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Introduction

Bruno Benedetti, Emanuele Delucchi, and Luca Moci

Combinatorics and discrete geometry have been studied since the beginning of
mathematics. Yet it is only in the last 50 years that combinatorics has flourished,
with striking structural developments and a growing field of applications. Part of
the reason for this blossoming may lie in the startling developments of computer
science, which have taught us to look at mathematics with algorithmic eyes.

Moreover, many new connections between combinatorics and classical areas of
mathematics, such as algebra and geometry, have emerged since the 70s. With no
claim of completeness, let us provide (without references) five examples.

Hyperplane Arrangements A finite collection of linear one-codimensional sub-
spaces in a complex vector space V is called an arrangement of hyperplanes. The
intersection pattern of these hyperplanes gives rise to a rich combinatorial structure
(see below under “Matroid”) bearing a subtle relationship with the topology of
the space obtained by removing the hyperplanes from V . Classical objects such
as configuration spaces arise as special instances of these spaces which, in general,
enjoy some nice topological properties—for instance, they are minimal (e.g., they
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2 B. Benedetti et al.

have the homotopy type of CW complexes where, in every dimension, the number
of cells equals the rank of the homology).

From the point of view of algebraic geometry, an arrangement is defined by
a product p.z/ of degree-one homogeneous polynomials. One of the main topics
of current research in this field is the study of the Milnor fiber p�1.1/ of the
arrangement.

Coxeter Groups A Coxeter group W is any group presented as

hs1; : : : ; sn j sisjsi : : :
„ ƒ‚ …

mij terms

D sjsisj : : :
„ ƒ‚ …

mij terms

i

with mii D 1 and 2 � mij � 1 for all i ¤ j, where 1 � i; j � n and mij D1 means
that no condition on sisj is imposed. Symmetric groups and dihedral groups are of
this type: indeed, the name of these groups reveals their origin in the study of regular
polytopes by H.S.M. Coxeter. The combinatorics of Coxeter groups is very rich
and deeply connected with the representation theory of Lie algebras, the algebraic
geometry of flag varieties, and the topology of (real) reflection arrangements. With
every pair of elements in W one can associate a Kazhdan-Lusztig polynomial. The
coefficients of these polynomials are non-negative, and (when W is finite) they can
be expressed in terms of the intersection cohomology Schubert varieties.

Removing the restriction mii D 1 from the presentation of a Coxeter group, we
obtain the associated Artin group. A theorem of Deligne shows that the orbit space
of the action of a finite-type Coxeter group on the complement of the hyperplane
arrangement defined by (the complexification of) its reflection hyperplanes is a
classifying space for the associated Artin group.

Matroids Matroids are certain types of set systems whose study was initiated by H.
Whitney in the 1930s as an abstract common generalization of properties of linear
algebra and graph theory. One possible definition is the following. A matroid on a
finite set E is a nonempty collection B of subsets of E such that the exchange axiom
holds:

• If A;B 2 B, for any a 2 A n B there exists an element b 2 B n A such that
A n fag [ fbg is in B.

The elements of B are called bases, and from this definition the connection to
linear algebra should be apparent: if E is any finite subset of a K-vector space V ,
the maximal linearly independent subsets of E form a matroid, which in this case
is said to be realizable over K. However, not all matroids arise in this way: some
matroids are realizable only over some field, and some are not realizable over any
field. Characterization of realizability is one of the main areas of research in matroid
theory. The connection with graphs is as follows: if E is the edge set of a connected
graph, the set of all edge sets of spanning trees satisfies the above definition and thus
forms a matroid on E.

The interplay of matroid theory with algebraic geometry and commutative
algebra has undergone thriving development in recent years, one of the main bridges
being the language of tropical geometry.
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Stanley–Reisner Ideals Let� be a simplicial complex on n vertices. The Stanley–
Reisner ideal I� is defined by

I�
defD

\

F facet of �

.xi W i … F/:

Since the ideals on the right-hand side are monomial and prime, I� is monomial
and radical. The uniqueness of prime decompositions of ideals implies that I�
determines� uniquely. Interestingly, every radical monomial ideal I is of the form
I� for a suitable complex �. This shows that there is a one-to-one correspondence
between simplicial complexes (on n vertices) and radical monomial ideals (in
n variables)—they are thus essentially the same thing. This allows transfer of
properties back and forth between the two worlds: for example, one can characterize
topologically the simplicial complexes � for which the ring S=I� is Cohen–
Macaulay. A well studied combinatorial property implying Cohen–Macaulayness
is, for example, shellability.

Face Vectors of Polytopes Given a simplicial complex �, we denote by fi the
number of i-dimensional faces; by convention f�1 D 1. The f-vector of C is
the vector .f�1; f0; : : : ; fd/. The h-vector .h0; : : : ; hd/ is defined by the polynomial
equality

d
X

iD0
hiX

d�i D
d
X

iD0
fi�1.X � 1/d�i:

A natural question is: What integer vectors can arise as f -vectors of triangulated
spheres?

When the sphere is the boundary of a polytope, the question was settled by the so-
called g-theorem, proved by Billera-Lee and by Stanley in 1979 using commutative
algebra and toric varieties and thereby giving a new stimulus to these fields. In the
general case, progress was made by S. Murai, who in 2007 proved that a large family
of shellable spheres, most of which are non-polytopal, satisfies the “Hard Lefschetz
property”, proved by Stanley for polytopes as a crucial step in his contribution to
the g-theorem.

A consequence of the g-theorem is that h-numbers form a unimodal sequence,
i.e., h0 � h1 � : : : � hbd=2c � : : : � hd. Recently, Murai and Nevo proved the
generalized lower bound conjecture, which claims the following: if in the h-vector
of a d-polytope P one sees hk�1 D hk for some k � d=2, then there is a triangulation
of P without simplices of dimension � d � k.

The present volume arises from a workshop on these interactions that was
especially devoted to promoting outstanding young researchers. This INdAM Con-
ference, entitled “Combinatorial Methods in Topology and Algebra” (or CoMeTA
for short) took place in Cortona in September 2013. The detailed program of the
conference is available at the website www.cometa2013.org.

www.cometa2013.org
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About this Book

In the first part we have collected short surveys, which may be viewed as written
and expanded versions of the talks given by the various speakers. Since the quality
level of the lectures was very high, we believe that the inclusion of such material
may be of great help for future studies. These surveys cover various topics:

(i) Hyperplane arrangements.
(ii) Matroids.
(iii) Polytopes and geometric combinatorics.
(iv) f -vectors of cellular complexes and triangulations.
(v) Combinatorial commutative algebra.
(vi) Coxeter groups and Kazhdan–Lusztig and Eulerian polynomials.
(vii) Combinatorial approaches to physics and analysis.

The second part consists of three peer-reviewed full research papers.

• The first sheds new light on positive sum systems. If x1; : : : ; xn are real numbers
summing to zero, consider the family PC of all subsets J � Œn� WD f1; 2; : : : ; ng
such that

P

j2J xj > 0. Björner proves that the order complex of PC, viewed
as a poset under set containment, triangulates a shellable ball, whose f -
vector depends only on n, and whose h-polynomial is the classical Eulerian
polynomial.

• The second investigates an unexpected action by the group SnC1 on the minimal
projective De Concini–Procesi model associated to the braid arrangements
of type An�1. The action naturally arises from the fact that this model is
isomorphic to the moduli space M0;nC1 of genus 0 stable curves with n C 1
marked points.

• The third contribution focuses on Stanley’s 1977 conjecture that the h-vectors
of matroids are pure O-sequences. The conjecture is shown to hold in a few
special cases, for example when the Cohen-Macaulay type is less than or equal
to 3.
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Extremal Graph Theory and Face Numbers
of Flag Triangulations of Manifolds

Michał Adamaszek

Abstract We indicate how tools of extremal graph theory, mainly the stability
method for Turán graphs, can be applied to derive upper bounds for face numbers
of flag triangulations of spheres and manifolds.

1 Introduction

If G D .V;E/ is an arbitrary simple, finite, undirected graph, we denote by Cl.G/ the
clique complex of G, which is a simplicial complex defined as follows. The vertices
of Cl.G/ are the vertices of G and the faces of Cl.G/ are those vertex sets which
induce a clique (a complete subgraph) of G. The simplicial complexes which arise
in this way are also known as flag complexes. This family includes for instance order
complexes of posets and it appears in Gromov’s theory of non-positive simplicial
curvature [3].

A typical problem studied in enumerative combinatorics is to describe
the f -vectors of interesting families of simplicial complexes. The f -vector
. f0.K/; : : : ; fd.K// of a d-dimensional complex K has as its ith entry, fi.K/, the
number of i-dimensional faces of K. The full classification of f -vectors of all
flag complexes is probably impossible, although they are known to satisfy a
number of non-trivial constraints [6]. We study this problem for the family of
flag complexes which triangulate spheres and, more generally, homology manifolds
and pseudomanifolds.

Note that G is the 1-skeleton of Cl.G/. If we denote by ci.G/ the number of
cliques of cardinality i in G, then fi.Cl.G// D ciC1.G/, in particular f0.Cl.G// D
jV.G/j and f1.Cl.G// D jE.G/j. Our problem is thus equivalent to asking for
the relations between clique numbers of graphs which satisfy some topological
hypotheses.

M. Adamaszek (�)
Fachbereich Mathematik, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
e-mail: aszek@mimuw.edu.pl

© Springer International Publishing Switzerland 2015
B. Benedetti et al. (eds.), Combinatorial Methods in Topology and Algebra,
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8 M. Adamaszek

2 Upper Bounds

Let K.n; s/ denote the n-vertex balanced complete s-partite graph. It is uniquely
determined by the requirement that the vertices can be split into s parts of sizes b n

s c
or d n

s e each, with all possible edges between the parts and no edges within any part
(see Fig. 1). By Turán’s theorem this graph maximizes the number of edges among
n-vertex graphs G which satisfy csC1.G/ D 0.

Now let J.n; s/ be defined in the same way, except that we require each of the
s parts to induce a cycle. We call this graph the join of s cycles of (almost) equal
lengths. Note that Cl.J.n; s// is homeomorphic to the sphere S2s�1 (it is a topological
join of s copies of S1). The meta-statement we wish to advertise is that, provided n
is large enough, J.n; s/ maximizes the number of edges among n-vertex graphs G
for which Cl.G/ is manifold-like in any reasonable sense.

More precisely, in [1] we show the following upper bound.

Theorem 1 Let G be a graph with n vertices such that Cl.G/ is a weak pseudoman-
ifold of odd dimension d D 2s � 1, which satisfies the middle Dehn-Sommerville
equation. If n is sufficiently large then we have

jE.G/j � s � 1
2s

n2 C n
� � jE.J.n; s/j�:

In particular, the conclusion holds when Cl.G/ is a .2s� 1/-dimensional homology
manifold.

If d D 3 and Cl.G/ is a homology 3-manifold the same bound was shown to hold
for all n in [7]. A simplicial complex of dimension d is a weak pseudomanifold if
every .d � 1/-dimensional face belongs to exactly two facets. The graph G which
achieves the upper bound of the theorem is J.n; s/. Moreover, one can expect this
extremum to be stable, in the sense that the graphs for which jE.G/j is close enough
to the upper bound will be similar to J.n; s/. In [2] this was shown in dimension
d D 3 in the form of the next theorem, which also contributes to the classification
problem for f -vectors of flag 3-spheres.

Theorem 2 Suppose G is a graph with n vertices such that Cl.G/ is a 3-
dimensional homology manifold and

1

4
n2 C 1

2
nC 17

4
< jE.G/j � 1

4
n2 C n:

If n is sufficiently large then G is a join of two cycles of lengths 1
2
n˙ O.

p
n/.

Fig. 1 Illustration for the
definition of K.n; s/ (left) and
J.n; s/ (right)
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By Zykov’s extension of Turán’s theorem the graph K.n; s/ maximizes not only
the number of edges, but in fact all clique numbers c2.G/; : : : ; cs.G/ among graphs
G with n vertices and csC1.G/ D 0. It is likely that the methods used for Theorems 1
and 2 can be extended to prove an analogous statement about maximality of higher
face numbers of Cl.J.n; s//. At the time of writing it appears that the following
conjecture (also stated in [8]) can be turned into a theorem.

Conjecture 3 If G is a graph with n vertices such that Cl.G/ is a homology manifold
of odd dimension d D 2s� 1 and n is sufficiently large, then

ck.G/ � ck.J.n; s//

for all 1 � k � s.

3 Proofs

The technique we use to study dense flag manifold triangulations was developed in
[2]. It relies on the similarity between the graphs K.n; s/ and J.n; s/ coupled with
the special role played by Turán’s graphs K.n; s/ in extremal graph theory. A typical
application of this technique goes along the following lines.

1. Suppose G is a graph with n vertices such that Cl.G/ is a homology manifold of
dimension d D 2s � 1. In the first step we use the middle Dehn-Sommerville
equation for Cl.G/ to conclude that csC1.G/ is a linear combination of the
numbers 1; c1.G/; : : : ; cs.G/. In particular csC1.G/ D O.ns/.

2. Now assume that G is as dense as K.n; s/, i.e. it has approximately s�1
2s n2 or more

edges. In a “typical” or “random” graph with this edge density a constant fraction
of .s C 1/-tuples of vertices would span a clique. However, G has much fewer
.sC1/-cliques, namely just O.ns/. This has a consequence for the structure of G,
which must be “similar” to K.n; s/, meaning that it can be obtained from K.n; s/
by adding or removing a relatively small number of edges (which can be o.n2/ or
even O.n/ depending on the specific problem). This step is known as the stability
method in extremal graph theory, its origins going back to [5].

3. A graph which is similar to K.n; s/ is also similar to J.n; s/. The additional
geometric properties of Cl.G/, such as being a pseudomanifold or having
homology spheres as face links, provide extra restrictions on the structure of G.
They can now be used to rigidify G and conclude that it must be a join of cycles.

Let us mention that in the even dimensions d D 2s this strategy is complicated
by the fact that the extremal examples are (conjecturally) highly non-unique: one
can take a join of s� 1 cycles with an arbitrary flag triangulation of S2.
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4 Conclusion

Much more is conjectured, than known, about the f -vectors of flag triangulations of
spheres. In dimensions d D 1 and d D 2 they are easy to describe. In dimension
d D 3 they can be classified up to, possibly, a finite number of exceptions, by the
combined results of [2, 4, 7, 9]. The classification will be complete if Theorem 2
holds for all values of n, not just for sufficiently large ones. Note that already for
d D 3 the classification relies on the deep result of Davis and Okun [4], namely
the three-dimensional Charney-Davis conjecture. Full classification is available in
dimension d D 4 (see [9]). In higher dimensions the only non-trivial restrictions
known to hold are the upper bounds of Theorem 1. For more conjectures in this area
see [7, 10].
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Combinatorial Stratifications and Minimality
of Two-Arrangements

Karim A. Adiprasito

Abstract I present a result according to which the complement of any affine 2-
arrangement in R

d is minimal, that is, it is homotopy equivalent to a cell complex
with as many i-cells as its ith Betti number. To this end, we prove that the
Björner–Ziegler complement complexes, induced by combinatorial stratifications
of any essential 2-arrangement, admit perfect discrete Morse functions. This result
extend previous work by Falk, Dimca–Papadima, Hattori, Randell, and Salvetti–
Settepanella, among others.

A c-arrangement is a finite collection of distinct affine subspaces of R
d, all of

codimension c, with the property that the codimension of the non-empty intersection
of any subset of A is a multiple of c. For example, after identifying C with R

2, any
collection of hyperplanes in C

d can be viewed as a 2-arrangement in R
2d. However,

not all two-arrangements arise this way, cf. [10, Sect. III, 5.2] and [22]. In this paper,
we study the complement Ac WD R

dnA of any 2-arrangement A in R
d.

Subspace arrangements A and their complements Ac have been extensively
studied in several areas of mathematics. Thanks to the work by Goresky and
MacPherson [10], the homology of Ac is well understood; it is determined by
the intersection poset of the arrangement, which is the set of all nonempty
intersections of its elements, ordered by reverse inclusion. In fact, the intersection
poset determines even the homotopy type of the compactification of A [23]. On
the other hand, it does not determine the homotopy type of the complement of Ac,
even if we restrict ourselves to complex hyperplane arrangements [3, 16, 17], and
understanding the homotopy type of Ac remains challenging.

A standard approach to study the homotopy type of a topological space X is to
find a model for it, that is, a CW complex homotopy equivalent to it. By cellular
homology any model of a space X must use at least ˇi.X/ i-cells for each i, where
ˇi is the ith (rational) Betti number. A natural question arises: Is the complement of
an arrangement minimal, i.e., does it have a model with exactly ˇi.X/ i-cells for all
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i? Studying minimality is not without its motivations; it appears, for instance, in the
study of abelian covers of X [14].

Building on previous work by Hattori [12], Falk [8], and Cohen–Suciu [6],
around 2000 Dimca–Papadima [7] and Randell [15] independently showed that the
complement of any complex hyperplane arrangement is a minimal space. Roughly
speaking, the idea is to consider the distance to a complex hyperplane in general
position as a Morse function on the Milnor fiber to establish a Lefschetz-type
hyperplane theorem for the complement of the arrangement. An elegant inductive
argument completes their proof.

On the other hand, the complement of an arbitrary subspace arrangement is, in
general, not minimal. In fact, complements of subspace arrangements might have
arbitrary torsion in cohomology (cf. [10, Sect. III, Theorem. A]). This naturally leads
to the following question:

Problem 1 (Minimality) Is the complement Ac of every c-arrangement A mini-
mal?

The interesting case is c D 2. In fact, if c is not 2, the complements of c-
arrangements, and even c-arrangements of pseudospheres (cf. [5, Sects. 8 and 9]),
are easily shown to be minimal. In 2007, Salvetti–Settepanella [19] proposed a
combinatorial approach to Problem 1, based on Forman’s discretization of Morse
theory [9]. Discrete Morse functions are defined on regular CW complexes rather
than on manifolds; instead of critical points, they have combinatorially-defined
critical faces. Any discrete Morse function with ci critical i-faces on a complex
C yields a model for C with exactly ci i-cells. Salvetti–Settepanella studied
discrete Morse functions on the Salvetti complexes [18], which are models for
complements of complexified real arrangements. Remarkably, they found that all
Salvetti complexes admit perfect discrete Morse functions, that is, functions with
exactly ˇi.A

c/ critical i-faces. Formans’s Theorem now yields the desired minimal
models for Ac.

This tactic does not extend to the generality of complex hyperplane arrange-
ments. However, models for complex arrangements, and even for c-arrangements,
have been introduced and studied by Björner and Ziegler [5]. In the case of
complexified-real arrangements, their models contain the Salvetti complex as
a special case. While our notion of the combinatorial stratification is slightly
more restrictive than Björner–Ziegler’s, it still includes most of the combinatorial
stratifications studied in [5]. For example, we still recover the s.1/-stratification
which gives rise to the Salvetti complex. With these tools at hand, we can tackle
Problem 1 combinatorially:

Problem 2 (Optimality of Classical Models) Are there perfect discrete Morse
functions on the Björner–Ziegler models for the complements of arbitrary two-
arrangements?

We are motivated by the fact that discrete Morse theory provides a simple
yet powerful tool to study stratified spaces. On the other hand, there are several
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difficulties to overcome. In fact, Problem 2 is more ambitious than Problem 1 in
many respects:

• Few regular CW complexes, even among the minimal ones, admit perfect
discrete Morse functions. For example, many 3-balls [4] and many contractible
2-complexes [21] are not collapsible.

• There are few results in the literature predicting the existence of perfect Morse
functions. For example, it is not known whether any subdivision of the 4-simplex
is collapsible, cf. [13, Problem. 5.5].

• Solving Problem 2 could help in obtaining a more explicit picture of the
attaching maps for the minimal model; compare Salvetti–Settepanella [19] and
Yoshinaga [20].

We answer both problems in the affirmative.

Theorem 3 ([1]) Any complement complex of any 2-arrangement A in Sd or R
d

admits a perfect discrete Morse function.

Corollary 4 ([1]) The complement of any affine 2-arrangement in R
d, and the

complement of any 2-arrangement in Sd, is a minimal space.

A crucial step on the way to the proof of Theorem 3 is the proof of a Lefschetz-
type hyperplane theorem for the complements of two-arrangements. The lemma we
actually need is a bit technical, but roughly speaking, the result can be phrased in
the following way:

Theorem 5 ([1]) Let Ac denote the complement of any affine 2-arrangement A in
R

d, and let H be any hyperplane in R
d in general position with respect to A. Then

Ac is homotopy equivalent to H \ Ac with finitely many e-cells attached, where
e D dd=2e D d � bd=2c.

An analogous theorem holds for complements of c-arrangements (c ¤ 2, with
e D d � bd=cc); it is an immediate consequence of the analogue of Corollary 4
for c-arrangements, c ¤ 2. Theorem 5 extends a result on complex hyperplane
arrangements, which follows the classical Lefschetz theorem, applied to the Milnor
fiber [7, 11, 15]. The main ingredients to our study are:

• The formula to compute the homology of subspace arrangements in terms of the
intersection lattice, due to Goresky and MacPherson [10].

• The study of combinatorial stratifications as initiated by Björner and Ziegler [5].
• The study of the collapsibility of complexes whose geometric realizations satisfy

certain geometric constraints, as discussed previous work of Benedetti and
Adiprasito, cf. [2].

• The idea of Alexander duality for Morse functions, in particular the elementary
notion of “out-j collapse”.

• The notion of (Poincaré) duality of discrete Morse functions, which goes back
to Forman [9]. This is used to establish discrete Morse functions on complement
complexes.
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Random Triangular Groups

Sylwia Antoniuk, Tomasz Łuczak, and Jacek Świa̧tkowski

Abstract Let hSjRi denote a group presentation, where S is a set of n generators
while R is a set of relations consisting of distinct cyclically reduced words of
length three. The above presentation is called a triangular group presentation and
the group it generates is called a triangular group. We study the following model
�.n; p/ of a random triangular group. The set of relations R in �.n; p/ is chosen
randomly, namely every relation is present in R independently with probability p.
We study how certain properties of a random group �.n; p/ change with respect to
the probability p. In particular, we show that there exist constants c;C > 0 such that
if p < c

n2
, then a.a.s. a random group �.n; p/ is a free group and if p > C log n

n2
, then

a.a.s. this group has Kazhdan’s property (T). What is more interesting, we show that
there exist constants c0;C0 > 0 such that if C0

n < p < c0 log n
n2

, then a.a.s. a random
group �.n; p/ is neither free, nor has Kazhdan’s property (T). We prove the above
statements using random graphs and random hypergraphs.

The notion of a random group goes back to Gromov [3], who studied groups given
by random group presentations. Let hSjRi denote a group presentation with a set of
generators S and a set of relations R consisting of distinct cyclically reduced words
of length three, that is R consists of words of the form abc, where a; b; c 2 S [ S�1
and a ¤ b�1, b ¤ c�1, c ¤ a�1. The above presentation is called a triangular group
presentation and the group it generates is called a triangular group.

The subject of our interest is the following model of a random triangular group.

Definition 1 Let �.n; p/ denote a model of a random triangular group given by a
random group presentation hSjRi with n generators, in which the set of relations R
is chosen randomly in the following way: each cyclically reduced word of length
three over the alphabet S [ S�1 is present in R independently with probability p.
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We are especially interested in the asymptotic properties of groups in the �.n; p/
model. In particular, we say that the random group �.n; p/, where p D p.n/ is
some function of n, has a given property asymptotically almost surely (a.a.s.), if the
probability that �.n; p/ has this property tends to 1 as n!1.

In [4] Żuk investigated threshold functions for specific and important properties
of random triangular groups, such as Kazhdan’s property (T), the property of being
a free group or the property of being a trivial group. However, we should mention
that Żuk studied a slightly different model of a random triangular group in which,
rather than picking every relation independently, we choose uniformly at random the
whole set of relations R among all the sets of prescribed size. Żuk’s results stated
for the �.n; p/model read as follows.

Theorem 2 (Żuk [4]) Let � > 0.

1. If p < n�2�� , then a.a.s. �.n; p/ is a free group.
2. If n�2C� < p < n�3=2�� , then a.a.s. �.n; p/ is infinite, hyperbolic and has

Kazhdan’s property (T).
3. If p > n�3=2C� , then a.a.s. �.n; p/ is trivial.

In our work we managed to determine threshold functions more precisely than
just up to the no.1/ factor. Our main results are captured in the following two
theorems.

Theorem 3 (Antoniuk et al. [2])
There exist constants c; c0;C;C0 > 0, such that:

1. If p < c
n2

, then a.a.s �.n; p/ is a free group.

2. If c0

n2
< p < C0 log n

n2
, then a.a.s.�.n; p/ is neither free, nor has Kazhdan’s property

(T).
3. If p > C log n

n2
, then a.a.s. �.n; p/ has Kazhdan’s property (T).

Here, it is worth mentioning that we managed not only to improve bounds on the
critical probability, but what is more interesting, we discovered a new period in the
evolution of a random triangular group, in which a.a.s. this group is neither free, nor
has Kazhdan’s property (T).

Theorem 4 (Antoniuk et al. [1]) There exists a constant C > 0, such that for
p > Cn�3=2 a.a.s. �.n; p/ is trivial.

The proof of the first part of Theorem 3 relies on the fact that if p is small
enough, then the expected number of relations in a random presentation hSjRi is also
small and therefore we can find a generator a 2 S such that a and a�1 are present
in at most one relation. Consequently, using Tietze movements we can eliminate
generators from presentation one by one obtaining in the end a presentation without
any relations.

For the second part of the proof of Theorem 3 we use the fact that if p > c0

n2

for sufficiently large constant c0 > 0, the presentation complex CP of a random
presentation hSjRi is a.a.s. aspherical and therefore it is the classifying space for
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� D �.n; p/. Since it is easy to see that a.a.s. the Euler characteristic of � is non-
positive, � cannot be a free group. On the other hand, if p < C0 log n

n2
for sufficiently

small constant C0 > 0, then a.a.s. the presentation hSjRi contains a generator a 2 S
such that neither a nor a�1 appears in any relation from R and one can show that
a.a.s. � splits nontrivially as the free product � D hai � hSn fagi. Thus a.a.s. � does
not have property (T).

Finally, the third part of Theorem 3 follows from the result of Żuk who in [4]
gave spectral conditions for property (T). Żuk’s argument is based on the study of
the spectrum of the Laplacian of an auxiliary graph called the link graph.

Definition 5 Let� be a group given by a presentation hSjRi. The link graph L D L�
is a graph whose vertices are elements from S[ S�1 and such that for every relation
abc 2 R we place in L three edges: ab�1, bc�1 and ca�1.

Definition 6 Let G be a graph and A D .avw/v;w2V be its adjacency matrix. The
normalized Laplacian of G is a symmetric matrix L .G/ D .bvw/v;w2V , where

bvw D
8

<

:

1; if v D w and d.v/ > 0;
�avw=

p

d.v/d.w/; if fv;wg 2 G;
0; otherwise:

Here d.v/ denotes the degree of a vertex v.

Theorem 7 (Żuk [4]) Let � be a group generated by a finite group presentation
hSjTi and let L D L� . Next, let �1ŒL .L/� � �2ŒL .L/� � � � � � �nŒL .L/� be the
eigenvalues of the normalized Laplacian L .L/. If L is connected and �2ŒL .L/� >
1=2, then � has Kazhdan’s property (T).

Therefore, in order to prove the third part of Theorem 3, it is enough to show that
if p > C log n

n2
for sufficiently large constant C > 0, then a.a.s. the second eigenvalue

of L .L�/ is greater than 1=2.
The proof of Theorem 4 involves the use of more advanced graph structures, i.e.

random intersection graphs.

Definition 8 A random intersection graph Gn;m;� is a graph with a set of vertices V
of size n and a set of features W of size m such that for every vertex v 2 V and every
feature w 2 W, we assign feature w to vertex v independently with probability �.
Two vertices v1; v2 2 V are adjacent in Gn;m;� if and only if they share a common
feature w 2 W.

Although the edges in the random intersection graph Gn;m;� do not appear
independently, it turns out that this graph behaves in a similar manner as the Erdős
and Rényi random graph G.n; Op/ with Op 	 �2m, in particular there exists a threshold
function for the appearance of the giant component in the evolution of Gn;m;�.

In the proof of Theorem 4 we generate relations of the random presentation
in two stages. The relations generated in the first stage are used to introduce an
auxiliary random intersection graph H whose vertices are elements from S [ S�1
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and two vertices a and b are adjacent if the corresponding elements from S [ S�1
are equal in � due to the presence of both relations acd and bcd in the presentation
for some c; d 2 S [ S�1. It turns out that for p large enough H a.a.s. contains a
giant component; i.e. a large set of generators collapse to a single element. We then
use relations generated in the second stage to show that a.a.s. all the elements from
S [ S�1 collapse to the identity.
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Generalized Involution Models of Projective
Reflection Groups

Fabrizio Caselli and Eric Marberg

Abstract The main motivation of this work was to investigate the generalized
involution models of the projective reflection groups G.r; p; q; n/. This family of
groups parametrizes all quotients of the complex reflection groups G.r; p; n/ by
scalar subgroups. Our classification is ultimately incomplete, but we provide several
necessary and sufficient conditions for generalized involution models to exist in
various cases. In the process we have been led to consider and solve several
intermediate problems concerning the structure of projective reflection groups.
We derive a simple criterion for determining whether two groups G.r; p; q; n/
and G.r; p0; q0; n/ are isomorphic. We also describe explicitly the form of all
automorphisms of G.r; p; q; n/, outside a finite list of exceptional cases. Building
on prior work, this allows us to prove that G.r; p; 1; n/ has a generalized involution
model if and only if G.r; p; 1; n/ Š G.r; 1; p; n/. We also classify which groups
G.r; p; q; n/ have generalized involution models when n D 2, or q is odd, or n is
odd.

The details for this work are provided in our paper (F. Caselli and E. Marberg,
Isomorphisms, automorphisms, and generalized involution models of projective
reflection groups, Israel J. Math., 50 pp., in press).

A model for a finite group G is a set f�i W Hi ! Cg of linear characters of
subgroups of G, such that the sum of induced characters

P

i IndG
Hi
.�i/ is equal

to the multiplicity-free sum of all irreducible characters
P

 2Irr.G/  . Models are
interesting because they lead to interesting representations in which the irreducible
representations of G live. This is especially the case when the subgroups Hi are
taken to be the stabilizers of the orbits of some natural G-action.
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Example 1 Let G D G.r; n/ be the group of complex n 
 n matrices with exactly
one nonzero entry, given by an rth root of unity, in each row and column. Assume
r is odd. Then G acts on its symmetric elements by g W X 7! gXgT , and the distinct
orbits of this action are represented by the block diagonal matrices of the form

Xi
defD
�

J2i 0

0 In�2i

�

;

where Jn denotes the n
n matrix with ones on the anti-diagonal and zeros elsewhere.
Write Hi for the stabilizer of Xi in G. The elements of Hi preserve the standard copy

of C2i in C
n, inducing a map 	i W Hi ! GL2i.C/. If �i

defD detı	i then f�i W Hi ! Cg
is a model for G.r; n/ [2, Theorem 1.2].

The following definition of Bump and Ginzburg [5] captures the salient features
of this example. Let 
 be an automorphism of G with 
2 D 1. Then G acts on the
set of generalized involutions

IG;

defD f! 2 G W !�1 D 
.!/g

by the twisted conjugation g W ! 7! g � ! � 
.g/�1. We write

CG;
 .!/
defD fg 2 G W g � ! � 
.g/�1 D !g

to denote the stabilizer of ! 2 IG;
 under this action, and say that a model f�i W
Hi ! Cg is a generalized involution model (or GIM for short) with respect to 
 if
each Hi is the stabilizer CG;
 .!/ of a generalized involution ! 2 IG;
 , with each
twisted conjugacy class in IG;
 contributing exactly one subgroup. The model in
Example 1 is a GIM with respect to the inverse transpose automorphism of G.r; n/.

In [13, 14], the second author classified which finite complex reflection groups
have GIMs. Subsequently, the first author discovered an interesting reformulation
of this classification, which suggests that these results are most naturally interpreted
in the broader context of projective reflection groups. These groups were introduced
in [7] and further studied, for example, in [4, 6, 8]. They include as an important
special case an infinite series of groups G.r; p; q; n/ defined as follows.

For positive integers r; p; n with p dividing r, let G.r; p; n/ denote the subgroup of
G.r; n/ consisting of the matrices whose nonzero entries, multiplied together, form
an .r=p/th root of unity. Apart from 34 exceptions, the irreducible finite complex
reflection groups are all groups G.r; p; n/ of this kind. The projective reflection
group G.r; p; q; n/ is defined as the quotient

G.r; p; q; n/
defD G.r; p; n/=Cq

where Cq is the cyclic subgroup of scalar n
n matrices of order q. Note that for this
quotient to be well-defined we must have Cq � G.r; p; n/, which occurs precisely
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when q divides r and pq divides rn. Observe also that G.r; n/ D G.r; 1; n/ and
G.r; p; n/ D G.r; p; 1; n/.

There is an interesting notion of duality for projective reflection groups; by

definition, the projective reflection group dual to G D G.r; p; q; n/ is G� defD
G.r; q; p; n/. This notion of duality has been crucial in the study of some aspects
of the invariant theory of these groups in [7] and in the construction of other type of
models in [6, 8]. The starting point of the present collaboration is now the following
theorem which reformulates the main result of [13].

Theorem 1 The complex reflection group G D G.r; p; 1; n/ has a GIM if and only
if G Š G�; i.e., if and only if G.r; p; 1; n/ Š G.r; 1; p; n/.

Remark 1 Explicitly, G has a GIM if and only if (i) n ¤ 2 and GCD.p; n/ D 1 or
(ii) n D 2 and either p or r=p is odd; this is the statement of [13, Theorem 5.2].

Deducing this theorem from [13, Theorem 5.2] is straightforward, given our next
main result. Let r; n be positive integers and let p; p0; q; q0 be positive divisors of
r such that pq D p0q0 divides rn. The following result simplifies and extends [7,
Theorem 4.4].

Theorem 2 The projective reflection groups G.r; p; q; n/ and G.r; p0; q0; n/ are
isomorphic if and only if either (i) GCD.p; n/ D GCD.p0; n/ and GCD.q; n/ D
GCD.q0; n/ or (ii) n D 2 and the numbers p C p0 and q C q0 and r

pq are all odd
integers.

As a corollary, we can say precisely when the group G.r; p; q; n/ is “self-dual”
as in Theorem 1.

Corollary 1 The projective reflection group G D G.r; p; q; n/ is isomorphic to its
dual G� D G.r; q; p; n/ if and only if either (i) GCD.p; n/ D GCD.q; n/ or (ii)
n D 2 and r

pq is an odd integer.

On seeing Theorem 1 one naturally asks whether for arbitrary projective reflec-
tion groups the property of having a GIM is equivalent to self-duality. Theorem 2
allows us to attack this question directly; its answer turns out to be false, and the rest
of our results are devoted to clarifying which groups G.r; p; q; n/ have GIMs. The
following theorem completely solves this problem in the often pathological case
n D 2.

Theorem 3 The projective reflection group G.r; p; q; 2/ has a GIM if and only if
.r; p; q/ D .4; 1; 2/ or G.r; p; q; 2/ Š G.r; q; p; 2/.

Remark 2 By Theorem 2, the condition G.r; p; q; 2/ Š G.r; q; p; 2/ holds if and
only if (i) p and q have the same parity or (ii) r

pq is an odd integer.

A few notable differences between complex reflection groups and projective
reflection groups complicates the task of determining the existence of GIMs, and in
the case n ¤ 2 our classification is incomplete. For example, the groups G.r; p; q; n/
occasionally can have conjugacy class-preserving outer automorphisms. The fact
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that the groups G.r; p; n/ never have such automorphisms [15, Proposition 3.1] was
the source of a significant reduction in the proof of [13, Theorem 5.1] which is no
longer available in many cases of interest. Nevertheless, by carrying out a detailed
analysis of the conjugacy classes and automorphisms of G.r; p; q; n/, we are able to
prove the following theorem.

Theorem 4 Let G D G.r; p; q; n/ and assume n ¤ 2.

(1) If GCD.p; n/ D 1 then G has a GIM if q or n is odd.
(2) If GCD.p; n/ D 2 then G has a GIM only if q is even.
(3) If GCD.p; n/ D 3 then G has a GIM if and only if .r; p; q; n/ is

.3; 3; 3; 3/ or .6; 3; 3; 3/ or .6; 6; 3; 3/ or .6; 3; 6; 3/:

(4) If GCD.p; n/ D 4 then G has a GIM only if r � p � q � n � 4 .mod 8/:
(5) If GCD.p; n/ � 5 then G does not have a GIM.

In arriving at this result, we prove a useful criterion for determining conju-
gacy in G.r; p; n/ and give an explicit description of the automorphism group
of G.r; p; q; n/. We note as a corollary that the theorem provides a complete
classification when q or n is odd. This shows that projective reflection groups which
are not self-dual may still possess GIMs.

Corollary 2 Let G D G.r; p; q; n/ and assume n ¤ 2 and .r; p; q; n/ is not one of
the four exceptions .3; 3; 3; 3/ or .6; 3; 3; 3/ or .6; 6; 3; 3/ or .6; 3; 6; 3/. If q or n is
odd, then G has a GIM if and only if GCD.p; n/ D 1.

Combining Theorems 2 and 4 shows that to completely determine which
projective reflection groups G.r; p; q; n/ have GIMs, it remains only to consider
groups of the form

G.2r; 1; 2q; 2n/ or G.2r; 2; 2q; 2n/ or G.8rC 4; 4; 8qC 4; 8nC 4/:

(Of course we only need to consider the first two types when 2n > 2.) We also have
some conjectures concerning which of these groups should have GIMs.

This research continues a line of inquiry taken up by a number of people in
the past few decades. Researchers originally considered involution models, which
are simply GIMs defined with respect to the identity automorphism. Inglis et al.
described an elegant involution model for the symmetric group in [9] (which is
precisely the model in Example 1 when r D 1). In his doctoral thesis, Baddeley [3]
classified which finite Weyl groups have involution models. Vinroot [16] extended
this classification to show that the finite Coxeter groups with involution models
are precisely those of type An, BCn, D2nC1, F4, H3, and I2.m/. In extending this
classification to reflection groups, it is natural to consider generalized involution
models, since only groups whose representations are all realizable over the real
numbers can possess involution models. Adin et al. [2] constructed a GIM for
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G.r; n/ extending Inglis, Richardson, and Saxl’s original model for Sn, which
provides the starting point of [13, 14].

As mentioned at the outset, these sorts of classifications are interesting because
they lead to interesting representations. We close our contribution with some recent
evidence of this phenomenon. The model in Example 1 with r D 1 gives rise via
induction to a representation of Sn on the vector space spanned by its involutions.
This representation turns out to have a simple combinatorial definition [1, Sect. 1.1],
which surprisingly makes sense mutatis mutandis for any Coxeter group. The
generic Coxeter group representation we get in this way corresponds to an involution
model (in the finite cases) in precisely types An, H3, and I2.2m C 1/. What’s
more, recent work of Lusztig and Vogan [11, 12] and Vogan [10] indicates that
this representation is the specialization of a Hecke algebra representation which for
Weyl groups is expected to have deep connections to the unitary representations of
real reductive groups.
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Universal Gröbner Bases for Maximal Minors
of Matrices of Linear Forms

Aldo Conca

Abstract Bernstein, Sturmfels and Zelevinsky proved in 1993 that the maximal
minors of a matrix of variables form a universal Gröbner basis. We present a very
short proof of this result, along with a broad generalization to matrices with multi-
homogeneous structures. Our main tool is a rigidity statement for radical Borel-fixed
ideals in multigraded polynomial rings. For a more detailed exposition of the matter
of this chapter we refer to the paper “Universal Gröbner bases for maximal minors”
arXiv:1302.4461 written with Emanuela De Negri and Elisa Gorla.

1 From Algebra to Combinatorics and Back

Gröbner and Sagbi bases allow us to associate combinatorial objects (posets,
matroids, simplical complexes, graphs, polytopes) to algebraic objects (ideals,
modules, subalgebras) via term orders and deformations. Let us recall how.

Let S D KŒx1; : : : ; xn� be the polynomial ring over a field K, and let > be a
term order, that is, a total order on the set of monomials of S that is compatible
with the semigroup structure of the set of monomials and such that 1 is the smallest
monomial.

For every 0 ¤ F 2 S we set

in>.F/=the largest monomial in F:

Then for every K-vector subspace V � S we set

in>.V/ D K-spanfin>.F/ W F 2 V;F ¤ 0g:

Since > is compatible with the semigroup structure of the set of monomials of
S one has in>.FG/ D in>.F/ in>.G/ and hence in>.V/ is an ideal of S if V is an
ideal of S. Similarly in>.V/ is a K-subalgebra of S if V is a K-subalgebra of S.
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By construction, in>.V/ is generated by monomials and hence it is combinatorial
object.

If I is an ideal, then polynomials F1; : : : ;Fs 2 I form a Gröbner basis of I with
respect to > if

in>.I/ D .in>.F1/; : : : ; in>.Fs//:

Similarly, if A is a K-subalgebra of S, then polynomials F1; : : : ;Fs 2 A form a
Sagbi basis of A with respect to > if

in>.A/ D KŒin>.F1/; : : : ; in>.Fs/�:

A set of polynomials F1; : : : ;Fs 2 I is a universal Gröbner basis of I if they are
a Gröbner basis with respect to every term order >. Similarly one defines universal
Sagbi bases. Hilbert’s basis theorem ensures that every ideal of S posses a finite
Gröbner basis. Unfortunately there is no Hilbert’s basis theorem for subalgebras of
S and there are finitely generated K-without a finite Sagbi basis, no matter what the
term order is.

The study of invariants and properties of an ideal or K-subalgebra V of S can be
done via deformation to monomial ideals/algebras in three steps:

(Step 1) Compute in>.V/.

(Step 2) Prove that in>.V/ has certain properties or invariants by looking at the
associated combinatorial object.

(Step 3) Transfer back the information to the original ideal or algebra.

Usually (Step 1) and (Step 2) involve a lot of combinatorics. The typical
example is Hodge straightening law for the ideal of Plücker relations defining the
Grassmannian G.m; n/. It can be reformulated as a statement about the Plücker
relations being a Gröbner basis. The associated initial ideal is attached to a
distributive lattice as the Stanley-Reisner ideals of the corresponding order complex.
On the other hand, for (Step 3) one knows that most of the homological properties
and numerical invariants behave well user such a deformation.

Presenting the Grassmannian G.m; n/ as the subalgebra of the polynomial ring
generated by the maximal minors of the generic matrix, one can apply the deforma-
tion strategy to it using Sagbi basis as well. In this way, the deformed object is a toric
algebra, known as the Hibi ring, associated to the underlying distributive lattice.

2 Determinantal Ideals

Let X D .xij/ be a m
n matrix with xij distinct variables over K. Assume m � n. Set
S D KŒxij�. For t 2 N the (generic) determinantal ideal is the ideal It.X/ generated
by all the t
 t subminors of X. These ideals appear in various contexts, e.g. classical
invariant theory.
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Theorem 1 (Sturmfels [5]) The t-minors of X form a Gröbner basis of It.X/ with
respect to a suitable term order (called diagonal term). The corresponding initial
ideal in>.It.X// is associated to a shellable simplicial complex.

The main tools used are: the Knuth-Robinson-Schensted correspondence, the
standard monomial theory of Rota-Doubilet-Stein and results of Björner on multiple
chains complexes associated to planar distributive lattices.

What about universal Gröbner basis for these ideals? The ideal I2.X/ of 2-minors
defines Segre embedding of

P
m�1 
 P

n�1 ! P
nCm�1:

Its universal Gröbner basis is given by the following:

Theorem 2 (Sturmfels [4] and Villarreal [7]) A universal Gröbner basis of the
ideal of 2-minos I2.X/ is the set of the all binomials associated to cycles of the
complete bipartite graph Km;n.

For example, the cycle of K3;4 depicted in Fig. 1 corresponds to the binomial
x11x24x32 � x21x34x12. It turns out that, since I2.X/ defines a toric algebra, one
even has:

Proposition 3 Every initial ideal of I2.X/ defines a Cohen-Macaulay ring. More
precisely, it is associated to a shellable simplicial complex.

For maximal minors one has:

Theorem 4 (Sturmfels-Zelevinsky [6] and Bernstein-Zelevinsky [1]) The set of
the m-minors of X is a universal Gröbner basis of Im.X/.

Theorem 5 (Boocher [2]) Every initial ideal of Im.X/ defines a Cohen-Macaulay
ring.

Fig. 1 A cycle of K3;4
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See also [3] for Theorem 4. Our first contribution is a simple specialization
argument that explains both Theorems 4 and 5. The argument is based on the
following

Lemma 6 Let R be a standard graded K-algebra, let M;N;T be finitely generated
graded modules R-modules, and J D .y1; : : : ; ys/ � R be a homogeneous ideal.
Suppose that:

(1) There exists a surjective graded R-homomorphism f W T ! N.

(2) The modules M and N have the same Hilbert series.

(3) The modules M=JM and T=JT have the same Hilbert series.

(4) y1; : : : ; ys is M-regular sequence.

Then f is an isomorphism and y1; : : : ; ys is a T-regular sequence.

The idea is to use Lemma 6 in combination with the fact that Im.X/ and every
ideal generated by the initial terms of the maximal minors of X degenerate to the
ideal of the square-free monomials of degree m of a set of n variables.

Our second contribution is the generalization of Theorems 4 and 5 to matrices
of linear forms that are either column graded or row graded. We consider first the
graded structure on KŒxij� induced by the column grading, i.e. deg xij D ej 2 Z

n

for all i; j. Then a matrix L D .Lij/ is said to be column graded if Lij has degree ej.
Similarly for the row grading. For example,

L D
�

x11 0 x13 � 2x23 �x24
0 x12 C x22 x23 �x24

�

is column graded while

L D
�

x11 x11 C x12 x11 � x12 x14
0 x21 x21 C 4x24 x24

�

is row graded. We prove the following

Theorem 7 Assume L D .Lij/ is column-graded. Then:

(a) The maximal minors of L form a universal Gröbner basis of Im.L/.

(b) The ideal Im.L/ is radical and it has a linear resolution.

(c) Every initial ideal J of Im.L/ is radical and ˇij.Im.L// D ˇij.J/ for all i; j.

(d) The projective dimension of Im.L/ (and hence of all its initial ideals) is n � m
unless Im.L/ D 0 or a column of Im.L/ is identically 0.
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For the row-graded case we have a weaker statement:

Theorem 8 Assume L D .Lij/ is row-graded and assume that the codimension of
Im.L/ is n �mC 1 (the largest possible value). Then:

(a) The ideal Im.L/ has a universal Gröbner basis of elements of (total) degree m.

(b) The ideal Im.L/ is radical.

(c) Every initial ideal J of Im.L/ is radical, it has a linear resolution and defines a
Cohen-Macaulay ring. In particular, ˇij.Im.L// D ˇij.J/ for all i; j.

In (a) of Theorem 8 we cannot expect that the maximal minors are a universal
Gröbner basis since they might have all the same initial term. Experiments suggest
that assumption on the codimension in Theorem 8 might be superfluous.

The main idea in the proof of Theorems 7 and 8 is the use of multigraded
generic initial ideals and their “rigidity” property. These are ideals in a multigraded
polynomial ring that are invariant under the action of the Borel subgroup of the
upper triangular block matrices. They are obtained as Gröbner degeneration of any
multigraded ideal in generic coordinates. They have a strong rigidity behaviour
expressed by the following

Theorem 9 Suppose that I and J are Borel fixed multigraded ideals with the same
multigraded Hilbert function. If I is radical then I D J.

Let us conclude by observing that no universal Gröbner basis of It.X/ is known
for 2 < t < m. But simple examples show that It.X/ has in general non-radical
initial ideals and also non-Cohen-Macaulay initial ideals. For example,

Example 10 For the 3-minors of the generic 4
4matrix consider the lexicographic
term order > associated to the total order:

x11; x22; x33; x44; x12; x23; x34; x21; x32; x43; x13; x24; x31; x42; x14; x41:

Then in>.I3.X// has x12x23x31x244 among its minimal generators.

Example 11 For the 3-minors of the generic 4
5matrix consider the lexicographic
term order > associated to the total order:

x11; x22; x33; x44; x12; x23; x34; x45; x21; x32; x43; x13; x24; x35; x31; x42; x14; x25; x41; x15:

Then in>.I3.X// has x12x23x31x245 and x12x23x31x244 among its minimal generators and
it does not define a Cohen-Macaulay ring.
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Torsion in the Homology of Milnor Fibers
of Hyperplane Arrangements

Graham Denham and Alexander I. Suciu

Abstract As is well-known, the homology groups of the complement of a complex
hyperplane arrangement are torsion-free. Nevertheless, as we showed in a recent
paper (Denham and Suciu, Proc. Lond. Math. Soc. 108(6), 1435–1470, 2014), the
homology groups of the Milnor fiber of such an arrangement can have non-trivial
integer torsion. We give here a brief account of the techniques that go into proving
this result, outline some of its applications, and indicate some further questions that
it brings to light.

