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Chapter 9
Bioinformatics Approaches for Predicting 
Disordered Protein Motifs

Pallab Bhowmick, Mainak Guharoy and Peter Tompa

Abstract Short, linear motifs (SLiMs) in proteins are functional microdomains 
consisting of contiguous residue segments along the protein sequence, typically not 
more than 10 consecutive amino acids in length with less than 5 defined positions. 
Many positions are ‘degenerate’ thus offering flexibility in terms of the amino acid 
types allowed at those positions. Their short length and degenerate nature confers 
evolutionary plasticity meaning that SLiMs often evolve convergently. Further, 
SLiMs have a propensity to occur within intrinsically unstructured protein segments 
and this confers versatile functionality to unstructured regions of the proteome. 
SLiMs mediate multiple types of protein interactions based on domain-peptide rec-
ognition and guide functions including posttranslational modifications, subcellular 
localization of proteins, and ligand binding. SLiMs thus behave as modular interac-
tion units that confer versatility to protein function and SLiM-mediated interactions 
are increasingly being recognized as therapeutic targets. In this chapter we start 
with a brief description about the properties of SLiMs and their interactions and 
then move on to discuss algorithms and tools including several web-based meth-
ods that enable the discovery of novel SLiMs ( de novo motif discovery) as well 
as the prediction of novel occurrences of known SLiMs. Both individual amino 
acid sequences as well as sets of protein sequences can be scanned using these 
methods to obtain statistically overrepresented sequence patterns. Lists of puta-
tively functional SLiMs are then assembled based on parameters such as evolution-
ary sequence conservation, disorder scores, structural data, gene ontology terms 
and other contextual information that helps to assess the functional credibility or 
significance of these motifs. These bioinformatics methods should certainly guide 
experiments aimed at motif discovery.
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1 Introduction

Protein modularity is a central and recurrent theme in our understanding of protein 
function. The basic functioning of almost all proteins occurs by the interaction of its 
modules with various other partners (proteins, nucleic acids, small molecules, etc.). 
Each module has a defined set of function(s) (eg, interactions with specific partners) 
that is linked to its surface characteristics, shape and structural dynamics and the 
variety of functions that a protein can carry out is closely linked to the number and 
types of modules it contains (Bhattacharyya et al. 2006). These modules include 
globular domains, Short Linear Motifs (SLiMs) or other Molecular Recognition 
Features (MoRFs). The presence of these elements in a given protein will determine 
its function by specifying its set of interaction partners.

Protein domains possess well-defined three dimensional structures with the mem-
bers of any given domain family sharing strong and clearly visible evolutionary re-
lationships; domain signatures are therefore comparatively easy to detect from pro-
tein primary sequence using information contained in databases such as Pfam (Finn 
et al. 2014) and Prosite (Sigrist et al. 2013). Domain structures can also be predicted 
reliably using in silico methods such as homology modelling based on sequence-
structure alignments and this is now done routinely in protein structure prediction 
competitions like CASP ( Critical Assessment of protein Structure Prediction) (Moult 
et al. 2014). The Protein Data Bank (PDB) currently has more than 100,000 depos-
ited structures that have accumulated rapidly over the past few decades (Berman 
et al. 2013), and most of the domain types are now thought to have been discovered.

At present, scientists are focusing not only on structured regions of the proteome but 
also on the disordered regions in search of functional modules (Tompa 2012; Habchi 
et al. 2014). In eukaryotes, up to 33 % of the proteome may have putative long disor-
dered segments (defined as > 30 consecutive disordered residues) (Ward et al. 2004). 
Contained within these disordered regions, there may be a million or more estimated 
peptide motifs (SLiMs) existing in the proteome (Tompa et al. 2014) although rela-
tively few of them have been discovered and experimentally validated so far. Work 
over the past decade has brought to the forefront the importance of sequence (peptide) 
motifs in protein function. These motifs are typically found at functional sites of pro-
teins like cleavage sites, binding sites, sites for post-translational modifications and 
sub-cellular targeting sites. Some of the functions mediated by peptide motifs include 
specific protein-protein interactions, regulatory functions and signal transduction (Van 
Roey et al. 2014). The large number of annotated motifs in the Eukaryotic Linear Motif 
(ELM) database (Dinkel et al. 2014) provide overwhelming evidence of the fact that 
linear motifs are a ubiquitous and essential part of cellular biology.
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Although clearly very abundant, true positive (ie, functional) linear motif in-
stances are difficult to predict de novo from protein sequences due to the difficulty 
associated with obtaining robust statistical assessments (Gould et al. 2010). It is 
therefore of great interest to discover (using both computational and experimental 
techniques) new functional motifs that may form the basis of future drug discovery, 
by disrupting or regulating important interactions.

2  Short Linear Motifs (SLiMs) and Molecular 
Recognition Features (MoRFs)

In this chapter we focus on the characteristic features of SLiMs and on the various 
algorithms that have been developed to aid in their identification. Protein sequence 
motifs (SLiMs) have been described as functional microdomains that are short 
and flexible in length (between 2 to 11 consecutive residues). These are thought 
to arise by convergent evolution (Davey et al. 2009; Dinkel et al. 2014), thus the 
same SLiM may be found within otherwise unrelated proteins. They form compact 
functional modules and mainly occur within intrinsically disordered regions and 
surface accessible regions of proteins (Fuxreiter et al. 2007). Of the residues that 
constitute a SLiM, only a certain fraction are invariant (ie, fully conserved) across 
multiple instances of the motif. Usually these residues confer functional specific-
ity, for binding interactions and/or undergo posttranslational modifications (PTMs). 
Other positions may tolerate conservative substitutions (eg, residues with similar 
size and/or physicochemical characteristics may be used interchangeably). Final-
ly, some positions are not under selective constraints (wildcard positions). Thus, 
SLiMs have well-defined sequence patterns that are usually represented graphi-
cally using sequence logos (Schneider and Stephens 1990) or by machine-readable 
regular expressions (REs), that constitute position-specific definitions of allowed 
residue types and/or certain wildcard or ambiguous positions. Regular Expressions 
(REs) will be explained and elaborated upon later in the chapter.

Molecular Recognition Features (MoRFs) are so-called because these protein 
segments form a specific class of intrinsically disordered regions (IDRs) that ex-
hibit specific molecular recognition and binding functions. MoRFs are short (usu-
ally 20 residues or fewer) segments that are located within longer IDRs and are 
very interaction-prone (Vacic et al. 2007). MoRFs undergo characteristic disorder-
to-order transitions upon binding to their partners (Mohan et al. 2006); based upon 
their bound state structures, they have been classified into α-MoRFs, β-MoRFs and 
ι-MoRFs (the latter class forms non-regular structures without regular backbone 
hydrogen bonding patterns). Unlike SLiMs, MoRFs are not defined on the basis 
of a sequence pattern (RE), but as interaction-prone disordered segments that (are 
predicted to) form ordered secondary structures upon binding to a protein partner. 
However, MoRF segments may themselves contain SLiMs, such as demonstrated 
in Fig. 9.1a (see next section).



