
A Framework for Batched and GPU-Resident
Factorization Algorithms Applied to Block

Householder Transformations

Azzam Haidar1(B), Tingxing Tim Dong1, Stanimire Tomov1, Piotr Luszczek1,
and Jack Dongarra1,2,3

1 University of Tennessee, Knoxville, USA
haidar@icl.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
3 University of Manchester, Manchester, UK

Abstract. As modern hardware keeps evolving, an increasingly effective
approach to developing energy efficient and high-performance solvers is
to design them to work on many small size and independent problems.
Many applications already need this functionality, especially for GPUs,
which are currently known to be about four to five times more energy
efficient than multicore CPUs. We describe the development of one-sided
factorizations that work for a set of small dense matrices in parallel, and
we illustrate our techniques on the QR factorization based on House-
holder transformations. We refer to this mode of operation as a batched
factorization. Our approach is based on representing the algorithms as a
sequence of batched BLAS routines for GPU-only execution. This is in
contrast to the hybrid CPU-GPU algorithms that rely heavily on using
the multicore CPU for specific parts of the workload. But for a system to
benefit fully from the GPU’s significantly higher energy efficiency, avoid-
ing the use of the multicore CPU must be a primary design goal, so the
system can rely more heavily on the more efficient GPU. Additionally,
this will result in the removal of the costly CPU-to-GPU communica-
tion. Furthermore, we do not use a single symmetric multiprocessor (on
the GPU) to factorize a single problem at a time. We illustrate how our
performance analysis, and the use of profiling and tracing tools, guided
the development and optimization of our batched factorization to achieve
up to a 2-fold speedup and a 3-fold energy efficiency improvement com-
pared to our highly optimized batched CPU implementations based on
the MKL library (when using two sockets of Intel Sandy Bridge CPUs).
Compared to a batched QR factorization featured in the CUBLAS library
for GPUs, we achieved up to 5× speedup on the K40 GPU.

1 Introduction

Accelerators and coprocessors have enjoyed widespread adoption in computa-
tional science, consistently producing many-fold speedups across a wide range
of scientific disciplines and important applications [13]. The typical method of

c© Springer International Publishing Switzerland 2015
J.M. Kunkel and T. Ludwig (Eds.): ISC High Performance 2015, LNCS 9137, pp. 31–47, 2015.
DOI: 10.1007/978-3-319-20119-1 3

32 A. Haidar et al.

utilizing the GPU accelerators is to increase the scale and resolution of an appli-
cation, which in turn increases its computational intensity; this tends to be a
good match for the steady growth in performance and memory capacity of this
type of hardware. Unfortunately, there are many important application types
for which the standard approach turns out to be a poor strategy for improving
hardware utilization1. Numerous modern applications tend to be cast in terms
of a solution of many small matrix operations, e.g., computations that require
tensor contraction (such as quantum Hall effect), astrophysics [28], metabolic
networks [26], CFD and the resulting PDEs through direct and multifrontal
solvers [45], high-order FEM schemes for hydrodynamics [10], direct-iterative
preconditioned solvers [20], and some image [29] and signal processing [5]. That
is, at some point in their execution, such programs must perform a computation
that is cumulatively very large, but whose individual parts are very small; these
parts cannot be efficiently mapped as separate individuals on to the modern
accelerator hardware. Under these circumstances, the only way to achieve good
performance is to find a way to group these small inputs together and run them
in large “batches.”

The emergence of large-scale, heterogeneous systems with GPU accelerators
and coprocessors has made the near total absence of linear algebra software
for such small matrix operations especially noticeable. Due to the high levels
of parallelism they support, accelerators or coprocessors, like GPUs, efficiently
achieve very high performance on large data parallel computations, so they have
often been used in combination with CPUs, where the CPU handles the small and
difficult to parallelize tasks. Moreover, by using efficient GPU-only codes, linear
algebra problems can be solved on GPUs with four to five times more energy
efficiency than one can get from multicore CPUs alone citebatchedCholesky.
For both of these reasons, and given the fundamental importance of numerical
libraries to science and engineering applications of all types [25], the need for
software that can perform batched operations on small matrices is acute. The
concepts in this paper work towards filling this critical gap, both by providing
a library that addresses a significant range of small matrix problems, and by
driving progress toward a standard interface that would allow the entire linear
algebra (LA) community to attack the issues together.

for Ai ∈ A1,A2, . . . ,Ak do
GenerateSmallLinearSystem(Ai)

for Ai ∈ A1,A2, . . . ,Ak do
Factorize(Ai)

Fig. 1. Batched computation example.

To better understand the problem,
consider Fig. 1, which shows a simple
batched computation that factorizes a
sequence of small matrices Ai. The
word small is used in relative terms as
the beneficial size of Ai will depend on
the circumstances. A straightforward
guideline to determine this size is the
ability of processing the matrices in parallel rather then sequentially. To achieve
this goal it is necessary to co-locate a batch of Ai in a fast GPU store – a cache
1 Historically, similar issues were associated with strong scaling [14] and were

attributed to a fixed problem size.

A Framework for Batched and GPU-Resident Factorization Algorithms 33

or shared memory – and process it there with a better use of parallel execution
units.

This kind of optimization cannot be made by the compiler alone for two
primary reasons: the lack of standardized interfaces and the opaque implemen-
tation of the factorization routine. The former derives from the fact that, until
recently, batched computations were not the primary bottleneck for scientific
codes because it was the larger problems that posed a performance challenge.
Once appreciable increases in the processing power and memory capacity of
GPUs removed this bottleneck, the small size problems became prominent in
the execution profile because they significantly increased the total execution
time. The latter is a simple consequence of separation of concerns in the soft-
ware engineering process, whereby the computational kernels are packaged as
standalone modules that are highly optimized and cannot be inlined into the
batched loop in Fig. 1. What we propose is to define the appropriate interfaces
so that our implementation can work seamlessly with the compiler and use the
code replacement technique so that the user has an option of expressing the
computation as the loop shown in the figure or a single call to a routine from
the new standard batch library.

