
Station Assignment with Reallocation

Miguel A. Mosteiro1, Yulia Rossikova1, and Prudence W.H. Wong2(B)

1 Department of Computer Science, Kean University, Union, NJ, USA
{mmosteir,rossikoy}@kean.edu

2 Department of Computer Science, University of Liverpool, Liverpool, UK
pwong@liverpool.ac.uk

Abstract. We study a dynamic allocation problem that arises in various
scenarios where mobile clients joining and leaving have to communicate
with static stations via radio transmissions. Restrictions are a maximum
delay, or laxity, between consecutive client transmissions and a maximum
bandwidth that a station can share among its clients. Clients are assigned
to stations so that every client transmits under those restrictions. We
consider reallocation algorithms, where clients are revealed at its arrival
time, the departure time is unknown until they leave, and clients may
be reallocated to another station, but at a cost determined by the laxity
We present negative results for related previous protocols that motivate
the study; we introduce new protocols that expound trade-offs between
station usage and reallocation cost; we prove theoretically bounds on
our performance metrics; and we show through simulations that, for
realistic scenarios, our protocols behave even better than our theoretical
guarantees.

1 Introduction

We study a dynamic allocation problem in scenarios where data on mobile
devices has to be gathered and uploaded periodically to one of the static access
points available1. Examples include wearable health-monitoring systems, where
data gathered via physiological sensors on ambulatory patients must be peri-
odically uploaded, and participatory sensing, where mobile device users upload
periodically environment information.

Mobile devices, called clients, join and leave continuously, and they com-
municate with the static access points, called stations, The clients’ ephemeral
nature is modeled by the life interval of each client (from its arrival to depar-
ture), during which the client has to communicate with some station periodically.
Periodic communication is modeled by the client’s laxity, which bounds the max-
imum duration a client is not transmitting to some stations. The intrinsically
shared nature of the access to stations is modeled by a maximum shared station
bandwidth, by a client bandwidth, and by the client laxity.

1 We consider an upstream model, but the same results apply to downstream commu-
nication.

c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 151–164, 2015.
DOI: 10.1007/978-3-319-20086-6 12

152 M.A. Mosteiro et al.

Based on the above model, we study the problem of assigning clients to
stations so that every client transmits to some stations satisfying the laxity and
bandwidth constraints. We consider settings where clients are revealed at its
arrival time and their departure time is only revealed when they depart (as
in online algorithms). Clients may be reassigned from one station to another
and we call such reassignment reallocation. Intuitively reallocation causes more
disturbance to a client with small laxity. Therefore, we assume reallocation incurs
a cost inversely proportional to a client’s laxity. We aim to reduce the number
of active stations and reduce the reallocation cost. However, these two goals are
orthogonal, e.g., we can reallocate the clients every time a client arrives/departs
so that the number of active stations is minimized while incurring a very high
reallocation cost; alternatively we can keep the reallocation cost to zero but we
may use many active stations after a sequence of client departures. In this paper,
we aim to obtain a balance between the two performance metric. We call this
problem Station Assignment Problem with Reallocation (SA).

Previous Work. The closest work to the present paper is [12], where reallo-
cation algorithms were presented for Windows Scheduling (WS). The WS prob-
lem [6,7,11,12] is a particular case of SA where the bandwidth requirement of
each client is the same and each channel (a.k.a. station in our case) can only
serve one client at a time. In [12], a unit cost is incurred for each client reallo-
cated and the objective is to minimize an aggregate sum reflecting the amortized
reallocation cost and the number of channels used. A protocol called Classified
Reallocation is shown to guarantee an amortized constant number of realloca-
tions. This protocol is also evaluated experimentally together with two other
protocols Preemptive Reallocation and Lazy Reallocation.

WS [6,7,11] was first studied without reallocation and the objective function
was the number of channels. Both static case where clients never depart [6,7]
and dynamic case where clients may depart [11] have been studied. For the
dynamic case, the comparison is against peak load which may occur at different
time in the online algorithm and the optimal offline algorithm. In [12] and this
work, we compare against current load. Clients with same laxity were considered
in [14]. We also extend the objective function in [12] such that the number of
reallocated clients is weighted inversely by their laxity, and we provide trade-off
between reallocation cost and number of stations.

