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Chapter 4
Ensemble Calculation for Intrinsically 
Disordered Proteins Using NMR Parameters

Jaka Kragelj, Martin Blackledge and Malene Ringkjøbing Jensen

Abstract  Intrinsically disordered proteins (IDPs) perform their function despite 
their lack of well-defined tertiary structure. Residual structure has been observed 
in IDPs, commonly described as transient/dynamic or expressed in terms of 
fractional populations. In order to understand how the protein primary sequence 
dictates the dynamic and structural properties of IDPs and in general to understand 
how IDPs function, atomic-level descriptions are needed. Nuclear magnetic 
resonance spectroscopy provides information about local and long-range structure 
in IDPs at amino acid specific resolution and can be used in combination with 
ensemble descriptions to represent the dynamic nature of IDPs. In this chapter we 
describe sample-and-select approaches for ensemble modelling of local structural 
propensities in IDPs with specific emphasis on validation of these ensembles.

Keywords  Structure · Dynamics · Conformational ensembles · Experimental 
validation

1  Introduction

Structural biology is an important branch of the life sciences. The number of protein 
structures deposited in the Protein Data Bank (PDB)1 is already exceeding 100000 
and underlines the enormous effort that has been invested in solving ever-newer 
protein structures. The description of protein motion can be seen as the next logical 
step stemming from this wealth of structural data, strongly supported by the fact 
that proteins display functional dynamics occurring on a broad range of timescales 

1  www.pdb.org.
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(Karplus and Kuriyan 2005; Mittermaier and Kay 2006; Henzler-Wildman and 
Kern 2007; Bernadó and Blackledge 2010). Nuclear magnetic resonance (NMR) 
spectroscopy is uniquely suited to probing protein dynamics at atomic resolution as 
a number of experimental parameters report on motions occurring on different time 
scales ranging from pico- to millisecond (Mittermaier and Kay 2009; Salmon et al. 
2011; Göbl et al. 2014).

Protein motion comes in many flavours and can span from local backbone and 
side chain dynamics in globular, folded proteins (Lindorff-Larsen et al. 2005; Bou-
vignies et  al. 2005; Lange et  al. 2008; Salmon et  al. 2009; Salmon et  al. 2012; 
Guerry et al. 2013) through the concerted motion of entire domains in multi-domain 
proteins (Bertini et al. 2007; Yang et al. 2010; Różycki et al. 2011; Francis et al. 
2011; Deshmukh et al. 2013; Huang et al. 2014) to intrinsically disordered proteins 
(IDPs), which represent the most extreme case of protein flexibility (Dyson and 
Wright 2002; Dunker et al. 2008; Tompa 2012). One way of representing the dy-
namics of a protein is to capture its characteristics—or more accurately, to explain 
the experimental NMR data, which depend on the underlying dynamics—with an 
ensemble of protein structures (Fig. 4.1).

In this chapter we will focus on atomic resolution ensemble descriptions of IDPs 
on the basis of experimental NMR data with a special emphasis on mapping local 
conformational propensities. The determination of a single set of three-dimensional 
atomic coordinates would have little meaning for these conformationally hetero-
geneous molecules, and ensemble descriptions are therefore necessary in order to 
build molecular models of IDPs that accurately capture the dynamic behaviour of 
the polypeptide chains. Special care has to be taken at each step of the ensemble 
generation protocol to ensure the validity of the obtained ensembles. The way in 
which ensemble generation protocols are tested and the factors that influence the 
modelling of the ensembles are therefore important questions that need to be ad-
dressed. In this chapter we will discuss these issues with a focus on the application 
of sample-and-select approaches to mapping local conformational propensities in 
IDPs.

2 � Local Structure in IDPs can be Described  
by the Dihedral Angle Distributions of Amino Acids

It is expected that a single residue in an IDP will adopt many conformations over the 
time and ensemble average, and therefore undergoes exchange among many differ-
ent dihedral angles. The distribution of dihedral angles sampled by a residue may at 
first seem like a simplistic representation of residual structure but is in reality very 
practical. The well-known secondary structures, the α-helix and β-sheet, are defined 
by hydrogen-bonding criteria and also have their own characteristic dihedral angles 
that are commonly used for annotating secondary structure elements in proteins 
(Fig. 4.2a, 4.2c) (Kabsch and Sander 1983; Frishman and Argos 1995).



1254  Ensemble Calculation for Intrinsically Disordered Proteins …

49-51

19-22 37-43

 R
D

C
 (

ca
lc

) 
 (

H
z)

RDC (exp) (Hz)
200 10200 10

-20

-10

0

10

20

a

b

c

320280240

-1

0

1

-5

0

5

1 D
N

H
 (H

z)
1 D

N
C

’ (H
z)

