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Abstract. Processing-in-memory architectures promise increased com-
puting performance at decreased costs in energy, as the physical prox-
imity of the compute pipelines to the data store eliminates overheads
for data transport. We assess the overall performance impact using a
recently introduced architecture of that type, called the Active Memory
Cube, for two representative scientific applications. Precise performance
results for performance critical kernels are obtained using cycle-accurate
simulations. We provide an overall performance estimate using perfor-
mance models.

1 Introduction

With increasing complexity the performance of modern HPC architectures
becomes increasingly communication limited. The resulting need for improving
efficiency of data transport and eliminating the associated overheads in terms
of time and energy can be addressed by integrating compute pipelines close to
the data stores, which is achieved, e.g., by processing-in-memory (PIM) designs.
For various reasons none of the proposed PIM designs have resulted in products
which could be integrated into HPC architectures. There are good arguments
for expecting PIMs to enter system roadmaps, see [2] for an extended discus-
sion. Besides a growing need for such approaches there are new opportunities for
realizing such architectures due to novel 3-dimensional stacking technologies.

In this paper we assume that PIM technologies will become part of future
massively-parallel HPC architectures to address the following question: How effi-
ciently could such an architecture be exploited by relevant scientific applications?

For our work we selected two representative applications, namely computa-
tional fluid-dynamics calculations based on the Lattice Boltzmann Method and
simulations of the theory of strong interactions, i.e. Lattice Quantum Chromody-
namics. We have implemented performance relevant kernels on the IBM Research
Active Memory Cube (AMC) architecture [14] to allow for cycle-accurate simula-
tions. Performance models are used to assess the overall performance for different
proxy architectures. This approach allows us to make the following contributions:
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– We present and discuss our implementation of applications on AMC and
analyse the observed performance.

– Based on this performance analysis we conduct an architectural evaluation of
AMC for the considered application kernels.

– To assess the overall performance based on performance models for different
variants of a proxy architecture.

– Finally, we report on feedback on future applications’ roadmaps which we
initiated to assess future application needs.

In Sects. 2 and 3 we provide an overview on the AMC architecture and the appli-
cations considered for this paper. We continue with a presentation of details of
application kernels on AMC and performance analysis results in Sects. 4 and 5,
respectively. In Sect. 6 we explore features and parameters of the AMC architec-
ture and its suitability for the given application kernels. Finally in Sect. 7, we
introduce a performance model approach for assessing the overall performance
for HPC architectures that integrate AMCs.

2 Active Memory Cubes

Recently a new, 3-dimensional packaged memory architecture, Hybrid Memory
Cube (HMC) [11], was introduced, where a set of memory dies are stacked on
top of a logic die. In the HMC architecture the logic die implements a mem-
ory controller and a network interface via which the processor can access the
memory. In the IBM Research Active Memory Cube (AMC) [14] architecture
32 computational lanes are added to the logic die, which also have access to the
memory. The most important hardware performance parameters are listed in
Table 1.

Each lane is composed of a control unit and 4 computation slices, which each
comprise a memory-access and an arithmetic pipeline. Each slice contains mul-
tiple register files which include 32 scalar plus 16 vector computation registers.
The latter are composed of 32 elements. All registers are 64-bit wide. Overall,
AMC enabled nodes offer a significant amount of parallelism, comparable to
GPU-accelerated architectures. Nodes are expected to contain multiple AMCs,
in the order of sixteen devices. Each AMC possesses 32 lanes, multiplied by four
slices.

The computational lanes are micro-coded and each can process in every
clock cycle one Very Long Instruction Word (VLIW), mapping to 1 Control +
4 · (1 ALU + 1 LSU) instructions for a total of nine. To reduce the number of
VLIWs a static or dynamic repeat counter can be specified following a temporal
single-instruction-multiple-data (SIMD) paradigm. Instructions can be repeated
up to 32 times and access, e.g., during each iteration consecutive elements of
vector registers. The VLIWs are read from a buffer which can hold up to 512
entries.

The arithmetic pipelines take 64-bit input operands and can complete in each
clock cycle one double-precision or a 2-way SIMD single-precision multiply-add.
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Fig. 1. Sketch of the AMC lane architecture. For more details see [14].

