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Abstract. Fault-tolerant is an essential technology for high-performance
computing systems. Checkpoint/Restart (C/R) is the most popular fault-
tolerant technique in which the programs save their states in stable stor-
age, typically a global file system, and recover from the last checkpoint
upon a failure. Due to the high-cost of global file system, node-local stor-
age based checkpoint techniques are now getting more and more interests,
where checkpoints are saved in local storage, such as DRAM. Typically,
computing nodes are divided into groups and the checkpoint data is
redundantly saved on a specified another node or is distributed among all
other nodes in the same group, according to different cross-node redun-
dancy schemes, to overcome the volatility of node-local storage. As a
result, multiple simultaneous failures within one group often cannot be
withstood and the strategy of node grouping is consequently very impor-
tant since it directly impacts the probability of multi-node-failure within
one group. In this paper, we propose a novel node allocation model, which
takes the topological structure of high-performance computing systems
into account and can greatly reduce the probability of multi-node-failure
within a group, compared with traditional architecture-neutral group-
ing algorithms. Experimental results obtained from a simulation system
based on TianHe-2 supercomputer show that our method is very effective
on random simulative instances.
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1 Introduction

In high performance computing (HPC) systems, the probability of overall failure
increases over the computing time and the number of compute nodes due to
more involved components. The mean time between failures (MTBF) of toady’s
systems have decreased to only a few hours [5,6,14] because of hardware and/or
software errors [8,15]. As a result, fault-tolerant has become a well-known issue
in HPC area [11].

One commonly used fault-tolerant technique is Checkpoint/Restart (C/R)
[1]. In a C/R-based method, the state of an application, known as a checkpoint,
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is periodically saved to stable storages, typically the global file system. Once a
failure occurs, the program can be restarted from the latest saved checkpoint.
The critical issue of C/R-based methods is the high-cost of checkpoint access
from global file system, especially for those large-scale systems, in which the
I/O bandwidth will become the performance bottleneck [7,13]. Consequently,
many local-storage based C/R methods have emerged [3,4,12,16]. In this paper,
we focus on one that takes host memory as the storage to save checkpoints. It
should be noted that local storage based C/R method is usually adopted as a
supplement to the disk based C/R, to reduce the frequency of global file system
access. This is also known as multi-level checkpoint technique [10].

The performance benefit of local storage based C/R derives from the linearly
increasing checkpoint access bandwidth and at least an order of magnitude lower
access latency compared with disks. However, local storage is usually supposed
to be unstable. For example, DRAM is volatile and the data will be lost once
the power is off. Consequently, the checkpoint of one node has to be redun-
dantly saved in other nodes, so as to recover the node failure. The most common
strategy is dual-redundancy. To be more specific, local storage based C/R typi-
cally divides compute nodes into groups, and only duplicates a checkpoint onto
another node in the same group (usually called partner node). Upon a node fail-
ure, the execution state can be recovered by the checkpoint saved on its partner
node. The dual-redundancy strategy means that a given node and its partner
cannot fail at the same time, otherwise the execution cannot be recovered. To
reduce the data amount of checkpoint, another commonly used scheme is XOR,
which calculates a parity of redundant data from all checkpoints and then dis-
tributes it among all nodes in the same group. In this case, two nodes from the
same group cannot fail at the same time.

How to group the compute nodes has a direct impact on the fault-tolerant
effect of these local storage based C/R techniques, since different grouping strate-
gies often lead to different probabilities of multi-node-failure in a group. In tra-
ditional methods, grouping strategy is relatively intuitive. For instance, in the
Scalable Checkpoint/Restart (SCR) library [9], a multi-level checkpointing sys-
tem, the nodes can be grouped by continuous node ID or a specified stride.
This strategy is straightforward to implement, while the architecture of system
is ignored. In real-world large-scale parallel computing systems, multiple simul-
taneous failures occur with higher probability in some set of nodes than others.
For instance, by omitting other factors, two nodes that share the same electric-
ity supply module are more likely to fail simultaneously than two isolated nodes
due to the possible power failure. Generally, two nodes with larger logic distance
may have lower probability of failing simultaneously.

