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Preface

This volume contains the papers presented at the 14th International Symposium on
Experimental Algorithms (SEA 2015) held during June 29–July 1, 2015, in Paris. SEA
is an international forum for researchers in the area of design, analysis, and experi-
mental evaluation and engineering of algorithms, as well as in different aspects of
computational optimization and its applications. The preceding symposia were held in
Riga, Monte Verita, Rio de Janeiro, Santorini, Menorca, Rome, Cape Cod, Dortmund,
Ischia, Crete, Bordeaux, Rome, and Copenhagen.

In response to the call for papers, we received 76 submissions. Each submission was
reviewed by at least three reviewers. The submissions were mainly judged on origi-
nality, technical quality, and relevance to the topics of the conference. On the basis
of the reviews and on extensive electronic discussions, the Program Committee (PC)
decided to accept 30 papers. In addition to the accepted contributions, the program also
included three distinguished lectures by Alessandra Carbone (UPMC), Erik Demaine
(MIT), and Kurt Mehlhorn (MPI).

We would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the PC, the external reviewers and the members of the
Organizing Committee. We also would like to thank the developers and maintainers
of the EasyChair conference system, which was used to manage the electronic sub-
missions, the review process, and the electronic PC meeting. We also acknowledge
Springer for publishing the proceedings of SEA 2015 in their LNCS series.

April 2015 Evripidis Bampis
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Parallel Construction of Succinct Trees

Leo Ferres1, José Fuentes-Sepúlveda1(B), Meng He2, and Norbert Zeh2

1 Department of Computer Science, Universidad de Concepción, Concepción, Chile
{lferres,jfuentess}@udec.cl

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
{mhe,nzeh}@cs.dal.ca

Abstract. Succinct representations of trees are an elegant solution to
make large trees fit in main memory while still supporting navigational
operations in constant time. However, their construction time remains
a bottleneck. We introduce a practical parallel algorithm that improves
the state of the art in succinct tree construction. Given a tree on n nodes
stored as a sequence of balanced parentheses, our algorithm builds a suc-
cinct tree representation in O(n/p + lg p) time, where p is the number
of available cores. The constructed representation uses 2n + o(n) bits of
space and supports a rich set of operations in O(lg n) time. In experi-
ments using up to 64 cores and on inputs of different sizes, our algorithm
achieved good parallel speed-up. We also present an algorithm that takes
O(n/p + lg p) time to construct the balanced parenthesis representation
of the input tree required by our succinct tree construction algorithm.

1 Introduction

Trees are ubiquitous in Computer Science. They have applications in every aspect
of computing from XML/HTML processing to abstract syntax trees (AST) in
compilers, phylogenetic trees in computational genomics or shortest path trees
in path planning. The ever increasing amounts of structured, hierarchical data
processed in many applications have turned the processing of the correspond-
ing large tree structures into a bottleneck, particularly when they do not fit in
memory. Succinct tree representations store trees using as few bits as possible
and thereby significantly increase the size of trees that fit in memory while still
supporting important primitive operations in constant time. There exist such
representations that use only 2n + o(n) bits to store the topology of a tree with
n nodes, which is close to the information-theoretic lower bound and much less
than the space used by traditional pointer-based representations.

Alas, the construction of succinct trees is quite slow compared to the construc-
tion of pointer-based representations. Multicore parallelism offers one possible
tool to speed up the construction of succinct trees, but little work has been done
in this direction so far. The only results we are aware of focus on the construc-
tion of wavelet trees, which are used in representations of text indexes. In [10],

This work was supported by the Emerging Leaders in the Americas scholarship
programme, NSERC, and the Canada Research Chairs programme.

c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-20086-6 1



4 L. Ferres et al.

two practical multicore algorithms for wavelet tree construction were introduced.
Both algorithms perform O(n lg σ)1 work and have span O(n), where n is the
input size and σ is the alphabet size. In [21], Shun introduced three new algo-
rithms to construct wavelet trees in parallel. Among these three algorithms, the
best algorithm in practice performs O(n lg σ) work and has span O(lg n lg σ).
Shun also explained how to parallelize the construction of rank/select structures
so that it requires O(n) work and O(1) span for rank structures, and O(n) work
and O(lg n) span for select structures.