Against this background, the goal of this work is two-fold: first, to deliver a
high-performance numerical library for batched linear algebra subroutines tuned
for the modern processor architectures and system designs. The library must
include LAPACK routine equivalents for many small dense problems as well as
routines for many small sparse matrix solvers, which should be constructed, as
much as possible, out of calls to batched BLAS routines and their look-alikes
required in the context of sparse computations. Second, and just as importantly,
it must define modular interfaces so that our implementation can seamlessly
work with the compiler and use code replacement techniques. This will provide
the developers of applications, compilers, and runtime systems with the option
of expressing computation as a loop (as shown in the figure), or a single call to
a routine from the new batch operation standard.

As might be expected, a batched BLAS forms the foundation of the frame-
work for the batched algorithms proposed, with other tasks building up in layers
above. The goal of this approach is to achieve portability across various architec-
tures, sustainability and ease of maintenance, as well as modularity in building
up the framework’s software stack. In particular, on top of the batched BLAS
(by algorithmic design), we illustrate the building of a batched LAPACK. The
new batched algorithms are implemented and currently released through the
MAGMA 1.6.1 library [21]. The framework will allow for future work extension
to batched sparse linear algebra, and application-specific batched linear alge-
bra. Finally, all the components are wrapped up in a performance and energy
autotuning framework.

In terms of the framework’s sustainability, it is important to note that batched
operations represent the next generation of software that will be required to effi-
ciently execute scientific compute kernels on self-hosted accelerators that do not
have accompanying CPUs, such as the next generation of Intel Xeon Phi proces-
sors, and on accelerators with a very weak host CPU, e.g., various AMD APU

34 A. Haidar et al.

models and NVIDIA Tegra platforms. For such hardware, performing any non-
trivial work on the host CPU would slow down the accelerator dramatically,
making it essential to develop new batched routines as a basis for optimized
routines for accelerator-only execution.

2 Related Work

There is a lack of numerical libraries that cover the functionalities of batched
computation for GPU accelerators and coprocessors. NVIDIA started to add
certain batch functions in their math libraries; NVIDIA’s CUBLAS 6.5 [36]
includes batched Level 3 BLAS for gemm and trsm (triangular matrix solver), the
higher-level (LAPACK) LU and QR factorizations, matrix inversion, and a least
squares solver. All of these routines are for uniform size matrices. AMD and
Intel’s MKL do not provide batched operations yet. For higher-level routines,
NVIDIA provides four highly-optimized LAPACK-based routines, but they do
not address the variable sizes, extended functionality, portability and device-
specific redesigns of the LAPACK algorithms. Our work shows the potential
of addressing these issues, e.g., as illustrated in this paper by a 3× speedup
compared to the batch-optimized QR in CUBLAS.

Batched LA ideas can be applied to multicore CPUs as well. Indeed, small
problems can be solved efficiently on a single core, e.g., using vendor supplied
libraries such as MKL [23] or ACML [4], because the CPU’s memory hierarchy
would back a “natural” data reuse (small enough problems can fit into small fast
memory). To further speedup the computation, beyond memory reuse, vector-
ization can be added to use SIMD supplementary processor instructions—either
explicitly as in the Intel Small Matrix Library [22], or implicitly through the
vectorization in BLAS. Batched factorizations can then be efficiently computed
for multicore CPUs by having a single core factorize a single problem at a time.
However, as we will show in this paper, the energy consumption is higher than
the GPU-based factorizations, and our GPU-based routine is about 2 times faster
than the multicore implementation.

Despite the lack of support for batched operations, application developers
implemented particular routines for certain cases, trying various approaches.
For example, when targeting very small problems (matrix sizes up to 128), Villa
et al. [37,38] obtained good results for batched LU developed entirely for GPU
execution, where a single CUDA thread, or a single thread block, was used
to solve one system at a time. Similar techniques, including the use of a single
CUDA thread warp for single factorization, were investigated by Wainwright [43]
for LU with full pivoting on matrix sizes up to 32. Although the problems con-
sidered were often small enough to fit in the GPU’s shared memory, e.g., 48 KB
on a K40 GPU, and thus able to benefit from data reuse, the results showed
that the performance in these approaches, up to about 20 Gflop/s in double
precision, did not exceed the performance of memory bound kernels like gemv
(which achieves up to 46 Gflop/s on a K40 GPU). Batched-specific algorithmic
improvements were introduced for the Cholesky factorization [9] and the LU fac-
torization [8,17], that exceed the memory bound limitations mentioned above in

A Framework for Batched and GPU-Resident Factorization Algorithms 35

terms of performance. Here we further develop and conceptualize an approach,
based on batched BLAS plus a number of batched-specific algorithmic innova-
tions to significantly improve in performance the previously published results on
batched linear algebra.

3 Methodology and Algorithmic Design

In a number of research papers [8,9,19], we have shown that high-performance
batched algorithms can be designed so that the computation is performed by calls
to batched BLAS kernels, to the extent possible by the current BLAS API. This
is important since the use of BLAS has been crucial for the high-performance
sustainability of major numerical libraries for decades, and therefore we can also
leverage the lessons learned from that success. To enable the effective use of a
batched BLAS based approach, there is a need to develop highly efficient and
optimized batched BLAS routines that are needed by many high-level linear
algebra algorithms such as Cholesky, LU, and QR, either in batched or classical
fashion.

LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

TRSMs, QRs, or LUs

TRSMs, TRMMs

Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization Batched LA

And many other BLAS/LAPACK, e.g., for application
specific solvers, preconditioners, and matrices

Fig. 2. Direct sparse or dense factorizations—a DAG approach that needs efficient com-
putation of many small linear algebra tasks. Thin DAG edges represent data dependen-
cies among individual small tasks and if small data-parallel tasks are grouped together
in batches, the thick edges represent dependencies among the resulting batched tasks.

To put the proposed methodology in context, Fig. 2 illustrates our work on
direct linear system solvers, be it sparse or dense, for many-core heterogeneous
architectures. To provide parallelism in these solvers, the computation can be
expressed as a Directed Acyclic Graph (DAG) of small tasks with labeled edges
designating data dependencies, which naturally leads to the need to handle many
small LA problems in parallel. Our work with vendors (through vendor recogni-
tion centers), collaborators (from the HPC community), and application devel-
opers has resulted in the accumulation of expertise, technologies, and numerical
software [1,3,6,7,12,15,27,30–32,40–42,42] that can be directly leveraged in the
development of state-of-the-art, portable, cross-platform batched BLAS. The
objective of our methodology is to minimize the development effort and have
a parametrized kernels that can be used for tuning on different architectures
without the need to re-implement the kernel.

36 A. Haidar et al.

3.1 Algorithmic Baseline

The QR factorization of an m-by-n matrix A is of the form A = QR, where Q
is an m-by-m orthonormal matrix, and R is an m-by-n upper-triangular matrix.
The LAPACK routine GEQRF implements a right-looking QR factorization algo-
rithm, whose first step consists of the following two phases:

1) Panel factorization: The first panel A:,1 is transformed into an upper-
triangular matrix.
1. GEQR2 computes an m-by-m Householder matrix H1 such that HT

1 A:,1 =(
R1,1

0

)
, and R1,1 is an nb-by-nb upper-triangular matrix.

2. LARFT computes a block representation of the transformation H1, i.e.,
H1 = I −V1T1V

H
1 , where V1 is an m-by-nb matrix and T1 is an nb-by-nb

upper-triangular matrix.
2) Trailing submatrix update: LARFB applies the transformation computed

by GEQR2 and LARFT to the submatrix A:,2:nt
:

(
R1,2:nt

Â

)
:= (I − V1T1V

H
1)

(
A1,2:nt

A2:mt,2:nt

)
.

Then, the QR factorization of A is computed by recursively applying the same
transformation to the submatrix Â. The transformations Vj are stored in the
lower-triangular part of A, while R is stored in the upper-triangular part. Addi-
tional m-by-nb storage is required to store Tj .

3.2 Optimized and Parametrized Batched BLAS Kernels

We developed the most needed and performance-critical Level 3 and Level 2
batched BLAS routines. Namely, we developed the batched gemm (general
matrix-matrix multiplication), trsm (triangular matrix solver), and gemv (gen-
eral matrix-vector product) routines, as well as a number of Level 1 BLAS such
as the dot product, the norm functionality, and the scal scaling routine. There
are a number of feasible design choices for batched BLAS, each best suited for a
particular case. Therefore, to capture as many of them as possible, we designed
a space for batched BLAS that includes parametrized algorithms enabling an
ease of tuning for modern and future hardware and take into account the matrix
size. Thus, a parametrized-tuned approach can find the optimal implementation
within the confines of the said design space.

We developed a parametrized basic kernel, that uses multiple levels of block-
ing, including shared memory and register blocking, as well as double buffering
techniques to hide the data communication with the computation. This ker-
nel allowed us to optimize and tune the MAGMA gemm routine for large matrix
sizes — originally for Fermi GPUs [32], and later for the Kepler GPUs. Recently,
we extended it to a batched gemm [18,19], and it is now available through
MAGMA 1.6.1 [21]. The extension was done by autotuning the basic kernel
and adding one more thread dimension to account for the batch count. Our goal

A Framework for Batched and GPU-Resident Factorization Algorithms 37

is to develop optimized components that can be used easily as a plug-in device
routine to provide many of the Level 3 and Level 2 BLAS routines. Following the
techniques for batched gemm for example, we developed a batched trsm kernel.
It consists of a sequence of calls to invert a 16 × 16 diagonal block followed by
a call to the gemm components which are already optimized and tuned.

Moreover, we developed the batched equivalent of LAPACK’s geqr2 routine
to perform the Householder panel factorizations. For a panel of nb columns,
it consists of nb steps where each step calls a sequence of the larfg and the
larf routines. At every step (to compute one column), the larfg involves a norm
computation followed by a scal that uses the results of the norm computation
in addition to some underflow/overflow checking. These Level 1 BLAS kernels
have been developed as device component routines to all for easy plug-in when
needed. The norm computation is a sum reduce and thus a synchronization
step. To accelerate it, we implemented a two-layer tree reduction where, for
sizes larger than 32, all 32 threads of a warp progress to do a tree reduction
similar to the MPI REDUCE operation, and the last 32 elements are reduced
by a single thread. Our parametrized technique lets us run our autotuner and
tune these kernels. As a result, custom batched implementations of both larfg
and the larf have been developed. When the panel size is small enough, we use
the shared memory to load the whole panel and to perform its computation in
fast memory. For larger panel sizes, we load only the vector that is annihilated at
each step, meaning that the norm, scal, and thus the larfg computation operate
on data in shared memory; the larf reads data from shared memory, but writes
data in main memory since it cannot fit into the shared memory. When the panel
is very large, the BLAS kernel operates using many thread-blocks and an atomic
synchronization.