294 P. Bhowmick et al.

3  Motif (SLiM)-Mediated Interactions  
and Their Biological Importance

Our current understanding of protein-protein interactions has changed significantly 
with the knowledge of how IDRs play crucial roles in enabling protein interactions 
(‘domain-peptide’ interactions) (Dinkel et al. 2014; Petsalaki and Russell 2008; Ed-
wards et al. 2012). Interactions mediated by SLiMs have been shown to function in 
diverse processes, such as in the control of cell cycle progression, substrate selec-
tion for proteasomal degradation, targeting proteins to specific subcellular loca-
tions and for stabilizing scaffolding complexes. Figure 9.1a shows an example of 
a motif-mediated interaction (a p53 peptide bound to the folded SWIB domain of 
MDM2) (Schon et al. 2002). The region of p53 present in the crystal structure con-
tains an 8-residue SLiM (the ELM degradation motif ‘DEG_MDM2_1’). The motif 
is disordered in the unbound state, but forms an α-helical secondary structure in the 
complex with MDM2, thus conforming to the classical definition of a MoRF. In this 
example, the SLiM overlaps with a larger MoRF segment that can be detected by 
the MoRFPred predictor (Disfani et al. 2012). Figure 9.1b illustrates recognition of 
the ELM SUMOylation motif ‘MOD_SUMO’ present on the C-terminal domain of 
RanGAP1 by the mammalian SUMO E2 enzyme UBE2I (Bernier-Villamor et al. 
2002). Note that in this case the peptide motif is not classified as a MoRF by the 
predictor.

Fig. 9.1  Examples of SLiM-mediated interactions. a The p53 peptide ( red cartoon) that is rec-
ognized by the folded SWIB domain (surface representation) of MDM2 (PDB code: 1YCR) is a 
MoRF that attains a helical bound state conformation. This MoRF region also contains a SLiM 
(degron) as indicated on the figure. b Interaction between the mammalian SUMO E2 enzyme 
(UBE2I, in surface representation) and its SUMOylation substrate RanGAP1 ( green ribbon) medi-
ated by a modification motif (shown in red) (PDB code: 1KPS). In both the figures, the amino 
acid sequence of the peptide motif segments and their sequence neighborhood are shown below 
their respective molecular diagrams along with the MoRFPred predictions (the letter ‘M’ on a red 
background indicates the segments that are predicted to be a MoRF, whereas ‘n’ against a green 
background indicates non-MoRF residues). The SLiM segments and their corresponding ELM 
identifiers are also indicated
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Interface areas in peptide-protein complexes observed in the PDB average about 
500 Å2 (London et al. 2012), significantly smaller than the size of an average pro-
tein-protein hetero-interface (1900 Å2) or homodimer interface (3900 Å2) (Janin 
et al. 2008). The limited size of SLiM-mediated interfaces often results in micro-
molar binding affinity for these interactions, whereas globular protein-protein com-
plexes formed via domain-domain interactions can be much stronger (nano-molar 
or lower Kd). This permits transient and reversible interactions that are necessary 
for many dynamic cellular binding events, such as those required for the rapid trans-
mission of intracellular signals (Neduva and Russell 2005; Gibson 2009).

A further advantage is the ‘switching’ behaviour that can be achieved by the use 
of PTMs within SLiMs to regulate interactions. Phosphorylation/dephosphorylation 
is widely used to enhance (or disrupt) interactions for example, and this enables 
direct cross-talk between multiple signaling pathways (Akiva et al. 2012). Multiple 
SLiMs can also form more complex switches by co-operating with each other and 
acting in synergy with post-translational modifications to assist switching between 
different functional states of proteins (Dinkel et al. 2014). In the example illustrated 
in Fig. 9.2, the phosphorylation of beta-catenin (CTNNB1) at Thr41 generates a 
docking site for Glycogen synthase kinase-3 beta (GSK3B) which phosphorylates 
Ser37 and generates a new docking site for GSK3B. Subsequent phosphorylation of 
Ser33 by GSK3B switches CTNNB1 binding specificity to the F-box/WD40 repeat 
containing protein BTRC which functions as a substrate recognition component of 
a SCF (SKP1-CUL1-F-box protein) multi-subunit E3 ubiquitin-protein ligase. This 
results in the recruitment of β-catenin to the SCF E3 ligase complex followed by 
ubiquitination and proteasome-dependent degradation of β-catenin (Wu et al. 2003; 
Hagen and Vidal-Puig 2002; Van Roey et al. 2013).

SLiMs represent an important target for diseases, both in terms of causal muta-
tions and potential therapeutics (Uyar et al. 2014). Further, many pathogens have 
taken advantage of the plasticity of SLiMs by mimicking host motifs to dysregulate 

Fig. 9.2  Schematic illustration of the use of multiple overlapping SLiMs (ELM identifiers MOD_
GSK3_1 and DEG_SCF_TRCP1) in beta-catenin (CTNNB1) that allows the recognition and relay 
(sequential) phosphorylation of beta-catenin by glycogen synthase kinase-3 beta (GSK3B) result-
ing in the activation of a degradation motif (degron) that is recognized by the WD40 repeat domain 
of the substrate adaptor subunit of a multi-subunit E3 ubiquitin ligase, resulting in the ubiquitina-
tion of beta-catenin and its 26 S proteasome-mediated degradation. Phospho groups are shown in 
blue circles and ‘P’ written in red
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and rewire cellular pathways of the host to their own advantage (Davey et al. 2011b; 
Kadaveru et al. 2008). Our growing appreciation of the importance of motif-medi-
ated protein functions is evidenced by the recent growth of motif databases. The 
eukaryotic linear motif (ELM) resource maintains curated data on protein SLiMs 
whose functional validity has been demonstrated experimentally (Dinkel et al. 
2014). MiniMotifMiner (MnM) (Mi et al. 2012) is another resource dedicated to 
the annotation and detection of a broad spectrum of motifs from a large number of 
species and currently contains 880 consensus minimotifs and 294,053 instances. 
Similar to SLiM, minimotif is another term used to define short contiguous peptide 
sequences that possess a demonstrated function (including post translation modifi-
cations, binding to a target protein or molecule and protein trafficking) in at least 
one protein. Another database ScanSite (Obenauer et al. 2003) stores data for 65 
motifs in 12 different groups (functionally similar motifs have been grouped togeth-
er). Similarly, Prosite (Sigrist et al. 2013) contains data for 1308 patterns or regular 
expressions although it contains domain signatures in addition to SLiMs. However, 
in spite of their immense functional importance in eukaryotic cell regulation, de-
tailed information regarding the majority of SLiMs are still limited, and at present 
only a small proportion of human motifs have been discovered (Tompa et al. 2014). 
This highlights the pressing need to develop and further enhance computational 
methods that can efficiently predict novel SLiMs in protein sequences and thereby 
serve as a useful guide for experimental motif discovery efforts.

4  Representing Motifs: Regular Expressions (REs), 
Position Weighted Matrices (PWMs) and Position-
Specific Scoring Matrices (PSSMs)

SLiMs are commonly represented by RE-patterns and PWMs. SLiMs are comprised 
of both defined amino acid positions as well as wildcard positions which may be 
occupied by any amino acid type. Defined positions may be (i) fixed or invariant, in 
which only a single amino acid type is permitted at that position, or (ii) ambiguous, 
in which case multiple amino acids (often of similar size and/or physicochemical 
properties) may occupy that site and still result in a functional SLiM. Thus, a RE 
describes a sequence of letters that may match at each position in a given motif. The 
simplest RE is just a string of letters, such as the “RGD” motif present in extracel-
lular matrix proteins that is recognised by different members of the integrin family 
(Corti and Curnis 2011). This regular expression matches only one defined amino 
acid sequence: Arg-Gly-Asp (RGD). To allow variable positions in a RE, additional 
symbols are used. For example, [KR] specifies that either K or R may be present; 
{min, max} specifies a range of minimum and maximum numbers of residues al-
lowed (eg. M{0,1}) indicates that Met can either be absent (0) or can be present but 
only once (1); the ‘.’ (dot symbol) at a given position indicates that any amino acid 
is allowed at that position. One disadvantage of REs is that residue-specific fre-
quency information is lost: [KR] does not indicate the relative occurrence frequency 
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of K vs R. Table 9.1 provides an overview of how regular expressions are used to 
represent sequence motifs.