In this paper, we provide a parallel algorithm that constructs the RMMT tree
representation of [19] in O(n/p + lg p) time using p cores. This structure uses
2n+o(n) bits to store an ordinal tree on n nodes and supports a rich set of basic
operations on these trees in O(lg n) time. While this query time is theoretically
suboptimal, the RMMT structure is simple enough to be practical and has been
verified experimentally to be very small and support fast queries in practice [1].
Combined with the fast parallel construction algorithm presented in this paper, it
provides an excellent tool for manipulating very large trees in many applications.

We implemented and tested our algorithm on a number of real-world input
trees having billions of nodes. Our experiments show that our algorithm run on
a single core is competitive with state-of-the-art sequential constructions of the
RMMT structure and achieves good speed-up on up to 64 cores and likely beyond.

2 Preliminaries

Succinct Trees. Jacobson [15] was the first to propose the design of succinct
data structures. He showed how to represent an ordinal tree on n nodes using
2n + o(n) bits so that computing the first child, next sibling or parent of any
node takes O(lg n) time in the bit probe model. Clark and Munro [5] showed
how to support the same operations in constant time in the word RAM model
with word size Θ(lg n). Since then, much work has been done on succinct tree
representations, to support more operations, to achieve compression, to provide
support for updates, and so on [2,9,11,13,16–19]. See [20] for a thorough survey.

Navarro and Sadakane [19] recently proposed a succinct tree representa-
tion, referred to as NS-representation throughout this paper, which was the
first to achieve a redundancy of O(n/ lgc n) bits for any positive constant c.
The redundancy of a data structure is the additional space it uses above
the information-theoretic lower bound. While all previous tree representations
achieved a redundancy of o(n) bits, their redundancy was Ω(n lg lg n/ lg n) bits,
that is, just slightly sub-linear. The NS-representation also supports a large num-
ber of navigational operations in constant time (see Table 1 in [19]); only the
work in [9,13] supports two additional operations. An experimental study of
succinct trees [1] showed that a simplified version of the NS-representation uses
less space than other existing representations in most cases and performs most
operations faster. In this paper, we provide a parallel algorithm for constructing
this representation.
1 We use lg x to mean log2 x throughout this paper.
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The NS-representation is based on the balanced parenthesis sequence P of
the input tree T , which is obtained by performing a preorder traversal of T and
writing down an opening parenthesis when visiting a node for the first time and
a closing parenthesis after visiting all its descendants. Thus, the length of P
is 2n.

The NS-representation is not the first structure to use balanced parenthe-
ses to represent trees. Munro and Raman [18] used succinct representations of
balanced parentheses to represent ordinal trees and reduced a set of naviga-
tional operations on trees to operations on their balanced parenthesis sequences.
Their solution supports only a subset of the operations supported by the NS-
representation. Additional operations can be supported using auxiliary data
structures [17], but supporting all operations in Table 1 of [19] requires many aux-
iliary structures, which increases the size of the final data structure and makes it
complex in both theory and practice. The main novelty of the NS-representation
lies in its reduction of a large set of operations on trees and balanced parenthesis
sequences to a small set of primitive operations. Representing P as a bit vector
storing a 1 for each opening parenthesis and a 0 for each closing parenthesis,
these primitive operations are the following, where g is an arbitrary function on
{0, 1}:

sum(P, g, i, j) =
∑j

k=i g(P [k])
fwd search(P, g, i, d) = min{j | j ≥ i, sum(P, g, i, j) = d}
bwd search(P, g, i, d) = max{j | j ≤ i, sum(P, g, j, i) = d}

rmq(P, g, i, j) = min{sum(P, g, i, k) | i ≤ k ≤ j}
RMQ(P, g, i, j) = max{sum(P, g, i, k) | i ≤ k ≤ j}

rmqi(P, g, i, j) = argmin
k∈[i,j]