Table 1. Summary of AMC performance characteristics.

Clock frequency f = 1.25 GHz

Floating-point performance per lane Bfp = 8 Flop/cycle = 10 GFlop/s

Memory bandwidth per lane Bmem = 8 Byte/cycle = 10 GByte/s

Memory capacity per lane Cmem = 0.25 GByte

Number of lanes per AMC Nlane = 32

Thus up to 8 double-precision floating-point operations can be completed per
clock cycle and lane. The peak performance of one AMC running at a clock
speed of 1.25 GHz is 320 GFlop/s. As one slice can read the vector registers of the
other slices, double-precision complex arithmetic can be implemented without
the need for data re-ordering instructions. The same holds for single-precision
complex arithmetic thanks to special 2-way SIMD instructions.

Like in the HMC architecture the memory is organized into vaults. Each of
the 32 vaults in the AMC architecture is functionally and operationally indepen-
dent. Each vault has a memory controller (also called vault controller) which like
the lanes is attached to the internal interconnect. Load/store requests issued by
a lane are buffered in the lane’s load-store queue which has 192 entries. A lane
can load or store 8 Byte/cycle from or to the internal interconnect, i.e. the ratio
of floating-point performance versus memory bandwidth is 1 and thus signifi-
cantly larger than in typical processor architectures. The memory access latency
depends on the distance between lane and vault as well as on whether the data is
already buffered by the vault controller. The minimum access latency is 24 cycles,
i.e. load operations have to be carefully scheduled to avoid stalls due to data
dependencies.
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Each AMC features a network interface with a bandwidth of 32 GByte/s to
connect it to a processor and multiple devices may be chained to share a link
to the processor. The execution model foresees main programs to be executed
on the processor with computational lanes being used for off-loading small ker-
nels. Assuming a design based on 14 nm technology, the power consumption is
expected to be around 10 W.

Architectures based on AMC would feature multiple levels of parallelism with
4 slices per lane, 32 lanes per AMC, NAMC AMCs per processor and possibly
multiple processors per node and many nodes per system.

3 Applications and Application Roadmaps

3.1 Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) is an approach to computational fluid
dynamics based on a discrete approximation to the Boltzmann equation in terms
of the distribution functions fα in phase space

fα(x + cαΔt, t + Δt) = fα(x, t) + ω (fα(x, t) − f eq
α ). (1)

Here, spatial position x, velocity cα and time t only take discrete values. The
update process can be implemented in two separate steps: First, the local update
on the right hand side, describing changes in the distribution due to particle
interactions (collide). Second, distributing the update to adjacent sites accord-
ing to a stencil with a range of three sites, equivalent to the fluid advection
(propagate).

There are various LBM models which differ in number of spatial dimensions
and velocities. In this work we considered an application which implements the
D2Q37 model , utilizes 37 populations in two spatial dimensions [17]. Parallelisa-
tion of the application is based on a domain decomposition in 1 or 2 dimensions.
For typical runs and architectures the time spent in the collide and propagate
kernel corresponds to about 90 % and 10 % of the overall execution time, respec-
tively. The propagate step involves communication between tasks processing
adjacent domains to update a halo. Communication can typically be overlapped
with updating the bulk region. The collide step requires 5784 floating-point oper-
ations per site at 37 · 8 Bytes of input and output, whereas propagate does not
involve any computation. Given this high arithmetic intensity we expect the col-
lide step to be compute performance limited on the AMC architecture, while the
propagate step will be limited by the memory bandwidth on any architecture.
This split into two central tasks with distinct performance characteristics makes
D2Q37 an interesting choice for evaluating the AMC architecture.

Future Requirements. The D2Q37 model is used to study fluid turbulence using
lattices of size L2 with L = O(1000 . . . 10000). These studies will have to be
extended to 3 dimensions. Studies on lattices of size L3 = 40003 are expected to
require 64 days of computing time on a machine with 100 PFlop/s peak perfor-
mance assuming an efficiency of about 20 % [18]. The number of floating-point
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operations, which have to be executed per site and update, would increase from
about 6000 to about 50000, while the memory footprint per site increases by a
factor of about 3.