This is a report on the main results of [2]. We give an outline of our approach and
a summary of our conclusions. Our main result gives a construction of a family
of projective hypersurfaces for which the Milnor fiber has torsion in homology.
The hypersurfaces we use are hyperplane arrangements, for which techniques
are available to examine the homology of finite cyclic covers quite explicitly, by
reducing to rank 1 local systems.

The parameter spaces for rank 1 local systems with non-vanishing homology
are known as characteristic varieties. In the special case of complex hyperplane
arrangement complements, the combinatorial theory of multinets largely elucidates
their structure, at least in degree 1. We make use of an iterated parallel connection
construction to build arrangements with suitable characteristic varieties, then vary
the characteristic of the field of definition in order to construct finite cyclic covers
with torsion in first homology. These covers include the Milnor fiber. We now give
some detail about each step.
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1 The Milnor Fibration

A classical construction due to J. Milnor associates to every homogeneous poly-
nomial f 2 CŒz1; : : : ; z`� a fiber bundle, with base space C

� D C n f0g, total
space the complement in C

` to the hypersurface defined by f , and projection map
f WC` n f �1.0/! C

�.
The Milnor fiber F D f �1.1/ has the homotopy type of a finite, .` � 1/-

dimensional CW-complex, while the monodromy of the fibration, hWF ! F, is
given by h.z/ D e2	 i=nz, where n is the degree of f . If f has an isolated singularity at
the origin, then F is homotopic to a bouquet of .` � 1/-spheres, whose number can
be determined by algebraic means. In general, though, it is a rather hard problem
to compute the homology groups of the Milnor fiber, even in the case when f
completely factors into distinct linear forms: that is, when the hypersurface ff D 0g
is a hyperplane arrangement.

Building on our previous work with D. Cohen [1], we show there exist projective
hypersurfaces (indeed, hyperplane arrangements) whose complements have torsion-
free homology, but whose Milnor fibers have torsion in homology. Our main result
can be summarized as follows.

Theorem 1 For every prime p � 2, there is a hyperplane arrangement whose
Milnor fiber has non-trivial p-torsion in homology.

This resolves a problem posed by Randell [7, Problem 7], who conjectured
that Milnor fibers of hyperplane arrangements have torsion-free homology. Our
examples also give a refined answer to a question posed by Dimca and Némethi [3,
Question 3.10]: torsion in homology may appear even if the hypersurface is defined
by a reduced equation. We note the following consequence:

Corollary 2 There are hyperplane arrangements whose Milnor fibers do not have
a minimal cell structure.

This stands in contrast with arrangement complements, which always admit
perfect Morse functions. Our method also allows us to compute the homomorphism
induced in homology by the monodromy, with coefficients in a field of characteristic
not dividing the order of the monodromy.

It should be noted that our approach produces only examples of arrangements A
for which the Milnor fiber F.A / has torsion in qth homology, for some q > 1. This
leaves open the following question.

Question 3 Is there an arrangement A such that H1.F.A /;Z/ has non-zero
torsion?

Since our methods rely on complete reducibility, it is also natural to ask: do there
exist projective hypersurfaces of degree n for which the Milnor fiber has homology
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p-torsion, where p divides n? If so, is there a hyperplane arrangement with this
property?

A much-studied question in the subject is whether the Betti numbers of the
Milnor fiber of an arrangement A are determined by the intersection lattice, L.A /.
While we do not address this question directly, our result raises a related, and
arguably even more subtle problem.

Question 4 Is the torsion in the homology of the Milnor fiber of a hyperplane
arrangement combinatorially determined?

As a preliminary question, one may also ask: can one predict the existence of
torsion in the homology of F.A / simply by looking at L.A /? As it turns out,
under fairly general assumptions, the answer is yes: if L.A / satisfies certain very
precise conditions, then automatically H�.F.A /;Z/ will have non-zero torsion, in
a combinatorially determined degree.

2 Hyperplane Arrangements

Let A be a (central) arrangement of n hyperplanes in C
`, defined by a polynomial

Q.A / D Q

H2A fH , where each fH is a linear form whose kernel is H. The
starting point of our study is the well-known observation that the Milnor fiber
of the arrangement, F.A /, is a cyclic, n-fold regular cover of the projectivized
complement, U.A /; this cover is defined by the homomorphism ıW	1.U.A // �
Zn, taking each meridian generator xH to 1.

Now, if k is an algebraically closed field whose characteristic does not divide n,
then Hq.F.A /;k/ decomposes as a direct sum,

L

� Hq.U.A /;k�/, where the rank
1 local systems k� are indexed by characters �W	1.U.A //! k

� that factor through
ı. Thus, if there is such a character � for which Hq.U.A /;k�/ ¤ 0, but there is no
corresponding character in characteristic 0, then the group Hq.F.A /;Z/ will have
non-trivial p-torsion.

To find such characters, we first consider multi-arrangements .A ;m/, with
positive integer weights mH attached to each hyperplane H 2 A . The corresponding
Milnor fiber, F.A ;m/, is defined by the homomorphism ımW	1.U.A // � ZN ,
xH 7! mH , where N denotes the sum of the weights. Fix a prime p. Starting with an
arrangement A supporting a suitable multinet, we find a deletion A 0 D A n fHg,
and a choice of multiplicities m0 on A 0 such that H1.F.A 0;m0/;Z/ has p-torsion.
Finally, we construct a “polarized” arrangement B D A 0km0, and show that
H�.F.B/;Z/ has p-torsion.
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3 Characteristic Varieties

Our arguments depend on properties of the jump loci of rank 1 local systems. The
characteristic varieties of a connected, finite CW-complex X are the subvarieties
V

q
d .X;k/ of the character group bG D Hom.G;k�/, consisting of those characters �

for which Hq.X;k�/ had dimension at least d.
Suppose X� ! X is a regular cover, defined by an epimorphism �WG ! A to a

finite abelian group, and if k is an algebraically closed field of characteristic p, where
p − jA j, then dim Hq.X�;k/ D P

d�1
ˇ

ˇim. O�k/\ V
q

d .X;k/
ˇ

ˇ, where O�kW OA ! OG is
the induced morphism between character groups.

Theorem 5 Let X� ! X be a regular, finite cyclic cover. Suppose that im. O�C/ 6�
V q
1 .X;C/, but im. O�k/ � V q

1 .X;k/, for some field k of characteristic p not dividing
the order of the cover. Then Hq.X�;Z/ has non-zero p-torsion.

4 Multinets

In the case when X D M.A / is the complement of a hyperplane arrangement,
the positive-dimensional components of the characteristic variety V 1

1 .X;C/ have
a combinatorial description, for which we refer in particular to work of Falk and
Yuzvinsky in [5].

A multinet consists of a partition of A into at least three subsets A1; : : : ;Ak,
together with an assignment of multiplicities, mWA ! N, and a subset X of the
rank 2 flats, such that any two hyperplanes from different parts intersect at a flat
in X , and several technical conditions are satisfied: for instance, the sum of the
multiplicities over each part Ai is constant, and for each flat Z 2 X , the sum
nZ WD P

H2AiWH�Z mH is independent of i. Each multinet gives rise to an orbifold
fibration X ! P

1 n fk pointsg; in turn, such a map yields by pullback an irreducible
component of V 1

1 .X;C/.
We say that a multinet on A is pointed if for some hyperplane H, we have

mH > 1 and mH j nZ for each flat Z � H in X . We show that the complement of
the deletion A 0 WD A n fHg supports an orbifold fibration with base C� and at least
one multiple fiber. Consequently, for any prime p j mH, and any sufficiently large
integer r not divisible by p, there exists a regular, r-fold cyclic cover Y ! U.A 0/
such that H1.Y;Z/ has p-torsion.

Furthermore, we also show that any finite cyclic cover of an arrangement
complement is dominated by a Milnor fiber corresponding to a suitable choice of
multiplicities. Putting things together, we obtain the following result.

Theorem 6 Suppose A admits a pointed multinet, with distinguished hyperplane
H and multiplicity vector m. Let p be a prime dividing mH. There is then a choice
of multiplicity vector m0 on the deletion A 0 D A n fHg such that H1.F.A 0;m0/;Z/
has non-zero p-torsion.
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For instance, if A is the reflection arrangement of type B3, defined by the
polynomial Q D xyz.x2 � y2/.x2 � z2/.y2 � z2/, then A satisfies the conditions
of the theorem, for m D .2; 2; 2; 1; 1; 1; 1; 1; 1/ and H D fz D 0g. Choosing then
multiplicities m0 D .2; 1; 3; 3; 2; 2; 1; 1/ on A 0 shows that H1.F.A 0;m0/;Z/ has
non-zero 2-torsion.

Similarly, for primes p > 2, we use the fact that the reflection arrangement of
the full monomial complex reflection group, A .p; 1; 3/, admits a pointed multinet.
This yields p-torsion in the first homology of the Milnor fiber of a suitable multi-
arrangement on the deletion.

5 Parallel Connections and Polarizations

The last step of our construction replaces multi-arrangements with simple arrange-
ments. We add more hyperplanes and increase the rank by means of suitable
iterated parallel connections. The complement of the parallel connection of two
arrangements is diffeomorphic to the product of the respective complements, by
a result of Falk and Proudfoot [4]. Then the characteristic varieties of the result are
given by a formula due to Papadima and Suciu [6].

We organize the process by noting that parallel connection of matroids has an
operad structure, and we analyze a special case which we call the polarization of
a multi-arrangement .A ;m/. By analogy with a construction involving monomial
ideals, we use parallel connection to attach to each hyperplane H the central
arrangement of mH lines in C

2, to obtain a simple arrangement we denote by
A km. A crucial point here is the connection between the respective Milnor fibers:
the pullback of the cover F.A km/ ! U.A km/ along the canonical inclusion
U.A / ! U.A km/ is equivalent to the cover F.A ;m/ ! U.A /. Using this fact,
we prove the following.

Theorem 7 Suppose A admits a pointed multinet, with distinguished hyperplane
H and multiplicity m. Let p be a prime dividing mH. There is then a choice of
multiplicities m0 on the deletion A 0 D A n fHg such that the Milnor fiber of the
polarization A 0km0 has p-torsion in homology, in degree 1C ˇˇfK 2 A 0 W m0

K � 3g
ˇ

ˇ.

For instance, if A 0 is the deleted B3 arrangement as above, then choosing m0 D
.8; 1; 3; 3; 5; 5; 1; 1/ produces an arrangementB D A 0km0 of 27 hyperplanes in C

8,
such that H6.F.B/;Z/ has 2-torsion of rank 108.
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Decompositions of Betti Diagrams of Powers
of Monomial Ideals: A Stability Conjecture

Alexander Engström

Abstract For any fixed monomial ideals the resolution of high enough powers
are predictable. To actually gain explicit information about the stable behavior
of projective resolutions of high powers is rather non-trivial if the ideals aren’t
particularly well behaved. We describe how the asymptotic decomposition of Betti
tables of high powers can be conjecturally described using polytopes as a new
invariant for the stable regime.

1 The Conjecture

We state a conjecture on the stability of Betti diagrams of powers of monomial
ideals. Boij and Söderberg [1] conjectured that Betti diagrams can be decomposed
into pure diagrams, and that was proved by Eisenbud and Schreyer [2]. We don’t
cover the basics of Boij-Söderberg theory here, see Fløystad [4] for a survey.

Up to scaling a pure diagram is determined by its non-zero positions. In our
setting the top left corner is always non-zero and we normalise by assigning it the
value one. For higher powers of ideals we need taller pure diagrams in a sequential
way. A translation of a pure diagram for k D 0; 1; 2; : : : is a sequence of pure
diagrams on the form

	.k/ D

0 1 2 � � �
0 1
:::

l.k/ A fixed shape for
non-zero entries

where l.k/ is a linear function.
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According to Boij-Söderberg theory there is for every ideal I in S a decompo-
sition of the Betti diagram ˇ.S=I/ D w1	1 C � � � C wm	m where each wi is a
non-negative real number and each 	i is a pure diagram. Usually there are many
choices of weights and when considering algorithms to find decompositions there
is a point to finding a particular one. But the amount of choices is also a measure
of the complexity of the Betti table, and one might notice that for ideals that we
know the invariants of for large powers, the complexity in this sense is quite low.
For example, if all powers are linear, then there are no choices at all.

For any ˇ.S=I/ there is a finite set of pure diagrams that can be included in a
decomposition with a positive weights. We call the set of possible weight vectors
for ˇ.S=I/ the polytope of Betti diagram decompositions.

We conjecture that for high powers the polytope of Betti diagram decompositions
stabilises.

Conjecture 1 Let I be a monomial ideal in S with all generators of the same degree.
Then there is a k0 such that for all k > k0;

1. For some translations of pure diagrams 	1.k/; : : : ; 	m.k/ any decomposition of
ˇ.S=Ik/ is a weighted sum of the form w1	1.k/ C � � � C wm	m.k/: Denote the
polytope of Betti diagram decompositions of ˇ.S=Ik/ in R

m by Pk:

2. All Pk are of the same combinatorial type as a polytope PI. For any vertex v of
PI there is a function hv.k/ 2 R

m, which is rational in each coordinate, such that
the vertex corresponding to v in Pk is hv.k/:

The conjecture is true for ideals whose large enough powers are all linear:
The polytope is a point. This follows from the fact that the column sums in Betti
diagrams stabilise to polynomials for large powers according to Kodiyalam [5],
and from the procedure to derive the unique decomposition of linear diagrams. The
conjecture holds for many small examples that the author has calculated. There is
unfortunately no abundance of ideals in the literature for which the Betti diagrams
of all powers are given explicitly, since these concepts are fairly new. But there
are many interesting tools accessible, for example from algebraic and topological
combinatorics, that should make serious attempts to derive them fruitful.

2 An Example

In this section we give an example of an ideal satisfying the conjecture. Engström
and Norén [3] constructed explicit cellular minimal resolutions of S=Ik for all k and
n; where

S D kŒx1; x2; : : : ; xn� and I D hx1x2; x2x3; : : : ; xn�1xni;
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and calculated the Betti numbers:

ˇi;j.S=Ik/ D
 

nC 3k � j� 2
2j� 3i � 3kC 3

! 

nC 4kC 2i� 2j� 4
2kC 2i� j � 2

! 

j � i� k

k � 1

!

:

The Betti diagram of kŒx1; x2; x3; x4; x5; x6�=hx1x2; x2x3; x3x4; x4x5; x5x6ik is

0 1 2 3 4 5

0 1
:::

2k � 1 �kC4
4

�

4
�kC3
4

�

6
�kC2
4

�

4
�kC1
4

� �k
4

�

k.kC 2/ 2k.kC 1/ k2

The translations of pure diagrams:

	1.k/ D
0 1 2 3

0 1
:::

2k � 1 � � �

	2.k/ D

0 1 2 3

0 1
:::

2k � 1 � �
�

	3.k/ D

0 1 2 3

0 1
:::

2k � 1 �
� �

	4.k/ D
0 1 2 3 4

0 1
:::

2k � 1 � � � �

	5.k/ D

0 1 2 3 4

0 1
:::

2k � 1 � � �
�

	6.k/ D

0 1 2 3 4

0 1
:::

2k � 1 � �
� �

	7.k/ D

0 1 2 3 4

0 1
:::

2k � 1 �
� � �

	8.k/ D
0 1 2 3 4 5

0 1
:::

2k � 1 � � � � �
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The polytope Pk is a triangle whose vertices have the coordinates h1.k/; h2.k/
and h3.k/:

h1.k/ D
�

0; 0;
kC 2
2kC 3;w4.k/;

.2kC 5/.k � 1/
.2kC 1/.kC 2/.kC 1/ ;

.4kC 5/.kC 1/
.2kC 3/.2kC 1/.kC 2/ ; 0;w8.k/

�

h2.k/ D
�

0;
2.kC 2/.kC 2/
.2kC 3/.2kC 1/ ; 0;w4.k/;

.2kC 5/.k � 1/
.2kC 1/.kC 2/.kC 1/ ;

.kC 1/.k � 1/
.2kC 3/.2kC 1/.kC 2/ ;

1

2kC 3 ;w8.k/
�

h3.k/ D
�

kC 2
2kC 1; 0; 0;w4.k/;

k2 � 7
.2kC 1/.kC 2/.kC 1/ ;

kC 1
.2kC 3/.2kC 1/.kC 2/ ;

1

2kC 3;w8.k/
�

w4.k/ D .7kC 5/.k � 1/.k � 2/
4.2kC 3/.2kC 1/.kC 1/

w8.k/ D .k � 1/.k � 2/.k � 3/
4.2kC 3/.2kC 1/.kC 1/ :
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Matroids Over a Ring

Alex Fink and Luca Moci

Abstract We introduce the notion of a matroid M over a commutative ring R,
assigning to every subset of the ground set an R-module according to some axioms.
When R is a field, we recover matroids. When R D Z, and when R is a DVR, we
get (structures which contain all the data of) quasi-arithmetic matroids, and valuated
matroids i.e. tropical linear spaces, respectively.

More generally, whenever R is a Dedekind domain, we extend all the usual
properties and operations holding for matroids (e.g., duality), and we explicitly
describe the structure of the matroids over R. Furthermore, we compute the Tutte-
Grothendieck ring of matroids over R. We also show that the Tutte quasi-polynomial
of a matroid over Z can be obtained as an evaluation of the class of the matroid in
the Tutte-Grothendieck ring.

1 Introduction

Matroid theory has proved to be a versatile language to deal with many problems
on the interfaces of combinatorics and algebra. Following the introduction of
matroids, a number of enriched variants thereof have arisen, among them oriented
matroids [2], valuated matroids [7], complex matroids [1], and (quasi-)arithmetic
matroids [6, 10]. Each of these structures retains some information about a vector
configuration, or an equivalent object, which is richer than the purely linear
algebraic information that matroids retain.

It is natural to ask how well these generalizations of matroids can be unified
under one framework. One such framework was proposed in [7]. In this paper we
suggest a different approach, defining the notion of a matroid M over a commutative
ring R (Definition 1). We find this definition to have multiple agreeable features. For
one, by building on the well-studied setting of modules over commutative rings, we
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get a theory where the considerable power and development of commutative algebra
can be easily brought to bear. For another, unlike arithmetic and valuated matroids,
a matroid over R is not defined as a matroid decorated with extra data; there are
only two axioms, and we suggest that they are comparably simple to the matroid
axioms themselves. In particular, a representable matroid over R is precisely a vector
configuration in a finitely generated R-module.

When R is a field, a matroid M over R is nothing but a matroid: the data M.A/ is a
vector space, which contains only the information of its dimension, and this directly
encodes the rank function of M. When R D Z, every module M.A/ is an abelian
group, and by extracting its torsion subgroup we get a quasi-arithmetic matroid.
When R is a discrete valuation ring (DVR), we may similarly extract a valuated
matroid, which corresponds to a tropical linear space. More generally, whenever R
is a Dedekind domain, we can extend the usual properties and operations holding
for matroids, such as duality.

One of the most-loved invariants of matroids is their Tutte polynomial TM.x; y/.
It thus comes as no surprise that the Tutte polynomial has been considered for
generalizations of matroids as well. A quasi-arithmetic matroid OM has an associated
arithmetic Tutte polynomial M OM.x; y/; this is a specialization of the Tutte quasi-
polynomial of a quasi-arithmetic matroid defined in [3].

Among its properties, the Tutte polynomial of a classical matroid is the universal
deletion-contraction invariant. In more algebraic language, following [4], the class
of a matroid in the Tutte-Grothendieck group for deletion-contraction relations
is exactly its Tutte polynomial. Our generalization of the Tutte polynomial for
matroids over a Dedekind ring R is also the class in the Tutte-Grothendieck group,
so it retains the universality of the usual Tutte polynomial, and we obtain the two
generalizations of Tutte just mentioned as evaluations of it.

This paper is a survey on the theory developed in [8], to which the interested
reader is encouraged to refer for material that has been omitted here.

2 Matroids Over a Ring

Throughout, we let R be a Dedekind domain. Though not strictly necessary for the
theory, this assumption has many useful structural consequences, reviewed in [8,
Sect. 3], and is a hypothesis of all our main results.

By R-Mod we mean the category of finitely generated R-modules over R. We
write “f.g.” for “finitely generated”.

Definition 1 A matroid over R on the ground set E is a function M assigning to
each subset A � E a f.g. R-module M.A/ satisfying the following axioms:

(M1) For any A � E and b 2 E n A, there exists a surjection M.A/ � M.A [ fbg/
whose kernel is a cyclic submodule of M.A/.
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(M2) For any A � E and b ¤ c 2 E n A, there exists a pushout

M.A/

y
��

��

M.A [ fbg/

��
M.A [ fcg/ �� M.A [ fb; cg/

where all four morphisms are surjections with cyclic kernel.

Clearly, Axiom (M1) is redundant if jEj � 2, and the choice of the modules M.A/
is only relevant up to isomorphism.

The fundamental way of producing matroids over R is from vector configurations
in an R-module: these are the representable matroids. Given a f.g. R-module N and
a list X D x1; : : : ; xn of elements of N, the matroid MX of X associates to the sublist
A of X the quotient

MX.A/ D N
.

 

X

x2A

Rx

!

: (1)

For each x 2 X there is a map MX.A/
=x! MX.A [ fxg/, which quotients out by the

image of Rx in MX.A/; these maps satisfy axioms (M1) and (M2).
In other words, a represented matroid over R is a certain kind of functor from

the Boolean poset B.E/ to R-Mod. In contrast an arbitrary matroid over R is a map
merely of the objects of B.E/, not the morphisms, satisfying analogous conditions.

Minors and direct sums are defined in the obvious fashion. Let M and M0 be
matroids over R on respective ground sets E and E0. We define their direct sum
M ˚ M0 on the ground set E [ E0 by .M ˚ M0/.A [ A0/ D M.A/ ˚ M0.A0/. If i
is an element of E, we define two matroids over R on the ground set E n fig: the
deletion of i in M, denoted M n i, by .M n i/.A/ D M.A/ and the contraction of i in
M, denoted M n i, by .M=i/.A/ D M.A [ fig/.

Matroids in the classical sense are matroids over fields, essentially since dimen-
sion is a complete isomorphism invariant of modules over fields. There is one hitch
in the equivalence, corresponding to the ability to choose a vector configuration that
does not span its ambient space. Accordingly, let us say that a matroid M over R
is full-rank if no nontrivial projective module is a direct summand of M.E/. Very
little is lost in restricting to full-rank matroids: any non-full-rank matroid splits as a
direct sum involving a matroid on zero elements.

Proposition 2 Let K be a field. Full-rank matroids M over K are equivalent to
(classical) matroids. If M is a full-rank matroid over K, then dim M.A/ is the
corank of A in the corresponding classical matroid. Furthermore, a matroid over
K is representable if and only if, as a classical matroid, it is representable over K.



44 A. Fink and L. Moci

Given a map R ! S of rings, applying — ˝R S gives a function from matroids
over R to matroids over S. For instance, matroids over R can be localized at primes
by tensoring along R! Rm; the generic matroid, a classical matroid, is obtained by
tensoring along R! FracR.

3 Duality for Matroids Over Dedekind Domains

Let M be a matroid over R, on ground set E. Fix a free module F that surjects on
M.;/. For any A � E and maximal flag of subsets ; D A0 ¨ A1 ¨ � � � ¨ AjAj D A,
we obtain a composite surjection

F ! M.;/! M.A1/! � � � ! M.A/:

Using the horseshoe lemma, we may assemble minimal projective resolutions of
each step of this composition into a projective resolution of F=M.A/, yielding a
projective resolution

P.A/� W 0! P2.A/! P1.A/
d1! F! M.A/! 0

of M.A/. As usual, we write _ for the contravariant functor Hom.—;R/.

Definition 3 Define the module M�.E nA/ as the cokernel of the map dual to d1 in
P.A/�, that is

M�.E n A/
:D coker

�

F_ d_

1�! P1.A/_
�

:

This is well-defined ([8, Lemma 4.2]). We define M�, the dual matroid over R to M,
to be the collection of these modules M�.E n A/.

Theorem 4 If R is a Dedekind domain, and M is a matroid over R, then its dual
M� is a full-rank matroid over R. Furthermore, M is the direct sum of M�� and the
projective empty matroid for M.E/proj; in particular, if M is full-rank, M�� D M.

If M is representable, also M� is.

The last statement above gives a generalization of the classical Gale duality of
vector configurations. Furthermore, duality of matroids over rings is well-behaved
with respect to deletion, contraction, direct sums, and tensor products, as shown in
[8, Proposition 4.9].
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4 Structure of Matroids Over a DVR

Let R be a DVR with maximal ideal m. If N is a f.g. R-module and i � 1 is an
integer, define d�i.N/

:D Pi
jD1 dj.N/. Then isomorphism classes of modules N are

in bijection with infinite nonincreasing sequences d��.N/ of nonnegative integers.
Proposition 5.4 of [8] records necessary and sufficient conditions on the d��.M.A//
in a matroid over R: briefly, (M1) becomes the Pieri rule (interpreted as in the Hall
algebra), while (M2) becomes submodularity of the functions A 7! �d�n.M.A//
with equality demanded in the submodular inequality under some conditions.

These matroids turn out to have a tropical-geometric character. Fink and Moci[8,
Proposition 5.5] implies that the tropicalizations of the relations

pAbpAcd � pAcpAbd C pAdpAbc D 0 (2)

hold of the family of numbers d�n.M.—//, where we abbreviate A [ fb; cg as Abc
and similarly. These relations (2) are Plücker relations for the full flag variety (of
type A), which has a tropical analogue, the tropical flag Dressian [9]. In fact:

Theorem 5 Let M be a matroid over .R;m/. The function A 7! dimR=m M.A/
produces a valuated matroid, in the sense of Dress and Wenzel [7]. That is, M
determines a point of the tropical flag Dressian.

5 Global Structure of Matroids Over a Dedekind Domain

The structure of matroids over arbitrary Dedekind domains R is the subject of [8,
Propositions 6.1, 6.2]. In brief, a system of R-modules forms a matroid over R only
if all its localizations at primes do; and given such a system of localizations there is
at most one matroid over R, that is the projective summands are uniquely determined
if they exist.

If M is a matroid over Z, then we define a corank function for M as the corank
function of the generic matroid M ˝Z Q, that is cork.A/ is the rank over Z of the
projective part of M.A/. We also define m.A/ to be the cardinality of the torsion
subgroup of A.

Corollary 6 The triple .E; cork;m/ is a quasi-arithmetic matroid, as defined in [8,
Remark 6.4].

Thus matroids over Z recover many of the essential features of the second
author’s theory of arithmetic matroids from [6], but are richer in that the torsion
subgroups carry more information than merely m.



46 A. Fink and L. Moci

6 The Tutte-Grothendieck Group

All matroids over R in this section are full-rank. Essentially following Brylawski [4],
define the Tutte-Grothendieck group K.R-Mat/ of matroids over R to be the abelian
group generated by a symbol TM for each unlabelled full-rank matroid M over R,
modulo the relations

TM D TMna C TM=a

whenever a is not a loop or coloop of the generic matroid (so that M n a and M=a
remain full-rank).

Define ZŒR-Mod� to be the monoid ring of R-modules under direct sum, i.e. the
ring with a Z-linear basis fuNg with an element uN for each f.g. R-module N up to
isomorphism, and product given by uNuN0 D uN˚N0

.

Theorem 7 The Tutte-Grothendieck group K.R-Mat/ is a ring without unity, with
product given by TM �TM0 D TM˚M0 . As a ring it injects into ZŒR-Mod�˝ZŒR-Mod�,
and under this injection, the class of M maps to

TM D
X

A�E

XM.A/YM�.EnA/; (3)

where fXNg and fYNg are the respective bases of the two tensor factors ZŒR-Mod�.
The ring K.R-Mat/ is the subring of ZŒR-Mod� ˝ ZŒR-Mod� generated by XP and
YP as P ranges over rank 1 projective modules, and .XY/N as N ranges over torsion
modules.

If R is a field, Theorem 7 gives the classical Tutte polynomial in the bivariate
polynomial ring ZŒR-Mod�˝ ZŒR-Mod� on setting X D x � 1 and Y D y � 1.

6.1 Arithmetic Tutte Polynomial and Quasi-Polynomial

If M is a matroid over Z, the arithmetic Tutte polynomial of its associated quasi-
arithmetic matroid OM, and its Tutte quasi-polynomial, are each images of TM under
ring homomorphisms. When R D Z, the Picard group is trivial, and

TM D
X

A�E

.XR/corkM.A/.YR/nullityM.A/.XY/M.A/tors ;

where we use the notation nullityM.A/ D corkM�.E nA/ D dim M�.E nA/.
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The arithmetic Tutte polynomial M OM.x; y/ of the quasi-arithmetic matroid OM
defined by M, which is

M OM.x; y/ D
X

A�E

m.A/.x � 1/rk.E/�rk.A/.y � 1/jAj�rk.A/;

is a specialization of TM by specializing XR to .x � 1/, YR to .y � 1/, and .XY/N to
the cardinality of N for each torsion module N. (See [5, 6, 10] for applications of
M OM .)

In [3] a Tutte quasi-polynomial QM.x; y/ was defined, specializing both to
T QM.x; y/ and M OM.x; y/, and in a sense interpolating between them. In fact QM.x; y/
is an invariant of the matroid over Z, though not of OM. We show explicitly how to
compute it from the universal invariant.

For every positive integer q, let us define a function Vq as Vq..XY/Z=pk
/ D 1

if pk divides q, while Vq..XY/Z=pk
/ D pk�j if pk does not divide q and j � 0 is

the largest integer such that p j divides q. We will extend this to define Vq..XY/N/
multiplicatively for any torsion abelian group N. Then we define a specialization of
TM to the ring of quasipolynomials by specializing XR to .x� 1/, YR to .y� 1/, and
.XY/N to V.x�1/.y�1/..XY/N/. This gives

QM.x; y/ D
X

A�E

jM.A/torsj
j.x � 1/.y � 1/M.A/torsj .x � 1/

rk.E/�rk.A/.y � 1/jAj�rkrk.A/:
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A Minimal Irreducible Triangulation of S3

Florian Frick

Abstract We present a very symmetric triangulation of the 3-sphere, where every
edge is in at most five facets but which is not the boundary of a polytope. This shows
that not every triangulation of a sphere, where angles around faces of codimension
two are less than 2	 in the metric pieced together by regular Euclidean simplices,
is polytopal. The counterexample presented here is the smallest triangulation of
S
3 where every edge is contained in an empty triangle. Moreover, it shows that a

triangulation of S3 that is embeddable into R
4 with straight faces is not necessarily

weakly vertex-decomposable.

1 Construction

We will construct a triangulation of S3 that is positively curved but not polytopal
and geometrically embeddable into R

4 but not weakly vertex-decomposable. These
notions will be defined later.

By a triangulation we will always mean a simplicial complex. The triangulation
T presented here is uniquely determined by the property that the link of every
vertex is an octahedron in which two opposite triangles have been stacked. This
triangulates S3 on ten vertices.

We will explicitly construct T as a subcomplex of the five-dimensional cross-
polytope. Label the vertices of the five-dimensional cross-polytope by a0; : : : ; a4,
b0; : : : ; b4, where ai is opposite to bi. The five triangles of the form .ai; aiC1; aiC2/
are a triangulated Möbius strip, as are the triangles .bi; biC2; biC4/, where the indices
are always modulo 5. These Möbius strips have five boundary edges and five
interior edges. A tetrahedron � in the five-dimensional cross-polytope belongs to
the subcomplex T if and only if either a triangle of � is contained in one of the
Möbius strips and the other vertex of � is in the other Möbius strip or � has two
edges on the two opposite Möbius strips, such that either both are interior edges or
both are boundary edges.

F. Frick (�)
Institut für Mathematik, Technische Universität Berlin, MA 8-1, Straße des 17. Juni 136, 10623
Berlin, Germany
e-mail: frick@math.tu-berlin.de

© Springer International Publishing Switzerland 2015
B. Benedetti et al. (eds.), Combinatorial Methods in Topology and Algebra,
Springer INdAM Series 12, DOI 10.1007/978-3-319-20155-9_10

49

mailto:frick@math.tu-berlin.de


50 F. Frick

The resulting complex is homeomorphic to S
3, and every edge of the

5-dimensional cross-polytope is in T . The f -vector of this subcomplex is
.10; 40; 60; 30/. There is dihedral symmetry along the Möbius strips and the
two strips can be interchanged. In particular, the automorphism group of T acts
transitively on the vertices.

2 Irreducibility

In a simplicial 2-sphere one can successively contract edges to obtain the tetrahe-
dron. It is not possible to contract an arbitrary 3-sphere to the 4-simplex. An edge
is called contractible if it is not contained in any empty face, i.e. a non-face all of
whose subfaces are part of the complex. The process of contracting an edge .v;w/
in a simplicial complex consists of identifying the vertices v and w in every face. A
simplicial complex is irreducible if no edge is contractible.

Every surface has a finite number of irreducible triangulations [1]. This means
that for each surface there is a finite list of triangulations, such that any other
triangulation of this surface can be obtained from a member of this list by repeatedly
splitting vertices. This is false in higher dimensions. This is just since the connected
sum of two irreducible complexes different from the boundary of the simplex is
again irreducible, where a connected sum of two triangulations is obtained by
deleting a facet in each and gluing along the resulting boundary. An infinite family
of irreducible triangulations is obtained by repeatedly taking the connected sum
with an irreducible triangulation of the sphere, which does not change the topology.
Here we present the smallest irreducible triangulation of the 3-sphere other than the
boundary of the 4-simplex.

Theorem 1 Every triangulation of the 3-sphere with fewer than ten vertices,
apart from the boundary of the 4-simplex, has contractible edges. Among the
triangulations of S3 on ten vertices the smallest instances of irreducible 3-spheres
have f -vector .10; 40; 60; 30/ and there are six such triangulations.

This is proved by a computer enumeration using data obtained by Lutz [7]. The
triangulation T presented here is one of these six minimal irreducible triangulation
of S3.

3 Positive Curvature

The dihedral angles of a regular tetrahedron are arccos. 1
3
/, which is slightly less

than 2	
5

. There is a regular spherical tetrahedron with all dihedral angles equal to
2	
5

, which can be obtained by projecting the 600-cell radially onto the unit sphere.
Inducing the metric of this regular spherical tetrahedron of edge length 	

5
on every
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facet of a three-dimensional triangulation introduces an angle defect (or surplus)
around any edge e, depending on the valence of e, that is, the number of facets e is
contained in. The angle around an edge is at most 2	 if and only if its valence is at
most five. A three-dimensional triangulation where valences are bounded by five is
called positively curved, since the metric above is an Alexandrov space of positive
curvature.

Such a positive curvature bound from below yields a volume bound. The
largest possible positively curved triangulation is the 600-cell. There are 4787 such
triangulations—enumerated by Frank H. Lutz and John M. Sullivan—and 4761 of
those triangulate S

3. In addition, there are four different quotients of S3, which can
be obtained as topological types of positively curved triangulations [4].

The triangulation T is one of these 4761 examples, since the vertex degrees
in its vertex links are bounded by five. Notice that a positively curved triangulation
with the 1-skeleton of the five-dimensional cross-polytope is necessarily irreducible,
since each edge is contained in six 3-cycles, but at most in five triangles. Thus, every
edge is contained in at least one empty triangle.

4 Non-polytopality

Every triangulation of S
2 is polytopal, that is, is combinatorially equivalent to

the boundary of a 3-polytope. This is false in higher dimensions. In fact, most
triangulations of S

d for d � 3 are not the boundary of any .d C 1/-polytope.
This was shown by Kalai for d � 4 [5] and Pfeifle and Ziegler for d D 3 [8].
While an algorithm exists to decide whether a given triangulation of a sphere is
polytopal, it is far from efficient. Much effort has been invested in finding large
classes of polytopal triangulations, especially in finding operations which preserve
polytopality, and—on the other hand—investigating which properties constitute
obstructions to a triangulation being the boundary complex of a polytope.

Every knot can be realized by just three edges in some triangulation of S3. If
this knot is non-trivial the triangulation cannot be polytopal. It turns out that some
polytopes fail to be reducible, vertex-decomposable [6], and even weakly vertex-
decomposable [3]. However, it is still an open question whether there are simplicial
4-polytopes that are not weakly vertex-decomposable.

Closely related to the question of polytopality is deciding whether a simplicial
complex admits a geometric embedding into d-dimensional Euclidean space, where
geometric means that every k-face is contained in a k-dimensional affine subspace.
The triangulation T shows that a simplicial d-sphere which admits a geometric
embedding into R

dC1 cannot necessarily be perturbed to give a strictly convex, and
thus polytopal, embedding.

Bokowski and Schuchert found four coherently oriented matroids for the dual
complex of T , but showed these are not realizable [2]. Since the primal is polytopal
if and only if the dual is polytopal, T is not the boundary complex of a 4-polytope.
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While it might be natural to assume that all positively curved triangulations are
boundaries of polytopes, this is not true as T shows. However, T is embeddable
into R

4 with straight faces. Since T is a subcomplex of the five-dimensional cross-
polytope, it can be realized in a Schlegel diagram of the cross-polytope in R

4.

5 Further Properties

Besides being a minimal irreducible, positively curved, and non-polytopal triangu-
lation of S

3, T is not weakly vertex-decomposable and vertex-transitive. Here a
pure, i.e. all facets have the same dimension, simplicial complex is weakly vertex-
decomposable if it is a simplex or there is a vertex, such that deleting this vertex
results in a weakly vertex-decomposable simplicial complex. In dimensions five and
higher there are simplicial polytopes whose boundary complexes are not weakly
vertex-decomposable [3]. It is unknown whether simplicial 4-polytopes exist that
are not weakly vertex-decomposable. However, the triangulationT is geometrically
embeddable into R

4 but not weakly vertex-decomposable.
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comments. This research was supported by the Berlin Mathematical School.
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Tropical Oriented Matroids

Silke Horn

Abstract Tropical oriented matroids (as defined by Ardila and Develin) are a
tropical analogue of classical oriented matroids in the sense that they encode the
properties of the types of points in an arrangement of tropical hyperplanes—in much
the same way as the covectors of (classical) oriented matroids describe the types in
arrangements of linear hyperplanes.

They are in correspondence with other objects of interest in discrete geometry:
subdivisions of products of simplices and mixed subdivisions of simplices.

The details for this work are provided in Horn (A topological representation
theorem for tropical oriented matroids: part I, 2012. arXiv:12120714 [math.CO];
part II, 2012. arXiv:12122080 [math.CO]); see also Horn (DMTCS Proc. 01, 135–
146, 2012).

1 Introduction

Oriented matroids abstract the combinatorial properties of arrangements of real
hyperplanes and are ubiquitous in combinatorics. In fact, an arrangement of n
(oriented) real hyperplanes in R

d induces a regular cell decomposition of Rd. Then
the covectors of the associated oriented matroid encode the position of the points of
R

d (respectively, the cells in the subdivision) relative to the each of the hyperplanes
in the arrangement. Conversely, the famous Topological Representation Theorem
by Folkman and Lawrence [5] (see also [2]), states that every oriented matroid can
be realised as an arrangement of PL-pseudohyperplanes.

This paper is about the tropical analogue of oriented matroids.
Tropical geometry is concerned with the algebraic geometry over the tropical

semiring . NR WD R [ f1g;˚;˝/, where ˚ W NR 
 NR ! NR W a ˚ b WD minfa; bg
and ˝ W NR 
 NR ! NR W a˝ b WD aC b are the tropical addition and multiplication.
A tropical hyperplane is the vanishing locus of a linear tropical polynomial. From
the combinatorial point of view though a tropical hyperplane in the tropical torus
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Fig. 1 The correspondence between mixed subdivisions and tropical pseudohyperplane arrange-
ments. (a) A (regular) mixed subdivision of 242. (b) The Poincaré dual of Fig. 1a. (c) An
arrangement of tropical hyperplanes

T
d�1 Š R

d�1 is just the (codimension-1-skeleton of the) polar fan of the .d � 1/-
dimensional simplex4d�1. For a .d � 2/-dimensional tropical hyperplane H the d
connected components of Td�1 n H are called the (open) sectors of H.

An arrangement of n tropical hyperplanes in T
d�1 induces a cell decomposition

of Td�1 and each cell can be assigned a type that describes its position relative to
each of the tropical hyperplanes. See Fig. 1c for an illustration in dimension 2.

It turns out that tropical curves—and as such in particular arrangements of
tropical hyperplanes—have relationships to other interesting objects. By Develin
and Sturmfels [4] regular subdivisions of4n�1 
4d�1 are dual to arrangements of
n tropical hyperplanes in T

d�1. See Fig. 1 for an illustration.

2 Tropical Oriented Matroids

A central concept is that of an .n; d/-type. For n; d � 1 an .n; d/-type is an n-tuple
.A1; : : : ;An/ of non-empty subsets of Œd�.

For convenience we will write sets like f1; 2; 3g as 123 throughout this chapter.
An .n; d/-type A can be represented as a subgraph KA of the complete bipartite

graph Kn;d : Denote the vertices of Kn;d by N1; : : : ;Nn;D1; : : : ;Dd. Then the edges
of KA are ffNi;Djg j j 2 Aig.

Besides tropical hyperplane arrangements there are other objects that share the
notion of an .n; d/-type:

Products of Simplices and Mixed Subdivisions If we label the vertices of 4n�1
by 1; : : : ; n, the vertices of the polytope 4n�1 
 4d�1 are in canonical bijection
with the edges of the complete bipartite graph Kn;d. Then a cell C in a subdivision of
4n�1 
4d�1 is assigned the type corresponding to the subgraph of Kn;d containing
all edges that mark vertices of C. See e.g. De Loera et al. [3] for a thorough treatment
of triangulations and other subdivisions of4n�1 
4d�1.
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A polytopal subdivision of n4d�1 is mixed if every cell is a Minkowski sum
of n faces of 4d�1. By identifying the faces of 4d�1 with the subsets of Œd�, the
faces of such a mixed subdivision again correspond to .n; d/-types. See Fig. 1a for
an example.

By the Cayley Trick (cf. Huber et al. [10]) subdivisions of 4n�1 
 4d�1 are in
bijection with mixed subdivisions of n4d�1.

Tropical Oriented Matroids Tropical oriented matroids as defined by Ardila
and Develin [1] via a set of covector axioms generalise tropical hyperplane
arrangements. In fact, by Ardila and Develin [1] the types in an arrangement of
tropical hyperplanes always form a tropical oriented matroid. But there are non-
realisable tropical oriented matroids which are not realised by any arrangement of
tropical hyperplanes.

It turns out that the three concepts of subdivisions of products of two simplices,
mixed subdivisions of dilated simplices and tropical oriented matroids are in fact
equivalent:

By Ardila and Develin [1, Theorem 6.3], the types of a tropical oriented matroid
with parameters .n; d/ yield a subdivision of 4n�1 
 4d�1. Conversely, by Ardila
and Develin [1, Proposition 6.4], the types of the cells in a mixed subdivision of
n4d�1 satisfy all but one of the tropical oriented matroid axioms. In Oh and Yoo [11]
it is proven that fine mixed subdivisions satisfy the fourth axiom, the elimination
axiom.

In Sect. 3 we introduce a Topological Representation Theorem (in analogy to
the one by Folkman and Lawrence [5] for classical oriented matroids) which
states that any tropical oriented matroid can be represented as an arrangement
of tropical pseudohyperplanes. The equivalence of tropical oriented matroids and
mixed subdivisions of n4d�1 is then a corollary of this theorem (see Sect. 4).

For quick reference, the general picture is depicted in Fig. 2.

tropical oriented

matroids

subdivisions of
n d

mixed subdivisions
of n d

tropical pseudohyperplane
arrangements
[7, Def. 5.5]

Cayley Trick

[10, Thm. 3.1]

[1, Thm. 6.3]

[1, Conj. 5.1]
elimination for d

: [1, Thm. 6.5]

boundary, comparability, surrounding: [1, Prop. 6.4]

elimination for fine case: [11, Prop. 4.12]

elimination in general case

[7, Thm. 6.9], Thm. 37

Topological Representation Theorem
[7, Thm. 5.13], Thm. 35

[1, Conj. 5.7]

realisable/regular case: [4, Thm. 1]

[7, Thm. 6.7]

Thm. 36

Fig. 2 The correspondences between the four concepts of tropical oriented matroids, mixed
subdivisions of n4d�1, subdivisions of a product of two simplices and tropical pseudohyperplane
arrangements
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3 The Topological Representation Theorem

A tropical pseudohyperplane is basically a set which is PL-homeomorphic to a trop-
ical hyperplane (see also [7, Definition 5.1]). Moreover, by Horn [6, Theorem 4.2]
the Poincaré dual of a mixed subdivisions of n4d�1 yields a family of tropical
pseudohyperplanes. (See Fig. 1b for an illustration.)

In order to define arrangements of these we have to impose restrictions on the
intersections of the pseudohyperplanes. To this end, we borrow from the classical
arrangements of (linear) pseudohyperplanes (see e.g. [2, Definition 5.1.3]):

A family of tropical pseudohyperplanes is an arrangement if any set of tropical
pseudohalfspace boundaries either has empty intersection or forms an arrangement
of linear pseudohyperplanes.

With this definition we obtain the Topological Representation Theorem:

Theorem 1 (Topological Representation Theorem [7, Theorem 5.13]) Every
tropical oriented matroid (in general position) can be realised by an arrangement
of tropical pseudohyperplanes.

4 Convexity in Tropical Oriented Matroids

The elimination axiom of tropical oriented matroids states that for any two types
A;B in a tropical oriented matroid M (with parameters .n; d/) and any k 2 Œn� there
is a type C 2 M such that Ck D Ak [ Bk and Ci 2 fAi;Bi;Ai [ Big for each i 2 Œn�.

We define the convex hull of two types A;B 2 M as the set

MAB WD fC j Ci 2 fAi;Bi;Ai [ Big for all i 2 Œn�g:

It then turns out that the types of a mixed subdivision S of n4d�1 satisfy the
elimination axiom if and only if SAB is path connected for any two cells/types in S.

We can approximate this convex hull by an intersection of tropical pseudohalfs-
paces as illustrated in Fig. 3. See also [7, Sect. 6] for more details.

We then obtain the following corollaries of Theorem 1:

Theorem 2 (Cf. [7, Theorem 6.7]) Arrangements of tropical pseudohyperplanes
satisfy the elimination axiom.

Theorem 3 (Cf. [1, Conjecture 5.1], [7, Theorem 6.9]) Tropical oriented
matroids with parameters .n; d/ are in bijection with subdivisions of 4n�1 
 4d�1
and mixed subdivisions of n4d�1.
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Fig. 3 The blow-up operation subdivides one simplex cell and extends this throughout the
subdivision. Dually we add a copy of a tropical pseudohyperplane close to the original one. This
can be used to approximate convex hulls of cells. (a) A blow-up of one tropical pseudohyperplane
in a mixed subdivision of 342. (b) An approximation of the convex hull of A D .1/ and B D .23/.
(c) A combinatorial version of Fig. 3b using blow-ups
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Rota’s Conjecture, the Missing Axiom,
and Prime Cycles in Toric Varieties

June Huh

Abstract Rota’s conjecture predicts that the coefficients of the characteristic
polynomial of a matroid form a log-concave sequence. I will outline a proof for
representable matroids using Milnor numbers and the Bergman fan. The same
approach to the conjecture in the general case (for possibly non-representable
matroids) leads to several intriguing questions on higher codimension algebraic
cycles in toric varieties.

Attempting to solve the four color problem, Birkhoff introduced a polynomial
associated to a graph which coherently encodes the answers to the analogous q-
color problem for all natural numbers q [1]. This polynomial, called the chromatic
polynomial, is a fundamental invariant of graphs. Any other numerical invariant of
a simple graph which can be recursively computed by deletion and contraction of
edges is a specialization of the chromatic polynomial.

In previous work [5] it is proved that the coefficients of the chromatic polynomial
form a log-concave sequence for any graph, thus resolving a conjecture of Ronald
Read [5]. An important step in the proof was to construct a complex algebraic
variety associated to a graph and ask a more general question on the characteristic
class of the algebraic variety. It turned out that the property of the characteristic class
responsible for log-concavity is that it is realizable, meaning that the homology class
is the class of an irreducible subvariety.

Proposition 1 ([5]) Let  be a homology class in a product of projective spaces

 D
X

i

diŒP
k�i 
 P

i� 2 H2k.P
m 
 P

nIZ/:

Then some positive multiple of  is realizable if and only if fdig form a log-concave
sequence of nonnegative integers with no internal zeros.
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In general, for any complex projective variety X, one may define the space of
prime cycles of X as a closed subset of H2k.XIR/ which consists of limits of
homology classes of irreducible k-dimensional subvarieties up to a positive multiple:

Pk.X/ WD f j n �  D ŒV� for some n 2 N and V � Xg � H2k.XIR/:

This subset showing asymptotic distribution of primes in the homology of X played
a key role in the solution to the graph theory problem.