Unlike REs, PWMs indicate the probability of each residue type occurring at 
each position in a motif. PWMs are widely used for characterizing and predicting 
sequence motifs (Bailey 2008). A PWM is an ‘n’ by ‘w’ matrix where ‘n’ is the 
number of letters in the sequence alphabet (20 amino acids for proteins) and ‘w’ 
is the number of motif positions. Pa,i represents the probability of letter ‘a’ at the 
ith position in the motif. A PWM can be used to define an occurrence probability 
for any possible sequence containing ‘w’ characters (calculated as the product of 
the corresponding entries in the PWM), based on the assumption that each motif 
position is statistically independent. The relationship between a RE and the cor-
responding PWM is shown in Fig. 9.3 for the KEN-box motif. The 16 validated 
occurrences (sites) from which this motif was constructed (data from ELM entry 
DEG_APCC_KENBOX_2) are shown aligned with each other on the left-hand 
panel. The corresponding RE is shown in the middle panel along with the observed 
counts of each letter in the corresponding alignment columns (frequency table). The 
PWM is shown on the right-hand panel. Finally, the figure represents the KEN-box 
sequence logo (Schneider and Stephens 1990).

Motif discovery algorithms also output a position-specific scoring matrix (PSSM) 
which takes the background probabilities of different letters into account (Bailey 
2008). The PSSM entries are calculated as a log likelihood: Sa,j = log2 (Pa,j/fa), where 
fa is the overall (background) probability of letter ‘a’ in the set of input sequences 
that will be scanned for motif occurrences, and Pa,j represents the frequency of letter 
‘a’ at the jth position as explained earlier. Sequences are assigned scores by sum-
ming up (rather than multiplying position specific probabilities as with a PWM) 
the appropriate numbers from the PSSM table. PSSM scores are more useful for 
scanning sequences as compared to PWM probabilities because they allow scaling 
by background probability: this reduces false positive rates caused by non-uniform 
distribution of letters in sequences (Xia 2012; Bailey 2008).

Table 9.1  Description of the different types of symbols used to construct Regular Expressions 
(REs) for peptide motif representation
Character Name Description
. Dot Any amino acid allowed
[…] Allowed character class Amino acids listed are allowed
[^..] Disallowed character class Amino acids listed are not allowed
X{min, max} Allowed range (number) of con-

secutive specified character ‘X’
Min required, max allowed

^ Caret Matches the amino terminal
$ Dollar Matches the carboxy terminal
? Question One amino acid is allowed but is optional
* Star Any number of amino acids are allowed 

but are optional
+ Plus One amino acid is allowed, additional are 

optional
| Alternation Matches either expression it separates
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5  Overview of Functionally Specialized SLiM Categories 
in ELM

The latest published ELM release contained 197 classes and 2404 instances (Dinkel 
et al. 2014). SLiMs in ELM have been classified into six categories based on their 
function: proteolytic cleavage sites (‘CLV’), sub-cellular targeting sites (‘TRG’), 
ligand binding sites (‘LIG’), post-translational modification sites (‘MOD’), de-
struction motifs or degrons (‘DEG’) and finally, docking sites (‘DOC’) (Table 9.2). 
Figure 9.4 shows representative examples of SLiM-mediated interactions from each 
ELM class (except ‘CLV’ sites for which none of the entries had a corresponding 
PDB entry).

Fig. 9.3  Converting a multiple sequence alignment of known motif instances into a RE and PWM. 
The alignment of motif sites (validated instances of the KEN-box (Dinkel et al. 2014)) is shown 
on the left. The RE is shown at the top of the middle panel. The counts of each amino acid type in 
each alignment column (the position specific count matrix, PSCM) are shown beneath the RE. The 
PWM is shown on the right hand side. The last figure shows the information content sequence logo 
for the motif (generated by http://weblogo.berkeley.edu/logo.cgi)
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Cleavage ‘CLV’ sites are recognised by proteases for the processing of predeces-
sor proteins into their active biological products (eg, N-arginine dibasic convertase 
is an endopeptidase that recognizes (.RK)|(RR[^KR]) dibasic cleavage sites for pro-
cessing secreted proteins (Hospital et al. 2000)). ‘TRG’ motifs are used for protein 
recognition and targeting to diverse sub-cellular compartments: for example, the 
‘tyrosine-based sorting signal’ (Y..[LMVIF] motif) is found in the cytosolic tails of 
some membrane proteins and is responsible for deciding the traffic flow in endosom-
al and secretory pathways (Fig. 9.4a). Motifs that mediate binding to globular protein 
domains form the ‘LIG’ class: for example, the AP2 (Adaptor Protein) α subunit 
recognizes and binds to accessory endocytic proteins such as amphiphysin, AP180 
and synaptojanin170 via their F.D.F motifs resulting in their recruitment to the site of 
clathrin coated vesicle formation and thereby assists and regulates vesicle assembly 
(Brett et al. 2002) (Fig. 9.4b). SLiMs located at post-translational modification sites 
constitute the ‘MOD’ class (eg, the Protein kinase B substrate phosphorylation site 
has residue preferences as shown in Fig. 9.4c).

Earlier ELM versions contained only these four motif categories (‘CLV’, ‘TRG’, 
‘LIG’, and ’MOD’) (Gould et al. 2010). Recently however with the increase in the 
number of ELM classes, two additional but functionally specialized ‘LIG’ (ligand-
binding) categories were introduced—‘DEG’ (degron) motifs and ‘DOC’ (docking) 
motifs. Degrons are motif sequences embedded within proteins that enable their spe-
cific recognition by E3 ubiquitin ligases, normally resulting in the channeling of 
these substrates into the ubiquitin-proteasomal degradation pathway (Glickman and 
Ciechanover 2002). For example, the [IL]A(P).{6,8}[FLIVM].[FLIVM] motif pres-
ent in the α subunit of the heterodimeric transcription factor Hif-1 (hypoxia-inducible 
factor 1) is an oxygen-dependent degron that is hydroxylated by prolyl hydroxylases 
under conditions of normal oxygen availability (Masson and Ratcliffe 2003). Prolyl 
hydroxylation confers degron recognition and binding by the von Hippel-Lindau tu-
mor suppressor protein (pVHL) (Fig. 9.4d) which forms a multi-subunit E3 ubiquitin 
ligase complex with elongin C, elongin B, Cul-2, and Rbx1 leading to the ubiquitina-
tion and proteasomal degradation of Hif-1α (Min et al. 2002).