3.2 Lattice QCD

Quantum Chromodynamics (QCD) is a theory for describing strong interactions,
e.g. the interaction between key constituents of matter like quarks. Lattice QCD
(LQCD) refers to the formulation of QCD on a 4-dimensional discrete lattice.
LQCD opens the path for numerical simulations of QCD.

The computational challenge in LQCD computations consists of repeatedly
solving very large sparse linear systems. Iterative solver algorithms result in a
very large number of multiplications of a matrix D and a vector ψ, which thus
becomes the most performance critical computational tasks. In this paper we
focus on a particular formulation of LQCD with so-called Wilson-Dirac fermions
where this task takes the following form:

Dψ(x) = mψ(x) +
∑

±μ

(1 ± γ̂μ) ⊗ U±†
μ (x)ψ(x ± μ̂). (2)

The index μ runs over all four dimensions of space-time.
Modern solvers (see, e.g., [8]) allow for a mixed precision approach where

majority of the floating-point operations can be performed in single-precision,
without compromising on the double-precision solution.

The operator D consists of a real, scalar on-site term m and eight links
towards the Cartesian nearest-neighbour lattice sites in the four-dimensional
discretised space-time. Spinor fields ψ are represented by one element per lattice
site, where each element lives in the product space of 3 colours and 2×2 spins and
thus comprises 12 complex numbers. Gauge fields U are represented by vectors
with one element per lattice link, where each element acts as a SU(3)-rotation
onto the colour-space. These are typically represented by a 3×3 complex matrix,
however, the full information can be encoded in just 8 real numbers. The spin
space is invariant with respect to the link rotations, but sensitive to the link-
direction.

The spin projection operators (1 ± γ̂μ) commute with the link matrices U
due to operating on different dimensions. A closer look at the 4 × 4 operators
(1± γ̂μ) reveals that their matrix representation is of rank 2 rather than rank 4.
This enables us to separate the operators into two parts, henceforth called spin
deflation P±μ ∈ C

2×4 and spin inflation J±μ ∈ C
4×2. This reduces the number of

necessary operations by performing the SU(3)-rotations in the deflated subspace.
The computational task now takes the following form:

Dψ(x) = mψ(x) +
∑

±μ

J±μU±†
μ (x)P±μψ(x ± μ̂) (3)

Usually, data parallelism is exploited by decomposing the lattice into cubic sub-
domains in a one to four dimensional scheme. The main source of communication
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Table 2. Implementation characteristics of the three kernels per lattice site.Shown are
the volumes of data loaded and stored, the number of required floating point operations
(FP) and the percentage of operations which could be mapped to multiply-add type
instructions (MA). We further give the resulting arithmetic intensity (AI) and the
number of VLIWs in the kernel.

Load (Byte) Store (Byte) FP (% MA) AI VLIWs

LQCD 1152 480 1368 (89 %) 0.8 63

LBM collide 765 296 5784 (80 %) 5.5 163

LBM propagate 296 296 - 0.0 26

is the surface exchange with the nearest neighbours in the respective dimensions.
Therefore an appropriate torus topology is preferred. In order to minimise the
impact of the communication, the operator computation is split into the for-
ward and backward directions. This allows for transferring partial results of the
latter and meanwhile computing the former, thus overlapping computation and
communication. Then the procedure is reversed and the final result is computed.

Future Requirements. The performance of future algorithms are expected to be
dominated by similar computational tasks as considered in this paper. With
more computational resources becoming available, the lattice sizes are expected
to grow during the next couple of years to L3 · T = 1283 · 256 [13]. Currently,
even larger lattices are only expected to be required for relatively special cases.

4 Implementation on AMC

We describe our implementations of the collide and propagate kernels of the
D2Q37 LBM code and the Dirac operator from the LQCD code. As the exper-
iments were performed at an early stage of the development of this technology,
neither compilers for high-level languages nor assemblers were available. Conse-
quently, the implementation was done directly at the level of AMC micro-code
supported by a set of ad-hoc tools. Thus programming involved scheduling of
instruction and their allocation to slices as well as the allocation of registers.

The focus of the dicussion lies on the features of the instruction set and
AMC architecture that support the implementation, rather than providing a
full overview on our implementations.