A motivating observation for further investigation is that, even for very simple
toric varieties such as the one above, the orderly structure of the space of prime
cycles becomes visible only after allowing positive multiples of homology classes.
For example, there is no irreducible subvariety of P5 
 P

5 which has the homology
class

1ŒP5 
 P
0�C 2ŒP4 
 P

1�C 3ŒP3 
 P
2�C 4ŒP2 
 P

3�C 2ŒP1 
 P
4�C 1ŒP0 
 P

5�;

although .1; 2; 3; 4; 2; 1/ is a log-concave sequence with no internal zeros [6].
One may expect that the same holds for the space of prime cycles of any smooth
projective toric variety.

Conjecture 2 For any smooth projective toric variety X, the space of prime cycles
Pk.X/ is a closed semialgebraic subset of H2k.XIR/.

Read’s conjecture on graphs was later extended by Gian-Carlo Rota to combi-
natorial geometries, also called matroids, whose defining axioms are modeled on
the relation of linear independence in a vector space. The above mentioned algebro-
geometric proof does not work in this more general setting for one very interesting
reason: not every matroid is realizable as a configuration of vectors in a vector space.
Mathematicians since David Hilbert, who found a finite projective plane which is
not coordinatizable over any field, have been interested in this tension between
the axioms of combinatorial geometry and algebraic geometry. After numerous
unsuccessful quests for the “missing axiom” which guarantees realizability, logi-
cians found that one cannot add finitely many new axioms to matroid theory to
resolve the tension [8, 9]. On the other hand, computer experiments revealed that
numerical invariants of small matroids behave as if they were realizable, confirming
Rota’s conjecture in particular for all matroids within the range of our computational
capabilities.

I believe that the discrepancy can be properly explained in the framework of
algebraic geometry through a better understanding of the space of prime cycles.
Here a matroid M of rank k C 1 on n C 1 elements can be viewed as a k-
dimensional integral homology class�M in the toric variety Xn constructed from the
n-dimensional permutohedron. This homology class is the Bergman fan of M, and
the realizability of M translates to the statement that the Bergman of M is realizable
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as an integral homology class of Xn. The toric variety Xn is equipped with a natural
map

Xn �! P
n 
 P

n;

and the chromatic (characteristic) polynomials appear through the pushforward [7]

�M 7�! .coefficients of the chromatic polynomial of M/:

Under this translation, Rota’s log-concavity conjecture and its numerical evidences
suggest an intriguing possibility that any matroid is realizable as a real homology
class.

Conjecture 3 For any matroid M of rank kC 1 on nC 1 elements, we have

�M 2 Pk.Xn/:

If true, this will not only prove the log-concavity conjecture but also explain the
subtle discrepancy between combinatorial geometry and algebraic geometry.

Little is known on the space of prime cycles, even for very simple toric varieties
such as Xn. What is needed as a first step in understanding the space of prime
cycles is a systematic study of positivity of homology classes in toric varieties.
More precisely, one needs to understand relations between the nef cone, the
pseudoeffective cone, and the cone of movable cycles in a smooth projective toric
variety X.

Question 4 (Nef Implies Effective) Is it true that the nef cone of k-dimensional
cycles in X is contained in the pseudoeffective cone of k-dimensional cycles in X?

Question 5 (Toric Moving Lemma) Is it true that some positive multiple of a nef
and effective cycle in X is homologous to an effective cycle intersecting all torus
orbits of X properly?

Using the fact that the Bergman fan of a matroid spans an extremal ray of the nef
cone of the toric variety Xn, one can show that affirmative answers to both questions
for Xn implies Conjecture 3 for that n. An affirmative answer to the first question
can be deduced from results of [3, 4]. The first question has a negative answer when
X is not necessarily a toric variety [2].

In the special case when the dimension or the codimension is one, the above
questions have an affirmative answer, and these statements form a basic part of
the well-established theory relating the nef cone, the pseudoeffective cone, and the
movable cone of a toric variety. Concrete results on cycles of higher dimension and
codimension in toric varieties will guide the development of an analogous theory on
positivity of algebraic cycles in more general algebraic varieties.
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A Combinatorial Classification of Buchsbaum
Simplicial Posets

Jonathan Browder and Steven Klee

Abstract The family of Buchsbaum simplicial posets over a field K provides
an algebraic abstraction of the family of (K-homology) manifold triangulations.
In 2008, Novik and Swartz established lower bounds on the face numbers of a
Buchsbaum simplicial poset as a function of its dimension and its topological Betti
numbers over K. They conjectured that these lower bounds are sufficient to classify
face numbers of Buchsbaum simplicial posets with prescribed Betti numbers.
We prove this conjecture by using methods from the theory of (pseudo)manifold
crystallizations to construct simplicial posets with prescribed face numbers and Betti
numbers.

A simplical poset is a poset with a unique minimal element O0 in which each interval
ŒO0; �� is isomorphic to a Boolean lattice. A simplicial poset P is naturally graded by
declaring that rk.�/ D k if ŒO0; �� is isomorphic to a Boolean lattice of rank k. To
any simplicial poset P, we associate a regular CW complex jPj called the geometric
realization of P which contains a .k � 1/-dimensional simplex for each element
� 2 P of rank k. As such, simplicial posets are also called simplicial cell complexes,
and we refer to the elements of P as faces. By way of comparison, a simplicial
complex is a simplicial poset in which each pair of faces has a unique greatest lower
bound. Geometrically, two faces in a simplicial complex intersect along a unique
(possibly empty) face, whereas two faces in a simplicial poset can intersect along a
subcomplex that is common to each of their boundaries.

The most natural combinatorial invariant of a finite .d�1/-dimensional simplicial
poset is its f -vector, f .P/ WD .f�1.P/; f0.P/; : : : ; fd�1.P//, where the f -numbers
fi.P/ count the number of i-dimensional faces in P. Often it is more natural to
study a certain integer transformation of the f -vector called the h-vector, h.P/ WD
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.h0.P/; h1.P/; : : : ; hd.P// whose entries, the h-numbers of P, are defined by the
formula

hj.P/ D
j
X

iD0
.�1/j�i

 

d � i

d � j

!

fi�1.P/:

For any .d � 1/-dimensional simplicial poset P, h0.P/ D 1 and hd.P/ D
.�1/d�1 Q�.P/, where Q�.P/ denotes the reduced Euler characteristic of P. Since
the Euler characteristic of P is inherently related to both the combinatorial and
topological structure of P, we will also be interested in studying the (reduced)
Betti numbers of P (over a field k), which are defined as ˇi.P/ D ˇi.PIk/ WD
dimk QHi.PIk/.

The primary reason for studying h-numbers instead of f -numbers is that they
arise naturally when studying the face ring of a simplicial poset. We will not define
the face ring here since the properties we are interested in studying can be defined
equivalently in terms of topological information. We refer to Stanley’s book [12] for
further information on the algebraic properties of face rings.

We will be interested in studying two families of simplicial posets known
as Cohen-Macaulay simplicial posets and Buchsbaum simplicial posets. These
conditions are defined in terms of algebraic conditions on the face ring, but Reisner
[7] and Schenzel [8] showed that these are in fact topological properties of a
simplicial poset. We summarize these results in the following proposition, which we
will use as our definitions of Cohen-Macaulay and Buchsbaum simplicial posets.

Proposition 1 A .d � 1/-dimensional simplicial poset P is Cohen-Macaulay (over
a field k) if and only if

QHi.lkP.�/Ik/ D 0;

for all faces � 2 P (including � D ;) and all i < dim.lkP.�//. The simplicial poset
P is Buchsbaum (over k) if and only if it is pure and the link of each of its atoms is
Cohen-Macaulay (over k).

As a consequence, any simplicial cell decomposition of a sphere or ball is Cohen-
Macaulay, and any simplicial cell decomposition of a manifold is Buchsbaum.

The h-numbers of a Cohen-Macaulay simplicial poset are nonnegative [12]
because they arise naturally as the dimensions of certain graded vector spaces
associated to the face ring. If P is a Buchsbaum simplicial poset, the dimensions
of the analogous vector spaces are given by the h0-numbers of P [6], which are
defined as

h0
j.P/ D hj.P/C

 

d

j

!

j�1
X

iD0
.�1/j�i�1ˇi�1.P/;

for all 0 � j � d.
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Note that as hd.P/ D .�1/d�1 Q�.P/, it follows that h0
d.P/ D ˇd�1.P/. Further, a

Cohen-Macaulay simplicial poset may only have non-vanishing reduced homology
in top degree, in which case the h- and h0-numbers coincide.

1 The Problem

One of the main problems in the study of simplicial complexes and simplicial posets
is to characterize the h-vectors of certain families of simplicial posets. As we will
see below, these classifications for simplicial posets are often less restrictive than
their counterparts for simplicial complexes.

Stanley [9] showed that a vector h D .h0; : : : ; hd/ 2 Z
dC1
�0 is the h-vector of a

Cohen-Macaulay simplicial complex of dimension d�1 if and only if (1) h0 D 1 and
(2) h is an M-vector. In contrast, h is the h-vector of a Cohen-Macaulay simplicial
poset of dimension d � 1 if and only if h0 D 1 and hj � 0 for all j [11].

Similarly, Stanley [9] and Masuda [4] showed that a vector h D .h0; : : : ; hd/ 2
Z

dC1
�0 is the h-vector of a simplicial poset decomposition of Sd�1 if and only if (1)

h0 D 1, (2) hj D hd�j for all j, and (3)
Pd

jD0 hj is even if hj D 0 for some j. In
contrast, it is still unknown whether the more technical conditions of the g-theorem
[1, 10] continue to hold for simplicial complexes that decompose Sd�1.

Novik and Swartz gave necessary conditions on the h0-vectors of Buchsbaum
posets.

Theorem 2 ([6, Theorem 6.4]) Let P a Buchsbaum simplicial poset of rank d. Then
h0

j.P/ �
�d

j

�

ˇj�1.P/ for j D 1; 2; : : : ; d � 1.

In the case that P is Cohen-Macaulay, this reduces to the condition that the h-
numbers are non-negative and h0 D 1. Thus it is natural to ask [6, Question 7.4] if
the lower bound of Theorem 2 is sufficient to characterize h0-vectors of Buchsbaum
simplicial posets. The main result our work [2] is to answer this question in the
affirmative.

Theorem 3 Let ˇ0; ˇ1; : : : ; ˇd�1; h0
0; h

0
1; : : : ; h

0
d be non-negative integers. Then

there is a Buchsbaum simplicial poset P of rank d with h0
i.P/ D hi and ˇi.P/ D ˇi

if and only if h0
0 D 1, h0

d D ˇd�1 and for j D 1; 2; : : : ; d � 1, h0
j �

�d
j

�

ˇj�1.

To prove Theorem 3, it suffices to construct, for any ˇi and h0
i satisfying the

conditions of the theorem, a Buchsbaum simplicial poset having those Betti numbers
and h0-numbers. Novik and Swartz showed it is sufficient to construct a family of
Buchsbaum simplicial posets X.k; d/ for all d and all 0 � k � d � 1 such that

ˇi.X.k; d// D
(

1; if i D k

0; if i ¤ k;
and h0

j.X.k; d// D
(
�d

j

�

; if j D 0; kC 1
0; otherwise:
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For X.0; d/we may take the disjoint union of two .d�1/-dimensional simplices, and
for X.d�1; d/ we may take two .d�1/-simplices identified along their boundaries.
Novik and Swartz also gave constructions for X.1; d/ [6, Lemma 7.6] and X.d�2; d/
[6, Lemma 7.7] for all d, along with an ad-hoc construction for X.2; 5/.

In [2], we provide a unified construction of X.k; d/ for all d and all 0 < k < d.

Theorem 4 For all d � 2 and all 0 � k � d�1 there exists a Buchsbaum simplicial
poset X.k; d/ with the following properties.

1. For all 0 � i � d � 1 and all 0 � j � d,

ˇi.X.k; d// D
(

1; if i D k

0; if i ¤ k;
and h0

j.X.k; d// D
(
�d

j

�

; if j D 0; kC 1
0; otherwise:

2. The link of each atom of X.k; d/ is shellable, and hence Cohen-Macaulay.
3. For each atom v of X.k; d/,

hj.lkX.k;d/.v// D
(
�d�1

j

�

; if j D 0; k
0; otherwise.

Condition (2) guarantees that the complex X.k; d/ is Buchsbaum. The signifi-
cance of condition (3) above is that if P is a simplicial poset of rank d with f0.P/ D d
for which condition (3) is satisfied, then P has the h0-numbers and Betti numbers that
are required for X.k; d/ [2, Lemma 3.2].

2 Constructing Buchsbaum Simplicial Posets

To construct our simplicial posets X.k; d/ we will adopt a graph-theoretic approach,
related to the method of crystallizations of manifolds ([3] is a good reference) and
the graphical posets of [5]. However we will allow less restricted classes of graphs,
as we do not require that our simplicial cell complexes are even pseudomanifolds.

Definition 5 Let G be a finite connected multigraph whose edges are labeled by
colors in Œd�. For any S � Œd�, let GS be the restriction of G to the edges whose label
belongs to S (and keeping all vertices of G). We define a poset P.G/ as follows: the
elements of P.G/ are pairs .H; S/, where S � Œd� and H is a connected component
of GS, ordered by .H; S/ � .H0; S0/ if S0 � S and H0 is a subgraph of H.

The geometric connection between the simplicial poset P.G/ and the graph G
is very natural. The vertices of G correspond to the facets of P.G/. Each facet is a
.d � 1/-simplex, and hence has d vertices which we color as 1; 2; : : : ; d. If F and
F0 are facets of P.G/ whose corresponding vertices in G are connected by an edge
of color i, then F and F0 intersect along their corresponding codimension-one faces
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Fig. 1 A graph G (left) and
the simplicial poset P.G/
(right)

opposite their respective vertices of color i. Thus the graph G is an edge-labeled
dual graph to the cell complex P.G/.

Example 6 We illustrate this construction with the graph G and its corresponding
simplicial poset P.G/ shown in Fig. 1.

The simplicial poset X.k; d/ of Theorem 4 is defined in terms of its dual graph
G.k; d/ as follows.

Definition 7 Let k and d be integers with 0 � k < d. Let Wd be the set of words in
the alphabet f0; 1g of length d whose first letter is 1, and let Wd.k/ denote the set of
all such words with exactly kC 1 blocks of zeros and ones.

We define G.k; d/ as the edge-labeled multigraph on vertex set Wd.k/[f˛g with
the following edges:

• G.k; d/ has an edge labeled j connecting w; v 2 Wd.k/ if and only if w and v
differ only in position j, and

• G.k; d/ has an edge labeled j connecting w 2 Wd.k/ to ˛ if and only if wj is
contained in a block of size one (alternatively, if “flipping" the bit at position j in
w decreases the number of blocks).

Example 8 The graph G from Example 6 realizes G.1; 3/ under the identification
of vertex A with the word 100, vertex B with the word 110, and vertex C with ˛.

As a larger example, we also include the graph G.2; 5/ (Fig. 2). The vertices in
this case are labeled as

v12 D10111 v23 D11011
v13 D10011 v24 D11001
v14 D10001 v34 D11101:

We have drawn the vertex ˛ three times to make the drawing planar, and we have
made this vertex white in order to distinguish it from the other vertices.

Since the vertex ˛ in this example is connected to vertices v12; v13, and v14 by an
edge of color 1, the corresponding facet has a codimension-one face that is contained
in four facets. Thus X.2; 5/ is not a manifold. In fact, aside from the families X.0; d/,
X.1; d/, and X.d � 1; d/, none of the simplicial posets we have constructed can be
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Fig. 2 The graph G.2; 5/

realized as manifolds for this same reason. It remains an interesting question to
determine whether or not it is possible to realize simplicial cell decompositions of
manifolds that have the same face numbers and Betti numbers as the complexes
X.k; d/.

References

1. Billera, L., Lee, C.: A proof of the sufficiency of McMullen’s conditions for f -vectors of
simplicial convex polytopes. J. Comb. Theory A 31, 237–255 (1981)

2. Browder, J., Klee, S.: A classification of the face numbers of Buchsbaum simplicial posets.
Math. Z. (Preprint). http://arxiv.org/abs/1307.1548

3. Ferri, M., Gagliardi, C., Grasseli, L.: A graph-theoretical representation of PL-manifolds—a
survey on crystallizations. Aequationes Math. 31, 121–141 (1986)

4. Masuda, M.: h-vectors of Gorenstein� simplicial posets. Adv. Math. 194, 332–344 (2005)
5. Murai, S.: Face vectors of simplicial cell decompositions of manifolds. Israel J. Math. 195,

187–213 (2013)
6. Novik, I., Swartz, E.: Socles of Buchsbaum modules, complexes and posets. Adv. Math. 222,

2059–2084 (2009)
7. Reisner, G.: Cohen-Macaulay quotients of polynomial rings. Adv. Math. 21, 30–49 (1976)
8. Schenzel, P.: On the number of faces of simplicial complexes and the purity of Frobenius.

Math. Z. 178, 125–142 (1981)
9. Stanley, R.P.: Cohen-Macaulay complexes. In: Higher Combinatorics (Proceedings of the

NATO Advanced Study Institute, Berlin, 1976). NATO Advanced Study Institute Series C:
Mathematical and Physical Sciences, vol. 31, pp. 51–62. Reidel, Dordrecht (1977)

10. Stanley, R.P.: The number of faces of a simplicial convex polytope. Adv. Math. 35, 236–238
(1980)

11. Stanley, R.P.: f -vectors and h-vectors of simplicial posets. J. Pure Appl. Algebra 71, 319–331
(1991)

12. Stanley, R.P.: Combinatorics and Commutative Algebra, 2nd edn. Birkhäuser, Boston (1996)

http://arxiv.org/abs/1307.1548


Dimensional Differences Between Faces
of the Cones of Nonnegative Polynomials
and Sums of Squares

Grigoriy Blekherman, Sadik Iliman, and Martina Juhnke-Kubitzke

Abstract We study dimensions of the faces of the cone of nonnegative polynomials
and the cone of sums of squares; we show that there are dimensional differences
between corresponding faces of these cones. These dimensional gaps occur in all
cases where there exist nonnegative polynomials that are not sums of squares.
The gaps occur generically, they are not the product of selecting special faces of
the cones. For ternary forms and quaternary quartics, we completely characterize
when these differences are observed. Moreover, we provide an explicit description
for these differences in the two smallest cases, in which the cone of nonnegative
polynomials and the cone of sums of squares are different.

1 Introduction

Let Hn;2d denote the set of homogeneous polynomials (forms) in n variables of
degree 2d over R and let RPn�1 resp. CPn�1 denote the .n � 1/-dimensional real
resp. complex projective space. For a fixed number of variables n and degree 2d,
nonnegative polynomials and sums of squares form closed convex cones in Hn;2d.
We call these cones Pn;2d and †n;2d, respectively, i. e.,

Pn;2d D
˚

p 2 Hn;2d j p.x/ � 0 for all x 2 RP
n�1� ;
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†n;2d D
n

p 2 Pn;2d j p.x/ D
X

q2i for some qi 2 Hn;d

o

:

The relationship between the cone of nonnegative polynomials and the cone of sums
of squares has been studied since Hilbert’s seminal paper in 1888 [11]. Since every
polynomial that is a sum of squares is nonnegative, one always has the containment
†n;2d � Pn;2d. In the aforementioned article [11], Hilbert completely characterized,
when also the reverse inclusion is true, i. e., when, indeed the two cones Pn;2d and
†n;2d are equal. More precisely, he showed that a nonnegative form in n variables of
even degree 2d has to be a sum of squares only in the following cases: the form
is bivariate, i. e., n D 2, the form is quadratic, i. e., 2d D 2, or, the form is a
ternary quartic, i. e., n D 3 and 2d D 4. In all other cases, he proved existence
of nonnegative polynomials that are not sums of squares. It is remarkable that
Hilbert’s proof was existential and not constructive, and the first explicit nonnegative
polynomial not being a sum of squares was found only 70 years later by Motzkin
[15, 16]. The example, he provided, also referred to as Motzkin polynomial, was the
following degree 6 homogeneous polynomial in three variables

M.x; y; z/ WD 1

3
x2y4 C 1

3
x4y2 C 1

3
z6 � x2y2z2:

He showed that polynomial is nonnegative but cannot be written as a sum of
squares. A related question, known as Hilbert’s 17th Problem, see e.g., [12], was
the following

Question 1 Is it true that every nonnegative polynomial f can be written as a sum

of squares of rational functions: f DPi

�

gi
hi

�2

?

In 1925, Artin was able to answer this question in the affirmative [2]. The Motzkin
polynomial, for instance, can be written as a sum of squares of rational functions
with denominator .x2 C y2 C z2/. However, in general, the degree of the multiplier
might be very large and a current line of research is concerned with the construction
of multipliers and with bounding their degree. Recently, in small dimensions, several
aspects of the differences between the two cones, Pn;2d and†n;2d, the structure of the
dual cones as well as the algebraic boundaries of these cones were investigated (see
[4–6]). Understanding the precise relationship between these cones is interesting
from the point of view of computational complexity in polynomial optimization
and also for practical testing for nonnegativity (see, e. g., [13]). Indeed, while
testing whether a polynomial is nonnegative is NP-hard already in degree 4 [9],
testing whether a polynomial is a sum of squares can be reduced to a semidefinite
programming problem, which can be solved efficiently [14]. Unfortunately, except
for the cases of n D 2, the univariate case for nonhomogeneous polynomials, the
case 2d D 2 (see [3, Sects. II.11 and II.12]), and, to some extent, the case of ternary
quartics, neither the structure of these cones nor their precise relationship with each
other is very well understood.
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In this chapter, we focus on the study of faces of the cones Pn;2d and †n;2d. We
will identify certain exposed faces of these cones, derive estimates for the dimen-
sions of those faces and establish dimensional differences between corresponding
exposed faces in many cases. The results of this chapter can be found in more detail
in the recent article [7]. We also refer to [7] for further background and explanations
and for most of the proofs.

2 Exposed Faces and d-Independence

A face F of a convex set K is called exposed if there exists a supporting hyperplane
H such that F D H\K. It is easy to see that the boundary of the cone Pn;2d consists
of all the forms with at least one zero, whereas its interior consists of all strictly
positive forms. In particular, a maximal proper face of Pn;2d consists of all forms
with exactly one prescribed zero [8, Chap. 4]. Given a set � of distinct points in
RP

n�1, the forms in Pn;2d vanishing at all points of � form an exposed face of Pn;2d,
which we call Pn;2d.�/:

Pn;2d.�/ D fp 2 Pn;2d j p.s/ D 0 for all s 2 �g:

Similarly, we let †n;2d.�/ be the exposed face of †n;2d consisting of forms that
vanish at all points of �:

†n;2d.�/ D fp 2 †n;2d j p.s/ D 0 for all s 2 �g:

Moreover, any exposed face of Pn;2d has a description of the above form, and the
set � can be chosen to be finite [8, Chap. 4]. We note that, despite this simple
description of exposed faces, the full facial structure of Pn;2d “should” be very
difficult to fully describe since—as already mentioned—the problem of testing for
nonnegativity is known to be NP-hard.

We pose the questions, which conditions need to be imposed on the set � �
RP

n�1, such that Pn;2d.�/ D †n;2d.�/. So as to answer this question we study
the weaker question, for which sets � � RP

n�1 the exposed faces Pn;2d.�/ and
†n;2d.�/ have the same dimension.

2.1 Exposed Faces of †n;2d

The goal of this section is to compute the dimension of the exposed face †n;2d.�/

for a finite set � � RP
n�1.

In the following, let I.�/ be the vanishing ideal of � and let

Id.�/ D f f 2 Hn;d W f .s/ D 0 for all s 2 �g
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be its degree d part. Moreover, let

.Id.�//
2 D ff 2 Hn;2d W f D

X

i

˛iq
2
i for some qi 2 Id.�/ and ˛i 2 Rg:

Since any polynomial p 2 †n;2d.�/ belongs to .Id.�//
2, we have the inclusion

†n;2d.�/ � .Id.�//
2. Moreover, this inclusion is full-dimensional, since one

can choose a basis of .Id.�//
2 consisting of squares and any nonnegative linear

combination of these squares lies in †n;2d.�/.

Proposition 2 Let � � RP
n�1 be a finite set. Then †n;2d.�/ is a full-dimensional

convex cone in the vector space of all forms of degree 2d in .Id.�//
2, i. e.,

dim†n;2d.�/ D dim.Id.�//
2:

2.2 Exposed Faces of Pn;2d

The goal of this section consists of determining the dimension of an exposed face
Pn;2d.�/ for a finite set � � RP

n�1. For this aim, we consider the second symbolic
power I.2/.�/ of I.�/, i. e., the ideal of all forms in RŒx� D RŒx1; : : : ; xn� vanishing
at every point of � to order at least 2:

I.2/.�/ D fp 2 RŒx� j rp.s/ D 0 for all s 2 �g:

Since every nonnegative form that is zero on s 2 � must vanish to order 2 on s,
it follows that the face Pn;2d.�/ is contained in the degree 2d part of I.2/.�/, i. e.,
Pn;2d.�/ � I.2/2d .�/: We pose the question, under which assumptions Pn;2d.�/ is a

full-dimensional subcone of I.2/2d .�/. In order to answer this question, the following
crucial definition is required.

Definition 3 Let � � RP
n�1 be a finite set of distinct points. We call � � RP

n�1
d-independent if � satisfies the following two conditions:

(i) The forms in Id.�/ share no common zeroes in CP
n�1 outside of � .

(ii) For any s 2 � the forms that vanish to order 2 on s and vanish at the rest of �
to order 1 form a vector space of codimension j�j C n � 1 in Hn;d.

The second condition in the above definition simply states that the constraints
of vanishing at � and additionally double vanishing at any point s 2 � are all
linearly independent. The next proposition provides an answer to the previously
posed question.

Proposition 4 Let � � RP
n�1 be a d-independent set. Then Pn;2d.�/ is a full-

dimensional convex cone in I.2/2d .�/: dim Pn;2d.�/ D dim I.2/2d .�/:
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Full-dimensionality of Pn;2d.�/ in I.2/2d .�/ is established by finding a form p 2
Pn;2d.�/ that after adding a suitably small multiple of any double vanishing form
remains nonnegative:

pC �q 2 Pn;2d.�/ for some sufficiently small � and any q 2 I.2/2d .�/:

The form p can be viewed as a certificate of full-dimensionality of Pn;2d.�/ in
I.2/2d .�/. The important point is that p can be any form, in particular, we will focus
on finding such p that is a sum of squares. This approach follows that of [16] and,
indeed, it can be traced to the original proof of Hilbert [11].

For a form p, let its Hessian Hp be the matrix of second derivatives of p, i. e.,

Hp D
�

@2p
@xi@xj

�

. We note that if a form p vanishes at a point s, then, by homogeneity,

p needs to vanish at a line through s. Therefore, s lies in the kernel of the Hessian
of p at s: Hp.s/s D 0. If a form p is nonnegative, then its Hessian at any zero s
is positive semidefinite since 0 is a minimum for p. We call a nonnegative form p
round at a zero s 2 RP

n�1 if Hp.s/ is positive definite on the subspace s? of vectors
perpendicular to s, i. e., if yTHp.s/y > 0 for all y 2 s?.

For a form p, we let Z.p/ denote the real projective variety of p.
The next corollary, which follows from Lemma 3.1 in [16], will be crucial for the

proof of Proposition 4.

Corollary 5 Let � be a finite set in RP
n�1. Suppose that there exists a nonnegative

form p in Pn;2d.�/ such that Z.p/ D � and p is round at every point s 2 � . Then the
face Pn;2d.�/ is full-dimensional in the vector space I.2/2d .�/.

Proof of Proposition 4 Let q1; : : : ; qk be a basis of Id.�/. We claim that p D
Pk

iD1 q2i has the properties of Corollary 5, which implies that Pn;2d.�/ is full-

dimensional in I.2/2d .�/.
Since � forces no additional zeroes and since q1; : : : ; qk is a basis of Id.�/, it

follows that the forms qi have no common zeroes outside of � and thus Z.p/ D � .
Now choose s 2 � . It remains to show that p is round at s. Since the forms in

Id.�/ that double vanish at s form a vector space of codimension n� 1 in Id.�/, we
see that for 1 � i � k the gradients of qi at s span a vector space of dimension n�1.
Since, by Euler’s identity (see, e. g., [10, Lemma 11.4]), hrqi; si D 0 for all i, this
implies that the gradients actually span s?.

Note that the Hessian of p is the sum of the Hessians of q2i , i. e., Hp DPk
iD1 Hq2i

:

Since qi.s/ D 0 for all i and s 2 � , we conclude that

@2q2i
@xl@xj

.s/ D 2@qi

@xl
.s/
@qi

@xj
.s/:

Therefore, we see that the Hessian of q2i at any s 2 � is actually double the tensor of
the gradient of qi at s with itself: Hq2i

.s/ D 2rqi˝rqi.s/: It is now straightforward

to verify that rqj.s/THq2i
.s/rqj.s/ > 0 for all 1 � i; j � k and s 2 � , which shows

the claim.
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We want to remark that Proposition 4 allows to actually determine the dimension
of Pn;2d.�/ since by the Alexander-Hirschowitz Theorem [1] the dimension of
I.2/.�/ is known.

2.3 d-Independence

Given the results from the previous section, we are able to determine the dimension
of an exposed face Pn;2d.�/, if � is a d-independent set in RP

n�1. The obvious
question that arises however is how restrictive this condition of being d-independent
is. We are able to show the following:

Proposition 6 Let � be a generic collection of points in RP
n�1 such that j�j �

�nCd�1
d

� � n. Then � is d-independent.

The proof of this result precedes in two steps. The first step is to show that the
set of d-independent configurations of k points in RP

n�1 is a Zariski open subset of
.RPn�1/k. The second step consists of identifying a subset of RPn�1 of cardinality
�nCd�1

d

� � n that is d-independent. More precisely, one can show that the set

Sn;d WD f.˛1; : : : ; ˛n/ 2 R
n W 0 � ˛i � d � 1; ˛i 2 N;

n
X

iD1
˛i D dg

has this property.
In view of Propositions 2, 4 and 6 our original question of finding a dimensional

difference between the faces Pn;2d.�/ and†n;2d.�/ can be reduced to the following:

Question 7 Let � � RP
n�1 (or equivalently CP

n�1) be a generic set of points such
that j�j � �nCd�1

d

� � n, and let I.�/ be the vanishing ideal of � . For what values of
j�j does equality

I.2/2d .�/ D .Id.�//
2

hold?

We will study this problem in more detail in the next section for n D 3 and n D 4.

3 The Cases .n; 2d/ 2 f.3; 2d/; .4; 4/g

Though we cannot provide an answer to Question 7 in full generality, we are able to
do so for ternary forms and quaternary quartics. Thereby, we also obtain a complete
characterization of when dimensional differences between corresponding exposed
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faces of the cones of nonnegative polynomials and sums of squares are observed in
these cases. For ternary forms we show the following:

Theorem 8 Let � be a d-independent set of points in RP
2 such that j�j � �dC1

2

�

.
Then

dim I.2/2d .�/ D dim.Id.�//
2:

Moreover, if
�dC1
2

�C 1 � j�j � �dC1
2

�C .d � 2/, then dim I.2/2d .�/ > dim.Id.�//
2.

As already explained, the next corollary is an immediate consequence of
Theorem 8.

Corollary 9 Let � � RP
2 be d-independent with j�j � �dC1

2

�

. Then

dim P3;2d.�/ D dim†3;2d.�/:

Furthermore, for
�dC1
2

�C 1 � j�j � �dC1
2

�C .d � 2/ we have

dim P3;2d.�/ > dim†3;2d.�/:

Similarly, for n D 4, we derive the minimal size of a 2-independent set � such
that the dimensions of .I2.�//2 and I.2/4 .�/ are distinct.

Theorem 10 Let � � RP
3 be a finite set in general linear position. Then the

following hold:

(i) If j�j D 6, then dim.I2.�//2 D 10 < 11 D dim I.2/4 .�/.

(ii) If j�j � 5, then dim.I2.�//2 D dim I.2/4 .�/.

As a direct consequence, we obtain the following corollary.

Corollary 11 Let � � RP
3 be a finite set in general linear position. Then the

following hold:

(i) If j�j D 6, then dim†4;4.�/ D 10 < 11 D dim P4;4.�/.
(ii) If j�j � 5, then dim†4;4.�/ D dim P4;4.�/.

We are not only able to establish dimensional differences but also to construct
nonnegative forms, belonging to a certain exposed face that are not sums of squares.
The next example illustrates this for the case .n; 2d/ D .4; 4/ and also explains the
general strategy for this construction.

Example 12 Let � D fs1; : : : ; s6g with

s1 D .0; 0; 1; 1/; s2 D .0; 1; 0; 1/; s3 D .0; 1; 1; 0/; s4 D .1; 0; 0; 1/;
s5 D .1; 0; 1; 0/; s6 D .1; 1; 0; 0/:
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In the first step of the construction, we choose a basis f1; : : : ; fr of I2.�/. For our
specific set � , one can show that the polynomials f1.x1; x2; x3; x4/ D x1.x1 � x2 �
x3�x4/, f2.x1; x2; x3; x4/ D x2.x2�x1�x3�x4/, f3.x1; x2; x3; x4/ D x3.x3�x1�x2�x4/
and f4.x1; x2; x3; x4/ D x4.x4 � x1 � x2 � x3/ form a basis for I2.�/.

In the second step of the construction, one needs to find a form q 2 I.2/4 .�/ n
.I2.�//2. Note that such a form exists whenever there is a dimensional difference
between the corresponding faces. The key point of the construction is that for
sufficiently small � > 0 one can show that

r
X

iD1
f 2i C �q 2 P4;4.�/ n†4;4.�/:

In our specific example, the polynomial q.x1; x2; x3; x4/ D x1x2x3x4 lies in I.2/4 .�/
but not in .I4.�//2 and one can verify that

f 21 C f 22 C f 23 C f 24 C q 2 P4;4.�/ n†4;4.�/:
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On a Conjecture of Holtz and Ron Concerning
Interpolation, Box Splines, and Zonotopes

Matthias Lenz

Abstract Let X be a list of vectors that is unimodular and let BX be the box spline
defined by X. We discuss the proof of the following conjecture by Holtz and Ron:
every real-valued function on the set of interior lattice points of the zonotope defined
by X can be extended to a function on the whole zonotope of the form p.D/BX in a
unique way, where p.D/ is a differential operator that is contained in the so-called
internal P-space. We construct an explicit solution to this interpolation problem
in terms of truncations of the Todd operator. As a corollary we obtain a slight
generalisation of the Khovanskii-Pukhlikov formula that relates the volume and the
number of lattice points in a smooth lattice polytope.

1 Introduction

Box splines and multivariate splines measure the volume of certain variable
polytopes. Since vector partition functions measure the number of integral points
in polytopes, they can be seen as discrete versions of these spline functions. Splines
and vector partition functions have recently received a lot of attention by researchers
in various fields including approximation theory, algebra, combinatorics, and
representation theory. A standard reference from the approximation theory point
of view is the book [7] by de Boor et al. The combinatorial and algebraic aspects
are stressed in the book [8] by De Concini and Procesi.

Given a set ‚ D fu1; : : : ; ukg of k distinct points on the real line and a function
f W ‚ ! R, it is well-known that there exists a unique polynomial pf in the space
of univariate polynomials of degree at most k � 1 such that pf .ui/ D f .ui/ for
i D 1; : : : ; k. If ‚ is contained in R

d for an integer d � 2, the situation becomes
more difficult. Not all of the properties of the univariate case can be preserved
simultaneously. In particular, for fixed‚ it is difficult to find a space of polynomials
that contains a unique interpolant for every function f W ‚ ! R. One of our
results states that if ‚ is the set of interior lattice points of a zonotope, such a
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space is obtained by applying certain differential operators to the box spline in the
unimodular case. This solves a conjecture by Holtz and Ron [12].

Khovanskii and Pukhlikov proved a remarkable formula that relates the volume
and the number of integer points in a smooth polytope [13]. The connection is
made via Todd operators, i.e. differential operators of type @x

1�e@x . The formula is
closely related to the Hirzebruch-Riemann-Roch Theorem for smooth projective
toric varieties (see [5, Chap. 13]).

It will turn out that truncations of certain shifted Todd operators provide
explicit solutions to the Holtz-Ron conjecture. We will be able to deduce slight
generalisations of a deconvolution formula of De Concini et al. [9] and of the
Khovanskii-Pukhlikov formula.

Proofs of our results and more details can be found in [16–18].

2 Notation and Mathematical Background

Our notation is similar to the one used in [8]. We fix a d-dimensional real vector
space U and a lattice ƒ � U. Let X D .x1; : : : ; xN/ � ƒ be a finite list of vectors
that spans U. We assume that X is unimodular with respect to ƒ, i.e. every basis
for U that can be selected from X is also a lattice basis for ƒ. Note that X can
be identified with a linear map X W RN ! U. Let u 2 U. We define the variable
polytopes

…X.u/ WD fw 2 R
N�0 W Xw D ug and …1

X.u/ WD …X.u/\ Œ0; 1�N : (1)

Note that any convex polytope can be written in the form …X.u/ for suitable X and
u. The dimension of these two polytopes is at most N � d. We define the

vector partition function TX.u/ WD
ˇ

ˇ…X.u/\ Z
N
ˇ

ˇ ; (2)

the box spline BX.u/ WD det.XXT/�1=2 volN�d …
1
X.u/; (3)

and the multivariate spline TX.u/ WD det.XXT/�1=2 volN�d …X.u/: (4)

Note that we have to assume that 0 is not contained in the convex hull of X in
order for TX and TX to be well-defined. Otherwise, …X.u/ may be unbounded. The
zonotope Z.X/ is defined as

Z.X/ WD
(

N
X

iD1
�ixi W 0 � �i � 1

)

D X � Œ0; 1�N : (5)

We denote its set of interior lattice points by Z�.X/ WD int.Z.X//\ƒ.
The symmetric algebra over U is denoted by Sym.U/. We fix a basis s1; : : : ; sd

for the lattice ƒ. This makes it possible to identify ƒ with Z
d, U with R

d, Sym.U/
with the polynomial ring RŒs1; : : : ; sd�, and X with a .d 
 N/-matrix. Then X is
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unimodular if and only if every non-singular square submatrix of this matrix has
determinant 1 or �1.

We denote the dual vector space by V D U� and we fix a basis t1; : : : ; td that is
dual to the basis for U. An element of Sym.U/ can be seen as a differential operator
on Sym.V/, i.e. Sym.U/ Š RŒs1; : : : ; sd� Š RŒ @

@t1
; : : : ; @

@td
�. For f 2 Sym.U/ and

p 2 Sym.V/ we write f .D/p to denote the polynomial in Sym.V/ that is obtained
when f acts on p as a differential operator. It is known that the box spline is
piecewise polynomial and its local pieces are contained in Sym.V/. We will mostly
use elements of Sym.U/ as differential operators on its local pieces.

Note that a vector u 2 U defines a linear form u 2 Sym.U/. For a sublist Y � X,
we define pY WD Qy2Y y. For example, if Y D ..1; 0/; .1; 2//, then pY D s1.s1C2s2/.
Furthermore, p; WD 1. We define the rank of a sublist Y � X as the dimension of
the vector space spanned by Y. We denote it by rk.Y/. Now we define the

central P-space P.X/ WD spanf pY W rk.X n Y/ D rk.X/g (6)

and the internal P-space P�.X/ WD
\

x2X

P.X n x/: (7)

The space P�.X/was introduced in [12] where it was also shown that the dimension
of this space is equal to jZ�.X/j. The space P.X/ first appeared in approximation
theory [1, 6, 10].

3 Results

The internal P-space can be characterised in terms of box splines:

Theorem 1 Let X � ƒ � U Š R
d be a list of vectors that is unimodular and spans

U. Then

P�.X/ D f f 2 P.X/ W f .D/BX is a continuous functiong: (8)

Theorem 1 ensures that the derivatives of BX that appear in the following theorem
exist.

Theorem 2 (Holtz-Ron Conjecture [12, Conjecture 1.8]) Let X � ƒ � U Š R
d

be a list of vectors that is unimodular and spans U. Let f be a real valued function
on Z�.X/, the set of interior lattice points of the zonotope defined by X.

Then there exists a unique polynomial p 2 P�.X/ � RŒs1; : : : ; sd�, s. t.
p.D/BXjZ�.X/ D f .

Let z 2 U. As usual, the exponential is defined as ez WD P

k�0 zk

kŠ 2
RŒŒs1; : : : ; sd��. We define the (z-shifted) Todd operator

Todd.X; z/ WD e�z
Y

x2X

x

1 � e�x
2 RŒŒs1; : : : ; sd��: (9)
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The Todd operator was introduced by Hirzebruch in the 1950s [11] and plays a
fundamental role in the Hirzebruch-Riemann-Roch theorem for complex algebraic
varieties. It can be expressed in terms of the Bernoulli numbers B0 D 1, B1 D � 12 ,
B2 D 1

6
,: : : that are defined by the equation s

es�1 D
P

k�0
Bk
kŠ s

k. One should note

that ez z
ez�1 D z

1�e�z D P

k�0
Bk
kŠ .�z/k. For z 2 Z�.X/ we can fix a list S � X s. t.

z DPx2S x. Let T WD X n S. Then we can write the Todd operator as Todd.X; z/ D
Q

x2S
x

ex�1
Q

x2T
x

1�e�x .
A sublist C � X is called a cocircuit if rk.X n C/ < rk.X/ and C is inclusion

minimal with this property. We consider the cocircuit ideal J .X/ WD idealfpC W
C cocircuitg � Sym.U/. It is known [10, 12] that Sym.U/ D P.X/˚ J .X/. Let

 X W P.X/˚ J .X/! P.X/ (10)

denote the projection. Note that this is a graded linear map and that  X maps to zero
any homogeneous polynomial whose degree is at least N � dC 1. This implies that
one can easily extend it to a function  X W RŒŒs1; : : : ; sd��! P.X/.

Let

fz D f X
z WD  X.Todd.X; z//: (11)

Theorem 3 Let X � ƒ � U Š R
d be a list of vectors that is unimodular and spans

U. Let z be a lattice point in the interior of the zonotope Z.X/.
Then fz 2 P�.X/ and fz.D/BXjƒ D ız.

Dahmen and Micchelli observed that

TX D BX �d TX WD
X

�2ƒ
BX.� � �/TX.�/ (12)

(cf. [8, Proposition 17.17]). Using this result, the following variant of the
Khovanskii-Pukhlikov formula [13] (see also [19] and [4, Chap. 10]) follows
immediately.

Corollary 4 Let X � ƒ � U Š R
d be a list of vectors that is unimodular and

spans U, u 2 ƒ and z 2 Z�.X/. Then

j…X.u � z/\ƒj D TX.u � z/ D fz.D/TX.u/: (13)

The central P-space and various other generalised P-spaces have a canonical
basis [12, 15]. Up to now, no general construction for a basis of the internal space
P�.X/ was known (cf. [3, 12, 14]). The polynomials fz form such a basis.

Corollary 5 Let X � ƒ � U Š R
d be a list of vectors that is unimodular and

spans U. Then ffz W z 2 Z�.X/g is a basis for P�.X/.

We also obtain a new basis for the central space P.X/. Let w 2 U be a short
affine regular vector, i.e. a vector whose Euclidian length is close to zero that is not
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Fig. 1 The local pieces of
the box spline (blue) and the
polynomials fz (black)
corresponding to Example 7

contained in any hyperplane generated by sublists of X. Let Z.X;w/ WD .Z.X/ �
w/ \ƒ. It is known that dimP.X/ D jZ.X;w/j D vol.Z.X// [12].

Corollary 6 Let X � ƒ � U Š R
d be a list of vectors that is unimodular and

spans U. Then ffz W z 2 Z.X;w/g is a basis for P.X/.

Example 7 Let X D ..1; 0/; .0; 1/; .1; 1// � Z
2. Then P�.X/ D R, P.X/ D

spanf1; s1; s2g, Z�.X/ D f.1; 1/g, and f.1;1/ D 1. …X.u1; u2/ Š Œ0;min.u1; u2/� �
R
1. The multivariate spline and the vector partition function are:

TX.u1; u2/ D
(

u2 for 0 � u2 � u1

u1 for 0 � u1 � u2
and TX.u1; u2/ D

(

u2C1 for 0 � u2�u1

u1C1 for 0 � u1�u2
:

Corollary 4 correctly predicts that TX.u/jZ2 D TX.u� .1; 1//. Figure 1 shows the six
non-zero local pieces of the piecewise linear function BX and the seven polynomials
fz attached to the lattice points of the zonotope Z.X/.

4 Deletion and Contraction

A crucial part of the proofs of our results are deletion-contraction arguments. Let
x 2 X. We call the list X n x the deletion of x. The image of X n x under the canonical
projection 	x W U ! U= span.x/ DW U=x is called the contraction of x. It is denoted
by X=x. Note that since X is unimodular,ƒ=x � U=x is a lattice for every x 2 X and
X=x is unimodular with respect to this lattice. All structures studied in this chapter
behave nicely under deletion and contraction. Namely:
1. The box spline satisfies DxBX D rxBXnx and BX=x.Nu/ DP�2Z BX.uC �x/.
2. There is a canonical bijection Z�.X/ nZ�.X n x/! Z�.X=x/.
3. The equation xf Xnx

z D f X
z � f X

zCx holds.
4. The following sequence is exact:

0! P�.X n x/

px�! P�.X/

	x�! P�.X=x/! 0: (14)
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Root Polytopes of Crystallographic Root
Systems

Mario Marietti

Abstract Let ˆ be a finite (reduced) irreducible crystallographic root system. We
give a case-free explicit description of the convex hull of all roots in ˆ, that we
denote by Pˆ and call the root polytope of ˆ. This description is attained by
considering a set of distinguished faces, indexed by the subsets of a fixed root basis
…, which is a complete set of representatives of the orbits of the faces under the
action of the Weyl group W. The description reveals a rich combinatorial structure
of the root polytopePˆ and gives as by-products some results on root systems which
may be interesting on their own. Even if the proofs (which also are case-free) are
clearly omitted, the results are presented in the order they are proved. This is a report
on Cellini (Int. Math. Res. Not. 12, 4392–4420 (2015); J. Algebr. Comb. 39(3), 607–
645 (2014)).

1 Coordinate Faces

Let us fix an arbitrary finite (reduced) irreducible crystallographic root system ˆ

in an n-dimensional Euclidean space E, and denote by Pˆ the root polytope of ˆ,
which is the convex hull of all roots in ˆ.

The choice of a root basis … D f˛1; : : : ; ˛ng of ˆ provides a special set of faces
of Pˆ. If M� D f M!1; : : : ; M!ng is the dual basis of … in E, i.e., the corresponding
set of fundamental coweights, ˆC is the corresponding set of positive roots, and

� D
n
P

iD1
mi˛i 2 ˆC is the corresponding highest root of ˆ, then each hyperplane

fx 2 E W .x; M!i/ D mig, for i D 1; : : : ; n, supports a face Fi of Pˆ containing � .
As in [2], we call Fi the ith coordinate face.

Coordinate faces may or may not be facets of Pˆ. For example, in type A2,
both coordinate faces are facets while, in type C2, the coordinate face F2 is a facet
properly containing the coordinate face F1 (the simple roots are numbered according
to [1]).
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In the following proposition, we collect some of the properties of coordinate
faces. We recall that the root poset is the set of positive roots ˆC partially ordered
by the relation: ˛ � ˇ if and only if ˇ � ˛ is a nonnegative linear combination of
simple roots. We denote by ck.x/ the k-th coordinate of x with respect to the root
basis ˘ .

Proposition 1.1 The coordinate faces Fi, i 2 f1; 2; : : : ; ng, satisfy the following
properties:

1. Fi ¤ Fj if i ¤ j.
2. The sum of two roots in Fi is never a root.
3. Fi \ˆ is an interval in the root poset, i.e., there exists �i 2 ˆC such that

Fi \ˆ D Œ�i; ��:

4. The dimension of Fi equals the cardinality of the set fk j ck.�i/ ¤ ck.�/g.
5. The barycenter of Fi is parallel to M!i.
6. Two coordinate faces are never in the same W-orbit.

The following proposition shows that the poset of the coordinate faces with
respect to inclusion can be directly detected from the extended (i.e. affine) Dynkin
diagram of ˆ. We denote by ˛0 the affine simple root.

Proposition 1.2 Let i; j 2 f1; 2; : : : ; ng. Then:

• Fi is a facet if and only if Fi is maximal among the coordinate faces.
• Fi � Fj if and only if every path from ˛j to ˛0 in the extended Dynkin diagram of
ˆ contains ˛i.

Note that, by definition, Fi � Fj means that every root in ˆC with ith coordinate
(with respect to …) equal to mi (i.e. as greater as possible) has also jth coordinate
equal to mj.

2 Standard Parabolic Faces

For each I � f1; : : : ; ng, the intersection FI WD \i2IFi is a face of Pˆ. As in [2], we
call the FI , for all I � f1; : : : ; ng, the standard parabolic faces.

Many of the properties of Proposition 1.1 hold also for the standard parabolic
faces.