Table 9.2  Summary of data stored in the ELM database (as of September 2013) (reprinted with 
permission from Dinkel et al. 2014). Breakup of ELM data according to (1) the six ELM class 
types (LIG, MOD, TRG, DEG, DOC and CLV motifs) and the number of ELM classes corre-
sponding to each class, (2) ELM instances by organism type, (3) the number of ELMs that are 
represented in the PDB, and finally, (4) the number of GO terms associated with the data in ELM
Functional 
sites

ELM classes ELM instances PDB 
structures

GO terms

Total 197 2404 290 419
By category LIG 103 Human 1391 Biological process 217

MOD 30 Mouse 211
TRG 23 Rat 115 Cell compartment 95
DEG 15 Yeast 86
DOC 15 Fly 77 Molecular function 107
CLV 11 Other 524
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Fig. 9.4  PDB structures corresponding to representative examples from each ELM class showing 
the SLiM peptide (drawn using stick representation, colored red and surrounded by a surface mesh) 
in complex with their globular protein partners (displayed using light grey surface representation). 
SLiM-containing sequence segments of all the experimentally validated vertebrate instances (data 
from ELM) are shown in the multiple sequence alignments. The first sequence in each alignment 
corresponds to the SLiM-containing protein shown in the PDB structure (SLiM residues are shown 
in red). SLiM residues for the other instances are highlighted using light blue color. Consensus 
motif patterns are shown in bold under each alignment. a Targeting motif derived from the trans-
Golgi network integral membrane protein (TGN38) interacting with the mu subunit of the adaptor 
protein complex 2, Ap2m1 (PDB code: 1BXX). b Ligand binding motif from human Amphiphysin 
interacting with the alpha-2 subunit of the adaptor protein complex 2, Ap2a2 (PDB code: 1KY7). 
c Modification motif from Glycogen synthase kinase-3 beta (Gsk3b) in complex with the kinase 
domain from RAC-beta serine/threonine-protein kinase (AKT2) (PDB code: 1O6K). d Degrada-
tion ( degron) motif of human hypoxia-inducible factor 1-α protein (HIF1A) interacting with the 
Von Hippel-Lindau (VHL) component of the multi-subunit VHL ubiquitination complex (PDB 
code: 1LM8). e Docking motif derived from human Retinoblastoma-associated protein, RB1 inter-
acting with the cyclin A2/CDK2 complex (PDB code: 1H25). Figures were drawn using PyMol
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Finally, docking(‘DOC’)motifs are used to recruit modifying enzymes onto their 
target substrates. However, ‘DOC’ sites are distinct from ‘MOD’ sites that are tar-
geted for the actual enzymatic modification; initial binding to docking motifs on the 
substrate helps to direct and enhance enzyme specificity for the modification site 
(the two motifs together can be considered to possess a bi-partite architecture). For 
example, the docking motif DOC_CYCLIN_1 ([RK].L.{0,1}[FYLIVMP]) initiates 
substrate interactions with cyclin (Fig. 9.4e) resulting in increased specificity of 
phosphorylation (at the associated MOD_CDK_1 phosphorylation sites) by cyclin/
Cdk complexes (Takeda et al. 2001).

6 Motif Discovery Algorithms and Tools

Given the diverse gamut of functions that are mediated by SLiMs, the development 
of methods and algorithms that will aid in (1) the discovery of new motifs ( de novo 
motif prediction), and (2) filtering functional motif instances from the background 
of stochastic occurrences, is expected to be useful for identifying functional sites 
in proteins, especially within the unstructured segments. Usually motif discovery 
algorithms fall into three categories: enumeration, deterministic optimization and 
probabilistic optimization (D'Haeseleer 2006).

Enumeration is an exhaustive search based word counting method. The target 
sequences are broken up into shorter fragments (words of length ‘n’) and by count-
ing the occurrence frequencies of all ‘n-mers’, the method attempts to identify sta-
tistically overrepresented short motifs. The highest occurrence frequency within the 
target sequences does not necessarily indicate a specific motif; statistical overrepre-
sentation can be more reliably estimated by searching for motif patterns that appear 
more frequently than the random expectation (this random expectation is based on a 
background model that takes into account compositional biases). These steps need 
to be repeated several times until it finds statistically significant motifs. Further, by 
allowing mismatches and degeneracy in certain positions, consensus motifs can be 
defined in a more flexible and realistic manner. Alternatively, multiple overrepre-
sented motifs that exhibit similarity may be combined into a single, more flexible 
motif. However, this method is computationally expensive because it requires the 
generation and storage of large numbers of short segments in memory.

Deterministic optimization is based on Expectation Maximization (EM). In the 
first step of EM, a PWM is initialized with a single n-mer segment of user-defined 
length (‘n’) along with some amount of background frequencies (nucleotides or 
amino acids). Next the input sequences are split into substrings (n-mers) and each 
substring then matched against the PWM. A probability value is calculated that 
indicates whether the substring was generated by the motif (PWM) model or by 
the background sequence distribution. Taking a weighted average of the current 
probabilities for each substring, the PWM is refined and the probabilities for the 
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substrings then recalculated based on the updated PWM. The steps are repeated 
iteratively until a maximum likelihood motif model (PWM) is obtained. A well-
known implementation of EM is the Multiple EM for Motif Elicitation (MEME) 
software (Bailey et al. 2006).

Finally, probabilistic optimization is based on Gibbs sampling. Briefly one motif 
from each input sequence is randomly selected to determine an initial model and 
a PSSM is built from those sub-strings. Then the PSSM is used to scan each input 
sequence to find a motif that better contributes to improve the PSSM quality; this 
new motif with higher PSSM score is then added to the model and the old motif 
is removed. This process is repeated until the PSSM reaches convergence. The al-
gorithm assumes that most of the target sequences will contain the motif. Aligns 
Nucleic Acid Conserved Elements (AlignACE) (Chen et al. 2008) is a program 
based on the Gibbs sampling approach and is used to discover motifs from sets of 
DNA sequences.

Many de novo motif discovery tools are currently available that are dedicated to 
discover motifs present in disordered protein regions. De novo discovery methods 
take as input the protein primary sequence and utilize features such as disordered 
structural environment and evolutionary context as pointers to reduce false posi-
tive matches (Davey et al. 2012b). Functional SLiMs have been characterized to 
be enriched within disordered regions of the proteome, motif residues can be dis-
tinguished from their sequence neighborhood on the basis of higher evolutionary 
conservation, and furthermore, SLiMs often exhibit a propensity to form ordered 
secondary structures upon partner binding (Davey et al. 2012b). These additional 
layers of information are therefore used to enhance the filtering and removal of false 
positive hits.

Additional strategies to improve true positive motif detection include: remov-
al prior to input of sequence segments that are spurious for motif discovery (eg, 
masking repeat sequences and low complexity regions), and sequence regions that 
are poorly represented in SLiMs (such as well structured domains, transmembrane 
segments and poorly conserved segments). Furthermore, the use of multiple motif 
predictors that cover a range of motif descriptions and search algorithms, followed 
by a comparison of results is always recommended. Optimizing the runtime details 
such as motif width, expected number of motif occurrences, deciding cutoffs for 
various parameters also require careful consideration. Sometimes it may be useful 
to combine similar motifs into a smaller set of (more) flexible motif descriptions. 
Users should also consider multiple high scoring motifs as the top hit may not nec-
essarily be the most biologically relevant. Finally, the chances of detecting a true 
functional motif are also maximized if one can reduce (based on available evidence) 
the number of sequences that are not likely to possess that functionality (“noise”).