4.1 LBM D2Q37 Model

Collide. For this kernel, we implemented a vectorised version over 32 elements,
using the temporal SIMD paradigm, but neglected the traversal of the lattice.
For a full version, this infrastructure would have to be added. An efficient, static
work sharing scheme, based on partitioning the lattice, can be applied. In this
case, we did not use the four slices for additional parallelisation, in order to
avoid further constraint on the input. The operation is divided in four sub-steps:
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Fig. 2. Distribution of collide central loop body over the slices. Similar colours match
coefficients of f and feq, white signifies auxiliary terms.

computing bulk properties, applying a non-linear transformation, computing the
update on the transform and, finally, reverting to the original representation. The
last three steps require the computation of six terms of differing length. These
computations are distributed carefully over the four slices, resulting in a very
dense packing where 92 % of the instructions are floating point computations.
The six coefficients are computed in pairs matched for even length in three of
the slices, while the fourth supplies intermediate terms. Common sub-terms are
preferably computed in this auxiliary slice, which further increases efficiency.

Propagate. We implemented the full kernel, including traversal of the lattice,
loading from the input array and storing to a different output array. Exploiting
our freedom in choosing an optimal data layout, we sub-divide the lattice into
rows and distribute those evenly over the participating lanes. Each lane iterates
over the assigned rows handing one quarter of the row to each of its slices.

The capabilities of the LSU instructions are exploited to map the require-
ments to efficient code. We load the local site in linear fashion, using two VLIWs
to capture the 37 populations. The LSU is capable of automatically increment-
ing the source address. Further, the store instruction is supplied with a vector
register holding the stencil and applies this to the relevant elements of the stored
data. Thus, the loop body of the kernel consist of just five VLIWs.

4.2 LQCD

In order to hide communication required when parallelising the matrix-vector
multiplication, the computation of the forward and backward part is overlapped
as described in Sect. 3.2. We re-produce this structure to keep our implementa-
tion close to the original memory access pattern, but do not implement inter-task
communication. Further, we simplify the kernel by only mocking up the indirec-
tion infrastructure for storing the results. Therefore, the simulation results have
to be understood as being approximative.

We took advantage of the temporal SIMD capabilities of the AMC by vec-
torising over eight lattice sites, utilising 24 out of 32 vector register elements.
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Fig. 3. Weak-scaling of the collide kernel performance for 32 × 32 lattice sites per
lane as a function of the number of used lanes (left pane) and strong-scaling of the
propagate kernel (right pane). The lines indicate the theoretical peak performance of
8 Flop/cycle/lane (left) and 8 Byte/cycle/lane (right).

By this we ensure that load latencies are mostly hidden. All necessary operations
are performed on complex numbers in single precision. Specialised instructions
have been added to the AMC ISA to efficiently implement complex multiply-
add operations using 8-Byte complex numbers and only 2 instructions. This
corresponds to a throughput of 1 single-precision complex multiply-add, i.e. 8
floating-point operations, per 2 cycles per slice. Each of the four slices operates on
one of the four link dimensions. The requirements of the kernel are summarised
in Table 2. Ultimately, the performance is limited by the memory bandwidth.
However, while the first part executes one arithmetic operation per Byte loaded
and stored, the second is imbalanced by a larger initially loaded segment. Thus,
it incurs an additional start-up overhead.

5 Performance Analysis

We now proceed by presenting performance results for the kernels, for which
implementation was discussed in the previous section. The results have been
obtained on a cycle-accurate simulator for a full AMC including memories.

5.1 LBM

Collide. We start with a weak-scaling analysis of the collide kernel. Each instance
of the kernel is executed on a single lane and operates on an individual set of
32 lattice sites. From the analysis of the kernel in terms of floating-point oper-
ations per memory access, we expect the kernel to operate close to the maxi-
mum floating-point performance. We present the relevant metric, the number of
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Table 3. Median time per lattice site spent in the collide (tcoll, weak scaling: l = 32
sites per lane), propagate (tprop, strong scaling: L2 sites per AMC) and Wilson-Dirac
(tcomp, weak scaling: l4 sites per lane) kernel.

