Large-Scale Neo-Heterogeneous Programming
and Optimization of SNP Detection on Tianhe-2

Yingbo Cui', Xiangke Liao!, Shaoliang Peng' ™, Yutong Lu', Canqun Yang!,
Binggiang Wang?, and Chengkun Wu?

1 School of Computer Science, National University of Defense Technology,
Changsha, China
pengshaoliang@nudt.edu.cn
2 National Supercomputing Center in Shenzhen, Shenzhen, China

Abstract. SNP detection is a fundamental procedure in genome analy-
sis. A popular SNP detection tool SOAPsnp can take more than one week
to analyze one human genome with a 20-fold coverage. To improve the
efficiency, we developed mSNP, a parallel version of SOAPsnp. mSNP uti-
lizes CPU cooperated with Intel® Xeon Phi™ for large-scale SNP detec-
tion. Firstly, we redesigned the key data structure of SOAPsnp, which
significantly reduces the overhead of memory operations. Secondly, we
devised a coordinated parallel framework, in which CPU collaborates
with Xeon Phi for higher hardware utilization. Thirdly, we proposed a
read-based window division strategy to improve throughput and parallel
scale on multiple nodes. To the best of our knowledge, mSNP is the first
SNP detection tool empowered by Xeon Phi. We achieved a 45x speedup
on a single node of Tianhe-2, without any loss in precision. Moreover,
mSNP showed promising scalability on 4,096 nodes on Tianhe-2.

Keywords: SNP detection + SOAPsnp - Parallelized algorithm - Xeon
Phi - Many Integrated Core (MIC) Coprocessor * Tianhe-2

1 Introduction

For DNA sequence analysis, reads are segments of DNA sequence generated
by sequencer. Just like string matching in computer science, reads will usually
be mapped back to a reference DNA sequence to locate their positions in the
reference, which are called aligned reads. SNP (Single Nucleotide Polymorphism)
detection is a fundamental and essential process in whole genome analysis. It
takes aligned reads, the reference sequence, and sometimes curated database like
dbSNP [1] as input, detects the information of aligned reads and reference site by
site, and generates a list of SNP sites. Constrained by the memory size, the
reference is usually divided into multiple windows with even size. SNPs are
detected window by window. However, the division may separate one read into
two different windows, generating overlapped bases. As a result, the previous
window has to share the information of overlapped bases with the next window
when switching windows.

© Springer International Publishing Switzerland 2015
J.M. Kunkel and T. Ludwig (Eds.): ISC High Performance 2015, LNCS 9137, pp. 74-86, 2015.
DOI: 10.1007/978-3-319-20119-1_6

Large-scale Nero-heterogeneous SNP Detection on Tianhe-2 75

SOAPsnp [2] is a popular SNP detection tool developed by BGI as a member
of its SOAP (Short Oligonucleotide Analysis Package) series analysis tools [3].
The software adopts a Bayesian model to call consensus genotype by carefully
considering the data quality, alignment and recurring experimental errors. All
these information is integrated into a single quality score for each base to measure
the calling accuracy. SOAPsnp usually costs several days to analyze one human
genome with sequencing depth of 20X, which may account for more than 50 %
time at most of a commonly used genome analysis pipeline. The low efficiency
calls for a performance boost by advanced computing technologies.

Intel Xeon Phi coprocessor [4] is becoming prevailing with a number of
potential applications in accelerating various computations, such as sparse
matrix-vector multiplication [5], 1D FFT computations [6], Linpack Benchmark
calculation [7], molecular dynamics [8], computational biology [9], and so on.

We performed an in-depth dynamic test of SOAPsnp with gprof [10] and
VTune [11], and located the limiting factors that deter its performance. One of
those is that the core input data (aligned bases) is stored as a highly sparse
matrix, which results in a large amount of redundant computation and huge
overhead of switching windows. Moreover, the current version of SOAPsnp is a
CPU-based single-threaded program although SNP detections between different
DNA sites are independent. In this paper, we aim to improve the efficiency
of SNP calling algorithm and develop a high performance version of SOAPsnp
utilizing Xeon Phi. The ultimate goal is to apply the improved tool in large-scale
SNP detection of human or other complex species genome.

