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Abstract. In this paper we discuss porting a particle transport code, which is
based on a wavefront sweep algorithm, to FPGA. The original code is written in
Fortran90. We describe the key differences between general purpose CPUs and
Field Programmable Gate Arrays (FPGAs) and provide a detailed performance
model of the FPGA. We describe the steps we took when porting the Fortran90
code to FPGA. Finally, the paper will present results from an extensive
benchmarking exercise using a Virtex 6 FPGA.
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1 Introduction

Chimaera-2 is a particle transport code based on a wavefront algorithm. The code has
been developed and maintained by the UK Atomic Weapons Establishment (AWE) and
is used primarily for benchmarking during procurement processes. Chimaera-2 is
written in Fortran90 and MPI/OpenMP; it scales well to thousands of cores for large
problem sizes and is used to calculate nuclear criticality. It is one of the highest priority
application codes in the benchmark suite used by AWE for procurement of HPC
systems.

This paper will discuss the programming strategies required to port a CPU-centric
HPC code to Field Programmable Gate Arrays (FPGAs) by an application developer
with no prior knowledge of FPGA/embedded programming. This feasibility study will
provide a detailed performance model of the FPGA implementation of Chimaera-2 and
we will show how the model can forecast the runtime of an FPGA ported application.
A mini-app, which closely matches the Chimaera-2 code, was implemented and used to
evaluate our porting strategy and the performance model predictions. Finally, we will
describe the steps we took when porting parts of the Fortran90 code to FPGA using
Maxeler’s FPGA solution. The limiting factors of the algorithm will be discussed and
we will provide solutions for future development.
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1.1 Contributions

Although writing applications for FPGAs and embedded devices dates back to the 1990s
and the difficulties and steep learning curve have been mentioned in research papers
feasibility studies of using new methodologies have not been sufficiently explored. This
paper is amongst the first to consider new abstract methods of porting HPC CPU
applications to FPGA. Furthermore, this paper studies the feasibility of an application
developer with no knowledge of FPGA or embedded computing being able to port a
large and complex HPC application. This paper makes the following contributions:

• We discuss and evaluate a set of techniques which enable an application developer
to predict the performance characteristics of an FPGA application;

• We describe the conceptual differences between CPU and FPGA programming;
• We describe the implementation of a mini-app that closely matches Chimaera-2 to

test different porting strategies and to evaluate the performance model predictions.

2 Related Previous Work

This section will discuss previous attempts of porting a particle sweep transport code to
accelerators. The Denovo code [1], produced by the Scientific Computing Group at
Oak Ridge National Laboratory, serves a similar purpose to Chimaera-2 – it is used for
advanced nuclear reactor design and as a benchmark code. Denovo also works on a
three dimensional domain, but unlike Chimaera it is written in C ++. Denovo has been
ported to work with GPUs using CUDA for the three dimensional case with perfor-
mances that achieve from 1 to 10 % of the peak GPU performance; however these are
for three dimensional systems that parallelise more extensively, including groups (or
energy levels), which expose additional levels of parallelism. Work by Gong et al.
[2, 3] attempted to convert another three dimensional sweep code, Sweep3D1, a
benchmark code produced by the Los Alamos National Laboratory, to work on GPUs.
Their results obtained overall performance speedups for a single NVIDIA Tesla M2050
GPU ranging from 2.56, compared to an Intel Xeon X5670 CPU, to 8.14, compared to
an Intel Core Q6600 CPU with no flux fix-up (with flux fix-up on an M2050 was 1.23
times faster than on one X5670). In [4], Gong et al. go on to look at 2D problems using
a “Discontinuous Finite Element – Sn” (DFE-Sn) method [5], using a 2D Lagrangian
geometry. The performance speed-ups they obtain for simulations on an M2050 GPU
range from 11.03 to 17.96 compared with an NTXY2D [6] on Intel Xeon X5355 and
Intel Core Q6600. In their case the energy groups in the calculation are regarded as
inherently independent and thus can be executed in parallel.

3 Chimaera-2

The full problem space for a Chimaera execution is a fixed uniform rectilinear 3D
spatial mesh of grid points. All faces of the problem space are squares or rectangles.