3.3 Development of Batched LAPACK Algorithms

The development of batched LAPACK algorithms and implementations is our
main example of how to use the batched BLAS for higher-level algorithms.
We show an approach based on batched BLAS and batched-specific algorith-
mic improvements that overcomes the memory bound limitations that previous
developers had on small problems. Moreover, we exceed the performance of even
state-of-the-art vendor implementations by up to 3×. Similarly to the batched
BLAS, we build a design space for batched LAPACK that includes parametrized
algorithms that are architecture and matrix size aware. An autotuning approach
is used to find the best implementation within the provisioned design space.

We developed the performance-critical LAPACK routines to solve small dense
linear systems or least squares problems. Namely, we developed the LU and
Cholesky factorizations previously in [8,9,19], and we present our progress and
development for the QR decomposition in this paper.

We developed technologies for deriving high-performance from GPU-only
implementations to solve sets of small linear algebra problems (as in LAPACK)
in parallel. Note that GPU-only implementations have been avoided up until
recently in numerical libraries, especially for small and difficult to parallelize

38 A. Haidar et al.

tasks like the ones targeted by the batched factorization. Indeed, hybridiza-
tion approaches were at the forefront of developing large scale solvers as they
were successfully resolving the problem by using CPUs for the memory bound
tasks [2,11,16,40,44]. For large problems, the panel factorizations (the source
of memory bound, not easy to parallelize tasks) are always performed on the
CPU. For small problems, however, this is not possible, and our experience has
shown that hybrid algorithms would not be as efficient as they are for large prob-
lems. Therefore, we developed an approach based on a combination of 1) batched
BLAS, 2) batched-specific, and 3) architecture-aware algorithmic improvements.
Batched-specific algorithms that were different from LAPACK were needed since
we could not outperform the NVIDIA-optimized LAPACK-based implementa-
tion by only using our own aggressive optimizations on top of the standard
LAPACK algorithm. In particular, for our QR decomposition, besides high-
performance batched BLAS, we also used batch-specific and architecture-aware
algorithmic advances described below.

Recursive Multilevel Nested Blocking. The panel factorizations (geqr2)
described above factorize the nb columns one after another, similarly to the
LAPACK algorithm. At each of the nb steps, a rank-1 update is required to
update the vectors to the right of the factorized column i. This operation is
done by the larf kernel. Since we cannot load the entire panel into the shared
memory of the GPU, the columns to the right are loaded back and forth from
the main memory at every step except for the very small size cases (e.g., size
less than 32 × 8). Thus, one can expect that this is the most time consuming
part of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [33] shows that a large fraction
of even a highly optimized batched factorization is spent in the panels, e.g., 40%
of the time for the QR decomposition. The profiler reveals that the larf kernel
requires more than 75% of the panel time by itself. The inefficient behavior of
these routines is also due to the memory access. To resolve this challenge, we
propose to improve the efficiency of the panel and to reduce the memory access
by using a two-level nested blocking technique as depicted in Fig. 3. First, we
recursively split the panel to an acceptable block size nb as described in Fig. 3. In
principle, the panel can be blocked recursively until a single element remains. Yet,
in practice, 2-3 blocked levels (an nb = 32 for double precision was the best) are
sufficient to achieve high performance. Then, the routine that performs the panel
factorization (geqr2) must be optimized, which complicates the implementation.
This optimization can bring between 30% to 40% improvement depending on the
panel and the matrix size. In order to reach our optimization goal, we also blocked
the panel routine using the classical blocking fashion to small blocks of size ib
(ib = 8 was the optimized choice for double precision) as described in Fig. 3b.
More than a 25% boost in performance is obtained with this optimization.

Block Recursive dlarft Algorithm. The larft is used to compute the upper
triangular matrix T that is needed by the QR factorization in order to update
either the trailing matrix or the right hand side of the recursive portion of the

A Framework for Batched and GPU-Resident Factorization Algorithms 39

P
a
n
e
L

Trailing
matrix
update

sub panel 1a

Factored part of A

128

sub trailing m
atrix 1b

sub trailing m
atrix 2b

sub panel 2a

64

32 32

p

sub trailing m
atrix 1b

64

(a) Recursive nested blocking fashion.

P
a
n
e
L

3232

done

sub trailing m
atrix

d

sub

8

dd b
ubb

sub trailing m
atrix

sub panel

8

sub panel

done

done

don ne

sub panel
8

8

(b) Classical blocking fashion.

sub trailing m
atrix

Fig. 3. The recursive two-level nested blocking fashion is used in our implementation
to achieve high-performance batched kernels.

QR panel. The classical LAPACK computes T column by column in a loop
over the nb columns as described in Algorithm 1. Such an implementation takes
up to 50% of the total QR factorization time. This is due to the fact that the
kernels needed – gemv and trmv – require implementations where threads go
through the matrix in different directions (horizontal vs. vertical, respectively).
An analysis of the mathematical formula of computing T allowed us to redesign
the algorithm to use Level 3 BLAS and to increase the data reuse by putting
the column of T in shared memory. One can observe that the loop can be split
into two loops – one for gemv and one for trmv. The gemv loop that computes
each column of T̂ (see the notation in Algorithm 1 can be replaced by one gemm

to compute all the columns of T̂ if the triangular upper portion of A is zero
and the diagonal is made of ones. For our implementation, replacing a gemv
loop with one gemm is already done for the trailing matrix update in the larfb
routine, and thus can be exploited here as well. For the trmv phase, we load the
T matrix into shared memory as this allows all threads to read/write from/into
shared memory during the nb steps of the loop. The redesign of this routine
is depicted in Algorithm 2. Since we developed a recursive blocking algorithm,
we must compute the T matrix for every level of the recursion. Nevertheless,
the analysis of Algorithm 2 leads us to conclude that the portion of the T ’s
computed in the lower recursion level are the same as the diagonal blocks of the
T of the upper level (yellow diagonal blocks in Fig. 4), and thus we can avoid
their (re-)computation. For that we modified Algorithm 2 in order to compute
either the whole T or the upper rectangular portion that is missed (red/yellow
portions in Fig. 4). Redesigning the algorithm to block the computation using
Level 3 BLAS accelerated the overall algorithm on average by about 20 − 30%
(depending on various parameters).