Sequence
200160

-10-20-10-20

Fig. 4.1   Interpreting NMR data with molecular ensembles to map conformational dynamics in 
proteins. a Dynamics of the SH3 domain from CD2AP derived from NMR residual dipolar cou-
plings ( RDCs) measured in multiple, complementary alignment media. An ensemble is shown of 
the SH3 domain derived from selection of conformational ensembles on the basis of experimental 
RDCs. The agreement between experimental and back-calculated RDCs is shown for the derived 
final ensemble ( blue) and the starting pool of structures from which the ensemble was selected 
( red). Reprinted in part with permission from (Guerry et al. 2013). Copyright 2013 Wiley-VCH. 
b Dynamics of the two-domain splicing factor U2AF65 derived from RDCs and paramagnetic 
relaxation enhancements induced by S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1 H-pyrrol-3-yl)
methyl methanesulfonothioate ( MTSL) spin labels attached at different positions in the two-
domain protein. Ensembles of the two-domain protein are shown, where the grey surface repre-
sents the location of the domain RRM1, while the location of the second domain RRM2 is shown 
as spheres positioned at the centre of mass of RRM2. Ensembles are shown representing the initial 
pool of structures sampling all conformational space ( blue) and the space occupied by RRM2 after 
refinement against experimental data ( red). The agreement between experimental RDCs ( red) 
and those back-calculated from the derived ensemble ( blue) is also shown. Reprinted in part with 
permission from (Huang et al. 2014). Copyright 2014 American Chemical Society. c Conforma-
tional ensemble of the intrinsically disordered N-terminal transactivation domain of p53 in the 
context of the full-length p53-DNA complex (Wells et al. 2008). The ensemble was obtained on 
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Other structural motifs can also be identified by their specific ϕ/ψ angles. Apart 
from the α-helix and β-sheet, poly-L-proline II (PPII) is the only secondary structure 
that forms linear groups of residues that all adopt the same conformation (Fig. 4.2d) 
(Hollingsworth et al. 2009). This conformation is particularly interesting as it has 
been proposed to be significantly populated in IDPs and unfolded states of proteins 
(Shi et al. 2006; Schweitzer-Stenner 2012). Residues within β-turns also adopt spe-

Fig. 4.2   Dihedral angle distributions characteristic of different secondary structure types. 
a Central residues in α-helices. b Last residues in α-helices that are C-capped with Schellman 
loops. c Residues in β-strands. d Residues in PPII conformations. e Residues in type I β-turns. 
f Modification of the dihedral angle sampling of a given residue can be achieved by combining the 
random coil distribution with an over-sampling of other regions of Ramachandran space (in this 
case the α-helical region). Dihedral angles for (a), (b) and (e) were extracted from the database 
embedded in the structure motivator application (Leader and Milner-White 2012). Dihedral angles 
in (c) were extracted from parallel and anti-parallel β-strands from structures with the following 
PDB codes: 1MLD, 1QCZ, 2CMD, 1XH3, 1OGT and 3GP6. Dihedral angles in (d) were extracted 
from non-proline residues of peptide ligands bound to SH3 domains in a PPII conformation (1BBZ, 
1CKA, 1CKB, 1SSH, 1W70, 2DRK, 2DRM, 2O88, 2O9V, 2W0Z, 2W10, 3EG1 and 3I5R)

 

the basis of experimental RDCs (local conformational sampling) and small angle X-ray scattering 
data (long-range behaviour). The agreement is shown between experimental RDCs ( red) and those 
back-calculated from the model ensemble ( blue) for both the isolated transactivation domain and 
in the context of the full-length p53/DNA complex. Reprinted in part with permission from (Wells 
et al. 2008). Copyright 2008 National Academy of Sciences, USA
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cific dihedral angles and differ for each β-turn type (I, II, I', II') (Fig. 4.2e). Residues 
of both N-terminal and C-terminal helix capping motifs have unique dihedral angle 
distributions (Shen and Bax 2012), and it has been shown that within α-helices of 
structured proteins, the central residues display different distributions than the C-
terminal residues (Fig. 4.2a, 4.2b) (Leader and Milner-White 2011).

Since each structural motif has distinct dihedral angle distributions, we can use 
them to describe the conformational energy surface of each residue within the dis-
ordered protein chain and more importantly also as a metric for the presence of 
residual secondary structure in IDPs. An increase in sampling of dihedral angles 
corresponding to the α-helical region will, if sampled at a high enough propensity, 
give rise to transiently populated α-helices, even in the absence of cooperative ef-
fects. IDPs can therefore in general be described as random coils ( i.e. a peptide 
chain without specific secondary or tertiary structure), with deviations from this 
model corresponding to the presence of residual secondary structure (Fig. 4.2f). In 
order to map the dihedral angle distributions in an IDP we can exploit a number of 
different NMR parameters as described below.

3 � NMR Parameters for Characterizing Local 
Conformational Propensities in IDPs

NMR is a powerful technique for studying IDPs at atomic resolution and provides 
many experimental parameters that inform us about local conformational propensi-
ties (Jensen et al. 2014). Chemical shifts are the most readily accessible parameters 
and as a single NMR resonance is usually observed for each nucleus in the spectra of 
IDPs, the chemical shifts report on the population-weighted average over all confor-
mations sampled in solution up to the millisecond time scale. Chemical shifts are sen-
sitive to the backbone dihedral angle distributions and can, therefore, be interpreted 
in terms of local conformational propensities. A simple analysis of chemical shifts in 
IDPs involves the calculation of secondary structure propensities (Marsh et al. 2006; 
Camilloni et al. 2012; Tamiola and Mulder 2012). This usually relies on character-
istic shifts for α-helix, β-sheet and random coil derived from experimental chemical 
shifts of folded proteins with known three-dimensional structure or from a collection 
of assigned IDPs (Zhang et al. 2003; De Simone et al. 2009; Tamiola et al. 2010). 
When deriving conformational propensities it is important to correctly reference the 
experimental chemical shifts as systematic offsets may lead to erroneous estimates of 
the amount of secondary structure. It is possible to verify whether the chemical shift 
is correctly referenced using the secondary structure propensity (SSP) algorithm, 
which reports the potential reference offset based on the observation that Cα and Cβ 
secondary chemical shifts are inversely correlated (Marsh et al. 2006).

