π1 = ∑i miχi. If mi > 0, then there is a
corresponding homogeneous subspace Ui of RΓ : it has dimension mi deg(χi); it is
G1-invariant; it is orthogonal to Uj if i �= j. If mi = 1, then Ui is G1-irreducible;
otherwise, it can be decomposed as a direct sum of mi irreducible subspaces, all
admitting isomorphic actions of G1, in infinitely many ways.

If mi ∈ {0,1} for all i in I , then π1 is said to be real-multiplicity-free. Then R
Γ

has a unique decomposition as a direct sum of orthogonal G1-irreducible subspaces.
We may be able to use this decomposition to explain the data vector. Otherwise,
there is a choice of such decompositions.
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What light does this approach from representation theory throw on the previous
examples? In Example 1, we may consider Γ to be an n×m rectangle. Then we
may take G1 to be Sym(n)×Sym(m) (where Sym(n) denotes the symmetric group
on n letters) in its product action, so that (α,β )(g,h) = (αg,βh). Its permutation
character is real-multiplicity-free, and the corresponding irreducible subspaces are
precisely the subspaces W0, WC, WD, and WCD used by statisticians.

In Example 2, it is natural to take G1 to be Sym(n) in its action on unordered
pairs, so that {α,β}g = {αg,βg}. In the notation of [35], the vector space sup-
porting the permutation representation is denoted Mn−2,2, which has a unique G1-
irreducible decomposition as Sn⊕ Sn−1,1⊕ Sn−2,2. In the notation of Example 2, Sn

is the representation on W0, Sn−1,1 is the representation on W1, and Sn−2,2 is the
representation on W2.

In Example 3, we take G1 to be Sym(n) in its action on ordered pairs, so that
(α,β )g = (αg,βg). The resulting permutation representation is denoted Mn−2,1,1.
The decomposition (see [35]) of this representation is below.

Mn−2,1,1 = Sn ⊕ 2Sn−1,1 ⊕ Sn−2,2 ⊕ Sn−2,1,1

dim n(n− 1) 1 2× (n− 1) n(n−3)
2

(n−1)(n−2)
2

Here Sn, Sn−2,2, and Sn−2,1,1 are the representations on the subspaces W0, WS, and
WA, respectively. The notation 2Sn−1,1 denotes a representation which is the direct
sum of two representations isomorphic to Sn−1,1. Note that it is such a sum in in-
finitely many ways, and there is no canonical decomposition of the corresponding
homogenous subspace of dimension 2(n− 1), which is precisely VP∩V⊥0 . Thus the
group theory reinforces the previous discussion.

In [57], Yates proposed decomposing VP ∩V⊥0 as (VP ∩VS ∩V⊥0 )⊕ (VP ∩VA).
Using the above representation theory in [32], James was able to show that this was,
in some sense, an arbitrary choice. Fortini gave a different decomposition in [27].

In Example 4, let G1 be Sym(6) in its action on pairs (i,K) where K is a
4-subset of a 6-set and i ∈ K. Such a pair is equivalent to the partition with parts
{i}, K \{i} and the complement of K, so the resulting permutation representation is
M3,2,1, whose decomposition (see [35]) is below.

M3,2,1 = S6 ⊕ 2S5,1 ⊕ 2S4,2 ⊕ S4,1,1 ⊕ S3,3 ⊕ S3,2,1

dim 60 1 2× 5 2× 9 10 5 16.
(1)

Of course, S6 is the representation on V0. We have already seen that VP∩V⊥0 is the
homogeneous subspace for S5,1, that WS affords one copy of S4,2 and WA affords
S4,1,1. The action of Sym(6) on 4-subsets (the column indices in Fig. 4(b)) is M4,2,
whose decomposition is S6⊕ S5,1⊕ S4,2. Thus the 15-dimensional subspace VB of
functions which are constant on each 4-subset includes a 5-dimensional subspace
affording S5,1, which must therefore be contained in VP ∩V⊥0 . Indeed, the end of
Section “Treatments” gives a non-zero function in VP ∩V⊥0 which is constant on
each 4-subset.
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Therefore VB∩V⊥P is a 9-dimensional subspace affording S4,2. How is this related
to WS? Figure 5 displays the function in WS defined by θi j = 1 if {i, j} = {1,2} or
{3,4}, θi j =−1 if {i, j}= {1,3} or {2,4}, and θi j = 0 otherwise. This is in neither
VB nor V⊥B .

We return to this example in detail in Section “Ice Cream Data”.

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 0 0 0 1 1 1 − 1 − 1 − 1 0 × × × × ×
2 0 1 1 0 0 1 × × × × − 1 − 1 0 − 1 ×
3 0 − 1 − 1 × × × 0 0 − 1 × 1 1 0 × 1
4 0 × × − 1 − 1 × 1 1 × 0 0 0 × − 1 1
5 × 0 × 0 × 0 0 × 0 0 0 × 0 0 0
6 × × 0 × 0 0 × 0 0 0 × 0 0 0 0

Fig. 5 A function in WS which is neither constant on columns nor orthogonal to columns

Observational Units

Now we temporarily ignore the treatments, and think about the observational units
to be used in the experiment. Again, there is a corresponding real vector space, and
we seek meaningful orthogonal decompositions of this. Such a decomposition may
be defined by inherent factors or by a group of symmetries.

In a designed experiment, there is a finite set Ω of observational units to which
treatments are applied; later, some response is measured on each unit. Even before
the treatments are applied, inherent features of Ω may suggest something about the
pattern of the response.

Example 5. An experiment comparing different methods of soil preparation for a
single cereal variety might use k fields on each of b farms, with a single method on
each field. Then Ω consists of the bk fields. Let Y be the hypothetical random vector
of responses. If some farms produce consistently better results than others, then, in
the absence of treatment differences, the expected value of the response should just
depend on the farm. On the other hand, differences between farms may change from
season to season, but then it is plausible that fields within a farm are more alike than
fields in different farms. In this case, the grouping of fields within farms affects the
covariance (matrix) Var(Y ).

More generally, if Ω consists of bk observational units grouped into b blocks of
size k, let VB be the subspace of RΩ consisting of vectors which are constant on each
block. The first approach assumes that E(Y ) ∈ VB. In this case, blocks are said to
have fixed effects. It is usual to assume that Var(Y ) = σ2I in this case. The second
approach assumes that E(Y ) ∈V0 and that the covariance has the form Var(Y ) = σ2

I+ kσ2
BQB, where QB is the matrix of orthogonal projection onto VB. Blocks then
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are said to have random effects. In this case, the eigenspaces of Var(Y ) are VB and
V⊥B . Both approaches make it natural to consider the decomposition V0⊕WB⊕V⊥B
of RΩ, where WB =VB∩V⊥0 .

Let G2 be a group of permutations of Ω that preserve structure on Ω, such as
the partition into blocks, before treatments are allocated. Let π2 be the permutation
character of G2. If π2 is real-multiplicity-free, then there is a unique decomposition
of RΩ as a sum of G2-irreducible subspaces, which may be pertinent for data analy-
sis. Even without this uniqueness, a decomposition into G2-invariant subspaces may
give insight into the data.

When Ω consists of b blocks of size k, we may take G2 to be the wreath product
Sym(k)wrSym(b) in its imprimitive action. This has a subgroup Sym(k) for each
block, permuting just the units within it, and a subgroup Sym(b) permuting the
set of whole blocks. The action is real-multiplicity-free, with irreducibles V0, WB

and V⊥B .

Example 6. Another common structure for Ω is a rectangle with r rows and
c columns. This may be an actual physical rectangle on the ground, or an ab-
stract one where, for example, rows represent time-periods and columns represent
people. As in Example 1, RΩ has a natural decomposition as W0⊕WR⊕WC⊕WRC.
If rows and columns have fixed effects, then E(Y ) ∈W0⊕WR⊕WC. If they have
random effects, then Var(Y ) = σ2I + cσ2

RQR + rσ2
CQC, whose eigenspaces are W0,

WR, WC and WRC. These four subspaces are the irreducibles of Sym(r)×Sym(c) in
its product action.

The key part of an experimental design is the function τ : Ω→ Γ, which allocates
treatment τ(ω) to observational unit ω . This allocation is normally randomized be-
fore treatments are applied: a permutation g is chosen at random from a suitable
group G2 of permutations of Ω, and τ is replaced by τg, where τg(ω) = τ(ωg−1).
It is argued in [1, 4] that this justifies the assumption that Var(Y ) ∈ C (G2). Since
Var(Y ) is symmetric, its eigenspaces form a G2-invariant decomposition of R

Ω.
If π2 is real-multiplicity-free, these subspaces are known even if the corresponding
eigenvalues are not.

Hannan [29] and Speed [52, 53] considered random variables Y such that
Var(Y ) ∈ C (G2) without the complication of Γ and τ . See those papers for more
examples.

The three most common inherent structures in designed experiments are the
two that we have discussed and the unstructured one, in which G2 consists of all
permutations of the units in Ω. The operations of nesting (units within blocks)
and crossing (rows and columns) can be iterated, to give simple orthogonal block
structures: see [43]. Their automorphism groups are generalized wreath products of
symmetric groups, for all of which the relevant action is real-multiplicity-free: see
[8]. The remaining examples in this paper use only these three common structures.
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Analysis of Variance

Analysis of variance is often the statistician’s first step towards analyzing the data
vector. See [50] for an extensive study. This section gives a quick summary of the
method, in language more familiar to algebraists.

Classical analysis of variance (ANOVA) depends on a given orthogonal decom-
position ofRΩ into subspaces Wj for j in some set J. Denote by Pj the linear operator
of orthogonal projection onto Wj. Then the data vector y is the sum ∑ j∈J Pjy, and
Pjy is orthogonal to Piy if i �= j. The sum of squares SS j for Wj is defined to be
‖Pjy‖2, which is just y%Pjy. Since I = ∑ j∈J Pj, these sums of squares add to give
y%y, the total sum of squares.

Put d j = dim(Wj). The mean square MS j for Wj is defined to be SS j/d j. If the
data are purely random, in the sense that the responses are mutually independent
random variables with the same expectation and variance, then all mean squares
except MS0 have the same expectation, where W0 = V0. More precisely, if Y is a
random vector on Ω and Var(Y ) = σ2I, then E(MS j) = ‖E(PjY )‖2/d j + σ2. In
general, if Wj is contained in an eigenspace of Var(Y ) with eigenvalue ξi, then
E(MS j) = ‖E(PjY )‖2/d j + ξi.

Thus one approach to analyzing data is to calculate the mean squares and pick
out those subspaces Wj whose mean squares are particularly large relative to the
others: something interesting must be happening there. Part of the statistical theory
of hypothesis testing is quantifying “particularly large”. We do not go into details
here.

The treatment allocation τ gives a subspace VΓ of RΩ whose elements are con-
stant on each treatment. Thus VΓ is isomorphic to R

Γ . To avoid complications,
we assume that every treatment occurs on the same number of observational units.
This ensures that any orthogonal decomposition of RΓ into subspaces remains or-
thogonal when R

Γ is embedded into R
Ω as VΓ.

Here we assume that RΩ has a given G2-invariant orthogonal decomposition and
R
Γ has a given G1-invariant orthogonal decomposition. When R

Γ is embedded in
R
Ω as VΓ we need another orthogonal decomposition of RΩ which is related to the

two previous ones and can be used for ANOVA. The next three sections show how
to obtain such a decomposition in some cases, while indicating that it is difficult in
general.

The Orthogonal Case

In this section, we start to combine the initial orthogonal decompositions of RΓ and
R
Ω. Of course, this depends on the way that the design map τ has embedded R

Γ

in R
Ω as VΓ. The combination is relatively straightforward under a condition on τ

known as orthogonality.
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Given orthogonal decompositions of RΩ and R
Γ, a design map τ is said to be

orthogonal if every subspace in the given decomposition of VΓ is geometrically
orthogonal to every subspace in the given decomposition of RΩ. Then the non-zero
intersections of these subspaces give a canonical orthogonal decomposition of RΩ

that refines both of the previous two.

Example 7. When G2 = Sym(Ω), the initial decomposition of RΩ is V0⊕V⊥0 . Such
a design is called completely randomized. We always assume that V0 is in the de-
composition of RΓ, so now the combined decomposition simply adjoins V⊥Γ to the
decomposition of VΓ. The subspace V⊥Γ is known as residual in ANOVA.

Example 8. For a so-called complete-block design, there are b blocks of size k,
where k = |Γ|, and every treatment occurs once in each block. If G1 = Sym(k) and
G2 = Sym(k)wrSym(b), then the initial decompositions are V0 +WT (for RΓ) and
V0⊕WB⊕V⊥B (forRΩ). The combined decomposition is V0⊕WB⊕WT⊕(VB+VT )

⊥,
whose subspaces are usually called grand mean, blocks, treatments, and residual,
respectively. If G1 gives a finer decomposition of RΓ, then this gives a finer decom-
position of WT without affecting WB or (VB +VT )

⊥.