SA and Other Assignment Problems. Our problem differs from various
scheduling problems. The load balancing problem [4] also assigns tasks of differ-
ent load to servers, yet does not consider periodic tasks and disallow reallocation.
Interval coloring [1] concerns the number of machines used but not periodic tasks.
Periodic appearance of tasks in real time scheduling [8] is determined by the
input but not by the algorithm to satisfy laxity constraint. The SA problem is
also related to b-matching [15], fractional matching [5], and adwords [13]. Among
other details, the objective function is different.

There are two typical approaches of handling orthogonal objectives: to min-
imize the summation of two costs, e.g., energy efficient flow time scheduling
minimizes the sum of energy usage and total flow time of the tasks [2]; and to

Station Assignment with Reallocation 153

formulate two approximation ratios, e.g., energy efficient throughput scheduling
algorithm is t-throughput-competitive and e-energy-competitive [10]. We adopt
the later approach.

Reallocation has been considered in scheduling [3,9,16]. In [9], a distinction
is made between reassignment within server (reschedule) and between servers
(migration). Here, we assume rescheduling within a station is free and we use
“reallocation” to refer to reassignment to other stations. It is often that the num-
ber/size of jobs reallocated is bounded, e.g., by a function of the number of jobs
in the system [9], the size of the arriving job [16] or the number of machines [3].
In our problem, we bound the reallocation by the weight (cumulative inverse
laxity) of the clients departed.

2 Our Results

In this paper, we study reallocation algorithms for SA assuming that clients
have arbitrary laxities and bandwidth requirements, that clients depart from
the system at arbitrary times, and that they may be reallocated, but at some
cost proportional to the resources needed. Specifically, our contributions are the
following.

– We define a characterization of SA reallocation algorithms, which we call
(α, β)- approximation, as a combination of the competitive ratio on station
usage (α) and the cost of reallocations contrasted with the resources released
by departures (β).

– We show a sequence of negative results proving that worst-case guarantees
cannot be provided by previous protocols Classified Reallocation and Pre-
emptive Reallocation [12], even if they are modified to our reallocation cost
function.

– We present a novel SA protocol called Classified Preemptive Reallocation
(CPR) where clients are classified according to laxity and bandwidth require-
ments, and upon departures the remaining clients are preemptively reallo-
cated to minimize station usage, but only within their class. The protocol
presented includes a range of classifications that exposes trade-offs between
reallocation cost and station usage. In fact, we found first experimentally
what is the classification function that better balances these goals, and then
we provided theoretical guarantees for all functions.

– In our main theorem, we prove bounds on both of our performance metrics,
and we instantiate those bounds into three classifications and for specific
scenarios in two corollaries (refer to Section 5 for the specific bounds.)

– Finally, we present the results of our extensive simulations that allowed us
to find the function that best balances station usage and reallocation cost.
Additionally, our simulations show that, for a variety of realistic scenarios,
CPR performs better than expected by the worst-case theoretical analysis,
and close to optimal on average.

154 M.A. Mosteiro et al.

3 Definitions

Model. We consider a set S of stations and a set C of clients. Each client must
transmit packets to some station. Time is slotted so that each time slot is long
enough to transmit one packet. A client can be assigned to transmit to only one
station in any given time slot. Starting from some initial time slot 1, we refer to
the infinite sequence of time slots 1, 2, 3, . . . as global time . Each client c ∈ C
is characterized by an arrival time ac and a departure time dc, that define
a life interval τc = [ac, dc] in which c is active . That is, client c is active from
the beginning of time slot ac up to the end of time slot dc. We define C(t) ⊆ C to
be the set of clients that are active during time slot t. With respect to resources
required, each client c is characterized by a bandwidth requirement bc, and a
laxity 0 < wc ≤ |τc|, such that c must transmit to some station in S at least
one packet within each wc consecutive time slots in τc

2. On the other hand,
each station s ∈ S is characterized by a station bandwidth or capacity B,
which is the maximum aggregated bandwidth of clients that may transmit to s
in each time slot.