Proposition 2.1 Let I � f1; 2; : : : ; ng. Then:

1. The sum of two roots in FI is never a root.
2. FI \ˆ is an interval in the root poset, i.e., there exists �I 2 ˆC such that

FI \ˆ D Œ�I ; ��:

3. The dimension of FI equals the cardinality of the set fk j ck.�I/ ¤ ck.�/g.
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4. The barycenter of FI is in the cone generated by M!i, i 2 I.
5. Two standard parabolic faces are never in the same W-orbit.

Differently from the case of the coordinate faces, we have that FI D FJ does not
imply I D J. In the characterization of those subsets J � f1; 2; : : : ; ng such that FJ

equals a prescribed FI , the extended Dynkin diagram again comes out.
We let O… WD … [ f˛0g and …I WD f˛i j i 2 Ig for each I � Œn�, and we denote

by . O… n…I/0 the connected component of ˛0 in the Dynkin graph of O… n…I . We
define the closure I and the border @I of I by

• I WD fk j ˛k 62 . O… n…I/˛0g.
• @I WD fk j ˛k … . O… n…I/˛0 ; and ˛k is adjacent to . O… n…I/˛0g.
Clearly @I � I � I. The subsets J such that FJ equals a prescribed FI form an
interval in the Boolean lattice whose top and bottom elements are, respectively, the
closure and the border of I; furthermore, the first gives the dimension of FI , while
the second gives its stabilizer.

Theorem 2.2 Let I � f1; 2; : : : ; ng. Then:

1. FJ D FI if and only if @I � J � I.
2. The dimension of FI is equal to n � jIj (the cardinality of I).
3. The stabilizer of FI in W is W…n…@I , the parabolic subgroup of W generated by

the reflections through the roots not in …@I .

As a consequence of Theorem 2.2, we have the following result.

Corollary 2.3 There is an inclusion preserving bijection � between the standard
parabolic faces and the connected subdiagrams of the extended Dynkin diagram
containing ˛0; the map � sends FI to . O…n…I/˛0 ,and the dimension of FI equals the
number of vertices of �.FI/� 1.

3 Global Properties of the Root Polytope Pˆ

The standard parabolic faces are the unique faces up to the action of the Weyl group.

Theorem 3.1 The standard parabolic faces form a complete set of representatives
of the orbits of the action of the Weyl group W on the set of faces (of all dimensions).

Thanks to Theorem 3.1 and the results in the previous section, we obtain some
global properties of the root polytope Pˆ. We collect them in the following result.

Corollary 3.2

1. The W-orbits are parametrized by the connected subdiagrams of the extended
Dynkin diagram which contain the affine simple root ˛0.
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2. The half-space representation of the root polytope is the following:

Pˆ D fx j .w M!i; x/ � ci.�/g

where i varies over all the integer in f1; : : : ; ng such that O… n f˛ig is connected,
and w varies over W˛i (the minimal coset representatives of the parabolic sub-
group Wˆnf˛ig). Moreover, the above one is the minimal set of linear inequalities
that defines Pˆ as an intersection of half-spaces.

3. The f -polynomial of the root polytope is:

X

�

ŒW W W…n…@.…n�/�t
j�j

where the sum is over � � … such that � [ f˛0g is connected.

The first assertion of Corollary 3.2 could also be obtained as a consequence of
some results by Vinberg (see [6]).

Remark 3.3

1. Each standard parabolic face has a natural algebraic interpretation. Let g be
a complex simple Lie algebra having root system ˆ with respect to a Cartan
subalgebra h. For all ˛ 2 ˆ, let g˛ be the root space corresponding to ˛, and let
b D hCP˛2ˆC g˛ be the standard Borel subalgebra of g corresponding to ˆC.

An Abelian ideal of b is a subspace i � b such that Œb; i� � i and Œi; i� D f0g.
These are of the form i DP˛2� g˛ for � � ˆC such that .ˆCC�/\ˆC � �
and .� C �/\ˆC D ;. Properties (1) and (2) of Proposition 2.1 imply that

X

˛2FI

g˛

is a principal Abelian ideal of b (generated by any non-zero vector in g�I ).
2. Our results have also a direct interesting application in the study of partition

functions. More precisely, for all � in the root lattice, let j� j be the minimum
number of roots needed to express � as a sum of roots. In [5], Chirivì uses the
results on the root polytope Pˆ to prove several properties of the map � 7! j� j;
in particular, the map is piecewise quasi-linear with the cones over the facets of
Pˆ as quasi-linearity domains.

3. Types A and C root polytopes have many further apparently unrelated special
properties. We refer the reader to [3, 4].
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On Product Formulas for Volumes of Flow
Polytopes

Karola Mészáros

Abstract We outline the construction of a family of polytopes Pm;n, indexed by
m 2 Z�0 and n 2 Z�2, whose volumes are given by the product

mCn�2
Y

iDmC1

1

2iC 1

 

mC nC i

2i

!

:

The Chan-Robbins-Yuen polytope CRYn, whose volume is
Qn�2

iD1 Ci, coincides with
P0;n�1. Our construction of the polytopes Pm;n is an application of a systematic
method we develop for expressing volumes of a class of flow polytopes as the
number of certain triangular arrays. The latter is also the constant term of a formal
Laurent series.

1 Flow Polytopes and the Chan-Robbins-Yuen Polytope

This contribution is based on the Mészáros work in [4], where we develop an
encoding of triangulations for a large class of flow polytopes. Using this encoding,
we prove volume formulas for a family of flow polytopes, of which, the Chan-
Robbins-Yuen (CRYn) polytope is a special case. In this section we define flow
polytopes, CRYn, and explain how they relate to each other. We also construct a
family of flow polytopes generalizing CRYn. In the next section we define Kostant
partition functions and connect them to flow polytopes. Finally, in Sect. 3 we give
general results about volumes of flow polytopes and explain how certain conjectures
of Chan, Robins and Yuen about triangular arrays can be seen as conjectures about
volumes of flow polytopes. Note that throughout this note we are working with
normalized volumes, but for brevity we omit the word normalized.

Chan et al. defined CRYn as the convex hull of the set of n 
 n permutation
matrices 	 with 	ij D 0 if j � i C 2 [3], which can be shown to equal the flow
polytope of KnC1. The volume of CRYn is the product of the first n � 2 Catalan
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numbers, which Zeilberger [7] proved analytically. The lack of a combinatorial
understanding of vol.CRYn/ has captivated combinatorialists since the CRYn poly-
tope was introduced. We prove that CRYn is a member of a larger family of polytopes
which have nice product formulas as their volumes. A combinatorial proof for these
volume formulas, including vol.CRYn/, is yet to be found.

Theorem 1.1 ([4, Theorem 8]) The volume of the flow polytope Pm;n D F QGm;n
is

mCn�1
Y

iDmC1

1

2iC 1

 

mC nC iC 1
2i

!

:

The Chan-Robins-Yuen polytope CRYn can be identified with P0;n�2.

Before defining graphs Gm;n, we include a definition of flow polytopes and
explain how to see CRYn as one. Given a loopless graph G on the vertex set ŒnC 1�
with all edges directed from their smallest to their largest vertex, let in.e/ denote
the smallest (initial) vertex of edge e and fin.e/ the biggest (final) vertex of edge e.
Let E.G/ D ffe1; : : : ; elgg be the multiset of edges of G. A flow f of size one on G
is a function f W E ! R�0 from the edge set E of G to the set of nonnegative real
numbers such that

1 D
X

e2E;in.e/D1
f .e/ D

X

e2E;fin.e/DnC1
f .e/;

and for 2 � i � n

X

e2E;fin.e/Di

f .e/ D
X

e2E;in.e/Di

f .e/:

The flow polytope FG associated to the graph G D .V;E/ is the set of all flows f W
E! R�0 of size one on G. The polytope FG is a convex polytope in the Euclidean
space RjEj of all functions f W E! R. Its dimension is dim.FG/ D jEj� jVjC1 [2].
Figure 1 shows the equations of FK5 and explains why this polytope is the same as

Fig. 1 Graph K5 is given with arrows on its edges suggestive of the direction of the flows. The
flow variables on the edges are a; b; c; d; e; f ; g; h; i; j. Vertices 1; 2; 3; 4; 5 are written below the
graph, while the net flow vector .1; 0; 0; 0;�1/ is above the vertices. The equations defining the
flow polytope corresponding to K5 are in the middle. Note that these same equations define CRY4 as
can be seen from the matrix on the left, where we denoted by filled circle entries that are determined
by the variables a; b; c; d; e; f ; g; h; i; j
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CRY4. The arguments can be generalized to show that the the flow polytope FKnC1

coincides with the Chan et al. polytope CRYn [3]. CRYn can also be thought of as
F
eKn�1

, which is how it is in Theorem 1.1, since QG is constructed from G by adding
two extra vertices (one smaller than all the vertices of G, and one bigger) which
connect to all the other vertices.

The graphs Gm;n, m 2 Z�0 from Theorem 1.1, are on the vertex set ŒnC 1� and
their multiset of edges contain all edges of the complete graph, where the edges
incident to 1 have multiplicity mC 1. In Sect. 3 we explain how this theorem can be
proved.

2 Flow Polytopes and Kostant Partition Functions

Flow polytopes are inherently tied to representation theory as the followings explain.
Postnikov (2010, personal communication) and Stanley [6] discovered a remarkable
connection between the volume of the flow polytope and the Kostant partition
function KG. Namely, they proved that given a loopless graph G on the vertex set
ŒnC 1�, the normalized volume vol.FG/ of the flow polytope associated to graph G
is

vol.FG/ D KG.0; d2; : : : ; dn;�
n
X

iD2
di/; (1)

where di D indegG.i/�1 for i 2 f2; : : : ; ng, and KG.v/ denotes the Kostant partition
function, which is the number of ways to write the vector v as a nonnegative linear
combination of the positive type An roots corresponding to the edges of G, without
regard to order. To the edge .i; j/, i < j, of G corresponds the positive type An root
ei � ej, where ei is the ith standard basis vector in R

nC1. It is not hard to see based
on the definitions of flow polytopes and Kostant partition functions that the Ehrhart
polynomial of a flow polytope is a Kostant partition function, however, the result
in (1) is far from obvious.

Along with Postnikov (2010, personal communication) and Stanley [6], Baldoni
and Vergne [1, 2] also studied type An flow polytopes extensively with residue
techniques. Mészáros and Morales [5] worked on flow polytopes of other types
using combinatorial techniques.

We use the above connection between flow polytopes and Kostant partition
functions to evaluate the latter at special vectors. These evaluations are of interest in
representation theory, and the general computation of Kostant partition functions is
#P-hard.

Proposition 2.1 ([4, Corollary 9])

K
AC

n
.mC1;mC2; : : : ;mCn;�nm�

 

nC 1
2

!

/ D
mCn�1
Y

iDmC1

1

2iC 1

 

mC nC iC 1
2i

!

:
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The above proposition was previously proved by Baldoni and Vergne [2, Sect. 3]
using residue techniques.

3 Formulas for Volumes of Flow Polytopes

The main tool for establishing Theorem 1.1 is a systematic subdivision procedure
we explain in [4], the most general consequences of which are the following
(equivalent) results:

Theorem 3.1 ([4, Theorem 5]) The volume vol.F QG/, where G is a graph on the
vertex set Œn C 1�, is equal to the number of triangular arrays .bi;j/i>j, j 2 Œn � 1�,
i 2 fjC 1; : : : ; ng, with the constraints

n
X

jDiC1
bj;i � indeg.iC 1/C

i�1
X

kD1
bik; for all i 2 Œn � 1�

and constraints bj;i D 0 if .iC 1; jC 1/ 62 E.G/.

Theorem 3.2 ([4, Theorem 6]) The volume vol.F QG/, where G is a graph on the
vertex set ŒnC 1�, is equal to the constant term of

n
Y

iD2
.1 � xi/

�1 Y

.i;nC1/2E.G/ W 2�i

.1 � xi/
�1

n
Y

iD2
x�indeg.i/

i

Y

.i;j/2E.G/ W j�n

�

1 � xi

xj

��1
:

In [4] we use Theorems 3.1 and 3.2 in several instances. Namely, we show that
several conjectures of Chan, Robins and Yuen, stated purely in the form of triangular
arrays, refer to volumes of polytopes or sums of volumes of polytopes. For example,
Chan et al. [3, Conjecture 2] describe a set of triangular arrays whose cardinality is
N.n; k/ 
Qn�1

iD1 Ci: Using this description and the above theorems we construct the
polytopes Pn;k

i ; i 2 Cn;k in [4, Sect. 5] satisfying the following:

Theorem 3.3 ([4, Theorem 13]) Fix n; k 2 Z such that 1 � k � n. Then, the sum
of the volumes of the polytopes Pn;k

i ; i 2 Cn;k, is equal to

N.n; k/ 

n�1
Y

iD1
Ci:

Just as Theorem 3.3 corresponds to [3, Conjecture 2], so does Theorem 1.1 to [3,
Conjecture 3]. For a detailed explanation see [4].
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Theorem 3.1 can also be used to construct polytopes with combinatorial volumes.
As an illustration of this in [4, Sect. 6] we construct polytopes whose volumes equal
the number of r-ary trees on n internal nodes, 1

.r�1/nC1
�rn

n

�

.
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On the Topology of the Cambrian Semilattices

Myrto Kallipoliti and Henri Mühle

Abstract For an arbitrary Coxeter group W and a Coxeter element � 2 W, Reading
and Speyer defined the Cambrian semilattice C� as the sub-semilattice of the weak
order on W induced by so-called � -sortable elements. In this note, we define an
edge-labeling of C� , and show that this is an EL-labeling for every closed interval
of C� . In addition, we use our labeling to show that every finite open interval in
a Cambrian semilattice is either contractible or spherical, and we characterize the
spherical intervals, generalizing a result by Reading.

1 Introduction

For every Coxeter group W, Reading and Speyer defined a family of subsemilattices
of the weak order semilattice of W, indexed by the Coxeter elements of W, the
so-called Cambrian semilattice of W, and realized these semilattices in terms of
sortable elements, see [4].

This note investigates the topological properties of the order complex of the
proper part of closed intervals in a Cambrian semilattice. Recall that a closed interval
Œx; y� in a lattice is called nuclear if y is the join of atoms of Œx; y�. Our main results
are the following.

Theorem 1.1 Every closed interval in C� is EL-shellable for every (possibly
infinite) Coxeter group W and every Coxeter element � 2 W.

Theorem 1.2 Let W be a (possibly infinite) Coxeter group and let � 2 W be a
Coxeter element. Every finite open interval in the Cambrian semilattice C� is either
contractible or spherical. Furthermore, a finite open interval .x; y/� is spherical if
and only if the corresponding closed interval Œx; y�� is nuclear.

We remark that for finite crystallographic Coxeter groups Theorem 1.1 is implied
by Ingalls and Thomas [1, Theorem 4.17] and on the other hand, for finite
Coxeter groups, Theorem 1.2 is implied by concatenating [3, Theorem 1.1] and
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[3, Propositions 5.6 and 5.7]. However the methods used in [1, 3] cannot be applied
to infinite Coxeter groups. On the contrary, our proofs are obtained completely
within the framework of Coxeter-sortable elements, and thus have the advantage
that they are uniform and direct. For a more detailed exposition of our results, we
refer to [2].

2 Coxeter-Sortable Elements

Let � D s1s2 � � � sn 2 W be a Coxeter element, and define the half-infinite word

�1 D s1s2 � � � snjs1s2 � � � snj � � � :

The vertical bars in the representation of �1 are “dividers”, which have no influence
on the structure of the word, but shall serve for a better readability. Clearly, every
reduced word for w 2 W can be considered as a subword of �1. Among all
reduced words for w, there is a unique reduced word, which is lexicographically
first considered as a subword of �1. This reduced word is called the � -sorting word
of w.

Example 2.1 Consider the Coxeter group W D S5, generated by S D
fs1; s2; s3; s4g, where si corresponds to the transposition .i; i C 1/ for all i 2
f1; 2; 3; 4g and let � D s1s2s3s4. Clearly, s1 and s4 commute. Hence, w1 D s1s2js1s4
and w2 D s1s2s4js1 are reduced words for the same element w 2 W. Considering w1
and w2 as subwords of �1, we find that w2 is a lexicographically smaller subword
of �1 than w1. There are six other reduced words for w, namely

w3 D s1s4js2js1; w4 D s4js1s2js1; w5 D s4js2js1s2;
w6 D s2s4js1s2; w7 D s2js1s4js2; w8 D s2js1s2s4:

It is easy to see that among these w2 is the lexicographically first subword of �1,
and hence w2 is the � -sorting word of w.

In the following, we consider only � -sorting words, and we write

w D s
ı1;1
1 s

ı1;2
2 � � � sı1;nn j sı2;11 s

ı2;2
2 � � � sı2;nn j � � � j sıl;1

1 s
ıl;2
2 � � � sıl;n

n ; (1)

where ıi;j 2 f0; 1g for 1 � i � l and 1 � j � n. For each i 2 f1; 2; : : : ; lg, we say
that

bi D fsj j ıi;j D 1g � S

is the ith block of w. Then, w is called � -sortable if and only if b1  b2  � � �  bl,
and we denote the set of � -sortable elements of W by C� . The � -Cambrian
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semilattice of W is then the semilattice C� D .C� ;�� /, where �� denotes the
restriction of the weak order on W to C� .

Example 2.2 Let us continue the previous example. We have seen that w2 D
s1s2s4js1 is a � -sorting word in W, and b1 D fs1; s2; s4g, and b2 D fs1g. Since
b2 � b1, we see that w2 is indeed � -sortable.

3 EL-Shellability and Topology of the Closed Intervals in C�

Now we define an edge-labeling of C� and sketch the proofs of Theorems 1.1
and 1.2.

3.1 El-Shellability

Define for every w 2 W the set of positions of the � -sorting word of w as

˛�.w/ D
˚

.i � 1/ � nC j j ıi;j D 1
� � N;

where the ıi;j’s are the exponents from (1). We remark that the set of positions of w
depends not only on the choice of the Coxeter element � , but also on the choice of
the reduced word of � .

Example 3.1 Let W D S4, � D s1s2s3 and consider u D s1s2s3js2, and v D
s2s3js2js1. Then, ˛� .u/ D f1; 2; 3; 5g, and ˛� .v/ D f2; 3; 5; 7g, where u 2 C� , while
v … C� .

Denote by E.C� / the set of covering relations of C� , and define an edge-labeling
of C� by

�� W E.C� /! N; .u; v/ 7! min
˚

i j i 2 ˛�.v/ X ˛�.u/
�

: (2)

Figure 1 shows the Hasse diagram of a part of a Cambrian semilattice associated
with the affine Coxeter group QA2, together with the labels defined by the map �� .

We prove Theorem 1.1 by showing that the map �� defined in (2) is an EL-
labeling for every closed interval in C� . For this, we need the following lemma,
which uses many of the deep results on Cambrian semilattices developed in [4].

Lemma 3.2 Let u; v 2 C� with u �� v and let s be initial in � . If s 6�� u and
s �� v, then the join s _� u covers u in C� .

Now the proof of Theorem 1.1 is straightforward by using induction on rank and
length, as well as Lemma 3.2.
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Fig. 1 The first seven ranks of an QA2-Cambrian semilattice, with the edge-labeling from (2)

3.2 Topology

We prove the following theorem by counting the falling maximal chains with respect
to the labeling defined in (2).

Theorem 3.3 Let u; v 2 C� with u �� v and let k denote the number of atoms of the
interval Œu; v�� . Then, �.u; v/ D .�1/k if and only if Œu; v�� is nuclear. Otherwise,
�.u; v/ D 0.

Again, the proof is straightforward using induction on rank and length and the
following technical lemma.

Lemma 3.4 Let u; v 2 C� with u �� v and let s be initial in � . If s 6�� u and
s �� v, then the following are equivalent.

1. The interval Œu; v�� is nuclear.
2. There exists an element v0 2 Œu; v�� satisfying s 6�� v0 É� v such that the interval
Œu; v0�� is nuclear.
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4 Example

Consider the affine Coxeter group QA2, which is generated by the set fs1; s2; s3g
satisfying .s1s2/3 D .s1s3/3 D .s2s3/3 D ", as well as s21 D s22 D s23 D " and
let � D s1s2s3. Figure 1 shows the sub-semilattice of the Cambrian semilattice C�
consisting of all � -sortable elements of QA2 of length � 7.

Acknowledgements The authors would like to thank Nathan Reading for many helpful
discussions.
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cd-Index for CW-Posets

Satoshi Murai

Abstract The flag f -vector is a basic combinatorial invariant of graded posets that
counts the number of chains. For an Eulerian poset, its flag f -vector is efficiently
encoded by a certain non-commutative polynomial, called the cd-index. In this note,
we give an extensions of the cd-index which can be defined for all CW-posets that
are not necessary Eulerian. The details for this work are provided in our paper
(Murai and Yanagawa, Squarefree P-modules and the cd-index, Adv. Math. 265,
241–279 (2014).).

First of all, we quickly recall the definition of the cd-index. We refer the readers to
[5] for basics on the theory of partially ordered sets. Let P be a finite graded poset
having rank n with the minimal element O0. For a subset S � Œn� D f1; 2; : : : ; ng, an
S-chain of P is a chain O0 < �1 < � � � < �k in P with frank�1; : : : ; rank�kg D S. Let
fS.P/ be the number of S-chains of P. Define hS.P/ by

hS.P/ D
X

T�S

.�1/jSj�jTjfT.P/

for all S � Œn�. The vectors . fS W S � Œn�/ and .hS.P/ W S � Œn�/ are called the
flag f -vector and the flag h-vector of P, respectively. The flag h-vector of P is often
expressed as a homogeneous non-commutative polynomial in variables a and b,
called the ab-index of P, defined by

‰P.a;b/ D
X

S�Œn�
hS.P/wS 2 Zha;bi;

where wS D w1w2 � � �wn is defined by wi D a if i 62 S and wi D b if i 2 S and where
Zha;bi is the non-commutative polynomial ring with variables a and b over Z.
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A finite poset P with the minimal element O0 and the maximal element O1 is
called Eulerian if �P.�; �/ D .�1/rank ��rank � for all � < � in P, where �P.�;�/
is the Möbius function of P. It was proved by Fine that if P is Eulerian, then
‰P�fO1g.a;b/ can be written as a polynomial in a C b and ab C ba, that is, there
is a polynomial ˆP.c;d/ 2 Zhc;di such that ‰P�fO1g.a;b/ D ˆP.aC b; abC ba/.
See [5, Theorem 3.17.1]. The polynomial ˆP.c;d/ is called the cd-index of P. The
cd-index has a nice property if P has a nice structure. Indeed, it was shown in [2]
that the cd-index of Gorenstein* posets (this class contains face posets of regular
CW-decompositions of spheres if we ignore O1) is non-negative. In this note, we give
a generalization of the cd-index.

We regard polynomials in Zhc;di as polynomials in Zha;bi by the identifications
c D aC b and d D abC ba. For a poset P and �; � 2 P, let Œ�; �� D f� 2 P W � �
� � �g and .�; �/ D f� 2 P W � < � < �g. We say that P is Cohen–Macaulay if the
order complex

�.P/ D ˚f�1; : : : ; �kg � P W �1 < � � � < �k
�

is a Cohen–Macaulay simplicial complex [4, Chap. II]. The following is the general
version of the main result.

Theorem 1 Let P be a finite graded poset with the minimal element O0. If ŒO0; �� is
Eulerian for all � 2 P, then there are unique cd-polynomialsˆd; ˆa; ˆb such that

‰P.a;b/ D ˆd � dCˆa � aCˆb � b:

Moreover, if P is Cohen–Macaulay then all the coefficients of ˆd; ˆa; ˆb are non-
negative.

The above theorem gives a generalization of the cd-index of Eulerian posets
since if P is an Eulerian poset minus O1 then it clearly satisfies the assumption of
the theorem and ‰P.a;b/ D ‰P.b; a/ (see [5, Corollary 3.16.6]), which imply that
ˆa D ˆb and ˆd � dCˆa � c is the ordinal cd-index.

A finite poset P with the minimal element O0 is said to be a CW-poset if the order
complex of .O0; �/ is homeomorphic to a sphere for all � 2 P � fO0g. The name of
CW-posets comes from the result of Björner [1] who proved that a poset P is a CW-
poset if and only if it is the face poset of a regular CW-complex. It is straightforward
that a CW-poset satisfies the assumption of Theorem 1. The following special case
of Theorem 1 gives a generalization of the cd-index for regular CW-complexes.

Corollary 2 Let P be a CW-poset. There are unique cd-polynomials ˆd; ˆa; ˆb

such that

‰P.a;b/ D ˆd � dCˆa � aCˆb � b: (1)

Moreover, if P is Cohen–Macaulay then all the coefficients of ˆd; ˆa; ˆb are non-
negative.
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The above corollary gives an efficient way to express flag f -vectors of CW-
posets. Indeed, the existence of the expression (1) describes all linear equations
satisfied by the flag f -vectors of CW-posets. See [3, Proposition 5.2]. Also, the
non-negativity statement for Cohen–Macaulay CW-posets implies the following
consequence on ordinal h-vectors. Recall that if P is a CW-poset having rank n,
then the order complex of P � fO0g is the barycentric subdivision of a regular
CW-complex corresponding to P, and its h-vector .h0; h1; : : : ; hn/ is given by
hi DPS�Œn�;jSjDi hS.P/.

Corollary 3 If P is a Cohen–Macaulay CW-poset then the h-vector of the order
complex of P � fO0g is unimodal. In other words, the h-vector of the barycentric
subdivision of a Cohen–Macaulay finite regular CW-complex is unimodal.

In the rest of this note, we prove the existence part of Theorem 1 and Corollary 3.
A full proof of Theorem 1 can be found in [3].

Proof of the Existence Part of Theorem 1

Suppose rankP D n. We first claim that there are polynomials�;‡ 2 Zhc;di such
that

‰P.a;b/ D �C ‡ � b: (2)

For � 2 P, let @� D ŒO0; �� � f�g. It follows from [5, p. 317, Eq. (3.81)] that

‰P.a;b/ D .a � b/n C
X

�2P�fO0g
‰@� � b.a � b/n�rank � :

Since ‰@� 2 Zhc;di for any � 2 P by the assumption, to prove the existence of (2),
it suffices to prove that, for any ˆ;‰ 2 Zhc;di, there areˆ0; ‰0 2 Zhc;di such that
.ˆC‰b/.a � b/ D ˆ0 C‰0b. Then, the next computation proves the claim.

.ˆC‰b/.a � b/ D ˆ � .a � b/C‰ � .ba � b2/ D ˆ � .c � 2b/C‰ � .d � cb/:

Consider the expression (2). Write � D �c � cC�d � d. Then we have

‰P.a;b/ D �C ‡ � b D �d � dC�c � aC .�c C‡/ � b;

which gives the desired formula. �
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Proof of Corollary 3

Let‰P.a;b/ D ˆd �dCˆa �aCˆb �b be the expression (1). By substituting a D 1,
one obtains

‰P.1;b/ D ˆd.1C b; 2b/ � 2bCˆa.1C b; 2b/Cˆb.1C b; 2b/ � b: (3)

On the other hand, by the definition of the h-vector, one has

‰P.1;b/ D h0 C h1bC � � � C hnbn: (4)

For any homogeneous cd-polynomial‡.c;d/ 2 Zhc;di of degree k, where deg c D
1 and deg d D 2, whose coefficients are non-negative,‡.1C b; 2b/ can be written
as

‡.1C b; 2b/ D ˛0.1C b/k C ˛1b.1C b/k�2 C ˛2b2.1C b/k�4 C � � �

where ˛0; ˛1; ˛2; : : : are non-negative integers. Thus if we write

‡.1C b; 2b/ D �0 C �1bC � � � C �kbk;

then .�0; �1; : : : ; �k/ satisfies �0 � � � � � � k
2
� � � � � �k when k is even and �0 �

� � � � � k�1
2
D � kC1

2
� � � � � �k when k is odd. The desired statement follows by

applying these facts to (3) and (4). �
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Bipartite Rigidity

Eran Nevo

Abstract We develop a bipartite rigidity theory for bipartite graphs parallel to the
classical rigidity theory for general graphs. This theory coincides with the study
of Babson–Novik’s balanced shifting restricted to graphs. We establish bipartite
analogs of the cone, contraction, deletion, and gluing lemmas, and apply these
results to derive a bipartite analog of the rigidity criterion for planar graphs. Our
result asserts that a bipartite graph is planar only if its balanced shifting does not
contain K3;3. We also discuss potential applications of this theory to Jockusch’s
cubical lower bound conjecture and to upper bound conjectures for embedded
simplicial complexes.

Motivating Results and Conjectures First we recall an important rigidity criterion
for planarity of graphs. An embedding of a graph G into R

d is a map assigning a
vector �.v/ 2 R

d to every vertex v. The embedding is stress-free if there is no way
to assign weights wuv to edges, so that not all weights are equal to zero and every
vertex is “in equilibrium:”

X

v W uv2E.G/

wuv.�.u/� �.v// D 0 for all u: (1)

The embedding is infinitesimally rigid if every assignment of velocity vectors
V.u/ 2 R

d to vertices of G that satisfies

hV.v/� V.u/; �.v/� �.u/i D 0 (2)

for every uv 2 E.G/; must satisfy relation (2) for every pair of vertices.1

Author Eran Nevo reflecting a joint work in progress with Gil Kalai and Isabella Novik.
1Relation (2) asserts that the velocities respect (infinitesimally) the distance along an embedded
edge. If these relations apply to all pairs of vertices the velocities necessarily come from a rigid
motion of the entire space.
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Proposition 1 (Gluck, Dehn, Alexandrov, Cauchy) A generic embedding of a
simple planar graph in R

3 is stress free. A generic embedding of a maximal simple
planar graph in R

3 is also infinitesimally rigid.

This result of Gluck [10] is closely related to Cauchy’s rigidity theorem for
polytopes of dimension three, and is easily derived from its infinitesimal counterpart
by Dehn and Alexandrov. It implies the following, which also follows from Euler’s
formula.

Proposition 2 (Euler, Descartes) A simple planar graph with n � 3 vertices has
at most 3n� 6 edges.

In higher dimensions, the following Euler-type upper bound inequality is conjec-
tured. Let Sk denote the k-sphere.

Conjecture 1 For any nonnegative integer d, there is a constant c.d/ such that an
arbitrary d-dimensional simplicial complex K that embeds in S

2d satisfies fd.K/ �
c.d/fd�1.K/.

This conjecture with the sharp constant c.d/ D d C 2 was raised by Kalai,
Sarkaria, and perhaps others.

Algebraic (symmetric) shifting is an operation introduced by Kalai [14, 15] that
replaces a simplicial complex K with a “shifted” simplicial complex Ks. For graphs,
symmetric shifting is closely related to infinitesimal rigidity. The shifting operation
preserves various properties of the complex, and, in particular, the numbers of
faces of every dimension. In dimension one, shifted graphs are known as threshold
graphs.2

The following result (see [15, 18]) is closely related to Gluck’s theorem, and
clearly implies Euler’s inequality of Proposition 2:

Proposition 3 If G is a planar graph then the symmetric algebraic shifting of G,
Gs, does not contain K5 as a subgraph. Equivalently, Gs does not contain the edge
f4; 5g. More generally, the same conclusion holds for any graph G that does not
contain K5 as a minor.

Similarly, the following conjecture implies Conjecture 1 with c.d/ D dC 2 [15]:

Conjecture 2 (Kalai, Sarkaria) If K is a d-dimensional complex embeddable in S
2d,

then Ks does not contain the Flores complex
�
Œ2dC3�
�dC1

�

.

One drawback of Proposition 3 is that Gs may contain K3;3 and hence the
planarity property is lost under shifting. This will be fixed using balanced shifting!

Preliminaries on Bipartite Graphs and Balanced Shifting A d-dimensional
simplicial complex is called balanced if its vertices are colored with d C 1 colors

2In higher dimensions the class of shifted complexes is much reacher than the class of threshold
complexes.
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such that any edge is bicolored; in particular the d C 1 colors for the vertices of
every d-simplex are all different. Thus a balanced graph is simply a bipartite graph.

Babson and Novik [4] defined a notion of balanced shifting, and associated with
every balanced simplicial complex K a balanced shifted complex Kb. The following
properties of Kb are important to us: it is a balanced complex, with the same face
numbers as K, and is balanced shifted, namely, w.r.t the fixed total order on the
vertices of each color, if i 2 F 2 Kb and j < i are vertices of the same color then
F [ j n i 2 Kb.

Let G D .V D A ] B;E/ be a bipartite graph. We usually identify A and B with
the ordered sets f1 < 2 < : : : < ng WD Œn� and f10 < 20 < : : : < m0g WD Œm0�,
respectively, and denote the edge connecting vertices i and j0 by ij0. Given a pair
of two fixed integers k � n and l � m, we say that a total order on V D A ] B
is .k; l/-admissible if (i) it extends the natural orders on A and B, and (ii) the set
Œk� [ Œl0� forms an initial segment of V w.r.t. <. Instead of recalling the definition
of Gb D Gb;< (when computed w.r.t. a .k; l/-admissible order <), we will phrase
properties of Gb in terms of .k; l/-rigidity, introduced below.

For G bipartite and u; v two vertices from the same part, the contraction of u with
v is the graph G0 on the vertex set V � fug obtained from G by identifying u with
v and deleting the extra copy from each double edge that was created. Observe that
G0 is also bipartite.

.k; l/-Rigidity The goal here is to develop a rigidity theory for bipartite graphs,
paralleling the one for general graphs [1, 2, 22, 24]. We recall from [15], see also
[16, 17], that a (non-bipartite) graph G on the vertex set Œn� is generically d-stress
free if and only if the pair .dC1/.dC2/ is not an edge of Gs, and that G is generically
d-rigid if and only if the pair dn is an edge of Gs. Motivated by these results, we
make the following definition:

Definition 1 Let G D .A ] B;E/ be a bipartite graph, let k � n and l � m be
two fixed integers, and let < be a .k; l/-admissible order on A ] B. We call G
(generically) .k; l/-stress free if the pair .k C 1/.lC 1/0 is not an edge of Gb;<. We
say that G is (generically) .k; l/-rigid if all pairs ij0 2 A
B such that i � k or j0 � l0
are edges of Gb;< .

We now turn to two equivalent formulations, paralleling ones from classical
rigidity.

Definition 2 Let G D .A]B;E/ be a bipartite graph and let‚ 2 GLn.R/
GLm.R/

be a block-generic matrix. Let R.k;l/.G/ be an jEj 
 .ljAjC kjBj/matrix whose rows
are labeled by the edges of G, whose columns occur in blocks of size l for each
vertex in A and blocks of size k for each vertex in B, and whose block corresponding
to v 2 V and ab0 2 E is given by

8

<

:

.�i0b0 W 1 � i � l/ if v D a;

.�ia W 1 � i � k/ if v D b;
0 if v … fa; bg:

The matrix R.k;l/.G/ is called the bipartite .k; l/-rigidity matrix of G.
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Proposition 4 Let G D .A ] B;E/ be a bipartite graph. Then G is .k; l/-stress free
if and only if the rows of R.k;l/.G/ are linearly independent, and G is .k; l/-rigid if
and only if rank.R.k;l/.G// D ljAj C kjBj � kl: The later happens if and only if the
row spans satisfy row.R.k;l/.G// D row.R.k;l/.KA;B//.

In the case of k D l, G is .k; k/-stress free if and only if it is k-acyclic in the sense
of [12]. The case k D 1 can be traced to Whiteley [23].

The notions of .k; l/-stress freeness and .k; l/-rigidity have simple geometric
interpretations analogous to Eqs. (1) and (2). To derive such interpretations, define a
.k; l/-embedding of a bipartite graph G D .A]B;E/ to be a map � W A]B! R

k
Rl

that assigns to every a 2 A a vector �.a/ 2 R
k 
 .0/, and to every b 2 B a

vector �.b/ 2 .0/ 
 R
l. For instance, letting �.a/ D .�ia W i 2 Œk�/ 
 .0/ and

�.b/ D .0/ 
 .�j0b W j 2 Œl�/ defines a generic .k; l/-embedding.

Remark 1 A bipartite graph G D .A ] B;E/ is .k; l/-stress free if and only if for a
generic .k; l/-embedding �, there is no way to assign weights wab to edges so that
not all weights are equal to zero and every vertex u satisfies:

X

v W uv2E

wuv�.v/ D 0:

A bipartite graph G is .k; l/-rigid if and only if for a generic .k; l/-embedding �,
every assignment of velocity vectors V.a/ 2 .0/
Rl for a 2 A and V.b/ 2 R

k
 .0/
for b 2 B that satisfies

hV.a/; �.b/i C hV.a/; �.b/i D 0 (3)

for all ab 2 E, must satisfy Eq. (3) for all ab 2 A 
 B.

We now establish bipartite analogs of the deletion, contraction, gluing and cone
lemmas in classical rigidity.

Lemma 1 (Deletion Lemma) Let G be a bipartite graph, v a vertex of G of degree
d, and G0 D G � v the graph obtained from G by deleting v.

1. If G0 is .k; l/-stress free and d �
	

l if v 2 A
k if v 2 B

, then G is .k; l/-stress free.

2. If G0 is .k; l/–rigid and d �
	

l if v 2 A
k if v 2 B

, then G is .k; l/-rigid.

Lemma 2 (Contraction Lemma) Let G D .V;E/ be a bipartite graph, v and w
two vertices of G that belong to the same part, C the set of common neighbors of
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v and w, and G0 D .V � fvg;E0/ the graph obtained from G by contracting v with
w.

1. If G0 is .k; l/-stress free and jCj �
	

l if v 2 A
k if v 2 B

, then G is .k; l/-stress free.

2. If G0 is .k; l/-rigid and jCj �
	

l if v 2 A
k if v 2 B

, then G is .k; l/-rigid.

Lemma 3 (Gluing Lemma) Let G D .A ] B;E/ be a bipartite graph written as
the union G D G1 [ G2 of two bipartite graphs G1 D .A1 ] B1;E1/ and G2 D
.A2 ] B2;E2/.

1. If G1 and G2 are .k; l/-rigid, jA1\A2j � k, and jB1\B2j � l, then G is .k; l/-rigid.
2. If G1 and G2 are .k; l/-stress free, and G1\G2 is .k; l/-rigid, then G is .k; l/-stress

free.

Definition 3 Let G D .A]B;E/ be a bipartite graph, where A D Œn� and B D Œm0�.
Let A� WD A [ f0g and B� WD B [ f00g. The left-side cone over G, CLG, is the
bipartite graph with the vertex set A� ] B and the edge set E [ f0b0 W b0 2 Bg. The
right-side cone over G, CRG, is the bipartite graph with the vertex set A ] B� and
the edge set E [ fa00 W a 2 Ag.

To compute the balanced shifting of CLG, we extend our order < on V to an
order<0 on A�[B by requiring that 0 is the smallest vertex. Similarly, to work with
CRG, we extend < to an order <00 on A [ B� by requiring that 00 as the smallest
vertex. Note that if < is .k; l/-admissible, then <0 is .kC 1; l/-admissible and <00 is
.k; lC 1/-admissible.

Lemma 4 (Cone Lemma) The operations of coning and shifting commute, that is,

.CLG/b;<0 D CL.Gb;</ and .CRG/b;<00 D CR.Gb;</:

Thus, G is .k; l/-rigid if and only if CLG is .kC1; l/-rigid (equivalently, if and only if
CRG is .k; lC1/-rigid), and G is .k; l/-stress free if and only if CLG is .kC1; l/-stress
free (equivalently, if and only if CRG is .k; lC 1/-stress free).

Bipartite Planar Graphs The following is a bipartite analogue of Proposition 3.

Theorem 1 If G is a planar bipartite graph and< is a .2; 2/-admissible order, then
K3;3 is not a subgraph of Gb;<. Equivalently, planar bipartite graphs are .2; 2/-stress
free.

In particular, the inequality E � 2V � 4 follows. Note that for G planar, Gb is also
planar, unlike the case of Gs; see Proposition 7 for a higher dimensional analog.

Our proof of Theorem 1 can be considered as a bipartite analog of Whiteley’s
proof [24] of Gluck’s result. It relies on the Contraction Lemma as well as on some
combinatorial properties of bipartite planar graphs.

Theorem 1 along with the “minor”-part of Proposition 3 lead to the following
problem: find an interesting notion of a minor for bipartite graphs, denoted <b, for
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which K3;3 <b G would imply that G is not planar, and K3;3 � Gb would imply
that K3;3 <b G. In a recent work [7] we suggest a definition for <b which yields an
analog of Wagner’s theorem [21]; specifically, we prove:

if G is bipartite then G is planar if and only if K3;3 –b G.

Graphs of Cubical Polytopes We now discuss potential applications of bipartite
rigidity, á la Kalai [13], to lower bound conjectures on face numbers of cell
complexes with a bipartite 1-skeleton. Recall that by a result of Blind and Blind
[5], if P is a cubical d-polytope with d > 2, then the graph of P, G.P/, is bipartite.
Moreover, if d > 2 is even, then the two sides of G.P/ have the same number of
vertices. (These results were generalized to arbitrary cubical spheres by Babson and
Chan [3].) We are interested in the following conjecture of Jockusch [11].

Conjecture 3 (Jockusch) If K is a cubical polytope of dimension d � 3 with f0.K/
vertices and f1.K/ edges, then f1.K/ � dC1

2
f0.K/� 2d�1.

Note that if G is .2; d�1/-rigid, and has the same number of vertices on each side,
then G has at least dC1

2
f0.G/� 2.d� 1/ edges. The graph G.P/ of a stacked cubical

polytope P is bipartite, has the same number of vertices on each side, but has only
dC1
2

f0.P/�2d�1 edges. (Recall that a stacked cubical polytope is a polytope obtained
starting with a cube and repeatedly gluing (combinatorial) cubes onto facets.)

Proposition 5 If P is a stacked cubical d-polytope, d � 3, then

(i) It is possible to add to G.P/ exactly 2d�1 � 2.d � 1/ edges, all in one facet of
P, such that the resulting graph is .2; d � 1/-rigid and stress free.

(ii) It is possible to add to G.P/ exactly 2d�1 � d edges, all in one facet of P, such
that the resulting graph is .1; d/-rigid and stress free.

This yields the following approach to Jockusch’s conjecture; specifically, a
positive answer to the following problem will imply Conjecture 3 for all even d > 2:

Problem 1 Let G be the graph of a cubical d-polytope, where d > 2 is even. Is it
possible to add 2d�1 � 2.d � 1/ edges to G to obtain a .2; d � 1/-rigid graph? Is it
possible to add 2d�1 � d edges to G to obtain a .1; d/-rigid graph?

A similar reasoning shows that a positive answer to the following problem will
imply Conjecture 3 for an arbitrary d:

Problem 2 Let G be the graph of a cubical d-polytope, where d > 2. Is it possible
to add 2d�1 � b dC1

2
cd dC1

2
e edges to G to obtain a .b dC1

2
c; d dC1

2
/e-rigid graph?

The proof of Proposition 5(i) uses the Contraction, Gluing and Cone lemmas.
The proof of part (ii) uses a Laman-type condition proved by Whiteley [23].

Balanced Complexes and Euler-Type Upper Bounds We posit the following
bipartite analog of Conjecture 2:
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Conjecture 4 Let K be a d-dimensional balanced complex that is topologically
embeddable in S

2d, and let < be a .2; 2; : : : ; 2/-admissible order. Then Kb;< does
not contain the van Kampen complex Œ3��.dC1/, i.e., the .dC1/-fold join of 3 points.

In particular, fd.K/ � 2fd�1.K/.

As with the Kalai–Sarkaria conjecture, Conjecture 4 is known so far only for
d D 0; 1: the case d D 0 is obvious and the case d D 1 is Theorem 1. Using a
random coloring and basic properties of balanced shifting, we prove that:

Proposition 6 Conjecture 4 implies Conjecture 1 with c.d/ D 2.dC1/dC2

.dC1/Š .

We now turn to rephrasing Conjecture 4 in terms of embeddability of Kb, a
formulation that is not available for Conjecture 2: indeed, while shifted graphs
not containing K5 may be nonplanar (for instance, Gs where G is the graph of the
octahedron), balanced-shifted bipartite graphs not containing K3;3 are necessarily
planar. This statement extends to higher dimensions, as the following proposition
shows.

Proposition 7 Let K be a d-dimensional balanced-shifted simplicial complex not
containing Œ3��.dC1/ as a subcomplex. Then K is PL embeddable in S

2d.

Combining Proposition 7 with the well-known fact that the complex Œ3��.dC1/ is
not PL embeddable in S

2d [8, 20], we obtain that Conjecture 4 is equivalent to the
following:

Conjecture 5 If K is a d-dimensional balanced complex that is topologically
embeddable in S

2d, and < is a .2; : : : ; 2/-admissible order, then Kb;< is PL
embeddable in S

2d.

Let o.K/ denote the van Kampen obstruction to PL embeddability of a d-
dimensional complex K in S

2d, computed with coefficients in Z. (One may also
use other coefficients, e.g., Z=2Z). Recall that if K is PL embeddable in S

2d, then
o.K/ D 0 (and the converse also holds provided d ¤ 2), see [9, 19, 25]. As
o.Œ3��.dC1// ¤ 0 (even with Z2 coefficients) and as, according to [6], for d � 3

the topological embeddability of a d-dimensional complex K in S
2d is equivalent to

the PL embeddability, we obtain that for d � 3, the following conjecture implies
Conjecture 5, even when considered with Z2 coefficients.

Conjecture 6 Let K be a d-dimensional balanced complex. If o.K/ D 0, then
o.Kb/ D 0.

Acknowledgements Research was partially supported by Marie Curie grant IRG-270923 and ISF
grant 805/11.
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Balanced Manifolds and Pseudomanifolds

Isabella Novik

Abstract A simplicial .d � 1/-dimensional complex K is called balanced if the
graph of K (i. e., the 1-dimensional skeleton) is d-colorable. Here we discuss some
recent results as well as several open questions on face numbers of balanced man-
ifolds and pseudomanifolds; we also present constructions of balanced manifolds
(with and without boundary) with few vertices. This work is joint with Steve Klee.

1 Basics of Simplicial Complexes

Let K be a .d � 1/-dimensional simplicial complex. The main object of our study
is the f -vector of K, f .K/ WD . f�1.K/; f0.K/; : : : ; fd�1.K//, where fi D fi.�/
denotes the number of i-dimensional faces of �. We will be mainly concerned
with the f -vectors of simplicial spheres, manifolds, and pseudomanifolds, that
is, simplicial complexes whose geometric realizations form a topological sphere,
manifold, and pseudomanifold, respectively. All terminology that is undefined here
such as Stanley–Reisner rings, Cohen–Macaulay complexes, etc., can be found in
[18].

A .d�1/-dimensional simplicial complex K is called balanced if the graph of K is
d-colorable. (Thus, balanced 1-dimensional complexes are simply bipartite graphs.)
The class of balanced complexes is a fascinating class of objects that arise often
in combinatorics, algebra, and topology: for instance, barycentric subdivisions of
all regular CW complexes are balanced; therefore, every triangulable space has a
balanced triangulation! Coxeter complexes and Tits buildings form another large
family of balanced complexes. It is also worth mentioning that the class of balanced
complexes is closed under taking links. In addition, rank selected subcomplexes
of a balanced complex are smaller-dimensional balanced complexes that inherit
some of the properties of the original complex such as Cohen-Macaulayness (or
Buchsbaumness) [17].
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What can we say about the face numbers of balanced simplicial spheres,
manifolds, and pseudomanifolds? Do the results known for the class of all simplicial
spheres, manifolds, and pseudomanifolds have balanced analogs? This is one of the
main questions we discuss here.

It turns out that to study this question, for a .d � 1/-dimensional simplicial
complex K, it is sometimes more convenient to work not with the f -vector of K,
but with the h-vector, h.K/ D .h0.K/; : : : ; hd.K//, defined by

Pd
iD0 hi.K/xd�i D

Pd
iD0 fi�1.K/.x � 1/d�i: Thus, the h-vector is obtained from the f -vector by an

invertible linear transformation, and hence contains exactly the same information
as the f -vector. In contrast with f -numbers, h-numbers can, in general, be negative.
However, by a result of [16] the h-numbers of simplicial spheres are always positive.

2 The Lower Bound Theorem

The Lower Bound Theorem (LBT, for short), due originally to Barnette [2], provides
tight lower bounds on the number of i-dimensional faces of a (connected) simplicial
manifold K in terms of the number of vertices of K and the dimension of K. An
alternative proof of the LBT via the rigidity theory of frameworks was given in the
seminal work of Kalai [9]. Kalai’s proof was extended by Fogelsanger [5] to all
simplicial complexes whose geometric realization is a normal pseudomanifold.

In the language of h-numbers, the LBT for spheres, manifolds, and normal
pseudomanifolds translates to a single inequality: h2 � h1. The strengthening of
this inequality proved in [14] asserts that if d � 4 and K is a simplicial .d � 1/-
dimensional orientable manifold, then

h2.K/ � h1.K/C
 

dC 1
2

!