Example 9. A third popular orthogonal design is the Latin square. Here Ω is an
n× n rectangle, where n = |Γ|. The initial decomposition of RΩ is V0⊕WR⊕WC⊕
(VR +VC)

⊥. When treatments are applied in a Latin square, VΓ is orthogonal to
WR⊕WC, so (VR +VC)

⊥ is decomposed as WT ⊕ (VR +VC +VT )
⊥, with the second

part being called residual. Again, any finer initial decomposition of RΓ simply gives
a decomposition of WT .

Example 10. The simplest case in which more than one subspace in the initial de-
composition of RΩ is split up is the so-called split-plot design. The treatments are
as in Example 1. For Ω, there are rn blocks, each containing m observational units,
so that RΩ =V0⊕WB⊕V⊥B . Each level of C is applied to r whole blocks, and each
level of D is applied to one observational unit per block. Thus VC < VB, while WD

and WCD are both orthogonal to VB. The combined decomposition is

V0 ⊕ WC ⊕ (WB∩W⊥
C ) ⊕ WD ⊕ WCD ⊕ (V⊥B ∩V⊥Γ )

1 n− 1 n(r− 1) m− 1 (n− 1)(m− 1) n(m− 1)(r− 1)
,

where the dimension is shown underneath each subspace. The third subspace is
called block residual. Under the assumption that treatments affect expectation and
blocks have random effects, MSC is compared with the mean square for block resid-
ual while MSD and MSCD are both compared with the mean square for V⊥B ∩V⊥Γ .

In general, if W is a subspace in the initial decomposition of RΩ and W ∩V⊥Γ is
non-zero, then W ∩V⊥Γ is called a residual subspace.
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The General Non-Orthogonal Case

This section gives a quick overview of some difficulties that can occur when the
design is not orthogonal. We show that the worst of these are avoided if the structure
on Ω is a partition into blocks of equal size. The development follows [30, 44].

When there is not geometric orthogonality between the original decompositions
of RΩ and VΓ, it is normal to start with the decomposition of RΩ and then try to
refine it. Let U be one of the subspaces in the original decomposition of RΩ. Given
an orthogonal decomposition

⊕
j∈J Wj of VΓ, one obvious step is to project each Wj

onto U . There are two difficulties. The first is that, even if Wi is orthogonal to Wj,
their projections onto U may no longer be orthogonal to each other.

The second difficulty needs more explanation. Suppose that Pjy = v. Denote by
Q the (matrix of) orthogonal projection onto U . If φ is the angle between v and Qv,
then the sum of squares for Q(Wj) is (cos2 φ)‖v‖2 plus other non-negative pieces.
Even if there are no other contributions to this sum of squares, we need to know
cos2 φ in order to make a judgement about the size of v. It is therefore helpful if all
vectors in Wj make the same angle with U .

Fortunately, both difficulties are solved if each space Wj is an eigenspace of PQP,
where P=∑ j Pj. If this eigenspace decomposition of VΓ and the original decomposi-
tion of VΓ have a common refinement, then it is used. If not, there are disagreements
about how to proceed: see [47].

Now consider two different subspaces U1 and U2 in the original decomposi-
tion of RΩ, with projectors Q1 and Q2. If V0⊕U1⊕U2 = R

Ω and Wj ⊥ V0, then
Pj(Q1 +Q2)Pj = Pj, and so Wj is an eigenspace of PjQ1Pj if and only if it is an
eigenspace of PjQ2Pj. However, if V0⊕U1⊕U2 is not the whole of RΩ, then PQ1P
may not commute with PQ2P, in which case these matrices do not have common
eigenspaces.

Given an original decomposition of RΩ into subspaces U1, . . . , Us with projectors
Q1, . . . , Qs, Houtman and Speed [30] defined the design to have general balance if
the matrices PQ1P, . . . , PQsP commute with each other, where P is the projector
onto VΓ. This implies that, if the structure on Ω is defined simply by a partition into
blocks of equal size, then all designs are generally balanced.

For the rest of this paper, we restrict attention to block designs or orthogonal
designs, so that general balance is assured. Even with this restriction, there are still
plenty of complications.

Incomplete-Block Designs

Apart from split-plot designs like those in Example 10, block designs in which the
blocks are too small to hold all the treatments are not orthogonal. In this section
we give the algebraic approach to studying these, starting with the seminal work of
James [31], which was extended by Mann [39] to linear models which may not arise
from experimental designs.
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When there are b blocks of size k, the initial decomposition of RΩ is V0⊕WB⊕
V⊥B , with corresponding projectors Q0, QB and I−Q0−QB. Here Q0 = (bk)−1J,
where J is the all-1 matrix, and Q0 +QB = k−1JB, where the (ω1,ω2)-entry of JB

is 1 if ω1 and ω2 are in the same block and is 0 otherwise. Thus the linear operator
Q0 +QB simply replaces each entry of y by the average value on each block, so it is
similar to a Radon transform [10, 37].

Suppose that there are t treatments each occurring r times, so that tr = bk. In an
incomplete-block design, k < t and no treatment occurs more than once in any block.
Such a design is balanced if there is a constant λ such that each pair of treatments
occur together in exactly λ blocks.

Put WT = VΓ ∩V⊥0 . The orthogonal projector PT onto WT is r−1JT −Q0, where
the (ω1,ω2)-entry of JT is 1 if τ(ω1) = τ(ω2) and is 0 otherwise. Thus Q0 +PT is
another averaging operator. Let WT |B be the orthogonal projection of WT onto V⊥B ,
which is (WT +VB)∩V⊥B . The classical analysis of data from an incomplete-block
design uses the decomposition V0⊕WB⊕WT |B⊕ (VB +VΓ )⊥. The second and third
subspaces are called blocks ignoring treatments and treatments eliminating blocks,
respectively.

James seems to have been one of the first to have studied ANOVA for balanced
incomplete-block designs from the point of view of the algebraic properties of the
idempotents which yield the sum of squares decomposition. In [31] he defined the
“relationship algebra of an experimental design” as the complex algebra A gener-
ated by the matrices I, J, JB, and JT . He showed that PT QBPT = (1− e)PT , where
e = t(k− 1)/(t− 1)k, which is called the efficiency factor of the design. As James
and Wilkinson later showed in [34], every vector in WT has angle φ with WB, where
cos2 φ = 1− e.

James proposed refining the classical ANOVA by decomposing WB into QB(WT )
and its orthogonal complement. The latter is zero if and only if b = t; the former has
dimension t − 1 (this gives an easy proof of Fisher’s Inequality, which states that
b ≥ t for a balanced incomplete-block design). He showed that the algebra A has
dimension six if b= t and dimension seven otherwise. Since the generating matrices
are symmetric, the algebraA is semisimple and thus may be decomposed as a direct
sum of matrix algebras, in this case two or three one-dimensional algebras and one
2× 2 matrix algebra (which is a four-dimensional algebra). The one-dimensional
algebras correspond to the subspaces V0, (VB +VΓ)

⊥ and, if it is non-zero, WB∩V⊥Γ .
The projector onto their orthogonal complement can be written as a sum of two
idempotents in the algebra in infinitely many ways.

James closed [31] by remarking that “For certain designs, the relationship al-
gebra is the commutator algebra of the representation of a group expressing the
symmetry of the experimental design”. We take up the relevance of this remark in
Section “Strong symmetries of incomplete-block designs”.

This work was extended to arbitrary incomplete-block designs in [34]. If PT QBPT

has rank less than t− 1, then VΓ∩V⊥B is non-zero. The vectors in this subspace are
said to have canonical efficiency factor 1. Let the distinct non-zero eigenvalues of
PT QBPT be μ1, . . . , μs, where μi has multiplicity di. Then there are corresponding
di-dimensional subspaces Ui of WB and Vi of WT such that every vector in Vi makes
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angle φi with Ui, and vice versa, where cos2 φi = μi, and 1− μi is the canonical
efficiency factor for vectors in Vi. If i �= j, then Ui ⊥Vj, Ui ⊥Uj and Vi ⊥Vj.

Now R
Ω has an orthogonal decomposition as

V0⊕ (VB∩V⊥Γ )⊕ (VΓ∩V⊥B )⊕ (VB+VΓ)
⊥⊕ (U1 +V1)⊕·· ·⊕ (Us +Vs), (2)

where the second or third subspace may be zero. The algebra A is the sum of scalar
algebras on the first four subspaces, plus one 2×2 matrix algebra on each of U1+V1,
. . . , Us +Vs.

When s = 1 but the design is not balanced then there are just two canonical effi-
ciency factors, one of which is 1. Such designs are called partial geometric designs
in [11, 12], C-designs in [49], and 1 1

2 -designs in [45]. They appear to be rather use-
ful (see [16]). One way of obtaining them is to exchange the roles of blocks and
treatments (thus forming the dual design) in a balanced design with b > t. Other
examples include transversal designs and the lattice designs of Yates [56]. Some
classes of such designs have been shown to be optimal (see [9, 22]).

Ice Cream Data

So far, we have assumed that the measurement yω on ω is influenced by ω itself and
its inherent relation to the rest of Ω, as well as the treatment τ(ω) and its relation
to the rest of Γ. This paradigm does not cover experiments where yω might also be
influenced by the treatments on observational units which are, in some sense, near
to ω . For example, tall varieties of sunflower will shade their shorter neighbors, or
the taste of one ice cream may affect the score given by the taster to another ice
cream.

In such circumstances, it seems appropriate to consider the group G of strong
symmetries of the design. This is the subgroup of the group G2 of permutations
of Ω which preserve the partition of Ω defined by the inverse images under τ (in
particular, they stabilize VΓ) and whose induced permutations on Γ are in G1.

Example 4 is, in fact, silly. It wastes resources, because 240 items are tasted but
only 60 are rated. In the actual experiment reported by Calvin in [17], only 15 people
took part, each tasting four items and scoring each one. The six treatments were six
quantities of vanilla added to the basic ice cream. There was one taster for each
subset of size four, and they were asked to give each tasted item an integer score
between 0 and 5 inclusive. It is not clear whether the tasters were told that their four
treatments were all different (e.g., four tasters gave the same score to two of their
items).

In this case, t = |Γ|= 6 and G1 is Sym(6) in the natural action. Also, |Ω|= 60.
Calvin considered the tasters as blocks, so that G2 is Sym(4)wrSym(15) in its
imprimitive action. The design was a balanced incomplete-block design with fif-
teen blocks of size four. Thus G is Sym(6) in the action described at the end of
Section “Treatment Permutations”.
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Let B(ω) be the block containing ω . Calvin proposed the model that E(Y ) =
f +d, where d(ω) = δB(ω) and f (ω) = γi +θi j +θik +θil if τ(ω) = i and the other
treatments in B(ω) are j, k, and l. Furthermore, θi j = −θ ji for all i and j. Thus
d ∈ VB; the γ-parameters give a vector in V1; and the θ -parameters give a vector in
VA, in the notation used in Example 4.

As we saw in Sections “Treatments” and “Treatment Permutations”, there is a 5-
dimensional subspace ṼB of VB such that the sum of any two of ṼB, V1∩V⊥0 and VP∩
VA is the same 10-dimensional subspace, the homogeneous subspace for S5,1. Thus
the δ -, γ- and θ -parameters are not all identifiable. Calvin got around this problem
by restricting the θ -parameters to give a vector in the 10-dimensional subspace WA,
which is the homogeneous subspace for S4,1,1.

Calvin gave the ANOVA in Table 1. As is common for statisticians, he omitted
the line for V0, he wrote “d.f.” (degrees of freedom) for “dimension”, and he called
the residual line “Error”. We have added the column for subspaces to clarify what
he meant by “Source of variation”.

Table 1 Expanded version of the ANOVA table given by Calvin in [17]

Subspace Source of variation d.f. S.S. M.S.
V0 Grand mean 1 390.15 390.15
WB Blocks (unadjusted) 14 18.10 1.29

(V1 +VB)∩V⊥B Treatments (adjusted) 5 71.17 14.23
WA Correlations (adjusted) 10 27.17 2.72

(VA +VB)
⊥ Error 30 40.41 1.35

V Total 60 547.00 —

In (1) we gave the decomposition of V into homogeneous subspaces. The ap-
proach outlined in [48] (via the discrete Radon transform [10]) gives the sum of
squares (S.S.) for each of these as follows.

M3,2,1 = S6 ⊕ 2S5,1 ⊕ 2S4,2 ⊕ S4,1,1 ⊕ S3,3 ⊕ S3,2,1

S.S. 547 = 390.15 + 77.667 + 23.40 + 27.167 + 8.083 + 20.533
(3)

Let U1 and U2 be the reducible homogeneous subspaces of dimensions 10 and 18,
respectively. We now explore different ways of decomposing these two subspaces
into orthogonal irreducibles.