Trading Extra Computation for Higher Performance. The goal here is
to replace the use of low performance kernels with higher performance ones—
often for the cost of more flops, e.g., trmm used by the larfb can be replaced by

40 A. Haidar et al.

for j ∈ {1, 2, . . . , nb} do

dgemv to compute ̂T1:j−1,j = AH
j:m,1:j−1 × Aj:m,j

dtrmv to compute T1:j−1,j = T1:j−1,1:j−1 × ̂T1:j−1,j

T (j, j) = tau(j)

Algorithm 1. Classical implementation of the dlarft routine.

dgemm to compute ̂T1:nb,1:nb = AH
1:m,1:nb × A1:m,1:nb

load ̂T1:nb,1:nb to the shared memory. for j ∈ {1, 2, . . . , nb} do

dtrmv to compute T1:j−1,j = T1:j−1,1:j−1 × ̂T1:j−1,j

T (j, j) = tau(j)

write back T to the main memory.

Algorithm 2. Block recursive dlarft routine.

gemm. The QR trailing matrix update uses the larfb routine to perform A =
(I −V THV H)A. The upper triangle of V is zero with ones on the diagonal, and
also the matrix T is upper triangular. The classical larfb uses trmm to perform
the multiplication with T and with the upper portion of V . If one can guarantee
that the lower portion of T is filled with zeroes and the upper portion of V is
filled with zeros and ones on the diagonal, then the trmm can be replaced by
gemm. Thus we implemented a batched larfb that uses three gemm kernels by
initializing the lower portion of T with zeros, and filling up the upper portion
of V with zeroes and ones on the diagonal. Note that this brings 3nb3 extra
operations. The benefits again depend on various parameters, but on current
architectures we observe an average of 10% improvement, and see a trend where
its effect on the acceleration grows from older to newer systems.

4 Performance Results

4.1 Hardware Description and Setup

We conducted our experiments on a two-socket multicore system with two 8-core
Intel Xeon E5-2670 (Sandy Bridge) processors, each running at 2.6 GHz. Each
socket has 20 MiB of shared Level 3 cache, and each core has a private 256 KiB
Level 2 and 64 KiB Level 1 cache. The system is equipped with the total of 52 GiB
of main memory and a theoretical peak, in double precision, of 20.8 Gflop/s per
core, i.e., 332.8 Glop/s in total for the two sockets. It is also equipped with
three NVIDIA K40c cards with 11.6 GiB of GDDR memory per card running at
825 MHz. The theoretical peak in double precision is 1, 689.6 Gflop/s per GPU.
The cards are connected to the host via two PCIe I/O hubs with 6 GB/s band-
width. A number of software packages were used for the experiments. On the
CPU side, we used MKL (Math Kernel Library) [23] with the icc compiler (ver-
sion 2013.sp1.2.144) and on the GPU accelerator we used CUDA version 6.5.14.

A Framework for Batched and GPU-Resident Factorization Algorithms 41

level 2

level 3

level 1

Fig. 4. The shape of the matrix T for different level of the recursion during the QR
decomposition.

Regarding energy use, we note that in this particular setup the CPU and the
GPU have about the same theoretical power draw. In particular, the Thermal
Design Power (TDP) of the Intel Sandy Bridge is 115 W per socket, or 230 W
in total, while the TDP of the K40c GPU is 235 W. Therefore, we expect that a
GPU would have a power consumption advantage if it outperforms (in terms of
time to solution) the 16 Sandy Bridge cores. Note that, based on the theoretical
peaks, the GPU’s advantage should be about 4 to 5×. This is observed in practice
as well, especially for regular workloads on large data-parallel problems that can
be efficiently implemented for GPUs.

4.2 Performance Results

Getting high performance across accelerators remains a challenging problem that
we address with the algorithmic and programming techniques described in this
paper. These efficient strategies are used to exploit parallelism and increase the
use of Level 3 BLAS operations across the GPU. We highlighted this through a
set of experiments that we performed on our system. We compare our batched
implementations with the dgeqrfBatched routine from the CUBLAS [35] library.
Our experiments were performed on batches of 1, 000 matrices of different sizes
ranging from 32 × 32 to 1024 × 1024.

We also compare our batched QR to two CPU implementations. First is the
simple CPU implementation which operates in a loop style to factorize matrix
after matrix, where each factorization is using the multi-thread version of the
MKL Library. This implementation is limited in terms of performance and does
not achieve more than 90 Gflop/s. The main reason for this low performance is
the fact that the matrix is small – it does not exhibit parallelism and so the
multithreaded code is not able to feed work to all 16 threads used. For that we

42 A. Haidar et al.

32 64 128 256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

matrix size

G
fl

o
p

/s

Batched dgeqrf count = 1000

GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

Fig. 5. Performance in Gflops/s of the GPU vs. the CPU versions of our batched QR
decomposition for different matrix sizes, where m = n.

proposed another version of the CPU implementation. Since the matrices are
small (< 1024) and at least 16 of them fit in the Level 3 cache, one of the best
techniques is to use each thread to independently factorize a matrix. This way
16 factorizations are conducted independently, in parallel. We believe that this
implementation is one of the best optimized implementations for the CPU. This
later implementation is 2× faster than the simple implementation. It reaches
around 160 Gflop/s in factorizing 1, 000 matrices of size 1024 × 1024.