Scalar couplings measured between nuclei of the protein backbone are also im-
portant structural probes in proteins and can be used to map dihedral angle distribu-
tions in IDPs. In the same way as chemical shifts, as long as the exchange rate is fast, 
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the scalar couplings represent a population-weighted average over all conformations 
sampled in solution. The dependence of scalar couplings on the main chain torsion 
angles can be described using a so-called Karplus relationship (Karplus 1959) that is 
generally parameterized against experimental scalar couplings measured in proteins 
of known structure (Smith et al. 1996). One of the commonly measured scalar cou-
plings, the three-bond coupling constant 3JHNHα, depends on the backbone dihedral 
angle ϕ, allowing one to distinguish between α-helical (3JHNHα < 5 Hz) and β-sheet 
conformations (3JHNHα > 8 Hz) (Vuister and Bax 1993). Other scalar couplings such 
as 3JCαCα, 

3JNHα, 
3JNCβ and 3JNN report on the ψ angle and in principle provide a more 

accurate measure of PPII conformations (Graf et al. 2007; Hagarman et al. 2010).
Residual dipolar couplings (RDCs) are obtained by partially aligning the protein 

molecules in the magnetic field using, for example, a liquid crystal (Rückert and Otting 
2000), filamentous phages (Hansen et  al. 1998), polyacrylamide gels (Sass et  al. 
2000), or bicelles (Tjandra and Bax 1997). The inter-nuclear dipolar coupling, which 
is efficiently averaged to zero by the isotropic rotational tumbling of the molecules in 
solution, will no longer average to zero and a small part of the dipolar coupling will be 
measurable (Tolman et al. 1995; Tjandra and Bax 1997). RDCs report on bond vector 
orientations with respect to a common reference frame and have been used extensively 
for structure determination of folded proteins as reporters on the relative orientations 
of secondary structure elements (Prestegard et al. 2004; Blackledge 2005). Since the 
first measurement of RDCs in an unfolded protein (Shortle and Ackerman 2001) we 
have significantly advanced in our understanding and interpretation of RDCs in IDPs 
(Jensen et al. 2009). It is now clear that the RDCs carry contributions from the dihedral 
angle distribution of the amino acid of interest as well as its nearest neighbours, and 
the measurement of a single RDC value does therefore not provide a direct “read-out” 
of residue specific sampling in the same way as chemical shifts and scalar couplings 
(Huang et al. 2013). In addition, a contribution from the local flexibility of the chain 
(bulkiness) to the RDCs should be taken into account together with a length-dependent 
baseline that reflects the polymeric nature of the unfolded chain (Salmon et al. 2010; 
Huang et al. 2013). In the case of IDPs there is a preference for alignment media that 
rely on steric interactions between the protein and the medium such that the alignment 
tensor, and thereby the RDCs, can be predicted directly from the shape of each protein 
conformation (Zweckstetter and Bax 2000) and averaged over the ensemble.

4  Sample-and-Select Approaches

One way of obtaining representative ensemble descriptions of IDPs on the basis 
of experimental NMR data is to apply a two-step procedure involving the initial 
generation of a large pool of structures representing all of the conformational space 
available to the polypeptide chain (Fig. 4.3). Experimental data are then included in 
the second step where a set of structures (an ensemble) that agrees with the data is 
selected, for example using a genetic algorithm.
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Different approaches can be used to generate the initial pool of structures, but for 
a number of reasons it is important that the generated pool covers the entire confor-
mational space of the molecule. Generally, a starting pool can be generated using 
molecular dynamics approaches or statistical coil generators.

5 � Sampling Space Using Molecular Dynamics 
Simulations

For classical molecular dynamics (MD) simulations, sufficient sampling remains a 
problem when studying IDPs, even when the simulations are run over long time-
scales of several hundreds of microseconds (Lindorff-Larsen et  al. 2012). Other 
types of MD simulations address this problem and provide a better sampling; one 
example is replica exchange molecular dynamics (REMD), which artificially en-
hances the sampling by exchanging copies of the simulated protein that evolve 
under different conditions (Hansmann 1997; Sugita and Okamoto 1999). In its sim-
plest form the protein is exchanged between two different temperature reservoirs 
where at higher temperatures the sampling rate is faster but not physical. When the 
protein evolves at lower temperatures it can get trapped in a local or global mini-
mum with the end result being an inefficient sampling of the conformational space. 
Exchanging the protein copy to a reservoir with higher temperature facilitates the 
sampling of other minima because the energy barriers between them are easier to 
overcome.

Other approaches include enhanced sampling techniques such as metadynamics, 
in which a term is added to the force field that penalizes the conformations that 
have already been explored by the molecule (Leone et  al. 2010). The energy 
penalties accumulate as the protein explores an energy minimum and after some 
time the protein is forced to explore other minima. Metadynamics can be com-
bined with REMD to enhance the sampling rate even further (Piana and Laio 
2007). Accelerated molecular dynamics (AMD) is another approach for enhanc-
ing sampling that can be used for IDPs. In this method the free energy surface is 
modulated by a scaling factor that affects the energy barriers between minima and 
therefore increases the chance of barrier crossing (Voter 1997; Hamelberg et al. 
2004; Pierce et al. 2012).