{sum(P, g, i, k)}

RMQi(P, g, i, j) = argmax
k∈[i,j]

{sum(P, g, i, k)}

Most operations supported by the NS-representation reduce to these primitives
by choosing g to be one of the following three functions:

π : 1 �→ 1 φ : 1 �→ 1 ψ : 1 �→ 0
0 �→ −1 0 �→ 0 0 �→ 1

For example, assuming the ith parenthesis in P is an opening parenthesis, the
matching closing parenthesis can be found using fwd search(P, π, i, 0). Thus, it
(almost)2 suffices to support the primitive operations above for g ∈ {π, φ, ψ}. To
do so, Navarro and Sadakane designed a simple data structure called Range Min-
Max Tree (RMMT), which supports the primitive operations above in logarithmic
time when used to represent the entire sequence P . To achieve constant-time
operations, P is partitioned into chunks. Each chunk is represented using an
2 A few navigational operations cannot be expressed using these primitives. The NS-

representation includes additional structures to support these operations.
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Fig. 1. Range min-max tree

RMMT, which supports primitive operations inside the chunk in constant time
if the chunk is small enough. Additional data structures are used to support
operations on the entire sequence P in constant time.

Next we briefly review the RMMT structure and how it supports the primi-
tive operations for g = π. Navarro and Sadakane [19] discussed how to make
it support these operations also for φ and ψ while increasing its size by only
O(n/ lgc n). To define the version of the RMMT we implemented, we partition P
into chunks of size s = w lg n, where w is the machine word size. For simplicity,
we assume that the length of P is a multiple of s. The RMMT is a complete binary
tree over the sequence of chunks (see Figure 1). (If the number of chunks is not a
power of 2, we pad the sequence with chunks of zeroes to reach the closest power
of 2. These chunks are not stored explicitly.) Each node u of the RMMT represents
a subsequence Pu of P that is the concatenation of the chunks corresponding to
the descendant leaves of u. Since the RMMT is a complete tree, we need not store
its structure explicitly. Instead, we index its nodes as in a binary heap and refer
to each node by its index. The representation of the RMMT consists of four arrays
e′, m′, M ′, and n′, each of length equal to the number of nodes in the RMMT. The
uth entry of each of these arrays stores some crucial information about Pu: Let
the excess at position i of P be defined as sum(P, π, 0, i) =

∑i
k=0 π(P [k]). e′[u]

stores the excess at the last position in Pu. m′[u] and M ′[u] store the minimum
and maximum excess, respectively, at any position in Pu. n′[u] stores the number
of positions in Pu that have the minimum excess value m′[u].

Combined with a standard technique called table lookup, an RMMT supports
the primitive operations for π in O(lg n) time. Consider fwd search(P, π, i, d)
for example. We first check the chunk containing P [i] to see if the answer is
inside this chunk. This takes O(lg n) time by dividing the chunk into portions
of length w/2 and testing for each portion in turn whether it contains the
answer. Using a lookup table whose content does not depend on P , the test
for each portion of length w/2 takes constant time: For each possible bit vector
of length w/2 and each of the w/2 positions in it, the table stores the answer of
fwd search(P, π, i, d) if it can be found inside this bit vector, or −1 otherwise.
As there are 2w/2 bit vectors of length w/2, this table uses 2w/2poly(w) bits. If
we find the answer inside the chunk containing P [i], we report it. Otherwise, let
u be the leaf corresponding to this chunk. If u has a right sibling, we inspect the
sibling’s m′ and M ′ values to determine whether it contains the answer. If so,
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we let v be this right sibling. Otherwise, we move up the tree from u until we
find a right sibling v of an ancestor of u whose corresponding subsequence Pv

contains the query answer. Then we use a similar procedure to descend down the
tree starting from v to look for the leaf descendant of v containing the answer
and spend another O(lg n) time to determine the position of the answer inside
its chunk. Since we spend O(lg n) time for each of the two leaves we inspect and
the tests for any other node in the tree take constant time, the cost is O(lg n).

