
Automatic Creation of Computer Forensic
Test Images

Hannu Visti(B), Sean Tohill, and Paul Douglas

University of Westminster, London, UK
{h.visti,s.tohill,douglap}@westminster.ac.uk

http://www.westminster.ac.uk

Abstract. This paper investigates the possibilities for the automatic
creation of scenario-based test file images for computer forensics testing
purposes, and goes on to discuss and review a tool developed for this task.
The tool creates NTFS images based on user-selectable data hiding and
timeline management. In this paper we document both the creation of
the tool and report on its use in a variety of test situations.

Keywords: Computer forensics · NTFS · Data hiding · File system ·
Timeline management

1 Introduction

Documented computer forensic test images are necessary to improve the learning
process, test students and to test and compare computer forensic software. An
undocumented image file cannot be used to verify tool performance or student
progress; it is entirely possible that the researcher or teacher is not aware of the
full contents of the image. The need for documented test material is well docu-
mented. Guo [1], for example, says However, the growth in the field has created
a demand for new software (or increased functionality to existing software) and
a means to verify that this software is truly forensic, i.e. capable of meeting the
requirements of the trier of fact.

In Computer Forensic education, test material is needed for both practice
and assessed tests. Hands-on excercises have been found to increase interest
in the topic and enhance learning results [2], while Agarwal and Karahanna
argue Training programs can also be designed to provide potential users with
opportunities for cognitive absorption. Game-based training environments are
and more likely to result in cognitive absorption, thus amplifying both beliefs about
the instrumentality of the technology and its ease of use, as well as enhancing its
adoption and diffusion throughout the organization [3]. Providing students with
“interesting” examination cases while preventing plagiarism requires test images
that are random representations of a scenario. All such images should bear equal
complexity, to make results comparable if used in testing.

Generally, two different approaches exist in obtaining documented test images.
One is to rely on the work of others and the other is manual creation. A few docu-
mented test images exist, for example http://dftt.sourceforge.net [4] but testing of
c© Springer International Publishing Switzerland 2015
U. Garain and F. Shafait (Eds.): IWCF 2012 and 2014, LNCS 8915, pp. 163–175, 2015.
DOI: 10.1007/978-3-319-20125-2 14

http://dftt.sourceforge.net

164 H. Visti et al.

highly specialised tools generally requires manual test image creation. Manual cre-
ation, while reliable, can be a cumbersome task if hundreds or thousands of images
are needed. This paper introduces a versatile and extensible tool to rapidly create
a large number of documented file system images based on a scenario defined by
the user. All created images based on a scenario fulfill the chosen scenario criteria
but contain random elements, thus they are different from each other.

2 Background

2.1 Related Work

A tool (Forensig2) exists to provide automatic test image creation [5]. Forensig2

is a versatile tool based on a scripting language to allow users to create images
inside a virtual machine. This allows virtually unlimited versatility but does not
provide a user interface [6,7].

The strength of Forensig2 is in its method of creating images inside virtual
machines. Virtual machine clocks can be set to any date and time and actions to
the image are performed by underlying operating system commands. This makes
timeline and contents management easy as long as the user is able to execute all
actions in a correct order. If the order of actions is incorrect, this could cause
contamination to the created images.

Data hiding in NTFS has been studied by Huebner et al. [8]. This paper
documents a piece of software that implements some of their methods as a proof
of concept. The purpose of this software is to create a framework to implement
various data hiding methods. The framework is intended to be flexible enough
that it will allow the addition of further data hiding methods in the future.

2.2 NTFS

NTFS is a proprietary file system developed by Microsoft. The greatest challenge
posed by NTFS is the fact that its documentation has never been officially
published [9]. Variance between NTFS versions has also been detected [10]. This
paper describes only relevant NTFS concepts.

