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Abstract. Latent fingerprints which are lifted from surfaces of objects
at crime scenes play a very important role in identifying suspects in the
crime scene investigations. Due to poor quality of latent fingerprints,
automatic processing of latents can be extremely challenging. For this
reason, latent examiners need to be involved in latent identification. To
expedite the latent identification and alleviate subjectivity and inconsis-
tency in latent examiners’ feature markups and decisions, there is a need
to develop latent fingerprint identification systems that can operate in
the “lights-out” mode. One of the most important steps in “lights-out”
systems is to determine the quality of a given latent to predict the proba-
bility that the latent can be identified in a fully automatic manner. In this
paper, we (i) propose a definition of latent value determination as a way
of establishing the quality of latents based on a specific matcher’s iden-
tification performance, (ii) define a set of features based on ridge clarity
and minutiae and evaluate them based on their capability to determine if
a latent is of value for individualization or not, and (iii) propose a latent
fingerprint image quality (LFIQ) that can be useful to reject the latents
which cannot be successfully identified in the “lights-out” mode. Exper-
imental results show that the most salient latent features include the
average ridge clarity and the number of minutiae. The proposed latent
quality measure improves the rank-100 identification rate from 69 % to
86 % by rejecting 50% of latents deemed as poor quality. In addition, the
rank-100 identification is 80 % when rejecting 80% of the latents in the
databases assessed as ‘NFIQ = 5’; however, the same identification rate
can be achieved by rejecting only 21% of the latents with low LFIQ.

Keywords: Latent fingerprints · “lights-out” latent identification ·
Latent value determination · Latent fingerprint image quality (LFIQ)

1 Introduction

Fingerprints have been widely used for reliable human identification in forensics
and law enforcement applications for over a century. Law enforcement agencies
routinely collect tenprint records of all apprehended criminals in two forms: rolled
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Fig. 1. ACE-V methodology in latent identification.

and plain (or slap). Rolled fingerprints are obtained by rolling a finger from nail
to nail to capture the complete ridge details on a finger while plain fingerprints
are captured by pressing down a finger on the flat surface of a fingerprint card
or a live-scan sensor [1]. Both rolled and plain fingerprints, collectively called
reference (exemplar) fingerprints, are believed to contain sufficient ridge details
for individualization. To ensure good quality of fingerprint images, reference
fingerprints are acquired under the supervision of a human operator; this way,
fingerprints can be recaptured in case of poor quality impressions.

Automated Fingerprint Identification Systems (AFIS) are used by almost
every major law enforcement agency worldwide to facilitate tenprint search;
rolled or plain fingerprints are submitted as a query to an AFIS to search
large-scale reference fingerprint databases. The FBI’s Integrated AFIS (IAFIS)
receives tens of thousands of requests everyday to search a reference database
containing tenprint cards of over 72 million criminals and 34 million civilian job
applicants [2]. The matching accuracy of tenprint search has already reached an
impressive level; the 2003 Fingerprint Vendor Technology Evaluation (FpVTE)
[3] reported that the best performing commercial matcher achieved 99.4 % true
accept rate at 0.01 % false accept rate in searching plain fingerprints against a
reference database with 10,000 plain fingerprints.

Another type of important fingerprint identification involves searching latent
fingerprints against reference fingerprint databases. Latent fingerprints (or sim-
ply latents) refer to the fingerprints captured at crime scenes, and are regarded
as an extremely important source of evidence in crime scene investigations to
identify suspects. Unlike rolled or plain fingerprints, latents are often of poor
quality; latent impressions typically contain partial ridge patterns of a finger,
incomplete or missing ridge structures, mixture of ridge pattern and complex
background noise or friction ridge structures from other fingers. Due to low
quality of latent fingerprints, human intervention is inevitable in latent search,
especially for feature markup (i.e., manually marking region of interest, minu-
tiae, core, delta, and extended features). In matching latents to reference prints,
latent fingerprint examiners are expected to follow a methodology, called Analy-
sis, Comparison, Evaluation and Verification (ACE-V) [4]. Figure 1 illustrates
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the ACE-V methodology. In the analysis phase, an examiner evaluates the ridge
information contained in latent images. If the latent is determined to contain
sufficient information for identification or exclusion (called “of value” latent),
the features in the latent are manually marked by the examiner to search for
its mate using an AFIS. In the comparison phase, the examiner compares the
“of value” latent with the candidate mates retrieved from the reference database
side-by-side and ascertains the similarity between the latent and mated reference
print pairs using feature markup in the latent. In the evaluation phase, one of
the following decisions is made about the latent in question: individualization,
exclusion or inconclusive1. Finally, in the verification phase, the decision made
by the first examiner is confirmed by having a second examiner analyze the
results independently.

