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Abstract. The manycore paradigm shift, and the resulting change in
modern computer architectures, has made the development of optimal
numerical routines extremely challenging. In this work, we target the
development of numerical algorithms and implementations for Xeon Phi
coprocessor architecture designs. In particular, we examine and opti-
mize the general and symmetric matrix-vector multiplication routines
(gemv/symv), which are some of the most heavily used linear algebra
kernels in many important engineering and physics applications. We
describe a successful approach on how to address the challenges for
this problem, starting with our algorithm design, performance analy-
sis and programing model and moving to kernel optimization. Our goal,
by targeting low-level and easy to understand fundamental kernels, is
to develop new optimization strategies that can be effective elsewhere
for use on manycore coprocessors, and to show significant performance
improvements compared to existing state-of-the-art implementations.
Therefore, in addition to the new optimization strategies, analysis, and
optimal performance results, we finally present the significance of using
these routines/strategies to accelerate higher-level numerical algorithms
for the eigenvalue problem (EVP) and the singular value decomposi-
tion (SVD) that by themselves are foundational for many important
applications.

1 Introduction

As the era of computer architectures dominated by serial processors closes, the
scientific community has produced a consensus for the need to redesign numeri-
cal libraries to meet the new system design constraints and revolutionary levels
of parallelism and heterogeneity. One approach, from the early days of multicore
architectures, was to redesign the higher-level algorithms, e.g., LAPACK [5], to
use tile operations [7–9]. To provide parallelism in these algorithms, the com-
putation is expressed as a Directed Acyclic Graph (DAG) of tasks on small
matrices/tiles with labeled edges designating data dependencies, and a run-
time system schedules the DAG’s execution over the cores to ensure that data
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dependancies are not violated. Performance relied on fast sequential implemen-
tations of the Basic Linear Algebra Subprograms (BLAS) interface [13]. When
manycore accelerators entered the HPC field, it became apparent that break-
ing the uniformity of the computation is not advantageous for GPUs. Instead,
hybrid approaches were developed [4,17,27,28,30], where there is still a DAG
and scheduling (for both GPUs and CPUs), but SIMD tasks on large data that
are suitable for GPUs, e.g., GEMM, remain coarse grained and are scheduled
as single tasks for parallel execution through parallel BLAS implementations.
This highlighted the interest in parallel BLAS, and subsequently to parallel
BLAS implementations in CUBLAS [1] and MAGMA BLAS [2]. Hybrid appro-
aches are also suitable for the more recent many-core coprocessors, e.g., as is
evident from the MAGMA MIC’s extension of MAGMA for the Xeon Phi
coprocessors [14,19].

The use of batched BLAS [10,11,18,20] as an extension to the parallel BLAS
in many HPC applications is currently the subject of great interest. Batched
algorithms address one of the significant challenges in HPC today – that numer-
ous important applications tend to be cast in terms of a solution to many small
matrix operations: they contain the large majority of computations that con-
sist of a large number of small matrices which cannot be executed efficiently
on accelerated platforms except in large groups, or “batches”. Indeed, batched
representations of computational tasks are pervasive in numerical algorithms
for scientific computing. In addition to dense linear algebra routines and appli-
cations, batched LA can naturally express various register and cache blocking
techniques for sparse computations [21], sparse direct multifrontal solvers [31],
high-order FEM [12], and numerous applications in astrophysics [24], hydrody-
namics [12], image processing [25], signal processing [6], and big data, to name
just a few. Moreover, blocking for cache reuse - the most basic technique to accel-
erate numerical algorithms from the fundamental dense matrix-matrix product,
to sparse matrix-vector (SpMV), to more complex linear or eigenvalue solvers –
is often synonymous with a batched representation of algorithms.

