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Abstract. While an input/output (I/O) interface’s syntax describes
the available operations, its semantics determines how these operations
behave and which assumptions developers can make about them. There
are several different interface standards in existence, some of them dating
back decades and having been designed for local file systems; one such
representative is POSIX. Many parallel distributed file systems imple-
ment a POSIX-compliant interface to improve portability. All currently
available interfaces follow a fixed approach regarding semantics, mak-
ing them only suitable for a subset of use cases and workloads. While
the interfaces do not allow application developers to influence the I/O
semantics, applications could benefit greatly from the possibility of being
able to adapt them to their requirements.

The work presented in this paper includes the design of a novel
I/O interface and a file system called JULEA. They offer support for
dynamically adaptable semantics and are suited specifically for HPC
applications. The introduced concept allows applications to adapt the
file system behavior to their exact I/O requirements instead of the other
way around. The general goal is an interface that allows developers to
specify what operations should do and how they should behave – leaving
the actual realization and possible optimizations to the underlying file
system.

JULEA has been evaluated using both synthetic benchmarks and
real-world applications. Overall, JULEA provides data and metadata
performance comparable to that of other established parallel distributed
file systems. However, in contrast to the existing solutions, its flexible
semantics allows it to cover a wider range of use cases in an efficient way.
The results demonstrate that there is need for I/O interfaces that can
adapt to the requirements of applications. Even though POSIX facili-
tates portability, it does not seem to be suited for contemporary HPC
demands.
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1 Introduction

Throughout their history, the computational power of supercomputers has been
increasing exponentially, doubling roughly every 14 months [20]. While this com-
putational power has allowed more accurate simulations to be performed, this
c© Springer International Publishing Switzerland 2015
J.M. Kunkel and T. Ludwig (Eds.): ISC High Performance 2015, LNCS 9137, pp. 240–256, 2015.
DOI: 10.1007/978-3-319-20119-1 18



Dynamically Adaptable I/O Semantics for High Performance Computing 241

has also caused the simulation results to grow in size. Due to the large amounts
of data produced by parallel applications, high performance I/O is an important
aspect because storing and retrieving such large amounts of data can greatly
affect the overall performance of these applications.

However, the I/O requirements of parallel applications can vary widely: While
some applications process large amounts of input data and produce relatively
small results, others might work using a small set of input data and output large
amounts of data; additionally, the aforementioned data can be spread across
many small files or be concentrated into few large files. Naturally, any combina-
tion thereof is also possible. These different requirements can make high demands
on supercomputers’ storage systems.

Parallel distributed file systems provide one or more I/O interfaces that can
be used to access data within the file system. Usually at least one of them is
standardized, while additional proprietary interfaces might offer improved per-
formance at the cost of portability. Popular interface choices include POSIX [9],
MPI-IO [16], HDF [19] and NetCDF [18]. Almost all the I/O interfaces found in
HPC today offer simple byte- or element-oriented access to data and thus do not
have any a priori information about what kind of data the applications access
and how the high-level access patterns look like. However, this information can
be very beneficial for optimizing the performance of I/O operations.

While the I/O interface defines which I/O operations are available, the I/O
semantics describes and defines the behavior of these operations. Usually each
I/O interface is accompanied by a set of I/O semantics, tailored to this spe-
cific interface. The POSIX I/O semantics is probably both the oldest and the
most widely used semantics, even in HPC. However, due to being designed for
traditional local file systems, it imposes unnecessary restrictions on today’s par-
allel distributed file systems. POSIX’s very strict consistency requirements that
require write operations to be propagated to all other clients immediately are one
of these restrictions and can lead to performance bottlenecks in distributed envi-
ronments [21]. Parallel distributed file systems often implement the strict POSIX
I/O semantics to accommodate applications that require it or simply expect it
to be available for portability reasons. However, this can lead to suboptimal
behavior for many use cases because its strictness is often not necessary. Even
though application developers usually know their applications’ requirements and
could easily specify them for improved performance, current I/O interfaces and
file systems do not provide appropriate facilities for this task.