1 The code can be downloaded from http://wwwc3.lanl.gov/pal/software/sweep3d.
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For running in parallel using MPI, Chimaera performs a simple domain decom-
position of this mesh as shown in Fig. 1. The front face is divided into N rectangles
(with N being the number of MPI tasks) that are projected the whole way from the front
face to the back face to form 3D elongated cuboids. These 3D domains are often
referred as “pencils”.

Each iteration of the solver algorithm used in Chimaera-2 involves sweeping
through the whole spatial mesh eight times, each of the sweeps starting at one of the
eight vertices of the mesh and proceeding to the diametrically opposed vertex. As
the boundaries between pencils are crossed, MPI message passing is used to transmit
the updated data to adjacent pencils.

Figure 2 shows a single pencil (MPI domain) with a 6 × 6 square cross section of
mesh points. 103 geometry sizes can be used to test correctness; however, realistic
problems are likely to be larger. 2003 to 5003 geometries are common and sizes over
1,0003 are considered very large. The sweep direction being illustrated starts at the
front top-right vertex; therefore this MPI task will receive data from the pencil to its
immediate right and from the one immediately above and transmit data to the left and
downwards. Within the pencil, the order of computation is shown by the following
code fragment in Code Listing 1.

Note that this assumes that the data in the 3D arrays are held in the same sequence
as the sweep direction; that is that the front top-right element has the index (1,1,1) in
Fortran syntax. With the data still in this sequence for other sweep directions, one or
more of the loops end up being computed in reverse order. For example, “DO K = 1,
KEND” might become “DO K = KEND,1,-1” when we compute sweep “Front, Top,
Left”. This is because each of the J, K, and L loops exhibits sequential dependence
where every iteration depends on the previous iteration and must be computed in the
order corresponding to the sweep direction.

Fig. 1. Chimaera domain decomposition for a 16-way parallel run
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Although all three spatial loops (i.e. J, K and L) have this sequential dependence,
the order of nesting can be changed in any way without affecting the results (except for
the complication that it has been chosen to perform the MPI communication after each
iteration of the L-loop). The M-loop is concerned with the directions of the particles
being tracked and is independent of the J, K and L loops. It does not have sequential
dependence and can be logically nested at any point. With the above algorithm, the
computational Kernel within the MPI layer processes a single 2D tile (indexed by K
and J), which moves from front to back as the outer L-loop is iterated. The Chimaera-2
application is used for procurement purposes at AWE and has been maintained and
optimised for the past 10 years. The algorithm has been optimised for serial, MPI,
OpenMP and GPU runs.

Chimaera sweep order:
Original design: 2D tiles

MPI data
FromTop

8 sweep directions starting from
each of the 8 vertices of the 3D mesh

This diagram shows sweep from
Front, Top, Right vertex.

MPI data ToBottom

MPI
data
ToLeft MPI data

FromRight

MPI decomposition is 
elongated cuboids 
from front to back.

Fig. 2. Original 2D tile design, where computation order across the tile is a simple x and y pair
of loops.
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3.1 Mini-app

Our goal was to port the computationally expensive Kernel of the Chimaera-2 appli-
cation to the FPGA. However, in order to better understand the effects of porting
different parts of the code using different techniques we implemented a mini-app. The
mini-app uses less memory than the full Chimaera-2 application; however, the com-
putational Kernel is identical to the full application showing the same data depen-
dencies. It also uses the same number of arrays as input and output.

The mini-app does not implement 8 different sweeps; rather a single sweep (Front,
Top, Left) is used. Furthermore, it does not use MPI or OpenMP. The initial values of
the arrays are populated programmatically rather than reading an input file. The mini-
app allowed us to experiment with different porting techniques and to run large sim-
ulations. Chimaera-2 uses more than 40 GBs of RAM for a 1203 simulation; whereas,
the mini-app only uses 12 GBs of RAM for a 1,0003 simulation.