Master File Table. NTFS contains a file named $Mft, which contains a record
for every file in the file system. This is called the Master File Table (MFT)
Each MFT record contains attributes, which in turn contain timestamp informa-
tion, file storage information, permissions information, and so forth. The first 16
entries are considered system files. MFT record number 0 points to $Mft itself.
Record 1 ($MftMirr) is a file containing backup storage of the first 16 entries of
$Mft.

Attributes. Attributes can be added to NTFS file systems without losing
backward compatibility. However, forensic interest focusses on the following
attributes:

Automatic Creation of Computer Forensic Test Images 165

– $STANDARD INFORMATION: This attribute contains timestamp informa-
tion and is mandatory.

– $FILE NAME: Stores information about file name and size, and another set
of timestamp information.

– $DATA: The actual contents of a file, or in the case of large files, a collection
of pointers to the actual contents.

– $INDEX ROOT, $INDEX ALLOCATION: B-tree indices.

Directory Trees. While every file could be located from $Mft, a sequential
search of this file would be inefficient. NTFS stores contents of directories in
B-trees, where structures formatted as $FILE NAME -attributes contain both
file name and a set of time stamps.

2.3 Timestamp Management

NTFS has MACE (modified, accessed, created, entry changed) timestamp infor-
mation stored in three full MACE sets:

1. $Mft record $STANDARD INFORMATION attribute
2. $Mft record $FILE NAME attribute
3. Directory entry $FILE NAME attribute

Timestamp behaviour inside $Mft record has been studied by Bang et al. [11].
Depending on Windows version and action performed to the file, changes are made
to only $STANDARD INFORMATION or to both attributes. Directory entry
timestamp information follows $Mft record $STANDARD INFORMATION
attribute despite being in $FILE NAME format.

3 Design

The tool takes instructions from the user in form of database entries, with a
provided user interface. Its outputs are created images and information sheets
explaining the contents of each created image. This is illustrated in Fig. 1.

3.1 Terminology

The following definitions are used to describe the image creation process:

– ForGe: Computer Forensic Test Image Generator - the tool described by this
paper.

– Case: Top-level entity. A case contains file system selection, the number of
images required, image size, file system parameters, root directory timestamps
and timeline variance boundaries.

– Image: Images are representations of cases and created by the tool.
– Hiding method: A method of writing a secret file to an image.

166 H. Visti et al.

Fig. 1. Inputs and outputs of forensic test image generator

– Trivial file: A file without any importance to the case. Trivial files are used
in file system creation to place files on images according to a trivial strategy.

– Trivial strategy: An instruction related to case to place a random selection
of trivial files in the image.

– Secret file: An important file to the case.
– Secret strategy: An instruction related to case to place a single secret file

using a hiding method to an image.
– Action: A simulated operation performed on a hidden file, related to time-

line management. For example action “rename” with a timestamp sets the
timestamps to correspond to a rename action at the given time.

3.2 Requirements

Top level functionality requirements are outlined in Table 1. The assumption is
to build the tool on a Linux platform and use the Linux operating system tools
and interfaces where possible.

3.3 Avoiding Contamination

Contamination occurs if a later action modifies or overwrites scenario related
information or processes the file system only partially. The following examples
illustrate the problem:

1. A file has been placed on the image and its timestamps changed to reflect
the scenario. A hiding method then concatenates a secret file to this file. This
action changes M and A timestamps to image creation time.

2. A file has been hidden in the file slack of a trivial file. The trivial file is
extended, which causes the hidden file to be overwritten.

3. A file has been hidden in the file slack of a trivial file. The trivial file is then
deleted. The secret file survives the deletion but if more files are written to
the image, these writes can overwrite the hidden file by reusing the now—free
clusters.

Automatic Creation of Computer Forensic Test Images 167

Table 1. Top-level functional requirements

ID Requirement Reason

1 The tool must create working and
mountable file systems

As long as file systems are fully
functional, it does not limit the
choice of forensic tools used to
analyse them.

2 The tool must be extensible with new
file systems and hiding methods

By creating a framework to
manipulate file systems, users can
define their own “hiding methods”
if those provided are not suitable.