To enable the effective use of parallel BLAS and batched BLAS-based compu-
tational approaches, new parallel BLAS algorithms and optimization strategies
must be developed. In this work, we target the development of these foundational
numerical algorithms, optimization strategies, and implementations for the Xeon
Phi coprocessors, also known as Intel’s many integrated core architectures (MIC).
In particular, we examine and optimize the general and symmetric matrix-vector
multiplication routines (gemv/symv), which are some of the most heavily used
linear algebra kernels in many important engineering and physics applications.
Our goal, by targeting low-level, easy to understand fundamental kernels, is to
develop optimization strategies that can be effective elsewhere, and in particular
for batched approaches for HPC applications on manycore coprocessors. There-
fore, we developed new optimization strategies (and analysis) to obtain optimal
performance. Finally, we illustrate the need and the significance of using these
routines/strategies to accelerate higher-level numerical algorithms for the EVP
and SVD problems that by themselves are foundational for many important
applications.
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2 Background and Related Work

This paper addresses two kernels – the general and the symmetric matrix-vector
multiplications (gemv and symv) – which are crucial for the performance of lin-
ear solvers as well as EVP and SVD problems. A reference implementation for
a generic matrix-vector multiplication kernel is straight-forward because of the
data parallel nature of the computation. However, achieving performance on
accelerators or coprocessors is challenging, as evident from the results on cur-
rent state-of-the-art implementations. For example, even though Intel optimized
dgemv in their recent release of MKL, its performance is highly nonuniform,
reaching up to about 37–40 Gflop/s for only particular matrix sizes and data
alignments. Performance, when the matrix size is not a multiple of the cache
line (8 double precision numbers), drops by about 10 Gflop/s, or 30 % of the
peak obtained. Furthermore, a sequence of calls to dgemv with “transpose” and
“Non transpose” have shown a drop in the performance as well at about 10
Gflop/s. In addition to the issues for the dgemv kernel, the irregular data access
patterns in the symv routine bring further challenges for its design and optimiza-
tion. For example, the current MKL dsymv achieves the same performance as
the dgemv (≈37–40 Gflop/s) while in theory it should be twice as fast.

To the best of our knowledge, there has not been other published work on
addressing the acceleration opportunities mentioned for the Xeon Phi architec-
tures. Related algorithmic work, but for GPU architectures, is the acceleration
of the symv routine in MAGMA [26]. The CUBLAS’s symv, similarly to the
MKL’s symv for Xeon Phi, was not exploiting the symmetry of the matrix to
reduce the data traffic needed, and as a result was also twice slower than theo-
retically expected. A new algorithm was proposed to correct this for GPUs by
Nath et al. [26], which was later slightly improved for Kepler GPUs using atomic
operations [3].

In this paper, we describe the optimizations performed on both the gemv and
symv routines tomake them reach their theoretical peak performances on coproces-
sors. Our gemv kernel is not affected by the matrix size or the sequence of calls. It
achieves uniform performance that matches the peaks of the MKL’s gemv. This
improvement was important to speed up many algorithms, and in particular, the
reduction to bidiagonal form which is a major component for SVD.

An optimality analysis for the symv routines shows (see Sect. 6) that this
kernel should achieve twice the performance of the gemv routine. We developed
an algorithm (and its implementation) that exploits cache memory to read small
blocks of the matrix in cache and reuse them in the computation involving their
symmetric counterparts. This implementation divides the main memory reads
in half, and our experiments show that it reaches to around 50–55 Gflop/s for
specific blocking sizes that allow each small block to fit into the L2 cache of a
corresponding core of the coprocessor. Even though this new symv kernel brings
an excellent improvement over the contemporary MKL, it is still less than what
the performance bound analysis shows as being possible. This motivated us to
look for further improvements that led to the development of a second algorithm
(and its implementation) that reuses the data loaded into the L1 cache level, as
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well as from the registry, to reach to around 65 Gflop/s. We should mention
that both of our symv implementations incur memory overheads of less than
one percent (about 0.78%) of the matrix size. We also show the impact that this
optimization has on the tridiagonal reduction, which is the most time consuming
component of the symmetric eigenvalue problem.

3 Contributions to the Field

The evolution of semiconductor technology is dramatically transforming the bal-
ance of future computer systems, producing unprecedented changes at every level
of the platform pyramid. From the point of view of numerical libraries, and the
myriad of applications that depend on them, three challenges stand out: (1) the
need to exploit unprecedented amounts of parallelism; (2) the need to maximize
the use of data locality; and (3) the need to cope with component heterogeneity.
Besides the software development efforts that we investigate to accomplish an
efficient implementation, we highlight our main contributions related to the algo-
rithm’s design and optimization strategies aimed at addressing these challenges
on the MIC architecture:

Exploit Unprecedented Amounts of Parallelism: Clock frequencies are
expected to stay constant, or even decrease to conserve power; consequently,
as we already see, the primary method of increasing computational capability
of a chip will be to dramatically increase the number of processing units
(cores), which in turn will require an increase of orders of magnitude in the
amount of concurrency that routines must be able to utilize. We developed
MIC-specific optimization techniques that demonstrate how to use the many
(currently 60) cores of the MIC to get optimal performance. The techniques
and kernels developed are fundamental and can be used elsewhere.