Each block can be labelled by the pair of treatments which are not present in
it. Thus the fifteen blocks have structure similar to that in Example 2. The method
given by Yates in [57] decomposes the sum of squares for blocks into 6.50 for ṼB and
11.60 for WB∩ Ṽ⊥B . These two subspaces are U1∩VB and U2∩VB, respectively. We
have already seen that Ṽ⊥B ∩U1 = VP∩VA = (V1 +VB)∩V⊥B , whose sum of squares
is given in Table 1 as 71.17 (to two decimal places). Then 6.50+ 71.17 = 77.67,
which gives the sum of squares for U1, as confirmed in (3). The sum of squares for
U2 is 23.40, so the sum of squares for U2∩V⊥B is 23.40− 11.60= 11.80.
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A statistician expects there to be differences between the blocks. It is therefore
standard to begin with the decomposition V0⊕WB⊕V⊥B and then refine that. Refin-
ing it into irreducibles gives the ANOVA in Table 2.

Table 2 ANOVA table obtained by refining the original decomposition (defined by blocks) into
group-irreducibles

Original Group refinement d.f. S.S. M.S.
V0 V0 1 390.15 390.15
WB U1 ∩VB 5 6.50 1.30

U2 ∩VB 9 11.60 1.29
V⊥B U1 ∩V⊥B =VP ∩VA 5 71.17 14.23

WA 10 27.17 2.72
U2∩V⊥B 9 11.80 1.31

S3,3 5 8.08 1.62
S3,2,1 16 20.53 1.28

V Total 60 547.00 —

It is not unusual for the mean square for V0 to be much larger than the rest. The
interesting question for data analysis is: which other mean squares are significantly
larger than the rest?

One notable feature of Table 2 is that the four smallest mean squares are all
approximately equal (about 1.3). In particular, the two subspaces of WB are among
these, so it appears that there are no differences between blocks.

In fact, given the way that the experiment was carried out, this is not surprising.
Each taster had to give four integer scores in the range [0,5], and most of them
thought that they should not give the same score twice. It was therefore almost
impossible for one taster to give consistently higher scores than another.

If blocks are not important, what other natural subspaces of U1 and U2 should
we look at? To Calvin, the next most obvious subspace of U1 was WT , where WT =
V1∩V⊥0 and f ∈V1 if there are constants γ1, . . . , γ6 such that

f ((i,{ j,k, l})) = γi. (4)

The constant γi is estimated by the mean of the responses for treatment i, and this
gives the sum of squares for WT as 63.35.

However, Calvin also proposed that treatments should affect each other asym-
metrically: the taster has a fixed, short scale, so if one treatment’s score goes up
then another comes down. Another submodel of his model is

f ((i,{ j,k, l})) = μ+ 3αi−α j−αk−αl , (5)

where μ is an overall constant. This corresponds to the subspace V0⊕ (VP ∩VA).
Since VP ∩VA = U1 ∩V⊥B , we have already seen that the sum of squares for this is
71.17. Thus model (5) fits the data better than model (4).

In Table 3, the tasters’ scores (the data) are shown at the top of each box. Below
that are the fitted values for model (5), which can be easily calculated from Calvin’s
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results. They fit the data rather well. The third row gives the fitted values for the
more general asymmetric model

f ((i,{ j,k, l})) = μ+θi j +θik +θil where θrs =−θsr for all r and s: (6)

this corresponds to the subspace V0⊕ (VP∩VA)⊕WA =V0⊕VA.

Table 3 Ice cream analysis: data (top row); fitted values in model (5) (second row); fitted values
in model (6) (third row); fitted values in model (7) (bottom row)

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 2 0 0 1 0 0 2 0 0 2 × × × × ×
1.02 0.99 0.86 0.75 0.62 0.60 0.65 0.52 0.49 0.25
1.49 0.70 -0.05 0.78 0.01 -0.76 2.09 1.32 0.55 0.61
2.42 2.33 2.17 3.25 3.08 3.00 2.50 2.33 2.25 3.17

2 4 4 3 3 2 1 × × × × 0 1 2 1 ×
2.46 2.44 2.31 2.20 2.06 2.04 1.73 1.60 1.58 1.33
3.82 3.05 3.28 2.11 2.34 1.57 1.34 1.57 0.80 -0.14
2.75 3.33 2.83 3.25 2.75 3.33 3.17 2.67 3.25 3.17

3 0 3 4 × × × 3 0 2 × 2 1 3 × 4
2.88 2.85 2.72 2.51 2.38 2.36 2.15 2.02 1.99 1.65
1.90 2.47 1.86 2.84 2.24 2.80 2.42 1.82 2.38 2.76
0.92 2.50 2.17 1.33 1.00 2.58 2.00 1.67 3.25 2.08

4 3 × × 4 4 × 1 3 × 4 3 2 × 4 3
3.85 3.58 3.45 3.48 3.35 3.08 3.12 2.99 2.72 2.62
2.99 3.28 3.17 2.92 2.82 3.11 3.51 3.40 3.70 3.34
1.75 2.58 3.08 1.50 2.00 2.83 1.17 1.67 2.50 1.42

5 × 5 × 5 × 4 4 × 3 1 1 × 5 5 1
3.91 3.67 3.52 3.56 3.41 3.17 3.20 3.05 2.81 2.70
3.97 4.03 4.65 2.34 2.97 3.03 2.92 3.55 3.61 1.92
3.83 3.08 3.00 3.00 2.92 2.17 3.33 3.25 2.50 2.42

6 × × 5 × 5 5 × 4 3 4 × 4 4 2 2
4.31 4.06 4.04 3.96 3.94 3.70 3.60 3.58 3.33 3.23
5.11 4.67 4.73 3.82 3.88 3.45 3.40 3.47 3.03 2.17
2.83 2.92 2.33 3.00 2.42 2.50 3.00 2.42 2.50 2.58

The asymmetric effect is sometimes known as competitionx. It occurs when
neighboring treatments compete for finite resources, be they food or tasters’ good
opinions. In some situations, a symmetric effect is more natural: that is, θi j = θ ji

for all i and j. In many wildlife habitats, there is synergy between organisms filling
different niches, to each others’ mutual benefit, so that θi j is positive. On the other
hand, antagonism gives a symmetric effect with negative θi j.

The symmetric model is

f ((i,{ j,k, l})) = μ+θi j +θik +θil where θrs = θsr for all r and s. (7)
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The corresponding subspace VS is similar to the whole space in Example 2, and
decomposes as V0⊕ (VP∩VS)⊕WS. A slight modification of Yates’s method gives
the corresponding sums of squares as 390.15, 7.64, and 16.54, respectively. The
fitted vector in VS is shown in the last row of Table 3. It is clearly not as good a fit
to the data as either of the two rows above.

We now have three natural ways of decomposing U1 as a pair of orthogonal
irreducible subspaces. Table 4 shows the corresponding sums of squares and mean
squares. Starting with blocks or with the asymmetric treatment model (5) gives (a);
starting with direct effects of treatments, which is model (4), gives (b); and starting
with the symmetric treatment model (7) gives (c). Of these, the only one where the
larger mean square corresponds to a meaningful subspace and the other mean square
is about 1.3 is the first. Thus consideration of U1 suggests that we should include
the subspace VP ∩VA in the explanation for the data but that the rest of U1 is just
random noise.

Of course, there is a fourth decomposition, into the G-irreducible subspace con-
taining the projection of y onto U1 and its orthogonal complement, with mean
squares 15.53 and 0, respectively. This is the most extreme decomposition of U1

into orthogonal irreducibles, but we cannot consider it seriously for data analysis. In
the first place, this decomposition is not known before the data are obtained. In the
second place, the zero mean square is just too small: when four others are around
1.3 then anything much smaller is suspicious.

Table 4 Three natural ways of decomposing the subspace U1

subspace S.S. M.S.
U1 ∩VB 6.50 1.30
VP ∩VA 71.17 14.23

U1 77.67

subspace S.S. M.S.
WT 63.35 12.67

U1∩W⊥
T 14.32 2.86

U1 77.67

subspace S.S. M.S.
VP ∩VS 7.64 1.53
U1 ∩V⊥S 70.03 14.01

U1 77.67

(a) blocks or (b) direct treatment effects (c) symmetric model
asymmetric model

For decomposing U2, we have the two possibilities shown in Table 5 (ignoring
the extra one defined by the data). Starting with blocks gives (a), while starting with
the symmetric treatment model gives (b). In the first, both mean squares are about
1.3, which is consistent with random noise. In the second, the larger mean square
is 1.84. This is less than twice 1.3, so is unlikely to indicate anything meaningful.
Moreover, it corresponds to the subspace WS. Figure 3 shows that any natural treat-
ment subspace containing WS must contain the whole of VS, in particular VP ∩VS,
whose contribution to the data we have already decided is just random noise. These
considerations suggest that no part of U2 is anything more than random noise.
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Table 5 Two natural ways of decomposing the subspace U2

subspace S.S. M.S.
U2 ∩VB 11.60 1.29
U2∩V⊥B 11.80 1.31

U2 23.40

subspace S.S. M.S.
WS 16.54 1.84

U2∩W⊥
S 6.86 0.76

U2 23.40

(a) blocks (b) symmetric model

There are three remaining subspaces in Table 2. Of these, S3,2,1 has the smallest
mean square, while the mean square for S3,3 is 1.62, less than that for WS, which we
have already decided to ignore. That leaves just WA, with a mean square of 2.72. As
Figure 3 shows, including WA in the treatment subspace that already includes V0 and
VP∩VA gives the rather natural subspace V0 +VA. This corresponds to model (6).

The conclusion from the spectral analysis is that model (6) explains the data
well. That is, the different quantities of vanilla compete with each other for the
tasters’ scores, but there is no evidence of any direct effect of quantities or any
differences between tasters. These conclusions differ from those in [17], because
Calvin assumed that the most important effects would be the differences between
tasters and the differences between the direct effects of the quantities of vanilla.

Note that the computational aspects of this are an instance of computing pro-
jections of a data vector onto the isotypic components of a representation of the
symmetric group (see, e.g., [25]). The general computational problem of isotypic
projection for arbitrary groups is considered in [41] as well as [40].

Strong symmetries of orthogonal designs

Even without the complication of the effects of neighboring treatments, we can de-
fine the group G of strong symmetries of the design. Do its irreducible subspaces
help us to analyze the data? In this section we revisit Examples 7–10 and consider
their strong symmetries.

The simplest orthogonal case is the completely randomized design in Example 7,
where Ω is unstructured and each treatment is applied to r observational units, for
some integer r. Then G = Sym(r)wrG1, and [19] shows that every decomposition
ofRΩ into orthogonal G-irreducible subspaces has the form

(⊕
j∈J Wj

)
⊕V⊥Γ , where⊕

j∈J Wj is an orthogonal decomposition of VΓ into G1-irreducible subspaces. Here
V⊥Γ is the subspace which is classically called “Error” or “residual” in the ANOVA,
and so the approach using strong symmetries gives nothing new.
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For a complete-block design in b blocks of size k, as in Example 8, we have
|Γ|= k, G2 = Sym(k)wrSym(b), and G =G1×Sym(b) in its product action. Let U0

and U1 be the irreducibles of Sym(b) in its natural action, of dimensions 1 and
b− 1, respectively. If

⊕
j∈J Wj is an orthogonal G1-irreducible decomposition of

R
Γ, then the subspaces in an orthogonal G-irreducible decomposition of R

Ω are
Ui⊗Wj for i in {0,1} and j in J. Here U0⊗W0 = V0, and U1⊗W0 = WB, which
is the subspace for differences between blocks. The subspaces U0⊗Wj, for j in
J \{0}, give the decomposition of VΓ∩V⊥0 specified by G1. If |J|= 2, then the only
remaining subspace is U1⊗W1, which is (VB +VΓ)

⊥, the unique residual subspace.
This case was discussed, from the point of view of strong symmetries, in [29, 38].
However, if |J| ≥ 3, then (VB +VΓ)

⊥ is not G-irreducible.
For example, suppose that k = mn and that Γ is as in Example 1. The approach of

Section “The Orthogonal Case” gives the ANOVA in Table 6(a), while consideration
of strong symmetries gives the decomposition in Table 6(b). Which should be used?

There is disagreement among statisticians about how to answer this question.
The approach described by Nelder in [43, 44] is that in Sections “The Orthogonal
Case” and “The General Non-Orthogonal Case”: start with the decomposition of RΩ

determined by G2 and refine it using the decomposition of VΓ. If there are simply
fifteen treatments, then (VB +VΓ)

⊥ is used as the residual subspace: why should
this be decomposed if the fifteen treatments are all combinations of five varieties
of cow-peas with three methods of cultivation? This gives the decomposition in
Table 6(a). A popular alternative approach is to start with a list of factors (that is,
partitions of Ω with named parts) and close it under infima, where the infimum of
two partitions is their coarsest common refinement. This gives the decomposition in
Table 6(b). These two approaches are contrasted in [13].