Supporting operations on the leaves, such as finding the ith leaf from the left,
reduces to rank and select operations over a bit vector P1[1..2n] where P1[i] = 1
iff P [i] = 1 and P [i+1] = 0. rank and select operations over P1 in turn reduce
to sum and fwd search operations over P1 and can thus be supported by an
RMMT for P1. P1 does not need to be stored explicitly because any consecutive
O(w) bits of P1 can be computed from the corresponding bits of P using table
lookup.

To analyze the space usage, observe that storing P requires 2n bits, while the
space needed to store the vectors e′, m′, M ′, and n′ is 2(n/s) lg n = 2n/w. The
space needed to store the same vectors for the RMMT of P1 is the same. Since we can
assume that w = Ω(lg n), the total size of the RMMT is thus 2n + O(n/ lg n) bits.

Dynamic Multithreading (DyM) Model. In the DyM model [7,
Chapter 27], a multithreaded computation is modelled as a directed acyclic graph
G = (V,E) whose vertices are instructions and where (u, v) ∈ E if u must be
executed before v. The time Tp needed to execute the computation on p cores
depends on two parameters of the computation: its work T1 and its span T∞.
The work is the running time on a single core, that is, the number of nodes (i.e.,
instructions) in G, assuming each instruction takes constant time. Since p cores
can execute only p instructions at a time, we have Tp = Ω(T1/p). The span is the
length of the longest path in G. Since the instructions on this path need to be
executed in order, we also have Tp = Ω(T∞). Together, these two lower bounds
give Tp = Ω(T∞ + T1/p). Work-stealing schedulers match the optimal bound to
within a factor of 2 [4]. The degree to which an algorithm can take advantage of
the presence of p > 1 cores is captured by its speed-up T1/Tp and its parallelism
T1/T∞. In the absence of cache effects, the best possible speed-up is p, known as
linear speed-up. Parallelism provides an upper bound on the achievable speed-up.

To describe parallel algorithms in the DyM model, we augment sequential
pseudocode with three keywords. The spawn keyword, followed by a procedure
call, indicates that the procedure should run in its own thread and may thus
be executed in parallel to the thread that spawned it. The sync keyword indi-
cates that the current thread must wait for the termination of all threads it
has spawned. It thus provides a simple barrier-style synchronization mechanism.
Finally, parfor is “syntactic sugar” for spawning one thread per iteration in a
for loop, thereby allowing these iterations to run in parallel, followed by a sync
operation that waits for all iterations to complete. In practice, the overhead is
logarithmic in the number of iterations. When a procedure exits, it implicitly
performs a sync to ensure all threads it spawned finish first.
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3 A Parallel Algorithm for Succinct Tree Construction

In this section, we describe our new parallel algorithm for constructing the RMMT
of a given tree, called the Parallel Succinct Tree Algorithm (PSTA). Its input is
the balanced parenthesis sequence P of an n-node tree T . This is a tree represen-
tation commonly used in practice, particularly in secondary storage, and known
as the “folklore encoding”. For trees whose folklore encoding is not directly avail-
able, we have designed a parallel algorithm that can compute such an encoding
in O(n/p + lg p) time, and the details are omitted due to space constraint. Our
algorithms assume that manipulating w bits takes constant time. Additionally,
we assume the (time and space) overhead of scheduling threads on cores is neg-
ligible. This is guaranteed by the results of [4], and the number of available
processing units in current systems is generally much smaller than the input size
n, so this cost is indeed negligible in practice.