4 Porting from CPU to FPGA

Porting to an FPGA historically required writing code in VHSIC Hardware Description
Language (VHDL) or Verilog. VHDL and Verilog are hardware description languages
(HDLs) and are used to describe the structure, design and operation of electronic
circuits. Unlike an Application-Specific Integrated Circuit (ASIC), an FPGA is a
semiconductor device that can be configured by the end user. FPGAs contain pro-
grammable logic blocks, that can perform complex Boolean logic functions or simple
AND or XOR operations. These logic blocks can be connected in order to provide
more complex functionalities. The logic blocks are made up of two basic components:
flip-flops (FF) and lookup tables (LUT). Many logic blocks can be combined to create
simple arithmetic operations (addition, multiplication) or higher math operations like
abs or even trigonometry operations like sin and cos.

There is a growing interest in using FPGAs as energy efficient accelerators and new
programming models designed to make FPGA programming more widely accessible
are gradually emerging. The work presented in this paper uses Maxeler’s Multiscale
Dataflow solution to port Chimaera-2 to FPGA. This approach allows an application
programmer to use a high-level (Java-like) language, called MaxJ, as an intermediary
step before using the Maxeler tool chain to translate the code to VHDL. The VHDL
files are then used by a set of third party vendor tools, which build the configuration
bitstream that is uploaded to the FPGA. The FPGA used here is a Max3 solution which
is based on a Xilinx Virtex-6 (V6-SXT475) FPGA with 24 GB RAM. Maxeler’s
solution allows an application to be split into three parts:

• Kernel(s), which implement the computational components of the application in
hardware;

• Manager configuration, which connects Kernels to the CPU, engine RAM, other
Kernels and other dataflow engines via MaxRing;

• CPU application, which interacts with the dataflow engines to read and write data to
the Kernels and engine RAM.
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– Dataflow variable type

FPGAs allow the representation of a number by using an arbitrary number of bits. It is
possible to either use pre-defined primitive variable types (such as 32-bit integers or 64-
bit floats) or define a custom data format. For instance, if it is known that an algorithm
requires 48-bit precision a matching custom type can be created.

– Streams of data

Dataflow computing operates on windows into data streams. The data window can be
held in the on-chip memory of the FPGA and thus minimises data transfer costs. We
can use static or variable stream offsets to look back or forward into a stream of data.
Variable stream offsets can be set once for the duration of a Kernel, or they can be
modified per FPGA clock cycle.

– Loops/Counters

Loop statements are heavily used in High Performance Computing. Simple loops can
be easily ported to an FPGA. A simple loop applies the same operation to a group of
data elements. In an FPGA this translates to streaming data element through the same
logic block. Unfortunately, not all loop statements are simple. In order to implement
more complex loop statements on an FPGA it is necessary to keep track of where we
are in the stream. Furthermore, many HPC applications use nested loops. We use
counters to port nested or loops with boundary conditions.

– Data Dependency Loops

So far discussion has been limited to simple loops, where each iteration of the loop is
using values from the incoming stream(s) and loop counters. However, many loops in
HPC applications have dependencies and each iteration relies on the values calculated
in previous iterations. In order to port these loops, it is necessary to either unroll the
loops or create cyclic graphs. Unrolling loops is only possible if the number of itera-
tions is known (or if it is known that the number of iterations will be N at most).
Loop unrolling on the FPGA uses replicated hardware resources and the limit is
therefore the size of the FPGA. Unfortunately in many HPC applications the number of
iterations per loop will be large enough to consume all available hardware resources.
Therefore the better option is to create a cyclic data graph, in which the output of the
loop stream can be connected to the input stream. Thus, the output of a calculation is
available as input.

– Scalar inputs and outputs

In addition to streaming input and output data between CPU and FPGA, it is also
possible to transfer read-only configuration values at runtime.

– Boolean control logic

Since FPGA designs are built in advance, FPGA code must be able to handle all
possible execution paths through the code. For every conditional “if/then/else” state-
ment a multiplexer is created, which diverts the data streams (using multiplexers) to the
correct logic block path.
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5 Performance Model

Estimating the performance of a dataflow implementation is simpler than for a CPU
implementation due to the static scheduling of the FPGA. The FPGA design is built
out-of-band using the MaxCompiler and the FPGA vendor tools. The bitstream is then
loaded on the FPGA and can be used by an HPC application. We can estimate the
performance of an application with a known runtime in cycles (like Chimaera 2)
executing an FPGA design. If the runtime is not known, it is still possible to model the
performance of the application; as long as the application uses a regular pattern for
reading and writing data to external interfaces. The FPGA has a set of well-defined
external interfaces (PCIe and DRAM) with fixed performance capabilities. Further-
more, the FPGA does not create or handle any dynamic events, like interrupts. Also the
FPGA does not use pre-emption for interrupting the kernels since only a specific set of
kernels can be executed at one time. Finally, out of order execution and cache misses
are not relevant on an FPGA. The FPGA design dictates the compute nodes that will be
used and the data that will be computed.