Although the ACE-V methodology is widely accepted by forensic commu-
nity for latent print examination, the influence of human factors in the ACE-V
procedure has raised concerns about their reliability and consistency. A notewor-
thy case is the erroneous identification of Brandon Mayfield as a suspect in the
Madrid train bombing incident based on an incorrect match between Mayfield’s
reference fingerprint and the latent print captured at the bombing site [6,7].
The National Research Council’s report on limitations and recommendations of
forensic science [8] pointed out two major shortcomings in the current forensic
science discipline: (i) “lack of mandatory and enforceable standards” that can be
globally referred to in crime labs and (ii) “unacceptable case backlogs in state
and local crime labs which likely make it difficult for laboratories to provide
strong evidence for prosecutions and avoid errors that could lead to imperfect
justice”. Along with the efforts to understand the human factors in latent finger-
print examination [9], standards and guidelines for latent examiners’ practices
have also been set up. As an example, the Science Working Group on Friction
Ridge Analysis, Study and Technology (SWGFAST) published standards which
define terminologies and establish the sufficiency level for decisions at each step
of the ACE-V methodology to alleviate subjectivity involved in feature markups
and decision makings among examiners [5].

Based on the guidelines in SWGFAST standard, latent examiners’ practices
have been evaluated from various aspects (e.g., reliability of decisions, degree
of consensus and consistency of decisions) [10–12], mainly on two critical deci-
sions that the examiners make in ACE-V methodology: (i) latent value deter-
mination in the analysis phase and (ii) latent individualization conclusion in
the evaluation phase. Latent value determination assigns one of the following
labels to each latent: value for individualization (VID), value for exclusion only
1 Individualization is the decision that a latent examiner makes on a pair of latent and

a reference print indicating that the pair originates from the same finger based on a
sufficient agreement between the two ridge patterns. Exclusion, on the other hand,
is the decision where an examiner concludes that the pair did not originate from the
same finger based on a sufficient disagreement between the two ridge patterns. An
inconclusive decision is made when an examiner cannot make a decision of either
individualization or exclusion due to insufficient ridge details or small corresponding
area between latent and reference print [5].
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(a) (b) (c) (d)

Fig. 2. Latents that are assessed as either VEO or NV, but the mated rolled prints
are retrieved at rank-1 by AFIS. (a) NIST SD27 (U237): VEO (minutiae from AFIS)
and (b) WVU (W514F02C N): VEO (minutiae from AFIS), (c) NIST SD27 (U254):
NV (minutiae marked by an examiner), and (d) WVU (W605F01C I): VEO (minutiae
marked by an examiner).

(VEO), and no value (NV). Only VID and VEO latents are further consid-
ered for comparison. However, recent studies on the consensus and consistency
of latent examiners’ value determination indicate that a significant amount of
subjectivity and variation exists in latent value determination. In [11], the con-
sensus of the latent examiners’ value determinations was evaluated; among the
356 latents which were reviewed by the examiners (each latent was reviewed by
23 examiners, on average), unanimous decisions (either VID or not-VID) were
made only for about 43 % of the latents. In terms of consistency, Ulery et al. [12]
found that 85 % of NV decisions and 93 % of VID decisions were repeated by the
same examiner after a time gap while only 55 % of VEO decisions were repeated.
More importantly, an examiner’s value determination is not always reliable; the
ELFT-EFS (Evaluation of Latent Fingerprint Technologies: Extended Feature
Sets) report [13] emphasizes that a significant portion of the latents assessed as
being of VEO or NV can still be successfully identified by AFIS. Figure 2 shows
examples of latents in the NIST SD27 database [14] and the WVU latent data-
base [15] that were assessed as either VEO or NV by latent examiners, but whose
mated reference prints were correctly retrieved at the top rank by an AFIS.