Before describing the PSTA algorithm, we observe that the entries in e′ cor-
responding to internal nodes of the RMMT need not be stored explicitly. This is
because the entry of e′ corresponding to an internal node is equal to the entry
that corresponds to the last leaf descendant of this node; since the RMMT is com-
plete, we can easily locate this leaf in constant time. Thus, our algorithm treats
e′ as an array of length �2n/s� with one entry per leaf. Our algorithm consists
of three phases. In the first phase (Algorithm 1), it computes the leaves of the
RMMT, i.e., the array e′, as well as the entries of m′, M ′ and n′ that correspond
to leaves. In the second phase (Algorithm 2), the algorithm computes the entries
of m′, M ′ and n′ corresponding to internal nodes of the RMMT. In the third phase
(Algorithm 3), it computes the universal lookup tables used to answer queries.
The input to our algorithm consists of the balanced parenthesis sequence, P , the
size of each chunk, s, and the number of available threads, threads.

To compute the entries of arrays e′, m′, M ′, and n′ corresponding to the leaves
of the RMMT (Algorithm 1), we first assign the same number of consecutive chunks,
ct , to each thread (line 4). We call such a concatenation of chunks assigned to
a single thread a superchunk. For simplicity, we assume that the total number
of chunks, �2n/s�, is divisible by threads. Each thread then computes the local
excess value of the last position in each of its assigned chunks, as well as the
minimum and maximum local excess in each chunk, and the number of times the
minimum local excess occurs in each chunk (lines 8–17). These values are stored
in the entries of e′, m′, M ′, and n′ corresponding to this chunk (lines 18–21).
The local excess value of a position i in P is defined to be sum(P, π, j, i), where
j is the index of the first position of the superchunk containing position i. Note
that the locations with minimum local excess in each chunk are the same as the
positions with minimum global excess because the difference between local and
global excess is exactly sum(P, π, 0, j − 1). Thus, the entries in n′ corresponding
to leaves store their final values at the end of the loop in lines 5–21, while the
corresponding entries of e′, m′, and M ′ store local excess values.

To convert the entries in e′ into global excess values, observe that the global
excess at the end of each superchunk equals the sum of the local excess values
at the ends of all superchunks up to and including this superchunk. Thus, we
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Input : P , s, threads
Output : RMMT represented as arrays

e′,m′,M ′, n′ and universal
lookup tables

1 o := �2n/s� − 1 // # internal nodes
2 e′ := array of size �2n/s�
3 m′,M ′, n′ := arrays of size

�2n/s� + o
4 ct := �2n/s�/threads
5 parfor t := 0 to threads − 1 do
6 e′

t,m
′
t,M

′
t , n

′
t := 0

7 for chk := 0 to ct − 1 do
8 low := (t ∗ ct + chk) ∗ s
9 up := low + s

10 for par := low to up − 1 do
11 e′

t += 2 ∗ P [par ] − 1
12 if e′

t < m′
t then

13 m′
t := e′

t; n
′
t := 1

14 else if e′
t = m′

t then
15 n′

t += 1
16 else if e′

t > M ′
t then

17 M ′
t := e′

t

18 e′[t ∗ ct + chk ] := e′
t

19 m′[t ∗ ct + chk + o] := m′
t

20 M ′[t ∗ ct + chk + o] := M ′
t

21 n′[t ∗ ct + chk + o] := n′
t

22 parallel prefix sum(e′, ct)
23 parfor t := 1 to threads − 1 do
24 for chk := 0 to ct − 1 do
25 if chk < ct − 1 then
26 e′[t ∗ ct + chk ] +=

e′[t ∗ ct − 1]

27 m′[t ∗ ct + chk + o] +=
e′[t ∗ ct − 1]

28 M ′[t ∗ ct + chk + o] +=
e′[t ∗ ct − 1]

Algorithm 1. PSTA (part I)

1 lvl := �lg threads�
2 parfor st := 0 to 2lvl − 1 do
3 for l := �lg(2n/s)� − 1 downto

lvl do

4 for d := 0 to 2l−lvl − 1 do

5 i := d + 2l − 1 + st ∗ 2l−lvl

6 concat(i,m′,M ′, n′)