To realize the above objectives, we proposed a series of optimization
strategies:

(1) We proposed a space-efficient data structure to replace the original ineffi-
cient sparse matrix in SOAPsnp. The new structure can dramatically reduce
memory overhead and improves operation efficiency.

(2) We transported the Bayesian model to Xeon Phi with offload mode and
developed a coordinated parallel framework utilizing both CPU and Xeon
Phi.

(3) For large scale parallelism, we proposed a read-based window division (RWD)
strategy, which enables parallel file reading for different processes. RWD
efficiently improves the throughput and parallel scale of mSNP.

mSNP is freely available from https://github.com/lemoncyb/mSNP under GPL
license. We evaluated our work on the Tianhe-2 supercomputer [12], where each
compute node (see Table 2) is equipped with two Xeon E5-2692 v2 2.2 GHz CPUs
and three Xeon Phi 31S1P coprocessors. On one compute node of Tianhe-2,
mSNP managed to finish the analysis of one 20X human genome within two
hours, whereas the original CPU-based SOAPsnp used several days. The soft-
ware maintains promising scalability on 4,096 nodes (98,304 CPU cores and
688,128 MIC cores). Our experiments demonstrated that mSNP is an efficient
and scalable software for large-scale SNP detection of human genome. The details
of evaluation are presented in Sect. 5.

https://github.com/lemoncyb/mSNP

76 Y. Cui et al.

The remaining of this paper is organized as follows. Section 2 presents related
work. Section 3 presents the analysis of our work. Section 4 describes the architec-
ture of mSNP. Performance evaluation is presented in Sect. 5. Section 6 concludes
the paper.

2 Related Work

In this section, we survey most of the popular SNP detection tools and related
optimization work. We also introduce the Intel Xeon Phi coprocessor, which has
been deployed as the primary accelerator on Tianhe-2.

2.1 SNP Detection Tools

SNP detection tools take aligned reads, a reference sequence, in some cases
dbSNP as input to detect SNPs. Web-based tools, such as HaploSNPer [13] and
SNi-Play [14], were deployed on web servers that can be accessed from anywhere
conveniently via a web page. However, the data security and uploading time
prevents them from performing large-scale analysis. Therefore, stand-alone tools
like QualitySNP [15], SAMtools [16], SOAPsnp [2], GATK [17] and Hluminas
Isaac [18] etc. were developed.

SNP detection is time-consuming; as a result, some optimization efforts have
been carried out to improve the performance. Crossbow [19] is a parallel solution
using Hadoop [20] and accelerates detection with cloud computing. Rainbow [21]
optimizes Crossbow for larger sequencing datasets. GSNP [22] accelerates SNP
detection with GPU (graphics processing unit) to achieve better performance.
Mucahid adopts cluster for computation and achieves a good load balance [23].
To the best of our knowledge, mSNP is the first SNP detection tool powered by
Intel Xeon Phi.

2.2 Intel Xeon Phi Coprocessor

Intel announced its Xeon Phi coprocessor based on Many Integrated Core (MIC)
architecture in November 2012 [4]. The coprocessor is equipped with 50+ cores
clocked at about 1 GHz and 6 GB or more on-card memory. Each core supports
4 hardware threads. The double precision peak performance of each coprocessor
is higher than 1 TFlops. The architecture of MIC is x86-compatible, which alle-
viates the efforts needed to transport applications to Xeon Phi compared to its
counterpart GPU. Some simple applications can even run directly on Xeon Phi
simply after re-compiling. There are two major modes to employ Xeon Phi in
applications:

(1) native mode, where Xeon Phi has one copy of the application and runs the
application natively like a compute node.

(2) offload mode, where the application runs as a master thread on CPU and off-
loads some selected work to Xeon Phi, treating Xeon Phi as a coprocessor [24].