The Discovery@Bioware portal (http://bioware.ucd.ie/~compass/biowareweb/) 
and MEME Suite (http://meme.nbcr.net) contain a host of useful resources per-
taining to the discovery, characterization and analysis of SLiMs (Table 9.3). The 
Eukaryotic Linear Motif (ELM) resource (http://elm.eu.org) has an extensive col-
lection of curated SLiM instances, and is a useful tool for sequence annotation to 
identify protein segments that match known functional SLiMs. Regular expressions 
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representing the ELM classes are used by ELM’s motif detection pipeline to scan 
proteins for putative SLiM instances (Davey et al. 2012a; Dinkel et al. 2012). Mini-
motif Miner (MnM, http://mnm.engr.uconn.edu/MNM/SMSSearchServlet) is also 
widely used for motif searches and analysis.

7  Details of Usage and Functionality of Some Selected 
Motif Discovery Tools

SLiMPrints (short linear motif fingerprints, currently at version 3.0) attempts to 
identify putative functional motifs from the input amino acid sequence on the ba-
sis of evolutionary conservation as a discriminatory feature for SLiM discovery 
(Davey et al. 2012a). Residue conservation statistics are analyzed and their signifi-
cance estimated by comparison against the background conservation of neighbor-
ing residues. The method identifies relatively conserved (overconstrained) proximal 
residue clusters present within disordered regions; such “islands of conservation” 
located inside structurally unconstrained and mutation-prone disordered regions 
have been shown to be indicative of putatively functional SLiMs. The reader is 
referred to the original publication for a detailed description of the methodology 
(Davey et al. 2012a).

We demonstrate here how the user can provide input to the SLiMPrints web appli-
cation (http://bioware.ucd.ie/~compass/biowareweb/Server_pages/slimprints.php), 

Table 9.3  A list of commonly used motif discovery resources that enable motif prediction, dis-
covery and analysis
Name Description
SLiMProb Searches for occurrences of pre-defined motifs (REs) in protein sequences 

(http://bioware.ucd.ie/~compass/biowareweb/)
SLiMSearch 3 Searches for occurrences of pre-defined motifs proteome wide (http://bio-

ware.ucd.ie/~compass/biowareweb/)
SLiMPred Predicts potential SLiMs in a protein sequence (http://bioware.ucd.

ie/~compass/biowareweb/)
SLiMPrints Predicts potential motifs by searching for clusters of locally conserved 

residues present in intrinsically disordered regions (http://bioware.ucd.
ie/~compass/biowareweb/)

SLiMFinder Identify SLiMs in a group of proteins (http://bioware.ucd.ie/~compass/
biowareweb/)

GLAM2 Identify DNA or protein motifs using gapped local alignment (http://meme.
nbcr.net)

MEME Identify DNA or protein motifs using EM (http://meme.nbcr.net)
ELM Database of experimentally validated SLiMs in eukaryotic proteins and a 

resource for investigating candidate functional SLiMs (http://elm.eu.org/)
MnM Examines query protein for presence of short contiguous peptide sequences 

that have a known function in at least one protein (http://mnm.engr.uconn.
edu/MNM/SMSSearchServlet)
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provide a brief overview of the methodology involved and finally, describe how the 
output is displayed and its contents. The user can analyse a protein of interest by 
providing the UniProt Accession of the protein into the search box (Fig. 9.5, “Query 
protein”). SLiMPrints contains pre-computed multiple sequence alignments of least 
divergent orthologs selected using the GOPHER algorithm, following a BLAST 
search for homologs against a database of EnsEMBL metazoan (plus Saccharomy-
ces cerevisiae) genomes (Flicek et al. 2011). The alignments have been processed 
to increase their quality by the removal of potential biases (for example, low com-
plexity regions in highly divergent proteins were removed from the alignments and 
alignments with identified orthologs in < 10 metazoan species were not considered 
further) (Davey et al. 2012a). Further, regions shown to be deficient in motifs (anno-
tated domains, transmembrane segments, extracellular regions and highly structured 
residues) are masked before the motif discovery step. Because the algorithm aims 
to identify regions of functional constraint (proximal clusters of strongly conserved 
residues) against a backdrop of evolutionary drift especially within disordered seg-
ments, relative local conservation (RLC) statistics (that measures residue conserva-
tion against the background conservation of a neighboring sequence window) are 
employed to obtain better information about the putative functionality of a motif re-
gion. SLiMPrints combines RLC and disorder predictions to identify putative SLiMs 
in the input sequence. Figure 9.5 illustrates an example SLiMPrints output using hu-
man p53 as the input sequence. The output contains the identified motifs ranked by 
their significance score (Sigmotif is a metric that represents the likelihood/significance 
of the observed grouping of highly conserved residues that form a putative sequence 
motif (Davey et al. 2012a)). The underlying alignment(s) corresponding to the re-
spective motif regions can be visualized by clicking on the “view” links. The RE of 
the obtained motifs and their sequence context (with the motif start and end residue 
positions in the input sequence) are also printed. The average IUPred (Dosztanyi 
et al. 2005) disorder score of the motif is also output. Finally, if the obtained motif 
matches an annotated ELM identifier, the ELM entry is also shown.

SLiMFinder (Short, Linear Motif Finder) software/web server (http://bioware.
ucd.ie/~compass/biowareweb/Server_pages/slimfinder.php) is intended to al-
low researchers to de novo discover novel SLiMs from a set of input sequences 
(Davey et al. 2010). The purpose is to identify shared motifs among a set of un-
related proteins that possess a common function suspected to be SLiM-mediated 
(eg, binding to a common protein partner). SLiMFinder accounts for evolutionary 
relationships amongst the input sequences by clustering them into unrelated protein 
clusters (UPCs), such that proteins separated into different clusters do not share 
any BLAST-detectable similarity (Altschul et al. 1990). An explicit model of con-
vergent evolution is used whereby the method searches for SLiMs that are statisti-
cally overrepresented in a maximum number of proteins from the different UPCs. 
SLiMFinder combines two algorithms: (i) SLiMBuild, which performs the actual 
task of identifying recurring motifs, and, (ii) SLiMChance estimates the statistical 
significance of returned motifs. We refer the reader to the original publication for 
full details of the methodology involved (Edwards et al. 2007).
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Fig. 9.5  SLiMPrints input and output. Input options: SLiMPrints takes as input a UniProt acces-
sion number (shown on the top panel). Output options: summarized results of SLiMPrint hits are 
initially displayed as shown below the input options panel. This section provides a summary of 
the identified motifs along with their main features (highlighted using the red ovals and the red 
arrows). The results specify the motif rank, a “Visualize” option (link to visualize alignment of 
orthologs, an example of which is shown in the bottom panel), “Sigmotif” (Significance score of the 
identified motif), “Motif” (Regular Expression of the observed motif), “Context” (motif contain-
ing sub-sequence), “IUPred” (average disorder score of the motif) and “Annotated ELM” (if the 
motif is found in ELM)
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Figure 9.6 shows the SLiMFinder web server input page. The input may be a 
list of UniProt IDs or user-built sequence files in UniProt or FASTA format. Next 
to the input box are the lists of options (separately for ‘Masking’, ‘SLiMBuild’, 
‘SLiMChance’ and ‘Output’) that the user can employ to fine tune searches. First, 
there are multiple options to mask out regions (from the input sequences) known 
to be depleted in SLiMs: users can exclude from the motif search unconserved 
residues, ordered regions (based on IUPred predictions) such as Pfam domains, 
low complexity regions as well as certain amino acid types. Next, SLiMBuild has 
options that specify the minimum and maximum number of consecutive wildcard 
positions that are to be permitted, the total number of allowed wildcard positions 
and the minimum number of input sequences that must contain each generated mo-
tif for it to be returned as a putative SLiM. Users will also find settings to modify 
residue groupings based on physicochemical or other parameters: these groupings 
are used to define ambiguous SLiM positions. Once a set of motifs is generated by 
SLiMBuild, the SLiMChance algorithm assigns a statistical significance score (P-
value) to each motif (the user can select the significance cutoff for returning motifs). 
Although the default behaviour is to return upto 100 motifs at P-value < = 0.99, the 
most significant motifs are those with P < = 0.05 (the stricter the significance cutoff, 
the smaller the proportion of false positive hits).