Based on these observations, we propose a new algorithm in this paper, to
group the computing nodes with the topological structure of a parallel comput-
ing system taken into account. Our method transfers the computing nodes with
the probability of failure into a complete weighted undirected graph and uses
clique technology to improve the nodes groups. Compared with intuitive group-
ing strategies, our algorithm can effectively reduce the probability of multiple



A Node Allocation Algorithm for In-memory Checkpoint System 199

simultaneous intragroup failures, in which case high-cost global C/R system has
to be invoked. To evaluate our method, we build a simulation system based on
TianHe-2 [2], the world’s fastest supercomputer in the latest TOP500 list, which
has more than 16,000 nodes. The topological structure and the essential parame-
ters of the simulation system are extracted from this real system, and can also
be modified easily to simulate other systems. The experimental results obtained
show that the approach is very effective on random instances, especially for hard
instances.

The remainder of this paper is organized as follows: Sect. 2 introduces the
background. We propose our model and algorithm in detail in Sects. 3 and 4
respectively. Section 5 evaluates the performance of this model and conclusions
are given in Sect. 6.

2 Background

In-memory checkpoint system is the most important local-storage based check-
point technique. Generally, memory access speed is at least an order of mag-
nitude faster than the file system. In addition, the capacity and bandwidth of
memory can expand linearly with system scale from the view of the whole sys-
tem. The major problem of takeing memory as checkpoint storage is its volatility.
Note that in this paper we assume a fail-stop fault model, which means once an
error occurs, the node stops responding and need to be replaced. Thus, we need
a redundancy scheme to ensure that checkpoint data can be retrieved after the
node failure. One common scheme is dual-redundancy (also called mirror scheme
in some literatures), as illustrated in Fig. 1. Each node has a partner node, where
its checkpoint data is stored redundantly.

Fig. 1. Scheme of in-memory dual-redundancy checkpoint system

This dual-redundancy scheme demands that one node cannot fail simulta-
neously with its partner node, otherwise the checkpoint data will be lost. In
practise, nodes are divided into groups and each node is assigned a partner
node within the group. The strategy of node grouping is intuitive in existing
checkpoint system, i.e., dividing nodes according to node’s ID. Users can assign
a hop distance so as to avoid adjacent nodes being allocated into the same
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group. Besides, a so-called XOR-scheme is another option, in which all nodes in
a group collectively calculate a parity redundancy data according to their own
checkpoints and then evenly distribute the parity redundancy data among all
nodes in the group. Upon a node failure, other nodes in the group can recover the
checkpoint according to their segments of the parity redundancy data. Compared
with the dual-redundancy scheme, XOR-scheme demands less memory storage to
save checkpoint data, while introducing extra computations. The XOR-scheme
can withstand node failures as long as two or more nodes from the same group
do not fail simultaneously.

We can see that in-memory checkpoint system is sensitive to simultaneous
failures within a group. As a result, it is often taken as a complement of the global
checkpoint system. That is, upon the failures that in-memory checkpoint system
cannot withstand, the global checkpoint system is invoked. Notice that global
checkpoint system is high-cost and thus the overall fault tolerance overhead can
be reduced if we can lower the probability of simultaneous node failure within
a group. This is also the object of the node allocation model we propose in this
paper.

3 Node Allocation Model

3.1 Assumptions and Errors

Due to the complexity of organization structure, the fault model of high perfor-
mance computing system can be very complicated, thus requiring some assump-
tions and simplifications when modeling the fault-tolerant system. We believe
that these assumptions can cover the majority of actual situations.

– First, we assume errors follow a fail-stop model. Upon a node crash, all data
on that node are supposed to be lost and we have to migrate its working state
to a new node. The crashed node can be allocated again after repaired.

– We assume node failures are completely independent. In other words, a node
failure does not increase or decrease the failure probability of other nodes.

– We assume that all kinds of failures have constant probabilities, including
single node failure, power supply module failure, fan system failure, air con-
dition system failure and water cooling system failure. We assume that these
probabilities do not vary by time or utilization frequency.

3.2 Probability Function

As mentioned in Sect. 2, the uppermost reason that in-memory checkpoint sys-
tem fails is simultaneous node failure within the same group, and the probability
of that is closely related to the scheme of node grouping in a given system. So,
we first calculate the simultaneous failure probability of any two given nodes
before we propose the node group model in next section.