Performing I/O efficiently is becoming an increasingly important problem.
CPU speed and HDD capacity have roughly increased by factors of 500 and
100 every 10 years, respectively [20,24]. The speed of HDDs, however, has only
grown by a factor of 10 every 10 years [23]; even newer technologies such as SSDs
only offer a factor of 18. Although it is theoretically possible to compensate
for this fact in the short term by simply buying more storage hardware, the
ever increasing gap between the exponentially growing processing power on the
one hand and the stagnating storage capacity and throughput on the other
hand, requires new approaches to use the storage infrastructure as efficiently as
possible.
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The goal of this paper is to explore the usefulness of additional semantical
information in the I/O interface. The JULEA framework introduces a newly
designed I/O interface featuring dynamically adaptable semantics that is suited
specifically for HPC applications. It allows application developers to specify the
semantics of I/O operations at runtime and supports batch operations to increase
performance. The overall goal is to allow the application developer to specify the
desired behavior and leave the actual realization to the I/O system.

This paper is structured as follows: The most important design aspects of
the JULEA I/O interface are elaborated in Sect. 2, focusing on the differences to
traditional I/O interfaces and file systems. Section 3 covers related work and com-
pares JULEA’s design with existing approaches. Section 4 contains an analysis of
the behavior of different file systems using synthetic benchmarks. A conclusion
and future work are given in Sect. 5.

2 Interface and File System Design

JULEA’s general architecture closely follows that of established parallel distrib-
uted file systems such as Lustre [5] and OrangeFS [4]. Machines can have one
or several of three different roles: client, data server or metadata server. While
it is possible to have a machine perform all three roles simultaneously, it is
recommended to separate the clients from the servers to provide stable perfor-
mance. JULEA supports multiple data and metadata servers and allows data
and metadata to be distributed among them; it is possible to influence the actual
distribution of data using distributions.

Metadata
Server

Data
Server

Client

Server Process Server Process
Application

JULEA

Fig. 1. JULEA’s file system components

A very brief general view of JULEA’s different components and their interac-
tions with each other are shown in Fig. 1. Applications are able to use JULEA’s
I/O interface that talks directly to the data and metadata servers by linking
against its client library libjulea.so; it abstracts all the internal details and
provides a convenient interface for developers. The metadata and data servers
run on dedicated machines with attached storage hardware. While the metadata
servers make use of the MongoDB database system, the data servers run a user
space daemon called julea-daemon that handles all I/O on behalf of the clients.

Figures 2a and b show a comparison of an exemplary HPC I/O stack and
the proposed JULEA I/O stack. In addition to the logical layers, the separation
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(a) HPC I/O stack (b) JULEA I/O stack

Fig. 2. Current HPC I/O stack and proposed JULEA I/O stack

between kernel and user space is shown. All kernel space layers are either imple-
mented directly inside the kernel or as kernel modules; the user space layers are
either normal applications or libraries. As can be seen, JULEA’s architecture
features less layers, which makes it easier to analyze the actual I/O behavior of
applications. It also allows concentrating all optimizations into a single layer,
reducing the implementation and runtime overhead.

The current I/O stack’s design results in several transformations of the data
as it is being transported through the different layers. The parallel application’s
data types are stored in NetCDF that in turn stores its data in HDF’s datasets
and groups. This data is then transformed into a byte stream for MPI-IO. It
then stores the data in the actual parallel distributed file system that splits up
the data and stripes it across its servers, potentially storing it in yet another
underlying local file system.

An important design goal of JULEA is to remove the duplication of func-
tionality found in the traditional HPC I/O stack. Because many distributed file
systems use an underlying local POSIX file system to store the actual data and
metadata, a lot of common file system functionality such as path lookup and per-
mission checking is duplicated. This can be achieved by completely eliminating
the underlying POSIX file systems and using suitable object stores.