One of the most desirable properties of a latent fingerprint identification sys-
tem is its ability to process latents in a “lights-out” identification mode with
high accuracy. A “lights-out” fingerprint identification system refers to a system
that requires only fingerprint images as input (query) and returns a short list
of reference prints as potential mates [16]. The advantages of “lights-out” latent
identification mode include: (i) avoiding subjectivity in latent print examination
and (ii) increasing throughput of latent print matching, given the growing work-
load on latent examiners. While state-of-the-art latent fingerprint identification
systems have already shown excellent performance in matching latents to refer-
ence databases2 [13,17], more research efforts are needed to continue to improve
this performance.

2 The best performing matcher for latent search in the ELFT-EFS achieved 63.4 %
rank-1 identification rate in the “lights-out” identification mode [13].
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The first and the most significant step in achieving “lights-out” latent iden-
tification capability is the quality assessment of latents to (i) determine whether
or not they have sufficient fingerprint ridge structure for either automatic feature
extraction or manual feature markup and (ii) predict the reliability of latent to
reference print matching with the given feature set. Although, in principle, the
objectives of latent quality assessment are the same as those of tenprint or refer-
ence print quality assessment, defining a latent fingerprint image quality (LFIQ)
measure is lot more difficult. Further, while the tenprint quality measures are
mainly used to determine if they need to be recaptured, the main purpose of
defining a latent quality measure is to expedite latent print examination by
identifying ‘good’ quality latents which can be processed in “lights-out” mode.
An appropriate latent quality measure will also help avoid potential erroneous
subjective decisions regarding latent value.

Latent fingerprint quality can be assessed as latent value determination, and
the latent value can be determined by two different ways: (i) latent examin-
ers and (ii) AFIS. Latent value determination by examiners simply refers to
the current practice of assigning one of the following values (i.e., VID, VEO
and NV) to a latent by an examiner. However, as mentioned before, the latent
values determined by examiners are not always correlated to the latent identifi-
cation performance. Considering that one of the major goals of defining latent
quality measure is to predict latent matching performance (assuming that the
mated print in the reference database is of fairly good quality), we define a
value determination by AFIS, following the comparison protocol in the ACE-V
methodology: a latent fingerprint is declared to be VID in value determination
by an AFIS if its mated print in the reference database is retrieved within the
top rank-100; otherwise, the latent is declared as not-VID in value determination
by the AFIS.

One of the challenges in defining a value determination by AFIS is to find
salient features in latents which are directly related to the latent identification
performance. Features that can be used in estimating latent fingerprint quality
are generally comprised of (i) quality for value and (ii) quality for identification.
Quality for value (often referred to as qualitative quality [10,18]) measures the
sufficiency of Level-1 features such as fingerprint ridge clarity, pattern class, size
of region of interest, fingerprint position (e.g., center, side, or tip of a finger), and
determines the utility of the latent for either exclusion or identification. Quality
for identification (often referred to as quantitative quality [10,18]) measures the
sufficiency of Level-2 (i.e., minutiae) and Level-3 (e.g., pores) features which
are directly used in fingerprint identification, and determines the reliability of
matching results by an AFIS in the “lights-out” mode.