Thus, the performance of an FPGA design depends on the following factors:

• Number of cycles per kernel
• Data read from and written to DRAM
• Data read from and written to PCIe
• Data read from and written to Network Interface

The total time that an application spends in a dataflow execution is computed by:

TTotal ¼ max Tcompute; TDRAM ; TPCIe; TMaxRing
� � ð1Þ

5.1 Model Compute

As mentioned earlier, the dataflow design uses static scheduling. Therefore TCOMPUTE

is the time that it takes the input data to run through the dataflow design:

Tcompute ¼ Cycles
Frequency

ð2Þ

The frequency of the design determines the compute speed. For simple single pipe
designs the number of cycles is equal to the number of inputs, i.e. 1. However, for
multi-pipe designs the number of cycles is equal to the number of input divided by the
number of pipes.

As an example, in order to compute the loops K, J and M (from Code Listing 1) we
need to run for K*J*M cycles. Thus, for the 103 simulation with M = 36, the FPGA will
run for 3,600 cycles. Using a frequency of 150 MHz we estimate that the FPGA will
run for 24 μs. If we port the L loop, the FPGA will run for L*K*J*M cycles. Thus, for
the 103 simulation the FPGA will run for 36,000 cycles or for 240 μs. However, the
LKJ FPGA port will be called L fewer times than the KJ FPGA port. It is estimated that
the overhead of calling the FPGA is close to 7 ms. As the size of the simulation
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increases, the overheads of calling the FPGA many times for small runtimes also
increases.

5.2 Model PCIe

PCIe is one of the three different ways of getting data into an FPGA. PCIe is a bi-
directional link which can send and receive data in parallel without sharing bandwidth.
To estimate the PCIe transfer rate we can use the following formula:

TPCIe ¼ max
BytesInPCIe

BandwidthInPCIe
;

BytesOutPCIe
BandwidthOutPCIe

� �
ð3Þ

The number of bytes transferred to and from the FPGA is known at compile time. For
the Chimaera-2 application it is known that the KJ FPGA port is streaming
Bstream = K*J*M*sizeof(double)*number of array bytes to the FPGA. The values for
K, J and M depend on the size and configuration of the simulation. The “number of
arrays” value depends on the implementation and is equal to 8 for the KJ FPGA port.
The naïve implementation copies redundant data to the FPGA. This approach simplifies
the logic on the FPGA, but the cost of copying more data slows down the application.
The optimised version uses more logic on the FPGA in order to re-arrange arrays which
hold replicated data. For example, the naïve implementation copies three 2D arrays as
three 3D arrays. The optimised implementation copies three 2D arrays.

We also know that the design is streaming out to the host Bstream Bytes. The naïve
approach copies all output values to the host (even if some of them are temporary and
not useful). The optimised version on the other hand only copies the minimum data
back to the host that is needed for future iterations. Table 1 shows the two versions:

The ideal PCIe bandwidth is 1.8 GBs/s; however, for our calculations we also used
a non-ideal value of 1.5 GBs/s. The non-ideal bandwidth reflects real life benchmarks
using Chimaera-2 and the mini-app. Table 2 shows the PCIe transfer times in seconds.
It can be seen that the optimised KJ FPGA port reduces the time spend on PCIe data
transfers. The reason behind the performance improvement is that the optimised KJ
FPGA port transfers less data to the FPGA. The naïve KJ FPGA implementation copies
superfluous data, thus spending more time on the host in order to create the data arrays
and spending more time when transferring the data to/from the FPGA.