The progress of our batched QR implementation over the various optimiza-
tions shows promise. For a 1000 matrix of size 512×512 each, the classical block
implementation does not attain more than 55 Gflop/s. The inner panel blocking
allows for performance of around 70 Gflop/s; and the recursive blocking alone
improves performance up to 108 Gflop/s; combined, the two-level blocking brings
performance up to around 136 Gflop/s. The optimized computation of T draws
it up to 195 Gflop/s. The other optimizations (replacing dtrmm with dgemm in
both dlarft and dlarfb), combined with the streamed/batched dgemm calls, bring
the performance of the GPU implementation to around 221 Gflop/s. Despite
the CPU’s hierarchical memory advantage, our experiments show that our GPU
batched QR factorization is able to achieve a speedup of 2× vs. the best CPU
implementation using 16 Sandy Bridge cores, and 4× vs. the simple one. More-
over, our algorithm — which reaches around 334 Gflop/s for matrices of size
1024 × 1024 — is between 5× to 20× faster than the CUBLAS implementation
for matrices in the range of 512 to 1024. We should mention that the CUBLAS
implementation is well suited for very small matrices such as matrices of size
less than 64 × 64. The performance of CUBLAS for these sizes outperforms our
proposed algorithm as well as both of the CPU implementations Fig. 5.

A Framework for Batched and GPU-Resident Factorization Algorithms 43

4.3 Energy Efficiency

For our energy efficiency measurements, we use power and energy estimators
built into the modern hardware platforms. In particular, on the tested CPU, the
Intel Xeon E5-2690, we use RAPL (Runtime Average Power Limiting) hardware
counters [24,39]. By the vendor’s own admission, the reported power/energy
numbers are based on a model which is tuned to match the actual measurements
for various workloads. Given this caveat, we can report that the idle power of the
tested Sandy Bridge CPU, running at a fixed frequency of 2600 MHz, consumes
about 20 W of power per socket. Batched operations raise the consumption from
125 to 140 W per socket, and the large dense matrix operations, which reach the
highest fraction of the peak performance, raise the power draw to about 160 W
per socket. We should mention that the CPU measurements do not include the
power cost of the memory access, while the GPU measurements include it. In
order to include the power for the CPU, we had to change in the BIOS and
we were not allowed to do it on our testing machine. However, results on other
systems showed that the power of the CPU memory access can be estimated to be
40 W on average. On some systems, energy consumption numbers do not include
the power consumed by the main memory as the memory modules do not report
their voltage levels to the CPU’s memory controller on those systems, which
renders RAPL ineffective for the purpose of estimating temporal power draw.
However, based on estimates from similarly configured systems, we estimate that
the power consumption for the main memory under load is between 30 W and
40 W, depending on the memory size and configuration.

For the GPU measurements we use NVIDIA’s NVML (NVIDIA Manage-
ment Library) library [34]. NVML provides a C-based programmatic interface
for monitoring and managing various states within NVIDIA Tesla GPUs. On
Fermi and Kepler GPUs (like the K40c used) the readings are reported to be
accurate to within +/-5% of current power draw. The idle state of the K40c
GPU consumes about 20 W. Batched factorizations raise the consumption from
150 to 180 W, while large dense matrix operations raise the power draw to about
200 W. For reference, it is worth noting that the active idle state draws 62 W.

In Fig. 6 we depict the comparison of the power consumption required by the
three implementations of the batched QR decomposition: the best GPU and the
two CPU implementations. The problem solved here is about 1, 000 matrices of
size 1024 × 1024 each. The green curve shows the power required by the simple
CPU implementation. In this case the batched QR proceeds as a loop over the
1, 000 matrices where each matrix is factorized using the multithreaded dgeqrf
routine from the Intel MKL library on the 16 Sandy Bridge CPU cores. The
blue curve shows the power required by the optimized CPU implementation.
Here, the code proceeds with sweeps of 16 parallel factorizations each using the
sequential dgeqrf routine form the Intel MKL library. The red curve shows the
power consumption of our GPU implementation of the batched QR decompo-
sition. One can observe that the GPU implementation is attractive because it
is around 2× faster than the optimized CPU implementation, and moreover,
because it consumes 3× less energy.

44 A. Haidar et al.

Fig. 6. Comparison of the power consumption for the QR decomposition of 1, 000
matrices of size 1024 × 1024.

According to the experiments we conducted to measure the power, we found
that the GPU implementations of all of the batched one-sided factorizations
reach around 2× speedup over their best CPU counterpart and are 3× less
expensive in terms of energy consumption.

5 Conclusions an Future Work

Designing algorithms to work on small problems is a concept that can deliver
higher performance through improved data reuse. Many applications have relied
on this design concept to get higher hardware efficiency, and users have requested
it as a supported functionality in linear algebra libraries. Besides having the
potential to improve the overall performance of applications with computational
patterns ranging from dense to sparse linear algebra, developing these algorithms
for the new low-powered and power-efficient architectures can bring significant
savings in energy consumption as well, as we showed. Therefore, by solving the
technical issues and providing the needed batched LA tools, the future devel-
opment on the framework presented will also address the following long term
goals: 1) define a new standard for the use of small matrix computations in
applications; 2) provide a methodology to solve many small size LA problems
and an initial implementation that is portable at all levels of the platform pyra-
mid, from embedded devices to supercomputers; and 3) establish grounds for the
next generation of innovations in HPC applications and sustainability of high-
performance numerical libraries. The algorithms described are already available

A Framework for Batched and GPU-Resident Factorization Algorithms 45

in the open-source MAGMA library. The proposed framework and the algorithms
to be developed for batched linear algebra will be open for input and contribu-
tions from the community, similar to LAPACK, and will be incorporated into
the MAGMA Batched library.