Another important consideration in defining a latent quality measure is
whether it should depend on a specific AFIS. The issue of interoperability of
AFIS in latent search is well known [19]. Given that the matching results of
AFIS from different vendors on a given latent print can be significantly different
as revealed in ELFT-EFS [13], we believe that a latent fingerprint quality mea-
sure should be designed for a specific AFIS. We call this a matcher-dependent
latent quality measure.
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In this paper, we report results of our preliminary study on defining LFIQ.
First, we investigate a set of Level-1 features for qualitative quality and Level-
2 features for quantitative quality that can be effectively used to define latent
fingerprint image quality. The features are evaluated by constructing a 2-class
classifier to determine whether a latent is VID or not-VID. The class labels (VID
and not-VID) are determined either by latent examiners or an AFIS; this way,
two different classifiers – one for value determination by examiners and the other
for value determination by an AFIS – are obtained. Based on the observations
from latent value estimation, we define a latent quality measure by combining
a qualitative quality feature (i.e., the average ridge clarity) and a quantitative
quality feature (i.e., the number of minutiae) to estimate the objective target
quality: the probability that the mated reference print of a latent will be retrieved
within the top rank-100.

2 Latent Fingerprint Image Quality (LFIQ)

To find the most significant features to represent latent fingerprint quality, a
latent quality assessment is viewed as a 2-class classification problem: ωV ID ver-
sus ωV ID, where ωV ID represents the class of VID latents and ωV ID represents
the class of not-VID latents. Feature vectors with different composition of ridge
clarity features and minutiae features are evaluated in terms of the resulting
classification accuracy. Based on the empirical results, a latent quality measure
is defined by combining the two most significant features: average ridge clarity
in the convex hull enclosing all the minutiae and the number of minutiae.

2.1 Ridge Clarity Feature

Given a latent fingerprint image I, the quality of its local ridge structure is
measured by the ridge strength in a local block and the ridge continuity in the
block’s neighborhood. The computation of local ridge clarity map, RC, involves
the following steps:

1. Preprocessing: The contrast-enhanced latent image, I∗, is obtained by [20]:

I∗ = sign(I − Ī) × log(1 + |I − Ī|), (1)

where Ī is the smoothed version of I by applying a 15 × 15 averaging filter,
and sign(x)= 1 if x > 0, otherwise sign(x)= −1.

2. Fourier analysis: The contrast-enhanced image I∗ is divided into 16×16 pixel
blocks. The 64 × 64 subimage, I∗

mn(x, y), is constructed by taking a 32 × 32
subimage of I∗ around the center of the block at [m,n] and padding with
0’s to get high frequency resolution in the Fourier domain. The subimage is
transformed into the Fourier domain, Fmn(u, v). The top two local amplitude
maxima within the frequency range of

[
1
16 , 1

5

]
are selected [21]. Let (u1, v1)

and (u2, v2) be the locations of the first and the second amplitude maxima
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in Fmn(u, v). Then, a 2-dimensional sine wave corresponding to the i-th local
maximum of the block at [m,n] can be written as:

w(i)
mn(x, y) = a(i)

mn sin(2πf (i)
mn(cos(θ(i)mn)x + sin(θ(i)mn)y) + φ(i)

mn), i = 1, 2, (2)

where

a(i)
mn = |F (ui, vi)|, f (i)

mn =

√
u2

i + v2
i

64

θ(i)mn = arctan
(

ui

vi

)
, and φ(i)

mn = arctan
[
Im(F (ui, vi))
Re(F (ui, vi))

]
,

a
(i)
mn, f

(i)
mn, θ

(i)
mn, and φ

(i)
mn represent the amplitude, frequency, direction, and

phase, respectively.
3. Ridge continuity map: The 2-dimensional sine waves, w1 and w2, in two adja-

cent blocks are continuous if they satisfy the following conditions [21]:

min{|θ1, θ2|, π − |θ1, θ2|} ≤ Tθ,
∣
∣
∣
∣

1
f1

− 1
f2

∣
∣
∣
∣ ≤ Tf , and

1
16

∑

(x,y)∈L

∣
∣
∣
∣
w1(x, y)

a1
− w2(x, y)

a2

∣
∣
∣
∣ ≤ Tp, (3)

where L denotes the 16 pixels on the border of the two adjacent blocks, and
the three thresholds, Tθ, Tf , and Tp, are set to π

10 , 3, and 0.6, respectively.
Define an indicator function, Ic(w1, w2), as follows:

Ic(w1, w2) =

{
1, if w1 and w2 are continuous,
0, otherwise.