Large-scale Nero-heterogeneous SNP Detection on Tianhe-2 77

---> Data flow

—> Control flow
7y

- Processmg all sites in a window concurrently !
H i
base _array - ' i
:
i
i
i

Process next window

Fig. 1. Workflow of SOAPsnp. The dash lines illustrate data flow, and the real lines
illustrate control flow.

As mentioned in Sect. 1, more and more applications are accelerated by Xeon
Phi, from basic scientific computation to biology application [5-9]. Xeon Phi is
showing great potential in parallel computing.

3 Performance Profiling Analysis of SOAPsnp

In this section, we will present our analysis of the workflow and bottleneck
profiling of SOAPsnp.

3.1 Workflow of SOAPsnp

Figure 1 illustrates the workflow of SOAPsnp. SOAPsnp takes aligned reads, a
reference genome, and in some cases dbSNP as input. The output is consensus
genotype information. SOAPsnp mainly contains seven modules: cal_p_mat,
read_site, counting, likelihood, posterior, output, and recycle (italics bold
font represents function module, italics font represents data structure). The core
data structures include p_matriz, base_info, and type_likely (the oval block of
Fig.1).

cal_p_mat module takes input reads and generates a calibration matrix
p-matriz for likelithood computation. p_matriz is a four-dimensional matrix
(256 x 256 x 4 x 4 =1,048,576) with a size of 8 MB. Constrained by the mem-
ory size, SOAPsnp divides the reference into multiple windows with even size.
In each window, SNP calling is performed site by site. The read_site module
loads a fixed number of sites (a window size) from input file. Then counting
collects the information of aligned bases for each site and stores the information
in base_info. likelihood takes base_info and p_matriz as inputs, calculates the
likelihood and stores it in type_likely. After posterior calculation, calling results
of one site are written to the output file. Then the next site of the current window
will be processed from likelihood too. The recycle module switches windows
by dealing with the overlapped bases and re-initializes buffers for new window.

base_info is a four dimensional matrix (4 x 64 x 256 x 2, corresponding to
base X score X coord X strand), storing the information of bases aligned to each

78 Y. Cui et al.

Table 1. Time breakdown of SOAPsnp

Module | cal_p_matrix | read_site couting likelihood | posterior |recycle |output
Time/s |16.73 2.35 40.59 |1478.36 | 23.47 210.19 |752.98
% 0.66 % 0.09% |1.59% 57.93% 0.92% |29.50% 8.42%

DNA site. The dimensions stand for four aspects of an aligned base: the base type,
the sequencing quality score, the coordinates on read and the strand of read.

3.2 Bottleneck Profiling

To identify the performance bottleneck of SOAPsnp, we analyzed the code of
SOAPsnp and divided it into seven main modules, as described in Subsect. 3.1.
Then we timed each module and obtained a time breakdown, as listed in Table 1.
likelihood is the most time-consuming module, which takes about 58 % of the
total processing time. The second is recycle taking 30 % percentage. output is
ranked third with 8.4 %. Then we investigated further with Intel VTune [11] to
detect the most time-consuming operations in likelithood and recycle. Further
code analysis shows large amounts of these operations are memory accesses, espe-
cially the accesses to base_info data structure storing information of aligned reads.
As mentioned in Subsect. 3.1, likelthood traverses base_info to fetch aligned
reads. recycle module copies the information of aligned reads across adjacent win-
dows. The optimization strategy to base_info is described in Subsect. 4.1.

4 Design and Implementation of mSNP

In this section, we will describe the design and implementation of mSNP in
detail.

4.1 Consolidating Sparse Matrix

SOAPsnp detects SNP site by site. For each site computation, every element of
base_info will be accessed exactly once (including zero elements), which would
generate a total number of 131,072(= 4 X 64 x 256 x 2) memory accesses. That
is, 393 trillions memory accesses will be made for a whole human genome with
about 3 billion sites.

One notable fact is that, base_info is a highly sparse matrix. Each element
of base_info stands for a combination of four dimensions (base x score x coord x
strand) and is initialized with zero. The element value will increase by one if a
base in a read matches the combination. However, sequencing depth is usually
smaller than 100X, and the bases in one human genome are relatively fixed,
so most elements in base_info are zero. We tested several human genomes and
found that only less than 0.08 % of base_info elements are non-zero. This means
that most memory accesses to the matrix are in vain.