3 A user interface must be provided A web browser based user interface for
database management and
application access reduces the
expertise needed to operate the
tool.

4 The tool must allow the addition of
random elements to individual
images

If several images are required for
external tool evaluation or
academic setup, adding the random
element to the generator reduces
the amount of user work needed.

5 The tool must be designed to be
non-sequential in image building.
The order of entries and actions
configured by the user should not
dictate the order in which they are
implemented on images

The generator must choose the correct
order of implementation to avoid
contamination.

6 If an image fails to be created, it must
be deleted and the user must be
notified

Partial images do not represent the
case and must not be allowed to
mix with successful images.

7 Successful image contents must be
documented and a means of
accessing the documentation
provided

If exact information of the contents of
an image is required, this must be
provided in a user-friendly manner.
If image generation uses random
elements, documenting the actual
result for each image is useful if
images are used, for example, to
assess students.

4. A file has been hidden in empty space. Another file is hidden with the same
method. If safeguards are not in place, the second file can overwrite the first
file fully or partially.

5. Root directory (MFT entry 5) timestamps are changed. If this change is not
reflected in $MftMirr that contains a copy of first 16 file entries, the file system
is in an inconsistent state and if mounted, the disk repair process can cause

168 H. Visti et al.

undesired changes. The same problem occurs if the cluster allocation state is
changed and the change is not applied to $MftMirr.

6. When changing timestamps, the three independet timestamp sets are not
treated in a coherent manner. File system checks can detect an anomaly and
the result might not correspond to the scenario anymore.

7. If new files are written to the file system after deletions have been made,
metadata information in $Mft or directory indices can be overwritten.

8. If the last file written to the file system is deleted, NTFS implementations can
shrink the size of $Mft file. If this happens, there is no reliable way to locate
the MFT entry of the deleted file anymore in case its timestamps should need
to be modified.

This list is not exhaustive. Contamination avoidance is a key topic in appli-
cation design. Instead of treating the user scenario input as a serial course of
actions, the image creator needs to understand consequences of performing these
actions, and schedule actions accordingly. It is thus essential to know if a data
hiding method modifies a mounted file system through operating system com-
mands or writes to raw disk space directly. More volatile actions should be
performed after persistent actions.

Modifying timestamp information requires raw disk access. Timestamps can-
not be modified using operating system commands without contaminating the
result. System calls exist to modify information, depending on NTFS implemen-
tation. However, modifying timestamp information is an action in itself, caus-
ing an update to “entry changed” attribute. The reliable method of modifying
timestamps is to make changes to unmounted file systems. Existing tools, for
example Timestomp, also tend to ignore the third set of timestamps located in
directory entries [12].

The following order of actions creates a coherent NTFS file system that
represents the scenario:

1. Create an empty file system
2. Mount the file system
3. Process trivial strategies: create directories and copy files
4. Process secret strategies that write to a mounted file system using operating

system tools or programming language library functions
5. Unmount the file system
6. Process secret strategies that require raw file access, for example those using

slack space or unallocated space
7. Mount the file system
8. Write a placeholder file to the file system to ensure the file written last is

never deleted
9. Process all file deletions

10. Unmount the file system
11. Change all timestamps, including trivial files, hidden files and deleted files,

to correspond the scenario, in all three timestamp locations
12. Copy the first 16 MFT entries from $Mft to $MftMirr

Automatic Creation of Computer Forensic Test Images 169

3.4 Addition of Random Elements

For the tool to be useful, all images created to represent a scenario must be
different, while maintaining the scenario structure. This is achieved by pulling
trivial and hidden files from a pool and allowing random elements in the timeline.
Trivial files are arranged by their kind, which include pictures, documents, audio,
video and executables. The tool categorises files upon drag and drop upload,
based on their file name and signature. A trivial strategy could, for example,
be an instruction to create directory /holiday, set date to 10/02/2013 and place
10-20 picture files to the directory. If the user has uploaded 200 picture files to
the repository, each image used would be a random selection chosen from this
pool.