It is not uncommon for the initial structure on Ω to be defined by a family P2

of partitions of Ω (such as the partitions into blocks, rows or columns) and the
structure on Γ to be defined by a family P1 of partitions of Γ (such as those defined
by factors C and D in Example 1). Each partition defines the subspace of vectors
which are constant on each of its parts. Two partitions are said to be orthogonal
to each other if their corresponding subspaces are geometrically orthogonal. The
design function τ enables us to consider partitions of Γ to be partitions of Ω which
refine the partition defined by the inverse images of τ . If P1∪P2 contains the two
trivial partitions of Ω, is closed under suprema, and has the property that each pair
of partitions is orthogonal, then it defines an orthogonal decomposition W of RΩ

[54]. Now G is the group of permutations of Ω which preserve every partition in
P1∪P2. In order for the subspaces in W to be G-irreducible, it is necessary that
each partition has all its parts of the same size (otherwise, G cannot be transitive
on Ω) and that P1∪P2 be closed under infima. It is arguable that the problem with
the preceding example of a factorial design in complete blocks is the lack of closure
under infima.
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Table 6 Two different decompositions for a factorial design in complete blocks

Subspace Source of variation d.f.
U0⊗W0 =V0 Grand mean 1

U1⊗W0 Blocks b−1
U0⊗WC Main effect of C n−1
U0⊗WD Main effect of D m−1
U0⊗WCD C-by-D interaction (n−1)(m−1)
(VB +VΓ)

⊥ Residual (b−1)(mn−1)
V Total bmn

(a) Method of Section “The Orthogonal Case”

Subspace Source of variation d.f.
U0⊗W0 =V0 Grand mean 1

U1⊗W0 Blocks b−1
U0⊗WC Main effect of C n−1
U1⊗WC Residual for main effect of C (b−1)(n−1)
U0⊗WD Main effect of D m−1
U1⊗WD Residual for main effect of D (b−1)(m−1)
U0⊗WCD C-by-D interaction (n−1)(m−1)
U1⊗WCD Residual for C-by-D-interaction (b−1)(n−1)(m−1)

V Total bmn
(b) Irreducible subspaces of group of strong symmetries

If, in addition to satisfying the preceding properties, the lattice of partitions in
P1∪P2 is distributive, then G is a generalized wreath product and its irreducible
subspaces are precisely those in W [8]. In this case, the strong symmetries give the
same decomposition as that in Section “The Orthogonal Case”. The split-plot design
in Example 10 is a case in point.

To show that lack of closure under infima is not the whole explanation, we con-
clude this section by considering the Latin-square design in Example 9, and suppose
that G1 = Sym(n). The partitions of Ω into rows, columns, and letters, together with
the two trivial partitions, satisfy all the aforementioned conditions, except that the
lattice is not distributive. Now G is the subgroup of Sym(n)×Sym(n) which pre-
serves the partition into letters. If the Latin square is not the Cayley table of a group,
then G may not even be transitive on Ω: indeed, it may be trivial. Even when it is
such a Cayley table, the results in [2] show that there may be surprisingly many
G-irreducibles in a decomposition of R

Ω. However, neither of the common ap-
proaches to ANOVA described above uses any finer decomposition than the one
in Section “The Orthogonal Case”.

Thus considerations of symmetries, partitions, combinatorial conditions, or mod-
els may lead to different analyses. The Latin square seems to be a relatively straight-
forward design, yet subtle differences in assumptions have led to arguments over the
correct data analysis ever since Neyman [46].
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Strong symmetries of incomplete-block designs

In this section we return to the incomplete-block designs of Section “Incomplete-
Block Designs”, and use the notation introduced there. Thus Ω consists of b blocks
of size k, and Γ consists of t treatments, where t > k. We assume no structure on Γ.
The group G of strong symmetries consists of all permutations of Ω which preserve
the partition into blocks and the partition into treatments.

James argued in [32] that ANOVA should use a decomposition of RΩ into or-
thogonal G-irreducible subspaces. Here we compare this approach with that of Sec-
tion “Incomplete-Block Designs”.

Let ρ be the permutation representation of this action of G, with permutation
character π . If g ∈ G then ρ(g) fixes the subspaces V0, WB and WT . Therefore ρ(g)
commutes with QB and PT as well as with I and J, and so A ⊆C (G). Hence each of
the summands in (2) is G-invariant, while Ui is G-isomorphic to Vi for i = 1, . . . ,s.

For simplicity, write VB∩V⊥Γ as WB−T , VΓ∩V⊥B as WT−B and (VB +VΓ)
⊥ as W .

Assume that k ≥ 2 and r ≥ 2, so that V0 and W are both non-zero. Let δ be the
number of subspaces among WB−T and WT−B that are non-zero, so that δ ∈ {0,1,2}.

A block design is said to be resolvable if there is a partition of Ω into replicates,
coarser than the partition into blocks, such that each treatment occurs once in each
replicate. For a resolvable design, define WR analogously to WB. Then dim(WR) =
r− 1 and WR ≤WB−T : hence the latter cannot be zero and so δ ≥ 1.

Returning to the general case, recall that the rank p of G is defined to be the num-
ber of orbits of G in its induced action on Ω×Ω (see [55]). If G is transitive on Ω,
then p is equal to the number of orbits on Ω of the stabilizer in G of any element
of Ω. Less obviously, p is also equal to the sum of the squares of the multiplicities
of complex-irreducible characters in π .

As in Section “Treatment Permutations”, there are non-negative integers mi such
that π =∑i∈I miχi, where {χi : i ∈I } is the set of real-irreducible characters of G.
The relation to complex-irreducibles is explained in [4, 7, 18, 42, 51], as follows.
The set I is the disjoint union of I1, I2 and I3. If χ ∈I1, then χ is also complex-
irreducible, of real type; if χ ∈I2, then χ = 2η , where η is a complex-irreducible
of quaternionic type; if χ ∈I3, then χ = ζ + ζ̄ , where ζ is complex-irreducible of
complex type. Therefore

p = ∑
i∈I1

m2
i + 4 ∑

i∈I2

m2
i + 2 ∑

i∈I3

m2
i . (8)

For an incomplete-block design, comparison of (8) with (2) shows that

p≥ 2+ δ + 4s,

with equality if and only if each of V0, WB−T , WT−B, W , U1, . . . , Us is G-
irreducible, admitting a complex-irreducible character of real type, and there are no
G-isomorphisms among this list of subspaces. In particular, if p≤ 9, then s = 1 and
U1 is G-irreducible.
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Furthermore, if p = 6, then s = 1, δ = 0, the design is a balanced incomplete-
block design with b = t, and W is G-irreducible. If p = 7, then s = 1. In this case
either δ = 1, t �= b, the design or its dual is a balanced incomplete-block design, and
W is G-irreducible; or δ = 0, the design is a balanced incomplete-block design with
b = t, and W is the sum of two G-irreducible subspaces. If p = 8, then s = 1, then
either δ = 2, the design and its dual are both partial geometric designs, and W is
G-irreducible; or δ = 1, t �= b, the design or its dual is a balanced incomplete-block
design and one of W , WB−T , WT−B is the sum of two G-irreducible subspaces; or
δ = 0, the design is a balanced incomplete-block design with b = t, and W is the
sum of three G-irreducible subspaces.

We now specialize these results to several well-known families of incomplete-
block designs.

Example 11. Let q be a prime power. Then there is a Desarguesian projective
plane Π of order q. Its points and lines can be used as the treatments and blocks
in an incomplete-block design with t = b = q2 + q+ 1, r = k = q+ 1 and δ = 0.
The group of strong symmetries is PΓL(3,q), which is transitive on sets of four
points in general position. This can be used to show that G has rank 6: the details
are in [4, 14, 15, 20, 21, 32]. Hence a G-irreducible decomposition of RΩ, with
dimensions, is

V0 ⊕ WB ⊕ WT ⊕ W
dim 1 q2 + q q2 + q q3 ,

where only the middle two subspaces are non-orthogonal to each other. In this case,
the G-decomposition is the same as that used in classical ANOVA.

Example 12. Consider the affine plane Δ obtained from the projective plane Π in
Example 11 by deleting one line and all points on it. This gives a resolvable balanced
incomplete-block design with t = q2, b = q(q+1), r = q+1, k = q, and δ = 1. This
design is also known as a balanced square lattice design. Its group G of strong
symmetries is the stabilizer in PΓL(3,q) of the omitted line. This is transitive on
the units in Ω, which may be identified with the flags (x,λ ) where x is a point of Δ
incident with the line λ of Δ. The stabilizer in G of (x,λ ) has the following orbits
on Ω:

{(x,λ )}
{(x,μ) : x ∈ μ �= λ}
{(z,λ ) : x �= z ∈ λ}
{(z,μ) : z ∈ μ ,z ∈ λ ,x /∈ μ}
{(z,μ) : z ∈ μ ,z /∈ λ ,x ∈ μ}
{(z,μ) : z ∈ μ ,μ‖λ}
{(z,μ) : z ∈ μ ,z /∈ λ ,μ � ‖λ ,x /∈ μ}.

Thus the rank of G is 7, and so a G-irreducible decomposition of RΩ, with dimen-
sions, is
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V0 ⊕ WR ⊕ (WB∩W⊥
R ) ⊕ WT ⊕ W

dim 1 q q2− 1 q2− 1 (q− 1)2(q+ 1)
.

All pairs of subspaces are orthogonal, apart from the two with dimension
q2− 1. Moreover, WR = WB−T . This decomposition was obtained by Burton and
Chakravarti in [15].

For a resolvable block design, the classical ANOVA normally splits WB into WR

and WB ∩W⊥
R . These subspaces are called replicates and blocks within replicates,

respectively. So this is another example where the G-decomposition is the same as
that used in classical ANOVA.

Example 13. The simple square lattice design introduced by Yates in [56] is resolv-
able with r = 2. The treatments are identified with an abstract n× n array, so that
t = n2, where n > 1. In the first replicate, the rows of the array are blocks; in the
second replicate, the columns of the array are blocks. Thus k = n and b = 2n.

Now dim(WR) = 1 and so WB ∩W⊥
B−T has dimension at most b− 2, which is

2(n− 1). Therefore dim(WT−B) = t− 1− dim(WB ∩W⊥
B−T ) ≥ n2− 1− 2(n− 1) =

(n− 1)2 > 0. Hence WB−T and WT−B are both non-zero and so δ = 2. Both the
design and its dual are partial geometric designs.

Now the group G of strong symmetries is Sym(n)wrSym(2) in its product action.
It is generated by all permutations of the set of rows (Sym(n)), all permutations of
the set of columns (Sym(n)), and the interchange of rows and columns (Sym(2)). It
is transitive on flags. If x is the treatment in row λ and column μ , then the stabilizer
in G of the flag (x,λ ) has the following orbits on Ω:

{(x,λ )}
{(x,μ)}
{(z,λ ) : x �= z ∈ λ}
{(z,μ) : x �= z ∈ μ}
{(z,ν) : z ∈ λ ,z ∈ ν �= μ ,ν is a column}
{(z,ν) : z ∈ μ ,z ∈ ν �= λ ,ν is a row}
{(z,ν) : z /∈ λ ,z ∈ ν �= μ ,ν is a column}
{(z,ν) : z /∈ μ ,z ∈ ν �= λ ,ν is a row}.

Hence the rank of G is 8, and the subspaces V0, WB−T , WT−B, U1, V1 and W are all
G-irreducible. Since WR is G-invariant and WR ≤WB−T , we must have WR =WB−T .
Hence the decomposition, with dimensions, is

V0 ⊕ WR ⊕ U1 ⊕ V1 ⊕ WT−B ⊕ W
dim 1 1 2(n− 1) 2(n− 1) (n− 1)2 (n− 1)2 .

Only the pair U1 and V1 are non-orthogonal. In spite of the equality of their dimen-
sions, the subspaces WT−B and W are not G-isomorphic, because otherwise the rank
would be greater.
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Example 14. Projective spaces of higher dimension are also considered in [4, 15].
Here we consider dimension 3. Let q be a prime power and let Θ be the projective
space of dimension 3 over the field with q elements. Take the treatments and blocks
to be the points and planes ofΘ, so that t = b= q3+q2+q+1 and r = k= q2+q+1.
The design and its dual are both balanced, and so δ = 0. Now G = PΓL(4,q), which
is transitive on ordered sets of five points in general position, so the stabilizer in G
of a flag (x,Ψ) has the following orbits on Ω:

{(x,Ψ)}
{(x,Φ) : x ∈Φ �=Ψ}
{(z,Ψ) : x �= z ∈Ψ}
{(z,Φ) : x �= z ∈Φ �=Ψ,z ∈Ψ,x ∈Φ}
{(z,Φ) : z ∈Φ,z ∈Ψ,x /∈Φ}
{(z,Φ) : z ∈Φ,z /∈Ψ,x ∈Φ}
{(z,Φ) : z ∈Φ,z /∈Ψ,x /∈Φ}.