(4)

Ridge continuity map is defined by:

R̃C[m,n] =
∑

[m∗,n∗]∈N
max{Ic(w(1)

mn, w
(1)
m∗n∗), Ic(w(1)

mn, w
(2)
m∗n∗)}, (5)

where N is the 8-neighborhood blocks of the block [m,n].
4. Ridge clarity map: The ridge clarity of block at [m,n] is defined by:

RC[m,n] = a(1)
mn · R̃C[m,n]. (6)

Figure 3 shows the ridge clarity maps and the intermediate steps for two different
latents. Well-defined ridge structures present in a latent correspond to the high
ridge clarity regions in the RC map.
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Fig. 3. Ridge clarity maps (RC) of two latents in NIST SD27. (a) G051 and (e) G080,
(b) and (f) contrast-enhanced latent images, (c) and (g) ridge continuity maps, and
(d) and (h) ridge clarity maps (brighter regions indicate higher ridge clarity).

2.2 Minutiae Feature

The most significant features which are directly related to the fingerprint match-
ing performance are the minutiae properties. We investigated a number of differ-
ent minutiae properties, including the number of minutiae, quality of minutiae
based on the RC map defined in the Sect. 2.1, and size of the convex hull enclos-
ing the minutiae in the latent. Let NM , QM , and AM denote the number of
minutiae, average quality of minutiae, and size of the convex hull enclosing all
the minutiae in a latent.

The average quality of minutiae, QM , is obtained from the RC map as
follows:

QM =
1

NM

NM∑

i=1

RC[bxi, byi], (7)

where [bxi, byi] is the blockwise position of the i-th minutia.
Two different sets of minutiae are considered: (i) minutiae automatically

extracted by an AFIS and (ii) minutiae manually marked by latent examiners.
Reliability of the minutiae marked by examiners is significantly higher compared
to the minutiae extracted by the AFIS3 while the consistency of the minutiae
markup by the examiners is lower than that of the minutiae extracted by the
AFIS. Figure 4 shows the two minutiae sets – minutiae extracted by the AFIS
3 The AFIS used in this study is not a state-of-the-art latent-to-reference print

matcher, but instead a state-of-the-art AFIS for reference fingerprint matching. Cur-
rently, no AFIS for latent matching is available to us.
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(a) (b) (c) (d)

Fig. 4. Minutiae in two latents shown in Fig. 3. (a) Minutiae extracted by an AFIS for
the latent in Fig. 3a, (b) minutiae marked by an examiner for the latent in Fig. 3a, (c)
minutiae extracted by the AFIS for the latent in Fig. 3e, and (b) minutiae marked by
an examiner for the latent in Fig. 3e.

and minutiae marked by examiner – of the two latents in Fig. 3 along with the
convex hulls enclosing the minutiae.

2.3 Latent Fingerprint Quality Assessment

To establish the most discriminant features to define latent fingerprint quality,
the latent quality assessment is formulated as a 2-class classification problem for
ωV ID and ωV ID. To build the “best” performing matcher for latents4, we fuse a
state-of-the-art AFIS for tenprint with the latent fingerprint matcher developed
in [22] as follows. The match score of a latent i and a reference print j is obtained
by [23]:

sij = r
sA

ij

1
NR

∑NR

k=1 sA
ik

+ (1 − r)
sB

ij

1
NR

∑NR

k=1 sB
ik

, 0 ≤ r ≤ 1, (8)

where sA
ij and sB

ij are the match scores of a latent i and a reference print j from
matcher A and B, respectively, NR is the size of the reference database, and r is
a weight which is empirically chosen to obtain the best rank-100 identification
accuracy.