Because it is often unreasonable to port applications to new and experimental
I/O interfaces due to their size and complexity, it makes sense to leverage a layer
providing compatibility for existing applications. ADIOS is an established I/O
interface and specifically allows implementing different backends. To minimize
the overhead, ADIOS could be used as a relatively thin layer on top of JULEA
to provide convenient access for application developers.

2.1 File System Namespace

Traditional file systems allow deeply nested directory structures. To avoid the over-
head caused by this, only a restricted and relatively flat hierarchical namespace is
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supported. While this approach might be unsuited for a general purpose file sys-
tem, JULEA is explicitly focused on specific use cases that are commonly found
in HPC. Therefore, JULEA is meant to be used in conjunction with traditional
file systems like NFS to provide other parts of the infrastructure such as the users’
home directories.

The file system namespace is divided into stores, collections, and items. Each
store can contain multiple collections that can, in turn, contain multiple items. In
traditional POSIX file systems, each component of the potentially deeply nested
path has to be checked for each access. This can seriously hamper performance,
especially for distributed file systems.

2.2 Interface

JULEA’s interface has been designed from scratch to offer simplicity of use while
still meeting the requirements of high performance and dynamically adaptable
semantics. Its functionality can be subdivided into five groups:

1. Batches: Multiple operations can be batched explicitly to improve perfor-
mance by reducing network overhead.

2. Distributions: It is possible to influence the distribution of data directly to
optimize its placement on the data servers if necessary.

3. Namespace: The file system namespace is accessible using a convenient
abstraction called uniform resource identifiers (URIs).

4. Semantics: JULEA’s semantics is dynamically adaptable according to the
applications’ I/O requirements.

5. Stores, Collections and Items: It is possible to create, remove, open and
iterate over all of JULEA’s file system objects.

All of the above functionality is available publicly and directly to developers. The
two most important features are the ability to specify semantical information and
to batch operations. Both approaches give the file system additional information
that can be used to optimize accesses. Due to their importance, these two features
will be explained in more detail; more information about the other ones can be
found in [13].

It is possible for developers and users to specify additional information equiv-
alent to the coarse-grained statement “this is a checkpoint” or the more fine-
grained “this operation requires strict consistency semantics”. This allows the file
system to tune operations for specific applications by itself. Additionally, devel-
opers are able to emulate well-established semantics as well as mixing different
semantics within one application.

Developers perform all accesses to the file systems via so-called batches. Each
batch can consist of multiple operations. It is also possible to combine different
kinds of operations within one batch. For instance, one batch might create a col-
lection and several items within it, and write data to each of the items. Because
the file system has knowledge about all operations within one batch, more elab-
orate optimizations can be performed.
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Traditional POSIX file systems can also try to aggregate multiple operations
to improve network utilization. However, this can only be done by caching these
operations in the client’s main memory for a given amount of time and then
performing these optimizations. Because the POSIX interface does not provide
enough information to make reliable decisions for these kinds of optimizations,
it is necessary to employ heuristics, resulting in suboptimal behavior for border-
line cases. Additionally, it is not possible to do this in all cases because it would
violate the POSIX semantics. Therefore, users can never be sure when exactly
operations are performed in such a system without calling synchronization func-
tions explicitly, which can be very expensive.1

To be able to easily overlap calculations and I/O, it is possible to execute
batches asynchronously. This support is offered natively by the I/O interface
without forcing developers to resort to using background threads or similar
techniques. The file system also exports additional information to enable perfor-
mance optimizations such as aligning data to the file system’s stripe size, which
is crucial for high performance [2].

2.3 Semantics

JULEA allows many aspects of the file system operations’ semantics to be
changed at runtime. Several key areas of the semantics have been identified
as important to provide opportunities for optimizations: atomicity, concurrency,
consistency, ordering, persistency and safety. Even though it is possible to mix
the settings for each of these semantics, not all combinations produce reasonable
results.