Table 1. GBs transferred for KJ FPGA port

Size Total naïve (GBs) Total optimised (GBs)

103 0.00038 0.00014
603 0.01352 0.00405
5003 0.93877 0.27142
1,0003 3.75509 1.08302
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5.3 Model DRAM

The FPGA has two different types of memory: DRAM and BRAM. The BRAM
memory is a very fast close to the FPGA logic chips memory of a very limited size. The
BRAM on the FPGA is less than 10 MBs in size. The FPGA also has 24 GBs of DDR3
DRAM on-board. Like any DRAM, it shares read and write bandwidth on a single bus
(unlike the PCIe bus, which has different bandwidths for read and write). The time
spent on writing and reading to the DRAM can be expressed by the following formula:

TDRAM ¼ BytesInDRAM þ BytesOutDRAM
BandwidthDRAM

ð4Þ

The performance of writing to and reading from the DRAM is also affected by two
other factors: memory frequency and memory access pattern.

Memory frequency is chosen at build time. A faster memory frequency usually
yields a higher bandwidth; however, a faster memory frequency makes the design
harder to build due to the stricter timing requirements imposed by the faster frequency.

Memory access patterns play a more significant role to the DRAM performance. If
we try to a use a semi-random access pattern, e.g. one where the data is not located
sequentially on DRAM, the performance will be very poor. The maximum bandwidth
that can be achieved is expressed by the following formula:

Bandwidth ¼ BytesDIMM � No DIMMS� FrequencyDRAM � Efficiency ð5Þ

“Bytes per DIMM” is 8 Bytes on the MAX3. However, it can be configured and set
during the build phase of the design. The “No_DIMMS” is based on the actual FPGA
hardware that is used (in our case this is 6 DIMMS). The frequency of the DRAM
controller is also set during the build phase of the design. It can vary from 606 up to
800 MHz (for both read and write). The efficiency depends on the size of the transfer
and the access pattern. Assuming a perfect efficiency and using the maximum fre-
quency for both read and write operations a MAX3 DRAM subsystem can achieve a
theoretical bandwidth of 38.4 GB/s. More modern FPGAs can achieve higher fre-
quencies and are also able to accommodate more complicated designs.

Our implementation used a streaming approach rather than copying data to the
DRAM. Thus, we will not use TDRAM and TNETWORK in our calculations. The algo-
rithm which we used did not require the use of DRAM, however in order to inform
design choices it is useful to estimate the time spent on the DRAM. As long as we
know the amount of required data we can model the performance of the DRAM
subsystem.

Table 2. Model KJ FPGA port PCIe performance in seconds

Size Naïve In Naïve Out Optimised IN Optimised OUT

103 0.00011 0.000080 0.000037 0.000034
603 0.00429 0.00321 0.00115 0.0011
5003 0.29802 0.22357 0.07606 0.07472
1,0003 1.19209 0.89407 0.3032 0.29847
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6 Results

This section discusses the performance results of porting the mini-app and Chimaera-2
to FPGA. Due to the memory requirements of the Cimaera-2 code we were able to run
simulations with geometry sizes up to 1203. The mini-app enabled us to run simulations
with geometry sizes up-to 1,0003.

The CPU run-times were obtained on a workstation with an Intel Core i7-2600S
CPU @ 2.8 GHz (3.8 GHz with turbo mode) and running CentOS release 6.6. The
workstation had 32 GBs of DDR3 RAM and the mini-app and Chimaera-2 applications
were using a single core. The Fortran90 code was compiled using the GNU Fortran
compiler (v4.4.7) and the O3 optimisation flag. The C code was compiled using the
GNU Compiler Collection compiler (v4.4.7) and the O3 optimisation flag.

Both the mini-app and Chimaera-2 code stream data to/from the FPGA. Hence, we
did not use the on-board DRAM. The input data are streamed to the FPGA before the
execution of the compute Kernel and the computed values are streamed back to the
host. The amount of data copied to/from the FPGA depends on the port implementation
(naïve or optimised) and the number of ported directional loops (KJ or LKJ).

6.1 Mini-app Naïve KJ Implementation

Using the performance model calculations it is possible to estimate TCOMPUTE and
TPCIe. Based on this model, we created two versions of the application: a naïve and an
optimised implementation. The first 2 columns of Table 3 show the performance in
seconds for streaming data (TPCIe) to/from the FPGA using the naïve implementation
and using 1.8 GB/s bandwidth. The third column shows the performance (in seconds)
of running the FPGA at 100 MHz. The next two columns select the maximum of each
phase (TPCIe to/from and TCOMPUTE) and use it to model the performance of the naïve
mini-app using either 1.8 GB/s and 1.5 GB/s PCIe rates.