We evaluated feature vectors consisting of different combinations of ridge
clarity and minutiae features. The following two feature vectors were observed
to be the most discriminative:

x1 = (NM ),
x2 = (QR, NM , QM , AM ),

where QR is the average ridge clarity in the convex hull of the minutiae in a
latent and defined as:

QR =
1
|C|

∑

[m,n]∈C
RC[m,n], (9)

4 Based on the latent matching performance evaluation with the fingerprint matchers
available to us, the fusion of the two matchers described in this paper showed the
best performance to simulate the performance of a state-of-the-art AFIS for latents.
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where C is the set of blocks that belong to the convex hull enclosing the minutiae
and |C| is the number of blocks in the convex hull. Note that each component of
the feature vector is normalized by its minimum and maximum values. A decision
tree classifier [24] is used to determine whether a latent belongs to ωV ID or ωV ID.

Based on the above observations, a latent fingerprint image quality measure,
LFIQ, is defined as:

LFIQ = QR · NM , (10)

where QR is the average ridge clarity and NM is the number of minutiae.

3 Experimental Results

3.1 Databases

The latent quality measure was evaluated on two latent fingerprint databases:
NIST SD27 [14] and WVU latent database [15]. NIST SD27, the only public-
domain latent database, contains 258 latents obtained from operational case-
work. Although all the latents in this database are labeled as belonging to one
of three quality levels (‘Good’, ‘Bad’, and ‘Ugly’), we follow a formal definition
of value determination by latent examiners (i.e., VID, VEO, and NV) which was
reported in [10]. The numbers of VID, VEO, and NV latents in NIST SD27 are
210, 41, and 7, respectively.

The WVU database contains 449 latents collected in a laboratory environ-
ment. These latents come with value determination and feature markups. The
numbers of VID, VEO, and NV latents in the WVU database are 370, 74, and
5, respectively.

As a reference database, the mated rolled fingerprints of the 707 latents
(258 from NIST SD27 and 449 from WVU database) are combined with 4,291
additional rolled prints from the WVU database and 27,000 rolled prints of the
first impressions in NIST SD14 [25]. In total, the size of the reference database
is 31,998.

3.2 Classification Accuracy of Latent Value Determination

The performance of the classifiers using feature vectors, x1 and x2 defined in
Sect. 2.3, to determine whether a given latent is VID or not-VID was evalu-
ated. Two different sources of minutiae set are used to construct feature vectors:
(i) minutiae extracted by an AFIS and (ii) minutiae marked by examiners. A 10-
fold cross validation is conducted for evaluation: two latent databases are evenly
partitioned into 10 sets, and one set from each database is selected at random
without replacement to form a fold. Average classification accuracies along with
standard deviations are reported in Tables 2 and 4. Target class label for ωV ID

and ωV ID can be assigned by either (i) latent examiners or (ii) AFIS.
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Table 1. Confusion matrix of ωV ID versus ωV ID classification from value determi-
nation by examiners. ω̂V ID and ω̂V ID are the predicted class labels. Feature vectors
are defined based on (a) minutiae extracted by AFIS and (b) minutiae marked by
examiners.

(a)

Feature x1 x2

ω̂V ID ω̂V ID ω̂V ID ω̂V ID

ωV ID 565 14 496 83
ωV ID 128 0 91 37

(b)

Feature x1 x2

ω̂V ID ω̂V ID ω̂V ID ω̂V ID

ωV ID 564 15 523 56
ωV ID 69 59 64 64

Table 2. Classification accuracy (standard deviation) for ωV ID and ωV ID from
value determination by examiners. Feature vectors are defined based on (a) minutiae
extracted by AFIS and (b) minutiae marked by examiners.