The atomicity semantics can be used to specify whether accesses should be
executed atomically, that is, whether or not it is possible for clients to see inter-
mediate states of operations. If atomicity is required, some kind of locking has
to be performed to prevent other clients from accessing data that is currently
being modified. The atomicity semantics is clearly performance-related. Atomic
accesses operating on the same data have to be serialized, which implies a per-
formance penalty. If atomicity is not required, all operations can be executed in
parallel.

The concurrency semantics can be used to specify whether concurrent accesses
will take place and, if so, how the access pattern will look like. Depending on
the level of concurrency, different algorithms might be appropriate for file sys-
tem operations such as locking or metadata access. Concurrency semantics are
performance-related by allowing simpler and faster centralized algorithms to be
used when no concurrent access is happening. For instance, atomicity is only
required for overlapping accesses.

The consistency semantics can be used to specify if and when clients will
see modifications performed by other clients and applies to both metadata and
data. This information can be used to enable client-side read caching whenever
1 POSIX’s synchronization functions fsync and fdatasync only allow synchronizing

whole files even if this is not necessary.



246 M. Kuhn

possible. The consistency semantics is performance-related and can allow caching
data and metadata locally.

The ordering semantics can be used to specify whether operations within a
batch are allowed to be reordered. Because batches can potentially contain a
large number of operations, the additional information can be exploited to opti-
mize their execution. The ordering semantics is performance-related as it allows
operations to be reordered for more efficient access. It is especially important to
group operations of the same type to reduce the amount of network overhead.

The persistency semantics can be used to specify if and when data and
metadata must be written to persistent storage. This can be used to enable client-
side write caching whenever possible. The persistency semantics is performance-
related and allows caching modified data and metadata locally. This can be
especially advantageous when different levels of storage such as node-local SSDs
are available as it allows writing the temporary data to the fast local storage
without communicating via the network at all.

The safety semantics can be used to specify how safely data and meta-
data should be handled. It provides guarantees about the state of the data and
metadata after the execution of a batch has finished. The safety semantics is
performance-related by allowing to adjust the overhead incurred by data safety
measures and to optimize network utilization by not waiting for unnecessary
replies.

3 Related Work

The current HPC I/O stack has already been identified as problematic regard-
ing future demands due to its complex layering and static architecture [3]. Even
though there are a few approaches to provide configurable behavior and seman-
tics in parallel distributed file systems, they are usually limited to single aspects
of the file system or too static because they do not allow changes at runtime [17].
JULEA aims to solve these problems using its novel approach.

MosaStore is a versatile storage system that is configurable at application
deployment time and thus allows application-specific optimizations [1]. This is
similar to JULEA’s approach. However, MosaStore provides a storage system
bound to specific applications instead of a globally shared one. Additionally, the
storage system can not be reconfigured at runtime and keeps the traditional
POSIX I/O interface.

CAPFS introduces a new content-addressable file store that allows users to
define data consistency semantics at runtime [22]. While providing a client-side
plug-in API allows users to implement their own consistency policies, CAPFS is
limited to tuning the consistency of file data and keeps the traditional POSIX
interface. Additionally, the consistency semantics can only be changed on a per-
file basis. JULEA covers a wider range of semantics and features a more fine-
grained as well as a more dynamic approach.

Memory ordering and consistency are important factors in parallel program-
ming for shared memory architectures, both for performance and correctness.
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CPUs usually reorder memory load and store operations to improve perfor-
mance [7,8]. Modern concepts such as those supported by C++11 and C11 allow
developers to specify different constraints to achieve optimal performance while
still maintaining correct execution of their applications [10]. JULEA’s order-
ing semantics provide the same benefits by allowing the developer to provide
additional semantical information to optimize execution.