Lanes tcoll (ns) tprop (ns) tcomp (ns)

l 32 L2 322 642 1282 l4 24 44 84 164

1 821.2 33.7 32.9 37.9 158.5 141.0 142.9 143.8

2 411.4 17.9 16.5 19.1 90.2 76.5 81.1 81.4

4 207.5 8.1 8.4 9.6 64.0 41.7 41.7 42.9

8 107.5 4.0 4.6 5.0 58.9 25.9 23.3 23.7

16 53.2 2.3 2.7 2.8 47.3 20.0 15.2 14.4

32 30.7 1.2 1.6 2.3 41.7 13.2 10.7 -

Fig. 4. LQCD operator weak scaling on AMC over the number of lanes in use.

floating-point operations performed per cycle, along with the speed-up over a
single lane in Fig. 3. Across all numbers of lanes up to 32, we can exploit above
60 % of the peak floating-point performance. On a single lane, the implementa-
tion reaches 70 % of peak. We observe a small negative impact of utilising more
than a single lane, despite operating on disjunct blocks of memory.

Propagate. The performance of the propagate kernel completely depends on
memory access performance. In Fig. 3 (right pane) we show strong scaling results.

Out of the theoretical maximum of 320 GByte/s bandwidth, propagate can
sustain 125 GByte/s on a lattice of 1282, or 39 % of peak. The simulations show
that for larger number of lanes memory accesses take longer to complete, which
could be result of congestion or non-optimal access patterns.
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5.2 LQCD

We investigated the performance of the partial implementation of the Wilson-
Dirac operator D in a weak scaling study. The extracted kernel is run on multiple
lanes, each processing a private lattice of extent L4 where L = 2, 4, 8, 16. The
results are summarised in Fig. 4 as performance in floating-point operations and
memory bandwidth. For all lattice sizes, the best performance was achieved at
the maximum of 32 lanes. From L = 2, the overall performance increases up to
the case L = 8, where it is virtually identical to L = 16. The optimum sustained
bandwidth on 32 lanes is 107 GByte/s, or 33 % of the peak value.

From Fig. 4 we can derive the optimum local lattice size per lane, namely 24

for two lanes, 84 for eight lanes and 164 for sixteen or more lanes.

6 Discussion of AMC Architecture

Based on our analysis of different application kernels we are now able to analyse
selected hardware aspects and parameters and explore possible impact on the
kernel’s performance.

Instruction Set. The given set of application kernels could be mapped well on
the instruction set architecture (ISA) of the Active Memory Cube (AMC). Spe-
cific ISA features which have been exploited include flexible load/store instruc-
tions and the availability of specialised single precision complex operations. The
architecture allows for an efficient implementation of complex arithmetics. For
the Dirac kernel the upper bound of the floating point efficiency as determined
only by instruction selection and dependence lies at 94 %.

Temporal SIMD and Register File. For all kernels the temporal SIMD could be
extensively exploited. The penalty of not using all elements of a vector register
was found to be small. The collide kernel utilises near the maximum of scalar
and vector registers on all slices. The propagate kernel uses three vectors per
slice and about ten scalars. The Wilson-Dirac operator makes use of 14 out of
16 vector registers and 23 out of 32 scalar registers. The register file size was
in all three cases found to be adequate for holding data or staging data loaded
from memory. Sharing of vector registers between slices proved to be a crucial
feature for efficient mapping of the application kernels on this architecture.

Instruction Buffer Size. The overall number of VLIWs needed to implement the
(most important parts) of the kernels was found to be small (see Table 2) such
that at most 32 % of the instruction buffer was filled.

Memory Bandwidth. Although the memory bandwidth is high compared to the
compute performance, the Dirac and propagate kernels are nevertheless limited
by the memory bandwidth on the AMC.

Memory Access Latency. Due to the size of the register file, load operations can
be scheduled such that memory access latencies are largely hidden. For a strictly
in-order design timely scheduling of such instructions can have significant perfor-
mance impact. From our simulations we find memory access latencies to grow sig-
nificantly when increasing the number of used lanes, resulting in a loss of efficiency.
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Fig. 5. Proxy architecture for AMC enabled nodes.

Table 4. Key parameters of our node proxy architecture.