The secret file pool is not based on file type but grouping. Each secret strategy
hides exactly one file from a chosen group using the chosen method. Groups
are numeric values assigned to secret files. If a group has exactly one file, each
image contains this file. If a group contains several files, one is chosen at random.
Secret strategy implementations choose a destination file, directory or raw image
location randomly. If, for example, the hiding method “file slack” is being used,
the target file, the slack of which is used, is selected randomly from existing
trivial files already placed on the image.

Timeline randomisation is based on the addition of full weeks. Each trivial
strategy and secret strategy contains timeline information and this is used as
point zero in time. If a scenario allows a variance of a maximum of 30 weeks, a
random number is chosen for each image and added to every timestamp hence-
forth. Weeks are used to preserve day of week and time of day information. In an
educational setting, an example case might include suspicious activity happen-
ing outside working hours or during a weekend. This would be preserved despite
providing a different timeline for each image to discourage plagiarism.

4 Implementation

The tool was implemented in Ubuntu 12.04 with Python 2.7.5. Its core processor
implements the user interface, the correct order of actions, the handling of trivial
strategies, random selection of hidden files, database management and timeline
randomisation, while all file system operations and data hiding methods are
executed in modules loaded dynamically during execution based on scenarion
needs and database information. User interface was created with Django 1.5.1.

4.1 File Systems

File system modules need to implement a documented interface. To achieve this,
the file system interface must be able to fully read and parse file system data
structures on a raw image file. A limited write functionality is needed to write
back timestamp information and handle slack space writing. The following list
is an example of file system interface methods:

170 H. Visti et al.

– fs init(): reads in file system structures. Can be empty but the method must
be present.

– mount image(): mounts an image.
– dismount image(): dismounts an image.
– get list of files(flag): returns a list of files that have a certain flag (for example

regular file, system file or directory) set.
– find file by path(filename): locates a certain file and returns its data structures
– change time(path, timedictionary): changes one or more time attributes of a

file
– write location(position, data): writes to raw image space

Linux is dependent on the Tuxera-3G NTFS driver [13]. Tuxera versions prior
to 2013.1.13 destroy $FILE NAME attributes when deleting files, which is not
a typical file deletion behaviour in Windows systems [7, p. 41]. The requirement
is thus to use Tuxera version 2013.1.13 or newer.

4.2 Hiding Methods

A data hiding method module needs to implement a class with a single method
hide file(file, parameterblock). Data hiding methods return a dictionary contain-
ing a human readable string to be inserted into the database, to facilitate dis-
playing image contents. An example of this would be “File foo.txt hidden in file
slack, position nnnnn length zzzz”. The dictionary can also contain instructions
to the core processor if the hiding method requires either timestamp information
modifications or file deletions. An example of a hiding method that “hides” a
file by deleting it, is provided:

de f h i d e f i l e (s e l f , h f i l e , param = {}) :
hf = None
d i r s 1 = s e l f . f s . g e t l i s t o f f i l e s (FLAG DIRECTORY | FLAGREGULAR)
d i r s 2 = s e l f . f s . g e t l i s t o f f i l e s (FLAG DIRECTORY | FLAG SYSTEM)
d i r s = d i r s 1 +[d i r s 2 [0]]
t ry :

dpr = cho i c e (d i r s)
i f dpr . f i l ename != ‘ ‘ / . ’ ’ :

t a r g e t d i r=dpr . f i l ename
e l s e :

t a r g e t d i r = ‘ ‘ ’ ’
i n t e rna lpa th = t a r g e t d i r + ‘ ‘ / ’ ’ + os . path . basename (h f i l e . name)
t a r g e t f i l e = s e l f . f s . f s mountpoint + in t e rna lpa th
hf = in t e rna lpa th

except IndexError :
r a i s e Forens i cError (‘ ‘No d i r e c t o r y f o r hiding ’ ’)

The above code snippet is a typical starting point for any hiding method.
It needs to write the hidden file to the filesystem, and the first task is to find
a directory where the file should be written. The list of existing directories is
queried from the file system module and one is then chosen by random by the
choice() function. If the file system is empty and no directories can be found, an
exception is raised.