7 for l := lvl − 1 to 0 do

8 parfor d := 0 to 2l − 1 do

9 i := d + 2l − 1
10 concat(i,m′,M ′, n′)

Algorithm 2. PSTA (part II)

1 parfor x := −w to w − 1 do

2 parfor y := 0 to
√

2w − 1 do
3 i := ((x + w) << w) OR w
4 near fwd pos[i] := w
5 p, excess := 0
6 repeat
7 excess += 1 − 2 ∗

((yAND(1 << p)) = 0)
8 if excess = x then
9 near fwd pos[i] := p

10 break

11 p += 1

12 until p ≥ w

Algorithm 3. PSTA (part III)

Input : i, m′, M ′, n′

1 m′[i] := min(m′[2i + 1],m′[2i + 2])
2 M ′[i] := max(M ′[2i + 1],M ′[2i + 2])
3 if m′[2i + 1] < m′[2i + 2] then
4 n′[i] := n′[2i + 1]
5 else if m′[2i + 1] > m′[2i + 2] then
6 n′[i] := n′[2i + 2]
7 else if m′[2i + 1] = m′[2i + 2] then
8 n′[i] := n′[2i + 1] + n′[2i + 2]

Function concat

use a parallel prefix sum algorithm [14] in line 22 to compute the global excess
values at the ends of all superchunks and store these values in the corresponding
entries of e′. The remaining local excess values in e′, m′, and M ′ can now be
converted into global excess values by increasing each by the global excess at the
end of the preceding superchunk. Lines 23–28 do exactly this.
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The computation of entries of m′, M ′, and n′ (Algorithm 2) first chooses
the level closest to the root that contains at least threads nodes and creates one
thread for each such node v. The thread associated with node v calculates the m′,
M ′, and n′ values of all nodes in the subtree with root v, by applying the function
concat to the nodes in the subtree bottom up (lines 2–6). The invocation of this
function for a node computes its m′, M ′, and n′ values from the corresponding
values of its children. With a scheduler that balances the work, such as a work-
stealing scheduler, cores have a similar workload. Lines 7–10 apply a similar
bottom-up strategy for computing the m′, M ′, and n′ values of the nodes in the
top lvl levels, but they do this by processing these levels sequentially and, for
each level, processing the nodes on this level in parallel.

Algorithm 3 illustrates the construction of universal lookup tables using the
construction of the table near fwd pos as an example. This table is used to
support the fwd search operation (see Section 2). Other lookup tables can be
constructed analogously. As each entry in such a universal table can be computed
independently, we can easily compute them in parallel.

Theoretical Analysis. Lines 1–21 of Algorithm 1 require O(n) work and
have span O(n/p). Line 22 requires O(p) work and has span O(lg p) because
we compute a prefix sum over only p values. Lines 23–28 require O(n/s) work
and have span O(n/sp). Lines 1–6 of Algorithm 2 require O(n/s) work and
have span O(n/sp). Lines 7–10 require O(p) work and have span O(lg p). Algo-
rithm 3 requires O(

√
2wpoly(w)) work and has span O(

√
2wpoly(w)/p). As was

defined in Section 2, w is the machine word size. Thus, the total work of PSTA is
T1 = O(n + lg p +

√
2wpoly(w)) and its span is O(n/p + lg p +

√
2wpoly(w)/p).

For p → ∞, we get a span of T∞ = O(lg n). This gives a running time of
Tp = O(T1/p + T∞) = O(n/p + lg p +

√
2wpoly(w)/p) on p cores. The speedup

is T1/Tp = O
(

p(n+
√
2wpoly(w))

n+
√
2wpoly(w)+p lg p

)
. Under the assumption that p � n, the

speedup approaches O(p). Moreover, the parallelism T1/T∞ (the maximum the-
oretical speedup) of PSTA is n+

√
2wpoly(w)
lgn .