We take TianHe-2 high performance system as platform in this paper, which
has a typical hierarchy architecture of large-scale parallel computing system.
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As shown in Fig. 2, two nodes are integrated on a mainboard and share a power
supply module. Several mainboards, then form a chassis, which is equipped with
a standalone fan system. Each cabinet consists of several chassis and has its own
air condition system. Finally, a row of cabinets share a water cooling system.
In such a hierarchy architecture, different node grouping schemes will result in
different probability of simultaneous node failure within the same group.

Fig. 2. Organization structure of TianHe-2

Below, we will discuss in detail the probability function of simultaneous fail-
ure of node i and j (denoted as P j

i ). The probability can be calculated according
to the coordinates of the two nodes involved. We take the ratios of five kinds of
failures into account when calculating the probability: single node failure, power
supply failure, fan failure, air condition failure and water cooling system failure.

Single node failure ratio Pn is commonly considered as the reciprocal of the
mean time between failure of node MTBFn:

Pn =
1

MTBFn
.

In the same way, the probability of power supply module failure Pm is equal to the
reciprocal of the mean time between failure of power supply module MTBFm:

Pm =
1

MTBFm
.

As mentioned above, nodes on the same board share a single power supply module.
In other words, the failure of the power supply module will directly result in the failure
of all nodes on that board. Thus, without regard to other factors, the probability of two
simultaneous node failures (on the same board) caused by power supply module failure
is equal to Pm. Similarly, nodes within the same chassis share a unique fan system
and will fail together due to the high temperature if the fan system stops working.
Consequently, the probability of two simultaneous node failures (in the same chassis)
caused by fan system failure is equal to the probability of fan failure Pf , which is equal
to the reciprocal of the mean time between failure of fan MTBFf :

Pf =
1

MTBFf
.
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For nodes within the same cabinet (sharing a unique air condition system) and the
same row (sharing a unique water cooling system), the probabilities of two simultaneous
failures caused by the air condition cooling system (Pc) and water cooling system (Pl)
failures are the mean time between failure of each cooling system:

Pc =
1

MTBFc
, Pl =

1

MTBFl
.

Now we consider the simultaneous failure probability of any two nodes i
and j. Let symbol m/f/c/l be 1 if node i and j belong to the same main-
board/chassis/cabinet/row, and 0 otherwise. First we only consider the factor of node
failure. As mentioned above, all failures are assumed to be independent. So the simul-
taneous failure probability of i and j is Pn

2. To simplify the representation, we denote
it as P j

i |n, that is,
P j
i |n = P 2

n .

Based on P j
i |n, we further take the power supply module into account. When i and

j are on the same mainboard (m = 1), the simultaneous failure probability is the sum of
Pm and the product of 1−Pm and P j

i |n. That is because both nodes will fail definitely
(with the probability of 1) if the power supply module fails (with the probability of
Pm); otherwise (with the probability 1 − Pm), the simultaneous failure probability is
P j
i |n. When i and j are on different mainboards (m = 0), however, their failure are

independent and the probability is the product of each one’s failure probability, which
is Pm + (1 −Pm)Pn. We denote the probability of single node failure considering node
failure and power supply module failure as Pnm. Consequently, the simultaneous failure
probability of i and j with node failure and power supply module failure considered
(denoted as P j

i |nm) is

P j
i |nm =

{
Pm + (1 − Pm)P j

i |n,m = 1
Pnm

2, otherwise

In the same way, we take the fan system failure into account based on the equation
above. When i and j are in the same chassis (f = 1), the simultaneous failure proba-
bility is the sum of Pf and the product of 1 − Pf and P j

i |nm, and otherwise (f = 0)
is the product of each one’s failure probability considering node failure, power supply
module failure and fan system failure. We denote the latter one as Pnmf , which can be
calculated as

Pnmf = Pf + (1 − Pf )Pnm.

So, we have

P j
i |nmf =

{
Pf + (1 − Pf )P j

i |nm, f = 1
Pnmf

2, otherwise

After all factors are involved, we can get the final probability equation as follows:

P j
i |nmfcl =

{
Pl + (1 − Pl)P

j
i |nmfc, l = 1

Pnmfcl
2, otherwise

(1)

We can see that Eq. 1 is a recursion function and can be easily extended to a
failure model with more organization hierarchies. Generally, for an S-level model, the
simultaneous failure probability of i and j considering all S kinds of failures (denoted
as P j

i |1∼S) is

P j
i |1∼S =

{
PS + (1 − PS)P j

i |1∼(S−1), TS = 1
P1∼S

2, otherwise
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where TS represents whether the two nodes are in the same set at level S and P1∼S =
PS+(1−PS)P1∼(S−1). P

j
i |1∼1 means the probability of simultaneous failure considering

the factor of level 1 failure (node failure) only, which is P1
2. Given Pk and Tk (1 ≤ k ≤

S), we can get the simultaneous failure probability of any two nodes.