SLiMFinder output provides rich visualization and a host of options for data 
analysis (Fig. 9.6). In the main output page, a summary of the returned (predicted) 
motifs are shown ranked by significance score. With each motif hit there are as-
sociated hyperlinks: under the “Aligned” column, the ‘M’ and ‘A’ alignment links 
will allow the visualization of the motif region in the input sequences (‘masked’ 
and ‘unmasked’, respectively). Clicking the red links under the “Proteins” column 
shows those proteins in which the motif was found and their position in the se-
quence. The small thumbnail figure under “Plot” will direct the user to alignments 
for the corresponding protein and its GOPHER orthologs around the region of the 
generated motif. Finally, for each putatively returned motif there are links to run 
CompariMotif (Edwards et al. 2008) and SLiMSearch (Davey et al. 2011a): the 
former compares the motif to known, literature-derived motifs, whereas the latter 
searches for all UniProt entries that contain this motif alongwith statistical estimates 
about the validity of the observed occurrence.

GLAM2 ( Gapped Local Alignment of Motifs) is a software for finding motifs in 
input (protein or DNA) sequences (Frith et al. 2008). The web version is located at 
http://meme.nbcr.net/meme/cgi-bin/glam2.cgi. GLAM2 examines the set of input 
sequences for common motifs and finds a motif alignment with maximum score. 
GLAM2 enables the detection of gapped ( ie, with indels) motifs. The algorithm 
starts from an initial random alignment constructed from the input sequences and 
uses simulated annealing to make repetitive changes to it. These changes are ran-
dom and they affect the motif score (which can either increase or decrease), the idea 
being to prevent the system from being trapped in local optima. The changes are 
applied iteratively until the score fails to improve further even after ‘n’ successive 
changes (n = 10,000 by default). The types of changes that are possible and their 
details are beyond the scope of this chapter and the reader is referred to the original 
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publication (Frith et al. 2008). Essentially, GLAM2 builds on the idea that motifs 
contain a certain number of “key positions” defined by strict residue preferences at 
highly conserved and therefore presumed to be functional sites. The algorithm opti-
mizes the number of key positions and then searches for an alignment of substrings 

Fig. 9.6  SLiMFinder input and output. Input options are shown on the top. Input is a list of 
UniProt identifiers corresponding to the set of proteins in which we want to discover common 
(shared) motifs. Options are categorized into the following sub-sections: “Masking”, “SLiM-
Build”, “SLiMChance” and “Output” options (shown using the red ovals and arrows). The web 
server provides short descriptions for each option if the user hovers the mouse over the ‘?’ sign 
next to each option. Output: summarized results are initially displayed (shown in the panel below 
the input options). This section outputs the “Rank” (motif rank), “Motif” (RE of the generated 
motif), “Aligned (M|A)” (links to visualize motif alignments for masked or unmasked sequence 
context, an example is shown on the bottom most panel), “Sig” (motif significance score), “Pro-
teins” (list of input proteins that contain the motif). Under the “Proteins” header, the user will see 
in red the number of proteins containing each predicted motif. By clicking on the number of hits, 
the output will expand to show the names of those proteins from the input list that contain the motif 
in question. Each protein can then be further analyzed for that motif based on the conservation 
statistics (for example by clicking on “Link to ortholog alignment”). Finally, “Run CompariMotif” 
(comparison against known motifs) and “Run SLiMSearch” (search for generated motif pattern in 
sequence databases) functions are also available for each predicted motif
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(one from each input sequence) to match a series of key positions. Thus in the 
scoring scheme, the alignments of identical or similar residues in the same key 
positions are rewarded, whereas insertions and deletions are penalised. Ultimately 
with the simulated annealing approach GLAM2 attempts to find a motif alignment 
with maximum score. To cross-check that a reproducible, high-scoring motif has 
been identified, the steps are repeated multiple (by default 10) times using different 
starting alignments selected randomly by the program. The algorithm then checks 
whether similar (but not necessarily identical) alignments recur. This is suggestive 
that the optimal motif has been found.

Figure 9.7 shows the input page on the GLAM2 server and an example output. 
Input can be either in the form of a text file containing the input sequences or by 
pasting the sequences into the box provided. The user can check details about the 
input formatting by clicking on the links (colored cyan) just above the input box. 
There are several parameters that can be customized (Fig. 9.7). The allowed align-
ments can be constrained by specifying variables such as: minimum number of in-
put sequences to be used in building the motif alignment, minimum and maximum 
number of aligned columns ( ie, key positions), and the initial number of aligned 
columns. The user can also modify the scores for tolerating insertions and deletions, 
and turn off/on shuffling of original sequence (used as a control to compare with 
the score of original sequence). Running GLAM2 is computationally heavy and 
the analysis time depends on sequence length and the size of the input dataset. One 
feature of this method is that it can detect only a single motif at a given time (by 
default 10 variants/replicates of the highest scoring motif are generated) and it does 
not model alternative binding motifs simultaneously (Tran and Huang 2014; Frith 
et al. 2008). However, more advanced users can use the command line installation 
to detect alternate (weaker) motifs, by first masking the strongest identified motif 
region (using the program ‘glam2mask’) and then re-running GLAM2.

The output is provided in three different formats: html, text and MEME text 
format. Figure 9.7 ( bottom) shows a screenshot from the html output page. Because 
GLAM2 attempts to find the strongest motif in the set of input sequences using a 
‘replication strategy’, if the top ranking motifs are very similar to each other, it 
is an indication that a successful replication has been achieved. Thus, by default 
GLAM2 outputs 10 variations of the strongest motif shared by the input sequences 
(this value “number of alignment replicates” can be changed by the user). Thus the 
topmost/first alignment is the interesting one: the purpose of the others is to indi-
cate the reproducibility of the first motif. The output contains the list of motifs with 
maximum score and corresponding alignments of the motif containing segments 
(only the first one is shown in Fig. 9.7), their start and end positions, marginal 
score for each motif segment (this reflects the amount by which the total alignment 
score would decrease if that segment were to be removed from the alignment; thus, 
higher scores reflect better matches to the motif), and finally, the motif sequence 
logo. For each candidate motif, GLAM2 has additional options including, for ex-
ample, scanning the motif against sequence databases (using GLAM2SCAN). The 
HTML output page also provides a link to view the Position Specific Probability 
Matrix (PSPM).
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MEME Multiple EM for Motif Elicitation (MEME) is a widely used tool for search-
ing novel ‘signals’ in sets of biological sequences (Bailey et al. 2006); the webserver 
version is available on MEME suite (http://meme.nbcr.net/meme/cgi-bin/meme.cgi). 