Large-scale Nero-heterogeneous SNP Detection on Tianhe-2 79

@@Hmmmmm base: 2 bits

i 17 bits : score: 6 bits strand: 1 bit

Fig. 2. Bit composition of base_array.

To reduce the amount of unnecessary memory accesses, we design a space-
efficient data structure base_array to store the information of each DNA site.
The base_array only stores the dimensions information of non-zero elements.
As illustrated in Fig. 2, the four dimensions (base X score x coord X strand) are
integrated into 17 bits in one word (32 bits) by bit operations. For repeated bases,
base_array stores multiple copies of the same coordinates. Thus, all information
is maintained and the space complexity of base_info is significantly reduced, as
the percentage of non-zero elements of base_info is only 0.08 %.

By analyzing the source code, we discovered that recycle module produces
a large amount of memory copy operations when switching windows, especially
the copy of base_info with a size of 13MB. With the introduction of base_array,
the cost of windows switching is reduced by three orders of magnitude too.

4.2 Coordinated Parallelism Between CPU and Xeon Phi

As described in Subsect. 3.1 and illustrated in Fig. 1, SOAPsnp divides the SNP
calling of one genome into multiple windows. In each window, SNP detection is
performed site by site. Theres no dependency between sites. We parallelize the
procedure by multi-threading on both CPU and Xeon Phi, where each thread
handles one site.

Due to Xeon Phi’s weak ability of file operation in native mode, mSNP
adopts the offload mode of Xeon Phi. In the naive offload mode, CPU will have
to pause and wait for the results to be returned from Xeon Phi, which results
in a waste of the CPU computing power. In mSNP, we make the data transfer
between CPU and Xeon Phi asynchronous, which allows CPU to take on other
job immediately after launching the offload region, as illustrated in Fig. 3. When
the offload region is finished, CPU retrieves results from Xeon Phi and resumes
other operations.

4.3 Collaborated Parallel Window Division

As described in Subsect. 4.2, mSNP parallelizes the SNP detections of different
sites in a window with multi-thread. While the computing power of one com-
puting node is limited, to achieve higher performance, we have to parallelize
SOAPsnp across nodes.

SOAPsnp performs SNP calling window by window. One straightforward
strategy to parallelize SOAPsnp across nodes is to assign each node at least one
window. Different nodes call SNPs of different windows simultaneously.

80 Y. Cui et al.

CPUO +
CPU1

MICO

MIC1

MiC2

Data in : CPU-MIC coordinate : Data out
Fig. 3. Coordinated parallelism between CPU and Xeon Phi. Data in stands for CPU

transfers input data to MICs. CPU-MIC coordinate means CPU and MIC perform
computation simultaneously. Data out denotes MICs transfer results back to CPU.

SOAPsnp divides windows evenly according to the coordinates of base on ref-
erence sequence, denoted as coordinate-based window division (CWD) as illus-
trated in Fig.4. The coordinate of base is stored in the aligned reads file, as
attached information to each read. The coordinate is not known until the read
sequence is loaded into memory. It’s impossible to locate a read with given non-
zero coordinate beforehand. That is to say, it’s impossible for different processes
to load reads from the start of any window simultaneously. To parallelize the
SNP calling of different windows, we have to choose a master-slave mode. The
master process loads reads into memory sequentially, prepares base informa-
tion for each window, and sends window task to idle slave processes. For the
master-slave mode, the throughput and parallel scale are limited by the master
process, where all input data come from. Different processes cannot load reads
simultaneously.

Window 0 Window 1 | Window 2 Window
Reference sequence ———-=r—mm—m—mro-ooh—

Aligned reads

Fig. 4. Coordinate-based window division of SOAPsnp. The dash lines denote aligned
reads. The real zones of dash lines represent the bases that belong to the next window,
but are loaded by the previous window, that is overlapped bases.