3.3 Model Overview

Based on the probability function, we propose a node allocation model, to find the
optimal node grouping scheme for a given node set, a given probability function and a
given group size, so that the probability of simultaneous node failure within the same
group is minimal.

In the paper, we abstract the allocation model as a weighted undirected graph,
where vertices represent the computer nodes and the weight on the edge indicates the
probability that the two connected nodes fail simultaneously. Figure 3 shows a partial
view of a basic model with 3 individual computing nodes 1,2 and 3. The position of
Node in the system is denoted by its coordinate xi, yi, zi, ki. The value P on the edge
is the weight.

1

2

3

(x1,y1,z1,k1)

(x2,y2,z2,k2)
(x3,y3,z3,k3)

F(
P;
1,
2)

P
2

1
=

F(P;2,3)
P 3
2 =

F(P;1,3)

P
31
=

Fig. 3. A weighted undirected graph

It should be explained that (xi, yi, zi, ki) indicates the specific position of node i in
the system, where xi, yi, zi and ki denote the number of board, the number of chassis,
the number of cabinet and the number of row where node i is located in respectively.

Consequently, we abstract the node allocation model as a graph problem. For a
given system, we use a graph to represent any given set of nodes. According to the
probability function proposed above, the weight of each edge in the graph can be
calculated. Then, the problem is to find a graph partition scheme with a given group
size so that the probability of system failure due to two simultaneous node failures in
a group is minimal. In the next section, we propose a novel algorithm to solve this
problem.

4 Node Allocation Algorithm Based on Clique

SCR uses hop algorithm to divide compute nodes to groups, and hops are generally
selected to be 1 in many systems. Our model, however, transfers the compute nodes
into a weighted undirected graph, and tries to find an optimal combination checkpoint
sets of nodes with the minimal weight. Given the positions of nodes, we can use Eq. 1
to calculate the simultaneous failure probability of every two nodes in the node set.
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Table 1. Probabilities of simultaneous failure

Node 1 2 3 4 5 6

1 - 0.18 0.1 0.18 0.18 0.18

2 0.18 - 0.85 0.18 0.1 0.1

3 0.1 0.85 - 0.1 0.1 0.36

4 0.18 0.18 0.1 - 0.1 0.25

5 0.18 0.1 0.1 0.1 - 0.85

6 0.18 0.1 0.36 0.25 0.85 -

For instance, we assume a task that occupies 6 compute nodes: {1,2,3,4,5,6}, and the
simultaneous failure probabilities are listed in Table 1:

As shown in Fig. 4, these nodes can be transferred into a complete weighted undi-
rected graph, where the weight of edge denotes the simultaneous failure probability of
these two nodes.

1

2 6

3 5

4

0.
85

0.
85

0.1

0.1 0.
18

Fig. 4. A complete weighted undirected graph.

Consider a weighted undirected graph G = (N,E,W ), where N is a set of nodes
{n1, n2, ..., nn}, and E and W are the edge and weight sets respectively, we have:

Definition 1. Given a node n in G, the number of its neighbor nodes is called the
degree of n.

Definition 2. Given a graph G, a subset of N is called a clique if every two nodes in
the subset are connected by an edge in G.

The problem is then attributed to find a clique partition of the graph with specified
size, so as to minimize the probability of system failure due to two simultaneous node
failures in a clique.

Algorithm 1 shows the pseudo-code of a basic algorithm for node allocation. The
algorithm based on clique(CB algorithm for short) finds all cliques of specified size in
a set of compute nodes N . Given a set N , clique size s and the probability function
of simultaneous failure P , the algorithm will find a clique sets C : {C1, C2, C3, ..., Cn}.
In line 5, the function BuildProbMatrix(N,P ) calculates the simultaneous failure
probability of every two nodes in N based on function P (i.e., Formula 1). The function
AddEdges in line 12 adds new edges with minimal weight for nodes in the latest graph
G. Note that there may be multiple edges added at one time since they have the same
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weight. We start with minimal weight edges to make the weight of clique as small as
possible. Lines 13–24 search all cliques in the current graph. We travel the node set N
in ascending order of node degree since node with small degree has less opportunity
to form cliques with other nodes, so as to get as more cliques with minimal weight as
possible.