Hierarchical Communication Model that Maximizes the use of Data
Locality: Recent reports (e.g., [16]) have made it clear that time per flop,
network bandwidth (between parallel processors), and network latency are
all improving, but at exponentially different rates. So an algorithm that is
computation-bound and running close to peak today may be communication-
bound in the near future. The same holds for communication between levels
of the memory hierarchy. We demonstrate that, related to the latter, perfor-
mance is indeed harder to get on new manycore architectures unless hierar-
chical communications are applied. Hierarchical communications to get top
speed are now needed not only for Level 3 BLAS but also for Level 2 BLAS,
as we show. Only after we developed and applied multilevel cache blocking,
did our implementations reach optimal performance.

Performance Bounds Analysis: We study and demonstrate the maximal
performance bounds that could be reached. The performance bounds allow
us to ascertain the effectiveness of our implementation and how close it
approaches the theoretical limit. We developed and demonstrated this use
of performance bound analysis not only for the low-level kernels considered,
but also for the higher-level algorithms that use them as building blocks.
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4 Experimental Testbed

All experiments are done on an Intel multicore system with two 8-core Intel Xeon
E5-2670 (Sandy Bridge) CPUs, running at 2.6 GHz. Each CPU has a 20 MB
shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1 caches.
The system is equipped with 52 GB of memory. The theoretical peak in double
precision is 20.8 Gflop/s per core, giving 332 Gflop/s in total. The system is
equiped with one Intel Xeon-Phi KNC 7120 coprocessor. It has 15.1 GB, runs
at 1.23 GHz, and yields a theoretical double precision peak of 1, 208 Gflop/s.
We used the MPSS 2.1.5889-16 software stack, the icc compiler that comes with
the composer xe 2013 sp1.2.144 suite, and the BLAS implementation from MKL
(Math Kernel Library) 11.01.02 [22].

5 The General Matrix-Vector Multiplication
Routine gemv

Level 2 BLAS routines are of low computational intensity and therefore DLA
algorithm designers try to avoid them. There are techniques that can replace
Level 2 BLAS operations with Level 3 BLAS. For example, in factorizations
like LU, QR, and Cholesky, the application of consecutive Level 2 BLAS opera-
tions that occur in the algorithms can be delayed and accumulated so that, at
a later moment, the accumulated transformation can be applied at once as a
Level 3 BLAS [5]. This approach totally removes Level 2 BLAS from Cholesky,
and reduces its amount to O(n2) in LU and QR, thus making it asymptotically
insignificant compared to the total O(n3) amount of operations for these factor-
izations. The same technique can be applied to the two-sided factorizations [15],
but in contrast to the one-sided, a large fraction of the total number of floating
point operations (flops) still remains Level 2 BLAS. For example, the block Hes-
senberg reduction has about 20 % of its flops in Level 2 BLAS, while both the
bidiagonal and tridiagonal reductions have 50 % of their flops in Level 2 BLAS
[29]. In practice, the flops in Level 2 BLAS do not scale well on current architec-
tures and thus can significantly impact the total execution time. Therefore the
availability of their efficient implementations is still crucial for the performance
of a two sided factorization in current architectures. This section considers the
Xeon Phi implementation of one fundamental Level 2 BLAS operation, namely
the matrix-vector multiplication routine for general dense matrices (gemv). The
gemv multiplication routine performs one of:

y := αAx + βy, or y := αATx + βy, (1)

where A is an M by N matrix, x and y are vectors, and α and β are scalars.