To improve the parallel scale across nodes, we designed a read-based window
division (RWD) strategy. As illustrated in Fig.5, windows are divided by the
number of reads, each window containing almost equal number of reads. As
each aligned read occupies four lines in file, the RWD strategy actually divides
windows by file lines. Different processes can load reads from different lines of
input file simultaneously.

Large-scale Nero-heterogeneous SNP Detection on Tianhe-2 81

Another problem of RWD strategy is to deal with overlapped reads which
belong to the next window, but are loaded by the previous window, responding
to the real lines in Figs. 4 and 5. SOAPsnp detects SNP site by site. In order to
maintain the completeness of each site, the information of overlapped bases has
to be transferred to the next window before the next window launches. To realize
this, two adjacent processes P, and P,, 1 have to send one message to each other.
As illustrated in Fig.5, P, sends the position of its first site Pos; to P, P,
sends the information of sites after Pos; (overlapped bases) to P,11. Different
processes accomplish loading step evenly at the same time, because the number
of assigned reads is evenly equal. Then all processes communicate with each
other at the same time. When communication finishes, all processes start SNP
calling even simultaneously. Based on the above description, the throughput and
parallel scale of mSNP improve efficiently compared with SOAPsnp. Moreover,
for each process is assigned evenly equal number of reads, different processes can
get a better load balance.

Reference sequence =————m—m—m—m—ee .- -

Aligned reads —-———— Window 0

- - Window 1

----- Window 2

Window

Fig. 5. Read-based window division (RWD) of mSNP. The dash lines illustrate aligned
reads. The real zones of dash lines mean the bases that belong to the next window,
but are read by the previous window, that is overlapped bases.

5 Evaluation

We evaluated the performance of mSNP from four aspects: effectiveness of space-
efficient format base_array, CPU and Xeon Phi cooperation, RWD performance
and scalability.

5.1 Experimental Setup

We evaluated our work on the Tianhe-2 supercomputer in the National Super
Computer Center in Guangzhou (NSCC-GZ) [12]. The configuration of Tianhe-2
is described in Table 2. The whole system consists of 16,000 compute nodes.
The latest version of SOAPsnp is v1.03, which is available from it’s web-
site’. SOAPsnp v1.03 is a CPU-based single thread program. In consideration of

1 SOAPsnp website: http://soap.genomics.org.cn/soapsnp.html.

http://soap.genomics.org.cn/soapsnp.html

82 Y. Cui et al.

equality, we chose different baselines for different evaluations, and the details are
described in the subsections. We prepared three datasets for evaluation: 3.2 GB,
73 GB and 542 GB. The details are described in the subsections too.

Table 2. Configuration of Tianhe-2’s compute node

Xeon® E5-2692 v2 CPU | Xeon® Phi™ 31S1P
Sockets x Cores x Threads |2 x 12 x 2 3x57x4
Clock Frequency (GHz) 2.20 1.10
L1/L2/L3 Cache (KB) 32/256/30,720 32/512/-
Memory Size (GB) 64 6

5.2 Dimension Reduction of Sparse Matrix

We adopted SOAPsnp v1.03 as baseline in this evaluation and the optimized
version is also CPU-based single thread. The size of test data is 3.2 GB. Figure 6
shows the time consumptions of likelthood and recycle before and after opti-
mization on one node of Tianhe-2. Our space-efficient new representation for-
mat base_array outperforms base_info 32+ times in likelthood and 56+ times in
recycle function. base_array stores only non-zero elements to avoid unnecessary
memory accesses.

1600

1400 -

1200

1000

B base_info

800 -

Time/s

M base_array

600 -

400 A

200 -

likelihood recycle

Fig. 6. Performance of likelihood and recycle before and after optmization

Table 3 shows the time breakdown of the CPU-based optimized single thread
version of SOAPsnp. The main two modules optimized are likelihood and recy-
cle. After optimization, for a 3.2 GB dataset, the percentage of likelihood is
5.10 %, and that of recycle is 1.49 %. The two modules are no longer the bottle-
necks. output becomes the most time-consuming module taking more than 84 %
and turns into the big bottleneck. It’s hard to parallelize output in multi-threads,
while possible in multi-processes.