ADIOS offers a novel and developer-friendly I/O interface that allows speci-
fying the I/O configuration in an XML file that can be changed without recom-
piling the application [11,15]. Version 1.4 of ADIOS has added support for
scheduling read operations. Several read operations can be scheduled using the
adios schedule read function and then executed using the adios perform
reads function. Read scheduling is very similar to JULEA’s batches as it allows
aggregating multiple operations for improved performance. However, JULEA’s
batches can contain arbitrary operations, making them more versatile.

4 Performance Evaluation

Benchmarks will be used to evaluate different performance aspects of JULEA
and Lustre, which strives to support POSIX semantics. In addition to comparing
JULEA to the other parallel distributed file system, a number of different seman-
tics will be evaluated. However, due to the sheer amount of different semantics
combinations, only those expected to have a significant impact on performance
will be analyzed in more detail. JULEA’s data performance will be evaluated
using different atomicity, concurrency and safety semantics. A prior comparison
of the metadata performance has been published in [12].

All evaluations have been conducted on the cluster of the Scientific Comput-
ing research group at the University of Hamburg. The benchmarks have been
performed using a total of 20 nodes, with 10 nodes running the file system clients
and 10 nodes hosting the file system servers. The nodes’ hardware and software
setup is as follows:

The client nodes each have two Intel Xeon Westmere EP HC X5650 CPUs
(2.66 GHz, 12 cores total), 12 GB DDR3/PC1333 ECC RAM, a 250 GB SATA2
Seagate Barracuda 7200.12 HDD and two Intel 82574L Gbit Ethernet NICs.
They run Ubuntu 12.04.3 LTS with Linux 3.8.0-33-generic and Lustre 2.5.0
(client); the MPI implementation is provided by OpenMPI 1.6.5.

The server nodes each have one Intel Xeon Sandy Bridge E-1275 CPUs
(3.4 GHz, 4 cores total), 16 GB DDR3/PC1333 ECC RAM, three 2 TB SATA2
Western Digital WD20EARS HDDs, one 160 GB SATA2 Intel 320 SSD and
two Intel 82579LM/82574L Gbit Ethernet NICs. They run CentOS 6.5 with
Linux 2.6.32-358.18.1.el6 lustre.x86 64 and Lustre 2.5.0 (server).

To allow a proper assessment of the results, the following theoretical perfor-
mance considerations should be kept in mind: The theoretical maximum per-
formance of Gbit Ethernet is 125 MB/s. However, it is usually not possible to
reach more than 117 MB/s due to overhead. Consequently, the maximum achiev-
able performance between the clients and servers is approximately 1,170 MB/s.
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The average round-trip time between the client and server nodes is 0.228 ms.
Ignoring actual processing times, it is therefore possible to send and receive
4,386 requests/s.

The file systems’ data performance will be evaluated using a large number of
concurrently accessing clients that first write data and then read it back again;
the write and read phases are completely separated and barriers ensure that
only one type of operation takes place at any given time. To force the clients
to read the data from the data servers during the read phase, the clients’ cache
was dropped after the write phase. The benchmark uses MPI to start multiple
processes accessing the file systems in a coordinated fashion. There are two
basic modes of operation: Individual files (each process accesses its own file,
the individual files are accessed serially) and shared file (all processes access
a single shared file concurrently in an interleaved fashion). All accesses use a
variable block size and are non-overlapping, that is, no write conflicts occur.
The file systems have been set up to provide ten data servers and one metadata
server. Each benchmark has been repeated at least three times to calculate the
arithmetic mean as well as the standard deviation.

4.1 Lustre

Lustre has been set up using its default options except for the stripe count that
has been set to -1 to enable striping over all available object storage targets
(OSTs); the stripe size has been set to 1 MiB. While each OST has been provided
by one of the servers’ HDDs, the meta data target (MDT) has been provided by
one of the SSDs. Lustre has been mounted using the client module as a normal
POSIX file system with the flock option that enables support for file locking.
The option should not have any influence on the benchmark results because they
do not use file locking.