5.1 Effect of the Matrix Size on the MKL gemv Performance

The gemv performance peak on the Xeon Phi coprocessor is as expected – achiev-
ing around 37–40 GFlop/s in double precision for both of its transpose and non-
transpose cases, which translate to a bandwidth of about 160 GB/s. Achieving
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this bandwidth is what is expected on the Xeon Phi coprocessor [23]. How-
ever, this peak performance is obtained only on particular matrix sizes and data
alignments. In reality, applications that rely exclusively on the gemv, e.g., the
bidiagonal reduction (BRD), show much lower performance. Our analysis shows
that in the case of the BRD in particular (see Eq. (7)), performance must be
about twice the performance of the gemv, while experiments show that the BRD
attains less than 37–40 GFlop/s. A detailed analysis of the gemv kernel shows
that its performance indeed highly depends on the location of the data in the
memory, and in particular, on its alignment. We benchmarked gemv on matri-
ces of consecutively increasing sizes from 1 to 27 K, similar to the way that the
BRD reduction calls it. We found out that its performance fluctuates, as shown
in Fig. 1a and b (the blue curves), according to the offset from which the matrix
is accessed. The performance drops by about 15 Gflop/s for the transposed case
when the matrix size in the “n” dimension is not a multiple of 240 (as shown
in Fig. 1a) and falls by about 10 Gflop/s for the non-transposed case when the
matrix size in the m dimension is not a multiple of 8, as depicted in Fig. 1b. To
resolve the dependance on the memory alignment and the matrix sizes, we devel-
oped two routines (for the transpose and non-transpose cases, respectively) that
always access a matrix from its aligned data, performing a very small amount
of extra work, but keeping its performance stable at its peak. The red curves in
Fig. 1 show our improvement. The algorithms are described in Subsect. 5.3 below.

(a) Performance of dgemv
¯
T

w/o the proposed virtual
padding.

(b) Performance of dgemv
¯
N

w/o the proposed virtual
padding.

(c) Performance of a seq-
uence of dgemv

¯
T and 

dgemv
¯
N calls.

Fig. 1. Performance obtained from the dgemv routine on matrices of consecutively
increasing sizes (Color figure online).

5.2 Effect of the Sequence of gemv Calls

After achieving optimal performance for the gemv’s transpose and non-transpose
cases, as described in Sect. 5.1, we tested their use in real-world applications. For
the BRD reduction for example, performance is improved for all sizes and reaches
its theoretical peak for large matrix sizes. However, the performance for small
sizes, in particular less than 8 K, is not as expected. The detailed experiments
depicted in Fig. 1c show that performance of gemv drops by 10 Gflop/s when
called in a sequence of non-transpose followed by transpose cases for matrices of
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size less than 8 K. We believe that this is related to the different parallelization
grid used for each case of gemv (transpose vs. non-transpose), and thus this is
the overhead of switching between the two different grids of cores. The overhead
probably always exists for larger sizes, but its effect is less evident because the
cost of the gemv is dominant. To overcome this drawback, we introduce another
optimization technique and use it to develop a new gemv routine, described in
detail in the following sections.

5.3 A New MAGMA MIC gemv

Transpose Matrix Case: The computation of the gemv routine for the trans-
pose case can be parallelized in a one-dimensional (1D) block-column fashion.
In this parallelization model, each thread processes its part of the gemv column
by column, and thus for each column a dot product is performed. The accu-
mulations are done in cache and the final, resulting vector y is written once.
Moreover, each thread reads data that is stored consecutively in memory, which
will simplify the prefetching and vectorization process. To get good performance
out of a MIC core, vectorization that takes advantage of the core’s 16-wide SIMD
registers is essential. Each core processes one block (or multiple, if we use 1D
block cyclic distribution). The number of columns in the blocki can be set, for
example, as:

columns in blocki =
N

num blocks
+ (i < (N%num blocks) ? 1 : 0), (2)

where num blocks is the number of blocks (e.g., 60 to correspond to 60 cores
of a MIC) that we want N columns to split into, and i = 1, . . . , num blocks is
the block index. We developed parametrized implementations and hand-tested
them at first to get insight for the tuning possibilities. For example, one para-
meter is number of threads per core. Figure 2 illustrates a distribution using one
thread per core (displayed as version-1) and four threads per core (displayed as
version-2). In this case, we found that both implementations provide the same
performance. This is due to the fact that the gemv routine is memory bound
and one thread per core is enough to saturate the bandwidth, thus increasing
the number of threads does not affect the performance.