Thus G has rank 7, and so U1 and V1 are G-irreducible while W is the sum of two
G-irreducibles.

The space Θ contains (q2 + 1)(q2 + q + 1) lines, each incident with (q + 1)2

flags. Let VL be the subspace of R
Ω spanned by the characteristic vectors of the

lines. Then VL is G-invariant. Analysis of the permutation characters of G on lines,
flags, and points shows that VL is the sum of three G-irreducible subspaces: one is
V0; one is G-isomorphic to both WB and WT ; the third is orthogonal to VB +VT and
has dimension q4 + q2. Hence the G-irreducible subspaces of W are VL ∩W and
W ∩V⊥L . The decomposition, with dimensions, is

V0 ⊕ WB−T ⊕ WT−B ⊕ (VL∩W ) ⊕ (W ∩V⊥L )

dim 1 q3 + q2 + q q3 + q2 + q q4 + q2 q5 + q4 + q3 .

In this case, the group of strong symmetries decomposes the classical residual sub-
space into two parts.

Example 15. A triple square lattice is made from a simple one by adding an extra
replicate. A Latin square is superimposed on the n× n array. A block in the third
replicate contains all treatments in a given letter of the square.

Now G is the group of all permutations of the square array which preserve the
set of three partitions into rows, columns, and letters, in its action on the 3n2 flags.
Depending on the Latin square, G may not be transitive, and finding a meaningful
G-irreducible decomposition may be as difficult as for the case of a Latin-square
design discussed at the end of Section “Strong symmetries of orthogonal designs”.

These examples show that the decomposition defined by the group of strong sym-
metries may be the same as the classical one, may give further decomposition of
the residual subspace, or may prove intractable. James [33] and Bailey [3] have
both suggested that using the group of weak symmetries of Γ may give a mean-
ingful decomposition of VΓ. This group consists of those permutations of Γ whose
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permutation matrices commute with X%QBX , where X is the Ω×Γ incidence matrix
whose (ω , i)-entry is equal to 1 if τ(ω) = i and is equal to 0 otherwise. However,
this approach does not get the extra residual subspace in Example 14, nor does it
make Example 15 tractable.

References

1. R.A. Bailey, A unified approach to design of experiments. J. R. Stat. Soc. Ser. A 144, 214–223
(1981)

2. R.A. Bailey, Latin squares with highly transitive automorphism groups. J. Aust. Math. Soc.
Ser. A 33, 18–22 (1982)

3. R.A. Bailey, Automorphism groups of block structures with and without treatments, in Cod-
ing Theory and Design Theory, Part II, Design Theory, ed. by D. Ray-Chaudhuri (Springer,
New York, 1990), pp. 24–41

4. R.A. Bailey, Strata for randomized experiments (with discussion). J. R. Stat. Soc. Ser. B 53,
27–78 (1991)

5. R.A. Bailey, Design of Comparative Experiments (Cambridge University Press, Cambridge,
2008)

6. R.A. Bailey, Structures defined by factors, in Handbook on Design of Experiments, ed. by D.
Bingham, A.M. Dean, M. Morris, J. Stufken (Chapman and Hall, Boca Raton, 2014)

7. R.A. Bailey, C.A. Rowley, General balance and treatment permutations. Linear Algebra Appl.
127, 183–225 (1990)

8. R.A. Bailey, C.E. Praeger, C.A. Rowley, T.P. Speed, Generalized wreath products of permuta-
tion groups. Proc. Lond. Math. Soc. 47, 69–82 (1983)

9. R.A. Bailey, H. Monod, J.P. Morgan, Construction and optimality of affine-resolvable designs.
Biometrika 82, 187–200 (1995)

10. E. Bolker, The finite Radon transform. Contemp. Math. 63, 27–50 (1987)
11. R.C. Bose, W.G. Bridges, M.S. Shrikhande, A characterization of partial geometric designs.

Discret. Math. 16, 1–7 (1976)
12. R.C. Bose, S.S. Shrikande, N.M. Singhi, Edge regular multigraphs and partial geometric de-

signs with an application to the embedding of quasi-residual designs, in Teorie Combinatoire
(Rome, 1973) Atti dei Convegni Lincei, vol. 17 (Accademia Nazionale dei Lincei, Roma,
1976), pp. 49–81

13. C.J. Brien, B.D. Harch, R.L. Correll, R.A. Bailey, Multiphase experiments with at least one
later laboratory phase. I. Orthogonal designs. J. Agric. Biol. Environ. Stat. 16, 422–450 (2011)

14. C.T. Burton, Automorphism groups of balanced incomplete block designs and their use in sta-
tistical model construction and analysis. PhD Thesis, University of North Carolina at Chapel
Hill (1980)

15. C.T. Burton, I.M. Chakravarti, On the commutant algebras corresponding to the permutation
representations of the full collineation groups of PG(k, s) and EG(k, s), s = pr , k≥ 2. J. Math.
Anal. Appl. 89, 489–514 (1982)
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The Synchrosqueezing transform
for instantaneous spectral analysis

Gaurav Thakur

Abstract The Synchrosqueezing transform is a time-frequency analysis method
that can decompose complex signals into time-varying oscillatory components. It
is a form of time-frequency reassignment that is both sparse and invertible, allowing
for the recovery of the signal. This article presents an overview of the theory and
stability properties of Synchrosqueezing, as well as applications of the technique to
topics in cardiology, climate science, and economics.

Key words: Synchrosqueezing, Time-frequency reassignment, Instantaneous fre-
quency, Sparse signal representations

Introduction

The Synchrosqueezing transform is a time-frequency analysis method that can char-
acterize signals with time-varying oscillatory properties. It is designed to analyze
and decompose signals of the form

f (t) =
K

∑
k=1

Ak(t)e
2π iφk(t), (1)

where Ak and φk are time-varying amplitude and phase functions, respectively. The
goal is to recover the instantaneous frequencies (IFs) {φ ′k}1≤k≤K and the oscillatory
components {Ake2π iφk}1≤k≤K. Signals of the form (1) arise in numerous scientific
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and engineering applications1 but are not well represented in a traditional Fourier
basis, where the individual elements of the basis fail to capture localized oscilla-
tions in the components {Ake2π iφk}. Standard time-frequency methods such as the
short-time Fourier transform (STFT) and the continuous wavelet transform (CWT)
are often used to analyze such signals, but do not take advantage of any sparsity of
the form (1) in the signal and incur a tradeoff in time-frequency resolution [5, 8].
Synchrosqueezing is a variant of time-frequency reassignment (TFR), a class of
techniques that apply a nonlinear post-processing mapping to a conventional STFT
or CWT plot. The mapping is designed to “push” the energy in an STFT closer to its
most prominent frequencies, resulting in a sparse and concentrated time-frequency
representation of the signal [2, 9]. However, traditional TFR methods result in a
loss of information from the underlying transform and cannot be used to recover
the original signal, and also often involve heuristics that are difficult to justify rig-
orously.

Synchrosqueezing combines the localization and sparsity properties of TFR with
the invertibility of a traditional time-frequency transform, and is robust to a vari-
ety of disturbances in the signal. The main concepts behind Synchrosqueezing were
originally introduced in the mid-1990s for audio signal analysis [6], but it has re-
ceived much closer attention in recent years, with an extensive mathematical theory
developed in [7] and [14]. Unlike traditional TFR, Synchrosqueezing performs the
post-processing mapping only in the frequency direction and does so in a manner
that preserves the total energy of the signal f , allowing for the decomposition of the
signal into the components {Ake2π iφk}. This article provides a concise survey of the
Synchrosqueezing methodology and its associated theory, and also discusses real-
world applications in several different domains where the technique has provided
new insights.

The Synchrosqueezing process

The Synchrosqueezing transform was originally developed in [7] and [6] in terms
of the CWT. We choose a (complex) mother wavelet ψ such that the Fourier trans-
form ψ̂ has strictly positive support and satisfies the standard admissibility condition∫ ∞

0 z−1ψ̂(z)dz < ∞ [5]. The CWT Wψ f (a, t) at the scale a and time shift t is then
given by

Wψ f (a, t) = a−1/2
∫ ∞

−∞
f (u)ψ

(
u− t

a

)
du. (2)

1 Such signals are often called “nonstationary” in these domains, although this terminology is not
related to its meaning for random processes.
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We then take the phase transform ω f (a,b), defined as the derivative of the com-
plex phase of Wψ f ,

ω f (a, t) =
∂
∂ t Wψ f (a, t)

2π iWψ f (a, t)
. (3)

Intuitively, this nonlinear operator can be thought of as removing the influence
of ψ from the CWT and “encoding” the localized frequency information we want.
The key step is to consider the CWT Synchrosqueezing transform,

Sδ ,Mε f (t,η) =
∫
{(a,t):a∈[M−1,M],|Wψ f (a,t)|>ε}

a−3/2Wψ f (a, t)
1
δ

h

(
η−ω f (a, t)

δ

)
da

(4)

for a test function h ∈ C∞
0 , a sufficiently large parameter M, and sufficiently small

δ > 0 and ε > 0. The motivation for (4) is that it is a smoothed out approximation to

S f (t,η) =
∫
{(a,t):η=ω f (a,t)}

a−3/2Wψ f (a, t)da,

or in other words, a partial inversion of the CWT that is only taken over the level
curves of the phase transform ω f and ignores the rest of the time-scale plane (a, t).
This localization process allows us to recover the components Ake2π iφk more accu-
rately than inverting the CWT over the entire time-scale plane. Alternatively, the
mapping Wψ f (a, t)→ S f (t,η) can be thought of as a reassignment operation that
squeezes energy from the scales a into IFs η centered on the level curves of ω f , but
leaves the total energy in Wψ f (a, t) at each time t unchanged. For appropriate sig-

nals f , the energy in the Synchrosqueezing transform Sδ ,Mε f (b,η) is concentrated

precisely around the IF curves {φ ′k(t)}. Finally, once Sδ ,Mε f is computed, we can
recover each of the components by completing the inversion of the CWT and inte-
grating over small bands around each IF curve,

Rδ ,M
k,ε f (t) =

1∫ ∞
0

ψ̂(z)
z dz

∫
|η−φ ′k(t)|<ε

Sδ ,Mε f (t,η)dη . (5)

Under certain conditions, it can be shown that Rδ ,M
k,ε f (t) ≈ Ak(t)e2π iφk(t). In

practice, an additional, intermediate step is needed to identify the integration bands
in (5), which is typically accomplished by a ridge extraction method that determines
the maxima in the time-frequency plot |Sδ ,Mε f (t,η)|. A discretized formulation of
the steps (2)–(5) and related computational details can be found in [15].

The main concepts behind Synchrosqueezing can also be applied to other under-
lying time-frequency representations. The paper [14] develops a parallel approach
based on the short-time Fourier transform (STFT), which is shown to have some
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advantages.2 The STFT Synchrosqueezing process is similar to the above develop-
ment, but instead of (2) is based on the modified STFT for an appropriate window
function G,

VG f (t,z) =
∫ ∞

−∞
f (u)G(u− t)e−2π iz(u−t)du. (6)

This is simply the standard STFT with an additional modulation factor e2π izt ,
and can be thought of as a filter bank taken by sliding the window G over differ-
ent frequency bands. The phase transform (3) and Synchrosqueezing transform (4),
respectively, become

ω̃ f (z, t) =
∂
∂ t VG f (t,z)

2π iVG f (t,z)
,

S̃δ ,Mε f (t,η) =
∫
{(t,z):z∈[M−1,M],|VG f (t,η)|>ε}

VG f (t,z)
1
δ

h

(
η− ω̃ f (t,z)

δ

)
dz, (7)

and the components can be recovered by fully inverting (7) as before by taking

R̃δ ,M
k,ε f (t) =

1∫ ∞
−∞ |G(z)|2dz

∫
|η−φ ′k|<ε

S̃δ ,Mε f (t,η)dη . (8)

A simple example of the time-frequency plots |Sδ ,Mε (t,η)| and |S̃δ ,Mε f (t,η)| is
shown in Figure 1. While the traditional STFT and CWT plots are blurry, reflecting
the fact that they are not sparse representations of the signal, the Synchrosqueezing
transforms have a much more concentrated profile and distinct IF curves in the
time-frequency plane. Several additional examples can be found in [15], comparing
CWT Synchrosqueezing with TFR methods and other techniques. An open source
MATLAB toolbox implementing both forms of Synchrosqueezing is available [3]
and has facilitated the use of the technique across different disciplines.