Future work extensions include building batched sparse, and application-
specific batched linear algebra capabilities. Of specific interest will be the effect
of the batched framework on high-performance numerical libraries and run-time
systems. Current approaches, e.g., in dense tiled algorithms, are based on split-
ting algorithms into small tasks that get inserted into, and scheduled for exe-
cution by, a run-time system. This often amounts to splitting large gemms into
many small gemms, which is known to encounter overheads for scheduling and
saving parameters (although most are the same). The batched approach, besides
providing high performance for small tasks, will be a natural fit to extend these
and similar libraries, as well as provide a new hierarchical scheduling model for
queuing jobs, organizing run-time systems, and interacting with accelerators/co-
processors.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. ACI-1339822, the Department of Energy, and
Intel. The results were obtained in part with the financial support of the Russian
Scientific Fund, Agreement N14-11-00190.

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1), 012037 (2009)

2. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Thibault, S.,
Tomov, S.: Faster, cheaper, better - a hybridization methodology to develop linear
algebra software for GPUS. In: Hwu, W.W. (ed.) GPU Computing Gems. Morgan
Kaufmann, California (2010)

3. Agullo, E., Dongarra, J., Nath, R.,Tomov, S.: Fully empirical autotuned qr factor-
ization for multicore architectures (2011). CoRR, abs/1102.5328

4. ACML - AMD Core Math Library (2014). http://developer.amd.com/
tools-and-sdks/cpu-development/amd-core-math-library-acml

5. Anderson, M.J., Sheffield, D., Keutzer. K.: A predictive model for solving small
linear algebra problems in gpu registers. In: IEEE 26th International Parallel Dis-
tributed Processing Symposium (IPDPS) (2012)

6. Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Luszczek, P., Tomov, S.: The
impact of multicore on math software. In: K̊agström, B., Elmroth, E., Dongarra, J.,
Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 1–10. Springer, Heidelberg
(2007)

7. Cao, C., Dongarra, J., Du, P., Gates, M., Luszczek, P., Tomov, S.: clMAGMA:
high performance dense linear algebra with OpenCL. In: The ACM International
Conference Series, Atlanta, May 13–14 (2013). (submitted)

8. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU
factorization of small matrices: accelerating batched DGETRF on the GPU. In:
Proceedings of 16th IEEE International Conference on High Performance and Com-
munications (HPCC 2014), August 2014

http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml
http://developer.amd.com/tools-and-sdks/cpu-development/amd-core-math-library-acml

46 A. Haidar et al.

9. Dong, T., Haidar, A., Tomov, S., Dongarra, J.: A fast batched cholesky factor-
ization on a GPU. In: Proceedings of 2014 International Conference on Parallel
Processing (ICPP-2014), September 2014

10. Dong, T., Dobrev, V., Kolev, T., Rieben, R., Tomov, S., Dongarra, J.: A step
towards energy efficient computing: redesigning a hydrodynamic application on
CPU-GPU. In: IEEE 28th International Parallel Distributed Processing Sympo-
sium (IPDPS) (2014)

11. Dongarra, J., Haidar, A., Kurzak, J., Luszczek, P., Tomov, S., YarKhan, A.:
Model-driven one-sided factorizations on multicore accelerated systems. Int.
J.Supercomputing Frontiers Innovations 1(1), 85 (2014)

12. Peng, D., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: towards a performance-portable solution for multi-platform
GPU programming. Parallel Comput. 38(8), 391–407 (2012)

13. Oak Ridge Leadership Computing Facility. Annual report 2013–2014 (2014).
https://www.olcf.ornl.gov/wp-content/uploads/2015/01/AR 2014 Small.pdf

14. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988)

15. Haidar, A., Tomov, S., Dongarra, J., Solca, R., Schulthess, T.: A novel hybrid
CPU-GPU generalized eigensolver for electronic structure calculations based on
fine grained memory aware tasks. Int. J. High Perform. Comput. Appl. 28(2),
196–209 (2012)

16. Haidar, A., Cao, C., Yarkhan, A., Luszczek, P., Tomov, S., Kabir, K., Dongarra,
J.: Unified development for mixed multi-gpu and multi-coprocessor environments
using a lightweight runtime environment. In: IPDPS 2014 Proceedings of the 2014
IEEE 28th International Parallel and Distributed Processing Symposium, pp. 491–
500. IEEE Computer Society, Washington, (2014)

17. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix com-
putations on hardware accelerators based on GPUs. Int. J. High Performance Com-
put. Appl. 18(1), 135–158 (2015). doi:10.1177/1094342014567546

18. Haidar, A., Luszczek, P., Tomov, S., Dongarra, J.: Optimization for performance
and energy for batched matrix computations on GPUs. In: PPoPP 2015 8th Work-
shop on General Purpose Processing Using GPUs (GPGPU 8) co-located with
PPOPP 2015, ACM, San Francisco, February 2015

19. Haidar, A., Luszczek, P., Tomov, S., Dongarra, J.: Towards batched linear solvers
on accelerated hardware platforms. In: PPoPP 2015 Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM,
San Francisco, February 2015

20. Im, E.-J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse matrix
kernels. Int. J. High Perform. Comput. Appl. 18(1), 135–158 (2004)

21. Matrix algebra on GPU and multicore architectures (MAGMA), MAGMA Release
1.6.1 (2015). http://icl.cs.utk.edu/magma/

22. Intel Pentium III Processor - Small Matrix Library (1999). http://www.intel.com/
design/pentiumiii/sml/

23. Intel Math Kernel Library (2014). http://software.intel.com/intel-mkl/
24. Intel 64 and IA-32 architectures software developer’s manual, July 20 (2014).

