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Abstract. Molecular simulations with quantum chemistry methods consume
a large portion of CPU cycles in modern high-performance computing centers.
Evolution of modern processors and HPC architectures necessitates adaptation
of software to new hardware generations. The present work concentrates on the
optimization of the widely used GAMESS code to Intel Xeon Phi architecture
and recently devised RSC PetaStream platform. Since improvement in parall-
elization is required, the most frequently used Hartree-Fock and DFT methods
are explored for additional parallelization options. The Xeon Phi requires vec-
torization that is important for electron-repulsion integrals (ERI) calculations to
achieve good performance.
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1 Introduction

In 2012, Intel Many Integrated Cores (MIC) architecture [1] has been introduced as an
answer to mounting challenges in building scalable and efficient high-performance
computing systems. To achieve energy efficiency of computation, Intel MIC has more
than 60 computational cores, each capable to execute AVX instructions. This new
hardware requires new level of parallelization and vectorization from the application
software for efficient performance.

Quantum chemistry algorithms were being adapted for parallel hardware for many
decades. However, most popular codes “as is” don’t demonstrate good performance
efficiency on the Intel MIC hardware platform. In most cases, code is not vectorized,
while required thread parallelism level is not achieved. For example, GAMESS(US)
[2, 3] package has been parallelized for decades by now, but its code lacks vectorization
and enough thread-level parallelism of important pieces of algorithm even for widely
used Hartree-Fock and Density Functional Theory calculations. Intel Xeon Phi 5120D
requires as many as 240 threads to be run to achieve best performance in many algorithms
[4]. Attempts to run few hundred processes of GAMESS application instead of more
lightweight threads overwhelm memory subsystem with dramatic performance decrease.
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The Intel MIC set new performance per watt level for x86-compatible systems.
While MIC is available as Intel Xeon Phi PCI express co-processor cards, it supports
“Native” mode of application execution, where each Xeon Phi is visible to application
as an independent manycore machine. The next generation of Intel MIC technology —
Intel Knights Landing [5] — will be self-sufficient manycore bootable systems. Already
existing RSC PetaStream architecture [6] leverages efficient co-processor-to-co-pro-
cessor communication, providing realistic model of future Intel KNL supercomputers,
where “native” mode of parallelization is the most natural and effective. Each node runs
its own Linux-based OS image of operating system, and Linux OS is run on host.
Majority of PetaStream computation power comes from Xeon Phi chips, therefore it
make sense to run application on Intel Xeon Phi cards, and use the host’s CPU for
support and service functions; application is run on uniform field of Xeon Phi nodes —
at least one MPI rank per node — compatible with “native” mode for Xeon Phi. In case
of offload-like work sharing is efficient for an application and it is possible to harness
both CPU and MIC nodes. RSC PetaStream system uses Intel Node Manager Tech-
nology to control and monitor node power consumption of every node, that mechanism
can be used to implement flexible power energy and optimization strategies to help
HPC sites save power and reduce operational costs. An example of the supercomputing
system where both types of nodes co-exist in the same fabric is St. Petersburg Poly-
technic University supercomputing center, with over 800 nodes on Intel Xeon E5v3 -
2697 (Haswell) share Infiniband FDR fabric with 256 nodes on Intel Xeon Phi 5120D.

The most common approaches in quantum chemistry are Hartree-Fock method
(HF) and density functional theory (DFT). The major steps of these methods are
construction and diagonalization of the Fock (Kohn-Sham) matrix [7]. For practically
interesting systems computational power required is usually of supercomputer scale.
The computational effort for the first step is dominated by the calculation of two-
electron integrals corresponding to the Coulomb repulsion of electron pairs (and
therefore frequently called electron repulsion integrals, ERI) and, in case of DFT, also
by calculation of numerical quadrature of the exchange-correlation contribution to
energy. The two-electron integral calculation has theoretical O(N*) computational
complexity, where N is a number of basis functions used to characterize the system.
However, many of these integrals are small enough and may be neglected. It is possible
to reduce number of operations down to O(N>") using cutoffs and also some
approximations, especially for very large systems. In that case a speed of Fock (or
Kohn-Sham) matrix diagonalization (O(N3 )) significantly affects the performance of
HF (DFT) method. However, for the majority of practically important molecular sys-
tems a construction of Fock (Kohn-Sham) matrix dominates overall computational
cost. Also, matrix diagonalization is a pure linear algebra calculation with a great
scalability, so the efficient two-electron integral code is crucial to achieve the perfor-
mance in HF and DFT methods. We therefore targeted the Fock matrix two-electron
contribution code to demonstrate the applicability of the Intel MIC platform to classical
quantum chemistry problems.