Non-transpose Matrix Case: Following the same strategy used for the trans-
pose approach leads to poor performance for the non-transpose case. This is
because the values of y need to be written multiple times in this case. There-
fore, we can instead parallelize the algorithm in 1D block-row fashion. In this
way each core processes its independent part of the gemv and thus the resulting
vectors can be accumulated in cache and written to the main memory only once.
To keep the blocks cache aligned, their size can be made to be a multiple of
eight. For effective load balance we can think of the matrix as strips of eight,
and divide the strips among the block-rows equally. In this case, the number of
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Fig. 2. Basic implementation of matrix-vector multiplication on Intel Xeon Phi

rows in blocki can be set as:

m8 strip = (M + 7)/8

rows in blocki = [
m8 strip

num blocks
+ (i < (m8 strip%num blocks) ? 1 : 0)] × 8

(3)
Dividing rows in block-rows like this has two advantages: first, every block except
the last one will have elements that are multiples of eight, which is good for vec-
torization; and second, it helps keep the blocks aligned with the cache sizes which
is essential to reduce memory access time. When the matrix A is not aligned for
the cache size, we can increase the size of the first block in order to handle
the unaligned portion, while making all the remaining blocks aligned. Compiler
guided prefetching for this case is not enough to reach the same performance
as for the transpose case. Prefetching to L1 and L2 cache plays an important
role here.

Similarly to the transpose case, using one or four threads per core provides
the same performance. Again, we developed a parametrized implementation
where one parameter is the number of threads per core. Figure 2b, for exam-
ple, illustrates a distribution using one thread per core (displayed as version-1)
and four threads per core (displayed as version-2). The thread processes four
columns together to reduce the write traffic for vector y. Before processing the
eight elements (eight is the length of SIMD instruction for double precision), it
prefetches the next eight elements of A from the same column to the L1 cache
level and the next four columns of the same block-row to the L2 cache. In this
way, when the code proceeds to process the next four columns, the data for them
will be obtained from the L2 cache. Processing more than four columns does
not improve the performance. For version-2 each thread handles four columns
together and then the consecutive eight rows from the same column. Like version-
1 each thread will prefetch its portion from the same columns to the L1 cache
and from the next four columns to the L2 cache.

The blocking and prefetching technique for the transpose and non-transpose
cases are described in Figs. 2a and b, respectively.

Figures 3a and b show the performance comparison of magma dgemv vs.
mkl dgemv. In both the transpose and non-transpose cases the techniques pre-
sented yield better performance than the MKL’s dgemvs.
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Fig. 3. Performance of MAGMA MIC dgemv vs. MKL on Intel Xeon Phi.

6 Our Proposed Symmetric Matrix-Vector Multiplication
Routine symv

The symv multiplication routine performs:

y := αAx + βy, (4)

where α and β are scalars, x and y are vectors of size N, and A is an N by N
symmetric matrix.

The performance of the MKL symv routine is as high as the performance of
the gemv routine, and therefore can be further accelerated. Due to the fact that
the symv routine accesses half of the matrix, meaning it needs only half of the
data transfers, its performance (theoretically) should be twice that of the gemv.
The idea behind getting this acceleration is to reuse the data from half of the
matrix to perform the entire multiplication. The traditional way to attain this
objective is to divide the whole matrix into small blocks so that each block fits in
the cache. A symv kernel is used for the diagonal blocks, and for each of the non-
diagonal blocks two calls to the gemv routine are used — one for the transpose
and one for the non-transpose case. For high parallelism without the need for
synchronization, each core handles a block and its resulting vector is written
independently in separate locations. Thus, a summation is taken at the end to
get the final y result. As each block is brought to the cache once, this technique
is expected to reach close to the theoretical bound which, as mentioned, is twice
the performance of gemv.