Fig. 9.7  GLAM2 input and output. Input ( top panel) is accepted in fasta format. The available 
input options are shown using red arrows. These include options to specify the number of sites 
contributing to the motif (if known), number of key positions (maximum, minimum and initial 
number), maximum number of iterations and position specific insertion and deletion penalty 
scores. Output ( bottom panel) showing the best statistically significant motif and a list of motif 
occurrences in the input dataset, their start and end positions, and marginal score followed by the 
motif logo. Hyperlinked buttons (“Scan alignment”, “View alignment” and “View PSPM”) that 
allow the motif to be analysed are shown at the bottom

 

http://meme.nbcr.net/meme/cgi-bin/meme.cgi
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MEME has been used previously to discover common transcription factor binding 
sites in promoter sequences of similarly regulated genes (Lyons et al. 2000) and 
to identify novel sequence signatures in proteins with common interaction partners 
identified from large scale protein interaction data in Saccharomyces cerevisiae 
(Fang et al. 2005). MEME is based on the expectation maximization (EM) algorithm 
and it looks for ungapped, shared sequence patterns within the input (DNA or pro-
tein) sequences. One drawback is its inability to discover motifs containing indels 
as it does not allow gaps. To increase the chances of finding statistically significant 
motifs, it is recommended to keep the input sequences as short as possible (eg, by 
deleting repetitive regions and low complexity regions that do not generally contain 
functional motifs) and to curate the input sequence list to reduce as much as possible 
those sequences that are not likely to contain the motif. Although only a single motif 
can be modeled at a time, MEME erases previously discovered motifs and repeats 
the search, this enables new patterns to be extracted (Tran and Huang 2014; Hu et al. 
2005; Bailey et al. 2006; Bailey et al. 2009).

For web server use, one has to provide a set of FASTA format sequences by 
either uploading a text file or by pasting the sequence information into the box as 
shown in Fig. 9.8. The other required input is an email address where the results 
will be sent. MEME searches for motifs ranging from 6 and 50 residues in length by 
default, although the user can specify other values between {2,300}. There is an op-
tion to specify the estimated number of motif sites per input sequence, particularly 
if there is any prior knowledge about the distribution of motif occurrences within 
the dataset. These options for setting the distribution of motif occurrences are called 
OOPS ( One Occurrence Per input Sequence), ZOOPS ( Zero or One Occurrence Per 
input Sequence) and ANR ( Any Number of Repetitions) modes. ‘OOPS’ assumes 
that each input sequence contains exactly one occurrence of each returned motif, 
whereas ‘ZOOPS’ assumes that each input sequence may contain at most one oc-
currence of each returned motif; the latter option is useful when certain of the input 
sequences may be missing some of the motifs. The ANR option can be used to ex-
plore multiple occurrences of a given motif within one or more sequences. MEME 
uses the ZOOPS option by default.

The output is generated in three different formats: HTML, TEXT and XML. 
Figure 9.8 shows part of the HTML output. MEME generates up to three top-rank-
ing motifs by default, and each of the generated motifs may be present in either 
a subset of sequences or in all the input sequences (this refers to the number of 
occurrences). Every output motif is assigned an ‘E-value’. The E-value refers to 
the probability of finding an equally well-conserved sequence pattern in random 
sequences; thus, the lower the E-value, the greater the statistical significance of the 
observed motif. The output overview shows the rank of the motif, its E-value and 
number of occurrences (sites) and the sequence logo for the motif. Below the “Motif 
Overview” section, further details about each of the identified motifs are available. 
This includes the multiple alignments showing the identified motif region in the 
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input sequences (Fig. 9.8, bottom right panel). Below the alignments are so-called 
“Block diagrams” showing the relative positions of the motifs within the input 
sequences (not displayed in the figure). Clickable buttons allow each motif to be 
analysed by other programs. Clicking on the ʻMAST’ (Motif Alignment and Search 
Tool) button will send the motif to the MAST web server where various sequence 
databases (or sets of user-uploaded sequences) can be searched for sequences that 
contain matches to that motif. Similarly, the button ‘FIMO’ (Find Individual Motif 
Occurrences) (Grant et al. 2011) will also trigger searches of sequence databases 
for hits to the motif patterns. Finally, these motifs may be compared against entries 
in the BLOCKS database of protein motifs (Henikoff et al. 1999) by clicking on the 
‘BLOCKS’ button.

Fig. 9.8  MEME input and output. Input options are shown in the top panel. There are options to 
include the number of sites for each motif (if there is prior knowledge about the number of occur-
rences), and options to specify motif length. Output ( bottom left) showing a list of protein motifs 
(by default 3 motifs) that MEME has discovered in the input sequences. Some of the hyperlinked 
buttons that allow the motif to be analysed further are shown at the bottom right
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8  Prediction Performance on Disordered Motifs: Case 
Study on the KEN-box Motif

KEN-box mediated target selection is one of the mechanisms used in proteasomal 
destruction of mitotic cell cycle regulatory proteins via the Anaphase-promoting 
complex (APC/C complex) (Peters 2006; Michael et al. 2008; Pfleger and Kirschner 
2000). ‘KEN’ motifs are significantly enriched in proteins with cell cycle keywords 
and further the KEN-box is significantly conserved throughout the eukaryotic taxon 
(Michael et al. 2008). Cdh1 and Cdc20 act as APC/C co-activators at distinct stages 
of the cell cycle. Cdc20 interacts with the APC complex during the M phase and is 
later replaced by Cdh1 (late M/G1 transition). Whereas both Cdh1 and Cdc20 can 
recognise target proteins via the Destruction Box (D-box) motif, the KEN-box is only 
recognised by Cdh1. Interestingly Cdc20 itself contains a KEN-box that is identified 
by Cdh1 and undergoes temporal degradation; Cdh1 then replaces Cdc20 as the adap-
tor of the APC complex. However Cdh1 contains two D-box motifs that ensure self-
degradation of Cdh1 via APC/C in an auto-regulatory feedback mechanism; this is 
important for tuning the levels of active Cdh1 throughout G1 (Listovsky et al. 2004).

Motif discovery algorithms have to deal with the problem of spurious (stochas-
tic) pattern matches that turn out to be non-functional (false positive) instances. In 
other words, merely observing a KEN pattern within a protein sequence does not 
necessarily indicate a functional degradation targeting motif. Many factors includ-
ing protein cellular compartmentalization, tertiary structure and motif accessibility, 
etc regulate interaction of the KEN-containing protein with APC/C. All the func-
tional KEN-box motifs discovered so far have been found within natively unfolded 
(disordered) regions of proteins; however, certain proteins (eg, HIPK4) carry a 
KEN-motif within a globular domain although their role in proteasomal degrada-
tion is unknown (Michael et al. 2008).

KEN-box instances were collected from the ELM database: 16 instances from 14 
proteins were found classified as true positives (Dinkel et al. 2014). Table 9.4 shows 
their prediction performance using the 4 motif discovery algorithms discussed in 
the previous section. Whereas SLiMPrints analyzes every protein individually, the 
other methods (SLiMFinder, GLAM2 and MEME) take a set of sequences as input. 
Thus the complete set of 14 sequences carrying validated KEN motifs were sup-
plied as input. With each method, we always tried the default settings first to evalu-
ate how well these parameters performed. Any modifications that were necessary 
are mentioned at the appropriate places in the following description.