We briefly describe several extensions of these concepts that have been devel-
oped. The paper [16] considers a variant of the signal model in (1), where the mode
Ak(t)e2π iφk(t) is replaced by a more general form Ak(t)s(φk(t)) for a given “shape
function” s chosen to fit a particular application at hand. This turns out to be a natural
model for the analysis of electrocardiogram signals, in which the sharp spikes (see
Figure 2) are not well represented by standard Fourier harmonics. In [12], another
generalization is presented based on replacing (6) with a “generalized Fourier trans-
form”, i.e. an oscillatory integral of the form

∫ ∞
−∞ f (u)g(u− t)e−2π izθ(u)du where

θ is a nonlinear phase function incorporating some prior knowledge of the signal’s
structure. The paper [19] develops another approach based on wave packet trans-
forms, which encompasses some aspects of both the CWT and STFT formulations.

2 We present a slightly different formulation of the transform than [14] that is more comparable
with the approach in [7].



The Synchrosqueezing transform for instantaneous spectral analysis 401

Fig. 1 Time-frequency plots of the signal f (t) = cos(2π(0.1t2.6+3sin(2t)+10t)) under different
transforms.

Theory

Synchrosqueezing has a fairly comprehensive mathematical theory developed for it,
providing performance guarantees on selected classes of signals. As of 2014, most
of the published theory in [7] and [15] covers the CWT version (4), but analogous
results can be shown for the STFT formulation (7) from [14] using similar tech-
niques. We review the results for the CWT case here, which are based on a sparsity
model for the signal (1) in the frequency domain.

Definition 1. For given parameters ε,d > 0, we define the class Aε,d = { f : f (t) =

∑K
k=1 Ak(t)e2π iφk(t)}, where

Ak ∈ L∞∩C1, φk ∈C2, φ ′k,φ
′′
k ∈ L∞, Ak(t)> 0, φ ′k(t)> 0

∀t
∣∣A′k(t)∣∣≤ ε

∣∣φ ′k(t)∣∣ , ∣∣φ ′′k (t)∣∣≤ ε
∣∣φ ′k(t)∣∣ , and

φ ′k(t)−φ ′k−1(t)

φ ′k(t)+φ ′k−1(t)
≥ d. (9)

The key condition here is (9), which says that higher frequency IFs are spaced
exponentially further apart than lower frequency IFs. Under this signal model, the
following result can be obtained [7].

Theorem 1. Let f ∈ Aε,d for some ε,d > 0, h ∈ C∞
0 with ‖h‖L1 = 1, and ψ ∈ C1

with ψ̂ supported in [1−Δ ,1+Δ ] for some Δ < d
1+d . Let M be sufficiently large and
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define ε̃ = ε1/3 and the “scale band” Zk = {(a,b) : |aφ ′k(t)− 1|< Δ}. If (a, t) ∈ Zk

and |Wψ f (a, t)|> ε̃ , then |ω f (a, t)−φ ′k(t)| ≤ ε̃ . Conversely, if (a, t) �∈ Zk for any k,
then |Wψ f (a, t)| ≤ ε̃ . Furthermore, for some constant C1,∣∣∣∣ limδ→0

Rδ ,M
k,ε̃ f (t)−Ak(t)e

2π iφk(t)

∣∣∣∣ ≤C1ε̃.

This result says that the energy in the Synchrosqueezing time-frequency plane is
concentrated around the IF curves {φ ′k(t)}, and the inverted components fk approx-
imate the actual oscillatory components {Ake2π iφk}. Additional results of this type
were proved in [15], describing the robustness of the Synchrosqueezing transform
under unstructured perturbations (e.g., quantization error) as well as white noise.
We slightly paraphrase these theorems for clarity.

Theorem 2. Let f , ε , d, h, ψ , and Δ be given as in Theorem 1. Let g = f + E
for some error E with ‖E‖L∞ sufficiently small. There are positive constants M,
C2, C3, and C4 such that the following holds. Let a ∈ [ 1

M ,M]. If (a, t) ∈ Zk and
|Wψg(a, t)|>C2ε̃ , then |ωg(a, t)−φ ′k(t)| ≤C3ε̃ . Conversely, if (a, t) �∈ Zk for any k,
then |Wψg(a, t)| ≤C2ε̃ . Furthermore,∣∣∣∣ limδ→0

Rδ ,M
k,C2 ε̃

g(t)−Ak(t)e
2π iφk(t)

∣∣∣∣≤C4ε̃.

Theorem 3. Let f , ε , d, h, ψ , and Δ be given as in Theorem 1, with ψ also satisfying
|〈ψ ,ψ ′〉| < ‖ψ‖L2 ‖ψ ′‖L2 . Let g = f +N, where N is Gaussian white noise with
power ε2+p for some p > 0. There are positive constants M, E1, E2, C′2, C′3, and C′4
such that the following holds. Let a ∈ [ 1

M ,M]. If (a, t) ∈ Zk and |Wψg(a, t)|> C′2ε̃ ,

then with probability 1−e−E1ε−p
, |ωg(a, t)−φ ′k(t)| ≤C′3ε̃ . Conversely, if (a, t) �∈ Zk

for any k, then with probability 1− e−E2ε−p
, |Wψg(a, t)| ≤C′2ε̃ . Furthermore, with

probability 1− e−E1ε−p
,∣∣∣∣ limδ→0

Rδ ,M
k,C2 ε̃

g(t)−Ak(t)e
2π iφk(t)

∣∣∣∣≤C′4ε̃.

For STFT Synchrosqueezing, a result similar to Theorem 1 was proved in [14],
although presented in slightly different terms there. The main distinction with the
STFT approach is that the theory is developed for a different function class Bε,d ,
defined in the same way as Aε,d in Definition 1 but with (9) replaced by the weaker
separation requirement that inft φ ′k(t)− supt φ ′k−1(t)> d. The linear frequency scale
of the modified STFT effectively allows the IF curves {φ ′k} to be spaced much
closer to each other than the logarithmic scale of the CWT. In practical terms, STFT
Synchrosqueezing is well suited for decomposing signals with multiple compo-
nents that have closely packed IFs, especially at higher frequencies, while CWT
Synchrosqueezing is more appropriate for studying low frequency, trend-like com-
ponents in a signal.
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We finally mention that the above results have mostly been formulated in a de-
terministic setting, where the signal of interest f is assumed to lie in the class Aε,d
but without any particular mechanism that generated it. The paper [4] develops ex-
tensions of these ideas to a stochastic model of the form Y (t) = f (t)+T (t)+X(t),
where f is essentially of the type Aε,d , T is a slowly varying trend, and X is an au-
toregressive moving average (ARMA) process with a time-dependent variance. The
authors use CWT Synchrosqueezing to extract the components f , T , and X from an
observed signal Y , and prove several results on confidence bounds and other aspects
of the decomposition.

Applications

Due to its wide applicability, the Synchrosqueezing transform has been used to
address problems in many diverse disciplines. The technique was first applied
to topics in cardiology, specifically the analysis of electrocardiogram (ECG) sig-
nals [14, 17, 18]. The sharp spikes in an ECG signal are called the R peaks (see
Figure 2) and encode important information about a patient’s heart rate, respiration,
and many other physiological properties. The analysis of respiration, or breathing
characteristics, is important in many clinical applications such as testing for sleep
apnea. However, recording the respiration directly requires hooking up a breathing
apparatus (ventilator) to the patient and is often impractical to perform over a long
period of time. A patient’s respiration influences the ECG measurement and can
be modeled as a low frequency envelope fitting over the R peaks, with the ECG
signal’s IF closely following the unobserved respiration signal’s IF. The R peaks
are not spaced uniformly but can be used to form an impulse train ∑k f (tk)δ (·− tk),
where {tk} are the locations of the R peaks. Applying the STFT Synchrosqueezing
transform to this impulse train provides an IF that accurately reflects short-range
frequency variations in the respiration signal (Figure 2), and can be used for diag-
nosing irregularities in the patient’s breathing.

Synchrosqueezing has also been used for the analysis of long-term trends in
the global climate. The paper [15] studies sediment cores extracted from the ocean
floor, in which the relative concentrations of the oxygen isotopes δ 18O and δ 16O
indicate changes in the sea level, ice volume, and deep ocean temperature. These
are caused by long-term fluctuations in the Earth’s eccentricity and other rotational
properties over time, known as Milankovitch cycles, which influence the amount of
solar radiation received at the top of the atmosphere. The CWT Synchrosqueezing
transform is used to analyze the δ 18O levels in several composite stacks of cores
over the last 2.5 million years (Figure 3). It is able to distinguish the different
Milankovitch cycles more accurately than the regular CWT, commonly used in this
field, and identify when certain components faded away or became more prominent.
The invertibility of the transform also allows one to extract the oscillatory com-
ponents corresponding to each of the Milankovitch cycles, and better characterize
some sudden changes in the climate between 0.5 and 1 million years ago.
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Another application of Synchrosqueezing can be found in economics. The paper
[10] studies the stability of the US financial system by considering time-frequency
decompositions of equity indices, Treasury yields, foreign exchange rates, and sev-
eral other macroeconomic time series. Each time series is thought of as the output of
a dynamical system that produces slowly time-varying frequencies of the form (1),
but which are interspersed by abrupt frequency transitions (structural breaks) that
indicate the starting or stopping of new underlying dynamics. Among other events,
the stock market crash in 1987 is contrasted with the global recession in 2008. It
is shown that the former had a minimal impact on the dominant, low frequency
components despite being prominent in the original data, while the latter was both
preceded and followed by a variety of new dynamics, which left the economy in a
permanently altered state (Figure 4). The authors also discuss a measure of instabil-
ity in a time series called the “density index”, taking the L1 norm of the IFs at each
point in time as a measure of how spread out or concentrated the frequencies are. A
sharp jump in the density index corresponds to a structural break, which is shown
to coincide with some of the major financial stress events over the last 25 years and
which may provide “early warning” signs of future economic crises.

We briefly mention several other applications of Synchrosqueezing that have ap-
peared in the literature. In [13], it is used to detect and analyze faults in a mechanical
gearbox. The Synchrosqueezing plot of the gearbox’s vibration signal reveals extra
sideband components surrounding a central IF curve, which indicate the presence
of a chipped gear in the transmission. In geophysics, [11] discusses the use of Syn-
chrosqueezing to separate out resonant frequencies in data from micro-seismic ex-
periments, which are used to study deformations in injection wells for oil extraction.
Finally, [1] develops an automated trading strategy based on Synchrosqueezing, us-
ing the technique to model the relationship between correlated asset pairs such as
the stocks of competing firms. The rise in one asset’s price often precedes a fall in
the other one, and a strategy based on identifying the prices’ IFs is shown to de-
scribe short-range oscillations and outperform some standard approaches used in
the industry.

0 2 4 6 8 10 12

1000

1500

2000

2500

3000

3500

50 100 150 200 250 300

1000

2000

3000

4000

5000

Time

S
ig

na
l

Fig. 2 Top: 10 second portion of ECG signal. Bottom: True respiration signal (blue) and the IF
computed from the ECG signal’s R peaks (red) using STFT Synchrosqueezing.
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Fig. 3 Left: CWT Synchrosqueezing plots of the insolation index, a single core (DSPD07) and
stacks of such cores (LR05 and H07). Right: Reconstructed oscillatory components, corresponding
to the obliquity, precession, and eccentricity cycles.

Fig. 4 CWT Synchrosqueezing plots of the S&P 500 price and the 10-year US Treasury yield.
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Supervised non-negative matrix factorization
for audio source separation

Pablo Sprechmann, Alex M. Bronstein, and Guillermo Sapiro

Abstract Source separation is a widely studied problem in signal processing.
Despite the permanent progress reported in the literature it is still considered a sig-
nificant challenge. This chapter first reviews the use of non-negative matrix factor-
ization (NMF) algorithms for solving source separation problems, and proposes a
new way for the supervised training in NMF. Matrix factorization methods have re-
ceived a lot of attention in recent year in the audio processing community, producing
particularly good results in source separation. Traditionally, NMF algorithms con-
sist of two separate stages: a training stage, in which a generative model is learned;
and a testing stage in which the pre-learned model is used in a high level task such
as enhancement, separation, or classification. As an alternative, we propose a task-
supervised NMF method for the adaptation of the basis spectra learned in the first
stage to enhance the performance on the specific task used in the second stage. We
cast this problem as a bilevel optimization program efficiently solved via stochastic
gradient descent. The proposed approach is general enough to handle sparsity priors
of the activations, and allow non-Euclidean data terms such as β -divergences. The
framework is evaluated on speech enhancement.
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Introduction

The problem of isolating or enhancing an audio signal recorded in a noisy environ-
ment has been widely studied in the signal processing community [1, 2]. It becomes
particularly challenging in the presence of non-stationary background noise, which
is a very common situation in many applications encountered, e.g., in mobile tele-
phony. In this chapter we address the problem of monaural source separation by
applying matrix factorization algorithms on a transformed domain given by time-
frequency representations of the signals.