The goal of the presented work is to enable migration of GAMESS(US) quantum
chemistry code [2, 3] to novel Intel MIC hardware technology. GAMESS is widely
used by the scientific community, with thousands of references in the papers each year.
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We intend to minimize code modification and optimize for future-proof “native” mode
of Intel Xeon Phi.

2 Basics of Hartree-Fock Method

2.1 Electron Repulsion Integrals (ERISs)

ERIs are the integrals of type:
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where y denotes basis functions, i, j, k, [ — their indices, ry, r, — coordinates of first and
second electrons. An important property of ERIs is their eightfold permutation sym-
metry with respect to i, j, k, [ indices. Commonly Cartesian Gaussians are used as basis
functions:

1(r) = (x = A (y — Ay) ¥ (z — A)"e A 2)

where A and a are center and exponent of basis function respectively, a(a,, a,, a,) — its
angular momentum. They have practically important property that a product of two
Gaussians is another Gaussian (see [8] for eq.). The Gaussian in form (2) is also called
“primitive”. Typically, linear combinations of Gaussian primitives which share the
same center and angular momentum (“contracted” functions) are actually used as a
basis functions. Contracted ERI are sum of integrals over their primitives:
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where C is a matrix of contraction coefficients, M, N, O, P — degree of contraction.
A set of (possibly contracted) basis functions that share the same center and same set of
exponents is termed “shell”. Grouping basis functions into shells reduces to some
extent the number of expensive floating point operations and improves efficiency of
integral screening. Primitive integrals are calculated numerically. Among the most
popular approaches are McMurchie-Davidson [9], Obara-Saika [10] and Dupuis-Rys-
King (DRK) [11] schemes. The effectiveness of the different schemes varies greatly for
the different integral types. Quantum chemical codes often have several algorithms
implemented and switch them wisely to improve performance. In this study we used
only DRK integral scheme for testing purposes due to its numerical stability, relative
simplicity, and uniformness for different kinds of integrals.

2.2 The Hartree-Fock Algorithm

The Hartree-Fock method is a method of finding an approximate wavefunction and
energy of the model system. It is based on eigenvalue problem:
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FC = ¢SC, (4)

where F — Fock matrix, S — overlap matrix, C — matrix of molecular orbital coefficients,
€ - diagonal matrix of orbital energies. Since F depends on C, the Eq. 4 has to be solved
self-consistently. Matrix F incorporates contribution from electron-electron (V,.) and
electron-nuclei electrostatic interaction (V.,) as well as kinetic energy of electrons (T).
It is usually represented as a sum of one-electron Hamiltonian (h), Coulomb (J) and
exchange (K) matrices:

F:h+J—%K (5)

h = Ve, +Te; Jij = Zkl Dy - Lij; Ky = Zkl Dy - Lk (6)

where D — density matrix which is calculated from molecular orbital coefficients.
Matrix h depends on the one-electron integrals and its computation scales quadratically
depending of the system size. The Fock matrix construction requires calculation of all
symmetry unique ERIs and has theoretical O(N*) complexity. It is worth noting that
numerous ERIs are very small and their contribution to the Fock matrix is negligible.
They could be avoided by applying screening techniques. It vastly reduces the number
of ERIs required for calculation down to O(N***) depending on the geometrical size of
molecular system and the nature of atomic basis set used.

Different schemes have been proposed to calculate Fock matrix. Conventional
algorithm requires all ERIs to be calculated once and stored on a disk. However, it is
not very efficient for the large systems due to high requirements on the amount of
available disk space for the integral storage and relatively slow disk operation speed.
The advantage of this method is that each ERI is calculated only once. In the alternative
approach (“direct” HF) integrals are recalculated every time as needed.

3 Implementation of the Hartree-Fock Method in GAMESS

The algorithm of direct HF method implemented in GAMESS is presented on Fig. 1.
The implementation of main loop over shell coefficients corresponds to the so-called
“triple-sort” order [12] when up to three symmetrically unique integrals are calculated
at each cycle step. The alternative is a canonical way with slightly different index order,
when only one integral is calculated at each cycle step. The disadvantage of triple-sort
order is decreased granularity, which may be important on highly parallel systems.
GAMESS uses MPI parallelization to split workload during ERI calculation. It is
done on the ish and jsh loops implementing static and dynamic load balance. The main
drawback of this implementation is a huge memory footprint on multicore architec-
tures, because each MPI rank has its own copy of density matrix and a partial con-
tribution to Fock matrix that scales quadratically with job size. Straightforward
OpenMP implementation also inherits this drawback; however the density matrix is
read-only during ERI computation cycle and could be shared between threads. The
Fock matrix is constantly updated in this cycle and in simplest case it is replicated. It is