(a) (b)

Feature x1 x2 x1 x2

ωV ID classification accuracy 98% (2 %) 86% (4 %) 97% (3 %) 90 % (5 %)

ωV ID classification accuracy 0% (0 %) 29% (19 %) 46% (12 %) 50 % (10%)

Total classification accuracy 80% (1 %) 75% (4 %) 88% (2 %) 83 % (4 %)

Value Determination by Examiners. Value determination by latent exam-
iners is one of VID, VEO, and NV. All latents determined as VID by examiners
comprise ωV ID while ωV ID consists of VEO and NV latents determined by exam-
iners. Tables 1 and 2 show the confusion matrices and classification accuracies
with standard deviations of predicting value determination by examiners.

Value Determination by AFIS. Value determination by AFIS is based on
the matching performance of a specific AFIS: a latent belongs to ωV ID if its
mate in the reference database is retrieved within the top rank-100; otherwise, it
belongs to ωV ID. Tables 3 and 4 show the confusion matrices and classification
accuracies with standard deviations of predicting value determination by the
AFIS.

Based on these classification results, we make the following observations:

• Feature vectors from the minutiae marked by examiners show better perfor-
mance than those from the minutiae extracted by the AFIS due to the high
reliability of the markup features.

• Value determination by examiners shows higher classification accuracy than
value determination by AFIS. This is because the value determination by
examiners is done by looking at only latent images so that the quality and the
sufficiency of features in the latents are closely related to the value determina-
tion. On the other hand, the value determination by an AFIS also depends on
the quality of mated reference prints. This emphasizes the need for considering
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Table 3. Confusion matrix for ωV ID versus ωV ID classification from value determina-
tion by AFIS. ω̂V ID and ω̂V ID are the predicted class labels. Feature vectors are defined
based on (a) minutiae extracted by AFIS and (b) minutiae marked by examiners.

(a)

Feature x1 x2

ω̂V ID ω̂V ID ω̂V ID ω̂V ID

ωV ID 162 157 195 124
ωV ID 126 262 125 263

(b)

Feature x1 x2

ω̂V ID ω̂V ID ω̂V ID ω̂V ID

ωV ID 456 34 391 99
ωV ID 117 100 107 110

Table 4. Classification accuracy (standard deviation) for ωV ID and ωV ID from value
determination by AFIS. Feature vectors are defined based on (a) minutiae extracted
by AFIS and (b) minutiae marked by examiners.

(a) (b)

Feature x1 x2 x1 x2

ωV ID classification accuracy 51% (12 %) 61% (7 %) 93% (4 %) 80% (5 %)

ωV ID classification accuracy 67% (11 %) 68% (8 %) 46% (13 %) 51% (9 %)

Total classification accuracy 60% (4 %) 65% (4 %) 79% (6 %) 71% (3 %)

the quality of the mates as an independent factor when developing a latent
fingerprint quality measure.

• Feature vector x1 generally shows better performance than feature vector x2

to predict latent values, except for value determination by AFIS with minutiae
extracted by the AFIS. When the reliability of feature extraction is low, the
ancillary information on fingerprint ridge quality helps to design a better latent
quality measure.

3.3 Prediction of Latent Identification Performance by LFIQ

To evaluate the proposed latent quality measure, LFIQ, as a predictor of latent
identification performance, we consider rank-100 identification rate when the
latents with low quality scores are rejected. Fig. 5 shows the rank-100 identifica-
tion rate as a function of the rejection rate based on LFIQ when two different
minutiae sets (one from examiners and the other from AFIS) are used. Based on
these plots, we make the following observations:

• Quality measure based on the minutiae marked by examiners shows better
performance than the quality measure based on the minutiae extracted by
the AFIS. This implies that, if highly reliable feature extractors are available,
the quality estimation using relatively simple features such as ridge clarity
and the number of minutiae will suffice in predicting the latent matching
performance.
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Fig. 5. Rank-100 identification rate versus rejection rate when the minutiae are
obtained by (a) an AFIS and (b) latent examiners (solid lines). Dotted lines are the
approximation with cubic functions.