ˇ1.K/; (2.1)

where ˇ1.K/ D dim QH1.K/ is the first Betti number of K. The cases of equality were
characterized in [9] and [14], respectively: if K is a simplicial .d � 1/-dimensional
manifold and d � 4, then h2.K/ D h1.K/ holds if and only if K is a stacked
sphere, and if d � 5, equality holds in (2.1) if and only if K is in the Walkup
class Hd introduced in [20]. Stacked spheres are those spheres that can be obtained
by repeatedly taking connected sums of boundaries of simplices, and a .d � 1/-
dimensional simplicial manifold belongs to Hd if it is obtained from a stacked
sphere through iterated handle addition.

As stacked spheres are very far from being balanced, one immediate question is if
there are sharper versions of the LBT for balanced manifolds and pseudomanifolds.
Such a balanced LBT was established in [6] for balanced spheres, and in [3]
for balanced manifolds. Very recently we extended this result to balanced normal
pseudomanifolds as well as treated the case of equality:
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Theorem 2.1

1. Let K be a balanced .d � 1/-dimensional connected normal pseudomanifold,
where d � 3. Then 2h2.K/ � .d � 1/h1.K/.

2. Let K be a balanced .d�1/-dimensional connected manifold, where d � 4. Then
2h2.K/ D .d � 1/h1.K/ if and only if K is a stacked cross-polytopal sphere.

Stacked cross-polytopal spheres are obtained by forming connected sums of
the boundaries of cross-polytopes (where, to preserve balanced-ness, we identify
vertices of the same color). As such their number of vertices is a multiple of d.
Hence, the above theorem implies that for d � 4, balanced spheres whose number
of vertices n is not divisible by d satisfy the strict inequality 2h2 > .d � 1/h1. Can
this inequality be further sharpened for such values of n? Does, for every n not
divisible by d, the class of balanced .d� 1/-spheres with n vertices contain a sphere
that simultaneously minimizes all the f -numbers?

Mimicking the argument of [19, Theorem 4.3], it is not hard to show that if d � 3
and K is a balanced connected simplicial .d� 1/-manifold with ˇ1.KIQ/ ¤ 0, then
2h2 � .d � 1/h1 � 4

�d
2

�

. This leads us to the following

Conjecture 2.2 If d � 4 and K is a connected balanced simplicial .d� 1/-manifold
(orientable over some field F), then

2h2.K/� .d � 1/h1.K/ � 4
 

d

2

!

ˇ1.KIF/:

If Conjecture 2.2 is true, then the proposed inequality is sharp: the equality is
achieved by the elements of BHd — a natural balanced analog of Walkup’s class
Hd. Moreover, we conjecture that for d � 5, the equality is achieved only if K
belongs to BHd.

3 Constructions of Balanced Manifolds

What is the minimum number of vertices needed to triangulate a given triangulable
manifold? Is there a triangulation of a given manifold that simultaneously minimizes
all the f -numbers? While for 2-dimensional manifolds the answers are known from
late 60s-early 70s (they follow from the inequalities of [7] and the constructions
given in [15] and [8]), despite a tremendous amount of effort that went into studying
this question in the last two decades (see for instance [12] and the upcoming
book [13]) there are not too many higher-dimensional manifolds for which there
is even a conjectural answer. The main difficulty appears to be a lack of standard
constructions to produce triangulations with few vertices.

For a .d � 1/-dimensional sphere, the minimal triangulation is given by the
boundary of a simplex and requires d vertices. The minimal balanced triangulation
of a .d � 1/-dimensional sphere is given by the boundary of a cross-polytope and
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requires 2d vertices. Hence the next family of manifolds to study is the product of
two spheres. If one of these spheres is a circle, then the minimum number of vertices
needed was established in [1] and independently in [4]. What is the minimum
number of vertices needed for a balanced triangulation? It is easy to see that one
needs at least 3d vertices. Are 3d vertices enough? Very recently we established the
following partial answers:

Theorem 3.1

1. There is a construction of a balanced simplicial complex with 3d vertices whose
geometric realization is homeomorphic to S

1 
 S
d�2 if d is odd and to the non-

orientable Sd�2-bundle over S1 if d is even.
2. For every n � 3dC 2, there is a construction of a balanced triangulation of both

an orientable and a non-orientable Sd�2-bundle over S1 with n vertices.
3. The above mentioned 3d-vertex triangulation simultaneously minimizes all the

face numbers among all balanced triangulations of closed .d � 1/-dimensional
manifolds with a non-vanishing ˇ1 (computed with rational coefficients).

This raises the following questions:

Problem 3.2 Are there balanced triangulations of spherical bundles over a circle
with 3d C 1 vertices? Are there balanced triangulations with 3d vertices for the
non-orientable bundle when d is odd and the orientable bundle when d is even?

We end by discussing similar-type questions for manifolds with boundary. It
follows from the results of [14] that if M is a triangulable .d � 1/-dimensional
manifold with boundary such that ˇi.M/ ¤ 0 for some 0 � i � d � 2, then one
needs at least 2d� i vertices to triangulate M. On the other hand, it is easy to see that
to triangulate M in a balanced way one needs at least 2d vertices. The bound 2d � i
in the non-balanced case is achieved by (i) disjoint unions of two .d � 1/-simplices
(here i D 0 and f0 D 2d), and (ii) Kühnel’s solid tori (if d is odd) and twisted tori (if
d is even) [11] — in this case i D 1 and f0 D 2d � 1. To the best of our knowledge
these are the only known infinite families of examples. Surprisingly, in the balanced
case there is a construction with 2d vertices for every pair 0 � i � d � 2, see [10]:

Theorem 3.3 For every 0 � i � d � 2, there is a .d � 1/-dimensional balanced
complex Bi;d such that kBi;dk is a manifold with boundary, f0.Bi;d/ D 2d, ˇi.Bi;d/ D
1, and ˇj.Bi;d/ D 0 for all j ¤ i.

Acknowledgements Research partially supported by NSF grant DMS–1069298.
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Some Combinatorial Constructions
and Relations with Artin Groups

Mario Salvetti

Abstract Motivated by the computation of local system cohomology of Artin
groups (and their configuration spaces) we introduce some very special class
of sheaves over posets, called weighted sheaves over posets, which seem to be
interesting by themselves. We relate them with some graph complexes arising from
Artin groups. In particular, we find an interesting connection between some local
cohomology of the braid groups, localized at the d-cyclotomic polynomial, and the
cohomology of what we call d-independent graph complexes.

Let .W; S/ be a Coxeter system, jSj finite. Recall that one can associate:

- A hyperplane arrangement in R
n

A WD fH W H is the fixed point set of some reflection in Wg:

- Configuration spaces

Y WD Œint.U/C iRn� n
[

H2A
HC and YW WD Y=W

where U is the Tits cone

U WDW:closure(C0) (C0 is a fixed chamber) :

- A finite CW-complex XW � YW; constructed from a union of convex polyhedra,
one for each finite parabolic subgroup of W; by explicit identifications on their
faces, such that YW deformation retracts onto XW (see [11, 12]).

Of special interest to us is the simplicial complex K WD KW of all subsets � � S
such that the parabolic subgroup W� is finite.
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The Artin group of type W is GW WD 	1.YW/: It has a presentation

GW D< gs; s 2 S W gsgs0gsgs0 : : : D gs0gsgs0gs : : : ( m.s; s0/ factors) >

where m.s; s0/ are the coefficients of the Coxeter matrix. The main example is when
W is the symmetric group †n with S D f.i; iC 1/; i D 1; : : : ; n � 1g W we get the
classical configuration space of n different ordered points in C given by Y WD C

n n
[i;j Hij; where Hij WD fzi D zjg and the orbit space Y†n WD

�

C
n n [i;j Hij

�

=†n;

which is the configuration space of n unordered points in C: The braid group Brn is
given by 	1.Y†n/:

Classical (and easy) fact is that Y†n is a space of type K.	; 1/ (while the
analog result for the configuration spaces is known for some Artin groups but
only conjectured in general). Recall also that for a discrete group G we have
H�.GIM/ WD H�.K.G; 1/ILM/ for any G-module M; where LM is the associated
local system of coefficients. Therefore the homology (and cohomology) of Y†n ;

with any twisted coefficients, equals the homology (and cohomology) of the braid
group Brn.

Particularly significant for geometrical reasons is the abelian representation
which takes any generator gs of the Artin group GW into the .�q/-multiplication
in the ring R WD QŒq˙1� of Laurent polynomials (minus sign is only for technical
reasons). For many Artin groups, including finite type and some affine type Artin
groups, several computations were done (see some references at the end).

We recall [12]: The homology groups H�.XWIRq/ are computed by the algebraic
complex

Ck WD ˚J � S; jJj D k; WJ finite R eJ

with

@.eJ/ D
X

I�J; jIjDk�1; WI finite

ŒI W J� WJ.q/

WI.q/
eI: (1)

Here WJ.q/ is the Poincaré polynomial of WJ and ŒI W J� is an incidence number.
Recall also (see [9] and [5] (different method) for case An; [6] for all other non-

exceptional finite type cases over QŒq˙1�; [4] for the exceptional cases of finite type,
and for case An over ZŒq˙1� see [1]):

Theorem 1

H�.BrnIRq/.'d/ D
	

R=.'d/ if n � 0 or 1 (mod d)
0 otherwise

where the non vanishing term is in degree .d � 2/k if n D dk or n D dk C 1:

On the left we have the 'd-primary component of the homology, 'd being the d-th
cyclotomic polynomial.
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Let G be a graph on the set of vertices f1; : : : ; ng: A (vertex) property P.G/
of G is a collection of full vertex-subgraphs of G; closed with respect to inclusion:
� 2 P.G/; � � � 0 ) � 0 2 P.G/: Every property of G defines a simplicial
scheme K WD K.P.G// on f1; : : : ; ng: The main example here is given by the k-
independent graph complexes
Indk.G/ WD fsubgraphs � � G such that each connected component of � has

at most k verticesg:
We consider here Indk.An/;where An is the linear graph with n-vertices. We have:

Theorem 2 (Sal.)

H�.BrnC1IR/.'d/ D QH�C.d�1/.Indd�2.An�d/I R

.'d/
/

(trivial coefficients in the right side).

Therefore Theorem 1 gives the homology of the independent graph complexes:

QH�.Ind.d�2/.An// D
	 QH�.Sdk�2k�1/ for n D dk or n D dk � 1.

0 otherwise

Conversely, one can compute directly (similar to [10] where the case of Ind1 is
considered) the homology of the independent graph complexes, and deduce the
twisted cohomology of the braid group.

Let .P;�/ be a poset and let .R; j/ be the above ring endowed with the divisibility
relation. Any morphism  W .P;�/ ! .R; j/ W x �!  .x/ D wx 2 R defines a
sheaf of rings over P (or a diagram of rings) by the collections

f R=.wx/ ; x 2 Pg; f ix;y W R=.wy/ ! R=.wx/ ; x � yg

where ix;y is induced by the identity of R.

Definition We call the triple .P;R;  / a weighted sheaf over P and the coefficients
wx the weights of the sheaf.

The main example for us is when the poset is given by a simplicial complex (or a
simplicial scheme) K with partial ordering � � � , � � � W then a weighted
sheaf over K is given by assigning to each simplex � 2 K a weight w� 2 R; with
� � � ) w� jw� :

Let K be a simplicial scheme defined over In WD f1; : : : ; ng; and let .C0�.K/; @0/
be the standard algebraic complex of the simplicial homology of K:

Definition The weighted complex associated to the weighted sheaf .K;R;  / is the
algebraic complex .L�.K/; @/ defined by

Lk.K/ WD
M

j� jDk

R

.w� /
Ne�
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and boundary @ W Lk ! Lk�1 induced by @0 W

@.a� Ne� / D
X

���
Œ� W �� i�;� .a� / Ne� :

Given any irreducible ' 2 R; the '-primary component of the weighted sheaf is
obtained by using the weight w.'/ W K ! R; defined as w.'/.�/ WD 'v'.�/; � 2
K; where v'.�/ WD max power of ' dividing w� : Then S.'/ WD .K;R;w.'// is a
weighted sheaf with associated complex L.'/: There is a natural increasing filtration
into subcomplexes of L.'/ by the powers of 'd:

Fs.L.'// WD
M

v'.�/ � s

R

.'v'.�//
Ne�

and an associated increasing filtration of the simplicial complex K into subcom-
plexes:

K.'/;s WD f� 2 K j v'.�/ � sg:

Then Fs.L.'// is the weighted complex associated to the weighted sheaf
.K.'/;s;R;w.'/jK.'/;s/:
Theorem 3 Let .K;R;w/ be a weighted sheaf, with associated weighted complex
L�: For any irreducible ' 2 R; there exists a spectral sequence

E0p;q ) H�.L.'//

that abuts to the homology of the '-primary component of the associated algebraic
complex L�. Moreover the E1p;q-term is isomorphic to the relative .pC q/-homology
with trivial coefficients of the pair .K.'/;p;K.'/;p�1/.

A variation of standard methods from Discrete Morse Theory [7, 8] fits very
well here.

Definition A weighted acyclic matching on a weighted sheaf .P;R;w/ over P is an
acyclic matching M on P such that x C y 2 M ) w.x/ D w.y/:

To a weighted acyclic matching on S WD .K;R;w/ one can associate a Morse
complex .CM� ; @M/; which is a torsion complex generated by the critical cells. As
in the standard case we still have:

Theorem 4 One has an isomorphism H�.L�.K/; @/ Š H�.CM� ; @M/:
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Given an irreducible '; the associated filtration on the weighted complex induces
a filtration FpCM� onto the Morse complex. Let

FpCM� WD FpCM� = Fp�1CM� Š ˚� critical; v'.�/ D p
R

.'p/
Ne�

be the quotient complex.

Theorem 5 Let M be an acyclic matching for the weighted complex S.'/; where
' is any irreducible. Then for the above spectral sequence one has E1p;q Š
HpCq.FpCM� /: The differential d1p;q W E1p;q ! E1p�1;q is induced by the boundary
of the Morse complex and it is computed by using alternating paths in M:

To any Coxeter system .W; S/ we can associate, for any d; a weighted sheaf
.K;R;  d/ over the previous defined K D KW by considering  d.J/ as the
maximum power of 'd which divides WJ.q/. The homology of the associated
weighted complex is strictly related (by formula (1)) to the homology of the Artin
group (actually, of the associated configuration space).

Coming back to the case of braid groups, for any d-th cyclotomic polynomial 'd;

a weighted sheaf .K;R;  d/ over K.An/ is defined by the weights

 d.J/ D '

Pm
iD1 b niC1

d c
d

where ni is the cardinality of the i-th connected component of the subgraph of An

generated by J � f1; : : : ; ng: The proof of Theorem 2 requires a suitable weighted
acyclic matching on these weighted sheaves.

Further computations in some other not yet known cases were done, namely for
some affine type Artin groups. By using the above described theory and suitable
matchings on the associated weighted sheaves, we get [13] a full description of the
twisted homology for all exceptional affine cases (some infinite families of affine
type where already computed by different methods in [2, 3]).
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Deterministic Abelian Sandpile
and Square-Triangle Tilings

Sergio Caracciolo, Guglielmo Paoletti, and Andrea Sportiello

Abstract The Abelian Sandpile Model, seen as a deterministic lattice automaton,
on two-dimensional periodic graphs, generates complex regular patterns displaying
(fractal) self-similarity. In particular, on a variety of lattices and initial conditions,
at all sizes, there appears what we call an exact Sierpinski structure: the volume is
filled with periodic patterns, glued together along straight lines, with the topology
of a triangular Sierpinski gasket. Various lattices (square, hexagonal, kagome, . . . ),
initial conditions, and toppling rules show Sierpinski structures which are apparently
unrelated and involve different mechanisms. As will be shown elsewhere, all these
structures fall under one roof, and are in fact different projections of a unique
mechanism pertinent to a family of deterministic surfaces in a four-dimensional
lattice. This short note gives a description of this surface, and of the combinatorics
associated to its construction.

1 Introduction

Let ƒ be the lattice in dimension 4, tensor product of two copies of the triangular
lattice,ƒ D he1; e2; e3; e4; e5; e6 jP1�i�3 ei DP4�i�6 ei D 0iZ. Consider the two-
dimensional cell complex containing all the vertices and edges of ƒ, and, as
(oriented) faces, the triangles of the two lattices and the parallelograms spanned
by pairs .e1; e4/, .e2; e5/ and .e3; e6/. We choose the orientation such that the cycles
.e1; e2; e3/, .�e1;�e2;�e3/ and .e1;�e4;�e1; e4/ are upward faces, and similarly
with .123/ ! .456/ and .14/ ! .25/; .36/. We call a surface a connected and
simply-connected collection of faces in the cell complex above, with all upward
faces.
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Embeddings of e1; : : : ; e6 in R
2 satisfying the forementioned orientation con-

straints correspond to projections of the four-dimensional cell complex on a
two-dimensional real space, such that surfaces are mapped injectively. An example
of such an embedding is .e1; : : : ; e6/ D .!3; !11; !7; !0; !8; !4/, where !k D
.cos k	

6
; sin k	

6
/. In this case, surfaces correspond to tilings of regions of the plane,

composed only of squares and triangles of unit sides, and along directions multiple
of 	=6. These tilings are called square-triangle tilings in the literature.

Any other projection is topologically equivalent, provided that e1 C e2 C e3 D
e4 C e5 C e6 D 0 and the orientation of the faces is preserved. We call valid such a
projection. The set of valid projections is an open portion of an algebraic projective
variety. We call degenerate projections those on the boundary of this open set. Under
degenerate projections, the image of some faces is a segment or a point.

A seminal work of de Brujin for Penrose–Ammann lozenge tilings [2] has
first illustrated the possibility that projections of deterministic surfaces from a
high-dimensional periodic cell-complex could explain features of two-dimensional
aperiodic incommensurable tilings. The square-triangle case discussed here shows
a similar phenomenon.

Square-triangle tilings have also distinguished properties, among which is a
relation with Algebraic Geometry, generalising the well-known connection between
lozenge tilings and Schur functions (see e.g. [1]). The algebra of Schur functions
has ubiquitous three-index structure constants cN


�;�, called Littlewood–Richardson
(LR) coefficients [16]. When the Young diagrams �, �, N
 are boxed in a rectangle
.d � n/ 
 n (as is the case, e.g., when they label cells of the Schubert variety),
there exists a relation (Poincaré duality) which acts as complementation at the
level of diagrams, 
 $ N
, and the LR coefficients are symmetric in all three
indices if the upper one is complemented, cN


�;� DW c�;�;
 . As shown by P. Zinn-
Justin [21] and Purbhoo [20], the LR coefficients correspond to the enumerations of
square-triangle tilings over triangoloids whose three sides are built from �, � and

, respectively. Two degenerate projections of these surfaces reduce to portions of
the square and of the triangular lattice. As degenerate projections transform some
faces into segments or points, the bijective correspondence is preserved only if
extra integer labelings, encoding the disappeared faces, are added to the resulting
structures. These limiting tilings, together with the auxiliary labelings, correspond to
the original Littlewood–Richardson rule [16] in the square case, and to the Knutson–
Tao (discrete) honeycombs [11, 12] in the triangular case.

2 ASM and Square-Triangle Tilings

The purpose of this paper is to illustrate another unsuspected feature specific of
square-triangle tilings, namely of encoding the exact Sierpinski structures that arise
in the Deterministic Abelian Sandpile Model. These structures have been identified
on various regular two-dimensional lattices, under various abelian toppling rules,
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initial conditions and deterministic evolution protocols, and square-triangle tilings
describe them in a unified way.

The first occurrences of such structures have been presented, by the authors, in [3,
19], while the observation of approximated versions of these structures (reproduced
at a coarse-grained scale, but locally deformed by some one-dimensional defects)
is much older [18], and has first been made, only on the square lattice, for the two
most natural deterministic protocols: the evaluation of the identity configuration in
simple geometries [6, 13, 17], and the relaxation of a large amount of sand put at
the origin, in the (elsewhere empty) infinite lattice [7, 8, 14, 15].

The ‘universal role’ of the square-triangle tiling, in different ASM realisa-
tions, should sound surprising, as the generic projection gives incommensurable
parallelogram-triangle tilings and does not live on a discrete two-dimensional
lattice, as is instead the case for the sandpile models we consider. What comes
out is that, in a remarkable analogy with the mechanism discussed above for the
combinatorics of the Littlewood–Richardson rule and Knutson–Tao honeycombs,
different lattice ASM realisations occur at different “rational” points in the set of
valid projections (and its boundary, of degenerate projections).

As this short paper is within a series, we do not give here an introduction to the
Abelian Sandpile Model. The interested reader can consult the beautiful review by
Deepak Dhar [5], who first established a large part of the theory. For aspects of the
model more strictly related to the features discussed here, the reader can refer to the
PhD thesis of one of the authors [19], or the shorter papers [3] and [4]. Here we will
only concentrate on the aspects concerning the surfaces in the square-triangle tiling
corresponding to the exact Sierpinski structures in the ASM.

The sandpile configurations are height vectors Ez D fzig, with variables zi 2
N associated to vertices i of a graph G D .V;E/. There exists a notion of
stable configuration, and a more restrictive notion of recurrent one. Transient is a
synonimous for non-recurrent. There exists a notion of forbidden sub-configuration
(FSC), and a stable configuration is recurrent iff it has no FSC. More generally,
a configuration is recurrent over W � V.G/ if it has no FSC contained within
W, thus making recurrency a local notion (like instability). Local recurrency and
instability are dual notions, if we set in the wider frame of multitoppling ASM, as
first shown in [4]. The toppling matrix� encodes the dynamics of the sandpile, and
determines a subdivision of ZV.G/ into equivalence classes. There exists exactly one
stable recurrent configuration within each class. Unstable configurations Ez can be
relaxed to stable ones, Ew D REz. Stable transient configurations can be projected
to the unique recurrent representative in the class, Ew D PEz. The operators R and
P correspond to find the fixed point of iterated maps, R0 and P0, corresponding to
“rounds” of the procedure.1

1In R0 one can perform at most one toppling per site, in P0 one adds a single frame identity, and
then relax.
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A number of structures and operations on square-triangle tilings can be
introduced, that will reproduce, under the various projection procedures, the
forementioned counterparts in the various ASM realisations. We dub all these
features of the square-triangle setting with the “axiomatic” attribute, as the reason
for their names emerges only when the projection procedure is explicitated. Note
that we are not able to reproduce all the relevant features of the sandpile model. In
particular, we are not able to reproduce the ai operators (nor their counterparts a�i
defined in [4]). The main things we are able to reproduce are summarised by the
following list:

• The notion of (ASM-)equivalence of configurations is trivialised at the axiomatic
level: two tilings are equivalent if they have the same boundary.

• The axiomatic notion of FSC correspond to cycles in the tiling satisfying certain
local rules.

• We have an axiomatic notion of P0, consisting in a local deformation along the
cycles of maximal FSC’s (w.r.t. inclusion).

• Similarly, we can certify that regions encircled by certain cycles will undergo a
round of relaxation. This gives an axiomatic local notion of unstable subconfig-
uration (USC).2

• We have an axiomatic notion of R0, consisting in a local deformation along the
cycles of maximal USC’s (w.r.t. inclusion).

• We have a recursive description of the Sierpinski structures at the axiomatic
level. As these structures in the ASM determine the classification of patches
and propagators in certain backgrounds [19], this induces a corresponding
classification of axiomatic patches and propagators.

• A choice of vectors e1,. . . ,e6 2 R
2, and of “masses” fm123;m456;m14;m25;m36g

for the five types of tiles, induces a notion of density for the patches. This allows
to state an axiomatic version of the Dhar–Sadhu–Chandra incidence formula, first
introduced, for the ASM, in [7].

3 Sierpinski Structures

Let s D .sk; : : : ; s1; s0/ be a finite string of positive integers, and n.s/ D P

i 3
isi.

A Sierpinski structure is labeled by a string s, and n.s/ is its size. Structures of the
same size are equivalent.

An abstract Sierpinski gasket of index k is defined as follows. At index 0, it is
just a dark upward triangle. At index k C 1, it is obtained from the gasket at index
k by subdividing all dark upward triangles into three dark upward and one light
downward triangles, all of half the side. Light triangles which are there at index k,
will remain unchanged at all k0 > k. A light triangle has index k if it first appeared

2Corresponding to the waves of topplings [9, 10].
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Fig. 1 Top: The labeling of
the light triangles; Bottom
left: the Sierpinski gasket of
index k D 3; Bottom right:
The structure of the patches,
and the role of the parameter s

in a gasket at index k C 1. A gasket of index k has 3k dark triangles, and 3h light
triangles of index h, for 0 � h < k. See Fig. 1.

In the sandpile setting, the triangles of the gasket will determine polygonal
regions filled with a biperiodic patterns, called patches [18]. Patches may be
recurrent, transient or marginal, depending on their behaviour under the burning
test (see [3]).

In a Sierpinski structure identified by s, all the dark triangles correspond to
transient patches, of triangular shape, with a side of sk unit tiles. Light triangles of
index h correspond to polygonal regions filled with recurrent patches. These regions
have the aspect of triangoloids with concave sides, the sides being polygonal lines
composed of 2k�h � 1 segments. The packing of unit tiles depends in a certain fixed
way on the integer k � h and the variables sh0 for h0 > h, and has no extra freedom,
with an exception: starting at the vertices of the triangoloids, we can have a band of
a patch with marginal density, of width sh � 1.3 The three bands meet at a triangular
transient patch.

3This corresponds to sh � 1 parallel type-I propagators, w.r.t. the definitions in [3, 19].



132 S. Caracciolo et al.

A transient patch contains a FSC only if “sufficiently large”, namely if it contains

at least 7 unit tiles, packed in a shape . Thus, a triangle of side up to 3 units filled

with a transient patch, i.e. the shape , may still be part of an overall recurrent
configuration. This has a consequence on our Sierpinski structures: a structure with
label s is recurrent if and only if 1 � sh � 3 for all h � k. These are the structures
ultimately appearing in sandpile protocols.

Each region of the Sierpinski structure is filled with a periodic pattern. The
geometry of every region, including the number and location of the unit tiles, is
determined through a recursive procedure. Also the shape of the unit tiles, and their
content in terms of elementary squares and triangles, are determined recursively. At
this aim it is useful to introduce a labeling of the regions of the Sierpinki gasket.
We label the dark upward triangles with words in the alphabet fa; b; cg, and the light
downward triangles with the same word as the dark triangle that originated them.
When a triangle of label w is split, the three new triangles, in the three directions,
have labels wa, wb and wc. We also give labels to the three external regions of the
triangles, as a�1, b�1 and c�1. See Fig. 1.

A triangle with label w has three larger adjacent light triangles, in the three
directions, that have labels ˛.w/, ˇ.w/ and �.w/. These three functions can be
defined as follows. Let ˛w, ˇw and �w the rightmost position along w such that,
at its right, there are no more a, b or c, respectively; let us call wj` the truncation
of w to its first ` letters; let us understand that aa�1 D bb�1 D cc�1 D 1. Then
˛.w/ D wj˛w a�1, and so on.

Complex tiles arise from the superposition of more elementary ones. Only three
tiles are indecomposable, and must be given as input. These tiles correspond to the
three square orientations in our square-triangle tilings. The corresponding tilings
appear outside the triangle, at the three sides. The unit tile of label w is composed of
the superposition of two copies of the tiles of labels ˛.w/, ˇ.w/ and �.w/. Unless
w D 1, one of these three words has higher degree than the other (say ˛.w/). In
this case, the six tiles do not overlap, with the only exception that the two ˛.w/
tiles do overlap exactly on a ˛.˛.w// tile. If w D 1, no tiles overlap. Each tile has
12 special positions along its boundary, which determine the translation vectors of
the recurrent, transient and marginal tilings involving it, and the new tile inheritates
its owns positions from those of the three subtiles. This mechanism is illustrated in
Fig. 2.

4 Dual Tiles

Our construction in terms of the vectors e1, . . . , e6 has a number of covariances that
allow to shorten our description

C3-covariance (2	=3 rotations):
.e1; e2; e3; e4; e5; e6/! .e2; e3; e1; e5; e6; e4/;

exchange .123/$ .456/ (	=2 rotations):
.e1; e2; e3; e4; e5; e6/! .e4; e5; e6;�e1;�e2;�e3/;
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Fig. 2 The tile associated to
w D cba. The interior orange
lines describe the
decomposition into ˛.w/,
ˇ.w/ and �.w/ tiles. The
overlap, composed of a
˛.˛.w// tile and two light
triangles, is in the middle.
The triangles outside the tile
denote the 12 special
positions. Here we have
u.P/ D �

.6
¯
1/; .2

¯
6
¯
16

¯
/;

.4342
¯
6
¯
16

¯
2
¯
/;

.34/; .5
¯
343/; .1

¯
61

¯
5
¯
3435

¯
/
�

central symmetry (	 rotations):
.e1; e2; � � � ; e6/! .�e1;�e2; � � � ;�e6/.

We call polygon a closed curve that is the boundary of some square-triangle tiling.
A polygon P is determined by a cyclic sequence in the alphabet f1; : : : ; 6; 1

¯
; : : : ; 6

¯
g,

where 1, 1
¯

stand for Ce1, �e1, and so on. We use the shortcuts N, H, B and C for
the polygons .123/, .1

¯
2
¯
3
¯
/, .456/ and .4

¯
5
¯
6
¯
/, respectively.

A centrally symmetric polygon P is determined by a sequence of the form P D
.i1i2 : : : iki1 i2 : : : ik/, where i D i. We use the shortcut .i1i2 : : : ikk/ in such a case.

A polygon P is a dual tile if both the triple of polygons .P;N;H/ and
the triple .P;B;C/ (in these proportions) tile periodically the plane. We call a
transient / recurrent hex tiling a tiling of the two forms above, respectively.

The three fundamental parallelogram tiles are dual tiles. The dodecagon,
.16

¯
2
¯
435

¯
k/, is another example. All the tilings associated to dual tiles, except those

deriving from the fundamental parallelograms, have the topology of a hexagonal
tiling: each polygon P is neighbour to other 6 P’s. The fundamental triangles are at
the 6 triple points, with alternating orientations cyclically along each P.

To each word w as in the previous section can be associated a dual tile P.w/,
which is centrally symmetric. The three fundamental parallelograms are .41k/ D
P.a�1/ and so on. The dodecagon is .16

¯
2
¯
435

¯
k/ D P.1/.
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A pair of polygons .P;Q/ is a dual pair if the sextuplet .P;Q;N;H;B;C/
(in these proportions) tiles the plane. We call a sq-oc tiling a tiling obtained as
above. Neglecting triangles (e.g., replacing them with Y-shapes), such a tiling has
the square-octagon topology: any Q tile is neighbour to 4 P ones, and any P tile
is neighbour to 4 P’s and 4 Q’s, alternating.4 The fundamental triangles are at the
triple points of the square-octagon topology. Each P and Q tile is adjacent to 8 and
4 triangles, respectively, alternating dark / light, and, within dark and light ones, of
opposite orientations.

For each w, the pairs of tiles
�

P.˛.w//;P.w/
�

,
�

P.ˇ.w//;P.w/
�

and
�

P.�.w//;P.w/
�

are dual pairs. For example, the dodecagon and any of the
fundamental parallelograms form a dual pair.

Exceptionally, and analogously to what happens for hex tilings, also all pairs of
fundamental parallelograms are dual pairs, although with a different topology, and
with no ordering.

As a consequence, each tile P D P.w/ appears in two hex tilings, three sq-
oc tilings as ‘octagon’, and infinitely many sq-oc tilings as ‘square’. The union
of the positions of triple points among all these tilings has cardinality 12. These
12 special positions break the perimeter of the tile into open paths, related by the
central symmetry (see again Fig. 2). Thus, a list of 6 paths, u.P/ D .u1; : : : ; u6/,
determines simultaneously the perimeter and the special positions, and P D
.1u16

¯
u22

¯
u34u43u55

¯
u6k/.

The recursive construction, at the level of these paths, leads to the formulas
(completed by C3-covariance)

.u16
¯
u2/w D .u16

¯
u22

¯
u3/ˇ.w/ 6

¯
.u61u16

¯
u2/�.w/

8

<

:

.u1/w D .u1/˛.w/ j˛.w/j > jˇ.w/j

.u2/w D .u2/ˇ.w/ j˛.w/j < jˇ.w/j

.u1/w D .u2/w D ¿ ˛.w/ D a�1; ˇ.w/ D b�1:

The geometry of these paths is such that:

• The sq-oct patches based on a .P;Q/ dual pair may be adjacent to both recurrent
and transient hex patches, based both on P and on Q, although with a restriction
on the direction of the (straight) boundary.

• The hex transient tiling based on P.w/ can be adjacent to the hex recurrent tiling
based on P.w0/, if w0 is a prefix of w.

4This fixes who’s who among P and Q.
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Fig. 3 Four classes of equivalent configurations: Left: three deterministic configurations, of size
n D 6. The two on top are stable but transient, and the one on the bottom is recurrent but unstable.
Applying P and R, respectively, we obtain our axiomatic Sierpinski structure, (on the right at
s D .1; 2; 2/, thus n.s/ D 17). The patch structure is highlighted by the orange construction lines,
showing the same topology of the Sierpinski gasket in Fig. 1

This ultimately leads to the consistency of the construction of the Sierpinski
structures (see Fig. 3).
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A Special Feature of Quadratic Monomial Ideals

Matteo Varbaro

Abstract We will see the proof of the lemma that allowed Caviglia, Constantinescu
and myself in (Isr. J. Math. 204, 469–475 (2014)) to show a version of a conjecture
by Kalai. We will also discuss possible consequences of the lemma on the study of
dual graphs of flag complexes.

Our aim is to show a property peculiar of quadratic monomial ideals, namely the
Main Lemma below, proved in collaboration with Giulio Caviglia and Alexandru
Constantinescu in [4]. The original motivation for looking up such property was
to use it in the study of a conjecture by Gil Kalai, for which indeed it has been
extremely helpful. During the talk, I mentioned how this lemma could be exploited
in other situations. First of all let us recall it:

Main Lemma Let k be an infinite field, and I � kŒx1; : : : ; xn� DW S an ideal of
height c. If I is monomial and generated in degree 2, then there exist linear forms
`i;j for i 2 f1; 2g and j 2 f1; : : : ; cg such that `1;1`2;1 ; : : : ; `1;c`2;c is an S-regular
sequence contained in I.

In general, if R is a standard graded Cohen-Macaulay k-algebra, where k is an
infinite field, and J � R is a height c homogeneous ideal generated in a single degree
d, then we can always find an R-regular sequence g1; : : : ; gc of degree d elements
inside J. So, with the notation of the Main Lemma, since the polynomial ring S
is Cohen-Macaulay, we already know that there is an S-regular sequence f1; : : : ; fc
consisting of quadratic polynomials inside I. The point of the result is that we can
choose each fi being a product of two linear forms.

Before sketching the (elementary) proof of the Main Lemma, let us see that the
analog property fails for nonquadratic monomial ideals.
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Example Let J be the height 2 monomial ideal .x2y; y2z; xz2/ � kŒx; y; z�. It is
straightforward to check that the only products of linear forms `1`2`3 in J are (scalar
multiples of) the monomials x2y, y2z and z2x. Clearly, no combination of 2 such
monomials form a kŒx; y; z�-regular sequence.

Proof of the Main Lemma The proof goes like follows: Take a height c minimal
prime p of I

p D .x1; : : : ; xc/

(this of course can be done after relabeling the variables). We decompose the k-
vector space generated by the quadratic monomials of I as:

I2 D
c
M

iD1
xiVi;

where Vi D hxj W xixj 2 I and j � ii. We aim to find `i 2 Vi such that

dimk.hxi W i 2 Ai C h`i W i 2 Œc� n Ai/ D c 8 A � Œc� D f1; : : : ; cg:

Indeed, one can easily check that the condition above characterizes the fact that
x1`1; : : : ; xc`c is an S-regular sequence. The trick to find such linear forms `i is to
construct a family of bipartite graphs GA, for all A � Œc�, in the following way:

(i) V.GA/ D Œc� [ fx1; : : : ; xng.
(ii) E.GA/ D ffi; xig W i 2 Œc� n Ag [ ffi; xjg W i 2 A and xj 2 Vig.
Claim There is a matching of GA containing all the vertices of Œc�. To show this, we
will appeal to the Marriage Theorem, by showing that, for a subset B � Œc�, the set
N.B/ of vertices adjacent to some vertex in B has cardinality not smaller than that
of B. To this purpose, note that:

jN.B/j D dimk

�

X

i2A\B

Vi C
X

i2.Œc�nA/\B

hxii
�

D

dimk

�

X

i2A\B

Vi C
X

i2Œc�n.A\B/

hxii
�

� dimk

�

X

i2Œc�nB

hxii
�

� jBj;

where the inequality follows from the fact that the ideal
P

i2A\B.Vi/ C .xi W i 2
Œc� n .A \ B//, containing I, must have height at least c. Therefore, we get by the
Marriage Theorem the existence of

j.1;A/; j.2;A/; : : : ; j.c;A/



A Special Feature of Quadratic Monomial Ideals 139

such that f1; xj.1;A/g; : : : ; fc; xj.c;A/g is a matching of GA, which implies that

dimkhxj.1;A/; : : : ; xj.c;A/i D c:

Now it is enough to put

`i D
X

A�Œc�
�.A/xj.i;A/;

where �.A/ are general elements of k. ut
As already mentioned, we were motivated in proving the Main Lemma to study

the following conjecture of Kalai:

Conjecture (Kalai) The f -vector of a Cohen-Macaulay flag simplicial complex is
the f -vector of a Cohen-Macaulay balanced simplicial complex.

It is convenient to recall here that the f -vector . f�1; : : : ; fd�1/ of a .d � 1/-
dimensional simplicial complex� is defined as:

fj D jf j-dimensional faces of�gj :

As a consequence of the Main Lemma, we get the following:

Theorem The h-vector of a Cohen-Macaulay flag simplicial complex is the h-
vector of a Cohen-Macaulay balanced simplicial complex.

To show how the theorem above follows form the Main Lemma, we remind that,
if .h0; : : : ; hd/ and . f�1; : : : ; fd�1/ are, respectively, the h- and f -vector of a given
.d � 1/-dimensional simplicial complex, then the following equations hold true:

hj D
j
X

iD0
.�1/j�i

 

d � i

j� i

!

fi�1 and fj�1 D
j
X

iD0

 

d � i

j � i

!

hi :

From these formulas one sees that the theorem above is very close to answering
positively the conjecture of Kalai: The only defect is that h- and f -vector determine
each other only if the dimension of the simplicial complex is known, and the h-
vector does not provide such an information (in fact it may happen that hd D 0).

For the convenience of the reader, let us recall the definitions of the objects
occurring in the conjecture of Kalai:

(i) A simplicial complex � is said to be Cohen-Macaulay (over k) if its Stanley-
Reisner ring kŒ�� is Cohen-Macaulay.

(ii) A simplicial complex is said to be flag if all its minimal nonfaces have
cardinality 2.

(iii) A .d�1/-dimensional simplicial complex is said to be balanced if its 1-skeleton
is a d-colorable graph.
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Why were we able to prove the “h-version" of the conjecture of Kalai and not the
original one? The point is that the entries of the h-vector of a simplicial complex�
are the coefficients of the h-polynomial of kŒ��. So, by combining the Main Lemma
with the main result obtained by Abedelfatah in [1], we get the following:

Theorem (A1) The h-vector of a .d � 1/-dimensional Cohen-Macaulay flag
simplicial complex on n C d vertices equals to the Hilbert function of S=J where
J is an ideal of S containing .x21; : : : ; x

2
n/.

Notice that the ideal J of Theorem A1 can be chosen monomial (just passing to
the initial ideal). In this case, the Hilbert function of S=J is just the f -vector of the
simplicial complex � on n vertices whose faces are fi1; : : : ; irg where xi1 � � � xir … J.
Therefore Theorem A1 can be re-stated as:

Theorem (A2) The h-vector of a .d � 1/-dimensional Cohen-Macaulay flag
simplicial complex � on n C d vertices is the f -vector of some simplicial complex
� on n vertices.

On the other hand, Theorem A2 is in turn equivalent to:

Theorem (A3) The h-vector of a .d � 1/-dimensional Cohen-Macaulay flag
simplicial complex � on n C d vertices is the h-vector of an .n � 1/-dimensional
Cohen-Macaulay balanced simplicial complex � on 2n vertices.

Proof By Theorem A2 we know that there is a simplicial complex � on n vertices
with f -vector equal to the h-vector of �. Set:

J D I� C .x21; : : : ; x2n/ � S

and consider the polarization J0 of J in SŒy1; : : : ; yn�. Then J0 D I� where, since the
polarization preserves the minimal graded free resolution, the h-vector of � is the
Hilbert function of S=J (which is the f -vector of �) and � is Cohen-Macaulay.

Now, notice that� is .n�1/-dimensional, and the coloring col.xi/ D col.yi/ D i
provides an n-coloring of the 1-skeleton of �, so that � is balanced.

Remark To show that Theorem A3 H) Theorem A1, one has to use that the
Stanley-Reisner ring of a pure .d � 1/-dimensional balanced simplicial complex�
has a special system of parameters, namely:

`i D
X

col.xj/Di

xj 8 i D 1; : : : ; d:

If � is on m vertices, then kŒ��=.`1; : : : ; `d/ Š kŒx1; : : : ; xm�d�=J, where J is an
ideal containing the squares of the variables. Furthermore, if� is Cohen-Macaulay,
then `1; : : : ; `d is a kŒ��-regular sequence, so the h-polynomial of kŒ��=.`1; : : : ; `d/

is the same as the h-polynomial of kŒ��.

Remark Theorem A1 can be seen as the solution of a particular case of a general
conjecture of Eisenbud-Green-Harris, namely the quadratic monomial case. For the
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precise statement of the conjecture see [5, 6]. During the conference in Cortona,
Abedelfatah posted on the arxiv a solution of the EGH conjecture in the monomial
case (any degree), see [2]. His proof is not an obvious extension of ours, essentially
because the Example given in the first page.

At the end of the talk, I discussed another aspect in which the Main Lemma might
be helpful: The dual graph G.�/ of a pure .d � 1/-dimensional simplicial complex
� is defined as:

(i) V.G.�// D ffacets of �g.
(ii) E.G.�// D ffF;Gg W jF \ Gj D d � 1g.
Recently, Adiprasito and Benedetti proved in [3] that, if � is a .d � 1/-dimensional
Cohen-Macaulay flag simplicial complex on n vertices, then

diam.G.�// � n � d:

The Main Lemma might be helpful to get further understanding of G.�/ for �
flag as follows: Recall that

I� D
\

F facet of �

.xi W i … F/;

so the graph G.�/ may be thought also as the graph of minimal primes of I�; i.e.
the graph whose vertices are the minimal primes of I�, and two minimal primes
are connected by an edge if and only if the height of their sum is one more than
the height of I�. The Main Lemma says that there exist linear forms `i;j such that
`1;1`2;1; : : : ; `1;n�d`2;n�d is an S-regular sequence contained in I�. This implies that
the graph G.�/ is an induced subgraph of the graph of minimal primes of the ideal

.`1;1`2;1; : : : ; `1;n�d`2;n�d/:

Such a graph is quite simple to describe: It is obtained by contracting
some edges (which ones depends on the geometry of the matroid given by
`1;1; `2;1; : : : ; `1;n�d; `2;n�d) of the graph G defined as:

1. V.G/ D 2f1;:::;n�dg.
2. fA;Bg 2 E.G/ if and only if jA [ Bj � jA \ Bj D 1.

This should give strong restrictions on the structure of G.�/ for � flag.
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Resonant Bands, Local Systems and Milnor
Fibers of Real Line Arrangements

Masahiko Yoshinaga

Abstract This is a short note on the study of cohomology groups of rank one local
systems of real line arrangements via resonant bands. Results on Milnor fibers and
several conjectures are also stated.

1 Local Systems

Let A D fH1;H2; : : : ;Hng be an arrangement of affine lines in C
2. We can identify

C
2 with CP

2nH0, where H0 is the line at infinity. We define cA D fH0;H1; : : : ;Hng,
where Hi is the closure of Hi in CP

2. The complement of lines is denoted by
M.A/ D C

2 nSn
iD1 Hi D CP

2 nSn
iD0 Hi.

We define the character torus by T.A/ D Hom.	1.M.A//;C�/. Since the
fundamental group 	1.M.A// is generated by meridians �i of Hi (i D 0; : : : ; n),
� 2 Hom.	1.M.A//;C�/ is specified by the images .�.�0/; �.�1/; : : : ; �.�n// 2
.C�/nC1. By this correspondence, we have the following isomorphism

T.A/ ' f.q0; q1; : : : ; qn/ 2 .C�/nC1 j q0q1 � � � qn D 1g:

The character torus T.A/ can also be identified with the moduli space of complex
rank one local systems. For a given q D .q0; q1; : : : ; qn/ with

Q

qi D 1, we denote
by Lq the associated local system, i.e., the local system which has the monodromy
qi 2 C

� around the line Hi.
The twisted cohomology H1.M.A/;Lq/ is related to many other problems

about the topology of M.A/ [6, 7]. One of the central problem is combinatorial
decidability of H1.M.A/;Lq/.
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2 Chambers and Bands

From now, we assume that each line H 2 A is defined over the real number field R.
Our purpose is to describe H1.M.A/;Lq/ in terms of real structure.

A connected component C of R2 nSn
iD1 Hi is called a chamber. The set of all

chambers is denoted by ch.A/. Let C;C0 2 ch.A/. A line H 2 A is said to separate
C and C0 if C and C0 belong to opposite half spaces defined by H � R

2.

Definition 1 Sep.C;C0/ WD fH 2 A j H separates C and C0g:
Definition 2 We call the number of separating lines d.C;C0/ WD j Sep.C;C0/j the
distance of C from C0.

The following object is useful to compute H1.M.A/;Lq/. See [8, 9] for more
details and examples.

Definition 3 A band is a region bounded by a pair of consecutive parallel lines.

Let B be a band. Then there are exactly two unbounded chambers in B. We call
them U1.B/ and U2.B/ 2 ch.A/. The distance d.U1.B/;U2.B// is called the length
of the band B, denoted by jBj.
Definition 4 Let B be a band bounded by two parallel lines H and H0. The closures
H;H

0 � RP
2 intersects on the line at infinity H0. The intersection is denoted by

X.B/ WD H \H
0 2 H0. We also have X.B/ D B\H0, where B is the closure of B in

RP
2.

3 Resonant Bands

Let A D fH1; : : : ;Hng be a line arrangement define over R as in the previous
section. Let q1; : : : ; qn 2 C

� be nonzero complex numbers. We set q0 WD
.q1q2 � � � qn/

�1. For each qi, we fix ti 2 C
� such that t2i D qi, i D 0; 1; : : : ; n.

Definition 5 Let C;C0 2 ch.A/. Define

�q.C;C
0/ WD

Y

Hi2Sep.C;C0/

ti �
Y

Hi2Sep.C;C0/

t�1i :

The following proposition is straightforward.

Proposition 6 �q.C;C0/ D 0 if and only if
Q

Hi2Sep.C;C0/

qi D 1.

Definition 7 A band B is said to be Lq-resonant if �q.U1.B/;U2.B// D 0.
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Let B be a band. Note that each line H 2 A is either parallel to B or across B. Hence
we have

ch.A/ D .cA/X.B/ t Sep.U1.B/;U2.B//; (1)

where .cA/X.B/ is the set of lines passing through X.B/. Using the relation
q0q1 � � � qn D 1, we have the following.

Proposition 8 A band B is Lq-resonant if and only if qX.B/ WD Q

Hi2.cA/X.B/
qi D 1.

Definition 9 Denote by RBLq.A/ the set of all Lq-resonant bands.

Next we define a linear map

r W CŒRBLq.A/� �! CŒch.A/� (2)

from the vector space spanned by the Lq-resonant bands to the vector space spanned
by the chambers.

Definition 10 Let B 2 RBLq.A/. Define r.B/ 2 CŒch.A/� by the following
formula.

r.B/ WD
X

C�B

�q.U1.B/;C/ � ŒC�:

Theorem 11 Assume that q0 ¤ 1. Then

Ker.r W CŒRBLq.A/� �! CŒch.A/�/ ' H1.M.A/;Lq/:

See [9] for proofs and applications. From Theorem 11 we also have the following
vanishing result.

Theorem 12 Assume that q0 ¤ 1.

(i) Suppose that there does not exist point X 2 H0 such that j.cA/Xj � 3 and
qX D 1. Then H1.M.A/;Lq/ D 0.

(ii) Suppose that there exists unique X 2 H0 such that j.cA/Xj � 3 and qX D 1.
Then

dim H1.M.A/;Lq/ D
	

0; if there is i with X … Hi and qi ¤ 1;
j.A/Xj � 2; if, for every i, X … Hi implies qi D 1:

Remark 13 By a result by Cohen et al. [1], Theorem 12 (i) is true for any complex
arrangement.