On Quantum Chemistry Code Adaptation for RSC PetaStream Architecture 117

not a big problem when a large amount of memory is available. Replicated-memory
MPI/OpenMP version of GAMESS was previously reported to work on Cray XTS5 and
further on K-computer [13]. In this algorithm each thread has its own copy of Fock
matrix. Even in this case the amount of required memory reduces up to two times in
comparison to original GAMESS implementation. Co-processors like MICs have large
number of cores and a limited amount of on-chip memory. In this case a maximum job
size is limited by the amount of available memory. A possible solution to this problem
is to use distributed memory libraries like Global Arrays [14] or DDI [15]. This
approach makes calculation possible even for extremely large jobs when none of these
matrices could fit in a single-node memory in expense for some internode communi-
cation overhead. The distributed memory algorithms are based on the fact, that at every
moment only a small amount of data from density and Fock matrix is required for the
computation. Actually, only three rows of Fock matrix are updated in the innermost
loop of the ERI calculation cycle. The drawback of this implementation is that inter-
process communication grows, which may be quite expensive in runtime. In this study
we focus on the straightforward variant of the memory problem solution.

System specification (atomic
coordinates, basis, etc.)

Initial guess of density and orbital energies (D; ¢;), overlap DOish=1,NSH
(5), one-electron integrals (h;; = lhl 1)) DOjsh=1,ish Integral screening
DOksh=1,jsh
> DOIsh=1ksh ___________ /.
i test = max(D,ish,jsh,ksh,Ish) *
Two-electronintegrals calculation and Fock matrix i max(],ish,jsh ksh,lsh)
construction {IF (test.GT.cutoff) THEN

I (ishjshkshlsh) 1

Gsblabiihion) | Sl
|

Fock matrix diagonalization, update D, ; Lshlshlishksh) —_J

{CALLDIRFCK |
ENDIF l\
ENDDO Fock matrix update
Is energy/density ENDDO
converged? ENDDO
ENDDO

| Properties calculation, output the results, etc. |

Fig. 1. Simplified algorithm of Hatree Fock implementation in GAMESS. NSH — number of
shells. NSH < 1000 for typical workloads.

First we tried both triple-sort and canonical way of integral ordering. They show
nearly identical performance, however canonical order is slightly faster on medium-size
problems due to smaller granularity. Further we always used canonical order of shells
in the two-electron integral computational loop. It also has an advantage of the rect-
angular structure of second and third loop in nest, that could be used to improve load
balance between threads.

The straightforward OpenMP version of GAMESS Fock matrix two-electron
contribution shows quite a good performance on Xeon Phi (see Tables 1, 2, and 3).
This implementation still has considerable memory footprint (Fock matrix is local to
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'$omp parallel
DO ish=NSH, 1
'$omp do schedule (dynamic,1) collapse(2)
DO jsh=1, ish
DO ksh=1, ish
IF (ish.EQ.ksh) THEN
Imax = jsh
ELSE
lmax = ksh
ENDIF
DO 1lsh=1, lmax
test = max(D,ish,jsh,ksh,1sh) *
max (I,ish, jsh,ksh,1lsh)
IF (test.GT.cutoff) THEN
calculate (ish,jsh|ksh,1lsh)
CALL DIRFCK

ENDIF
ENDDO
ENDDO
ENDDO
!$omp end do nowait
ENDDO
'$omp end parallel

Fig. 2. Algorithm of OpenMP parallelization of the calculation of two-electron contribution to
the Fock matrix in GAMESS.

each thread) but it is two times lower than for pure MPI implementation because
density matrix is now shared. We observe nearly perfect parallelization when up to 60
threads per MIC are used. Further increase of number of threads per MIC improves
performance only slightly. The same effect is observed on Xeon E5 CPU when more
than 8 cores per socket are used.

One of the reasons of this effect is poor cache utilization when multiple threads
are tied to one physical core. Indeed, the implementation of DRK algorithm of ERI
calculation in GAMESS operating with large arrays of data (about L2 cache size)
with nontrivial access pattern. The sizes of these arrays are set up at the compile time
and depend on the maximum possible angular momentum for the basis functions.
The scalability of code notably improves if we manually decrease the maximum
angular momentum that code could manage from L = 7 (default in GAMESS) to
L = 4. At the same time, the performance per core changes only slightly. Another
reason for the scalability degradation is a poor vectorization of the ERI code in
GAMESS.