The decomposition of time-frequency representations, such as the power or mag-
nitude spectrogram, in terms of elementary atoms of a dictionary, has become a
popular tool in audio processing. While many matrix factorization approaches have
been used, models imposing non-negativity in their parameters have been proven
to be significantly more effective for modeling complex audio mixtures. The non-
negativity constraint ensures a parts-based decomposition [3], in which the ele-
mentary atoms can be thought as constructive building blocks of the input signal
corresponding to interpretable spectral patterns of recurrent events. Non-negative
matrix factorization (NMF) [3] and its probabilistic counterpart, the probabilistic
latent component analysis (PLCA) [4], are the first instances of a great variety of
approaches proposed over the last few years, see [5] for a recent review.

NMF can be applied with different levels of supervision [6, 7]. In this work we
are interested in the supervised use of NMF, in which it is assumed that one has
access to example audio signals at a training stage. In this setting, NMF is used to
take advantage of the available data by pre-computing dictionaries that accurately
represent the input signals. NMF has been successfully used in a great variety of
audio processing problems ranging from music information retrieval to speech pro-
cessing. In most approaches, the trained dictionaries are used to facilitate a high
level task, such as speech separation [8–12], robust automatic speech recognition
[13, 14], source identification [15], and bandwidth extension [16, 17], among many
others. In the great majority of these approaches the dictionaries are pre-trained in-
dependently as a separate initial step not adapted to the subsequent (and ultimate)
high level task. Initial works have recently shown the benefit of incorporating the
actual objective of source separation into the training of the model, for example in
NMF [18, 19] and deep (and recurrent) neural network based separation [20, 21]. It
is worth mentioning that, in the context of classification, NMF has been also trained
optimized in a discriminate way [19, 22, 23].

In this chapter we discuss in detail a supervised dictionary learning scheme that
can be tailored for different specific high level tasks [18]. Following recent ideas
proposed in the context of sparse coding [24], our training scheme is formulated
as a bilevel optimization problem, which can be efficiently solved using standard
stochastic optimization techniques. We use speech denoising as an example illus-
trating the power of the proposed framework. However, this technique is general
and can be used for various audio applications involving NMF. We also show that
these ideas can be employed in general regularized versions of NMF.
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This chapter is organized as follows. In Section “Source separation via NMF” we
begin by briefly summarizing NMF (and several of its commonly used extensions)
in the context of audio source separation. We present the proposed supervised NMF
framework in Section “Supervised NMF” and describe how to solve the associated
optimization problem in Section “Optimization”. Experimental results are presented
in Section “Experimental results”. In Section “Discussion” we conclude the chapter
and discuss future lines of work.

Source separation via NMF

We consider the setting in which we observe a temporal signal x(t) that is the sum
of two speech signals xi(t), with i = 1,2,

x(t) = x1(t)+ x2(t), (1)

and we aim at finding estimates x̂i(t). Let us define x ∈ R
N , a sampled version of

the input signal satisfying, x[n] = x( n
fs
) with n = 1, . . . ,N, where fs is the sampling

rate.
NMF-based source separation techniques typically operate in two stages. First,

the signal is represented in a feature space given by a non-linear analysis operator,
typically defined (in the case of audio signals) as the magnitude of a time-frequency
representation such as the Short-Time Fourier Transform (STFT). Other alternatives
have also been explored [19, 25]. Then, a synthesis operator, given by the NMF, is
applied to produce an unmixing in the feature space. The separation is obtained by
inverting these representations. Performing the separation in the non-linear repre-
sentation is key to the success of the algorithm. The magnitude of the STFT is in
general sparse (simplifying the separation process) and invariant to variations in the
phase (local translations), thus freeing the NMF model from learning this irrelevant
variability. This comes at the expense of inverting the unmixed estimates in the fea-
ture space, which is a well-known problem usually referred to as the phase recovery
problem [26].

Let us denote by V = Φ(x) ∈ R
m×n a time frequency representation of x, com-

prising m frequency bins and n (usually overlapping) temporal frames. When the
feature extractor Φ is able to produce sparse representations of the sources (such as
in the STFT), the following approximation holds,

Φ(x)≈Φ(x1)+Φ(x2),

for sufficiently distinct signals. The sum is approximate due to the non-linear effects
of the phase. In such a setting, NMF attempts to find the non-negative activations
Hi ∈R

q×n, i = 1,2, best representing the different components in two non-negative
dictionaries Wi ∈R

m×q. This task is achieved through the solution of the minimiza-
tion problem
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min
Hi≥0

D(V| ∑
i=1,2

WiHi)+λ ∑
i=1,2

ψ(Hi) . (2)

The first term in the optimization objective is a divergence measuring the dissimilar-
ity between the input data V and combination of the estimated channels. Typically,
this data fitting term is assumed to be separable,

D(A|B) =∑
i, j

D(ai j|bi j).

Significant attention has been devoted in the literature to the case in which the scalar
divergence D in the right-hand side belongs to the family of the β -divergences [27],

Dβ (a|b) =

⎧⎨
⎩

a
b − log a

b − 1 : β = 0,
a loga/b+(a− b) : β = 1,

1
β (β−1)(a

β +(β − 1)bβ −βabβ−1) : otherwise.

This family includes the three most widely used cost functions in NMF: the squared
Euclidean distance (β = 2), the Kullback-Leibler divergence (β = 1), and the
Itakura-Saito divergence (β = 0). For β ≥ 1, the divergence is convex. The case
of β = 0 is attractive despite the lack of convexity, due to the scale-invariance of the
Itakura-Saito divergence, which makes the NMF procedure insensitive to volume
changes [28].

The second term in the minimization objective is included to promote some de-
sired structure of the activations. This is done using a designed regularization func-
tion ψ , whose relative importance is controlled by the parameters λ .

Once the optimal activations are solved for, the spectral envelopes of each source
are estimated as WiHi. Since these estimated spectrum envelopes contain no phase
information, a subsequent phase recovery stage is necessary. When the non-linearity
is imposed as the magnitude of an invertible transform, F , such as the STFT, a sim-
ple filtering strategy can be used [12]. In this case we have Φ(x) = |F{x}|, where
F{x} ∈ C

m×n is a complex matrix. This strategy resembles Wiener filtering and
has demonstrated very good results in practice. The recovered spectral envelopes
are used to build soft masks to filter the input mixture signal,

x̂i =F−1 {Mi ◦F{x}} , with Mi =
(WiH∗i )

p

∑ j=1,2(W jH∗j)p , (3)

where H∗i are the optimal activations obtained after solving (2), where multiplication
denoted ◦, division, and exponentials are element-wise operations. The parameter
p defines the smoothness of the mask. Note that when p goes to infinity, the mask
becomes binary, choosing for each bin the larger of the two signals.

In this section we assumed that the dictionaries for each source were available
beforehand for performing the demixing. This corresponds to a supervised version
of NMF, in which the dictionaries for each source are trained independently from
available training data. Specifically, this is achieved by solving
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min
Hi,Wi≥0

D(Vi|WiHi)+λ ψ(Hi) (4)

on a training set Vi of feature representations of the unmixed signals for each source.
As mentioned above, the underlying assumption is that the signals forming the

mixture, and consequently the learned dictionaries, are sufficiently distinct to be un-
ambiguously decomposed into V≈ ∑i=1,2 WiHi. However, this assumption is often
violated in practice, for which we would want to have the dictionaries Wi as incoher-
ent as possible. In other words, the independently trained dictionaries do not ensure
that the solutions W1H1 and W2H2 obtained from (2) will resemble the original
components of the mixture.

Case study

The method proposed in this paper, described in Section “Supervised NMF”, can be
applied to a large family of approaches following the supervised NMF paradigm. In
this paper, we opted to use a sparsity-regularized version of NMF as a case study. In
this case, the regularizer ψ in (2) is given by the columns-wise �1 norm,

ψ(H) = λ‖H‖1 +
μ
2
‖H‖2

2. (5)

For technical reasons, that will be clear in Section “Optimization”, we also include
an �2 regularizer on the activations.

Supervised NMF

As was discussed in the previous section, the optimization problem (5) is merely a
proxy to the desired estimation problem. Standard dictionary learning applied inde-
pendently to each source does not guarantee that its solutions will produce the best
estimate of the unmixed sources even on mixtures created from the training data.
Ideally, we would like to train dictionaries that explicitly maximize the performance
directly on the source separation problem. In this section we describe a way of better
posing this problem in the context of NMF.

Given a mixed input signal, x, the method described in Section “Source separa-
tion via NMF” defines an estimator of the signal components x̂i(W1,W2,x), where
we made explicit their dependence on the dictionaries and the input signal. Ideally
we would like to train the signal dictionaries to minimize the expected estimation
risk of the estimation, for example, in terms of the mean squared error (MSE),

{Wi}i=1,2 = argmin
Wi≥0

∑
i=1,2

Ex1,x2

{
‖xi− x̂i(W1,W2,x1 + x2)‖2

}
.
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Assuming that the signals are independent, we can write this expression as

{Wi}i=1,2 = argmin
Wi≥0

∫ ∫
∑

i=1,2
‖xi− x̂i(W1,W2,x1 + x2)‖2dP(x1)dP(x2),

where P are the distributions of each source. In practice, these distributions are
latent; a common strategy to overcome this problem is to approximate the expected
risk by computing the empirical risk over a finite set of training examples sampled
from the source distributions. In what follows, we denote by Xi the available sets
of training signals for each source. Then, the empirical risk is given by

{Wi}i=1,2 = argmin
Wi≥0

1
|X |∑k ∑

i=1,2

‖xk
i − x̂k

i (W1,W2,x
k)‖2, (6)

where the first sum (with the index k) goes over the elements in the product
set, X = X1 ×X2, containing all possible pairs of training signals. We used
xk = xk

1 + xk
2 to simplify the notation. While the empirical risk measures the per-

formance of the estimators over the training set, the expected risk measures the
expected performance over new data samples following the same distribution, that
is, the generalization capabilities of the model. We can expect a good generalization
when sufficient representative training data are available in advance.

When the feature space is given by an invertible transformation, the MSE in (6)
can be computed in the (complex) transformed domain. From Parseval’s theorem it
follows that (6) is equivalent to

{Wi}i=1,2 = argmin
Wi≥0

1
|X |∑k ∑

i=1,2

‖F{xk
i }−Mi(W1,W2,x

k)F{xk}‖2. (7)

Note that the transformed representations F{xk
i } of the signals are complex.

As it was discussed in Section “Source separation via NMF”, the standard set-
ting for supervised NMF estimates the signal dictionaries independently solving (4)
for each source. This approximation is pragmatic rather than principled, since the
empirical loss given in (6) (or (7)) is difficult to compute. While the estimators x̂i

(or the masks Mi) are functions of the dictionaries and the mixture signal, they can-
not be computed in closed form as they depend on the solution of the optimization
problem (2). Such optimization problems are referred to as bilevel. In the following
section we describe how to solve the bilevel NMF dictionary learning problem when
the divergence used in (2) is a convexβ−divergence with appropriate regularization.

Finally, we note that another difficulty posed by the proposed training regime
(common to any discriminative approach to source separation [19, 20]) is that the
estimation of the dictionaries needs to be computed over the product set rather than
each training set independently. This naturally increases the computational load of
the training stage, however, it might not be a serious limitation as this can be done
in an offline manner without affecting the computational load at testing time.
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Optimization

As in any empirical risk minimization task, both formulations (6) and (7) are written
as the average over a training set of a given cost function. We are going to adopt
the formulation in the frequency domain, given in (7), since it has the additional
advantage that can be easily separable on a frame-wise manner.