In general, two lines H;H0 on the real projective plane RP
2 divide the space

into two regions. A pair of lines Hi;Hj 2 cA D fH0;H1; : : : ;Hng is called sharp
pair if one of two regions does not contain any intersections of cA in its interior.
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The existence of sharp pairs gives an upper bound of the dimension of the twisted
cohomology groups.

Theorem 14 Suppose that there exists a sharp pair Hi;Hj 2 cA such that qi ¤ 1

and qj ¤ 1. Then dim H1.M.A/;Lq/ � 1.

4 Milnor Fibers

The Milnor fiber F.A/ of the cone of cA is a Z=.n C 1/Z cyclic covering space
of M.A/. One of the open problems is the combinatorial description of the Betti
numbers of F.A/, especially b1.F.A//.

There is a natural automorphism � W F.A/ �! F.A/, called the monodromy
automorphism. Since � is order nC 1, the cohomology group decomposes into the
sum of eigen spaces

Hk.F.A/;C/ D
M

�nC1D1
HK.F.A/;C/�; (3)

where the sum runs over all complex numbers satisfying �nC1 D 1 and
Hk.F.A/;C/� is the �-eigenspace.

Let � be a complex number satisfying �nC1 D 1. Let us denote by L� the local
system corresponding to .�; �; : : : ; �/ 2 T.A/. It is known [2] that the �-eigenspace
is isomorphic to the twisted cohomology group of M.A/, namely, Hk.F.A/;C/ '
Hk.M.A/;L�/. To compute this, we can apply the result in the previous section.
Note that ��.C;C0/ D �d.C;C0/ � ��d.C;C0/.

Now we fix a complex number � 2 C
� of order k > 1 such that kj.nC 1/.

Proposition 15 A band B is L�-resonant if and only if kjd.U1.B/;U2.B//. Equiva-
lently, �j.cA/X.B/j D 1.

Let B be a L�-resonant band. Then

r.B/ D
X

C�B

.�d.U1.B/;C/ � ��d.U1.B/;C// � ŒC�: (4)

Theorem 16 H1.F.A/;C/� ' Ker.r W CŒRBL� .A/� �! CŒch.A/�/:

Using the above theorem, we can prove some vanishing results.

Definition 17 A point p 2 H0 is said to be a L�-resonant edge if j.cA/pj � 3 and
j.cA/pj is divisible by k.

Theorem 18 If there are no L�-resonant edges, then H1.F.A//� D 0.

The proof of this theorem is now an easy one. First, we have RBL�.A/ D ; by the
assumption. Then obviously Kerr D 0. Theorem 18 is due to Libgober [5]. We
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should note that Libgober’s result is more general than Theorem 18, for he proved
it for any complex arrangements.

We call the affine line arrangementA D fH1; : : : ;Hng inR2 essential if there is at
least one nontrivial intersection. This assumption is not a strong restriction. Indeed
it avoids only the case “H1; : : : ;Hn are parallel”. Under the essentiality hypothesis,
we can strengthen the previous result.

Theorem 19 Suppose A is essential. If there exists at most one L�-resonant edge
on H0, then H1.F.A//� D 0.

The above theorem says that (if A is essential) H1.F.A//� ¤ 0 implies that every
line Hi 2 cA has at least two points of L�-resonant edges. It seems natural to ask
what happens if there are exactly two L�-resonant edges on H0. The following result
gives an answer.

Theorem 20 Suppose that there exist two L�-resonant edges. If H1.F.A//� ¤ 0,
then cA is projectively equivalent to the so called A3-arrangement defined by the
equation xyz.x � z/.y � z/.x � y/ D 0.

Corollary 21 Suppose jcAj � 7 and H1.F.A//� ¤ 0. Then each line Hi 2 cA has
at least three L�-resonant edges on it.

Theorem 22 If cA has a sharp pair of lines, then dim H1.F.A//� � 1.

5 Conjectures

Conjecture 23 Theorems 19 and 20 hold for any complex line arrangements.

Conjecture 24 For a real arrangement cA, dim H1.F.A//� � 1 for any � ¤ 1.
Furthermore, if �3 ¤ 1, then H1.F.A//� D 0.

For simplicial arrangements [4], we have a more precise conjecture.

Conjecture 25 Let cA be a simplicial arrangement on RP
2. Then the following are

equivalent.

(1) H1.F.A//¤1 ¤ 0.
(2) dim H1.F.A//exp.2	

p�1=3/ D 1.
(3) cA has 3-multinet structure (of multiplicity 1) [3].
(4) cA is of type A.6m; 1/ [4].
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On Highly Regular Embeddings

Pavle V.M. Blagojević, Wolfgang Lück, and Günter M. Ziegler

Abstract A continuous map R
d ! R

N is k-regular if it maps any k pairwise
distinct points to k linearly independent vectors. Our main result on k-regular maps
is the following lower bound for the existence of such maps between Euclidean
spaces, in which ˛.k/ denotes the number of ones in the dyadic expansion of k:

For d � 1 and k � 1 there is no k-regular map R
d ! R

N for

N < d.k � ˛.k//C ˛.k/:

This reproduces a result of Chisholm from 1979 for the case of d being a power
of 2; for the other values of d our bounds are in general better than Karasev’s [13],
who had only recently gone beyond Chisholm’s special case. In particular, our lower
bound turns out to be tight for k � 3.

The framework of Cohen and Handel (1979) relates the existence of a k-regular
map to the existence of a specific inverse of an appropriate vector bundle. Thus
non-existence of regular maps into R

N for small N follows from the non-vanishing
of specific dual Stiefel–Whitney classes. This we prove using the general Borsuk–
Ulam–Bourgin–Yang theorem combined with a key observation by Hung [12] about
the cohomology algebras of unordered configuration spaces.

Our study produces similar topological lower bound results also for the existence
of `-skew embeddings Rd ! R

N for which we require that the images of the tangent
spaces of any ` distinct points are skew affine subspaces. This extends work by
Ghomi and Tabachnikov [8] for ` D 2.

The details for this work are provided in our paper On highly regular embeddings,
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1 Introduction

Let d � 1 and k � 1 be integers. A map R
d ! R

N is k-regular if it maps any k
pairwise distinct points to k linearly independent vectors. Such a map only exists if
N is large enough. How large does N have to be?

The study of the existence of k-regular maps was initiated by Borsuk [5] in
1957 and latter attracted additional attention due to its connection to approximation
theory, via the Haar–Kolmogorov–Rubinstein theorem (see [7]). The problem and
its extensions were extensively studied by Chisholm, F. Cohen, Handel, and others
in the 1970s and 1980s [6, 7, 9, 10], and then again by Handel and Vassiliev in the
1990s [11, 14, 15].

Some basic examples and results are as follows, where N.d; k/ denotes the
smallest dimension for which a k-regular map R

d ! R
N exists:

• N.d; k/ � k is trivial.
• N.d; 1/ D 1.
• N.d; 2/ D dC 1.
• N.1; k/ D k follows from the existence of the real moment curve

� W R! R
k; t 7! .1; t; : : : ; tk�1/:

• N.2; k/ � 2k � 1 follows from the complex moment curve

�C W C! R 
C
k�1; t 7! .1; t; : : : ; tk�1/:

• N.d; 3/ � dC 2 is obtained from embeddings

R
d ,! Sd ,! R

dC1 ! R
dC1 
 f1g ,! R

dC2:

• N.d; k/ � .d C 1/b k
2
c was proven by Boltjanskiı̆ et al. [4].

• N.d; k/ � .dC 1/k may be obtained from a general position smooth embedding,
see Boltjanski [3] and Handel [11].

2 Main Result

Our main result on k-regular maps—see [2] for details—is the following lower
bound for the existence of such maps between Euclidean spaces:

Theorem 1 For any d � 1 and any k � 1 there is no k-regular map R
d ! R

N for

N < d.k � ˛.k//C ˛.k/;

where ˛.k/ denotes the number of ones in the dyadic expansion of k.
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This reproduces a result of Chisholm [6] from 1979 for the case when d is
a power of 2; for the other values of d our bounds are in general better than
Karasev’s [13], who had only recently gone beyond Chisholm’s special case. In
particular, our lower bound turns out to be tight for k D 3 (see also Handel [9]).

3 Methods

Any k-regular map f W Rd ! R
N yields an Sk-equivariant map

F.Rd; k/ �!Sk Vk.R
N/

from the configuration space of (ordered) k-tuples of distinct points in R
d to the

Stiefel manifold of ordered k-frames in R
N . Cohen and Handel [7] showed that the

existence of such an equivariant map is equivalent to the existence of an .N � k/-
dimensional inverse of the vector bundle

d;k W Rk �! F.Rd; k/ 
Sk R
k �! F.Rd; k/=Sk;

that is, to the existence of an embedding into a trivial bundle of rank N over the
unordered configuration space F.Rd; k/=Sk.

Thus if the k-regular map f W Rd ! R
N exists, then the dual Stiefel–Whitney

class wN�kC1.d;k/ vanishes. Hence Theorem 1 is a consequence of the following,
which is our main technical result.

Theorem 2 For any d � 1 and k � 1,

w.d�1/.k�˛.k//.d;k/ ¤ 0:

Chisholm has proved this for the case d D 2e in 1979 [6].

Proof Our proof proceeds in five steps. The first four of them treat the special case
k D 2m.

In the first step we pass to the image of the cohomology of Sk under the
restriction to the cohomology of the subgroup Em WD .Z=2/m. The image of the
restriction is known to be generated by the Dickson invariants qm;i of degree 2m�2i.

In the second step, we identify qd�1
m;0 with wk�1.d;k/

d�1, which is non-zero
according to our previous work in [1]. All other monomials in the classes wi,
i < k � 1, of degree at least .d � 1/.k � 1/, vanish according to a key observation
by Hung [12] together with the structure of our model of the configuration space
F.Rd; n/ from [1].

In the third step, we proceed by induction on d, based on the general Borsuk–
Ulam–Bourgin–Yang theorem.
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In the fourth step, we study the monomial expansion of the dual Stiefel–Whitney
invariants,

w.d�1/.k�˛.k//.d;k/ D
X

j1;:::;jk�1�0
j1C2j2C


C.k�1/jk�1D.d�1/.k�1/

 

j1 C � � � C jk�1
j1; j2; : : : ; jk�1

!

wj1
1 � � �wjk�1

k�1

D wd�1
k�1 C other terms;

where Chisholm [6] had exploited that for d D 2e some of the relevant multinomial
coefficients vanish mod 2, while we need and get that all the “other terms” are zero.

In the fifth and last step we extend the result to general k.
We refer to [2] for the details.

4 Further Work

Our study [2] produces similar topological lower bound results also for the existence
of `-skew embeddingsRd ! R

N , for which we require that the images of the tangent
spaces of any ` distinct points are skew affine subspaces. This extends work by
Ghomi and Tabachnikov [8] for ` D 2.
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Positive Sum Systems

Anders Björner

Abstract Let x1; x2; : : : ; xn be real numbers summing to zero, and let PC be the
family of all subsets J � Œn� WD f1; 2; : : : ; ng such that

P

j2J xj > 0. Subset families
arising in this way are the objects of study here.

We prove that the order complex of PC, viewed as a poset under set containment,
triangulates a shellable ball whose f -vector does not depend on the choice of x, and
whose h-polynomial is the classical Eulerian polynomial. Then we study various
components of the flag f -vector of PC and derive some inequalities satisfied by
them.

It has been conjectured by Manickam, Miklós and Singhi in 1986 that
�n�1

k�1
�

is
a lower bound for the number of k-element subsets in PC, unless n=k is too small.
We discuss some related results that arise from applying the order complex and flag
f -vector point of view.

Some remarks at the end include brief discussions of related extensions and
questions. For instance, we mention positive sum set systems arising in matroids
whose elements are weighted by real numbers.

1 Introduction

Let x1; x2; : : : ; xn be real numbers summing to zero,1 and let PC D PC.x/ be the

family of all subsets J � Œn�defDf1; 2; : : : ; ng such that x.J/
defDPj2J xj > 0. Such a set

family PC.x/ will here be called a Positive Sum System—PSS for short. A standing

Based on a talk given at Cortona, Italy, September 2013. Research supported by the Swedish
National Research Council (VR), under grant no. 2011-11677-88409-18.
1The zero sum condition can in several cases be relaxed to nonnegative sum, with only slight
modification of arguments. We leave this without further mention.

A. Björner (�)
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assumption is that the weight vector x is generic, by which is meant that x.J/ ¤ 0,
for all proper subsets J.

This same concept comes up in several applied areas, such as Physics, Game
Theory, Economics, and Computer Science, typically under a multitude of different
names such as “linear threshold hypergraphs”, “maximal unbalanced families”, etc.2

See the paper [2] for many references to applications.
Is there some recognizable structure to such a set system PC? Interesting

enumerative questions have been discussed in the literature, some of which are
mentioned here, see Sect. 7. Approaching PSS systems from another direction, we
prove that the order complex of PC, viewed as a poset under set containment, tri-
angulates a shellable ball whose h-polynomial is the classical Eulerian polynomial.
One surprising consequence is that the h-vector of PC.x/, and hence also its f -
vector, does not depend on the weight vector x.

Example 1.1 Let x D .4; 1;�2;�3/. Then

PC.x/ D f1; 2; 12; 13; 14; 123; 124g;

where for notational ease set brackets are omitted. The set system PC.x/ is shown
as a poset in Fig. 1, where to distinguish from different uses of the numerals we use
the labeling .1; 2; 3; 4/ D .a; b; c; d/.

Fig. 1 A PSS system and its dual with set inclusion edges

2Opposite to H. Poincaré’s aphorism “Mathematics is the art of giving the same name to different
things”.
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Fig. 2 The order complex, a ball

This PSS has six maximal chains, each of cardinality three. Its order complex
consists of six triangles (2-simplices) glued together this way to form a ball (Fig. 2):

We assume some familiarity with the combinatorics of simplicial complexes and
their face numbers. As a general reference, see [4].

The ball �.PC.x// is balanced, so we may talk also about its flag f -vector,
(fJ j J � Œn�). This number array turns out to depend on x, however certain linear
combinations of the flag f -numbers are invariant. Several equalities and inequalities
for the flag f -vectors of PSS systems come from the fact that �.PC/ triangulates a
ball, but there are also other ones.

How many k-element subsets must there be in PC ? Let PC
k WD fJ 2 PC W jJj D

kg. It has been conjectured by Manickam, Miklós and Singhi in 1986 that jPC
k j �

�n�1
k�1
�

for n � 4k. Despite much work this conjecture remains open. We discuss some
related results that naturally arise from taking a “flag f -vector” point of view.

2 Some Basic Properties

The following summarizes some basic properties of the PSS poset PC D PC.x/.
A standard assumption is this: x1 � � � � � xn. Also, recall that we demand that
x.J/ D 0 if and only if J D ; or J D Œn�.

A family � of subsets of Œn� is said to be shifted if A 2 � , 1 � y < z � n, y … A,
z 2 A implies that .A n z/ [ fyg 2 � . We let Bn denote the Boolean poset of all
proper subsets of Œn�, ordered by inclusion.

Proposition 2.1 Let PC be a PSS. Then,

.1/ jPCj D 2n�1 � 1.

.2/ PC is a shifted set family.

.3/ Given x 2 R
n, there exists y 2 Z

n, such that PC.x/ D PC.y/, and for non-empty
I; J � Œn�: I ¤ J ) y.I/ ¤ y.J/.
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.4/ If J covers H1; : : : ;Hk in Bn, then

x.J/ D x.H1/C � � � C x.Hk/

k � 1
.5/ If J is covered by G1; : : : ;Gn�k in Bn, then

x.J/ D x.G1/C � � � C x.Gn�k/

n � k � 1
.6/ All maximal chains of PC have the same length n� 2.

Proof In each pair of a set J and its complement JcdefDŒn� n J, one set is positive and
the other negative, so jPCj D jBnj

2
D 2n�1 � 1.

Part (2) is immediate from the definition.
Statement (3) is seen by perturbing the points xi to sufficiently nearby generic

rational points, followed by dilation to integer points.
In the sum x.G1/C � � � C x.Gn�k/, each element of J is counted n� k times, and

each element not in J is counted once. Therefore,

x.G1/C � � � C x.Gn�k/ D .n � k/x.J/C x.Jc/ D .n � k � 1/x.J/

which proves (5). Part (4) is handled similarly.
Part (4) shows that if J has positive weight, then at least one of the covering sets

G1; : : : ;Gn�k must be positive. It is a direct consequence that all maximal chains of
PC have full length. ut
Corollary 2.2

x.J/ D
P

x.Hi/CP x.Gj/

n � 2
If we forget the order structure of Bn for a moment and view the situation on

the edge graph of the n-dimensional cube, then the corollary expresses a kind of
“subharmonic” property of the function x.�/: its value at any vertex of the cube is,
up to a n�2

n -factor, the average of its values at the neighbors of that vertex.
Parts (4) and (5) allow the following immediate generalization. Suppose that

jJj D k, and that p < k < q. Let H1; : : : ;H.k
p/

be the p-element subsets of J.

Then

x.J/ D
x.H1/C � � � C x.H.k

p/
/

p
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Similarly, if G1; : : : ;G.n�k
q�k/

are the q-element supersets of J, then

x.J/ D
x.G1/C � � � C x.G.n�k

q�k/
/

n � q

3 PSS Are Balls

Theorem 3.1 The order complex �.PC/ is a shellable .n � 2/-dimensional ball.

Proof The complex �.PC/ is pure and .n � 2/-dimensional. Furthermore it has
the property that every .n � 3/-dimensional face borders at most two facets, and
some border only one facet. It is well known that under these conditions shellability
implies being homeomorphic to a ball.

We use the method of lexicographic shellability [6]. The proof that PC is EL-
shellable is straight-forward. Label each covering edge in the Hasse diagram of PC
by the new element xi that is added when going up along that edge. Then order the
labels in reverse magnitude order: x1 < x2 < � � � < xn. One easily checks that in
each interval in P there is a unique increasing chain and it comes lexicographically
first. ut

The triangulated balls occurring as PSS balls have some very particular structure.
For instance, as a consequence of Theorem 5.3 they have precisely one internal
vertex, namely the set of all positive elements.

In the case n D 3 every PSS ball consists of two edges joined at a common
vertex. For n D 4 there are exactly two isomorphism types of PSS balls, as shown
in Fig. 3. In this case, if the number of positive elements is two then the ball will be
of type�, and if the number of positive elements is one or three it will be of type � .

Fig. 3 The two types of PSS
balls obtainable when n D 4
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4 Rotation of Compositions

We now discuss some combinatorial properties of compositions, or ordered parti-
tions. There are two kinds.

Definition 4.1

(i) (Set composition) A composition with k parts of a set E, an .E; k/-
composition, is an ordered sequence of nonempty and pairwise disjoint subsets
< D1; : : : ;Dk > such that

D1 [ D2 [ � � � [Dk D E:

(ii) (Number composition) A composition with k parts of the number n, an .n; k/-
composition, is an ordered sequence of positive integers < c1; : : : ; ck > such
that

c1 C c2 C � � � C ck D n:

The set of all .E; k/-compositions is permuted by the rotation operator:

Rotk < D1;D2; � � � ;Dk�1;Dk >
defD < D2;D3; � � � ;Dk;D1 >

Similarly, for the set of .n; k/-compositions:

rotk < c1; c2; � � � ; ck�1; ck >
defD < c2; c3; � � � ; ck; c1 >

There is an obvious forgetful map ', mapping set compositions to number com-
positions by replacing the subsets by their cardinalities. This map commutes with
rotation:

' ı Rotk D rotk ı '

Note that, whereas all orbits of the Rotk operator are of size k, all we can say about
the orbits of rotk is that their sizes divide k.

We need two facts about the orbits of the rotation maps, expressed in the
following lemmas.

Lemma 4.2 Let c be a .n; k/-composition whose rot-orbit has size d. Then the set

T.c/
defD'�1.c/ [ '�1.rot.c//[ '�1.rot2.c// [ � � � [ '�1.rotd�1.c//

is a union of Rot-orbits, and the number of these orbits is d
k

� n
c1;:::;ck

�

:
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Proof We have that

j'�1.rot j.c//j D
 

n

c1; : : : ; ck

!

for all j. Hence, jT.c/j D d
� n

c1;:::;ck

�

; and the claim follows. ut
Now, suppose that we have real numbers x1; x2; : : : ; xn summing to zero. We

assume genericity, as previously defined. By the charge of a set composition
< D1; : : : ;Dk > we mean

charge.D/
defD the number of j such that x.D1 [ D2 [ � � � [Dj/ < 0

Thus, 0 � charge.D/ � k � 1.

Lemma 4.3 Each Rotk-orbit contains precisely one composition of charge s, for
each s D 0; 1; 2; : : : k � 1:
Proof Let j be such that x.D1[D2[� � �[Dj/ is minimal. This requirement uniquely
determines j, due to the genericity assumption. Then charge.Rot j.D// D 0. Next,
let j be such that x.D1[D2[� � �[Dj/ is second smallest. Then charge.Rot j.D// D 1,
and so on. ut

5 f -Vectors and Eulerian Numbers

We now return to the discussion of the order complex �.PC/ of a PSS system
PC.x/. Let fk denote the number of k-dimensional faces. Our concern is to study
these face numbers, as recorded in the f -vector .f�1; f0; : : : ; fn�2/ and the h-vector
.h0; h1; : : : ; hn�1/, related via

n�1
X

iD0
fi�1tn�1�i D

n�1
X

iD0
hi.tC 1/n�1�i

Consider our running example, the PSS system defined in Example 1.1. Its order
complex is a two-dimensional ball � with f and h-vectors f D .1; 7; 12; 6/ and
h D .1; 4; 1; 0/. Note that the other two-dimensional PSS ball � shown in Fig. 3 has
the same face numbers.

We know that, in general, the order complex�.PC/ is an .n� 2/-ball embedded
in the .n� 2/-sphere�.Bn/. The following relationship between the order complex
f -vectors of PC and of Bn (the barycentric subdivision of the boundary of an .n�1/-
simplex) is a key observation:
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Lemma 5.1

fj.�.PC// D 1

jC 2 fj .�.Bn//

Proof The j-faces of �.Bn/ are chains of j C 1 proper subsets of Œn�. By taking
successive difference sets, such chains can be equivalently identified as .Œn�; jC 2/-
compositions.

The set of all .Œn�; j C 2/-compositions is partitioned into Rot-orbits, all of size
j C 2. Lemma 4.3 tells that in each orbit there is exactly one composition of zero
charge. A composition has charge D 0 if and only if the corresponding chain is in
PC, so we are done. ut
Theorem 5.2 Let PC D PC.x/.

(1) The f -polynomial (and hence also the h-polynomial) of �.PC/ is an invariant,
the same for all weight vectors x.

(2) The h-polynomial of�.PC/ is the classical Eulerian polynomial. That is,

hi.�.PC// D card fpermutations 2 Sn with i descentsg

Proof Part (1) is a direct consequence of Lemma 5.1. Because of it we are free to
work with any weight vector x.

The vector x D f1; 1; : : : 1; 1 � ng is a good choice. Then �.PC/ is the order
complex of a half-open interval .;; Œn�1�� in Bn. This is a cone over the barycentric
subdivision of the boundary of an .n�2/-simplex (equivalently, the Coxeter complex
of the symmetric group Sn�1), and the description of its h-vector is well known. For
instance, it is easy to derive via the method of R-labeling, see [6, 11]. ut

See [11] for information about Eulerian numbers and polynomials. As an
example, h D .1; 11; 11; 1; 0/ and h�.PC/.t/ D t C 11t2 C 11t3 C t4 for every
PSS with n D 5.

It is well known that the h-vector of a ball determines not only the face numbers
of the ball, but also the face numbers of the bounding sphere and the face numbers
of the ball’s interior, see e.g. [4, Thm. 18.3.6].

Thus, relying on the easily computable f -numbers of the barycentric subdivision
of the boundary of a simplex, we derive expressions like the following.

Theorem 5.3 We have for the .n � 2/-ball PC.x/:

.i/ f0.PC/ D 1
2

f0.Bn/ D 2n�1 � 1
.ii/ f1.PC/ D 1

3
f1.Bn/ D 3n�1 � 2n C 1

.iii/ fn�3.PC/ D 1
n�1 fn�3.Bn/ D nŠ

2

.iv/ fn�2.PC/ D 1
n fn�2.Bn/ D .n � 1/Š

and for its boundary @PC.x/, an .n � 3/-sphere:

.v/ f0.@PC.x// D 2n�1 � 2
.vi/ f1.@PC.x// D 3.3n�2 � 2n�1 C 1/
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.vii/ fn�4.@PC.x// D .n � 1/Š n�2
2

.viii/ fn�3.@PC.x// D .n � 1/Š
Part (iv) states the useful fact that the number of totally positive maximal chains in
the Boolean poset Bn is .n� 1/Š. Parts (i) and (v) together imply that the number of
internal vertices is one.

6 Flag f -Vectors

Flag f - and h-vectors are defined in the following way.

Definition 6.1 For Z � Bn and J D fi1 < i2 < � � � < ikg � Œn � 1�; let

(i) fJ D fJ.Z/ D #fchains z1 < � � � < zk in Z such that jzjj D ijg;

(ii) hJ D hJ.Z/ DPI�J.�1/jjJnIjjfJ .

There is an obvious bijective correspondence � between number .n; k/-
compositions and .k � 1/-subsets of Œn � 1�:

c1 C c2 C � � � C ck  ! fc1; c1 C c2; : : : ; c1 C c2 C � � � C ck�1g

Hence, instead of indexing flag f -vectors by subsets J, we can index by number
compositions c D< c1C c2C � � �C ck >. Also, the rotation operator can be applied
to subsets as well as to compositions:

rot .J/
defD��1 ı rot ı � .J/

The flag f -vector of PC.x/ refines the information given by the ordinary f -
vector of the previous section. It is therefore natural to ask if also the flag f -vector
fJ.PC.x// is independent of x. Let us take a look at the two n D 4 complexes� and
� shown in Fig. 3. Here are their flag f -vectors:

J ; 1 2 3 1; 2 1; 3 2; 3 1; 2; 3

� 1 2 3 2 4 4 4 6

� 1 3 3 1 6 3 3 6

And these are the flag h-vectors:

J ; 1 2 3 1; 2 1; 3 2; 3 1; 2; 3

� 1 1 2 1 0 1 0 0

� 1 2 2 0 1 0 0 0
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These tables show that the flag f -vector is not an invariant. However, there are
certain relations that do not depend on x.

Theorem 6.2 Let J be a .k � 1/-element subset of Œn � 1� corresponding to the
composition c1 C c2 C � � � C ck D n, whose rotation orbit has size d. Then, writing
for simplicity fJ D fJ.PC.x//, we have

fJ C frot.J/ C frot2.J/ C � � � C frotd�1.J/ D d

k

 

n

c1; : : : ; ck

!

Proof This follows from Lemmas 4.2 and 4.3. ut
Example 6.3 Here are the rotation relations for flag f -vectors, n D 4:

(i) ff1g C ff3g D
�
4

1;3

� D 4
(ii) ff2g D 1

2

�
4
2;2

� D 3
(iii) ff1;2g C ff2;3g C ff1;3g D

�
4

1;2;1

� D 6
In the tables above for our running example, the relation (i) is the sum of the

boldface entries, while relation (iii) is the sum of the underlined entries.
The rotation relations for flag f -vectors, n D 5, are as follows:

(i) ff1g C ff4g D 5
(ii) ff2g C ff3g D 10

(iii) ff1;2g C ff3;4g C ff1;4g D 20
(iv) ff1;3g C ff2;3g C ff2;4g D 30
(v) ff1;2;3g C ff2;3;4g C ff1;3;4g C ff1;2;4g D 30

7 Positive k-Sets, Edges and Matchings

In this section we discuss inequalities for two particularly interesting components
of the flag f -vector: ffkg.PC/ and ffk�1;kg.PC/. Also, we prove the existence of
matchings of positive .k � 1/-sets to positive k-sets under certain conditions.

How many k-element subsets must PC contain? An intriguing conjecture by
Manickam, Miklós and Singhi from 1986 states that3

ffkg.PC/ �
 

n � 1
k � 1

!

for n � 4k: (7.1)

3Note the distinction between fk.PC/ (defined in Sect. 5) and ffkg.PC/ (a component of the flag
f -vector).
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This lower bound, if true, is tight, as shown by PSS systems governed by weight
vectors x with only one positive entry.

Example 7.1 Let x D .3; 3; 3; 3; 3; 3; 3;�7;�7;�7/. This determines a PSS with
parameters .n; k/ D .10; 3/. Here jPC

3 j D
�
7
3

� D 35, but the inequality (7.1)
promises jPC

3 j �
�
9
2

� D 36. This shows that some restriction such as n � 4k is
needed in the MMS conjecture

A lot of work has been done on the MMS conjecture. Manickam, Miklós and
Singhi showed that if n is sufficiently large with respect to k, then the inequality
ffkg.PC/ � �n�1

k�1
�

holds. It is natural to wonder “how large”?
For a long time the best lower bounds known for n were exponential in k. A

breakthrough came in 2011 when Alon et al. [2] proved the MMS inequality (7.1)
to hold for n � 33k2. Finally, a linear bound with huge constant (n � 1046k) was
given in 2013 by Pokrovskiy [9]. The inequality is also known to be true when k
divides n, as a consequence of the hypergraph theorem of Baranyai [3]. See [2] for
details about these and other references.

The following result show relaxations of the MMS inequality, valid for all n > k.
The second part generalizes the Baranyai bound.

Theorem 7.2 For all n > k,

.i/

ffk�1;kg.PC/ �
 

n � 1
k � 1

!

:

.ii/

ffkg.PC/ � gcd.n; k/

k

 

n � 1
k � 1

!

.iii/

ffkg.PC/ � 1

p

 

n � 1
k � 1

!

;

where p is the average number of positive elements in a positive k-subset.

Proof There are .n � 1/Š totally positive maximal chains in Bn, each of them
must pass through a positive fk � 1; kg edge, and each such edge is contained in
.k � 1/Š.n � k/Š maximal chains. This implies part (i).

Let d D gcd.n; k/ and consider the family Cn;d of chains of type < d; d; : : : ; d >.
There are

� n
d;d;:::;d

�

such chains, and the Rotn=d operator acts on Cn;d with orbits of
size n=d. In each orbit there is, by Lemma 4.3, exactly one totally positive chain.
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Hence, there are

1

n=d

 

n

d; d; : : : ; d

!

D
 

n � 1
d � 1

! 

n � d

d; d; : : :

!

totally positive chains in Cn;d. Each such chain must contain some z 2 PC
k , and each

z 2 PC
k is contained in exactly

� k
d;d;:::

�� n�k
d;d;:::

�

chains.
Hence,

 

n � 1
d � 1

! 

n� d

d; d; : : :

!

� ffkg.PC/
 

k

d; d; : : :

! 

n � k

d; d; : : :

!

which simplifies to part (ii):

gcd.n; k/

k

 

n � 1
k � 1

!

� ffkg.PC/:

It is a consequence of part (ii) that ffkg.PC/ � 1
k

�n�1
k�1
�

. From this, part (iii) is
easily proved by averaging. We omit the details. ut

The set PC
fk�1;kg is the collection of edges of a bipartite graph whose vertices

are PC
fk�1g and PC

fkg. We have seen some lower bounds, proven and conjectured, to

the sizes of the two vertex sets and to ffk�1;kg.PC/. We end with a structural result
concerning matchings.

Let pos.x/ denote the number of positive entries in the weight vector x D
.x1; : : : ; xn/, and let PC

k .x/ be the family of all k-element sets in PC.x/. A matching
is an injective mapping � W PC

k�1.x/! PC
k .x/, such that T < �.T/ for all T.

Theorem 7.3 Suppose that pos.x/ � 2k � 1. Then there exists a matching
PC

k�1.x/! PC
k .x/.

Proof The existence of matchings between adjacent cardinality levels in the full
Boolean lattice is well known. The construction has been described by various
authors.

We refer to the description in [12, §2.2]. The injective mapping � W � Œn�k�1
�! �

Œn�
k

�

constructed on pages 36–37 of [12] has the property that if �.T/ D T [ ftg, then
t � 2k � 1. Therefore, xt � x2k�1 > 0, and if T is positive, so is also �.T/. ut
Corollary 7.4 Suppose that pos.x/ � 2k � 1. Then,

ff1g.PC/ � ff2g.PC/ � � � � � ffk�1g.PC/ � ffkg.PC/

Thus, if the number of positive entries and of negative entries in x are roughly equal,
then this increasing sequence will run until circa k D n=4. Can we hope for more?
Are there inequalities of the type ffj�1g.PC/ � ffjg.PC/ for other j? This seems
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likely, but we leave this open and end with a small example, namely the PSS defined
in Example 7.1, for which

.ff1g.PC/; : : : ; ff9g.PC/ D .7; 21; 35; 140; 126; 70; 85; 24; 3/

8 Remarks

8.1 A Flag MMS Conjecture

The MMS conjecture says that a PSS system PC D PC.x/minimizes ffkg.PC/ (for
k � n=4) if its weight vector x has only one positive entry. The same intuition leads
to the following generalization.

Conjecture 8.1 Let PC D PC.x/ be a PSS system, and let J be a subset of Œn � 1�
corresponding to a composition k1 C k2 C � � � C kt D n, such that kt � 3n=4. Then,

fJ.PC/ �
 

n � 1
k1 � 1; k2 � k1; : : : ; kt � kt�1

!

Using the same strategy as in the proof of Theorem 7.2, we easily obtain this
weaker approximation to that lower bound.

fJ.PC/ � 1

k

 

n � 1
k1 � 1; k2 � k1; : : : ; kt � kt�1

!

; for all n:

8.2 Counting PSS Systems of Given Size

How many distinct positive sum set systems can arise as one varies the vector
x1; x2; : : : ; xn? Let En be this number. It has been computed up to n D 9 by quantum
theory physicists, for whom these numbers have a meaning in connection with
thermal field theory. Here are the beginning values [13]:

n 2 3 4 5 6 7 8

En 2 6 32 370 11 292 1 066 044 347 326 352

No exact formula for En is known. Its asymptotic growth has been studied, and
this estimate is known:

En D 2n2Co.n2/; or more precisely, 2.
n�1
2 / < En < 2

.n�1/2

See the papers [5, 14] for these results and further information.
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8.3 PSS Systems in Matroids

The definition of a PSS can be immediately adapted to any finite set family. For
instance, weighting the elements of a matroid by real numbers, one gets the systems
of positive bases, positive circuits, positive flats, and so on. In this direction there is
the following recent result of Adiprasito and the author [1] concerning the system
of positive flats in a matroid.

Let L be a geometric lattice of rank r, with set of atoms A. Let x W A ! R be a
mapping such that

P

a2A x.a/ D 0, and let LC.x/ D fz 2 L jPa2z x.a/ > 0g:
Theorem 8.2 ([1]) The order complex of LC.x/ is topologically .r�3/-connected.
In fact, it is homotopy Cohen-Macaulay.

This result had been conjectured by G. Mikhalkin and G.M. Ziegler (The
positive part of a geometric lattice, 2008, personal communication), motivated by
its relevance for questions concerning Lefschetz hyperplane theorems in tropical
geometry.

The wider context of matroid theory offers new perspectives and possibilities.
Let M be a connected matroid of rank k on n elements, and suppose given a weight
vector x summing to zero but otherwise generic, as previously defined.

Let Q�.M/ be the Möbius number of M, i.e., the absolute value of �.O0; O1/
computed over the lattice of flats of M. It is known [7, Thm. 7.1] that the matroid M
has at least n

k Q�.M/ bases. How many of these must be of positive weight?

Conjecture 8.3 M has at least Q�.M/ positive bases, if n � 4k.

For the special case when M is the k-uniform matroid we have that Q�.M/ D
�n�1

k�1
�

. Hence, Conjecture 8.3 contains the MMS conjecture as a special case.

8.4 Scarf Complexes

Motivated by questions in integer programming, H.E. Scarf has introduced a class of
simplicial complexes with vertices in the integer point lattice and faces determined
by movable linear constraints. See [10] for details and references. It can be shown
that the PSS complexes �.PC/ studied here are Scarf complexes (called “Top
complexes” by him).

In [8] the author studied the f -vectors of Scarf complexes. The points of view in
the two papers are quite different, but it should be mentioned that some of the results
here are proved in greater generality there. For instance, Lemma 5.1 is a special
case of [8, Proposition 11(i)], and Sect. 4 of [8] gives a more detailed discussion
of its consequences than what is offered here. On the other hand, flag f -vectors are
not considered in [8], since Scarf complexes are in general not order complexes of
posets or otherwise balanced.
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The SnC1 Action on Spherical Models
and Supermaximal Models of Tipe An�1

Filippo Callegaro and Giovanni Gaiffi

Abstract In this paper we recall the construction of the De Concini–Procesi
wonderful models of the braid arrangement: these models, in the case of the braid
arrangement of type An�1, are equipped with a natural Sn action, but only the
minimal model admits an ‘hidden’ symmetry, i.e. an action of SnC1 that comes
from its moduli space interpretation. We show that this hidden action can be
lifted to the face poset of the corresponding minimal real spherical model and
we compute the number of its orbits. Then we provide a spherical version of the
construction of the supermaximal model (see Callegaro, Gaiffi, On models of the
braid arrangement and their hidden symmetries. Int. Math. Res. Not. (published
online 2015). doi: 10.1093/imrn/rnv009), i.e. the smallest model that can be
projected onto the maximal model and again admits the extended SnC1 action.

1 Introduction

The first part of this paper is a short survey on the construction of De Concini–
Procesi (real and complex) wonderful models of subspace arrangements (see [5, 6])
and on the similar construction of real spherical models (see [20]). After describing
the main properties of these spaces, we recall that they are particular cases of some
more general constructions that, starting from a ‘good’ stratified variety, produce
models by blowing up a suitable subset of strata (see [30, 31] and also [10] for
further references).

We then consider, as an example, the case of the braid arrangement, i.e., the root
arrangement of type A. Here there is a natural action of the symmetric group: Sn

acts on the root arrangement of type An�1, and therefore on all the above mentioned
wonderful models.

It turns out that the minimal projective (real or complex) De Concini–Procesi
model associated with this root arrangement is isomorphic to the moduli space
M0;nC1 of n C 1-pointed stable curves of genus 0, therefore it carries an ‘hidden’
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extended action of SnC1 that has been studied by several authors (see for instance
[13, 25, 36]).

The second part of this paper is devoted to this symmetric group action in the
spherical case. First we show (in Sect. 3) that the extended SnC1 action can be lifted
to the face poset of the minimal real spherical model of type An�1 (this model is
the disjoin union of nŠ Stasheff’s associahedra) and we give formulas that count the
number of orbits (see Sect. 4). It turns out that this problem of orbit counting is
strictly related with the classical problem of counting the dissections of a convex
polygon with nC1 edges modulo the action of the rotations. Our formulas involve a
power series in two variables and can be compared with the formulas in the literature
(see [1, 11, 32, 38, 39]).

In the third part of this paper we recall the construction of supermaximal models
appeared in [2]. As a difference from [2] we mainly focus on the spherical case. We
start in Sect. 5 by addressing the following problem: there are several De Concini–
Procesi models associated with the arrangement of type An�1; among these spaces
there are a minimal and a maximal one. We observe that the SnC1 action cannot be
extended to the non-minimal models (we show this by an example). Why does this
happen?

We answer to this question by showing in Sect. 7 that the maximal model is, in
some sense, “too small”. This takes two steps, that we express here from the point
of view of spherical models:

1. We identify in a natural way its strata with a subset T of 1-codimensional strata
of a “spherical supermaximal” model on which the SnC1 action is defined. This
spherical supermaximal model is obtained by blowing up some strata in the
spherical maximal model, but it also belongs to the family L of models obtained
by blowing up ‘building sets’ of strata in the spherical minimal model; in fact it is
the model obtained by blowing up all the strata of the spherical minimal model.

2. We show that the closure of T under the SnC1 action is the set of all the strata of
the spherical supermaximal model. This means that the spherical supermaximal
model is the minimal model in L that admits a projection onto the spherical
maximal model and is equipped with the SnC1 action.

The second step is the content of Theroem 36.
We conclude by counting the orbits of the action of SnC1 on the spherical

supermaximal model and quoting a theorem (proved in [2]) that describes a basis
for the cohomology of a complex supermaximal model.
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2 Wonderful Models

2.1 The Geometric Definition of Building Sets and Nested Sets

In this section we recall from [5, 6] the definitions of nested set and building set of
subspaces in an euclidean space V .

Let A be a central subspace arrangement in an Euclidean space V . We denote by
CA the closure under the sum of A and by A? the arrangement

A? D fA? j A 2 Ag:

In particular we notice that if fOg 62 A then also fOg 62 CA:

Definition 1 The collection of subspaces G � CA is called building set associated
to A if CA D CG and every element C of CA is the direct sum C D G1˚G2˚: : :˚Gk

of the maximal elements G1;G2; : : : ;Gk of G contained in C (this is called the G-
decomposition of C).

Given a subspace arrangement A, there are several building sets associated to
it. Among these there always are a maximum and a minimum (with respect to
inclusion). The maximum is CA, the minimum is the building set of irreducibles
that is defined as follows.

Definition 2 Given a subspace U 2 CA, a decomposition of U in CA is a collection
fU1; � � � ;Ukg (k > 1) of non zero subspaces in CA such that

1. U D U1 ˚ � � � ˚Uk.
2. For every subspace A � U, A 2 CA, we have A \ U1; � � � ;A \ Uk 2 CA and

A D .A \U1/˚ � � � ˚ .A \ Uk/.

Definition 3 A non zero subspace F 2 CA which does not admit a decomposition
is called irreducible and the set of irreducible subspaces is denoted by FA.

Remark 4 In the case of a root arrangement (i.e. when A? is the hyperplane
arrangement provided by the hyperplanes orthogonal to the roots of a root system
ˆ) the building set of irreducibles is the set of subspaces spanned by the irreducible
root subsystems of ˆ (see [41]).

Definition 5 Let G be a building set associated to A. A subset S � G is called (G-)
nested, if given a subset fU1; : : : ;Uhg (with h > 1) of pairwise non comparable
elements in S, then these elements are in direct sum and U1 ˚ � � � ˚ Uh … G.
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2.2 The Example of the Root System An�1

Let us consider the root arrangement of type An�1. We think of it as an essential
arrangement, i.e. we consider the hyperplanes with equation xi � xj D 0 in the
quotient space R

n= < .1; 1; : : :; 1/ >.
Let us denote by FAn�1 the building set of irreducibles associated to this

arrangement. According to Remark 4, it is made by all the subspaces spanned
by the irreducible root subsystems. Therefore there is a bijective correspondence
between the elements of FAn�1 and the subsets of f1; � � � ; ng of cardinality at least
two: if the annihilator of A 2 FAn�1 is the subspace described by the equation
xi1 D xi2 D � � � D xik then we represent A by the set fi1; i2; : : : ; ikg. As a consequence
a FAn�1- nested set S is a set (which we still call S) of subsets of f1; � � � ; ng with the
property that any of its elements has cardinality � 2 and if I and J belong to S than
either I \ J D ; or one of the two sets is included into the other.

Let us now denote by FAn�1fund the subset of FAn�1 made by the subspaces that can
be spanned by a set of simple roots. It coincides with the building set of irreducibles
associated to the arrangement given by the hyperplanes orthogonal to the simple
roots. With regards to the bijection mentioned above, the subspaces in FAn�1fund

correspond to subsets of the form fi; iC 1; : : : ; jg, where 1 � i < j � n:
When we associate to a nested set of FAn�1fund its set of subsets of f1; � � � ; ng we

realize that this is equivalent to giving a parenthesization of the list 1; 2; 3; : : :; n.
For instance,

f1; 2g; f3; f4; 5; 6g; 7g; 8; 9

represents the of FA8fund - nested set made by the three sets f1; 2g, f4; 5; 6g,
f3; 4; 5; 6; 7g, i.e. by the three subspaces in R

9= < .1; 1; : : :; 1/ > described by
the equations x1 D x2, x4 D x5 D x6 and x3 D x4 D x5 D x6 D x7.

Let us now focus on the maximal building set CAn�1 associated with the root
arrangement of type An�1. It is made by all the subspaces that can be obtained as
span of roots. Using the same notation as before, these subspaces can be put in
bijective correspondence with the partitions of f1; � � � ; ng such that at least one part
has cardinality � 2. Each part with cardinality � 2 correspond to a subspace, and
all these subspaces are in direct sum; the parts of cardinality 1 don’t correspond to
subspaces.

For instance,

f1; 3g; f2g; f4; 5; 9g; f7g; f6; 8g

corresponds to the subspace described by the equations x1 D x3, x4 D x5 D x9 and
x6 D x8.

Remark 6 In the sequel we will not write the parts with only one element, i.e. we
will omit the parentheses fig.
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The CAn�1-nested sets are given by chains of subspaces in CAn�1 (with respect
to inclusion). In terms of partitions, this corresponds to give chains of the above
described partitions of f1; � � � ; ng (with respect to the refinement relation).

As before, we denote by CAn�1fund the subset of CAn�1 made by the subspaces that
can be spanned by a set of simple roots. Its subspaces are described by the partitions
of the list 1; 2; : : :; n such that at least one part has cardinality � 2. The CAn�1fund -
nested sets are described by chains of these partitions of 1; 2; : : :; n.

One can find in [23] a description of the maximal model YCAn�1
and in [24] a

description of all the Sn invariant building sets associated with the root system An�1.

2.3 The Construction of Wonderful Models

In this section we recall the construction of De Concini–Procesi models from [6].
The interest in these models was at first motivated by an approach to Drinfeld’s

construction of special solutions for Khniznik–Zamolodchikov equation (see [12]).
Moreover, in [6] it was shown, using the cohomology description of these models,
that the rational homotopy type of the complement of a complex subspace arrange-
ment depend only on the intersection lattice.

Then real and complex De Concini–Procesi models turned out to play a key role
in several fields of mathematical research: subspace and toric arrangements, toric
varieties (see for instance [8, 17, 37]), tropical geometry (see [16]), moduli spaces
and configuration spaces (see for instance [13, 29]), box splines, vector partition
functions and index theory (see [3, 7]), discrete geometry (see [14]).

Let us recall how they are defined. Let A be a subspace arrangement in an
euclidean space V and let M.A?/ be the complement of the arrangement A?. Let
G be a building set associated to A (we can suppose that it contains V), Then one
considers the map

i W P.M.A?//! P.V/ 

Y

D2G�fVg
P.V=D?/

where in the first coordinate we have the inclusion and the map from M.A?/ to
P.V=D?/ is the restriction of the canonical projection .V � D?/! P.V=D?/.

Definition 7 The (compact) wonderful model YG is obtained by taking the closure
of the image of i.

De Concini and Procesi in [6] proved that the complement D of P.M.A?// in YG
is a divisor with normal crossings whose irreducible components are in bijective
correspondence with G � fVg and are denoted by DG (G 2 G � fVg).

More precisely, let us introduce the following notation:

Definition 8 Given a subspace C � V , we define the following two (possibly
empty) subspace arrangements.



178 F. Callegaro and G. Gaiffi

1. AC D fH 2 A j C � Hg.
2. AC D fB \ C j B 2 A�ACg.
If we now denote by   the projection onto the first component P.V/, DG is equal to
the closure of

 �1

0

B

@P.G?/ �
[

L?2.A?/G
?

P.L?/

1

C

A :

It can also be characterized as the unique irreducible component such that  .DG/ D
P.G?/.

A complete characterization of the boundary is then provided by the observation
that, if we consider a collection T of subspaces in G containing V , then

DT D
\

A2T �fVg
DA

is non empty if and only if T is G-nested, and in this case DT is a smooth irreducible
subvariety.

Remark 9 The same construction can be done also in the complex case, providing
complex wonderful models (up to now we have always assumed V to be euclidean,
but the definitions of building sets and nested sets can be easily extended, endowing
the complex vector space with a non-degenerate Hermitian product).

Let us recall a similar construction, that, in the euclidean case, produces
“spherical models” (see [20, 21]).

Let us denote by S.V/ the n � 1-th dimensional unit sphere in V (n being the
dimension of V), let OM.A?/ DM.A?/\ S.V/ and, for every subspace A � V , let
S.A/ D A\ S.V/. Let G be a building set associated to A that contains V , and let us
consider the compact manifold

K D S.V/ 

Y

A2G�fVg
S.A/:

There is an open embedding ' W OM.A?/ �! K which is the inclusion on the first
factor and on the following factors it is given by projection and normalization.

Definition 10 We denote by CYG the closure in K of '. OM.A?//.

It turns out (see [20]) that CYG is a smooth manifold with corners. It is a
differentiable model for OM.A?/ in the following sense: if we denote by c 
the projection onto the first component S.V/, then c  is surjective and it is an
isomorphism on the preimage of OM.A?/. Furthermore, c  establishes a bijective
correspondence between the (closures of) codimension 1 open strata (that can be
not connected) in the boundary of CYG and the elements of G � fVg.
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More precisely, if A 2 G � fVg, its associated boundary component is

CDA D c �1

0

B

@S.A?/�
[

B?2.A?/A
?