Large-scale Nero-heterogeneous SNP Detection on Tianhe-2 83

Table 3. Time breakdown of CPU-based optimized version of SOAPsnp

Module | cal_p_matrix | read_site | couting | likelihood | posterior | recycle | output

Time/s | 17.05 2.13 41.21 | 45.57 22.64 13.29 | 750.88
% 1.91% 024% [4.62% 5.10% 2.54 % 1.49% | 84.11%
900 880
890 875
880 870
£ 870 £ 865
E £
E 860 £ 860
850 855
840 850
830 845
12 48 12 16 24 3248 56 12 168 24
Number of threads on CPU Number of threads on Xeon Phi
(a) (b)

Fig. 7. (a) Performance of mSNP on CPU. (b) Performance of mSNP on Xeon Phi.

5.3 CPU and Xeon Phi Cooperation

mSNP supports coordinated computation between CPUs and MICs. We tested
mSNP under different number of CPUs and MICs on one node of Tianhe-2. To
determine the proper number of threads launched in CPU and MIC, we evaluated
the performance of mSNP with the number of threads varying first. We adopted
3.2 GB dataset in the tests. Figure7(a) illustrates the performance of mSNP
on CPU. There are two sockets 12-core CPUs in each compute node. The time
decreases with the number of threads increasing, and the peak performance
is obtain in 24 threads, 1 core assigned with 1 thread. After 24 threads, the
performance drops gradually. Figure 7(b) shows the performance on Xeon Phi.
The peak performance is obtained in 224 threads, 1 core assigned with 4 threads.
Thus, we launched 24 threads on CPUs and 224 threads on one Xeon Phi for
the later tests.

The smooth varieties in Fig. 8 are contributed by the big proportion of output
in mSNP (Table3). It’s hard to parallelize output in multi-thread. To make
the illustration for CPU-Phi cooperation distinct, we chose 73 GB dataset and
presented the time of likelihood only, because other modules of mSNP are not
parallelized by multi-thread. Figure 8(a) shows the performance of likelihood for
CPUs cooperating with Phis. As illustrated, for SNP detection, the computing
power of one Xeon Phi corresponds to that of two CPUs in Tianhe-2. The high
accelerator speedup comes from the massively parallelism on Xeon Phi. There’s
no other communication, except for transferring input data to Phi and getting
results from Phi to CPU. Thus, the performance increases nearly linearly as the
number of Phi increases.

84 Y. Cui et al.

1200 350 —*— Time-RWD —8— Time-CWD "
1033.42 7 T Speedup RWD <oA= Specdup-CWD o
1000 300 ! 12
o
250 10 =
800 3
£ 200 g &
3 584.95 E z
£ 600 2 B}
& £ 150 67,
358.14 g
400 100 4 a
214.89
200 50 2
0 0
0 1 2 4 8 16
2CPUs 2CPUs+IMIC 2CPUs+2MICs 2CPUs+3MICs Number of nodes
(a) (b)

Fig. 8. (a) Performance of likelihood. (b) Time and speedup of RWD vs. CWD.

—@®— 2CPUs+3MICs —>—2CPUs+2MICs —&— 2CPUs+IMIC

6,000
4,000

—e—2CPUs —=— CPU -~ 2CPUs+3MICs
--9---2CPUs+2MICs -—A-=-2CPUs+IMIC -----2CPUs
--X-=- ICPU
16,000
14,000
12,000 s
3
. 10,000 g
£ 8000 2
= 2
2
g
a

2,000

128 256 512 1024 2048 4096
Number of nodes

Fig. 9. Strong scale speedup of mSNP

5.4 RWD Performance

Figure 8(b) shows the performance and strong scale speedup of RWD vs. CWD
from 1 to 16 nodes on Tianhe-2. All two CPUs with 24 threads and three MICs
with 224 threads per Phi are used in each compute node. The size of dataset is
73GB. RWD and CWD achieve evenly equal speedup before 4 nodes. After 4
nodes, the performance of RWD exceeds CWD more and more. The speedup of
CWD increases slower and slower after 4 nodes. CWD only obtains about 4.2
folds speedup on 16 nodes, while RWD achieves about 13 folds speedup, which is
over 3 folds faster. The good scalability is contributed by RWD’s parallel reading
capability.