6  Sampling Space Using Statistical Coil Generators

A starting pool of conformers that is subsequently used in selections can also be 
produced with a statistical coil generator (Feldman and Hogue 2000; Jha et al. 
2005a; Bernadó et  al. 2005b; Ozenne et  al. 2012a). In this approach a protein 
molecule is built starting from either end of the chain by adding amino acid after 
amino acid with a ϕ/ψ angle that is randomly chosen from a database of dihedral 
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angles (the statistical coil library). Each newly added amino acid is checked for 
steric clashes between the backbone atoms and between simplified representa-
tions of side chains. In case of steric clash the newly placed residue is rejected 
and rebuilt until a suitable conformation is found. Force field bond and angle 
potentials are not included during the generation of conformers, and the steric 
clash model is very simple and only defines a certain radius of exclusion for each 
atom. This approach allows the conformational space to be sampled roughly but 
efficiently and generates a pool of many different combinations of ϕ/ψ angles for 
consecutive amino acids.

Statistical coil libraries, which are used for generating the structures, are as-
sembled with the help of databases of high-resolution crystal structures (Serrano 
1995; Jha et al. 2005b). The conformational preferences of amino acids in folded 
proteins differ from those of disordered proteins as most of the residues in folded 
proteins reside within secondary structure elements, while IDPs are expected to 
more closely resemble the loop regions. If the α-helices, β-sheets and β-turns are 
removed from the initial data set of high-resolution crystal structures, only mo-
tifs from non-regular loops remain in the database. These loop residues are not 
restrained by secondary structure hydrogen bonding criteria, unlike for example 
α-helices, and when a large number of the loop residues are taken into consid-
eration, the potential contributions from the long-range tertiary contacts mostly 
average out. If we extract the ϕ/ψ angle distributions from the database of loop 
regions, we obtain a library of amino acid specific distributions of ϕ/ψ angles. 
These ϕ/ψ angle distributions represent a valid starting point for describing the 
conformational free energy surface of amino acids within IDPs and can be used in 
conjunction with statistical coil generators for building ensembles of IDPs. One 
of these statistical coil generators, Flexible-Meccano, is freely available2 and is 
provided with a graphical interface that allows the testing of different sampling re-
gimes by manually modifying the ϕ/ψ sampling of selected amino acids (Ozenne 
et  al. 2012a). Flexible-Meccano calculates NMR observables such as chemical 
shifts, RDCs, scalar couplings and paramagnetic relaxation enhancements (PREs) 
from the generated ensembles that allow direct comparison with experimental 
data (Fig. 4.4).

The statistical coil libraries still have room for improvement in terms of the 
inclusion of neighbour residue effects, which would be analogous to what has 
been carried out for random coil chemical shift tabulations (Wishart et al. 1995; 
Wang and Jardetzky 2002b; Wang and Jardetzky 2002a; De Simone et al. 2009; 
Tamiola et al. 2010). In fact the neighbour residue correction is often used in the 
statistical coil libraries for pre-proline residues, because the neighbour effect of 
prolines on the preceding residue is particularly pronounced. This is due to steric 
hindrance between the δCH2 side chain group of the proline and the NH and CβH2 
atoms of the preceding residues (MacArthur and Thornton 1991). Again, simi-
larly to random coil chemical shifts, the statistical coil databases could be im-
proved by refining them with the help of experimental data from IDPs themselves 
(Tamiola et al. 2010).

2  www.ibs.fr/science-213/scientific-output/software.



132 J. Kragelj et al.

7 � Selection of Ensembles on the Basis of Experimental 
NMR Data

Once the initial pool of structures has been generated, NMR parameters such as 
scalar couplings, chemical shifts and RDCs can be calculated for each member 
of the pool. The selection of sub-ensembles proceeds by calculating the averages 
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Fig. 4.4   Generation of conformational ensembles of IDPs using a statistical coil generator. Ram-
achandran plots (ϕ/ψ distributions) are shown for the amino acids D, N, S, G, I and K as derived 
from loop regions of high-resolution crystal structures. These distributions are used to construct 
conformations of the protein for a given primary sequence by starting from either the C- or N-ter-
minal end of the protein and building amino acid after amino acid according to randomly chosen 
ϕ/ψ pairs of the statistical coil library. For each copy of the molecule, experimental NMR data can 
be calculated and the ensemble-average over multiple copies of the protein can be compared to 
experimental data. Reprinted in part with permission from (Jensen et al. 2014). Copyright 2014 
American Chemical Society
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of the NMR parameters over a given sub-ensemble and comparing them to ex-
perimental data. Different approaches have been proposed in the literature for 
deriving representative ensembles such as ENSEMBLE, which assigns weights 
to the different conformations of the pool (Marsh and Forman-Kay 2009; Krze-
minski et  al. 2013), and ASTEROIDS, which relies on a genetic algorithm to 
select sub-ensembles (Nodet et al. 2009; Jensen et al. 2010), as well as ensemble 
optimization on the basis of Bayesian weighting (Fisher et al. 2010; Fisher and 
Stultz 2011). It is important to note that in cases where the IDPs possess tran-
siently populated secondary structures, it is not possible to select an ensemble that 
matches all the experimental data directly from a pool of statistical coil conform-
ers. The reason for this is that the probability of finding continuous stretches of 
secondary structure is too low. Therefore, the sample-and-select protocol is often 
repeated multiple times in an iterative procedure, where the sampling pool is re-
generated using the information (local conformational sampling) obtained from 
ensembles selected in the previous iteration. In this way, the sampling pool is 
enriched at each step with conformational preferences characteristic of the protein 
under investigation.