• For minutiae extracted by an AFIS, the quality measure LFIQ which com-
bines QR and NM shows the best performance compared to either QR or NM

alone.
• For minutiae marked by examiners, however, NM alone shows about the same

performance as LFIQ, which implies that the amount of information that
minutiae contain (i.e., the number of minutiae in the latent) is sufficient to
predict the matching performance when the extracted minutiae are highly
reliable.

Figure 6 shows an example where the proposed quality measure LFIQ success-
fully predicts the latent identification performance. Figure 7 shows a latent and
its mated reference print of good quality, but the latent identification perfor-
mance is poor due to the large number of missing minutiae and spurious minutiae
extracted by the AFIS in the latent even in the high quality ridge region.

As a comparison to the proposed LFIQ, NIST Fingerprint Image Quality
(NFIQ)5 [26] was used to assess the quality of the latents in the two latent
databases. When setting the rejection criterion as ‘NFIQ = 5’, the rank-100
identification rate of the accepted latents with minutiae extracted by the AFIS
was 66 % at a rejection rate of 80 %. At the same rejection rate, the rank-100
identification rate of the accepted latents by NFIQ with minutiae marked by
examiners was 80 %. The proposed latent quality measure, LFIQ, on the other
hand, was able to achieve the same rank-100 identification rate at significantly
lower rejection rates as follows: (i) rank-100 identification rate of 66 % can be
achieved, with minutiae extracted by the AFIS, by rejecting 53 % of poor quality
latents identified by the proposed LFIQ; (ii) rank-100 identification rate of 80 %

5 NFIQ assigns one of five discrete quality levels ranging from 1 to 5 to a reference
print; ‘1’ refers to the highest quality, and ‘5’ indicates the lowest quality. Note that
NFIQ was not designed for latent fingerprint quality assessment.
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(a) (b) (c) (d)

Fig. 6. Example of a latent for which the proposed latent quality LFIQ successfully
determines it to be ‘high’ quality latent. (a) Latent U237 in NIST SD27, (b) ridge
clarity map, (c) minutiae set and its convex hull, and (d) mated reference print with
minutiae extracted by an AFIS (red) and the mated minutiae with the latent (green).
Note that while this latent has a high LFIQ value (corresponding to the rejection
rate of 83 %) and the mated print is retrieved at rank-1, the value determination by
examiners for this latent was not-VID.

(a) (b) (c) (d)

Fig. 7. Example of a latent where the proposed latent quality measure LFIQ deter-
mines it to be a ‘high’ quality latent, but the retrieval rank of the mated reference
print is poor (ranked at 4,658). (a) Latent W944F08B N in WVU database, (b) ridge
clarity map, (c) minutiae set and its convex hull, and (d) mated reference print with
minutiae extracted by an AFIS. Note that while this latent has a high LFIQ value
(corresponding to the rejection rate of 88%) and the value determination by examiners
is also VID, the matching performance is poor due to the large number of false minutiae
extracted by the AFIS in the latent.

can be achieved, with minutiae marked by examiners, by rejecting 21 % of poor
quality latents identified by the proposed LFIQ.

4 Conclusions and Future Work

Towards the goal of designing a “lights-out” latent fingerprint matching system,
we proposed a latent fingerprint quality measure. We first defined the value
of a latent based on its rank-100 identification rate to directly relate the latent
quality to the matching performance. A set of features based on latent fingerprint
ridge clarity and minutiae properties was evaluated by posing the latent value
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determination problem as a 2-class classification problem (i.e., VID versus not-
VID). Based on the classification accuracy, the most salient features were selected
to define a latent quality measure as a product of the average ridge clarity in
the convex hull enclosing the minutiae and the number of minutiae in the latent.
The proposed latent quality measure improves the rank-100 identification rate
of an AFIS by effectively rejecting poor quality latents.

Based on the preliminary study of the proposed LFIQ, we identify the fol-
lowing topics that are worthy of further consideration:

• Defining a latent quality measure with a more discriminative feature set repre-
senting the reliability of minutiae extracted by an AFIS to predict its matching
performance.

• Developing a latent quality measure involving Level-3 features.
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