Notation. Let the schedule of a client c be an infinite sequence σc of values from
the alphabet {0} ∪ S. Let σc(t) be the tth value of σc. A station assignment
is a set σ of schedules that models the transmissions from clients to stations.
That is, for each client c ∈ C and time slot t, it is σc(t) = s if c is scheduled
to transmit to station s ∈ S in time slot t, and σc(t) = 0 if c does not transmit
in time slot t. If a client c is scheduled to transmit to a station s we say that c is
assigned to station s. We say that a station that has clients assigned is active ,
and inactive or empty otherwise.

Problem. The Station Assignment problem (SA) is defined as follows. For
a given set of stations and set of clients, obtain a station assignment such that
(i) each client transmits to some station at least once within each period of length
its laxity during its life interval, (ii) in each time slot, no station receives from
clients whose aggregated bandwidth is more than the station capacity. Notice
that, for any finite set of stations, there are sets of clients such that the SA
problem is not solvable. We assume in this work that S is infinite and what we
want to minimize is the number of active stations.

Algorithms. We study reallocation algorithms for SA. That is, the parame-
ters wc and bc needed to assign the client to some station are revealed at time ac,
but the departure time dc is unknown to the algorithm until the client actually
leaves the system (as in online algorithms). Then, at the beginning of time slot t,
an SA reallocation algorithm returns the transmission schedules of all clients that
are active in time slot t, possibly reassigning some clients from one station to
another. (I.e., the schedules of clients that were already active may be changed
from one time slot to another.) We refer to the reassignment of one client as

2 To maintain low station usage, we will assume that the laxity can be relaxed during
reallocation.

Station Assignment with Reallocation 155

a reallocation , whereas all the reassignments that happen at the beginning of
the same time slot are called a reallocation event .

Performance Metric. Previous work [12] has considered the number of clients
reallocated as the reallocation cost. In the present work, we consider a differ-
ent scenario where the cost of reallocating a client is proportional to resources
requested by that client. Specifically, we assume a cost for the reallocation of
each client c of ρ/wc, where ρ > 0 is a parameter. Then, letting R(ALG, t)
be the cost of the reallocation event incurred by algorithm ALG at time t, and
R(ALG, t) be the set of clients being reallocated, the overall cost is the following.

R(ALG, t) = ρ
∑

c∈R(ALG,t)

1
wc

. (1)

We will drop the specification of the algorithm whenever clear from the context.
With respect to performance, we aim for algorithms with low reallocation

cost and small number of active stations. Unfortunately, these are contradictory
goals. Indeed, the reallocation cost could be zero if no client is reallocated (online
algorithm), but the number of active stations could be as big as the number of
active clients (e.g. initially multiple clients assigned to each station, and then all
but one client from each active station depart). On the other hand, the number
of active stations could be minimized applying an offline algorithm on each time
slot, but the reallocation cost could be large. Thus, we characterize algorithms
with both metrics as follows.

For any SA algorithm ALG, let S(ALG, t) be the number of active stations
at time t in the schedule, let D(ALG, t) be the set of clients departed since the
last reallocation up to time t. Denoting

∑
c∈C′ 1/wc as the weight of the clients

in C ′ ⊆ C, let D(ALG, t) be the weight of the clients departed since the last
reallocation up to time t, that is, D(ALG, t) =

∑
c∈D(ALG,t) 1/wc. Also, we

denote the minimum number of active stations needed at time t as S(OPT, t).
Throughout, we will drop the specification of the algorithm whenever it is clear
from the context. Then, we say that an SA reallocation algorithm ALG achieves
an (α, β)-approximation if the following holds for any input.

max
t

S(ALG, t)
S(OPT, t)

≤ α

max
t

R(ALG, t)
D(ALG, t)

≤ β.