We performed a set of experiments for different block sizes. In our timing,
we ignored the overhead of the summation and the launching of the threads. We
illustrate in Fig. 5a the performance we obtained for different block sizes. The
maximum performance achieved is around 54 Gflop/s for large matrix sizes and
near 50 Gflop/s for smaller matrix sizes. When including the time for the sum-
mation, the later results decrease by about 5−10 %. This symv implementation
brings an excellent improvement over the contemporary MKL (e.g., it is about
1.3 times faster). However, the performance is not optimal. This motivated us
to search for other MIC-specific optimization techniques, leading to our second
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algorithm and implementation that adds one more level of blocking. In particu-
lar, we manage to reuse data from the L1 cache, which brings the performance
up to the optimal level, i.e., twice the one for gemv.

In order to achieve the desired performance one must optimize both at the
blocking and at the kernel levels. As there are sixty cores in a MIC, we divided
the whole matrix into 60 × 60 blocks. If (i, j) is the index of a block in a two
dimensional grid and block M×block N is the block’s dimension, block M and
block N are computed as follows:

n8 strip = (N + 7)/8

block M = [
n8 strip

60
+ (i < (n8 strip%60) ? 1 : 0)] ∗ 8

block N = [
n8 strip

60
+ (j < (n8 strip%60) ? 1 : 0)] ∗ 8.

(5)

When the size of the matrix A is a multiple of 8, then both block M and block N
are a multiple of eight as well, and all the blocks in the grid are aligned with
the cache. When the size of A is not a multiple of 8, the non-aligned portion is
added to block(0, 0), making all the remaining blocks aligned and of sizes that
are multiples of 8.

Fig. 4. Basic implementation of MAGMA symv on Intel Xeon Phi.

The symv computation is organized according to the description presented
in Fig. 4. Since the diagonal blocks require special attention because their lower
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Fig. 5. Performance of MAGMA dsymv on Intel Xeon Phi (Color figure online).

or upper portion is accessed, and in order to enforce workload balance among
the cores, we split the diagonal blocks over all the cores in a way that provides
load balance. The non-diagonal blocks are also distributed among the cores as
described in Fig. 4 in order to achieve load balance. The number inside each
block indicates which core owns and processes that block. Since the gemv and
the symv are memory bound, we found that one thread per core is the best
configuration.

Each core computes the symmetric matrix-vector multiplication of its block
by performing the gemv N and gemv T together, meaning it loads a column of A
and computes the multiplication for both the non-transpose and transpose cases,
and then moves to the next column. We used the same prefetching technique
as the one used in our gemv kernel for the non-transpose case. We prefetch the
data of a block to the L2 cache and then every column is prefetched to the L1
cache where we perform all computations involving that data. This technique
is illustrated in Fig. 4. The corresponding portions of x and y of the matrix-
vector multiplication of the red block in Fig. 5b are shown in yellow for the non-
transpose operation and in the purple color for the transpose operation. Finally,
the resulting vector yi must be summed, and this is done in parallel using the 60
cores. Figure 5b shows the performance of our MAGMA MIC dsymv along with
a comparison to the performance of the dsymv routine from the MKL Library.
Using the above technique we can achieve almost twice the performance of gemv,
which means that the bound limit for this routine is reached.

7 Impact on Eigenvalue and Singular Value Algorithms

Eigenvalue and singular value decomposition (SVD) problems are fundamen-
tal for many engineering and physics applications. The solution of these prob-
lems follow three phases. The first phase involves reducing the matrix to a con-
densed form matrix (e.g., tridiagonal form for symmetric eigenvalue problem,
and bidiagonal form for singular value decomposition) that has the same eigen/
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Fig. 6. Percentage of the time spent in each of the three phases of the symmetric
eigenvalue and singular value problem

singular-values as the original one. The reductions are referred to as two-sided
factorizations, as they are achieved by two-sided orthogonal transformations.
Then, in the second phase, an eigenvalue (or a singular value) solver further
computes the eigenpairs (or, singular values and vectors) of the condensed form
matrix. Finally, in the third phase, the eigenvectors (or the left and right singu-
lar vectors) resulting from the previous phase are multiplied by the orthogonal
matrices used in the reduction phase. We performed a set of experiments in
order to determine the percentage of time spent in each of these phases for the
symmetric eigenvalue problem and the singular value decomposition problem.
The results depicted in Figs. 6a, and b show that the first phase is the most
time consuming portion. It consists of more than 80% or 90% of the total time
when all eigenvectors/singular vectors or only eigenvalues/singular values are
computed, respectively. These observations illustrate the need to improve the
reduction phase. It is challenging to accelerate the two-sided factorizations on
new architectures because they are rich in Level 2 BLAS operations, which are
bandwidth limited and therefore do not scale on recent architectures. For that,
we focus in this section on the reduction phase and study its limitation. Fur-
thermore, we present the impact of our optimized kernel when accelerating it on
Intel Xeon-Phi coprocessor architectures.