Table 3 shows the naïve implementation of the mini-app is PCIe bound. For small
simulations the overhead of calling the FPGA multiple times makes the runtime
compute bound. However, for simulations larger than 1003 the application becomes
PCIe bound. The last two columns of Table 3 show the actual duration of the naïve
mini-app in seconds (for two different designs; using 100 MHz and 170 MHz speeds).
It can be seen that increasing the operation speed of the FPGA by 70 % does not affect
the duration of the mini-app; since it is PCIe bound. For example, for the 1,0003

Table 3. Mini-app (KJ) Naive TPCIe, TCOMPUTE, modelled and actual duration

Size To
FPGA

From
FPGA

Compute
total

Duration
1.8 GB/s

Duration
1.5 GB/s

Actual
duration

Actual
duration*

103 0.0008 0.0006 0.0736 0.0008 0.0008 0.00657 0.00453
1003 0.895 0.5960 0.43 0.895 1.0747 1.1515 0.9213
5003 111.80 74.51 48.50 111.80 134.16 124.56 115.37
1,0003 894.22 596.05 367.00 894.22 1,073.06 963.66 950.08
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simulation the 100 MHz design runs for 963 s; whereas the 170 MHz design runs for
950 s (a performance improvement of 1.3 %).

Furthermore, the performance model is able to accurately predict the actual per-
formance of the application. For the 1,0003 simulation, the performance model predicts
a duration between 894 and 1,073 s using a speed of 1.8 GB/S and a less favourable
speed of 1.5 GB/s. The actual duration is 963 and 950 s (for the 100 MHz and
170 MHz designs). The actual duration corresponds to a * 1.65 GB/s PCIe transfer
rate.

6.2 Mini-app Optimised KJ Implementation

The optimised mini-app application reduces the need for redundant data copies to/from
the FPGA. In order to reduce the amount of data that needs to be copied it is necessary
to implement more logic on the FPGA. Three of the input arrays are used as read-only
memory and it was possible to reduce the size of the arrays from three dimensions to
two. The three read-only arrays are accessed using a constant pattern. The pattern is not
the same for each array; however, it is the same for the runtime of the application. We
implemented the pattern on the FPGA using logic blocks and several fast memory
blocks to store the data. The effect that this reduction has on TPCIe can be seen in the
first two columns of Table 4. The third column shows that the optimised version of the
mini-app is compute bound. Since the optimised version of the mini-app is compute
bound, increasing the operational speed of the FPGA by 70 % (from 100 MHz to
170 MHz) also improves the runtime performance of the mini-app.

As mentioned earlier, the performance of an application on an FPGA can be
improved by increasing the number of pipes that are used, which in turn increases the
number of calculations per cycle. In order to perform more calculations the FPGA
design increases the width between logic blocks. Instead of streaming 64 bits of data
between logic blocks, multiples of 64 bits are streamed (i.e. 128 bits for 2 pipes, 256
bits for 4 pipes, and so on) using more logic blocks (such as adders or multipliers);
thus, more physical space is required on the FPGA. Fortunately, there is an initial cost
for each resource; however, doubling the resource usage does not double the actual
hardware usage. We experienced 50 % increase of actual resource usage whenever we
doubled the number of pipes.

The TPCIe performance model of the “double” implementation is identical to the
model of the “single”, because the same amount of data is being streamed. However,

Table 4. Mini-app (KJ) TPCIe, TCOMPUTE, modeled and actual duration

Size To
FPGA

From
FPGA

TCOMPUT Duration
1.8 GBs

Duration
1.5 GBs

Actual
duration

Actual
duration*

103 3.4E-4 2.8E-4 0.0736 0.07036 0.07036 0.00587 0.0041
1003 0.306 0.2995 0.43 0.43 0.43 0.11267 0.0970
5003 37.88 37.29 45.35 45.35 45.46 52.2 39.9
1,0003 302.6 298.2 360.7 360.7 363.13 375.5 318.1
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TCOMPUTE is now reduced to 50 % as two cells are computed per cycle and the FPGA
Kernel will therefore run for half the time. Unfortunately in that case the problem is
again PCIe bound. Figure 3 shows a comparison between the various versions of the
mini-app.