8 � Ensemble Representations of the IDP Tau  
from Chemical Shifts and RDCs

The combination of the statistical coil generator Flexible-Meccano (Bernadó et al. 
2005b; Ozenne et al. 2012a) and the ensemble selection algorithm ASTEROIDS 
has allowed quantitative insight into residue-specific conformational sampling in 
a number of IDPs involved in neurodegenerative diseases (Bernadó et al. 2005a; 
Mukrasch et al. 2007; Schwalbe et al. 2014). The protein Tau is a 441 amino acid 
protein that is intrinsically disordered and undergoes a conformational transition to 
a pathological form of the same protein. The NMR spectra of Tau have been fully 
assigned (Narayanan et al. 2010), allowing insight into the conformational prefer-
ences of this protein at atomic resolution. A complete set of chemical shifts and 
1DNH RDCs were obtained for the protein Tau in order to accurately map α-helical, 
β-strand and PPII populations. Figure 4.5a shows the agreement between experi-
mental data and those back-calculated from selected ASTEROIDS ensembles. The 
ensemble selections were repeated five times and the conformational sampling of 
each residue along the sequence of Tau is conveniently represented by their dihedral 
angle distributions (Fig. 4.5b).

In general, we can learn a lot from these ensembles as they provide quantitative 
insight into the sampling in different regions of Ramachandran space. Specifically, 
it is seen that the aggregation nucleation sites in Tau overpopulate the PPII region, 
suggesting that these conformations represent precursors of aggregation (Fig. 4.5b) 
(Schwalbe et al. 2014). In addition to these observations, the presence of turn-like 
motifs can be identified in each of the Tau repeat regions (R1-R4). These turn mo-
tifs were also studied in detail previously using AMD simulations of small peptides 
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Fig. 4.5   Ensemble representations of the intrinsically disordered Tau protein on the basis of 
chemical shifts and RDCs. a Agreement between experimental ( red) and back-calculated sec-
ondary chemical shifts and RDCs ( blue) from selected ASTEROIDS ensembles of Tau. b Site 
specific conformational sampling in Tau derived from the selected ensembles ( blue, green, red, 
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of Tau, where it was shown that the AMD derived ϕ/ψ sampling corresponded to 
type I β-turns (Mukrasch et al. 2007). When this AMD sampling was incorporated 
into a model ensemble of the smaller K18 construct of Tau, the agreement between 
experimental and back-calculated 1DNH RDCs improved significantly, proving that 
these regions indeed adopt type I β-turns as predicted by AMD.

9  The Reference Ensemble Method

The study described above combines different data types to map local conforma-
tional sampling. The accuracy with which conformational propensities can be de-
termined depends on the amount of experimental data available for a given sys-
tem. Assuming that we want to map the population of α-helix, β-strand and PPII 
conformations for each amino acid of the protein, it would be useful to determine 
a minimum dataset that would allow this. The α-helical and β-strand propensities 
can be well characterized with the help of carbon (Cα, Cβ, C') chemical shifts, but 
a residue sampling a statistical coil distribution and a residue sampling exclusively 
PPII specific dihedral angles have approximately the same carbon chemical shift 
(Fig. 4.6a). We therefore cannot use carbon chemical shifts to distinguish between 
the two mentioned sampling regimes. Similarly, most of the RDC types display 
degeneracy between β-strand and PPII conformations. The 1DNH RDCs are negative 
for both increased β-strand propensities and increased PPII propensities (Fig. 4.6b).

Selection against synthetic data from a reference ensemble can help reveal such 
degeneracies and determine the minimum dataset necessary for accurate mapping 
of the conformational energy landscape. In the reference ensemble approach, an 
ensemble of structures is generated using either an MD simulation or a statistical 
coil generator. These structures constitute the target ensemble for which a synthetic 
dataset is calculated. If our ensemble selection protocol is working without bias and 
we have sufficient and complementary data types, we should be able to regenerate 
the local conformational sampling preferences by targeting the synthetic dataset us-
ing the sample-and-select approach.