5.5 Scalability

We tested the scalability of mSNP from 128 nodes to 4,096 nodes on Tianhe-
2. Figure9 presents the strong scale speedup of mSNP. The dash lines indi-
cate speedup and the real lines indicate time. The size of test data is 542 GB.

Large-scale Nero-heterogeneous SNP Detection on Tianhe-2 85

For a better presentation, we used the performance achieved on 128 nodes as
baseline. The lines in the figure stand for the number of processors (CPU,
MIC) used in each compute node of Tianhe-2. We observed a speedup of about
27.5 from 128 nodes to 4,096 nodes with 2CPUs+3MICs, and a speedup of
24 with 2CPUs+2MICs, a speedup of about 19 with 2CPUs+1MIC, about 15
folds speedup with 2CPUs, about 11.5 folds speedup with 1CPU. These results
demonstrate a promising result for strong scalability on the large scale CPU-MIC
heterogeneous system, Tianhe-2.

6 Conclusion

In this paper, we presented mSNP, which a large-scale parallel SNP detection
tool accelerated by Intel Xeon Phi. Firstly, we proposed a space-efficient repre-
sentation format that can substantially reduces the amount of memory accesses
and overhead of switching windows. Secondly, we developed a coordinated paral-
lel framework using CPU and Xeon Phi, which optimized hardware utilization.
Thirdly, we proposed a read-based window division strategy to improve data
throughput and parallel scale across nodes. We evaluated our work on Tianhe-2
supercomputer. It achieves about 45x speedup on one node and exhibits strong
scalability on 4,096 nodes. The algorithm optimization, parallelization on both
CPU and Xeon Phi lead to a significant reduction of computing time.

Acknowledgments. We would like to thank Mr. Yingrui Li from BGI for provid-
ing the source code of SOAPsnp and Dr. Jun Wang from BGI for providing related
test data. We would also like to thank Prof. Hans V. Westerhoff from University
of Manchester for discussions of the human genome re-sequencing analysis problem
and thus improving our own understanding. This work is supported by NSFC Grant
61272056, U1435222, 61133005, 61120106005, 91430218 and 61303191.

References

1. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/
SNP/

2. Li, R., Li, Y., Fang, X.: SNP detection for massively parallel whole-genome rese-
quencing. Genome Res. 19(6), 1124-1132 (2009)

3. Short Oligonucleotide Analysis Package Sites. http://soap.genomics.org.cn/index.
html

4. James, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming. Morgan Kaufmann, Newnes (2013)

5. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, pp.
273-282. ACM (2013)

6. Park, J., Bikshandi, G., Vaidyanathan, K., Tang, P.T.P., Dubey, P., Kim, D.:
Tera-scale 1D FFT with low-communication algorithm and Intel® Xeon Phi™
coprocessors. In: Proceedings of SC13: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, p. 34. ACM (2013)

http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://soap.genomics.org.cn/index.html
http://soap.genomics.org.cn/index.html

86

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Y. Cui et al.

. Heinecke, A., Vaidyanathan, K., Smelyanskiy, M., Kobotov, A., Dubtsov, R. et al.:
Design and implementation of the linpack benchmark for single and multi-node
systems based on intel® Xeon Phi coprocessor. In: 2013 IEEE 27th International
Symposium on Parallel & Distributed Processing (IPDPS), pp. 126-137. IEEE
(2013)