The rest of the method handles the actual file processing and return value
generation:

Automatic Creation of Computer Forensic Test Images 171

t ry :
i f s e l f . f s . mount image () != 0 :

r a i s e Forens i cError (‘ ‘Mount f a i l e d ’ ’)
t f = open (t a r g e t f i l e , ‘ ‘w’ ’)
t f . wr i t e (h f i l e . read ())
t f . c l o s e ()
i f s e l f . f s . dismount image () != 0 :

r a i s e Forens i cError (”Dismount f a i l e d ”)
except IOError :

e r r l o g (‘ ‘ cannot wr i t e f i l e ’ ’)
r a i s e Forens i cError (‘ ‘ Cannot wr i t e f i l e ’ ’)

i f i n t e rna lpa th . f i nd (‘ ‘ / . / ’ ’) == 0 :
i n t e rna lpa th = in t e rna lpa th [2 :]

r e turn d i c t (i n s t r u c t i o n=hf , path=inte rna lpath ,
t od e l e t e =[t a r g e t f i l e])

The file is initially written to the file system and exceptions caught. An excep-
tion could be raised, for example, if the file does not fit into the image. The file
system is mounted using file system class methods but the actual writing of a
regular file is done with Python file operations. The results dictionary contains
the file name as a reference to be inserted to database, but also the instruction
that the file should be deleted. The hiding method cannot do the deletion itself,
as doing it at this stage could cause contamination. Due to the modular struc-
ture and strong supporting functionality from the core processor and file system
module, actual data hiding methods require little programming.

ForGe implements various data hiding methods that can be considered sta-
ble [8]. The selected methods are deleted file, extension change, alternate data
streams, concatenation of files, file slack, steganography and unallocated space. A
hiding method of “not hidden” is provided to allow placement of scenario related
files into plain sight, with full control over their timelines. ForGe is a proof of
concept and different data hiding methods were chosen to highlight versatility.
For example, file extension change and alternate data streams modify files or file
metadata, steganography uses an external open source tool (steghide) and file
slack modifies disk space directly instead of with file system tools. ForGe offers
a framework to do this. It provides access to image files, file metadata and raw
disk space. For example in steganography, the framework is used to randomly
choose a target file, and to raise an exception if no such files exist, and finally
reset timeline in such a way that the modified file cannot be spotted by timeline
analysis (Fig. 2).

5 Example

A simple example is provided as a proof of concept. A case of 5 NTFS images is
created, with image size of 10 megabytes and cluster size 8. Timestamp variance
is set to 26 weeks. Two trivial strategies are created: one to set up /holiday with
3-6 pictures, and /PDF to contain exactly two documents.

Trivial strategies provide two directories with random irrelevant files (Fig. 3)
as the foundation of images. Three secret strategies are created as illustrated
in Fig. 4. The first hides a file by changing its extension, the second places it
in unallocated space and the third creates an alternate data stream. Extension

172 H. Visti et al.

Fig. 2. Main user interfaces

Fig. 3. Trivial strategies of the example case

change and alternate data streams also utilise optional instructions. The exten-
sion change hiding method has an option to exclude the root directory from
hiding directory candidates. It also has an option to delete the file afterwards.
Alternate data streams allows defining the stream name to override the default
name “ads”.

An example result sheet (Fig. 5) displays contents of the file system and
an exact location and timestamp (if relevant) of each hidden file. A simple file
extraction test to images 1 (result sheet not included) and 2 demonstrate the
result.

Istat displays the NTFS attributes in human readable format (Fig. 6).
Timestamps correspond to result sheets and the named $DATA attribute con-
firm the presence of an alternate data stream. Stream name “foo” is displayed
as the attribute name, which corresponds to NTFS alternate data streams func-
tionality.