In words, the overhead on the number of stations used by ALG is never more than
a multiplicative factor α over the optimal, and the reallocation cost, amortized
on the “space” left available by departing clients is never more than β. The latter
is well defined since reallocations only occur after departures. Notice that these
ratios are strong guarantees, in the sense that they are the maximum of the ratios
instead of the ratio of the maxima. (This distinction was called previously in the
literature against current load versus against peak load respectively.) Moreover,
the reallocation ratio computed as the maximum over reallocation events is also
stronger than the ratio of cumulative weights since the system started.

156 M.A. Mosteiro et al.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

t mod 4 ≡ 1

1 2 3 4 5 6 7 8 910111213. . .
(a) Mapping node - time-
slot.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

cccc

c

1 2 3 4 5 6 7 8 910111213. . .
(b) First client assigned.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

cccc

c

bbb

b

aa

a

1 2 3 4 5 6 7 8 910111213. . .
(c) Some clients assigned.

Fig. 1. Illustration of a binary broadcast tree. (a) A depth-2 tree corresponds to peri-
odic broadcast of period 22. (b) Clients are assigned to leaves, e.g., client c with laxity
4 is assigned the black node meaning timeslot 1, 5, 9, etc. are reserved for it. (c) Open
leaf (white node) corresponds to available slot.

4 Algorithms

Broadcast Trees. A common theme in WS algorithms with periodic transmis-
sion schedules is to represent those schedules with Broadcast Trees [6,11,12]. See
Figure 1 for illustration. Throughout the paper, we refer to a set of broadcast
trees as the forest , and to the distance in edges from a node to the root as the
depth . Generalizing, the 2d nodes at depth d in a complete binary tree represent
the time slots t mod 2d (see Figure 1(a)). Then, to indicate that some (periodic)
time slot has been reserved for a client c to transmit to a given station s, we say
informally that c is assigned to the corresponding node in the broadcast tree of s.
Throughout the rest of the paper, we use both indistinctively. Refer to [6,11] for
further details on broadcast trees.

WS Algorithms. Chan et al. [11] presented a WS algorithm preserving the fol-
lowing invariant. For each station, the broadcast tree has at most one available
leaf at each depth. In order to preserve this invariant, when a client departs, the
remaining clients in the same tree are rearranged. If reallocations among trees
are possible, the algorithm Preemptive Reallocation (PR) [12] extended the same
idea to all trees, maintaining the invariant that throughout all trees there is at
most one available leaf at each depth. For laxities that are powers of 2, PR
achieves an optimal station usage. However, we show in Lemma 1 (1) and (2)
that simple modification to PR leads to negative results.

A WS algorithm with provable bounded reallocation cost guarantees was
shown also in [12]. The protocol, called Classified Reallocation (CR), guarantees
that all clients assigned to the same station have the same laxity, except for
one distinguished station that handles all laxities linear and above. To attain
constant amortized reallocation cost, clients are moved to/from the distinguished
station only after the number of clients has halved/doubled. However, for the
reallocation cost function in Equation 1, CR has an arbitrarily bad reallocation
cost ratio, as we show in Lemma 1 (3).

Station Assignment with Reallocation 157

Algorithm 1. Classified Preemptive Reallocation. ��x�� is the largest
power of 2 that is not larger than x. We represent the transmission sched-
ules with broadcast trees. A node with both children available becomes
an available leaf. A station with no client assigned becomes non-active.
〈wlow, whigh〉 are the boundaries of the class of the input client.