Fig. 3. Lustre: individual files via POSIX

Individual Files. Figure 3 shows Lustre’s read and write performance when
using individual files via the POSIX interface. Regarding read performance, it
is interesting to note that configurations with a single node exhibit different
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performance characteristics depending on the number of processes. While the
configurations with one, eight and twelve processes all achieve a throughput
of roughly 100 MiB/s, the configurations with two and four processes deliver
200–300 MiB/s; while this effect has to be related to some data being read from
the cache of the operating system, the exact reasons for this are unclear. As
explained earlier, the benchmark drops all caches between the read and write
phases, therefore, this effect should not occur. The remaining configurations
gradually deliver more performance as more nodes are added until reaching their
maximum performance with ten nodes. As expected, smaller block sizes result
in lower read performance due to additional overhead. However, it is interesting
to note that even with a single process and a block size of 4 KiB, Lustre achieves
a read performance of roughly 100 MiB/s. As mentioned previously, the Gbit
Ethernet network can transfer at most 4,386 requests/s. Taking this into account,
Lustre should only be able to read at a maximum of 17 MiB/s. This discrepancy is
due to Lustre performing client-side readahead to increase performance. When
considering write performance, it can be seen that all block sizes deliver the
same performance. This is most probably due to Lustre’s use of client-side write
caching. Because individual files are used and each file is only accessed by one
node, Lustre can utilize caching without sacrificing POSIX compliance.

Fig. 4. Lustre: shared file via POSIX

Shared File. Figure 4 shows Lustre’s read and write performance when using a
single shared file via the POSIX interface. The read performance for the config-
urations using one node behaves in a similar way to the test case with individual
files. For small block sizes, not all results could be collected because Lustre’s
performance was too low and the jobs exceeded the job scheduler’s time limit.
For 256 KiB and 1,024 KiB, the performance increases until six and seven nodes,
respectively, and afterwards drops with each additional node. This result is sur-
prising because only read operations are performed by all accessing clients, that
is, no locking should be required. However, it appears that Lustre still introduces
some overhead for these accesses, decreasing overall performance significantly.
For the write phase, an interesting effect occurs: While using only a single node,
performance is stable for all block sizes. When using more than one accessing
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nodes, performance drops for all block sizes less than 1,024 KiB. As soon as
multiple nodes are involved, Lustre has to send all write operations directly
to the data server to achieve POSIX compliance. An additional factor for the
low performance could be write locking that needs to be performed due to the
concurrently accessing clients.

4.2 JULEA

JULEA has been configured to use a POSIX storage backend on the data servers’
system HDDs. Additionally, JULEA was set to use a maximum of six client
connections per node because it was observed that the default of twelve caused
severe performance problems due to the large amount of TCP connections.

Fig. 5. JULEA: individual items

Default Semantics. Figure 5 shows JULEA’s read and write performance
when using individual items via the native JULEA interface. Regarding read
performance, performance almost scales linearly until seven to eight nodes are
used. Afterwards, the speedup slows down, reaching a maximum of more than
900 MiB/s using a block size of 1,024 KiB. As expected, smaller block sizes pro-
vide a lower overall performance with the exception of 16 KiB and 64 KiB that
are reversed. Regarding write performance, the same effects as in the read case
can be observed. Even though the performance does not increase with more than
seven clients, it remains at a stable level.

Figure 6 shows JULEA’s read and write performance when using a shared
item via the native JULEA interface. During the read phase, the performance
curve looks almost identical to its counterpart using individual items. While the
performance speedup slowed slightly when going from nine to ten nodes using
individual items, the shared item case is not affected by this drop. Additionally,
the block size of 16 KiB provides a more stable performance curve. During the
write phase, the performance curve looks less smooth than when using individual
items. For instance, using the largest block size of 1,024 KiB, performance drops
when increasing the number of nodes from five to six, only to rise again when
using seven nodes. The fact that overall performance is lower than when using
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Fig. 6. JULEA: shared item

individual items indicates that the handling of shared files is suboptimal in the
Linux kernel. Additional measurements using OrangeFS, different underlying
file systems and JULEA’s NULL storage backend have shown that these perfor-
mance inconsistencies are not specific to JULEA, independent of the underlying
file system and only occur if the file system is actually accessed using shared
files.