7.1 Performance Bound Analysis

In order to evaluate the performance behavior of the two-sided factorizations and
to analyze if there are opportunities for improvements, we conduct a computa-
tional analysis of the reduction to condensed forms for the two-sided reductions
(TRD and BRD). The total cost for the reduction phase can be summarized as
follows:
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For Tridiagonal:

≈ 2
3n3

symv + 2
3n3

Level 3

≈ 4
3n3.

For Bidiagonal:

≈ 4
3n3

gemv + 4
3n3

Level 3

≈ 8
3n3.

According to these equations we derive below the maximum performance Pmax

that can be reached by any of these reduction algorithms. In particular, for large
matrix sizes n, Pmax = number of operations

minimum time tmin
, and thus Pmax is expressed as:

For Tridiagonal:

4
3n

3

2
3n

3∗ 1
Psymv

+ 2
3n

3∗ 1
PLevel3

2∗PLevel3∗Psymv

PLevel3+Psymv

≈ 2Psymv

when PLevel3 � Psymv.

(6)

For Bidiagonal:

8
3n

3

4
3n

3∗ 1
Pgemv

+ 4
3n

3∗ 1
PLevel3

2∗PLevel3∗Pgemv

PLevel3+Pgemv

≈ 2Pgemv

when PLevel3 � Pgemv.

(7)

The performance of the Level 2 BLAS routines, such as the matrix-vector
multiplication (symv or gemv), is memory bound and very low compared to the
Level 3 BLAS routines which can achieve close to the machine’s peak perfor-
mance. For example, on the Intel Xeon Phi system the performance of dgemv is
about 40 Gflop/s, while for dgemm is about 1000 Gflop/s. Thus, one can expect
from Eqs. (6, 7) that the performance of the reduction algorithms are bound by
the performance of the Level 2 BLAS operations. This proves that the perfor-
mance behavior for these algorithms is dictated by the matrix-vector Level 2
BLAS routines, and this is one example of why it is very important to optimize
them.

7.2 Impact on the Tridiagonal Reduction

Figure 7a shows the performance for the tridiagonal reduction using the Xeon
Phi. The MAGMA implementation using the MKL symv routine is much slower
than when using our proposed symv implementation. In particular MAGMA
with the new symv optimization is about 1.6× faster than MAGMA using the
MKL symv, and reaches 78% of the theoretical performance bound derived from
Eq. 6.

7.3 Impact on the Bidiagonal Reduction

Figure 7b shows the performance for the bidiagonal reduction on the Xeon Phi.
Similarly to the tridiagonal factorization, the MAGMA bidiagonal reduction
using our proposed gemv shows better performance than when using the gemv
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Fig. 7. Impact of the proposed symv and gemv routine on the reduction algorithms for
eigenvalue and singular value problems.

routine from the MKL library combined with our proposed fix described in
Sect. 5.1. In particular we are reaching 85% of the theoretical performance bound
that we derived in Eq. 7.

8 Conclusions

We developed MIC-specific optimization techniques that demonstrate how to use
the many (currently 60) cores of the Intel Xeon Phi coprcessor to obtain optimal
performance. The techniques and kernels developed are fundamental and can
be used elsewhere. For example, we showed that hierarchical communications to
obtain top speed are now needed not only for Level 3 BLAS but also for Level
2 BLAS – indeed, only after we developed and applied multilevel cache block-
ing, our implementations reached optimal performance. Further, the new gemv
kernel handles unaligned general matrices efficiently and its use in higher-level
routines, like the bidiagonal reduction, does not require additional optimization
techniques, like padding for example. The impact of our optimizations are clearly
visible in the performance of the bidiagonal reduction. Finally, our new symv is
almost 2× faster than MKL’s symv. Optimization in symv makes the tridiagonal
reduction 1.6× faster than using MKL’s symv.
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