S.B?/

1

C

A:

We notice that the combinatorial structure of the boundary mimicks the one of
De Concini–Procesi models (see [20]):

Theorem 11 Let T be a subset of G which includes V; then

CDT D
\

B2T �fVg
CDB

is not empty if and only if T is G-nested.

Remark 12 We notice that, when G is the building set associated with a root
arrangementA, CYG has as many connected components as the number of chambers
of M.A?/. Moreover in [22] these connected components have been linearly
realized as polytopes (nestohedra) inside the chambers.

The relations between the projective and the spherical construction of models
have been pointed out in [20] by describing the combinatorial properties of a
surjective map F W CYG ! YG .

Let us recall the definition of F: the model CYG is embedded in

K D S.V/ 

Y

A2G�fVg
S.A/

while YG is embedded inside

K0 D P.V/ 

Y

D2G�fVg
P.V=D?/:

Now, given any A 2 G, we can consider the natural isomorphism between A and
V=A? provided by the projection.

As a consequence of this identification, there is a map F0 from K to K0 whose
restriction to each factor S.A/ is the 2 7! 1 projection S.A/ 7! P.V=A?/ (in
particular this means that on the first factor we are considering the projection
S.V/ 7! P.V/).

Theorem 13 (see [20]) If we restrict F0 to CYG we obtain a surjective map

F W CYG ! YG :
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Let S be a A-nested set which contains V. Then F restricted to the internal points
of CDS is a 2jSj-sheeted covering of the open part of the boundary component DS
in YA.

2.4 A More General Construction

The construction of De Concini–Procesi models and of spherical models that we
recalled in the preceding section is a special case of other more general constructions
that, starting from a ‘good’ stratified variety, produce models by blowing up a
suitable subset of strata. We have in mind for instance the models described by
MacPherson and Procesi in [31] and by Li in [30] in the algebro-geometric case and
the ones described in [20] in the case of manifolds with corners.1 We recall here the
main definitions of Li’s construction in the algebro-geometric case.

Definition 14 A simple arrangement of subvarieties (or ‘simple stratification’) of a
nonsingular variety Y is a finite set ƒ D fƒig of nonsingular closed subvarietiesƒi

properly contained in Y satisfying the following conditions:

(i) The intersection of ƒi and ƒj is nonsingular and the tangent bundles satisfy
T.ƒi \ƒj/ D T.ƒi/j.ƒi\ƒj/ \ T.ƒj/j.ƒi\ƒj/.

(ii) ƒi \ƒj either is equal to some stratum in ƒ or is empty.

Definition 15 Let ƒ be an arrangement of subvarieties of Y. A subset G0 � ƒ is
called a building set of ƒ if 8ƒi 2 ƒ� G0 the minimal elements in fG 2 G0 W G 
ƒig intersect transversally and the intersection is ƒi.

Then, if one has an arrangementƒ of a nonsingular variety Y and a building set
G0, one can construct a wonderful model YG0 considering (by analogy with [6]) the
closure of the image of the locally closed embedding

.Y �[ƒi2ƒƒi/!
Y

G2G0

BlGY

where BlGY is the blowup of Y along G.
It turns out that

Theorem 16 (See Theorem 1.3 in [30]) If one arranges the elements G1;G2; : : :;

GN of G0 in such a way that for every 1 � i � N the set fG1;G2; : : : ;Gig is building,

1In Li’s paper one can find a short and useful comparison among several constructions of wonderful
compactifications by Fulton–Machperson [18], Ulyanov [40], Kuperberg–Thurston [28], Hu [27].
A further interesting survey including tropical compactifications can be found in Denham’s paper
[10].
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then YG0 is isomorphic to the variety

Bl QGN
Bl QGN�1

� � �Bl QG2BlG1Y

where QGi denotes the dominant transform of Gi in Bl QGi�1
� � �Bl QG2BlG1Y.

We will not recall here the theorems that describe the boundary of these more
general wonderful models, but we show two examples that will be crucial in the
following sections.

Example 17 In the case of real or complex subspace arrangements of a vector space
V , the constructions described in the preceding sections and the above construction
produce the same models (we only have to pay attention to the fact that in the
preceding sections a building set G was described in a dual way so the building
set of subvarieties G0 is made by the orthogonals or annihilators of the subspaces
in G).

The same remark holds for spherical models, comparing the definition of CYG
with the more general construction in [20].

Example 18 Given a building set of subspace arrangements G, the boundary strata
of the De Concini–Procesi wonderful model YG give rise to a simple arrangement
of subvarieties, and the set of all strata is a building set. So it is possible to obtain a
“model of the model YG”. The same remark holds for the spherical model CYG . The
boundary strata of these “models of models” are indexed by the nested sets of the
building set of all strata. According to the definition given in Sect. 4 of [31], a nested
set S in this sense is a collection of G-nested sets linearly ordered by inclusion (we
will come back to this in Sect. 6).

In the case of the root arrangements An, these (very big) models will play a role in
the sequel, motivated by the search of geometrical representations of the symmetric
group.

3 Action on the Face Poset of CYFAn�1

3.1 Action in the Language of Lists and Dissections

We recall that there is a well know ‘extended’ SnC1 action on the De Concini–
Procesi model YFAn�1

, that is a quotient of CYFAn�1
: it comes from the isomorphism

with the moduli space M0;nC1 and the character of the resulting representation on
cohomology has been computed in [36].

In this section we show how this action can be lifted to the face poset of CYFAn�1

(as usual the partial order on the faces of CYFAn�1
is given by reverse inclusion).

As mentioned in Remark 12, a spherical model associated with a root system
is a union of nestohedra: more precisely, in this case the strata are indexed by
the parenthesizations of the list 1; 2; ::; n whose parentheses contain at least two
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numbers (see Sect. 2.2) and CYFAn�1
is a union of nŠ Stasheff’s associahedra of

dimension n� 2.
Therefore, according to the notation in [22], the elements of this face poset are

couples .�;S/ where � 2 Sn and S is a FAn�1 fund -nested set containing V , i.e. a
parenthesization of the list 1; 2; ::; n whose parentheses contain at least two numbers:
the nested set S represents a face F of the associahedron PG fund which lies in the
fundamental chamber C, and the element � tells us that we are considering the face
�F that lies in the chamber �C). Another way to represent the element .�;S/ is by
a parenthesization of the list �.1/; �.2/; �.3/; : : :; �.n/.

Example 19 Let .e; ff1; 2g; f4; 5; 6gg/ be an element of the face poset of CYFA6 fund
.

The element e on the left tells us that it corresponds to a face o the associahedron
that lies in the fundamental chamber. This element can also be represented as

f1; 2g; 3; f4; 5; 6g; 7

while

1; 2; 3; 4; 5; 6; 7

represents the full associahedron in the fundamental chamber (we always suppose
that the nested set S contains V but we omit the corresponding parentheses, in this
case f1; 2; 3; 4; 5; 6; 7g).
Example 20 Let � be the cyclic permutation .2; 3; 4/. Then the face

.�; ff1; 2g; f4; 5; 6gg/

of CYFAn�1
can be represented as

f1; 3g; 4; f2; 5; 6g; 7

which is

f�.1/; �.2/g; �.3/; f�.4/; �.5/; �.6/g; �.7/:

Let us now describe in the language of lists an SnC1 action on the face poset of
CYFAn�1

, compatible with the action on the quotient space YFAn�1
.

First we add 0 to all the parenthesized lists that, as mentioned above, describe the
face poset. For instance, the face

f1; 2g; 3; f4; 5; 6g; 7

is now indicated as

0; f1; 2g; 3; f4; 5; 6g; 7:
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Then we identify SnC1 with the group which permutes the numbers 0; 1; : : :; n: in
order to explain how SnC1 acts it is sufficient to explain how the transposition .0; 1/
acts.

In our example, we want to compute

.0; 1/ .0; f1; 2g; 3; f4; 5; 6g; 7/ :

First we let .0; 1/ act by permuting 0 and 1 in the list:

.0; 1/ .0; f1; 2g; 3; f4; 5; 6g; 7/D 1; f0; 2g; 3; f4; 5; 6g; 7:

The list on the right is not a valid list since it does not start with 0. Then we read it
cyclically starting from 0, and obtain

f0; 2g; 3; f4; 5; 6g; 7; 1:

We notice that there is a couple of parentheses which includes 0, so this still does
not represent a face of CYFA6

. As our last step, we substitute the parentheses f0; 2g
that contain 0 with their “complement”, i.e. with the parentheses f3; 4; 5; 6; 7; 1g that
contain all the other numbers in the list. At the end we obtain

.0; 1/ .0; f1; 2g; 3; f4; 5; 6g; 7/D 0; 2; f3; f4; 5; 6g; 7; 1g:

The list on the right represents a face of CYFA6
(which does not lie in the

fundamental chamber).

Example 21 Here it is another example of this process, in the face poset of CYFA4
:

.0; 1/ .0; f1; 2; 3g; f4; 5g/D 1; f0; 2; 3g; f4; 5g
D f0; 2; 3g; f4; 5g; 1
D 0; 2; 3; ff4; 5g; 1g:

In this way, as one can easily check, one defines a SnC1 action.2 Here we introduce
an interpretation of the face poset CYFAn�1

and of the action described above in
terms of polygon dissections. We start by observing that the parenthesized lists of
numbers 1; 2; : : :; n are in bijective correspondence with the dissections of a polygon
with nC 1 labelled edges. This well known correspondence is illustrated by Fig. 1.

The face poset of CYFAn�1
, as a union of abstract simplicial complexes, is

isomorphic to the set of dissections of .n C 1/-gons with sides labelled 0; 1; : : : ; n
in some order, which is a union of abstract simplicial complexes on the set of

2Notice that our description of the action could also be given in terms of planted labelled trees.
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Fig. 1 This dissection of the
hexagon produces the
parenthesized list
1; ff2; 3g; f4; 5gg

Fig. 2 The dissection of the
hexagon associated to the
facet .�;S/ for
� D .02/.1345/ and
S D .1; f2; f3; 4; 5gg/

diagonals of each such labelled n-gon. Under this isomorphism the facet of the form
.�;S/, where S D fV;A1; : : : ;Akg is a nested set in FAn�1fund , corresponds to the
polygon with sides labelled cyclically �.0/; �.1/; �.2/; : : : ; �.n/ with the following
k diagonals: if As is the interval Œis; js�, it is associated to the diagonal that separates
the sides �.is/; �.is C 1/; : : : ; �.js/ from the other sides (see the example in Fig. 2).

3.2 Action in the Language of Root Systems and Nested Sets

As an exercise we want to describe the action of Sect. 3.1 in a different way, in the
language of root systems and nested sets.

Let � D f˛0; ˛1; : : :; ˛n�1g be a basis for the root system of type An (we added
to a basis of An�1 the extra root ˛0) and let Q� D f Q̨ ; ˛0; ˛1; : : :; ˛n�1g be the set of
roots that appear in the affine diagram. We identify in the standard way SnC1 with the
group which permutes f0; 1; : : :; ng and s˛0 with the transposition .0; 1/. Therefore
Sn, the subgroup generated by fs˛1 ; : : :; s˛n�1g, is identified with the subgroup which
permutes f1; : : :; ng.
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Let S D fV;A1;A2; : : :;Ak;B1;B2; : : :;Bsg be a nested set in FAn�1 fund and
let � 2 SnC1. Let us then denote by C the cyclic subgroup generated by
.0; 1; 2; 3; 4; 5; : : :; n/ and by w D �.0; 1; 2; 3; 4; 5; : : :; n/r the only element in the
coset �C which fixes 0 (therefore w belongs to Sn).

Moreover, let us suppose that, for every subspace Aj, some of the roots contained
in �Aj have ˛0 in their support (when they are written with respect to the basis �),
while this doesn’t happen for the subspaces �Bt. Then for every j we denote by Aj

the subspace generated by all the roots of Q� which are orthogonal to Aj.
As a first step in the description of the SnC1 action, we put

� � .e;S/ D .w; fV; ::;w�1�Aj; ::;w
�1�Bs; ::g/:

As one can quickly check, this can be extended to an SnC1 action on the full face
poset of CYFAn�1

by imposing that � maps the face .�;S/, where � 2 Sn, to the face
�� � .e;S/. This action coincides with the one described before in the language of
lists.

Example 22 Let us re-consider in this different language the Example 21. Let S be
the nested set of FA4 fund made by V , A D< ˛1; ˛2 > and B D< ˛4 >. The group
S6 is generated by the reflections s˛0 ; s˛1 ; s˛2 ; s˛3 ; s˛4 and we identify S5 with the
subgroup generated by s˛1 ; s˛2 ; s˛3 ; s˛4 . Now we compute s˛0.e; fV;A;Bg/, which in
the language of lists is

.0; 1/ .0; f1; 2; 3g; f4; 5g/ :

We notice that the root s˛0˛1 contains ˛0 in its support (when it is written with
respect to the basis �). We then denote by A the subspace generated by all the roots
of Q� which are orthogonal to A: A D< Q̨ ; ˛4 >.

Let w D .0; 1/.0; 1; 2; 3; 4; 5/ i.e. the representative of the coset .0; 1/C in S6
which leaves 0 fixed. Then s˛0 D .0; 1/ maps the face .e; fV;A;Bg/ to the face

.w; fV;w�1s˛0A;w�1s˛0Bg/ D .w; fV; < ˛3; ˛4 >;< ˛3 >g/:

This face, in the language of lists, is

0; 2; 3; ff4; 5g; 1g

as expected.

Let us make another example, this time with the help of some pictures. This will
show why this extra action is typical of the root system of type A.

Let us consider in CYFA6
the face

.e; fV;Ag/
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Fig. 3 The subspace A

Fig. 4 The subspace A

Fig. 5 The rotation maps A
to < ˛3; ˛4; ˛5; ˛6 >

where A D< ˛2; ˛3 > (see Fig. 3) and let us compute .0; 1; 2/.e; fV;Ag/. Since
.0; 1; 2/˛2 D ˛0C˛1C˛2 we have to consider the subspace A (see Fig. 4) and then
we ‘rotate’ our subspaces clockwise (so that ˛2 goes to ˛0, Fig. 5). This rotation
(that makes sense only in the case of the root system of type An, which is the only
one whose affine diagram contains a cycle) maps A to < ˛3; ˛4; ˛5; ˛6 >. Then we
have

.0; 1; 2/.e; fV;Ag/D ..0; 1; 2/.0; 1; 2; 3; 4; 5; 6; 7/2; fV; < ˛3; ˛4; ˛5; ˛6 >g/:
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4 Orbits of the Action in the Spherical Case

4.1 A First Remark on Stabilizers

The action of � 2 SnC1 on the face poset of CYFAn�1
described in the preceding

section maps (the face poset of) the associahedron which lies in the fundamental
chamber onto (the face poset of) an associahedron that lies in a chamber which may
be different from the fundamental one.

It is easy to provide examples where two associahedra that lie in two adjacent
chambers are sent to two associahedra whose chambers are not adjacent. This shows
that this lifted action is not induced by an isometry.

Anyway it provides geometrical realizations of all the representations Ind
SnC1

G Id,
where G is any subgroup of a conjugate of the cyclic group C generated by
.0; 1; : : : ; n/ and Id is its trivial representation (the case G D feg, i.e. the regular
representation of SnC1, occurs only if n � 4).

In fact the stabilizer of an element of the face poset is by construction a subgroup
of a conjugate of the cyclic group C.

We want to show that all the above mentioned representations appear. Up to
conjugation it is sufficient to consider only the subgroups of C.

As for the regular representation of SnC1, we notice that, for instance, if n � 4
the stabilizer of .e; fV; < ˛1; : : :; ˛n�2 >g/ is the trivial subgroup.

Let then d < nC 1 be a divisor of nC 1. We will exhibit an element of the face
poset whose stabilizer is generated by .0; 1; 2; 3; 4; 5; : : :; n/d.

If d > 2 and dk D n C 1 we consider for instance the face .e; fV;
< ˛1; : : :; ˛d�2 >;< ˛dC1; : : :; ˛2d�2 >; : : :; < ˛.k�1/dC1; : : :; ˛kd�2 >g/: its
stabilizer is generated by .0; 1; 2; 3; 4; 5; : : :; n/d.

If d D 2 and 2k D n C 1 we consider .e; fV; < ˛1; ˛2; : : :; ˛n�2 >;< ˛1 >;

< ˛3 >; : : :; < ˛n�2 >g/. Its stabilizer is generated by .0; 1; 2; 3; 4; 5; : : :; n/2.
If d D 1 we consider .e; fVg/. Its stabilizer is, by definition of the SnC1 action,

the full cyclic group C.

Remark 23 In terms of polygon dissections we can also describe the previous
groups as stabilizers of inscribed regular nC1

d -gons.

4.2 A Formula for the Orbits and Polygon Dissections

Our plan in this section is the following:

• We will compute, given djnC 1, the number Od;k of the faces of the fundamental
associahedron that have codimension k and are fixed by the subgroup of C
generated by .0; 1; 2; 3; 4; 5; : : :; n/d.

Going back to the language of lists, this is equivalent to counting all the
parenthesized lists fixed by the permutation .0; 1; 2; 3; 4; 5; : : :; n/d.
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• We will then obtain formulas for the number Od;k of the faces of the fundamental
associahedron that have codimension k and whose stabilizer coincides with the
subgroup< .0; 1; 2; 3; 4; 5; : : :; n/d >. Then the number of orbits of cardinality d
with respect to the action of C on the k-codimensional faces of the fundamental

associahedron is Od;k
d . This is also the number of orbits of cardinality nŠd with

respect to the action of SnC1 on the face poset of CYFAn�1
:

We observe that this problem of counting the faces of the fundamental associahedron
fixed by .0; 1; 2; 3; : : :; n/d, in view of the observations at the end of Sect. 3.1, is
closely related to the well known problem of counting polygon dissections modulo
the action of the group of rotations. In the language of polygon dissections, the
action of the cyclic group C corresponds to a (counterclockwise) cyclic permutation

of the labels of the edges of the n C 1-gon, so if we sum up the numbers Od;k

d
as d ranges among the divisors of n C 1 we find the number of different polygon
dissections with k diagonals modulo the action of rotations.

The formulas we compute in this survey (see Propositions 26 and 28) can
therefore be compared with the formulas for this number that can be found in
the literature (see for instance [32] for the complete dissections, [26, 38] from
the point of view of planar trees, [39] from the point of view of the cyclic
sieving phenomenon, [11] and the more recent [1] which we refer to for further
bibliography).

Let D�;� be the Cayley number that counts the dissections of a convex polygon
with � edges and � diagonals (see [4]):

D�;� D 1

�C 1
�

� � 3
�

��

�C � � 1
�

�

:

We notice that we can define the numbers D�;� for every �;� 2 Z by putting
D�;� D 0 if � � 2 or, if � > 2 and � < 0 of if � > 2 and � > � � 3. This also
follows from Cayley’s formula if we adopt the usual conventions on the binomials
(the only case where Cayley’s formula can’t be considered is when � D �1). Then
let us define the series

ˆ.x; q/ D
X

�;�2Z
D�;�x��1q�:

Proposition 24 Let dj.n C 1/, 0 < d < nC1
2

. The number Od;k is equal to 0 if
k ¤ nC1

d t with 0 � t � d � 1. The number Od; nC1
d t coincides with the coefficient of

xdqt in the following series:

x1C x2C qx.1C x/
d

dx
ˆ.x; q/C 1

2
qx.1C q/

d

dx
ˆ.x; q/2C .1C q/xˆ.x; q/: (1)
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Proof Let us consider a dissection of the n C 1-gon that is invariant with
respect to the counterclockwise rotation of 2	d

nC1 , i.e. with respect to the action
of .0; 1; 2; 3; 4; 5; : : :; n/d.

We denote by C0 the maximal diagonal (in the dissection) that separates the
edge (labelled by) 0 from the center of the polygon, that is the diagonal closest
to the center of the polygon, among the diagonals that separate the center from 0,
or eventually the edge 0 itself, if there is no such diagonal in the dissection; we
write C0 D Œvi; vn�r� to indicate its vertices, with i � 0; r � 0 (we number the
vertices counterclockwise starting from the edge 0, as in Fig. 6). We observe that
iC rC 1 � d by invariance and that if i D r D 0 we have a degenerate case, where
C0 is the edge 0 (which therefore lies in the connected component that contains also
the center).

Then we observe that in the dissection there is also the diagonal C D
Œvd�r�1; viCd� by invariance and that, once we determine the diagonals that lie
in the portion of polygon delimited by the vertices vi; viCd, our invariant dissection
is fully determined.

Now we can consider the polygon P1 delimited by the rCiC1 edges d�r; : : ::dCi
and by C (see Fig. 6). Our dissection can contain any dissection of this polygon, i.e.

iCr�1
X

sD0
DiCrC2;s

possible dissections. At the same way let us consider the polygon P2 delimited by
the d � r � i � 1 edges i C 1; : : :; d � r � 1 and by the diagonal Œvi; vd�r�1�. We
don’t know if this diagonal is in our dissection (this is why in Fig. 6 it is represented
by a dotted segment); we have then to take into account two cases, depending on if
Œvi; vd�r�1� belongs or doesn’t belong to the dissection. In any case, our dissection

Fig. 6 The edges are
numbered from 0 to n
counterclockwise, and the
vertices are indexed from v0
to vn counterclockwise. The
diagonal C0 is in red and has
vertices vi and vn�r



190 F. Callegaro and G. Gaiffi

can contain any internal dissection of the polygon P2, i.e.

d�r�i�3
X

uD0
Dd�r�i;u

dissections.
Let us fix the value i C r C 1 and let us suppose that the polygons P1 and P2

are not degenerate, i.e. they have at least three edges. Then let us consider all the
invariant dissections that have a picture like the one described above: this means
that we are considering the iC rC 1 ways to place the diagonal C0.

The sum, over all these dissections, of the dissections of the portion of the
polygon delimited by vi; viCd that have t diagonals is counted by the coefficient
of xdqt in the following series:

1

2
qx.1C q/

d

dx
ˆ.x; q/2:

To explain this more in detail, we notice that this series is equal to

qx.1C q/ˆ.x; q/
d

dx
ˆ.x; q/

i.e.
2

4.1C q/
X

�;�2Z
D�;�x��1q�

3

5

2

4qx
X

�;�2Z
D�;�.� � 1/x��2q�

3

5

where:

• The series in the left brackets counts the contribution of the dissections of the
polygon P2, and .1C q/ takes into account the two cases (presence or absence of
the diagonal Œvi; vd�r�1�).

• The series in the right brackets counts the contribution of the polygon P1: the
derivative produces the addendum .iCrC1/DiCrC2;sxiCrqs that takes into account
the i C r C 1 ways to place the diagonal C0, the factor q takes into account the
presence of the diagonal C and the factor x has been added for technical reasons,
so that the relevant coefficient, after the product of the two series in the brackets,
is the coefficient of xdqt.

The other terms in the series (1) allow us to include all the cases where one (or both)
of the polygons P1, P2 are degenerate. In particular:

• The term x corresponds to the case d D 1.
• The term x2 has been added to complete the case d D 2.
• The term qx.1 C x/ d

dxˆ.x; q/ corresponds to the cases d � r � i D 2 and
d � r � i D 1.
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• The term .1C q/xˆ.x; q/ corresponds to the case i D r D 0: ut
Proposition 25 If d D nC1

2
j.n C 1/ the number O nC1

2 ;2t with 0 � t � nC1
2
� 1

coincides with the coefficient of x
nC1
2 qt in the following series:

x1 C x2 C qx2
d

dx
ˆ.x; q/C 1

2
qx.1C q/

d

dx
ˆ.x; q/2 C .1C q/xˆ.x; q/

while the number O nC1
2 ;2t�1 with 1 � t � nC1

2
� 1 coincides with the coefficient of

x
nC1
2 qt in the following series:

qx
d

dx
ˆ.x; q/:

Proof The proof if analogous to the one in the preceding proposition, but we have
to pay attention: if iC rC1 is maximum, i.e. equal to nC1

2
, the diagonal C coincides

with the diagonal C0. ut
The following propositions are easy consequences of Propositions 24 and 25.

Proposition 26 Let dj.nC 1/, 0 < d � nC1
2

. The number Od;k of the faces of the
fundamental associahedron that have codimension k and whose stabilizer coincides
with the subgroup of C generated by .0; 1; 2; 3; 4; 5; : : :; n/d is given by the following
formula:

Od;k D
X

cjd
�

�

d

c

�

Oc;k

where �. / is the Möebius function.

Remark 27 It follows in particular that if dj.nC 1/, d ¤ nC1
2

, the number Od;k is 0
if k ¤ nC1

d t with 0 � t � d � 1.

Proposition 28 Let dj.n C 1/, 0 < d � nC1
2

. The number of orbits of the SnC1
action on the face poset of CYFAn�1

that are made by k-codimensional faces and

have cardinality exactly equal to nŠd is therefore Od;k
d . The number of orbits that

have cardinality .nC 1/Š that are made by k-codimensional faces can be computed

as OnC1;k
nC1 where

OnC1;k D DnC1;k �
X

dj.nC1/; d� nC1
2

Od;k:
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5 The Extended Action on Bigger Models:
The Example of A3

5.1 A Problem: There Is Not an Extended Action on CYmaxAn�1

From now on the minimal and the maximal models associated with the root system
An�1 will play a special role in this paper. Hence it is convenient to single out them
by a new notation: we will denote by CYminAn�1 the minimal model CYFAn�1

and by
CYmaxAn�1 the maximal model CYCAn�1

: If one tries to extend the SnC1 action from
the face poset of CYminAn�1 to the face poset of CYmaxAn�1 one realizes that this is not
possible. Let us show this by an example in the case CYmaxA3 .

Example 29 In the case A3, the subspace < ˛1; ˛3 > belongs to CA3fund
, so it

corresponds to an edge (denoted by .e; fV; < ˛1; ˛3 >g/) of the hexagon which
lies inside the fundamental chamber (the maximal model CYmaxAn�1 is a union of nŠ
permutohedra, and the two dimensional permutohedron is an hexagon).

This edge has a vertex in common with the edge corresponding to < ˛1 > (this
edge is denoted by .e; fV; < ˛1 >g/ and their common vertex is .e; fV; < ˛1 >;

< ˛1; ˛3 >g/) and another vertex in common with the edge corresponding to< ˛3 >
(this edge is denoted by .e; fV; < ˛3 >g/ and their common vertex is .e; fV; < ˛3 >;
< ˛1; ˛3 >g/).

Now the edges .e; fV; < ˛1 >g/ and .e; fV; < ˛3 >g/ also appear in the face
poset of CYminA3 . If we apply the permutation .01/ D s˛0 to these two edges, and
ask that it acts as it acts in CYminA3 , we get

s˛0 .e; fV; < ˛1 >g/ D .w; fV;w�1s˛0< ˛1 >g/ D .w; fV; < ˛2; ˛3 >g/

and

s˛0 .e; fV; < ˛3 >g/ D .w; fV;w�1s˛0 < ˛3 >g/ D .w; fV; < ˛2 >g/

where w D .0; 1/.0; 1; 2; 3; 4/. Now we notice that the intersection of these two
edges is the vertex denoted by .w; fV; < ˛2; ˛3 >;< ˛2 >g/ in CYminA3 while in
CYmaxA3 the image of .e; fV; < ˛1; ˛3 >g/ via s˛0 should be an edge adjacent to
.w; fV; < ˛2; ˛3 >g/ and to .w; fV; < ˛2 >g/. Since an edge with these properties
does not exist, we have shown that the S5 action on the face poset of CYminA3 cannot
be extended to the face poset of CYmaxA3 .
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5.2 The Search for a ‘Supermaximal’ Model: The Example
for A3

We want to construct a model which is ‘bigger’ than CYmaxAn�1 (i.e., it is obtained
from CYmaxAn�1 by a series of blowups) and is equipped with a SnC1 action. We will
call ‘supermaximal’ a model which is minimal among the models that have these
properties.

Example 30 In the case discussed in the Example 29 one has to blowup the vertex
.w; fV; < ˛2 >;< ˛2; ˛3 >g/ in the maximal model of type A3 in order to obtain an
edge that is the image of the edge .e; fV; < ˛1; ˛3 >g/ under s˛0 .

As a consequence, because of the S4 symmetry, one has to blowup all the vertices
.�; fV; < ˛i >;< ˛j; ˛jC1 >g/ with � 2 S4, j D 1; 2 and i D j or i D jC 1.

Let us denote by CYsupermaxA3 the model obtained as a result of all these blowups:
one can immediately check that the S5 action on the face poset of CYminA3 described
in Sect. 3 extends to the face poset of CYsupermaxA3 .

In the next section we will introduce the necessary combinatorial notation to extend
the construction of a supermaximal model from A3 to the general case An�1.

6 Combinatorial Building Sets

After De Concini and Procesi’s paper [6], nested sets and building sets appeared in
the literature, connected with several combinatorial problems. In [15] building sets
and nested sets were defined in the general context of meet-semilattices, and in [9]
their connection with Dowling lattices was investigated. Other purely combinatorial
definitions were used to give rise to the polytopes that were named nestohedra in
[35].

Here we recall the combinatorial definitions of building sets and nested sets of
a power set in the spirit of [34, 35] (one can refer to Sect. 2 of [33] for a short
comparison among various definitions and notations in the literature).

Definition 31 A building set of the power set P.f1; 2; : : :; ng/ is a subset B of
P.f1; 2; : : :; ng/ such that:

a) If A;B 2 B have nonempty intersection, then A [ B 2 B.
b) The set fig belongs to B for every i 2 f1; 2; : : :; ng.
Definition 32 A (nonempty) subset S of a building set B is a B-nested set (or just
nested set if the context is understood) if and only if the following two conditions
hold:

a) For any I; J 2 S we have that either I � J or J � I or I \ J D ;.
b) Given elements fJ1; : : :; Jkg (k � 2) of S pairwise not comparable with respect

to inclusion, their union is not in B.
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The nested set complex N .B/ is the poset of all the nested sets of B ordered by
inclusion (in fact it is a simplicial complex).

In particular, let us denote by N .minAn�1/ the simplicial complex given by the
nested sets in FAn�1 that contain fVg. In fact, as observed in Sect. 2.3, the strata of
YminAn�1 are indexed by the nested sets of FAn�1 containing fVg.

We observe that an element in N .minAn�1/ can be obtained by the union of fVg
with an element of

P.A0
1/[ P.A0

2/[ : : : [ P.A0
s/

where A0
j D Aj � fVg and Aj are all the maximal nested sets associated with the

building set FAn�1 (and P. /, as in the preceding section, denotes the power set).
Given a simplicial complex C which is based on some sets A0

1; ::;A0
s (i.e., it is equal

to P.A0
1/ [ P.A0

2/ [ : : : [ P.A0
s/), Feichtner and Kozlov’s definition of building

set of a meet semilattice (see Sect. 2 of [15]) can be expressed in the following way:
B � C is a building set of C if and only if for every j D 1; 2; : : :; s the set B\P.A0

j/

is a building set of P.A0
j/ in the sense of Definition 31.

Again, according to Feichtner and Kozlov, given a building set B of C as before,
a B-nested set is a subset S of B such that, for every antichain (with respect to
inclusion) fX1;X2; : : :;Xlg � S, the union X1 [ X2 [ :: [ Xl belongs to C � B.

Now, starting from the simplicial complex N .minAn�1/, we choose its maximal
building set, i.e. we choose B.n� 1/ D N .minAn�1/.

Remark 33 We can therefore form the nested set complex of B.n � 1/, i.e.
N .B.n � 1// D N .N .minAn�1//, and then we can continue. . . As one can see,
the complexity of this construction grows fastly. For a convenient notation and an
interesting method to handle this complexity see [33].

In an analogous way, we define the simplicial complex N .minAn�1fund/ and we
choose its maximal building set, i.e. we choose B.n� 1/fund D N .minAn�1fund/.

According to Feichtner and Kozlov’s definition, an arbitrary B.n� 1/-nested set
(resp. B.n � 1/fund-nested set) is a totally ordered by inclusion set of elements of
N .minAn�1/ (resp. N .minAn�1fund/).

The complex B.n � 1/ describes the strata in the boundary of the variety
CYminAn�1 , (and YminAn�1 both in the real and complex case): as remarked in Sect. 2.4,
the set of all these strata is a building set in the sense of [30, 31] and [20], therefore
we can construct the corresponding variety CYB.n�1/ (and YB.n�1/, real or complex).

Translating into combinatorial terms the definition given in Sect. 4 of [31], the
strata in the boundary of the real or complex variety YB.n�1/ and of CYB.n�1/ are
indexed by the nested sets of B.n � 1/ � fVg. As a convention we will add fVg to
these nested sets: a stratum of codimension r is indexed by ffVg; T1; : : :; Trg where
each Ti belongs to N .minAn�1/ and

fVg ¨ T1 ¨ � � � ¨ Tr:



The SnC1 Action on Spherical Models and Supermaximal Models of Tipe An�1 195

7 The SnC1 Action on CYB.n�1/

The face poset of the model CYB.n�1/ can be described in the following way: it is
made by the couples .w;S/ where w 2 Sn and S is a nested set of the building set
B.n � 1/fund containing fVg (we remark that every element of S is a nested set of
FAn�1fund containing V and that the elements in S are linearly ordered by inclusion).

The standard action of Sn on the face poset of CYB.n�1/ can be extended to an
SnC1 action:

Proposition 34 The action of SnC1 on the face poset of CYminAn�1 induces a SnC1
action on the face poset of CYB.n�1/.

Proof Let .w; ffVg; T1; : : :; Trg/ be an element of the face poset of CYB.n�1/. The
action of � 2 SnC1 maps this element to .w0; ffVg; T 0

1 ; : : :; T 0
r g/ where w0 and T 0

i
are defined by the action on CYminAn�1 : �.w; Ti/ D .w0; T 0

i /. From the inclusions
fVg ¨ T1 ¨ � � � ¨ Tr it immediately follows that fVg ¨ T 0

1 ¨ � � � ¨ T 0
r . ut

Proposition 35 There is a graded poset embedding ' of the face poset of CYmaxAn�1

into the face poset of CYB.n�1/.

Proof Let .w; T / be an element in the face poset of CYmaxAn�1 . Then T D fB0 D
V;B1;B2; : : :;Brg is a nested set of the building set CAn�1 fund containing V . This
means that its elements are linearly ordered by inclusion: V � B1 � � � � � Br.
Now we can express every Bi as the direct sum of some irreducible subspaces Aij,
i.e. elements of FAn�1fund (j D 1; : : :; ki). We notice that, for every i D 1; : : :; r, the
sets T 0

i D fAsjg [ fVg (with s > r � i and, for every s, j D 1; : : :; ks) is nested in
FAn�1fund . The map ' defined by

'..w; T // D .w; ffVg; T 0
1 ; : : :; T 0

r g/

if r � 1, otherwise

'..w; T // D .w; ffVgg/

is easily seen to be a poset embedding (notice that .w; ffVgg/ represents the
connected component of CYB.n�1/ that lies in the chamber associated to w). ut

Given a disjoint union P of (combinatorial) polytopes, we will denote by F.P/ its
face poset and by Fk.P/ the subset made by the elements that correspond to faces of
codimension k (for instance, F1.P/ is made by the elements that correspond to the
facets of P).

The restriction of ' to F1.CYmaxAn�1 / is an embedding of F1.CYmaxAn�1 / into
F1.CYB.n�1//. Now F1.CYB.n�1// can be identified with F.CYminAn�1 / (the identifi-
cation maps .w; ffVg;Sg/, with S a nested set of FAn�1fund that strictly contains V , to
.w;S/) and we still call ' the embedding from F1.CYmaxAn�1 / to F.CYminAn�1/. More
explicitly, if B1 2 CAn�1fund is a subspace which is the direct sum of the irreducible
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subspaces A11; : : : ;A1k1 then

'..w; fV;B1g// D .w; fV;A11; : : : ;A1k1g/:

Theorem 36 The minimal building subset of F.CYminAn�1 / which contains the
image '.F1.CYmaxAn�1 // and is closed under the SnC1 action is F.CYminAn�1 / itself.
A similar statement holds in the non spherical case.

Proof We will prove the theorem in the spherical case (the proof is of combinatorial
nature so it can be applied to the non spherical case with minor formal changes).

Let us denote by  2 the projection of F.CYminAn�1 / onto B.n � 1/fund given by
.w;S/ 7! S and let us denote by C.n � 1/ the image of the restriction of  2 to
'.F1.CYmaxAn�1 //.

Let us consider a subset Q� of F.CYminAn�1 / that is building and closed under the
SnC1 action, and let us denote by� the set of 2. Q�/ � B.n�1/fund. We will prove the
claim by showing that � D B.n� 1/fund, since this implies that Q� D F.CYminAn�1 /.

This can be done by induction on the depth of a nested set, which is defined in the
following way: let T be a FAn�1-nested set that contains V and consider the levelled
graph associated to T (it is a tree: it coincides with the Hasse diagram of the poset
induced by the inclusion relation, where the leaves are the minimal subspaces of S
and the root, in level 0, is V). We say that T has depth k if k is the highest level of
this tree.

Now we prove by induction that every element in B.n � 1/fund with depth k
belongs to � .

When k D 0; 1 this is immediate: given B ¤ V 2 CAn�1fund
, the right member of

'..w; fV;Bg// is the nested set of depth 1 whose elements are V and the maximal
elements of FAn�1fund contained in B. In this way one can show that all the nested
sets of FAn�1fund with depth 1 that contain V belong to � .

Let us check the case k D 2. One first observes that, in view of the definition of
the SnC1 action, every nested set of depth 2 of the form fV;B;B1g, where B1 � B,
belongs to � since it can be obtained as  2.�.e;S// for a suitable choice of � 2
SnC1 and of a the nested set of depth 1 S 2 B.n� 1/fund. Now we show that also all
the nested sets of depth 2 of the form fV;B;B1; : : :;Bjg, with j � 2 and Bi � B for
every i, belong to � . In fact we can obtain fV;B;B1; : : :;Bjg as a union, for every
i, of the nested sets fV;B;Big that belong to � as remarked above. Since all these
sets have a nontrivial intersection fV;Bg and � is building in the Feichtner-Kozlov
sense (see Sect. 6), this shows that fV;B;B1; : : :;Bjg belongs to � .

Then let us consider a nested set of depth 2 fV;B;B1; : : :;Bjg (j � 2 ), where

i) At least one of B1; : : : ;Bj�1 (say B1) is included in B.
ii) Bj is not included in B.

iii) All the Bi in level 2 are included in B.

This nested set is in � since it can be obtained as a union of the nested sets
(with depth 1) S1 D fV;B1; : : :;Bjg and S2, where S2 is any nested subset of
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fV;B;B1; : : :;Bjg with depth 2. We notice that S1 and S2 are in � , and have
nonempty intersection, therefore their union belongs to � .

Now we can show that in � there are all the nested sets of depth 2: if the set
fV;C1; : : :Cs;B1; : : :;Bjg has depth 2, where s � 2 and each of the subspaces
C1; : : :;Cs contains some of the Bi’s, while the Bi’s are the leaves of the tree, we
can obtain fV;C1; : : :Cs;B1; : : :;Bjg as the union of the nested sets fCi;B1; : : :;Bjg
(for every i D 1; ::; s) that have pairwise nonempty intersection and belong to � , as
we have already shown.

Let us now suppose that every nested set in B.n � 1/fund with depth � k (with
k � 2) belongs to � and let T be a nested set of depth k C 1. Let us denote by Tk

the nested set obtained removing from T the k C 1-th level: it belongs to � by the
inductive hypothesis. Then we consider the nested set T 0 obtained removing from
T the levels 2; : : :; k: since T 0 has depth 2 it belongs to � again by the inductive
hypothesis. We observe that Tk and T 0 have nonempty intersection, therefore their
union T must belong to � . ut

8 Final Remarks

8.1 The Models CYB.n�1/ and YB.n�1/ Are Supermaximal
Models

Theorem 36 proved in the preceding section shows that CYB.n�1/ and YB.n�1/ are
supermaximal models, so we can answer to the question, raised in Sect. 5.2, about
how to construct a model that is ‘bigger’ than the maximal model, admits the
extended SnC1 action and is minimal with these properties.

Let us state this in a more formal way, in the case of YB.n�1/ (the spherical case is
analogue). Let us consider the simplicial complex B.n � 1/ that indicizes the strata
of the minimal model YminAn�1 , and let us denote by L the family of spherical models
obtained by blowing up all the building subsets of these strata. We observe that L
has a natural poset structure given by the relation YG1 � YG2 if and only if G1 � G2
(by Li’s definition, this also means that there is a birational projection of YG2 onto
YG1).

Let us denote by T the set of nested sets of FAn�1 with depth 1. From Theorem 16
it follows that if we blowup in YminAn�1 the strata that correspond to the elements of
T (in a suitable order, i.e. first the strata with bigger codimension) we obtain the
model YmaxAn�1 .

Now the supermaximal model associated with the root arrangement An�1 can be
defined as the minimal model YK in the poset L that admits the SnC1 action and
such that K  T (this last property means that it admits a birational projection onto
YmaxAn�1).

Then Theorem 36 shows that YB.n�1/ is the only model in L that satisfies these
properties so it is the supermaximal model.
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8.2 Orbits in the Supermaximal Case

We can compute the orbits of the SnC1 action on the supermaximal spherical model
CYB.n�1/. The strata of the connected component that lies in the fundamental
chamber (combinatorially equivalent to a nestohedron) are indexed by the B.n �
1/fund-nested sets that contain fVg: a stratum of codimension r is indexed by
ffVg; T1; : : :; Trg where each Ti is a FAn�1 fund-nested set and

fVg ¨ T1 ¨ ¨ Tr:

As in the minimal case, the stabilizer of a stratum is a subgroup of the cyclic group
C D< .0; 1; : : :; n/ >. Let us consider d with 0 < d < nC1

2
and dj.n C 1/. Then,

the number of strata of codimension r (with d � 1 � r � 1) whose stabilizer is
< .0; 1; : : :; n/d > is given by the formula:

X

k s:t: d�1�k�r

rŠS.k; r/Od; nC1
d k (2)

where Od; nC1
d k is the number (computed in Sect. 4) of the dissections of a nC1-gon

with nC1
d k diagonals and with stabilizer < .0; 1; : : :; n/d > and S.k; r/ is the Stirling

number of the second kind. In fact, given a dissection of a n C 1-gon with nC1
d k

diagonals and with stabilizer < .0; 1; : : :; n/d >, it determines a FAn�1fund -nested set
with nC1

d kC 1 subspaces (including V). This can be viewed as the bigger nested set
Tr in the list

fVg ¨ T1 ¨ ¨ Tr:

Once Tr is fixed, there are rŠS.k; r/ ways to choose the list of smaller nested sets
T1 ¨ ¨ Tr�1 (if r D 1 this gives 1, as expected).

Remark 37 Since all the nested sets T1; : : :; Tr have to be < .0; 1; : : :; n/d >-
invariant, the codimension of an invariant stratum is � d � 1, so the above formula
covers all the interesting cases. If d D nC1

2
the formula (2) has to be modified in the

following way:

X

k s:t: nC1
2 �1�k�r

rŠS.k; r/ŒO nC1
2 ;2k CO nC1

2 ;2k�1�: (3)

8.3 The Cohomology of a Complex Supermaximal Model

The discussion in the preceding sections points out the interest of the supermaximal
models and of the corresponding symmetric group actions. In the paper [2] the
construction of the supermaximal models was generalized to the case of any
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subspace arrangement and the following description of a basis of the integer
cohomology was given.

Let F be the building set of irreducible subspaces associated with a subspace
arrangement in a complex vector space V of dimension n. Let B.F/ be the
corresponding supermaximal building set (so YB.F/ is the model obtained by

blowing up all the strata of the minimal model YF ). Let us denote by  B.F/
F the

projection from YB.F/ onto YF .

Theorem 38 A basis of the integer cohomology of the complex model YB.F/ is given
by the following monomials:

� cı1S1c
ı2
S2 � � � cık

Sk

where

1. S1 ¨ S2 ¨ � � � ¨ Sk is a chain of F -nested sets (possibly empty, i.e. k D 0), with
fVg ¨ S1.

2. The exponents ıi, for i D 1; : : : ; k, satisfy the following inequalities: 1 � ıi �
jSij � jSi�1j � 1, where we put S0 D fVg.

3. � is the image via . B.F/
F /� of a monomial in a basis3 of H�.DS1 / if k � 1, and

it is the image via . B.F/
F /� of a monomial in a basis3 of H�.YF / if k D 0.

4. The element cSi is the Chern class of the normal bundle of LSi (the proper
transform of DSi ) in YB.F/.
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h-Vectors of Matroid Complexes

Alexandru Constantinescu and Matteo Varbaro

Abstract In this paper we partition in classes the set of matroids of fixed dimension
on a fixed vertex set. In each class we identify two special matroids, respectively
with minimal and maximal h-vector in that class. Such extremal matroids also
satisfy a long-standing conjecture of Stanley. As a byproduct of this theory we
establish Stanley’s conjecture in various cases, for example the case of Cohen-
Macaulay type less than or equal to 3.

1 Introduction

In 1977 Stanley conjectured that the h-vectors of matroids are pure O-sequences [19,
p.59], that is they are h-vectors of Artinian monomial level algebras or, equivalently,
f -vectors of pure order ideals. Ever since, the h-vectors of matroids have been in the
focus of many researchers (see [4, 8, 9, 11, 18, 23]). Pure O-sequences themselves
have attracted a lot of attention as well, quite a few conjectures being made regarding
their shape [2, gives an overview of the topic]. Although several researchers have
approached Stanley’s conjecture, to our knowledge only very specific cases have
been proven. The case of cographic matroids was proven in [4, 12], that of lattice
path matroids in [17] and more generally the one of cotransversal matroids in [15].
Low rank and degree situations were recently investigated in [6, 21, 22].

In the present paper we prove Stanley’s conjecture in several cases, which appear
in every rank and codimension. As a particular case, we obtain the conjecture for
all matroid complexes of Cohen–Macaulay type less than or equal to 3. For any
positive integers n and d, we divide the .d � 1/-dimensional matroids on n vertices
in different classes, which are indexed by the partitions of n with length at least d.
For each class we build the set of all possible h-vectors of the duals of the matroids
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in the respective class. We then identify two special matroids whose duals have
minimal, respectively maximal h-vectors in that set. For all these extremal matroids
we prove in a constructive way that Stanley’s conjecture holds.

Our approach passes via an equivalent phrasing of Stanley’s conjecture. The
h-vector of a matroid � is defined as the h-vector of the corresponding Stanley–
Reisner ring and we will denote it by h�. To a simplicial complex in general, apart
from the Stanley–Reisner ideal I�, one can associate its vertex cover ideal J.�/. We
will denote the h-vector of the quotient ring of J.�/ by h�. If we denote by �c the
dual of� (that is the simplicial complex generated by the complements of the facets
in the vertex set), we have that

J.�/ D I�c and h� D h�c :

A classical theorem of matroid theory says that � is a matroid if and only if �c is a
matroid. This implies the following equivalent formulation of Stanley’s conjecture:

Conjecture (Stanley) For any matroid �, the vector h� is a pure O-sequence.

Let us summarize the contents of the paper. Section 2 is mainly devoted to
preliminary results and establishing the notation. The recursive formula (1) for the
behavior of h� under deletion and contraction of vertices will be a crucial tool
throughout the paper. Such a formula depends heavily on the matroid structure
and fails for simplicial complexes in general. In Remark 7 we also present a
counterexample to the Interval Conjecture for Pure O-sequences formulated by Boij
et al. in [2].

In Sect. 3, we first provide some structural results for matroid complexes. We
show that the 1-skeleton of a matroid is a complete p-partite graph. The division
of the matroids into classes will be done in correspondence with these partitions
of the vertex set. In each class we then define d � 1 matroids: �t.d; p; a/, for
t D 0; : : : ; d � 2, where a is the partition of n. All these matroids are representable
over fields with “enough” elements, and in most cases they are neither graphic
nor transversal. We will call �0.d; p; a/ complete p-partite matroids. These are a
simultaneous generalization of both uniform and partition matroids.

Later on in this section, we attach to each matroid� another matroid si�, named
simplified matroid, of the same dimension but on less vertices. The simplified
matroid reflects many properties of the original matroid. For example, the total
Betti numbers of J.�/ and J.si�/ are the same (Proposition 15). In Proposition 17
we provide a formula which computes h� for one-dimensional matroids. It turns out
that the set of h-vectors of matroid complexes of the type .1; 2; h2; : : : ; hs/ coincides
with the set of pure O-sequences of the form .1; 2; h2; : : : ; hs/.

In Sect. 4 we prove the conjecture of Stanley in various instances. In Theorem 25
we show that h� is a pure O-sequence whenever� is a .d�1/-dimensional complete
p-partite matroid for some p � d. Using Theorem 25, we prove the more general
statement that h�t.d;p;a/ is a pure O-sequence for all t D 0; : : : ; d � 2 (Theorem 26).