1 Algorithm
2 upon arrival or departure of a client c do
3 if arrival then allocate(c, 〈wlow, whigh〉)
4 else consolidate(c, 〈wlow, whigh〉)
5 Procedure allocate(c, 〈wlow, whigh〉)
6 for each depth i = �log wc� − �log wlow� down to 0 do
7 for each active station s of class 〈wlow, whigh, 1/��B/bc��〉 do
8 if there is a leaf � available at depth i in the broadcast tree of s then
9 allocate to � a new subtree with client c assigned at depth

�log wc� − i − �log wlow� of the broadcast subtree
10 return

11 activate a new station s in class 〈wlow, whigh, 1/��B/bc��〉
12 choose one of the leaves � at depth 0 of the broadcast subtrees of s
13 allocate to � a new subtree with client c assigned at depth

�log wc� − �log wlow� of the broadcast subtree

14 Procedure consolidate(c, 〈wlow, whigh〉)
15 for each depth i = �log wc� − �log wlow� down to 1 do
16 if there are two active stations of class 〈wlow, whigh, 1/��B/bc��〉 both

with a leaf at depth i available then reallocate sibling subtree of
smaller weight

17 else return

// reallocations cleared a whole broadcast subtree

18 if there are two active stations of class 〈wlow, whigh, 1/��B/bc��〉 with
empty broadcast subtrees then reallocate a subtree from the station with at
least one empty subtree to the station with exactly one empty subtree

Classified Preemptive Reallocation. The negative results in Lemma 1 apply
to WS. Given that WS is a particular case of SA fixing bc = B for all clients,
the same negative results apply to SA. Thus, should the reallocation cost be
maintained low, a new approach is needed. We present now an online SA proto-
col (Algorithm 1), which we call Classified Preemptive Reallocation (CPR), that
provides guarantees in channel-station usage and reallocation cost. The proto-
col may be summarized as follows. Clients are classified according to laxity and
bandwidth requirements. Upon arrival, a client is allocated to a station within
its corresponding class to guarantee a usage excess (with respect to optimal) of
at most one station per class plus one station throughout all classes. Upon depar-
ture of a client, if necessary to maintain the above-mentioned guarantee, clients
are reallocated, but only within the corresponding class. The protocol includes

158 M.A. Mosteiro et al.

three different classifications providing different trade-offs between reallocation
cost and station usage. We recreate the idea of broadcast trees, but now we have
multiple trees representing the schedule of each station. On one hand, we use
broadcast trees with depth bounded by the class laxities. We call them broad-
cast subtrees to reflect that they are only part of a regular broadcast tree. On
the other hand, we have the multiplicity yielded by the shared station capacity
B. An example of broadcast subtrees can be seen in Figure 2. Further details
follow.

The mechanism to allocate an arriving client can be described as follows.
Upon arrival, a client c is classified according to its laxity and bandwidth require-
ment. Specifically, c is assigned to a class for clients with bandwidth requirement
B/��B/bc�� and laxity in [wlow, whigh), for some wlow and whigh that depend on
the classification chosen. Notice that each station has up to ��B/bc�� ·

wlow��
subtrees. That is, ��B/bc�� ways to share its capacity B and

wlow�� ways to
share its schedule (see Figure 2). Within its class, we assign c to an available leaf
at depth �log wc� −
log wlow� in any subtree in the forest (see Figure 2(b)). If
there is no such leaf available, we look at smaller depths up in the forest one by
one. If we find an available leaf at depth
log wlow� ≤ i < �log wc� −
log wlow�,
we allocate to that leaf a new subtree with c assigned at depth �log wc� − i with
respect to the root of the broadcast subtree (see Figures 2(a) and 2(c)). If no
such leaf is available at any depth, a new broadcast subtree T is created with c
assigned at depth �log wc� −
log wlow�, and T is assigned to a newly activated
station. Refer to Algorithm 1 for further details.