The PSTA algorithm does not need any extra memory related to the use of
threads. Indeed, it just needs space proportional to the input size and the space
needed to schedule the threads. A work-stealing scheduler, like the one used by
the DyM model, exhibits at most a linear expansion space, that is, O(S1p), where
S1 is the minimum amount of space used by the scheduler for any execution of a
multithreaded computation using one core. This upper bound is optimal within
a constant factor [4]. In summary, the working space needed by our algorithm
is O(n lg n + S1p) bits. Since in our algorithm the scheduler does not need to
consider the input size to schedule threads, S1 = O(1). Thus, since in modern
machines it is usual that p � n, the scheduling space is negligible and the
working space is dominated by O(n lg n).

Note that in succinct data structure design, it is common to adopt the
assumption that w = Θ(lg n), and when constructing lookup tables, consider
all possible bit vectors of length (lg n)/2 (instead of w/2). This guarantees that
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the universal lookup tables occupy only o(n) bits. Adopting the same strategy,
we can simplify our analysis and obtain Tp = O(n/p + lg p). Thus, we have the
following theorem:

Theorem 1. A (2n+o(n))-bit representation of an ordinal tree on n nodes and
its balanced parenthesis sequence can be computed in O(n/p + lg p) time using
O(n lg n) bits of working space, where p is the number of cores. This representa-
tion can support the operations in Table 1 of [19] in O(lg n) time.

4 Experimental Results

To evaluate the performance of our PSTA algorithm, we compare it against
libcds [6] and sdsl [12], which are state-of-the-art implementations of the RMMT.
Both assume that the input tree is given as a parenthesis sequence, as we do
here. Our implementation of the PSTA algorithm deviates from the description
in Section 3 in that the prefix sum computation in line 22 of the algorithm
is done sequentially in our implementation. This changes the running time to
O(n/p + p) but simplifies the implementation. Since p � n/p for the input sizes
we are interested in and the numbers of cores available on current multicore
systems, the impact on the running time is insignificant. We implemented the
PSTA algorithm in C and compiled it using GCC 4.9 with optimization level -O2
and using the -ffast-math flag.3 All parallel code was compiled using the GCC
Cilk branch. The same flags were used to compile libcds and sdsl, which were
written in C++.

We tested our algorithm on five inputs. The first two were suffix trees of the
DNA (dna, 1,154,482,174 parentheses), and protein (prot, 670,721,006 parenthe-
ses) data from the Pizza & Chili corpus4. These suffix trees were constructed
using code from http://www.daimi.au.dk/∼mailund/suffix tree.html. The next
two inputs were XML trees of the Wikipedia dump5 (wiki, 498,753,914 paren-
theses) and OpenStreetMap dump6 (osm, 4,675,776,358 parentheses). The final
input was a complete binary tree of depth 30 (ctree, 2,147,483,644 parentheses).

The experiments were carried out on a machine with four 16-core AMD
OpteronTM 6278 processors clocked at 2.4GHz, with 64KB of L1 cache per core,
2MB of L2 cache shared between two cores, and 6MB of L3 cache shared between
8 cores. The machine had 189GB of DDR3 RAM, clocked at 1333MHz.

Running times were measured using the high-resolution (nanosecond) C func-
tions in <time.h>. Memory usage was measured using the tools provided by
malloc count [3]. In our experiments, the chunk size s was fixed at 256.

3 The code and data needed to replicate our results are available at http://www.inf.
udec.cl/∼josefuentes/sea2015.

4 http://pizzachili.dcc.uchile.cl
5 http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.