In Sect. 5, for any partition a of n with p � d parts, we denote by M.d; p; a/
the set of .d � 1/-matroids on n vertices, whose 1-skeleton is p-partite and the
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cardinalities of the partition sets correspond to a. By the results of Sect. 3, every
matroid belongs to exactly one of these sets. In Theorems 32 and 35, we show that

h�d�2.d;p;a/ � h� � h�0.d;p;a/; 8 � 2M.d; p; a/:

A priori, the existence of a matroid in M.d; p; a/ with minimal h-vector is not clear
at all. Indeed, a striking consequence is the validity of Stanley’s conjecture whenever
the Cohen–Macaulay type of S=I� is less than or equal to three. In other words, we
establish Stanley conjecture for all the h-vectors of type .h0; h1; : : : ; hs/with hs � 3.

We would like to thank Thomas Kahle for helpful discussions that led to
improvements of the paper.

2 Preliminaries

In this section we will recall most of the algebraic and combinatorial notions that
we will use throughout the paper. For general aspects on the topics presented below
we refer the reader to the books of Stanley [20], of Bruns and Herzog [3] and of
Oxley [16].

For a positive integer n denote by Œn� the set f1; : : : ; ng. A simplicial complex
� on Œn� is a collection of subsets of Œn� such that F 2 � and F0 � F imply
F0 2 �. Notice that we are not requiring that

S

F2� F D Œn�, therefore � can
be viewed as a simplicial complex on any overset of

S

F2� F. Each element F 2 �
is called a face of �. The dimension of a face F is jFj � 1 and the dimension of �
is maxfdim F W F 2 �g. A maximal face of � with respect to inclusion is called
a facet and we will denote by F.�/ the set of facets of �. A simplicial complex is
called pure if all facets have the same cardinality. We call a vertex v a cone point of
� if v 2 F for any F 2 F.�/. If F1; : : : ;Fm are subsets of Œn�, then we denote by
hF1; : : : ;Fmi the smallest simplicial complex on Œn� containing them. Explicitly:

hF1; : : : ;Fmi D fF � Œn� W 9 i 2 f1; : : : ;mg W F � Fig:

We say that F1; : : : ;Fm generate the simplicial complex hF1; : : : ;Fmi. Clearly every
simplicial complex is generated by its set of facets. For any face F the link of F in
� is the following simplicial complex:

link�F D fF0 2 � W F0 [ F 2 � and F0 \ F D ;g:

For a set of vertices W � Œn�, the restriction of� to W is the following subcomplex
of �:

�jW D fF 2 � W F � Wg:
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The subcomplex �jW is also called the subcomplex of � induced by the vertex set
W. If F is a face of �, then the face deletion of F in � is � n F D fF0 2 � W F ª
F0g. Whenever F is a zero-dimensional face fvg we will just write� n v for the face
deletion of fvg and link�v for the link of fvg. Notice that � n v D �jŒn�nfvg for all
v 2 Œn�. The dual complex of � is the simplicial complex�c on Œn� with facets

F.�c/ D fŒn� n F W F 2 F.�/g:

For any integer 0 � k � dim�, the k-skeleton of � is defined as the simplicial
complex with facet set fF 2 � W dim F D kg.

We will now associate to a simplicial complex two square-free monomial ideals.
We will then see how these ideals are related via the dual complex. Denote by S D
kŒx1; : : : ; xn� the polynomial ring in n variables over a field k. For each subset F �
Œn� define the monomial xF and the prime ideal PF as follows:

xF D
Y

i2F

xi;

PF D .xi W i 2 F/:

The Stanley–Reisner ideal of � is the ideal I� of S generated by the square-free
monomials xF; with F … �. In particular we have

I� D .xF W F is a minimal nonface of �/:

The second square-free monomial ideal we can associate to � is the cover ideal of
�, namely

J.�/ D
\

F2F.�/
PF:

The name “cover ideal” comes from the following fact. A collection of vertices
A � Œn� is called a vertex cover of � if A \ F ¤ ; for any F 2 F.�/. A vertex
cover A is called basic if no proper subset of A is again a vertex cover. It is easy to
check that we have

J.�/ D .xA W A is a basic vertex cover of �/:

It is a well known fact that the prime decomposition of the Stanley–Reisner ideal is

I� D
\

F2F.�/
PŒn�nF :
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The following equality, which follows directly from the definition, will be very
important for the approach of this paper:

J.�/ D I�c :

We denote by kŒ�� D S=I� the Stanley–Reisner ring of �. Let hkŒ�� D
.h0; h1; : : : ; hs/ be its h-vector. If HSkŒ��.t/ is the Hilbert series of kŒ��, then we
have

HSkŒ��.t/ D h0 C h1tC : : :C hsts

.1 � t/d
;

where hs ¤ 0 and d D dimkŒ�� D dim�C 1:
In the classical terminology, the h-vector of a simplicial complex is the h-vector

of its Stanley–Reisner ring. As we will mainly deal with cover ideals, in order
to avoid the over-use of the word dual, we will fix the following notation and
terminology.

Notation Let � be any simplicial complex.

1. We denote the h-vector of kŒ�� by h�.
2. We denote the h-vector of S=J.�/ by h�.
3. We will refer throughout this paper to h� as the h-vector of�.

Remark 1 As the cover ideal of the matroid is the Stanley–Reisner ideal of the dual
matroid, with the above notation we have

h� D h�c :

For a .d � 1/-dimensional simplicial complex � on Œn� such that S=J.�/ is
Cohen–Macaulay, we denote by type.�/ the last total Betti number in the minimal
free resolution of S=J.�/, namely

type.�/ D ˇd.S=J.�// D dimk TorS
d.S=J.�/;k/:

Matroid theory was born out of the need to study the concept of dependence in
an abstract way. In this paper we will view matroids as simplicial complexes whose
faces correspond to the independent sets. A characteristic of matroids is that they
admit many different but equivalent definitions (see [16] and [20, Chap. III.3]). We
present here three of them.

Definition 2 A simplicial complex� is called a matroid complex (or just matroid)
if one of the following equivalent properties hold:

1. The augmentation axiom: For any two faces F;G 2 � with jFj < jGj there exists
i 2 G such that F [ fig 2 �.



208 A. Constantinescu and M. Varbaro

2. The exchange property: For any two facets F;G 2 F.�/ and for any i 2 F there
exists a j 2 G such that .F n fig/[ fjg 2 d.

3. For any subset W � Œn� the restriction�jW is pure.

A basic result in matroid theory that we will use intensively is the following:

Theorem 3 ([16, Theorem 2.1.1]) A simplicial complex � on Œn� is a matroid if
and only if �c is a matroid.

An algebraic characterization of matroid complexes has been given in [14]
and [24], namely a simplicial complex � is a matroid if and only if all the
symbolic powers of I� are Cohen–Macaulay. Another algebraic property that will
be important for us (even if it does not characterize matroids) is the following:
the Stanley–Reisner ring of a matroid is level [20, Chap. III, Theorem 3.4]. This
means that kŒ�� is Cohen–Macaulay and the socle of its Artinian reduction lies in
exactly one degree. A prototype of level algebras are the Gorenstein algebras, which
correspond to socle dimension 1. An important consequence of S=J.�/ being level
is that the type can be expressed only in terms of the last entry of the h-vector,
namely

type.�/ D h�.s/ where s D maxfi W h�.i/ ¤ 0g:

A crucial ingredient in many of our proofs is a recursive formula for the h-vector
of S=J.�/. For the following well known statements regarding the Tutte polynomial
of a matroid we refer the reader to [1]. If T�.x; y/ is the Tutte polynomial of�, then
the Tutte polynomial of the dual matroid is T�c.x; y/ D T�.y; x/. The coefficients
of xk in T�c.x; 1/ are exactly h�.k/, for every k D 0; : : : ; s. Using the recurrence
relation of the Tutte polynomial under deletion and contraction of a vertex v 2 �,
which is not a cone point, one immediately obtains that

h�.k/ D h�nv.k � 1/C hlink�v.k/ 8 k 2 Z: (1)

Remark 4 The h-vector of the Stanley–Reisner ideal of any simplicial complex
satisfies a similar recursive formula. However, the h-vector of the cover ideal of
simplicial complex in general fails to satisfy (1). Already a path of length 4, viewed
as a simplicial complex, is such an example.

An order ideal is a finite collection � of monomials of some standard graded
polynomial ring, such that M 2 � and N divides M imply N 2 � . The partial order
given by the divisibility of monomials gives � a poset structure. An order ideal is
called pure if all maximal monomials have the same degree. To every order ideal �
we associate its f -vector f .�/ D .f0.�/; : : : ; fs.�//, where for every i D 0; : : : ; d
we have

fi.�/ D jfM 2 � W deg.M/ D igj:
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A pure O-sequence is a vector h D .h0; : : : ; hs/ that can be obtained as the f -vector
of some pure order ideal.

Remark 5 Pure O-sequences can also be presented as the h-vectors of Artinian
monomial level algebras, i.e. Artinian level algebras A which are isomorphic to R=I
for some polynomial ring R and some monomial ideal I � R. It is very easy to see
that, in this situation, if A is Gorenstein then I is forced to be a complete intersection.
So the pure O-sequences of type .h0; h1; : : : ; hs�1; 1/ are well understood: they are
h-vectors of complete intersections. In particular, it emerges that pure O-sequences
are much more special than h-vectors of level algebras in general.

However, already a characterization of pure O-sequences of the type
.h0; h1; : : : ; hs�1; 2/, i.e. when the Artinian monomial level algebra A has Cohen-
Macaulay type 2, is not known (see [2]).

In [19] Stanley phrased his conjecture in terms of the h-vector of the Stanley–
Reisner ring. By Theorem 3 an equivalent statement is the following:

Conjecture 6 (Stanley) If � is a matroid, then the h-vector of S=J.�/ is a pure O-
sequence.

Conjecture 6 is known for some families; we list here the most general of them.

1. When S=J.�/ is Gorenstein, see [21, Theorem 4.4.10].
2. When h� D .1; h1; h2; h3/, see [21] and [6].
3. When � is a graphic matroid, see [12].
4. When � is a transversal matroid, see [15].
5. When the dual of� is a paving matroid, see [13]. This corresponds to the case in

which hi D
 

v C i� 1
i

!

for all i < s, where v is the number of zero-dimensional

faces of �c.
6. When h� D .1; 2; h2; : : : ; hs/. Indeed, one can see by the Hilbert–Burch theorem

that, in the height 2 case, pure O-sequences coincide with h-vectors of level
algebras (see [2, Proposition 4.5] for the precise proof), so one can deduce the
validity of the conjecture in this case by [20, Chap. III, Theorem 3.4].

Computational experiments using the computer algebra system CoCoa [5] were
an important part in the preparation of this work. In our investigation, we found a
counterexample to the Interval Conjecture for Pure O-sequences (see [2]):

Remark 7 One can check that the vectors .1; 4; 10; 13; 12; 9; 3/ and .1; 4; 10; 13;
14; 9; 3/ are pure O-sequences. Indeed, the order ideals are generated by
fx3y2z; x3yts2; x3z2tg, respectively by fx4y2; x3yzt; x2z2t2g. Looking at all possible
choices of three monomials of degree 6 in 4 variables, it is possible to compute
all the pure O-sequences of the form .1; 4; h2; : : : ; h5; 3/. Checking the obtained
list, one can realize that .1; 4; 10; 13; 13; 9; 3/ does not appear among the pure
O-sequences, a contradiction to the above-mentioned conjecture.
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3 The Structure of Matroids

In this paper we will stratify the set of matroids of fixed dimension and on a fixed
vertex set in terms of partitions of the vertex set. To this aim, in this section we will
prove some technical facts. Most of these are well known facts for matroid theory
specialists, however we consider it convenient to provide proofs as well. We will
then present the simplified matroid associated to any given matroid. This matroid
has only trivial parallel classes, but important information, such as the total Betti
numbers ˇi.S=J.�//, is preserved. We conclude the section presenting a formula
that computes the h-vector of a codimension two Stanley–Reisner ring of a matroid.

From now on, unless otherwise stated, we will consider simplicial complexes
� on Œn� with the property that v 2 � for all v 2 Œn�. Notice that the number of
vertices not belonging to � does not influence h�, so this is no restriction in terms
of our goals. This assumption can be also expressed as Œn� D S

F2� F and if � is a
.d � 1/-dimensional matroid on Œn�, a remark in [20, p. 94] implies that

n � d D maxfi W h�.i/ ¤ 0g:

The following easy remark is the starting point for many of the following
technical results.

Remark 8 If� is a one-dimensional simplicial complex on Œn�, then� is a matroid
if and only if for any v;w 2 Œn� with fv;wg … � we have that link�.v/ D link�.w/.

One-dimensional simplicial complexes can be viewed as graphs on the same vertex
set; the edges are the faces of dimension one. For this reason we will switch between
graph and simplicial complex whenever we find ourselves in this case. Let us recall
that a graph is called a complete p-partite graph if and only if its vertex set can be
partitioned into p disjoint nonempty sets A1; : : : ;Ap such that fv;wg is an edge if
and only if v and w lie in different sets of the partition. The following proposition
shows that one-dimensional matroids and complete p-partite graphs are actually the
same thing.

Proposition 9 If � is a one-dimensional matroid, then � is a complete p-partite
graph, for some integer p � 2.

Proof We will proceed by induction on n, the number of vertices. Assume that n �
2, choose v a vertex of � and consider the set Av D fw 2 � W fv;wg … �g.
As � is a matroid, we have by Remark 8 that link�v D link�w for any w 2 Av .
This implies that Av is an independent set of vertices. Clearly link�v is a zero-
dimensional simplicial complex whose faces correspond to the elements in Œn� n Av .
Moreover, as one can check by definition, the restriction�jŒn�nAv is also a matroid.

If dim�jŒn�nAv D 1, we have by induction that �jŒn�nAv is a complete p-partite
graph, with p-partition of the vertex set A1 [ : : : [ Ap. In this case it follows that �
is a complete .pC 1/-partite graph with partition Œn� D Av [ A1 [ : : : [ Ap.
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If dim�jŒn�nAv D 0 then Œn� n Av is an independent set of vertices, so � is a
complete bipartite graph with bipartition Œn� D Av [ .Œn� n Av/.

The next corollary gives a stratification of the set of all .d�1/-dimensional matroids
on Œn� that will be crucial throughout this work. Clearly, the k-skeleton of a matroid
is again a matroid, so we have the following.

Corollary 10 Let � be a simplicial complex. If � is a matroid, then there exists a
positive integer p � 2 such that the 1-skeleton of � is a complete p-partite graph.

Before showing the next technical lemmas let us fix more notation. From now on,
using Corollary 10,� will be a .d� 1/-dimensional matroid on Œn�, with p-partition
of its 1-skeleton A1; : : : ;Ap. We will call the sets of independent vertices given by
the p-partition parallel classes. Whenever necessary we will denote the vertices of
a given parallel class as follows

Ai D fvi;1; vi;2; : : : ; vi;aig:

For any integer r 2 f1; : : : ; pg and any indices 1 � i1 < : : : < ir � p we denote
by �i1;:::;ir the restriction of � to the vertex set Ai1 [ : : : [ Air . We call �i1;:::;ir the
restriction of � to the parallel classes Ai1 ; : : : ;Air .

Lemma 11 If for r � d parallel classes Ai1 ; : : : ;Air , with 1 � i1 < : : : < ir � p;
there exist r vertices vij 2 Aij such that fvi1 ; : : : ; virg 2 �, then for any r vertices
uij 2 Aij we have that fui1 ; : : : ; uirg 2 �.

Proof We may assume without loss of generality that ij D j, for j D 1; : : : ; r.
Choose now r vertices uj 2 Aj and assume that fu1; : : : ; urg … �. Let s < r be
the maximum size of a subset of fu1; : : : ; urg that belongs to �. Again we may
assume that actually fu1; : : : ; usg 2 �. The simplicial complex �1;:::;r is a matroid.
Since fv1; : : : ; vrg 2 �1;:::;r and the 1-skeleton of �1;:::;r is complete r-partite, we
have dim�1;:::;r D r � 1. As a matroid is pure, we have that usC1 belongs to some
.r � 1/-dimensional facet F of �1;:::;r. Notice that, by the r-partition of �1;:::;r’s
1-skeleton, the facet F has to contain exactly one vertex from each parallel class. By
the augmentation axiom, we know that there exist r � s vertices w1; : : : ;wr�s 2 F
such that G D fu1; : : : ; us;w1; : : : ;wr�sg 2 d1;:::;r . As d1;:::;r is r-partite, G has to
contain a vertex from each parallel class. In particular it has to contain one from
F \ AsC1 D fusC1g. In particular fu1; : : : ; us; usC1g 2 d, a contradiction to the
maximality of s.

Lemma 12 Let Ai be one of the parallel classes of � and let v;w 2 Ai. Then

link�v D link�w:

Proof Choose fa1; : : : ; ad�1g 2 link�v. The restriction �jfv;w;a1;:::;ad�1g is a .d �
1/-dimensional pure complex. As fv;wg … � we obtain that fa1; : : : ; ad�1;wg 2
�jfv;w;a1;:::;ad�1g and thus fa1; : : : ; ad�1g 2 link�w.



212 A. Constantinescu and M. Varbaro

Exploiting the results of Lemmas 11 and 12 we will simplify notation in the
following way. We will write Ai1 : : :Air 2 � if there exist vertices vij 2 Aij for all
j D 1; : : : ; r such that fvi1 ; : : : ; vir g 2 �. By Lemma 11 this holds for any choice
of r vertices, one in each parallel class. As by Lemma 12 the link of all the vertices
in one parallel class is the same, we will denote by link�Ai the link of some vertex
v 2 Ai. These two lemmas lead us to the following definition (see [16, p. 49] for the
classical matroid-theoretical definition).

Definition 13 Let � be a simplicial complex with complete p-partite 1-skeleton,
satisfying Lemma 11. Let A1 [ : : : [ Ap be the p-partition and choose for each
i D 1; : : : ; p a vertex vi;1 2 Ai. We define the associated simplified complex as

si� D �jfv1;1;:::;vp;1g:

We will call a parallel class of� a cone class if the corresponding vertex in si� is a
cone point of si�. This is clearly equivalent to every facet of � containing a vertex
of that parallel class.

Remark 14 Let � be a simplicial complex with complete p-partite 1-skeleton.
Then, using Lemma 11, we have

� is a matroid ” si� is a matroid.

The next proposition shows the close relation between a matroid� and si�.

Proposition 15 Given a matroid� on Œn�, we have ˇi.S=J.�// D ˇi.S=J.si�// for
all i. In particular, type.�/ D type.si�/.

Proof Set R D kŒy1; : : : ; yp�, and consider the k-algebra homomorphism

� W R �! S
yi 7! Q

j2Ai
xj D mi:

One can check that �.J.si�//S D J.�/. Moreover it is obvious that m1; : : : ;mp

form a regular sequence of S, so by a theorem of Hartshorne [7, Proposition 1] S is
a flat R-module via �. So, if F� is a minimal free resolution of R=J.si�/ over R, then
it follows that F� ˝R S is a minimal free resolution of S=J.�/ over S. Therefore we
may conclude.

Remark 16 With the notation of Proposition 15, notice that � allows also to recover
the graded Betti numbers of J.�/ from those of J.si�/. Provided that the partition
of the 1-skeleton of� is known, it is enough to consider the natural Zp-grading both
on R and on S. The Zp-grading on S is given by the p-partition.

We will conclude this section with a first application of Eq. (1). We will find a
formula for the h-vectors h� where� is a one-dimensional matroid. By Theorem 3,
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this is equivalent to describing the h-vectors of kŒ��, where� is a matroid such that
its Stanley–Reisner ideal has height 2.

By Proposition 9, a one-dimensional matroid � is actually a complete p-partite
graph on n vertices. For all k D 1; : : : ; n � 1, let us set

ck.�/ D jfi 2 f1; : : : ; pg W jAij � kgj � 1:

Proposition 17 Let � be a one-dimensional matroid on Œn�. For all k D 0; : : : ;

n � 2, we have

h�.k/ D
n�k�1
X

iD1
ci.�/:

Proof Let us choose a vertex v 2 Ap. Clearly, the cover ideal of the link of v is the
principal ideal

J.link�v/ D
�

Y

i2Œn�nAp

xi

�

:

In particular, we have

hlink�v.i/ D
	

1 if 0 � i < n � jApj;
0 otherwise.

The partition sets of the matroid� n v are A1;A2; : : : ;Ap�1;Ap n fvg, so we have

ck.� n v/ D
	

ck.�/ if k ¤ jApj;
ck.�/� 1 if k D jApj:

By induction we have

h�nv.k/ D
n�k�2
X

iD1
ci.� n v/;

for all k D 0; : : : ; n � 3. On the other side, by (1) we have

h�.k/ D h�nv.k � 1/C hlink�v.k/; 8 k D 0; : : : ; n � 1:



214 A. Constantinescu and M. Varbaro

Therefore,

h�.k/ D

8

ˆ
<

ˆ
:

Pn�k�1
iD1 ci.�/� 1C hlink�v.k/ DPn�k�1

iD1 ci.�/ if k � n � jApj � 1;

Pn�k�1
iD1 ci.�/C hlink�v.k/ DPn�k�1

iD1 ci.�/ otherwise.

Corollary 18 For a sequence h D .1; 2; h3; : : : ; hs/, the following are equiva-
lent:

(i) There is a matroid � such that h is the h-vector of kŒ��.
(ii) There is a matroid � such that h is the h-vector of S=J.�/.

(iii) h is a pure O-sequence.
(iv) h is the h-vector of a level algebra.
(v) hiC1 � 2hi C hi�1 for all i D 1; : : : ; s.

Proof The equivalence between (i) and (ii) follows by Theorem 3, whereas (iii) is
equivalent to (iv) by the Hilbert–Burch theorem. The equivalence between (iv) and
(v) was shown by Iarrobino in [10]. As S=J.�/ is level, and thus (ii) implies (iv), we
just need to prove that (v) implies (ii) and this follows easily from Proposition 17.

Corollary 19 If � is a one-dimensional matroid, then type.�/ D p � 1, where �
is p-partite.

4 Stanley’s Conjecture

The main result of this section is Theorem 26, in which we prove that Stanley’s
conjecture holds for certain matroids which we identify in a natural way. The first
discussion of this section and Theorem 25 are particular cases of the main result.
They are the starting point of the inductive procedure in the proof of Theorem 26.
For a better understanding of the construction which we present here, we will start
with a closer look at an already known case of Stanley’s Conjecture 6, namely the
codimension two case. In this first part we will concentrate on examples which
hopefully provide the necessary intuition for the more technical proofs.

We start by presenting a more general recursive formula, which will be used in
many of the proofs in this section.

Remark 20 Let � be a p-partite, rank d matroid and fix a parallel Ai of cardinality
ai. Using the fact that all the vertices in a parallel class have the same link
(Lemma 12), by applying the recursive formula (1) consecutively for every vertex
v 2 Ai we obtain:

h�.k/ D h�nAi.k � ai/C
ai�1
X

jD0
hlink�Ai.k � j/: (2)
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Consider a one-dimensional matroid� on Œn�, thus by Proposition 9 it is a complete
p-partite graph. Recall that we denote the partition sets of the graph by Ai and for
i D 1; : : : ; p we have ai D jAij. For simplicity, we assume for the moment that
a1 � : : : � ap. We will now present an inductive method to compute the h-vector
of �.

When we restrict to the first layer A1, we obtain a zero-dimensional matroid on
a1 vertices. It is clear that in this case J.�1/ D .x1 � � � xa1 / so the h-vector of �1 is
the vector of length a1: .1; 1; : : : ; 1/. Let v2;1 be the first vertex of the parallel class
A2. This vertex will be a cone-point of the one-dimensional matroid �jA1[fv2;1g,
so the h-vector will be the same as the one of �1. We will now use the recursive
formula (1) to compute the h-vector of �1;2. By Lemma 12 we have

link�1;2v2;i D A1; 8 v2;i 2 A2:

So the h-vector of �jA1[fv2;1;v2;2g is computed as follows:

1 1 : : : 1 1

1 1 1 : : : 1 0

1 2 2 : : : 2 1

where the first row represents the h-vector of �jA1[fv2;1g, the second row represents
the h-vector of the link, i.e. of �1. The last row is the h-vector of �jA1[fv2;1;v2;2g. To
compute the h-vector of�jA1[fv2;1;v2;2;v2;3g we proceed in the same way. All together
we have to apply this procedure a2 � 1 times. This can be done also directly in the
following way:

1 : : : 1 1 1

1 1 : : : 1 1 0

1 1 1 : : : 1 0 0

: : :

1 1 1 : : : 1 0 : : : 0 0 0

1 2 3 : : : a1 a1 : : : 3 2 1

The h-vector of �1;2;3 of is computed in a similar way. The only difference is
that v3;1 will no longer be a cone point. Thus the first row will be h�1;2 and the
number of shifted rows will be a3. Repeating this procedure, we can imagine that
h� is computed summing the columns of the staircase in Fig. 1. Notice that the
last nonzero entry of h� is p � 1. In Fig. 2 we can see one example of how the
corresponding order ideal is constructed in the case when � is the one-dimensional
matroid on 15 vertices, with 4-partition (3,3,4,5). Notice that the columns contain
monomials of the same degree and that the exponent of x is constant on the rows.
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Fig. 1 Computing h� for d D 2

Fig. 2 The order ideal corresponding to the 4-partition .3; 3; 4; 5/
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Depending on the order of the parallel classes we can build a total of 12 different
staircases, each one producing an order ideal. Eliminating the symmetry given by
exchanging x and y, we are left with six different order ideals with the right f -vector.
For example ordering the partition as .4; 3; 3; 5/we obtain the order ideal generated
by fx4y9; x7y6; x10y3g.

In higher dimensions the picture becomes more complicated. One can either
imagine d-dimensional staircases, where each cube has value one, or two-
dimensional staircases, where each row is the h-vector of the link of a parallel
class. As we already saw, the order of the ai’s plays no role in the computation
of h�, providing us with several ways to construct an order ideal with the same
f -vector. A complicated example in dimension 2, with 6-partite 1-skeleton shows
that unfortunately with this method there is no “canonical” choice. By canonical we
understand a construction that should be independent of the values of the ai’s.

There is one case in which the choice of the order ideal is unique, namely the
case when d D p. As we will see in Remark 33, this is equivalent to J.�/ being
Gorenstein.

Lemma 21 If � is a .d � 1/-dimensional, d-partite matroid (so d D p) with
partition .a1; : : : ; ad/, then

h� D f .hya1�1
1 � � � yad�1

d i/:

Proof The minimal generators of J.�/ are the monomials corresponding to the
basic covers of �. In this situation, A1; : : : ;Ad are the unique basic covers of �,
so J.�/ is a complete intersection with d generators of degrees a1; : : : ; ad. The
conclusion follows because the h-vector of a complete intersection depends only on
the degree of its minimal generators.

We will now define a class of matroids and prove that the Stanley conjecture
holds for this class. When one fixes the dimension and the p-partition of the vertex
set, these matroids will have all the admissible faces, thus they are in a sense a
generalization of the Gorenstein matroids.

Definition 22 Let� be a d�1-dimensional matroid on Œn�with p-partite 1-skeleton.
We say that � is a complete p-partite matroid if

Ai1 : : :Aid 2 �; for any subset fi1; : : : ; idg � f1; : : : ; pg:

Whenever p is clear from the context, we will just call � complete. Notice that a
complete matroid is uniquely determined by the cardinalities of the parallel classes
a1; : : : ; ap and by d. It is also clear that a matroid is complete if and only if its
simplification si� is the uniform matroid Ud;p (see [16, p. 17]). Complete matroids
also generalize partition matroids (see [16, p. 18]), which correspond to the case
p D d. In Proposition 9 we proved that for d D 2 all matroids are complete. For
d > 2 this is no longer true, as the following easy example shows.
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Example 23 Let n D 4 and � D ff1; 2; 3g; f1; 2; 4g; f1; 3; 4gg. It is clear that � is
a matroid. The 1-skeleton of � is

�1 D ff1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg D K4;

so it is a complete 4-partite graph. This means that a1 D a2 D a3 D a4 D
1. Clearly this matroid is not complete, as the face f2; 3; 4g is missing. The
complete two-dimensional matroid corresponding to the above ai’s is �0 D
ff1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f2; 3; 4gg.
Remark 24 Let � be a complete p-partite matroid. We have

(i) For any subset of vertices M � Œn� the restriction of � to M is also a complete
matroid.

(ii) For any parallel class Ai, the link in � of any of its vertices link�Ai is also a
complete matroid.

Theorem 25 Let � be a complete, .d� 1/-dimensional matroid with p-partition of
the 1-skeleton A1; : : : ;Ap. For i D 1; : : : ; p we denote by ai D jAij. Let � be the
pure multi-complex on fy1; : : : ; ydg with facets

F.�/ D fy.
Pl1�1

iDl0
ai/�1

1 y
.
Pl2�1

iDl1
ai/�1

2 � � � y.
Pp

iDld�1
ai/�1

d

W 8 1 D l0 < l1 < l2 < : : : < ld�1 � pg:

Then we have that

h� D f .�/;

where h� is the h-vector of the algebra S=J.�/.

Before we start the proof, let us make a few easy remarks and introduce some
notation. For each i 2 fd; : : : ; pg, we denote the link of the i-parallel class in the
restriction of � to the first i parallel classes by

Li D link�1;:::;i Ai:

Notice that Li is the .d� 2/-skeleton of�1;:::;i�1. We will write r.i/ for the length of
the h-vector of Li. As the number of vertices of Li is a1C: : :Cai�1 and its dimension
is d � 2, we have that

r.i/ D 2 � d C
i�1
X

jD1
aj:
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Proof We will prove this theorem by simultaneous induction on d and p � d. The
case d D 1 is trivially true and by Lemma 21 we know that the theorem is true for
p D d.

For each i, denote by �Li the pure multi-complex corresponding to Li which is
given by the inductive hypothesis.

We assume now that p > d > 1 and that h�1;:::;p�1 D f .�p�1/, where

�p�1 D hy.
Pl1�1

iD1 ai/�1
1 y

.
Pl2�1

iDl1
ai/�1

2 � � � y.
Pp

iDld�2
ai/�1

d

W 8 1 < l1 < l2 < : : : < ld�1 � p � 1i:

We will use h�1;:::;p�1 and hLp to compute h� via the formula given in (2), namely

h�.j/ D h�1;:::;p�1 .j � ap/C
ap�1
X

kD0
hLp.j� k/; (3)

for all 0 � j � 1�dCPp
kD1 ak. To conclude we just need to check that the f -vectors

of � , �p�1 and �Lp satisfy the same formula. To this purpose, for any j 2 Z, let us
denote Fj D fM 2 � W deg M D jg, Gj D fM 2 �Lp W deg M D jg and
Hj D fM 2 �p�1 W deg M D jg. Let us furthermore partition Fj as

Fj D Fj;�ap

[

0

@

ap�1
[

kD0
Fj;k

1

A ;

where Fj;�ap D fM 2 Fj W y
ap

d j Mg and Fj;k D fM 2 Fj W yk
d j M and ykC1

d − Mg.
It is easy to check the bijections of sets

Gj�ap

Š�! Fj;�ap

M 7! M � yap

d

and, for all k D 0; : : : ; ap � 1,

Hj�k
Š�! Fj;k

M 7! M � yk
d:

Therefore we get the formula

fj.�/ D fj�ap.�p�1/C
ap�1
X

kD0
fj�k.�

Lp/ 8 j 2 Z;

which, together with (3), yields the conclusion by induction.
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Fixing two positive integers d and n and a vector a D .a1; : : : ; ap/ 2 .ZC/p such
that p � d, a1 C : : :C ap D n, we introduce the class

M.d; p; a/;

consisting of all .d � 1/-dimensional matroids with p-partite 1-skeleton, where
the partition sets Ai have cardinality ai for all i D 1; : : : ; p. Note that the classes
M.d; p; a/ depend only on the set fa1; : : : ; apg. That is, M.d; p; a/ coincides with
M.d; p; a�/ for any permutation � of p elements (a� means .a�.1/; : : : ; a�.p//).
Furthermore notice that, if d D 2 or p D d, M.d; p; a/ consists of a single
matroid, but this happens only in these cases. To see this, it is enough to consider
for t D 0; : : : ; d � 2, the following simplicial complexes

�t.d; p; a/ D hfv1; v2; : : : ; vt; vi1 ; : : : ; vid�t g W t < i1 < : : : < id�t � p where vi 2 Aii:
(4)

It is easy to see that�t.d; p; a/ are elements of M.d; p; a/. Moreover, one can show
that, if p > d, they are not isomorphic pairwise—the easiest way to show this is to
notice that they have a different number of facets. The matroid�0.d; p; a/ is just the
complete p-partite matroid whose partition sets A1; : : : ;Ap satisfy jAij D ai for all
i D 1; : : : ; p. Notice that, apart from the case t D 0, the matroid�t.d; p; a/ depends
on the vector a, not just on the set of its entries.

Remark 26 For every t; d; n and a as above the matroids �t.d; p; a/ are repre-
sentable. To see this it is enough to notice that their simplification satisfies

si�t.d; p; a/ D fv1; : : : ; vtg � Ud�t;p�t D hfv1; : : : ; vtg [ F W F 2 F.Ud�t;p�t/i;

where the vi’s are fixed vertices and Ud�t;p�t is the uniform matroid of rank d �
t on p � t vertices. Thus, a representation of �t.d; p; a/ is obtained by taking ai

copies of the ith column (i D 1; : : : ; p) in a representation of fv1; : : : ; vtg �Ud�t;p�t.
Furthermore, it is easy to check that in order to obtain a representation over a field
F, its cardinality has to be “large enough”.

As a first thing, we want to show that Stanley’s conjecture holds true for all
�t.d; p; a/.

Theorem 26 Let d; p 2 N be such that p � d � 1 and a D .a1; : : : ; ap/ 2 .ZC/p.
Then h�t.d;p;a/ is a pure O-sequence for all t D 0; : : : ; d � 2.

Proof The case t D 0 has already been treated in Theorem 25. So, we will
use induction on t, assuming that t � 1. Let us write �t for �t.d; p; a/. The
restricted simplicial complex �0

t D .�t/2;3;:::;p is just �t�1.d � 1; p � 1; Qa/, where
Qa D .a2; : : : ; ap/. Therefore, we know by induction that h�

0

t is a pure O-sequence.
Set A1 D fv1;1; : : : ; v1;a1g and �i

t � �t the sub-complex induced by the vertices
A2 [ : : :[ Ap [ fv1;1; : : : ; v1;ig for all i D 1; : : : ; a1. We have h�

1
t D h�

0

t�a1;1 D h�
0

t .
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Moreover, for all i � 2 and k 2 Z, we have

h�
i
t.k/ D h�

i�1
t .k � 1/C h�

0

t .k/:

Particularly, since �t D �a1
t , we get

h�t.k/ D
a1�1
X

jD0
h�

0

t .k � j/ 8 k 2 Z: (5)

We know that h�
0

t is a pure O-sequence, so let � 0 be the order ideal such that f�0 D
h�

0

t . Let us suppose that the set of maximal degree monomials of � 0 is

F�0 D fu1; : : : ; us W ui 2 kŒy2; : : : ; yd� and deg.ui/ D a2 C : : :C ap � dC 1g:

Let � be the pure order ideal with the following set of maximal monomials:

F.�/ D fu1ya1�1
1 ; : : : ; usy

a1�1
1 g:

One can easily see that

f�.k/ D
a1�1
X

jD0
f�0.k � j/; 8 k 2 Z;

so (5) yields the conclusion.

Putting together Theorem 25 and the proof of Theorem 26 we obtain an explicit
construction for an order ideal with the f -vector we are looking for. Namely, we
obtain the following corollary.

Corollary 27 If we denote by �t.d; p; a/ the following order ideal:

hya1�1
1 � � � yat�1

t y
.
Pl1�1

iDtC1 ai/�1

tC1
� � � y.

Pp
iDld�t�1

ai/�1

d W 8 tC1 < l1 < l2 < : : : < ld�t�1 � pi;

we have that

h�t.d;p;a/ D f .�t.d; p; a//:

In particular,

type.S=J.�t.d; p; a/// D
 

p � t � 1
d � t � 1

!

: (6)
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A consequence of Theorem 26 is the following interesting fact:

Corollary 28 Let d � 1. For all a 2 .ZC/dC1 and � 2 M.d; d C 1; a/, h� is a
pure O-sequence.

Proof We want to show that � actually is �t.d; p; a/ for some t D 0; : : : ; d � 2,
so that Theorem 26 would give the thesis. Passing to si�, a proof in the case a D
1 D .1; 1; : : : ; 1/ 2 .Z/dC1

C is enough. Notice that any .d � 1/-dimensional pure
simplicial complex on the vertex set f1; : : : ; d C 1g is a matroid. In order to have
the complete graph on d C 1 vertices as 1-skeleton, si� must have m � 3 facets.
Moreover, if � is a .d� 1/-simplicial complex on dC 1 vertices with m � 3 facets,
then it is easy to prove that � is isomorphic to the matroid�d�mC1.d; dC 1; 1/.

5 Minimal and Maximal h-Vectors

Among the matroids described in (4), two play a fundamental role:

�max.d; p; a/ D �0.d; p; a/; (7)

�min.d; p; a/ D �d�2.d; p; a�/;

where � is a permutation of p elements such that a�.1/ � : : : � a�.p/. In this section
we will see that, for any� 2M.d; p; a/, we have

h�min.d;p;a/ � h� � h�max.d;p;a/

component-wise.
Given a matroid � with parallel classes A1; : : : ;Ap, we need to consider in

the following lemma the matroid �r$s, where the parallel classes Ar and As are
switched. Let us give a more rigorous definition: The matroid �r$s has as facets
the subsets F D fvi1 ; : : : ; vidg of Œn� such that one of the following happens:

(i) jF \ .Ar [ As/j 2 f0; 2g and F 2 F.�/.
(ii) vij 2 Ar, F\As D ; and there exists v 2 As such that .Fnfvijg/[fvg 2 F.�/.

(iii) vik 2 As, F\Ar D ; and there exists u 2 Ar such that .Fnfvikg/[fug 2 F.�/.

Example 29 Let� be the rank 3, 5-partite matroid, with parallel classes A1; : : : ;A5
and facets:

A1A2A5; A1A3A5; A1A4A5; A2A3A5; A2A4A5; A3A4A5:

To compute�3$5 we just have to switch the indices 3 and 5 in the above list. Notice
that, while si� and si�3$5 are isomorphic, � and �3$5 are isomorphic if and only
if jA3j D jA5j. The h-vectors h� and h�3$5 are computed in Example 36
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Lemma 30 Let p > d and a D .a1; : : : ; ap/ 2 .ZC/p be a vector such that a1 �
: : : � ap. Let � 2M.d; p; a/ be a matroid such that Ap is a cone class for � (i.e.
it corresponds to a cone point in si�). Pick ` 2 f1; : : : ; p � 1g such that A` is not a
cone class for � (it exists because p > d). Then

h�`$p � h�:

Proof Set Lp D link�Ap and L` D link�`$p A`. Furthermore, let L0
p D Lp n A` and

L0
` D L` n Ap. Notice that L0

p Š L0
` and that T D linkLp A` Š linkL0

`
Ap D U. When

applying the recursive formula (2) twice for�, respectively�`$p, we obtain for all
k 2 Z:

h�.k/ D h�nApnA` .k � ap � a`/C
ap�1
X

iD0
hL0

p.k � a` � i/C
ap�1
X

iD0

a
X̀

jD1
hT.k � a` � iC j/

(8)

and

h�`$p.k/ D h�`$pnA`nAp.k�a`�ap/C
a`�1
X

iD0
hL0

`.k � ap � i/C
a`�1
X

iD0

ap
X

jD1
hU.k�ap�iCj/:

(9)

Clearly, as�nAp nA` D �`$p nA` nAp, we have equality for the frist summands in

the two equations above. From the above discussion we have hL0

p.r/ D hL0
` .r/ DW h0

r
and hT.r/ D hU.r/ DW h00

r for all r 2 Z. Let us set

M1 D
ap�1
X

iD0
h0

k�a`�i; M2 D
ap�1
X

iD0

a
X̀

jD1
h00

k�a`�iCj

and

N1 D
a`�1
X

iD0
h0

k�ap�i; N2 D
a`�1
X

iD0

ap
X

jD1
h00

k�ap�iCj:

Because a` � ap, obviously N1 � M1. Moreover we claim that N2 D M2. To see
this, it is enough to notice that

h00
k�ap�iCj D h00

k�a`�.ap�j/C.a`�i/:

So, we get that (9) is less than or equal to (8).

We need one more technical lemma.
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Lemma 31 Let A1; : : : ;Ap and B1; : : : ;Bq be partitions of f1; : : : ; ng of cardinality
jAij D ai and jBjj D bj, where p � d and q � d, such that

(i) a1 � : : : � ap.
(ii) b1 � : : : � bq.

(iii) Bj D Srj

kD1 Aij;k .

(iv)
Sd

iD1 Ai �Sd
iD1 Bi.

Set Qa D .a1; a2; : : : ; ad�1; ad C : : : C ap/ and b D .b1; : : : ; bq/. If � is the only
.d � 1/-dimensional matroid in M.d; d; Qa/, then

h� � h� 8 � 2M.d; q;b/:

Proof If q D d, then the assertion can be deduced by inspection on the h-vectors of
� and � , described in Theorem 25. In fact, using this theorem, one can show a more
general statement: Let ˛ D .˛1; : : : ; ˛d/ 2 .ZC/d and ˇ D .ˇ1; : : : ; ˇd/ 2 .ZC/d
be vectors such that ˛1 � : : : � ˛d, ˇ1 � : : : � ˇd,

Pd
iD1 ˛i DPd

iD1 ˇi and ˛i � ˇi

for all i D 1; : : : ; d� 1. Then, the h-vector of the only matroid in M.d; d; ˛/ is less
than or equal to the h-vector of the only matroid in M.d; d; ˇ/. We leave the easy
proof of this fact to the reader.

We will use induction on p. Notice that, as we always have d � q � p, the case
p D d, implies q D d, so we are done by the above discussion.

If p > d and q > d, then iq;k > d for all k D 1; : : : ; rq. Consider the sub-complex
� 0 � � induced by the vertices not in Bq and set L D link�Bq. As Bq is a subset of
a parallel class in � , L is well defined and for all k 2 Z we have

h�.k/ D h�
0

.k � bq/C
bq
X

iD1
hL.k � bq C i/:

In the same vein, we can consider the sub-complex �0 � � induced by all the
vertices of � not in Bq and we set K D link�Bq. Once again we have, for all k 2 Z,

h�.k/ D h�
0

.k � bq/C
bq
X

iD1
hK.k � bq C i/:

By Lemma 30 we can assume that Bq is not a cone class of �, so that �0 has
dimension d � 1. Therefore by the induction on p we immediately get h�

0 � h�
0

.
On the other hand, L is the unique .d�1/-partite .d�2/-dimensional matroid on

the partition .a1; : : : ; ad�1/, whereas K is a .d�2/-dimensional matroid on a certain
partition C1; : : : ;Cr. For sure r � d � 1 and, provided that jC1j � : : : � jCrj, we
get also that ai � bi � jCij for all i D 1; : : : ; d � 1. Take a facet fvi1 ; : : : ; vid�1g
of K and suppose that each vik 2 Cik . Then the sub-complex K0 � K induced by
the vertices of Ci1 [ : : : [ Cid�1 is a complete .d � 1/-partite .d � 2/-dimensional
matroid. We can assume i1 < : : : < id, so that ak � jCik j for all k D 1; : : : ; d�1. So
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we can choose ak vertices in each one of the Cik s. It turns out that L is isomorphic
to the sub-complex of K0 induced by these vertices. Therefore L is isomorphic to an
induced sub-complex of K, which implies hL � hK . So we can conclude.

Theorem 32 If d � 1 and a D .a1; : : : ; ap/ 2 .ZC/p with p � d, then

h�min.d;p;a/ � h� 8 � 2M.d; p; a/:

Proof Since neither the matroid �min.d; p; a/ nor the set M.d; p; a/ depend on the
order of a1; : : : ; ap, we are allowed to assume that a1 � : : : � ap. We induct on p.
If p D d, then the theorem is trivial, since M.d; d; a/ consists of only one matroid,
namely�min.d; d; a/. If p > d, let us set �min.d; p; a/0 � �min.d; p; a/ and �0 � �
the sub-complexes induced by the vertices of A1 [ : : : [ Ap�1. Furthermore set
a0 D .a1; : : : ; ap�1/. We have that �min.d; p; a/0 D �min.d; p � 1; a0/. Exploiting
Lemma 30, we can assume that dim d0 D d� 1, so that d0 2M.d; p� 1; a0/. So, by
induction, we get

h�min.d;p;a/0 � h�
0

:

Now set L D link�min.d;p;a/Ap and K D link�Ap. It turns out that L is the unique
.d � 1/-partite .d � 2/-dimensional matroid on the partition .a1; : : : ; ad�2; ad�1 C
: : :C ap�1/. Instead K will be a .d � 2/-dimensional matroid on a certain partition
.b1; : : : ; bq/. Such partitions satisfy the hypotheses of Lemma 31, so we get

hL � hK :

This yields the conclusion, since for all k 2 Z

h�min.d;p;a/.k/ D h�min.d;p;a/0.k � ap/CPap

iD1 hL.k � ap C i/ and
h�.k/ D h�

0

.k � ap/CPap

iD1 hK.k � ap C i/:

Remark 33 By Theorem 32 and (6) one has that, for all � 2M.d; p; a/,

type.S=J.�// � p � d C 1: (10)

This implies that, for any matroid �, S=I� is Gorenstein if and only if I� is a
complete intersection if and only if p D d. So we recover [21, Theorem 4.4.10].

Equation (10) allows us to prove the following:

Theorem 34 If� is a matroid on f1; : : : ; ng such that type.S=I�/ � 3, then h.�/ D
h.kŒ��/ is a pure O-sequence. Equivalently, if the h-vector of a matroid has the
shape .1; h1; : : : ; hs/ with hs � 3, then it is a pure O-sequence.

Proof First of all we replace I� for J.�/. If type.S=J.�// � 2, then � has to
belong or to M.d; d; a/ or to M.d; dC1; a/ thanks to Eq. (10), so in these cases the
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statement follows at once by Lemma 21 and Corollary 28. Thus we have only to care
of the case type.S=J.�// D 3. Again using Eq. (10), Lemma 21 and Corollary 28,
we can assume that � is in M.d; d C 2; a/. The Cohen–Macaulay type of S=J.�/
is the same as the one of S=J.si�/ by Proposition 15. But the dual of si� is a rank 2
matroid (possibly on less than dC2 vertices), so it is some complete p-partite graph
G (see Proposition 9). Furthermore h

si� D hG D .1; h1; h2/, where h2 D e � v C 1
(v denotes the number of vertices of G and e the number of its edges). But we want
h2 D 3, that is e D v C 2. It is easy to check that the only complete p-partite graph
on v vertices with v C 2 edges is the complete graph on 4 vertices. This means that
si� D �d�2.d; d C 2; 1/, so � D �d�2.d; d C 2; a/. Now the conclusion follows
from Theorem 26.

To show that �max.d; p; a/ has maximal h-vector among the matroids � 2
M.d; p; a/ is much easier.

Theorem 35 If d � 1 and a D .a1; : : : ; ap/ 2 .ZC/p with p � d, then

h� � h�max.d;p;a/ 8 � 2M.d; p; a/:

Proof It is harmless to assume that k is infinite; otherwise we can tensor with
its algebraic closure. Looking at the respective vertex covers, it is clear that
J.�max.d; p; a// � J.�/ for all � 2M.d; p; a/. Since both S=J.�max.d; p; a// and
S=J.�/ are .n�d/-dimensional Cohen–Macaulay rings, we can choose n�d linear
forms which are both S=J.�max.d; p; a//- and S=J.�/- regular (the generic ones
have this property). Passing to the Artinian reduction, the inclusion is preserved, so
we infer the desired inequality.

Example 36 We will compute now the upper and lower bounds for the h-vectors
of the two matroids � and �3$5, of Example 29, when the cardinalities of the
parallel classes are a D .jA1j; jA2j; jA3j; jA4j; jA5j/ D .2; 2; 3; 3; 4/. The facets of
�max.3; 5; a/ and �min.3; 5; a/, which produce the maximal (respectively minimal)
h-vectors in M.3; 5; a/, are

F.�max.3; 5; a// D fA1A2A3; A1A2A4; A1A2A5; A1A3A4; A1A3A5;

A1A4A5; A2A3A4; A2A3A5; A2A4A5; A3A4A5g;
F.�min.3; 5; a// D fA1A2A3; A1A2A4; A1A2A5; A1A3A4; A1A3A5; A1A4A5g:

The corresponding h-vectors are:

h�max.3;5;a/ D .1; 3; 6; 10; 15; 21; 27; 30; 27; 18; 6/
h� D .1; 3; 6; 10; 14; 18; 21; 20; 15; 9; 3/
h�3$5 D .1; 3; 6; 9; 12; 15; 17; 18; 15; 9; 3/
h�min.3;5;a/ D .1; 3; 5; 7; 9; 11; 13; 14; 13; 9; 3/:
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