The above allocation mechanism maintains the following invariant: (1) there
is at most one leaf available at any depth larger than
log wlow� of the forest,
and (2) there is at most one station with leaves available at depth
log wlow� (an
empty broadcast subtree). When a client departs, this invariant is re-established
through reallocations as follows. When a client c departs, if �log wc� >
log wlow�,
we check if there was already a leaf � available at depth �log wc� −
log wlow�. If
there was one, either the sibling of c or the sibling of � has to be reallocated to
re-establish the invariant. We greedily choose to reallocate whichever sibling has
smaller weight of the two (see Figure 3(a)). The process does not necessarily stop
here because, if �log wc� − 1 >
log wlow� and there was a leaf already available
at depth �log wc�−1−
log wlow�, together with the newly available leaf at depth
�log wc� − 1 −
log wlow� due to the reallocation at depth �log wc� −
log wlow�,
it yields two leaves available at depth �log wc�−1−
log wlow�. Hence, again one
of the sibling subtrees has to be reallocated (see Figure 3(b)). This transitive
reallocations upwards the forest may continue until a depth where no reallocation
is needed or until the depth
log wlow�+1 is reached, when the reallocation leaves
a broadcast subtree empty. In the latter case, we reallocate a whole broadcast
subtree so that only one station has empty subtrees and the invariant is re-
established. Refer to Algorithm 1 for further details.

Notice that when a client is reallocated (even within a station) its laxity may
be violated once. Consider for instance the schedule in Figure 1(c). Let wa = 4,
that is, a is transmitting at its lowest possible frequency. If at the end of time

Station Assignment with Reallocation 159

Fig. 2. Illustration of allocation mechanism. Class: laxities [4, 16), bandwidth 1/2.
Subtrees are depicted connected to a broadcast tree to reflect their location in the
station schedule.

slot 7 client b departs, at the beginning of time slot 8 client a will be reallocated
to the slot of client b, that is, to transmit next in slot 11. This new schedule
violates wa because the previous slot when a transmitted was 5. For WS, in [11]
the issue is approached making a client transmit once more within the original
schedule. As the authors say, this approach introduces a transition delay. In their
model, there is no impact on station usage because their ratio is against peak
load. However, for a ratio against current load such as our model, reserving a
slot for a client in more than one station implies an overhead on channel usage.
Indeed, for any given allocation/reallocation policy, an adversarial input can be
shown so that either the laxity is stretched or the channel usage is not optimal.
Hence, in our model we assume that when a client is reallocated the laxity may
be stretched, folding the cost in the reallocation cost.

5 Analysis

We start with negative results in Lemma 1, which apply to WS, and to SA fixing
bc = B for all clients. The proofs, left to the full paper, are all based on showing
an adversarial client set for which the claim holds.

160 M.A. Mosteiro et al.

Fig. 3. Illustration of reallocation mechanism. Class: laxities [4, 16), bandwidth 1/2.
After the second reallocation Station 2 is left empty and, hence, deactivated. Sub-
trees are depicted connected to a broadcast tree to reflect their location in the station
schedule.

Lemma 1. 1. There exists a client arrival/departure schedule such that, in
Preemptive Reallocation [12], the ratio of number of clients reallocated
against the number of arrivals plus departures is unbounded.

2. For Preemptive Reallocation [12], modified so that the sibling subtree of
smaller weight is reallocated to restore the invariant, rather than the sub-
tree with less clients, the following holds. For any d > 0, there exists a client
arrival/departure schedule such that it is maxt R(t)/D(t) ≥ ρ(2d − 1)2/2d.

3. For any integer x > 0 and any w ≥ 2x+5 arbitrarily big such that w is
a power of 2, there exists a client arrival/departure schedule such that, in
Classified Reallocation [12], it is maxt R(t)/D(t) ≥ ρ/4

7·2x w.

The above lemma shows that the application of previous WS reallocation
algorithms to SA is not feasible. Theorem 1 gives guarantees on station usage
and reallocation cost for CPR. The proof, left to the full paper, shows that the
invariant is re-established after each arrival or departure. Then, competitiveness
on station usage is derived from the invariant properties. Finally, to bound β,
a worst case scenario minimizing the weight of departed clients and maximizing
the reallocated weight is shown. To provide intuition and comparison for the
simulations, we instantiate Theorem 1 on a setting where all laxities are powers
of 2 and all bandwidth requirements are the full capacity of a station.

Station Assignment with Reallocation 161

Theorem 1. At any time slot t, CPR achieves an (α, β)-approximation as fol-
lows.