If the double pipes mini-app application was not PCIe bound a performance
increase of * 100 % could be expected. And since there is enough physical space on
the FPGA to use even more pipes, a doubling of performance with each step could be
expected.

Since the problem is now PCIe bound, an option is to employ compression on the
host side to reduce the amount of data that needs to be transferred. Uncompressing the
data on the FPGA is free in terms of compute cost. However, one has to take into
account that compressing the data on the host side would increase the runtime of the
host application.

6.3 Mini-app LKJ Implementation

Using the same methodology as above we model TPCIe and TCOMPUTE; the results are
shown in Table 5. We can see that porting the L loop, the application becomes compute
bound. However, the amount of data that needs to be streamed to/from the FPGA has
been reduced. For example, for the 1,0003 simulation the LKJ version streams 7.9 GBs
and streams back 0.53 GBs (as opposed to 0.54 GBs and 0.53 GBs for the KJ version).
The LKJ version streams the data only once, whereas the KJ version has to repeat the
streaming operation 1,000 times.

The last two columns of Table 5 show the actual duration and the modelled
duration of the mini-app LKJ port. Since the mini-app LKJ port is compute bound, a
speed increase from 100 MHz to 170 MHz reduces the runtime of the application.

Fig. 3. Mini-app (KJ) speedup comparison

Table 5. Mini-app (LKJ) TPCIe, TCOMPUTE, modeled and actual duration

Size To
FPGA

From
FPGA

TCOMP Duration
1.8 GBs

Duration
1.5 GBs

Actual
Duration

Actual
duration*

103 4.0E-05 3.0E-05 0.0011 0.0011 0.0011 0.00195 0.00123
603 0.0020 0.00108 0.0785 0.0785 0.0785 0.07962 0.04636
5003 0.59 0.07 45.01 45.01 45.01
1,0003 4.44 0.30 360.01 360.01 360.01
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We are not able to run simulations larger than 603. The M loop calculations are
independent; however, the K, J and L loop calculation are not. Our design creates a
cyclic loop on the K, J and L output streams in order to drive the output calculation as
input for the next iteration. The Virtex FPGA allows * 1 MB of look-back buffers per
stream. For the 603 simulation 0.9887 MBs (K*J*M entries) are used as buffer. For the
703 we need 1.34 MBs, which is larger than the available buffer. In order to be able to
execute problems that are larger than 603 it is necessary to modify the algorithm and
use the DRAM as a temporary buffer. Furthermore, if the size of the simulation
increases to more than the available DRAM there will not enough space on the FPGA
to hold the temporary data. Another option to support larger problem sizes is to modify
the computational algorithm. The current algorithm computes a 2D face and then
moves back in the L (Z) dimension. However, it is possible to instead compute a whole
pencil in the L (Z) dimension and then move to the next pencil in the J (X) dimension.
This modification would reduce the look back buffer to L*M entries. Thus, we could
run 3,6003 simulations.

6.4 Chimaera-2 Port

We implemented two versions of the K, J and M loop FPGA port for the Chimaera-2
application: the naïve and the optimised versions. The Chimaera-2 kernel uses 8 input
arrays and 6 output arrays.

The first three columns of Table 6 show TPCIe and TCOMPUTE for the optimised
version of Chimaera-2 kJ port, which reduces the amount of data that needs to be
copied to/from the FPGA. As an example, the PCIe duration of the optimised version
compared to the naïve for the 1203 simulation dropped from 8,261 to 2,154 s, which
represents an improvement of almost 4x.

The last column of Table 6 shows the actual duration of the FPGA kernel calls. For
small simulation sizes the overheads cause the model to drift. However, as the simu-
lation sizes increase the predictions of the model match the duration of the Kernel.
Figure 4 (top left) shows the overall runtime of the Chimaera-2 application. The
difference between the naïve and optimised approach grows larger as the simulation
increases in size.

Figure 4 (top right and bottom left) show the performance improvement of reducing
data transfers to/from the FPGA. The first figure shows the speedup of the overall
application runtime whereas the second compares only the durations of the Kernels.