A study by Ozenne et al. demonstrated how useful this approach can be when 
applied to IDPs (Ozenne et al. 2012b). Initially, an ensemble of a model protein of 
60 amino acids of arbitrary sequence was obtained using the statistical coil gen-
erator Flexible-Meccano, where three distinct regions of the protein over-sampled 
the α-helical, β-strand and PPII region of Ramachandran space (50 % additional 
sampling in each region compared to the statistical coil). Different types of en-
semble-averaged chemical shifts and RDCs were calculated for this ensemble 

magenta) compared to standard statistical coil distributions ( black). Populations are reported for 
four different regions of Ramachandran space corresponding to right- (αR, red) and left-handed 
α-helix (αL, magenta), β-strand (βS, blue) and PPII conformations (βP, green). Circles indicate 
the presence of proline residues. Reprinted in part with permission from (Schwalbe et al. 2014). 
Copyright 2014 Elsevier
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Fig. 4.6   Testing the accuracy with which experimental data can map local conformational propen-
sities in IDPs using the reference ensemble method. a Synthetic chemical shift dataset calculated 
for an ensemble of a model protein of 60 amino acids of arbitrary sequence. Three different regions 
of the protein over-sample the α-helical, β-strand and PPII region, while the remaining regions 
sample statistical coil conformations. The difference is shown between the predicted chemical 
shifts for this ensemble and the ensemble-averaged chemical shifts for a statistical coil ensemble. 
b Synthetic RDC dataset calculated for the model protein over-sampling the three different regions 
of Ramachandran space ( red) compared to RDCs predicted for a statistical coil ensemble of the 
same protein ( black). c Selection of sub-ensembles using ASTEROIDS on the basis of different 
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and used as targets in a selection protocol using the genetic algorithm ASTER-
OIDS by starting from a statistical coil pool, i.e. a pool without any particular 
secondary structure preferences. After the ensemble selection using only data 
for carbon chemical shifts (Cα, Cβ, C'), the ϕ/ψ sampling was reproduced in the 
regions with enhanced α-helical and β-strand sampling, but not in the region with 
enhanced PPII sampling (Fig. 4.6c). The study further showed that inclusion of 
either backbone 15N and 1HN chemical shifts or 1DNH RDCs in the selection pro-
cedure allowed a reproduction of the PPII sampling in the third biased region of 
the target ensemble, while inclusion of both backbone chemical shifts and RDCs 
represents a robust and accurate way to map the local conformational sampling 
of IDPs (Fig. 4.6c). Calibration of ensemble generation protocols against a syn-
thetic target can therefore tell us if we are able to reproduce the sampling of a 
synthetic ensemble, and consequently also a real ensemble with the same charac-
teristics. The reference ensemble method can also be used in a quantitative way 
by adding Gaussian noise to the synthetic dataset to determine the accuracy with 
which the conformational space of IDPs can be mapped using different data types 
(Ozenne et al. 2012b).

10 � Taking into Account Cooperatively Formed Secondary 
Structures in IDPs

When an IDP contains a longer stretch of a cooperatively formed structure, such as 
an α-helix, the sample-and-select approach does not work as efficiently. An α-helix 
can be stabilized by many cooperative interactions (Muñoz and Serrano 1995; Doig 
2002). For example, the effect of helix capping can span several amino acids further 
down the protein sequence and can affect the stability of the helix as a whole. Apart 
from capping interactions and the regular backbone-backbone i to i + 3 hydrogen 
bonding pattern, many other stabilizing interactions are present between i and i + 3 
residues and between residues even further away. As helices in IDPs can span more 
than ten residues, we expect that amino acids that are far apart in the primary se-
quence should contribute together to the formation of the helix.

Statistical coil generators take into account amino acid type conformational 
preferences that are mainly local. As a consequence the sampling in the statistical 
coil library can correctly sample α-helical conformations in selected regions of the 
protein; however, the chance of building a long helix without an interruption is rela-
tively small. For example, with a statistical coil library with 80 % helical sampling, 
the probability of forming a helical element consisting of six consecutive amino 
acids is 0.86, which is around 25 %. The probability of forming a longer α-helix with 

combinations of the synthetic chemical shift and RDC datasets. Ramachandran plots of the target 
( top line) and the results of the selections employing different data types are shown. Reprinted 
in part with permission from (Ozenne et al. 2012b). Copyright 2012 American Chemical Society
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a high enough population to fit the data is therefore very low. Approaches using 
MD simulations experience a similar problem when it comes to long cooperatively 
folded helices (or other secondary structures), and breaks in helices are often ob-
served throughout the simulations.

A solution to this problem is to generate many different starting ensembles where 
each ensemble incorporates an α-helix with a different start and end point, calculate 
the ensemble-averaged NMR data for each of these ensembles, and subsequently 
find the best combination of ensembles with corresponding populations that agree 
with the experimental data. Essentially this corresponds to enriching the initial start-
ing pool with cooperatively formed α-helices in specific regions of the protein that 
are known to over-sample the α-helical region of Ramachandran space.

This approach was developed and applied to the C-terminal intrinsically dis-
ordered domain, NTAIL, of Sendai virus nucleoprotein, which undergoes induced 
α-helical folding of its molecular recognition element upon binding to its partner 
protein PX (Jensen et al. 2008). The 1DNH RDCs measured in NTAIL were positive 
within the molecular recognition element and showed a characteristic dipolar wave 
pattern consistent with the formation of cooperatively formed α-helices (Fig. 4.7a) 
(Jensen and Blackledge 2008). The experimental RDCs were fitted with models of 
increasing complexity, i.e. starting from a statistical coil model and increasing the 
number of helical ensembles until a satisfactory fit was obtained (Fig. 4.7a). For 
each model the populations of the helical elements were optimized to best agree 
with the experimental data. Data reproduction evidently improves as the number 
of helical ensembles increases, and a standard F-test was therefore used to test for 
the statistical significance of this improvement. It was found that three helical en-
sembles with different populations in exchange with a disordered form of the pro-
tein are needed to describe the experimental RDCs (Fig. 4.7b). Interestingly, all the 
selected helical ensembles are preceded by aspartic acids or serines, which are the 
most common N-capping residues in helices of folded proteins (Fig. 4.7c, 4.7d). 
An N-capping residue stabilizes a helix by forming a hydrogen bond between its 
side chain and the backbone amides at position 2 or 3 in the helix (Fig. 4.7c). Im-
portantly, this indicates that the helices preferentially being populated in solution 
in NTAIL are stabilized by N-capping interactions, and that the helical formation is 
being promoted by strategically placed aspartic acids and serines in the primary se-
quence. The partial pre-structuration of NTAIL in its free state suggests that the inter-
action with PX occurs through conformational selection, where one of the helices is 
selected by the partner protein in order to form the complex (Hammes et al. 2009).