To reduce the number of results and exclude the influences of the performance
inconsistencies when using a single shared file, the following measurements have
only been performed using individual items.

Fig. 7. JULEA: individual items using unsafe safety semantics

Safety Semantics. The following measurements have used the safety semantics
to disable write acknowledgments for all write operations.

Figure 7 shows JULEA’s read and write performance when using individual
items via the native JULEA interface. During the read phase, there are only
minor differences in performance in comparison to the default semantics. This is
to be expected because the read operations are not handled differently depending
on the safety semantics. During the write phase, performance is improved across
the board for all block sizes. It is especially interesting to note that even a single
process achieves the maximum performance of 110 MiB/s using a block size of
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4 KiB because the clients do not have to wait for the write acknowledgments
from the data servers. Using a block size of 4 KiB, the maximum performance
is increased by 33 % when using ten nodes. The largest block size of 1,024 KiB
manages to achieve a maximum performance of approximately 800 MiB/s, an
improvement of 23 % when compared to the default semantics.

Fig. 8. JULEA: individual items using per-operation atomicity semantics

Atomicity Semantics. The following measurements have used the atomicity
semantics to enforce atomic access for each read and write operation. JULEA
currently implements atomicity using a centralized per-block locking algorithm.

Figure 8 shows JULEA’s read and write performance when using individual
items via the native JULEA interface. Regarding read performance, it is interest-
ing to note that different block sizes show different scaling behavior: While the
block sizes of 4 KiB and 16 KiB quickly reach a maximum and stay at this level,
the remaining block sizes deliver more performance as more nodes are used.
This behavior can be explained using a rough performance estimation: Mon-
goDB manages to deliver roughly 20,000 inserts/s and 6,000 removes/s. Taking
into account that each read or write operation requires one insert and one remove
operation, a maximum of 13,000 operations/s can be performed.2 This implies
a maximum performance of roughly 50 MiB/s for a block size of 4 KiB and
200 MiB/s for a block size of 16 KiB. According to the measurements, 42 MiB/s
and 170 MiB/s are reached for block sizes of 4 KiB and 16 KiB, respectively.
Because a block size of 64 KiB can already support up to 800 MiB/s according to
this approximation, the remaining block sizes’ performance scales with the num-
ber of nodes. Interestingly, the largest block size of 1,024 KiB almost reaches the
same performance as when using the default semantics. For smaller block sizes,
the slowdown is more severe, however, resulting in a decrease of almost 30 %.
Regarding write performance, the small block sizes manage to deliver almost
the same performance as during the read phase. While the block size of 4 KiB
reaches a maximum of 40 MiB/s, the block size of 16 KiB is limited to 140 MiB/s.
The remaining block sizes perform much worse, however. This is due to the lower
write performance that is already present when using the default semantics.
2 This number is only intended to provide a rough estimate. In practice, the number

might be lower due to the high discrepancy between insert and remove performance.
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4.3 Discussion

The results demonstrate that the current state of parallel distributed file systems
is mixed and that performance can be very hard to predict and understand.
Even simple access patterns as the ones used for the presented benchmarks do
not achieve the maximum performance. This is true for all tested file systems
but has different reasons for each of them.

Lustre deals well with a large number of concurrent clients. This is most likely
because Lustre can easily use the operating system’s file system cache due to
being implemented in kernel space. This allows Lustre to aggregate accesses and
thus reduce the load on the servers. However, Lustre’s performance is abysmal
when accessing a single shared file as commonly done in scientific applications:
Read performance decreases with more than seven client nodes and write per-
formance does not scale beyond one client node. Consequently, only individual
files are efficiently usable because it is not possible to inform Lustre about the
application’s I/O requirements to mitigate these performance problems.