Algorithm 1. Find all cliques
Input: nodes set N , clique size s, probability function P
Output: clique set C
1. C ← ∅
2. G ← {N, ∅, ∅}
3. W ← BuildProbMatrix(N,P )
4. while N �= ∅ do
5. if (#N) ≤ s then
6. c ← N
7. C ← C + {c}
8. return C
9. end if
10. G ← AddEdges(G,W ) // edges with minimal weight for nodes in current G
11. N ′ ← N
12. while N ′ �= ∅ do
13. Let v ∈ N ′ be the node with minimal degree in current G
14. c ← FindAClique(G, v, s)
15. if c �= ∅ then
16. C ← C + {c}
17. N ← N − c // also remove all edges connected to c in G
18. N ′ ← N ′ − c
19. else
20. N ′ ← N ′ − {v}
21. end if
22. end while
23. end while
24. return C

The function FindAClique in line 16 is used to find a clique that contains node
v with size s in graph G. It uses a basic branch-and-bound algorithm to search for a
clique. Once a clique is found, we add it into the clique set C (line 18), remove the
nodes from original graph G (line 19), and also remove all edges connected to these
nodes. After the while-loop finishes (line 24), all possible cliques are generated and
removed from the current graph. Then some new edges with minimal weight should be
added and the search is redone until the graph is empty. Note that if the number of
nodes in current graph is no more than s, i.e., the clique size, we directly output it as
the last clique and quit (lines 7–11). This works for the situations that the number of
nodes is not divisible by s.

For the instance with 6 compute nodes given in Fig. 4, traditional hop algorithm
will divide them into two groups: {1, 2, 3} and {4, 5, 6} (assume that hop distance is
1 and group size is 3). Based on the probabilities in Table 1, the failure probability of
the system will be 0.9888.
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Fig. 5. An example of the algorithm.

The CB algorithm, however, tries to find all cliques of size 3 with minimal weight.
First, all edges with weight 0.1 are added to the graph, as shown in Fig. 5(a), and we
travel the graph in the order 1 → 6 → 2 → 4 → 3 → 5 according to the node degree.
The function FindAClique will find the first clique ({3, 4, 5}) when v = 4. Then, the
clique and all related edges are removed, as shown in Fig. 5(b). New edges with weight
0.18 are added after that because no more clique of size 3 can be found in the left
graph. Actually, in this example, ({1, 2, 6}) can be directly denoted as a clique without
search since the number of left nodes is 3, which is equal to the clique size. The failure
probability of whole system in this solution is 0.5588, which is only 56.51 % of that in
the hop algorithm.

As mentioned before, the “short-plate” of in-memory checkpoint system is prob-
ability of failure of any two nodes from the same group. The CB algorithm takes
probabilistic model as a guide, initiatively avoids the allocation of checkpoint set with
high simultaneous failure probability, and makes each “short-plate” as long as possible.
Consequently, it reduces the frequency of using file system checkpoints, which means
the cost of fault tolerance will be decreased.

5 Experimental Results

We have compared the performance of our algorithm with hop algorithms from the
state-of-the-art fault-tolerant library. In practice, the execution time of application
could be very long (up to days or months), and the overhead of grouping algorithm is
negligible; so we only compare the probability of simultaneous failure, in which case
the in-memory checkpoint system cannot recover the execution and higher level fault-
tolerant system with much higher cost has to be involved.

Table 2 lists the probabilities of simultaneous failure of our algorithm and hop
algorithm. PCB represents the probability of our clique algorithm, PHOP represents
the best result of the hop algorithm, and ratio represents the difference between them.
As mentioned in Sect. 3.2, the system has a total of 16,000 nodes, and we choose a
random subset of nodes in this experiment. It can be seen obviously in Table 2 that
clique allocation algorithm is very efficient when the size of XOR set is small, especially
with size of 2. The ratio between the two algorithms becomes smaller as the size of
XOR set increases, and the solutions of two algorithms will become identical when the
size is equal to (or larger than) the number of computing nodes. This tendency is more
clearly illustrated in Fig. 6.