Description Parameter Default value

Number of AMC NAMC 16

Number of chains NC 8

AMC memory capacity Cmem 8 GByte

Inter-AMC link performance (λmem, βmem) (1 μs, 32 GByte/s)

Network link performance (λnet, βnet) (1 μs, 100 GByte/s)

Load/Store Queue (LSQ). The LSQ size is limited to 192 entries and holds both
load and store requests. Its particular size has not been critical for neither the
propagate nor the collide kernel. For the Wilson-Dirac operator, however, the
majority of stalled cycles are due to a filled LSQ. Based on the memory access
pattern we do not expect a larger LSQ to improve performance.

7 System Performance Modelling

For assessing the characteristics of the full applications on an AMC enabled
node architecture, we define a proxy node architecture [1]. The basic structure
of this architecture, as shown Fig. 5, comprises a CPU with a set of AMCs, which
are organised in chains of equal length, plus a network interface attached. We
assume that various parameters of this architecture as listed in Table 4 can be
varied. To obtain quantitative results we use a specific choice guided by the node
architecture proposed in [14].

To model the system performance for the kernels considered in this paper
we assume that all calculations are performed on the AMC, for which we can
use the cycle accurate simulator results presented in the previous sections.
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To assess the overall performance we have to model the time needed to perform
the necessary data exchange when application kernels are parallelised over multi-
ple AMCs per node and multiple nodes. We assume that time for point-to-point
communications can be described by a latency-bandwidth model, i.e.

Tcomm = λ +
I

β
, (4)

where I is the amount of communicated data and (λ, β) are the start-up latency
and asymptotic bandwidth, respectively. We, furthermore, make the following
assumptions:

– All links between components are bi-directional and can be described by the
same parameters in both directions.

– All data transfers can be overlapped, therefore, the simulator results are valid
for node level implementations.

– One task is executed per AMC and care is taken to achieve optimal placement.

7.1 LBM

The LBM application has, apart from collide and propagate, only one relevant
step in performing a lattice update, the communication between different tasks.
We model this part to estimate the performance on an AMC-enabled system.

As mentioned before, the lattice is distributed over multiple tasks using a
one dimensional decomposition. Each task, and equivalently each AMC, holds
a tranche with extent Lx · Ly. A layer of three halo columns is introduced to
exchange boundaries, necessitating a transfer of

I = 3 · 2 · Lx · 37 · 8Byte = Lx · 1776Byte (5)

per sub-domain. We assume Lx to be sufficiently large to allow execution of
the propagate kernel and the halo exchange to be perfectly overlapped. We can
therefore estimate the time required for an update step as follows:

Tstep = max(Lx · Ly · tprop, Tcomm) + Lx · Ly · tcoll, (6)

where tcoll and tprop are the measured execution time for collide and propagate
kernel, respectively. They depend on the problem size as well as the number of
used lanes. In the following we will consider only the case Nlane = 32.

Assuming that data communication performance is limited either by the link
connecting the CPU and the first AMC within a chain as well as the network
bandwidth, we obtain the following estimate for the time required for data com-
munication:

Tcomm = max
(
Tmem
ex , T net

ex

)
= max

(
λmem +

I · NAMC

NC · βmem
, λnet +

I · N
3
4
AMC

βnet

)
,

(7)
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Fig. 6. Performance model for LBM (left) and LQCD (right), using the selected
parameters for the proxy architecture as a function of the lattice size per AMC. Shaded
areas indicate the effect of halving/doubling the respective bandwidth.

Considering square sub-domains per AMC, the minimal local size at which the
kernels can utilise the AMC efficiently is about 322 from our experiments and
maximally 35002 due to memory constraints.

For exploring execution time as a function of the lattice size per AMC we use
the maximum execution times per lattice site observed when using Nlane = 32
lanes (see Table 3): tcoll = 30.7 ns, tprop = 2.37 ns. The results are shown in
Fig. 6. We find that lattice size beyond 1282 yield performance numbers that are
dominated by the computations as opposed to boundary exchange. Specifically
for Lx = Ly = 128 we obtain the following results: Tcoll = 502 μs and Tstep =
542 μs.

7.2 LQCD

To model the performance of a parallelised matrix-vector multiplication we apply
the same methodology as in the previous section. We assume that computation
and communication can be perfectly overlapped such that

TDirac = max(Tcomp, Tcomm).