http://download.intel.com/products/processor/manual/
25. Keyes, D., Taylor, V.: NSF-ACCI task force on software for science and engineering,

December 2010
26. Liao, J.C., Khodayari, A., Zomorrodi, A.R., Maranas, C.D.: A kinetic model of

escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab.
Eng. 25C, 50–62 (2014)

https://www.olcf.ornl.gov/wp-content/uploads/2015/01/AR_2014_Small.pdf
http://dx.doi.org/10.1177/1094342014567546
http://icl.cs.utk.edu/magma/
http://www.intel.com/design/pentiumiii/sml/
http://www.intel.com/design/pentiumiii/sml/
http://software.intel.com/intel-mkl/
http://download.intel.com/products/processor/manual/

A Framework for Batched and GPU-Resident Factorization Algorithms 47

27. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for GPUs. In: Allen,
G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009, Part I. LNCS, vol. 5544, pp. 884–892. Springer, Heidelberg (2009)

28. Messer, O.E.B., Harris, J.A., Parete-Koon, S., Chertkow, M.A.: Multicore and
accelerator development for a leadership-class stellar astrophysics code. In: Manni-
nen, P., Öster, P. (eds.) PARA. LNCS, vol. 7782, pp. 92–106. Springer, Heidelberg
(2013)

29. Molero, J.M., Garzón, E.M., Garćıa, I., Quintana-Ort́ı, E.S, Plaza, A.: Poster: a
batched Cholesky solver for local RX anomaly detection on GPUs. In: PUMPS
(2013)

30. Nath, R., Tomov,S., Dong, T., Dongarra, T.: Optimizing symmetric dense matrix-
vectormultiplication on GPUs. In: Proceedings of 2011 International Conference
for High PerformanceComputing, Networking, Storage and Analysis, November
2011

31. Nath, R., Tomov, S., Dongarra, T.: Accelerating GPU kernels for dense linear
algebra. In: VECPAR 2010 Proceedings of the 2009 International Meeting on High
Performance Computing for Computational Science, pp. 22–25. Springer, Berkeley,
June 2010

32. Nath, R., Tomov, S., Dongarra, J.: An improved magma gemm for fermi graphics
processing units. Int. J. High Perform. Comput. Appl. 24(4), 511–515 (2010)

33. Nvidia visual profiler
34. https://developer.nvidia.com/nvidia-management-library-nvml (2014)
35. CUBLAS (2014). http://docs.nvidia.com/cuda/cublas/
36. CUBLAS 6.5, January 2015. http://docs.nvidia.com/cuda/cublas/
37. Villa, O., Fatica, M., Gawande, N., Tumeo, A.: Power/performance trade-offs of

small batched LU based solvers on GPUs. In: Wolf, F., Mohr, B., an Mey, D. (eds.)
Euro-Par 2013. LNCS, vol. 8097, pp. 813–825. Springer, Heidelberg (2013)

38. Nitin, V.O., Gawande, A., Tumeo, A.: Accelerating subsurface transport simu-
lation on heterogeneous clusters. In: IEEE International Conference on Cluster
Computing (CLUSTER 2013), pp. 23–27, Indiana, September 2013

39. Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power-
management architecture of the intel microarchitecture code-named sandy bridge.
IEEE Micro. 32(2), 20–27 (2012). doi:10.1109/MM.2012.12. ISSN: 0272–1732

40. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
gpu accelerated manycore systems. Parellel Comput. Syst. Appl. 36(5–6), 232–240
(2010). doi:10.1016/j.parco.2009.12.005

41. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for
multicore with GPU accelerators. In: Proceedings of the IEEE IPDPS 2010, pp.
1–8. IEEE Computer Society, Atlanta, 19–23 April 2010. doi:10.1109/IPDPSW.
2010.5470941

42. Tomov, S., Dongarra, J.: Dense linear algebra for hybrid gpu-based systems. In:
Kurzak, J., Bader, D.A., Dongarra, J. (eds.) Scientific Computing with Multicore
and Accelerators. Chapman and Hall/CRC, UK (2010)

43. Wainwright, I .: Optimized LU-decomposition with full pivot for small batched
matrices, GTC 2013 - ID S3069. April 2013

44. Yamazaki, I., Tomov, S., Dongarra, J.: One-sided dense matrix factorizations on
a multicore with multiple GPU accelerators. In: Proceedings of the International
Conference on Computational Science, ICCS 2012, pp. 37–46. Procedia Computer
Science, 9(0):37 (2012)

45. Yeralan, S.N., Davis, T.A., Ranka, S.: Sparse mulitfrontal QR on the GPU. Tech-
nical report, University of Florida Technical report (2013)

https://developer.nvidia.com/nvidia-management-library-nvml
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cublas/
http://dx.doi.org/10.1109/MM.2012.12
http://dx.doi.org/10.1016/j.parco.2009.12.005
http://dx.doi.org/10.1109/IPDPSW.2010.5470941
http://dx.doi.org/10.1109/IPDPSW.2010.5470941

	A Framework for Batched and GPU-Resident Factorization Algorithms Applied to Block Householder Transformations
	1 Introduction
	2 Related Work
	3 Methodology and Algorithmic Design
	3.1 Algorithmic Baseline
	3.2 Optimized and Parametrized Batched BLAS Kernels
	3.3 Development of Batched LAPACK Algorithms

	4 Performance Results
	4.1 Hardware Description and Setup
	4.2 Performance Results
	4.3 Energy Efficiency

	5 Conclusions an Future Work
	References