To be more clear, Fig. 7 gives the simultaneous failure probabilities of two algo-
rithms when #Node is 2048. We can see from the figure that the probability of the
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Table 2. Probabilities of simultaneous failure with different node numbers and group
sizes

#Node SizeXOR = 2 SizeXOR = 4 SizeXOR = 8 SizeXOR = 16

PCB PHOP ratio PCB PHOP ratio PCB PHOP ratio PCB PHOP Ratio

64 1E-09 0.00031 114959 3.97E-05 0.00113 67.87 0.00034 0.00296 13.50 0.00465 0.00684 1.52

128 1E-08 0.00090 167483 3.19E-05 0.00245 88.53 0.00032 0.00589 18.90 0.00595 0.01295 2.27

256 1E-08 0.00170 145818 6.64E-05 0.00526 117.40 0.00059 0.01204 20.30 0.00912 0.02551 2.90

512 2E-08 0.00327 139793 0.00015 0.00981 148.50 0.00120 0.02288 19.10 0.01211 0.04923 4.21

1024 5E-08 0.00668 145621 0.00017 0.02010 207.60 0.00242 0.04596 19.10 0.02112 0.09744 4.81

2048 9E-08 0.01401 152651 0.00016 0.04020 411.70 0.00480 0.09059 18.90 0.03186 0.18509 6.06

4096 1.8E-07 0.00730 39570 0.00040 0.03976 287.50 0.00962 0.13239 13.80 0.04554 0.30447 6.73

8192 3.7E-07 0.01442 39092 0.00025 0.03938 154.50 0.01913 0.16271 8.51 0.07993 0.45199 5.65

16384 7.4E-07 0.12184 165302 0.00177 0.29667 167.20 0.03818 0.57240 15.00 0.71965 0.80620 1.12

#Node SizeXOR = 32 SizeXOR = 64 SizeXOR = 128 SizeXOR = 256

PCB PHOP ratio PCB PHOP ratio PCB PHOP ratio PCB PHOP Ratio

64 0.01114 0.01392 1.25 0.02705 0.02705 1.00 0.02705 0.02705 1.00 0.02705 0.02705 1.00

128 0.01989 0.02613 1.32 0.05203 0.05263 1.02 0.10208 0.10208 1.00 0.10208 0.10208 1.00

256 0.03645 0.05126 1.41 0.09059 0.10132 1.12 0.19173 0.19381 1.01 0.35117 0.35117 1.00

512 0.06925 0.10048 1.45 0.19105 0.19369 1.02 0.32208 0.34899 1.08 0.53657 0.57689 1.08

1024 0.13777 0.19352 1.41 0.30183 0.35450 1.18 0.56614 0.58503 1.03 0.74841 0.82544 1.10

2048 0.25198 0.34635 1.37 0.47044 0.58109 1.24 0.77218 0.82778 1.07 0.87476 0.97030 1.11

4096 0.43440 0.55524 1.28 0.67615 0.81967 1.21 0.87961 0.96930 1.10 0.89930 0.99908 1.11

8192 0.65864 0.77372 1.17 0.84162 0.96272 1.14 0.89956 0.99894 1.11 0.89999 0.99999 1.11

16384 0.86865 0.96454 1.11 0.89906 0.99890 1.11 0.89999 0.99999 1.11 0.90000 0.99999 1.11
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Fig. 6. Gap between two algorithms when #Node=1024.
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simultaneous failure is always larger in hop algorithm than in our algorithm with all
set sizes.

Tables 3 and 4 compare the simultaneous failure probabilities of two algorithms
when sizeXOR = 3 and sizeXOR = 4 respectively, where we vary the hop distance
in the hop algorithm within different ranges. The results show that the probability
in the hop algorithm is not affected by the hop distance evidently. We can also see
that our algorithm obtains much lower simultaneous failure probabilities than the hop
algorithm in all cases. Figure 8 illustrates this result more clearly and intuitively.

Table 3. Probabilities of simultaneous failure with small hops in hop algorithm when
sizeXOR = 3.