We assume a four dimensional domain decomposition into one sub-domain per
task. Let L4 be the lattice size per AMC, where the assumed memory capacity
Cmem limits us to L ≤ 64. The performance results shown in Table 3 indicate that
a lattice with L ≥ 8 should be used. Time for computation Tcomp = L4 · tcomp

with tcomp = 10.7 ns is obtained from simulations (see Table 3).
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A halo of thickness one, containing matrices comprising 12 single-precision
complex numbers is exchanged with each neighbour, resulting in a data volume of

I = L3 · 2 · 4 · 12 · 8Byte = L3 · 768Byte (8)

per task. On the grounds of optimal task placement, we can argue that the
amount of data exchanged by a node over the network is I · N

3
4
AMC. The time

consumed by the communication is then given by

Tcomm = max
(
Tmem
ex , T net

ex

)
= max

(
λmem +

I · NAMC

NC · βmem
, λnet +

I · N
3
4
AMC

βnet

)
,

(9)
where the local exchange has an extra factor NAMC/NC since all AMCs in a
chain share the bandwidth to the CPU.

We investigate the resulting timing in Fig. 6. We conclude that even with
half the available bandwidth, a lattice extent of L = 16 yields timings that are
determined solely by the computation. At this setting we expect TDirac = Top =
0.7ms for a lattice update step, using 8192 tasks on 512 nodes. The total peak
performance of such a partition is 2.6 PFlop/s. Halving the local extent to L = 8
is the point at which the time for local exchange (at slightly more than the
half effective bandwidth) is equal to Top. At this point we are using 8192 nodes
(42 PFlop/s) and expect an operator evaluation every TDirac � 44 μs.

8 Related Work

Performance analysis of Lattice Boltzmann Methods have been investigated in
detail in various papers. For instance, the 2-dimensional D2Q37 model has been
explored extensively for different processor and accelerator architectures includ-
ing IBM PowerXCell 8i [3], Intel Xeon [4], GPUs and Xeon Phi [6]. Recently
an increasing number of publications focus on the 3-dimensional D3Q19 model,
concentrating on optimising memory hierarchies [15,20].

With advances in research on Lattice Quantum Chromodynamics (LQCD)
strongly linked to progress in available compute resources, there exists a large
number of publications where performance characteristics of LQCD applications
are studied and results from performance analysis for different architectures are
presented. Recent examples include the performance analysis for LQCD solvers
on Blue Gene/Q [5] and architectures comprising GPUs and Xeon Phi [10,21].

Starting in the 90 s different processing-in-memory (PIM) architectures have
been proposed and explored, including Computational RAM [7], Intelligent RAM
[16], DIVA [9], and FlexRAM [12]. The initial enthusiasm decreased lacking a
perspective of PIM architectures being realised. For a brief but more compre-
hensive overview on different projects see [19]. Different application kernels have
been mapped to these architectures to explore their performance, with focus on
kernels that feature irregular memory access patterns. To the best of our knowl-
edge no results from a performance analysis for large-scale scientific applications
on massively-parallel architectures comprising PIM modules has been published.
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9 Summary and Conclusions

Studying two applications on the IBM Research Active Memory Cube (AMC)
processing-in-memory architecture yielded promising results. Both applications
are representative for many simulation codes, which are similarly structured, so
conclusions can be expected to be transferable to those applications. We could
demonstrate that compared to peak floating-point performance efficiencies could
be reached which are mostly larger than those for processors and accelerators
available today. By keeping most of the data transfer local within the memory,
the need for data transport outside the memory could be significantly reduced.

Our results for kernel execution times allows to estimate energy efficiency.
Assuming a power consumption of 10 W the costs of the D2Q37 LBM collide
kernel per lattice site is 0.3 μJ . This compares favourably to NVIDIA K20x
GPUs with an energy consumption of 2.6 μJ per lattice site [6], even if one takes
into account that these measurements were done on a technology which became
available in 2012.

While optimal exploitation of the AMC architecture requires the programmer
to take data locality and access patterns into consideration, the resulting benefit
to the user is a power efficiency distinctly better than alternative platforms.
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