JULEA’s overall performance is held back by problems found within the
underlying operating system and file systems. However, its dynamically adapt-
able semantics allow it to cater to a wide range of I/O requirements:

– Its default semantics enable performance results similar to those of Lustre
when using large block sizes. Lustre has advantages for small block sizes due
to its client-side caching and readahead functionalities. However, these advan-
tages vanish as soon as shared files are used.

– The safety semantics can be used to reduce the network overhead by not
awaiting the data servers’ replies. This is similar to Lustre’s default behavior
when using individual files.

– Atomic operations can be achieved by using the atomicity semantics. While the
performance of large read operations is not reduced significantly, write opera-
tions suffer a performance penalty of up to 40 %. However, using JULEA’s fine-
grained semantics, it is possible to use atomic operations only when absolutely
necessary.

In contrast to Lustre, JULEA can be adapted to different applications by set-
ting its semantics appropriately. While it is neither possible to improve Lustre’s
shared file performance due to its POSIX compliance nor to use other file sys-
tems such as OrangeFS for workloads requiring overlapping writes, it is possible
for JULEA to support and to be tuned for these specific use cases.

5 Conclusion and Future Work

This paper presents a new approach for handling application-specific I/O require-
ments in HPC. The JULEA framework includes a prototypical implementation
of a parallel distributed file system and provides a novel I/O interface featur-
ing dynamically adaptable semantics. It allows applications to specify their I/O
requirements using a fine-grained set of semantics. Additionally, batches enable
the efficient execution of file system operations.
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The results obtained in this paper demonstrate that there is need for I/O
interfaces that can adapt to the requirements of applications in order to pro-
vide adequate performance for a variety of different use cases. The current cir-
cumstances effectively force application developers to adapt their applications to
work around limitations found in specific file systems in order to achieve the best
possible performance. An indication for this is the wide variety of I/O libraries,
such as SIONlib [6], that deal with particular file system constraints. This can
significantly increase the development and maintenance overhead because appli-
cations have to be optimized for different file systems’ semantics instead of being
able to optimize the file systems according to their I/O requirements.

The concept introduced by the JULEA framework fills the gap by allowing
applications to adapt the file system to their exact I/O requirements instead
of the other way around. The available results show that the supplementary
semantical information can be used to adapt the file system’s behavior in such
a way as to optimize performance for specific use cases. Additional results and
more in-depth information about JULEA are available in [13].

Even though JULEA provides a convenient testbed to experiment with differ-
ent semantics and prototype new functionality, it is necessary to provide dynam-
ically adaptable semantics for established I/O interfaces and parallel distributed
file systems for widespread adoption of these new features. These interfaces have
to be standardized and supported by a sufficiently large subset of file systems to
provide consistent functionality across different implementations.

First of all, it is necessary to agree on default semantics suited for modern
HPC applications and a common set of parameters that should be configurable.
The semantics presented in this paper are meant to provide a good starting point
for further evaluation.

5.1 Future Work

As mentioned previously, it is often unreasonable to port applications to new
I/O interfaces due to their size and complexity. Thus, to avoid having to rewrite
applications to be able to make use of JULEA’s novel features, some form of
compatibility would be preferable. Because many applications already use high-
level I/O libraries such as ADIOS or NetCDF, JULEA could be integrated into
applications by providing backends for these I/O libraries. As ADIOS’s API
design is relatively close to JULEA, a thin backend would be sufficient to enable
all ADIOS-aware applications to use JULEA without any further modifications.
ADIOS makes use of XML-based configuration files to specify the applications’
I/O, which could be easily extended to add more semantical information about
the actual data, similar to what has been done in [14].
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