11  Choosing an Appropriate Ensemble Size

A scoring function that measures the agreement between the experimental and 
simulated data for the model ensemble is applied during the ensemble selec-
tion procedure. A measure commonly used is chi square ( )22 s — m /( )i i iχ = σ∑  
where si represents the back-calculated data from the ensemble, mi represents the 
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Fig. 4.7   Analysis of cooperatively formed α-helices within the molecular recognition element of 
the C-terminal domain, NTAIL, of the Sendai virus nucleoprotein. a Reproduction of experimental 
1DNH RDCs in NTAIL for models with an increasing number, N, of helical ensembles: N = 0 ( top, 
left), N = 1 ( top, right), N = 2 ( bottom, left), N = 3 ( bottom, right). Experimental RDCs are shown 
in red, while back-calculated RDCs from the different models are shown in blue. b Molecular rep-
resentation of the equilibrium of the molecular recognition element of NTAIL in solution. The four 
different helical states are presented as a single structure for the completely disordered form and as 
twenty randomly selected conformers for the three helical states. The molecular recognition argi-
nines are displayed in red, while N-capping residues are shown in blue. c The amino acid sequence 
of the molecular recognition element of NTAIL showing that the selected helical elements are all 
preceded by aspartic acids or serine residues. The cartoon representation illustrates an N-capping 
aspartic acid side chain-backbone interaction. d The occurrence of different amino acid types as 
N-capping residues in helices of folded proteins. Reprinted in part with permission from (Jensen 
et al. 2008). Copyright 2008 American Chemical Society
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measured data, and σi is the experimental error associated with the different NMR 
parameters. One has to take care in order not to over-fit the experimental data. Over-
fitting happens when the difference between the simulated and experimental data 
is minimized during the fitting process not in order to improve the physical model 
describing the system, but because the model is modified to fit the random error and 
noise contributions. A good fit therefore always means a good fit within the defined 
experimental error.

Ensemble size also influences the goodness of the fit and the ensemble should not 
be too small or too large. The ensemble obtained in the selection procedure is not ac-
curate if it is composed of too few structures and therefore does not represent the con-
formational heterogeneity present in solution. In this case, with too few conformers 
in the ensemble, we say that we are over-restraining or also under-fitting. On the 
other hand, as we increase the ensemble size, the number of parameters (e.g. dihedral 
angles) that can be independently adjusted increases and the total 

2χ  value will there-
fore decrease. The fit may improve because of an improvement in our model, but also 
because inaccuracies in the model are compensated by newly added structures.

There are tests that can help us decide on the ensemble size that we should choose 
for ensemble selection. Most commonly a plot of final 

2χ  against ensemble size is 
used to determine the appropriate size for a given set of experimental data. The fit 
does not improve significantly above a certain ensemble size, and the increase in 
the number of degrees of freedom introduced by selecting a larger ensemble is no 
longer justifiable.

An alternative method, and in principle a more correct one, is to use cross-vali-
dation procedures where a part of the experimental data is left out of the ensemble 
selection procedure. Ensembles of different sizes are selected and the “passive” 
data are back-calculated from the selected ensembles and compared to the experi-
mental data. The optimal reproduction of the passive data will normally occur for 
the most appropriate ensemble size. This procedure has for example been used to 
obtain the most appropriate ensemble size (200 structures) for describing the local 
conformational sampling of urea-denatured ubiquitin on the basis of multiple types 
of RDCs (Nodet et al. 2009).

12 � Ensemble Size in Relation to Convergence Properties 
of NMR Parameters

When optimizing the size of the selected ensembles, one also needs to consider the 
convergence characteristics of the different NMR parameters when averaged over the 
sub-ensembles. We say that convergence of a parameter has been reached when the 
addition of one more conformer to the ensemble does not perturb the calculated aver-
age parameter within a predefined limit. The convergence of parameters is particularly 
important as the use of too few structures in the selected ensembles will force the fit-
ting procedure to accommodate fluctuations in the averaged NMR parameters that 
do not necessarily correspond to specific conformational propensities, thereby poten-
tially leading to incorrect residue-specific conformational sampling.