It is worth noting that the scalability of code is unaltered if we consider benchmarks
with similar thread/core affinity (Table 2). Therefore further improvement of single-
core performance would increase overall performance as well.

The code on Fig. 2 could be also straightforwardly parallelized over the top loop in
nest across MPI processes. The performance of the hybrid MPI/OpenMP version is
presented in Table 3. The heaviest MPI communication task is a Fock matrix reduction
that is performed only one time per HF iteration. We observe quite small (~ 1 % of
execution time) synchronization and communication overhead in the case of
multi-MIC run.
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Table 1. Performance of the OpenMP parallelized Fock matrix two-electron contribu-
tion code for the C60 (6-31G) benchmark (KMP_AFFINITY = balanced).

Number of | Time of single Fock matrix build, seconds

threads Xeon E5-2690 | Xeon Phi 7120D, L =7 | Xeon Phi 7120D, L = 4
1 370.8 - -

2 195.5 - -

4 105.5 - -

8 55.0 815.2 790.2
16 48.5 409.6 396.4
32 - 215.2 2114
60 - 109.7 106.6
120 - 75.6 69.0
180 - - 61.5
240 - 79.6 59.2

Table 2. Thread affinity impact on the performance of the OpenMP parallelized Fock matrix
two-electron contribution code for the C60 (6-31G) benchmark.

Number of | Time of single Fock matrix build, seconds

cores used 1 thread/core 2 thread/core 3 thread/core 4 thread/core
16 393.1 256.4 227.8 216.1

30 212.1 137.6 123.2 117.1

60 104.9 69.3 61.3 59.2

Table 3. Performance of hybrid MPL/OpenMP parallelized Fock matrix two-electron
contribution code on multiple Xeon Phi modules

Number of threads

Time of single Fock matrix build, seconds

C60 (6-31G), 540 b f.

C60 (6-31G™), 900 b.f.

240 (1 MIC) 59.2
480 (2 MICs) 29.7
960 (4 MICs) 15.6
1920 (8 MICs) 8.2

147.2
81.8
32.0
25.8

31

Details of Benchmarks

As a benchmark systems we used fullerene molecule with two basis sets (6-31G and 6-
31G™). The sizes of basis for these systems are 540 and 900 functions respectively.
Xeon Phi benchmarks were conducted on RSC PetaStream platform. MIC results were
compared to those of the RSC Tornado platform based on dual-socket Xeon E5-2690
server. Configurations of the test systems are summarized in Table 4.
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Table 4. Configurations of the test systems

RSC PetaStream

RSC Tornado

Host processors
Co-processor

RAM amount/speed
Main board

PM settings
Infiniband HCA
Host OS

MPSS

OFED version

1x Xeon E5-2697v2

8x Xeon Phi 7120D

128 GB DDR3R-1600
Intel Server Board S1600JP
cpufreq and PC6 enabled
Connect-IB, 2-port

CentOS 6.4

323

3.5-rc3

2x Intel Xeon E5-2690

2x Xeon Phi SE10X

64 GB DDR3R-1600

Intel Server Board S2600JFF
EIST and Turbo enabled
ConnectX-3 on-board
CentOS 6.2

2.1.2

1.54.1

Infiniband switch Mellanox FDR MSX6025F. 1 hop between hosts

4 Related Work

GAMESS [2, 3] is one of the most widely used software packages for quantum
chemistry calculations. Existing parallelization in GAMESS is sophisticated [16], it has
dynamic load balancing and distributed shared memory features.

GPU technology advances [17-19] created opportunity to take advantage of this
new technology. NWChem code has been re-written initially for GPU [17] with CUDA
technology, at its implementation on Xeon Phi [20] uses offload mode for harnessing
Xeon Phi computational power. In this paper, implementation uses Xeon Phi native
mode for better fitness to next generation architectures, with performance demonstra-
tion of multi-Phi. Existing GAMESS adaptation to GPU doesn’t affect most widely
used algorithms by computational chemists, and limited to some PCM model imple-
mentation. In more general contexts, only profiling work is reported [20]. In this
respect, this paper constitutes an important contribution to the development of
important software tools used by practicing researchers.

5 Conclusions

In this paper we present the design of parallelization scheme of GAMESS(US) code for
quantum chemistry calculations, namely, Hartree-Fock and Density Function Theory
(DFT) algorithms. Current work demonstrates the applicability of Xeon Phi copro-
cessors for the quantum chemistry problems. In this paper, we demonstrate scalability
of the current implementation on Xeon Phi cores, as well as with multiple Xeon Phi
chips running in native mode (OpenMP+MPI parallelization). Future work include
more thorough performance characterization and additional vectorization of ERI
calculation.
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