Automatic Creation of Computer Forensic Test Images 173

Fig. 4. Secret strategies of the example case

Fig. 5. Contents report of an example image

Creating this case requires only six database entries: One for case, two for
trivial strategies and three for secret strategies. Image creation and result sheet
display are functions of the ForGe application; SQL database access is not needed
to analyse results. The only command line interaction would be to copy the
created images to a location where they would be used. Access to images is not
provided through the user interface.

174 H. Visti et al.

Fig. 6. Timestamps and contents of alternate data streams hiding

6 Conclusions

ForGe is a fast mass image generator with a graphical user interface. It is a
fully functional prototype. It lacks some finesse in error handling, and no instal-
lation or removal procedures are provided for the program. ForGe provides an
extensible framework that has built-in mechanisms to avoid contamination and
provide full timeline control. It provides information sheets about the images
that are created, thus enabling verification of results. Its strength is in rapid
mass creation of “similar but not identical” images for forensic software testing
or education purposes. Its main weakness is its operation on file and file system
level. Higher abstraction level concepts, for example mail folders, web browser
caches or backups of mobile devices are not readily supported.

Suggested future work would include removing its current focussing on the
placement within an image of individual files, as this would extend its area of
usefulness to the creation of, for example, databases and web browser histories.

References

1. Guo, Y., Slay, J., Beckett, J.: Validation and verification of computer forensic
software tools-Searching Function. Digital Invest. 6, S12–S22 (2009)

2. Duffy, K.P., Davis Jr., M.H., Sethi, V.: Demonstrating operating system principles
via computer forensics exercises. J. Inf. Syst. Educ. 21(2), 195–202 (2010)

Automatic Creation of Computer Forensic Test Images 175

3. Agarwal, R., Karahanna, E.: Time flies when you’re having fun: cognitive absorp-
tion and beliefs about information technology usage. mis quarterly 24(4), 665–694
(2000)

4. Carrier, B.: Digital forensics tool testing images, August 2010. http://dftt.
sourceforge.net, Accessed 20/03/2014

5. Moch, C., Freiling, F.C.: The forensic image generator generator (forensig2). In:
2009 Fifth International Conference on IT Security Incident Management and IT
Forensics, pp. 78–93. IEEE, September 2009

6. Moch, C.: Der festplatte forensik fall generator, Master’s thesis, University of
Mannheim (2009)

7. Visti, H.: Automatic creation of computer forensic test images, Master’s thesis,
University of Westminster (2013)

8. Huebner, E., Bem, D., Wee, C.K.: Data hiding in the NTFS file system. Digital
Invest. 3(4), 211–226 (2006)

9. Carrier, B.: File System Forensic Analysis. Addison-Wesley Professional, Boston,
London (2005)

10. Hayes, D., Reddy, V., Qureshi, S.: The impact of microsoft’s windows 7 on com-
puter forensics examinations. In: Applications and Technology Conference, pp. 1–6,
IEEE, May 2010

11. Bang, J., Yoo, B., Lee, S.: Analysis of changes in file time attributes with file
manipulation. Digital Invest. 7(3), 135–144 (2011)

12. Anon, Timestomp, November 2010
13. Tuxera, NTFS-3G manual (2014). http://www.tuxera.com/community/

ntfs-3g-manual, Accessed 20/03/2014

http://dftt.sourceforge.net
http://dftt.sourceforge.net
http://www.tuxera.com/community/ntfs-3g-manual
http://www.tuxera.com/community/ntfs-3g-manual

	Automatic Creation of Computer Forensic Test Images
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 NTFS
	2.3 Timestamp Management

	3 Design
	3.1 Terminology
	3.2 Requirements
	3.3 Avoiding Contamination
	3.4 Addition of Random Elements

	4 Implementation
	4.1 File Systems
	4.2 Hiding Methods

	5 Example
	6 Conclusions
	References