α = max
t

4(1 + Γ (ALG, t) + S(OPT, t))
S(OPT, t)

β = max
t

ρ(2��whighmax(t)��/

wlowmax(t)�� − 1).

Where Γ (ALG, t) is the number of classes used by CPR at time t, and whighmax(t)
and wlowmax(t) are the maximum upper and lower limits of a class at time t.

Corollary 1. For a set of clients C such that, for all c ∈ C, it is bc = B and
wc = 2i for some i ≥ 0, and for all t it is wmax(t) > wmin(t) ≥ 4, the following
holds. At any time slot t, CPR achieves an (α, β)-approximation as follows.

1. If the client classification boundaries are [wi, wi+1), where w1 = 1, and wi =
2wi−1, for any i > 1, then

α = 1 + (2 + log(wmax(t)/wmin(t))) /H(C(t))
β = 3ρ.

2. If the client classification boundaries are [wi, wi+1), where w1 = 1, w2 =
2, w3 = 4, and wi = wi−1 log wi−1, for any i > 3, then

α = 1 + (2 + log wmax(t)/ log log wmin(t)) /H(C(t))
β = ρ(2 log wmax(t) − 1).

3. If the client classification boundaries are [wi, wi+1), where w1 = 1, w2 = 2,
and wi = w2

i−1, for any i > 2, then

α = 1 + (2 + log(log wmax(t)/ log wmin(t))) /H(C(t))

β = ρ
(
2
√

wmax(t) − 1
)

.

Where H(C(t)) =
∑c∈C(t) 1/wc�, wmax(t) = maxc∈C(t) wc, wmin(t) =
minc∈C(t) wc, bmax(t) = maxc∈C(t) bc, and bmin(t) = minc∈C(t) bc.

6 Simulations

In this section, we present the main experimental simulations results of the CPR
algorithm. We highlight here that the classification factor (logarithmic) that
balances station usage and reallocation cost was found through experimentation
with various functions. For the specific cases presented (constant, logarithmic,
and linear factors) we have focused on a scenario where ∀c ∈ C, bc = B and
wc = 2i, i ≥ 0 (as in Corollary 1). Simulations for arbitrary bandwidths and
laxities are left to the full version of this paper.

To evaluate thoroughly the performance of our protocol, we have produced
various sets of clients (recall that each client is characterized by arrival time,

162 M.A. Mosteiro et al.

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16

St
at

io
n
us

ag
e

ra
tio

(a
lp

ha
)

Reallocations / Departures ratio (beta)

Uniform arrivals
Batched arrivals
Poisson arrivals

Constant

Logarithmic

Linear

Fig. 4. Worst case α vs. β. |C| = 4000, wmax = 1024, wmin = 1, ρ = 1.

departure time, and laxity). The laxity of each client was chosen independently at
random from {1, 2, 4, . . . , 1024}, with a distribution biased towards large laxities.
More precisely, for each client c, wc = 1 with probability 1/1024, or wc = 2i with
probability 2i/211, for 1 ≤ i ≤ 10. For n = 4000 clients, time was discretized
in 2n slots. The arrival time of each client was chosen: (a) uniformly at random
within [1, 2n]; (b) in 3 batches of n/3 clients arriving at t = 1, t = n/2, and t = n;
and (c) as a Poisson process with rate 0.7. For each client, the departure time
was chosen uniformly at random from the interval [ta, 2n], where ta is the time of
arrival of such client. With respect to the protocol, three different classification
factors: constant, logarithmic, and linear, were used.

For each of the nine scenarios arising from the combination of the variants,
we evaluated experimentally the (α, β)-approximation of CPR. Our simulations
showed that the performance in practical settings is as expected or better than
the theoretical bounds. The reallocation vs. departures weight ratio (bounded
by β) is around 1 most of the time for all three algorithms. On the other hand,
after a period upon initial arrivals and a period before last departures, the sta-
tion usage ratio against H(C(t)), which is only a lower bound of the optimal,
(bounded by β) is most of the time below 2.