. Pennycook, S.J., Hughes, C.J., Smelyanskiy, M., Jarvis, S.A.: Exploring SIMD

for molecular dynamics, using intel® Xe0n® processors and intel® Xeon Phi
coprocessors. In: 2013 TEEE 27th International Symposium on Parallel & Distrib-
uted Processing (IPDPS), pp. 1085-1097. IEEE (2013)
. Misra, S., Pamnany, K., Aluru, S.: Parallel mutual information based construction
of whole-genome networks on the intel® Xeon PhiTM coprocessor. In: 2014 ITEEE
28th International Parallel and Distributed Processing Symposium, pp. 241-250.
IEEE (2014)
Graham, S.L., Kessler, P.B., McKusick, M.K.: Gprof: a call graph execution pro-
filer. ACM SIGPLAN Not. 39(4), 49-57 (2004)
Wikipedia Sites of VTune. http://en.wikipedia.org/wiki/VTune
TOP500 Supercomputer Sites. http://www.top500.org/system /177999
Tang, J., Leunissen, J.A.M., Voorrips, R.E.: HaploSNPer: a web-based allele and
SNP de-tection tool. BMC Genet. 9(1), 23 (2008)
Dereeper, A., Nicolas, S., Le Cunff, L.: SNiPlay: a web-based tool for detection,
management and analysis of SNPs. Application to grapevine diversity projects.
BMC Bioinform. 12(1), 134 (2011)
Tang, J., Vosman, B., Voorrips, R.E.: QualitySNP: a pipeline for detecting single
nucleotide polymorphisms and insertions/deletions in EST data from diploid and
polyploid species. BMC Bioinform. 7(1), 438 (2006)
Li, H., Handsaker, B., Wysoker, A.: The sequence alignment/map format and
SAMtools. Bioinformatics 25(16), 2078-2079 (2009)
DePristo, M.A., Banks, E., Poplin, R.: A framework for variation discovery and
genotyping using next-generation DNA sequencing data. Nature Genet. 43(5),
491-498 (2011)
Raczy, C., Petrovski, R., Saunders, C.T.: Isaac: ultra-fast whole-genome secondary
analysis on Ilumina sequencing platforms. Bioinformatics 29, 2041-2043 (2013).
btt314
Langmead, B., Schatz, M.C., Lin, J.: Searching for SNPs with cloud computing.
Genome Biol. 10(11), R134 (2009)
Shvachko, K., Kuang, H., Radia, S., The hadoop distributed file system. IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-10. IEEE
(2010)
Zhao, S., Prenger, K., Smith, L.: Rainbow: a tool for large-scale whole-genome
sequencing data analysis using cloud computing. BMC Genomics 14(1), 425 (2013)
Lu, M., Zhao, J., Luo, Q.: GSNP: a DNA single-nucleotide polymorphism detec-
tion system with GPU acceleration. In: 2011 International Conference on Parallel
Processing (ICPP), pp. 592-601. IEEE (2011)
Kutlu, M., Agrawal, G.: Cluster-based SNP calling on large-scale genome sequenc-
ing data. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid computing (CCGrid), pp. 455-464. IEEE (2013)
Cui, Y., Liao, X., Zhu, X.: mBWA: a massively parallel sequence reads aligner. In:
Saez-Rodriguez, J., Rocha, M.P., Fdez-Riverola, F., De Paz Santana, J.F. (eds.)
PACBB 2014. AISC, vol. 294, pp. 113-120. Springer, Heidelberg (2014)

http://en.wikipedia.org/wiki/VTune
http://www.top500.org/system/177999

	Large-Scale Neo-Heterogeneous Programming and Optimization of SNP Detection on Tianhe-2
	1 Introduction
	2 Related Work
	2.1 SNP Detection Tools
	2.2 Intel Xeon Phi Coprocessor

	3 Performance Profiling Analysis of SOAPsnp
	3.1 Workflow of SOAPsnp
	3.2 Bottleneck Profiling

	4 Design and Implementation of mSNP
	4.1 Consolidating Sparse Matrix
	4.2 Coordinated Parallelism Between CPU and Xeon Phi
	4.3 Collaborated Parallel Window Division

	5 Evaluation
	5.1 Experimental Setup
	5.2 Dimension Reduction of Sparse Matrix
	5.3 CPU and Xeon Phi Cooperation
	5.4 RWD Performance
	5.5 Scalability

	6 Conclusion
	References