Of the 16 known instances, SLiMPrints returned 9 instances as significant hits 
(P < 0.05) that either completely or partially overlapped with the known KEN box 
and were recognized as being similar to the ELM entry LIG_APCC_KENbox_2. 
For two proteins (‘CIN8_YEAST’ and ‘VE1_BPV1’) it completely failed to predict 
the KEN-boxes. In case of the viral protein ‘VE1_BPV1’, this failure may have been 
due to the fact that SLiMPrints has been trained on the EnsEMBL (Flicek et al. 2014) 
metazoan and Saccharomyces cerevisiae genomes, and therefore it is unable to pre-
dict for viral proteins. For ‘CIN8_YEAST’ the program resulted in an error message.
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Table 9.4  Prediction accuracy on the KEN-box (.KEN.) motif using four motif discovery algo-
rithms (‘Yes’ indicates that the motif was successfully identified, ‘No’ that the method failed to 
identify the motif; ‘*’ indicates that the KEN motif was returned by the algorithm as a significant 
hit; (Number) indicates the rank obtained for the predicted motif)
KEN-box containing proteins Motif discovery methods used
Protein 
name

Gene name Start,End SLiMPrintsa SLiM-
Finderb

GLAM2c MEMEc

ACM1_
YEAST

ACM1  97,101 Yes*(2) Yes*(10) Yes(1) Yes(1)

AURKB_
HUMAN

AURKB  3,7 Yes(5) Yes*(10) Yes(1) Yes(1)

BUB1_
HUMAN

BUB1 534,538 Yes*(3) Yes*(10) No Yes(1)

BUB1_
HUMAN

BUB1 624,628 Yes(16) Yes*(10) Yes(1) No

BUB1B_
HUMAN

BUB1B  25,29 Yes(25) Yes*(10) Yes(1) Yes(1)

BUB1B_
HUMAN

BUB1B 303,307 Yes*(9) Yes*(10) No No

CDC20_
HUMAN

CDC20  96,100 Yes(20) Yes*(10) Yes(1) Yes(1)

CDC6_
HUMAN

CDC6  80,84 Yes*(1) Yes*(10) Yes(1) Yes(1)

CDCA5_
HUMAN

CDCA5  87,91 Yes*(2) Yes*(10) Yes(1) Yes(1)

CG22_
YEAST

CLB2  99,103 Yes*(1) Yes*(10) Yes(1) Yes(1)

CIN8_
YEAST

CIN8 931,935 No Yes*(10) Yes(1) Yes(1)

CKAP2_
HUMAN

CKAP2  80,84 Yes*(1) Yes*(10) Yes(1) Yes(1)

HSL1_
YEAST

HSL1 774,778 Yes*(8) Yes*(10) Yes(1) Yes(1)

MPIP3_
HUMAN

CDC25C 150,154 Yes(19) Yes*(10) Yes(1) Yes(1)

PTTG1_
HUMAN

PTTG1  8,12 Yes*(3) Yes*(10) Yes(1) Yes(1)

VE1_BPV1 E1  27,31 No Yes*(10) Yes(1) Yes(1)
a SLiMPrints accepts a single protein sequence at a time and provides the score for the identified 
motif
b SLiMFinder can take multiple sequences simultaneously as input. SLiMFinder can either use 
the complete set of input sequences or automatically selects a subset thereof such that a high 
confidence motif can be generated. For this example SLiMFinder returned a list of 11 significant 
motifs, KEN motif was found in 10th position. Two similar motifs (‘KEN..D’ and ‘KEN.{1,2}P’) 
were ranked at 4th and 6th positions respectively
c Although GLAM2 and MEME can optimize how many sequences to use in order to obtain 
significant candidate motifs, in this case study both methods were controlled to use all 14 input 
sequences simultaneously. This was meaningful because in this particular example we knew 
beforehand that all the input sequences contained a true positive KEN motif
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SLiMFinder performed significantly well on the dataset using default param-
eters. SLiMFinder outputs a list of candidate motifs identified from the set of input 
sequences ranked by their significance score. We found a KEN motif (with a signifi-
cance score of 0.002) at rank 10 that contained all 16 KEN instances. Interestingly, 
two higher ranking motifs that closely resembled the KEN were also found: KEN.P 
ranked #4 (Sigscore = 6.96E-5) and KEN.{1,2}P ranked #6 (Sigscore = 9.53E-5). 
These two motifs contained 9 and 10 respectively of the total KEN instances present 
in the input dataset.

GLAM2 initially failed to detect the KEN-motif in the input set. The following 
parameters were used (all default settings, except for the number of motif contain-
ing sequences, which we knew beforehand to be 14): –z 14 (number of sequences), 
–a 2 (minimum width of motif), –b 50 (maximum width of motif), –w 20 (initial 
number of ‘key positions’), and –n 2000 (number of iterations). On reflection, we 
felt that there was a mismatch between the length of the KEN motif and the value 
used for the “initial number of key positions” parameter; accordingly, we modi-
fied this to a low value consistent with the length of the motif being searched ( ie, 
w = 2). This enabled GLAM2 to successfully identify 14 out of the 16 motif instanc-
es (Table 9.4). BUB1_HUMAN and BUB1B_HUMAN each contain 2 validated 
KEN-boxes, however only one from each protein was identified (since GLAM2 as-
sumes that every input sequence may contain at most one occurrence of each motif). 
Further, we tested different values of ‘w’, and all values in the range [2, 15] were 
successfully able to recover 14 instances (one from each input sequence).

MEME also did an excellent job of discovering KEN-box motifs in the ELM 
benchmark dataset. It successfully identified 14 of the 16 instances using the fol-
lowing parameters: –minw 6 (minimum width of motif), –maxw 50 (maximum 
width of motif), –minsites 14 (minimum number of motifs), –maxsites 14 (maxi-
mum number of motifs), and –mod zoops (zero or one occurrences). The ‘minsites’ 
and ‘maxsites’ values were set to 14 since the number of motif occurrences in the 
dataset were already known (default values were used for all the other parameters). 
However, MEME failed to identify the second motifs of ‘BUB1_HUMAN’ (624, 
628) and ‘BUB1B_HUMAN’ (303, 307) because the ‘zoops’ mode assumes that 
each input sequence may contain at most one occurrence of each motif. Although 
we knew that these two sequences contained 2 KEN-boxes each, there is no param-
eter setting on the input page where we could set the number of motif occurrences 
exactly to 2. We did however use the ANR ( Any Number of Repetitions) option to 
try and detect the multiple motifs. However, this option resulted in a large number 
of false positive hits and even so the multiple KEN’s in both BUB1 and BUB1B 
remained unidentified.

9 Limitations of Motif Discovery Algorithms

Although motif discovery algorithms have improved considerably over the past 
years, considerable challenges remain. For example, since a large majority of mo-
tif types have been characterized to be preferentially located in disordered protein 
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segments, one main challenge will be to design effective multiple sequence align-
ment tools that can efficiently align intrinsically disordered regions. However, it 
can also be argued that by focusing mostly on IDRs and by routinely masking out 
structured domains we might miss finding (some) novel SLiMs. On the other hand, 
another level of complexity is introduced if we include domain sequences in the 
alignments used for motif discovery. The strong similarities between domain se-
quences would hide the weak SLiM signals. Although it is difficult to estimate how 
frequently functional SLiMs may occur within domains (eg, on their surface re-
gions), this might be an avenue to explore in the future. Another limitation of motif 
discovery algorithms is their unsuitability to take entire genomes as input to dis-
cover motifs. Especially with short length motifs, their statistical significance in the 
context of the entire proteome is difficult to establish. Therefore, motif discovery 
tools need to be improved further to be able to discover the full complement of short 
linear motifs in the proteome.
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