To evaluate the behavior of our algorithms in adverse conditions, we extended
the number of cases considering |C| = 4000, 8000, and 16000 clients, and the
range of laxities to {16, 32, 64, . . . , wmax}, for wmax = 1024, 4096, and 16384.
The laxities were drawn uniformly at random. These cases, combined with the
arrival distributions and the classification factors, yielded 81 scenarios tested.
We observed that the trade-offs between α and β according to the algorithm
used apply to all these scenarios. Indeed, having more clients and setting higher
wmax does not affect the trade-offs, only their magnitude as expected from the
functions bounding α and β in Corollary 1. Should the reallocation ratio be

Station Assignment with Reallocation 163

minimized, the constant factor classification achieves better performance at a
higher station usage. On the other hand, if channel usage must be kept low, the
linear factor classification performs better incurring in higher reallocation cost.
The logarithmic factor balances both costs. Figure 4 illustrates these trade offs
for one of the scenarios. In comparison with the bounds proved in Corollary 1,
for the scenarios simulated CPR behaves better than expected.

Acknowledgments. Authors would like to thank Mart́ın Farach-Colton for useful
discussions. This work has been supported in part by the National Science Foundation
(CCF-1114930); Kean University UFRI grant; U. of Liverpool Departmental Visiting
Fellowship; U. of Liverpool Network Sciences & Technologies (NeST).

References

1. Adamy, U., Erlebach, T.: Online coloring of intervals with bandwidth. In:
Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 1–12. Springer,
Heidelberg (2004)

2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Trans. on Algorithms 3(4), 49 (2007)

3. Albers, S., Hellwig, M.: On the value of job migration in online makespan minimiza-
tion. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 84–95.
Springer, Heidelberg (2012)

4. Azar, Y.: On-line load balancing. In: Fiat, A. (ed.) Online Algorithms 1996. LNCS,
vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

5. Azar, Y., Litichevskey, A.: Maximizing throughput in multi-queue switches. Algo-
rithmica 45, 69–90 (2006)

6. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems.
SIAM Journal on Computing 32(4), 1091–1113 (2003)

7. Bar-Noy, A., Ladner, R.E., Tamir, T.: Windows scheduling as a restricted version
of bin packing. ACM Trans. on Algorithms 3(3), 28 (2007)

8. Baruah, S., Goossens, J.: Scheduling real-time tasks: algorithms and complexity.
In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models and Performance
Analysis, pp. 15-1–15-41. CRC Press (2004)

9. Bender, M.A., Farach-Colton, M., Fekete, S.P., Fineman, J.T., Gilbert, S.: Reallo-
cation problems in scheduling. In: SPAA, pp. 271–279 (2013)

10. Chan, H.-L., Chan, J.W-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.:
Optimizing throughput and energy in online deadline scheduling. ACM Trans. on
Algorithms 6(1) (2009)

11. Chan, W.-T., Wong, P.W.H.: On-line windows scheduling of temporary items.
In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 259–270.
Springer, Heidelberg (2004)

12. Farach-Colton, M., Leal, K., Mosteiro, M.A., Thraves, C.: Dynamic windows
scheduling with reallocation. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014.
LNCS, vol. 8504, pp. 99–110. Springer, Heidelberg (2014)

13. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: beating 1–1/e. In: FOCS, pp. 117–126 (2009)

164 M.A. Mosteiro et al.

14. Fernández Anta, A., Kowalski, D.R., Mosteiro, M.A., Wong, P.W.H.: Station
assignment with applications to sensing. In: Flocchini, P., Gao, J., Kranakis, E., der
Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 155–166. Springer,
Heidelberg (2014)

15. Kalyanasundaram, B., Pruhs, K.: An optimal deterministic algorithm for online
b-matching. Theoretical Computer Science 233(1–2), 319–325 (2000)

16. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 1111–1122. Springer, Heidelberg (2004)

	Station Assignment with Reallocation
	1 Introduction
	2 Our Results
	3 Definitions
	4 Algorithms
	5 Analysis
	6 Simulations
	References