1414  Ensemble Calculation for Intrinsically Disordered Proteins …

The number of conformers needed for a certain simulated parameter to converge 
depends on its variance. This is the reason for the different convergence properties 
of RDCs and chemical shifts. Chemical shifts are sensitive to the local chemical en-
vironment and are affected by main and side chain dihedral angles, amino acid iden-
tity, ring current effects and hydrogen bonding. When chemical shifts are predicted 
in IDPs the most important factor is the dihedral angle distribution. Carbon (Cα, Cβ, 
C') and proton Hα chemical shifts depend mostly on the ϕ/ψ angles of the residue 
of interest, while the chemical shifts of the nitrogen (N) atom and the amide proton 
(HN) depend mostly on the ψ angle of the preceding residue. The fact that chemical 
shifts can be predicted from local structure only makes them a well-behaved param-
eter when it comes to convergence. Sufficient sampling of the ϕ/ψ space of a single 
amino acid can even be achieved with only a few hundred structures. As a conse-
quence, when selecting ensembles against experimental chemical shifts, 100–200 
structures are sufficient for achieving convergence of the predicted chemical shifts 
(Fig. 4.8a, 4.8b, 4.8c). Scalar couplings also report on local conformational features 
of the polypeptide chain, and similarly to chemical shifts, a hundred conformers in 
the model ensemble suffice for achieving convergence.

Fig. 4.8   Convergence of experimental NMR parameters over structural ensembles. a Secondary 
Cα chemical shifts averaged over 250 conformers generated using Flexible-Meccano for a model 
protein of 50 amino acids of arbitrary sequence. The results for five different ensemble aver-
ages are shown. Residues 7–18 populate the α-helical region of Ramachandran space, while the 
remaining residues adopt random coil conformations. b Ensemble-averaged secondary Cα chemi-
cal shifts for increasing ensemble size for residue 15 of the model protein. Ensemble-averaged 
secondary Cα chemical shifts for increasing ensemble size for residue 32 of the model protein. c 
Convergence of 1DNH RDCs over a structural ensemble with an increasing number of conformers 
for a model protein of 76 amino acids. Results are shown for the calculation using a global align-
ment tensor ( red) and employing different sizes of short segments for calculating the alignment 
tensor: 25 ( black), 15 ( blue), 9 ( green) and 3 ( pink) amino acids. Reprinted in part with permission 
from (Nodet et al. 2009). Copyright 2009 American Chemical Society
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As mentioned above, RDCs depend on both local and long-range structure, i.e. 
on the conformational sampling of the residue itself and immediate neighbours 
as well as intra-peptide long-range contacts. The large number of combinations 
of dihedral angle pairs that potentially all give different RDC values combined 
with the large range of RDCs calculated from a single structure make the con-
vergence of the RDC average much slower. In addition, RDCs converge more 
slowly for longer polypeptide chains and for an IDP of 100 amino acids, more 
than 10,000 structures are needed in order to achieve convergence of the RDC 
average (Fig. 4.8d). In order to overcome this problem, we can divide the pro-
tein chain into shorter, uncoupled segments and predict the RDCs for the central 
amino acid of each segment (Marsh et  al. 2008), thereby achieving sufficient 
convergence of the RDC average with only a few hundred structures (Fig. 4.8d). 
The disadvantage of this approach is that we remove any information about long-
range structure from the predicted RDCs; however, this information can be rein-
troduced by multiplying the predicted RDCs by a baseline that takes into account 
the chain-like nature of the IDP (Nodet et  al. 2009; Salmon et  al. 2010). Our 
ability to separate the contribution to the RDCs from local conformational sam-
pling and long-range interactions allows convergence of the RDC average with 
an ensemble of only a few hundred structures. The use of short segments for the 
calculation of RDCs therefore appears essential when using RDCs in ensemble 
selection procedures.

13  Validation of Ensemble Descriptions

Due to the under-determined nature of ensemble selections in general, it is useful 
to think about how we can potentially validate the structural ensembles that we 
derive from experimental NMR data. One way of doing this is to exploit the 
complementary nature of different data types and use cross-validation procedures 
where a part of the experimental data is left out of the ensemble selection and 
subsequently back-calculated from the selected ensembles. If the selected 
ensemble correctly reproduces the local conformational sampling, the agreement 
between the “passive” data and that back-calculated from the selected ensemble 
should be good and no systematic deviations should be observed. An example of 
this procedure is shown in Fig. 4.9 where experimental 1DNH RDCs measured in 
Tau protein are compared to the RDCs extracted from ASTEROIDS ensembles 
of Tau selected on the basis of chemical shift data alone. The agreement between 
the two sets of data is excellent and even the turn motifs in the repeat regions of 
Tau—where positive 1DNH RDCs are observed experimentally—are reproduced 
by the chemical shift ensemble. This type of procedure therefore validates the 
local conformational sampling of Tau derived from chemical shifts only.
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14  Conclusions and Outlook

Ensemble descriptions have in recent years emerged as the preferred tool for rep-
resenting the structural and dynamic properties of IDPs and their functional com-
plexes. Within such descriptions it is assumed that the protein adopts a continuum 
of rapidly interconverting structures, and the determination of these representative 
ensembles is one of the major challenges in the studies of IDPs. In this chapter we 
have described how different NMR data types can be combined with sample-and-
select approaches to map local conformational propensities in IDPs. In particular, 
we have emphasized some of the pitfalls associated with these approaches such as 
under- and over-restraining, and we have discussed ways to validate the derived 
structural ensembles. Validating structural ensembles is particularly important if we 
are to use these ensembles in the future for the prediction of other, independent ex-
perimental observables or for the development of small molecules that can interfere 
with the biological function of IDPs.
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