For now, we will assume that the regularizer in (2) is frame-wise separable, and
defer the discussion of the more general case to Section “Implementation details”.
In this way, the cost function of the NMF problem also becomes frame-wise sepa-
rable. In order to alleviate the notation, we are going to write the minimization of
the empirical risk over a collection of frames rather than the actual audio signals.
With this notation, the training data are composed by the set X f containing pairs
of frames of the form (f j

1, f
j
2), being f j

i ∈ C
m the j−th frame in the collection, cor-

responding to one column of the time frequency representation, F{xk
i }, of some

signal, xk
i , in the original training set of signals Xi. Now we denote the mixture as

f j = f j
1 + f j

2. Let us define the loss function

�(f1, f2,W1,W2,h
∗
1,h

∗
2) = ∑

i=1,2
‖fi−Mi(W1,W2, f,h

∗
1,h

∗
2) f‖2, (8)

where we made explicit the dependency of � and the masks on the optimal acti-
vations h∗1 and h∗2. These optimal activations are themselves functions of the input
mixture and the dictionaries, h∗i = h∗i (f,W1,W2), and are obtained by solving the
frame-wise version of (2) given by

{h∗i }i=1,2 = argmin
hi≥0

Dβ (v| ∑
i=1,2

Wihi)+ ∑
i=1,2

λψ(hi) , (9)

where, following the previous notation, v = Φ(f), and we explicitly wrote a ridge
regression term controlled by the non-negative parameter μ . This is included to
guarantee that (9) is strictly convex and has a unique solution. The supervised NMF
problem can be stated as the optimization program given by

{Wi}i=1,2 = argmin
Wi≥0

1
|X f |∑j

�(f j
1, f

j
2,W1,W2,h

∗
1,h

∗
2). (10)

This optimization problem is referred to as bilevel, with (10) and (9) being the high
and low level problems, respectively. It is important to notice that while (10) de-
pends on knowing the ground truth demixing, (9) only depends on the mixture sig-
nal, hence matching exactly the situation encountered at testing. As NMF itself, this
bilevel optimization problem is non-convex. Hence, we aim at finding a good local
minimizer. In what follows, we describe the general optimization algorithm used for
this purpose.
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Stochastic gradient descent

Problem (9) has a unique solution when β ≥ 1 and μ > 0, due to the strict con-
vexity of the objective. In this situation, a local minimizer of (10) can be found
via (projected) stochastic gradient descent (SGD) [29]. SGD is a gradient descent
optimization algorithm for minimizing an objective function expressed as a sum or
average of some training data of an almost-everywhere differentiable function. At
each iteration, the gradient of the objective function is approximated using a ran-
domly picked sub-sample.

At iteration j we randomly draw a sample pair from the training set of frames X f

and sum them together to obtain a mixture sample in the feature space, v j =Φ(f j).
Then the combined dictionary at iteration j+ 1, W j+1 = [W j+1

1 ,W j+1
2 ], is obtained

by

W j+1 ←P(W j−η j∇W�(f j
1, f

j
2,W

j
1,W

j
2,h

∗ j
1 ,h∗ j

2 ),

where 0 ≤ ηi ≤ η is a decreasing sequence of step-sizes, and P is a projection
operator making the argument matrix be non-negative with column having the norm
smaller or equal than one. Note that the learning requires the gradient ∇W�, which
in turn relies (via the chain rule) on the gradients of ∇Mi�, ∇h∗i

Mi, and ∇Wh∗i (v,W).
As in the context of dictionary learning for sparse coding [24], even though the
h∗i are obtained by solving a non-smooth optimization problem, they are almost
everywhere differentiable, and one can compute their gradient with respect to W
in a closed form. In the next section, we summarize the derivation of the gradients
∇W�.

Following [24], we use a step size of the form ηi = η min(1, i0/i) in all our ex-
periments, which means that a fixed step size is used during the first i0 iterations,
after which it decays according to the 1/i annealing strategy. We set in all our exper-
iments i0 to be half of the total number of iterations. However, other standard tools
commonly used in SGD optimization, such as momentum, could also be used. A
common heuristic used in practice for accelerating the convergence speed of SGD
algorithms consists in randomly drawing several samples (a mini batch) at each
iteration instead of a single one. A natural initialization of the speech and noise dic-
tionaries is the individual training via the solution of (4), as in standard supervised
NMF denoising.

Gradient computation

Let us denote by ρ the objective function in (9),

ρ(W,h) = Dβ (v|Wh)+ ∑
i=1,2

λψ(hi)+ μ ||hi||22,
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where, for simplicity, we define the vector h = [h1;h2] (using Matlab-like notation),
containing the column-concatenated activations for each source, such that the prod-
uct of h with the row-concatenated matrix W = [W1,W2] is well defined. Let us
denote by Λ the active set of the solution of (9), that is, the indices of the non-
zero coefficients of h∗. We use the sub-index Λ to indicate the sub-vector restricted
to the active set, e.g., h∗Λ . The first-order optimality conditions of (9) require the
derivatives with respect to hΛ to be zero,

h∗ ≥ 0, ∇hρ(W,h∗)≥ 0, h∗ ◦∇hρ(W,h∗) = 0, (11)

where ◦ denotes element-wise multiplication (Hadamard product). For each coeffi-
cient in the active set of any stationary point of (9), the partial derivative of ρ with
respect to that coefficient needs to be zero. Hence, if we look only at the active set,
we have

[∇hρ(W,h∗)]Λ = WT
ΛΦ+λ∇h ∑

i=1,2

ψ(h∗i )Λ + μ h∗Λ = 0, (12)

where WΛ is the matrix retaining only the columns of the dictionary associated with
the active set, and Φ= (WΛh∗Λ )

β−2 ◦ (WΛh∗Λ −v). When ψ is the �1 norm as in the
case of study described in Section “Case study”, the derivative of the regularization
term, ∇hψ(hi) = p, is equal to a constant vector that assumes the value of one on
the coefficients of Λ and zero otherwise.

For a given coordinate, say indexed by r, the conditions given in (11) imply three
cases, either only one of [h∗]r or [∇hρ(W,h∗)]r are zero or both are. As it was shown
in the sparse coding context [24], a key observation is that, almost surely, the set of
active constraints in the solution of (9) remains constant on a local neighborhood
of v and W. That is, for small changes in the dictionary, the active set Λ remains
constant. The only points in which h∗ is non-differentiable are points where the
active set changes.

Hence, we know that only the gradient ∇WΛ h∗ will be non-zero, that is, changes
in the columns of W that do not affect the coefficients in Λ do not affect the cost
function. Since we cannot write h∗ in closed form as a function of W, we need to
perform implicit differentiation. Taking the derivative in (12) with respect to WΛ
we obtain

dWT
Λφ +WT

ΛΦ(dWΛh∗Λ +WΛdh∗Λ )+ μ dh∗Λ = 0, (13)

where we used d to denote the differentials, and

Φ= diag
(
(WΛh∗Λ )

β−2 +(β − 2)(WΛh∗Λ )
β−3 ◦(WΛh∗Λ − v)

)
. (14)

We can obtain an expression for dh∗Λ from (13) as

dh∗Λ = Q(dWT
Λφ +WT

ΛΦdWΛh∗Λ ), (15)

where Q = (WT
ΛΦWΛ + μI)−1. Note that the size of the matrix being inverted is

given by the sparsity level of the representation. Now we can proceed to compute
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the gradient of the loss function with respect to the dictionary. Invoking the chain
rule, we have

∇W�= trace(∇h∗�
Tdh∗)+∇W�̂, (16)

where ∇W�̂ represents the gradient of � with respect to W assuming h∗ fixed. To
compute the gradient ∇h∗� one has to also use the chain rule considering the defini-
tion of the masks given in (3). Combining (15) and (16) and using the properties of
the trace function, it follows that

∇W�= φ ξT +ΦWΛξh∗Λ
T +∇W�̂, (17)

where ξ = Q∇h∗�.

Implementation details

There are a few important implementation that need to be considered in practice.
First, the β−divergences are not differentiable at zero when β ≤ 2. A common way
to solve this problem is to consider a translated version of the divergence instead,
which is obtained by adding a small constant in the second argument,

D̃β (a|b) = Dβ (a|b+ δ )

where δ > 0 is a small constant. In our experiments we used δ = 0.001. It is worth
mentioning that this is common practice even in every setting of NMF in order to
avoid instabilities produced by extremely large values.

During the iterations of the SGD algorithm, the estimation of the gradient of the
cost function on the current sample (or mini-batch) requires the computation of the
optimal activations h∗ by solving (9). The precision with which these activations are
computed is very important for obtaining meaningful gradients. In that sense, it is
preferable to use algorithms with fast converge rates, for example the least angle re-
gression (LARS) in the case of β = 2 [30], or the alternating method of multipliers
(ADMM) [31] in the case of β ≤ 2. While running multiplicative algorithms for a
small number of iterations produces satisfactory results when running NMF for sep-
aration, their slow convergence rate makes them extremely inefficient in this case,
requiring a very large number of iterations for computing meaningful gradients.

Experimental results

Data sets. We evaluated the separation performance of the proposed methods on
a subset of the GRID dataset [32]. Three randomly chosen sets of distinct clips
each were used for training (500 clips), validation (10 clips), and testing (50 clips).



Supervised non-negative matrix factorization for audio source separation 417

Fig. 1 Evolution of the average high level cost function (left) and the average SDR (in dB) on the
validation set (mixed at SNR = 0dB) with the SGD iterations for task-specific NMF with β = 1.

The clips were resampled to 8 KHz. For the noise signals we used the AURORA
corpus [33], which contains six categories of noise recorded from different real en-
vironments (street, restaurant, car, exhibition, train, and airport). Three sets of dis-
tinct clips each were used for training (15 clips), validation (3 clips), and testing
(15 clips).

Evaluation measures. As the evaluation criteria, we used the source-to-distortion
ratio (SDR), source-to-interference ratio (SIR), and source-to-artifact ratio (SAR)
from the BSS-EVAL metrics [34]. We also computed the standard signal-to-noise
ratio (SNR). When dealing with several frames, we computed a global score
(GSDR, GSIR, GSAR, and GSNR) by averaging the metrics over all test clips from
the same speaker and noise weighted by the clip duration.

The goal of this experiment was to apply the proposed approach in the context of
audio denoising. Here the noise is considered as a source and modeled explicitly. We
used dictionaries of size 60 and 10 atoms for representing the speech and the noise,
respectively. These values were obtained using cross-validation. We used different
values of the parameter λ for the signal and the noise, namely λs = 0.1 for speech
and λn = 0 for the noise (the latter means that no sparsity was promoted in the
representation of the noise) and μ = 0.001. As an example, we used β = 1 and
β = 0, and α = 0 in the high level cost (10). For the SGD algorithm we used
η = 0.1 and minibatch of size 50. These were obtained by trying several values of
during a small number of iterations, keeping those producing the lowest error on a
small validation set. All training signals were mixed at 5 dB.

Results. Figure 1 shows the evolution of the high level cost (10) and the SDR on
the validation set with the SGD iterations. The algorithm converges to a dictionary
that achieves about 2 dB better SDR on the validation set, this behavior is also
verified on the test set. Tables 1 and 2 show results for the proposed approach on
the test setting. We compare the performance of standard supervised sparse-NMF
(referred simply as NMF) against the performance of the same model trained in
the proposed task-specific manner (referred as TS-NMF) on denoising two with
different SNR levels. Observe that the task-specific supervision leads to improve-
ments in performance, maintaining (at 5dB SNR) the improvements observed on the
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Table 1 Average performance (in dB) for NMF and proposed supervised NMF methods measured
in terms of SDR, SIR, SAR, and SNR. Speech and noise were mixed at 5dB of SNR. The standard
deviation of each result is shown in brackets.

SDR SIR SAR SNR
NMF β = 1 7.5 [1.5] 13.7 [0.9] 8.9 [1.7] 8.2 [1.3]
TS-NMF β = 1 9.5 [1.4] 15.2 [0.7] 11.0 [1.7] 10.0 [1.2]
TS-NMF β = 0 8.6 [1.3] 14.1 [1.2] 10.3 [1.5] 9.1 [1.1]

Table 2 See description of Table 1. In this case, speech and noise were mixed at 0dB of SNR.

SDR SIR SAR SNR
NMF β = 1 4.5 [1.1] 9.3 [0.9] 6.8 [1.2] 5.8 [0.8]
TS-NMF β = 1 6.3 [1.0] 11.9 [0.7] 8.0 [1.1] 7.2 [0.8]
TS-NMF β = 0 5.2 [1.2] 12.0 [1.7] 6.6 [1.2] 6.3 [0.9]

validation set. Interestingly, the method also works when using β = 0 (Itakura-
Saito), even if the developments in Section “Optimization” are technically not valid
in this case, since the divergence is not convex. While the non-convexity of the
problem implies that there might be multiple minimums, we initialize the pursuit
algorithm always with the exact same initial condition (all zeros). Intuitively, one
can expect that a small perturbation on the dictionary will the local minims of the
solution change slightly and consequently the algorithm will still converge to the
same (perturbed) minimum.

Discussion

In this chapter we reviewed the use of NMF for solving source separation prob-
lems. We discussed different ways of solving the supervised training of the NMF
model and proposed an algorithm for the task-supervised training of NMF mod-
els following the ideas introduced in [24] in the context of sparse coding. Unlike
standard supervised NMF, the proposed approach matches the optimization objec-
tive used at the train and testing stages. In this way, the dictionaries can be trained
to optimize the performance of the specific task. We cast this problem as bilevel
optimization that can be efficiently solved via stochastic gradient descent. The pro-
posed approach allows non-Euclidean data terms such as β -divergences. A simple
case study of sparse-NMF with task specific supervision demonstrates promising
results.
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