#Node PHOP PCB

hop=1 hop=2 hop=3 hop=4 hop=5 hop=6 hop=7 hop=8 hop=9 hop=10

1000 0.01058 0.01574 0.01511 0.01430 0.01120 0.01414 0.01405 0.01167 0.01414 0.01272 1.01E-05

6000 0.13404 0.02085 0.02418 0.02445 0.02534 0.02562 0.02605 0.01772 0.01866 0.03975 5.99E-07

10000 0.31091 0.03400 0.03196 0.03063 0.03286 0.04901 0.07563 0.11029 0.10535 0.07420 1.1E-05

15000 0.54986 0.05346 0.05140 0.04826 0.04553 0.04403 0.04140 0.04100 0.04892 0.08605 1.5E-06

Table 4. Probabilities of simultaneous failure with large hops in hop algorithm when
sizeXOR = 4.

#Node PHOP PCB

hop=1 hop=17 hop=33 hop=49 hop=65 hop=81 hop=97 hop=113 hop=121 hop=136

1024 0.01853 0.02186 0.01971 0.02012 0.01971 0.02070 0.01971 0.01925 0.01981 0.01930 0.00018

2048 0.03534 0.04087 0.04171 0.04143 0.03893 0.04063 0.04042 0.04023 0.04054 0.04002 0.00017

8192 0.06354 0.04198 0.04047 0.04210 0.03984 0.03963 0.04264 0.03842 0.03951 0.03889 0.00026

16384 0.66958 0.15221 0.08228 0.33279 0.21335 0.38715 0.21852 0.28729 0.20119 0.33215 0.00177

1 2 3 4 5 6 7 8 9 10 17 33 51 79 101 121
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Fig. 8. Simultaneous failure probabilities of hop algorithm with different hop distances
when #Node=8192 and sizeXOR = 4.

Figure 9 shows the simultaneous failure probabilities with different hop distances
and checkpoint set sizes. As concluded above, hop distance has little influence on
probability in the hop algorithm. Those curves represent hop algorithm almost coincide
in this figure. Also, the blue curve, which represents our algorithm, shows better results
with all checkpoint set sizes compared to the hop algorithm.

Table 5 collects the times that our algorithm outperforms the hop algorithm in
1,000 random experiments. Since our algorithm is heuristic, the search result is not
necessarily the optimum solution, and the hop algorithm gets chance to obtain better
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Fig. 9. Simultaneous failure probabilities of the two algorithms with different hop
distances and sizeXORs when #Node=1024

result due to the randomness of the node set we choose. However, we can notice in
the table that for most situations, our method can outperform the hop algorithm in all
1,000 random tests. We can also see that with a fixed checkpoint set size, the times that
our method win decrease mildly when the number of nodes gets larger. That is because
when almost all nodes in the system are involved, the topology of these nodes is also
pretty much fixed, in which case, the hop algorithm can decrease simultaneous node
failure probability easily by assigning a hop distance large enough.

Table 5. Times that our algorithm outperforms the hop algorithm in 1,000 random
experiments.

#Node sizeXOR #Node sizeXOR

2 4 64 256 3 5 65 257

512 1000 1000 1000 1000 500 1000 1000 1000 1000

1024 1000 1000 1000 999 1000 1000 1000 1000 1000

8192 1000 1000 998 992 10000 1000 1000 996 988

16384 1000 1000 990 978 15000 1000 1000 991 976

Experimental results above show that our clique-based algorithm is very efficient,
especially for small size of checkpoint set. The probability of simultaneous node failure
is far below the hop algorithms, which means we can greatly reduce the chance to
invoke the high-cost global checkpoint system.

6 Conclusion and Future Work

We build a new node allocation model based on the architecture of TianHe-2 and pro-
pose a new algorithm to decrease the probability that in-memory checkpoint system
cannot work. We calculate the probability of simultaneous failure of any two nodes,
transfer it into a complete weighted undirected graph, use a heuristic algorithm to
find clique in the graph, and then rationally divide the compute nodes into groups to
decrease the in-group simultaneous failure probability. The experimental results per-
formed based on the probability model abstracted from TianHe-2 show that, compared
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to the traditional node distribution scheme, our model can find near optimal combina-
tion of nodes with lower simultaneous failure probability. This also means that we can
greatly reduce the cost of recovery in multi-level checkpoint system. In the future, we
will take the communication cost into account when grouping the nodes based on the
topology of the interconnect network.
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