Table 6. Chimaera-2 (KJ) TPCIe, TCOMPUTE, modeled and actual Duration

Size To FPGA From FPGA TCOMPUTE Duration 1.8
GBs/s

Duration
1.5GBs/s

Actual
Duration

103 1.69 1.43 3.9 3.9 3.9 10.93
603 305.91 292.47 248.37 305.91 367.09 403.81
1003 1,390.41 1,345.56 1,098.66 1,390.41 1,668.50 1,588.80
5003 169,162 166,198 133,595 169,162 202,994
1,0003 1,348,658 1,327,596 1,067,831 1,348,658 1,618,389
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Both implementations (naïve and optimised) are PCIe bound. It can be seen that as
the size of the simulation increases, both implementations perform better. However,
this improvement will only last until the PCIe links become saturated. Once the PCIe
links are saturated performance improvements will plateau. It can be seen that the naïve
implementation speedup plateaus with the 603 simulation.

We also implemented a version of the optimised code, which replaced double
floating point numbers with single precision numbers in order to further reduce the
amount of data that needs to be transferred. The single precision version is faster
than the double precision implementation. However, it is not twice as fast even though
data transfer is reduced by 50 %. From Table 6 it can be seen that even though the
KJ optimised implementation is PCIe bound, the value of TPCIe is very close to
TCOMPUTE. Thus, when using single precision TPCIe is reduced and the performance
limiting factor is again TCOMPUTE.

7 Conclusions

We have shown how an application programmer with limited knowledge of FPGAs
and embedded computing can port a complicated production-ready Fortran90 code to
an FPGA and achieve acceptable performance. We have also seen that porting a greater

Fig. 4. Overall duration (CPU, naïve and optimised) (top left); overall speedup (naïve, optimised
and single precision) compared to single core CPU run (top right); kernel only speedup (naïve
and optimised) compared to single core CPU run (bottom left); speedup of M, JM and KJM loop
implementations (bottom right)
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proportion of the code to the FPGA improves performance. Our latest design uses
around 20 % of the available resources (thus we have enough physical space on the
FPGA to port more code or to use multiple pipes).

We have also shown how an application programmer can use a mini-app to test
different porting strategies. We used the mini-app to implement a streaming version; a
version which first copies to DRAM and then streams the data back; a version which
copies to DRAM the input and output arrays and a version which copies some of the
small arrays to the BRAM. Using the mini-app results, we decided to implement the
data streaming version for the full application.

Figure 4 (bottom right) shows the speedups of the M, JM and KJM loop imple-
mentations. The M loop implementation clocked a “speedup” of 0.0076, whereas
the KJM implementation reached 0.93 of the single CPU performance. Furthermore, as
we minimise data transfers and allow the FPGA to re-use data that are already on-chip
we realise that one of the most important optimisations that an application programmer
can implement is to reduce data traffic. FPGAs can provide Terabytes/sec of data
bandwidth between the logic blocks and BRAM. The bandwidth drops to tens of
gigabytes/sec for DRAM memory. Furthermore, newer FPGAs increase the available
physical space for logic blocks thus allowing even more code to be ported. Also, they
run at faster speeds and include more and faster memory (BRAM and DRAM).

We plan to change the algorithm and port the L loop on the FPGA. We need to
modify the algorithm due to the limited physical resources of the FPGA. The existing
algorithm solves a 2D plane and then moves (backwards or forwards) to the next plane
in the Z dimension. However, this approach requires “X*Y*M” look-back entries on
several streams. We will modify the algorithm and solve a pencil of Z length before
moving to the next pencil in the X plane. Thus we will reduce the amount of look-back
buffer to Z*M entries. If we have enough physical resources we plan to use multiple
pipes in order to compute multiple cells per cycle. Since, the LKJ port will be compute
bound, each extra pipe will improve performance.

In order to reduce the amount of data being copied to/from the FPGA we can use
compression. We plan to measure the effects of compression and perform a cost benefit
analysis to help us decide if the extra time spent on the host CPU to compress data
reduces the overall runtime of the application.

Finally, once the performance of the FPGA port is on par with the performance of a
compute node we plan to measure and compare the energy consumption of the FPGA
and the host platform.
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