bz2 (January 12, 2015)
6 http://wiki.openstreetmap.org/wiki/Planet.osm (January 10, 2015)

http://www.daimi.au.dk/~mailund/suffix_tree.html
http://www.inf.udec.cl/~josefuentes/sea2015
http://www.inf.udec.cl/~josefuentes/sea2015
http://pizzachili.dcc.uchile.cl
http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.bz2
http://wiki.openstreetmap.org/wiki/Planet.osm
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Table 1. Running times of PSTA,
libcds, and sdsl in seconds

p wiki prot dna ctree osm

libcds 33.16 44.24 75.87 140.41 339.21
sdsl 1.93 2.66 4.57 8.35 18.10

1 2.89 4.22 7.21 12.16 30.60
2 1.44 2.13 3.64 6.15 15.43
4 .73 1.10 1.87 3.18 7.98
8 .37 .57 .98 1.59 4.14
16 .25 .35 .58 .86 2.21
32 .18 .25 .39 .63 1.33
64 .27 .29 .39 .48 1.01
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Fig. 2. Speed-up on ctree and osm data
sets

Running Time and Speed-Up. Table 1 shows the wall clock times achieved by
psta, libcds, and sdsl on different inputs. Each time is the minimum achieved
over three non-consecutive runs, reflecting our assumption that slightly increased
running times are the result of “noise” from external processes such as operating
system and networking tasks. Figure 2 shows the speed-up for the ctree and osm
inputs compared to the running times of psta on a single core and of sdsl.

The psta algorithm on a single core and sdsl outperformed libcds by an
order of magnitude. One of the reasons for this is that libcds implements a
different version of RMMT including rank and select structures, while psta and
sdsl do not. Constructing these structures is costly. On a single core, sdsl was
about 1.5 times faster than psta, but neither sdsl nor libcds were able to
take advantage of multiple cores, so psta outperformed both of them starting at
p = 2. The advantage of sdsl over psta on a single core, in spite of implementing
essentially the same algorithm, can be attributed to (1) lack of tuning of psta
and (2) some overhead with running parallel code on a single core.

Up to 16 cores, the speed-up of psta is almost linear whenever p is a power
of 2 and the efficiency (speed-up/p) is 70% or higher, except for ctree on 32
cores. This is very good for a multicore architecture. When p is not a power of 2,
speed-up is slightly worse. The reason is that, when p is a power of 2, psta can
assign exactly one subtree to each thread (see Algorithm 2), distributing the
work homogeneously across cores without any work stealing. When the number
of threads is not a power of two, some threads have to process more than one
subtree and other threads process only one, which degrades performance due to
the overhead of work stealing.

There were three other factors that limited the performance of psta in our
experiments: network topology, input size, and resource contention with the OS.

Topology. The four processors on our machine were connected in a grid topol-
ogy [8]. Up to 32 threads, all threads can be run on a single processor or on two
adjacent processors in the grid, which keeps the cost of communication between
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threads low. Beyond 32 threads, at least three processor are needed and at least
two of them are not adjacent in the grid. This increases the cost of communica-
tion between threads on these processors noticeably.

Input size. For the two largest inputs we tested, osm and ctree, speed-up
kept increasing as we added more cores. For wiki, however, the best speed-
up was achieved with 36 cores. Beyond this, the amount of work to be done
per thread was small enough that the scheduling overhead caused by additional
threads started to outweigh the benefit of reducing the processing time per thread
further.

Resource contention. For p < 64, at least one core on our machine was avail-
able to OS processes, which allowed the remaining cores to be used exclusively
by psta. For p = 64, psta competed with the OS for available cores. This had
a detrimental effect on the efficiency of psta for p = 64.

Memory Usage. We measured the amount of working memory (i.e., mem-
ory not occupied by the raw parenthesis sequence) used by psta, libcds, and
sdsl. We did this by monitoring how much memory was allocated/released with
malloc/free and recording the peak usage. For psta, we only measured the
memory usage for p = 1. The extra memory needed for thread scheduling when
p > 1 was negligible. Due to lack of space, we report the results only for the two
largest inputs, ctree and osm. For the ctree input, psta, libcds, and sdsl
used 112MB, 38MB, and 76MB of memory, respectively. For osm, they used
331MB, 85MB, and 194MB, respectively. Even though psta uses more memory
than both libcds and sdsl, the difference between psta and sdsl is a factor of
less than two. The difference between psta and libcds is no more than a factor
of four and is outweighed by the substantially worse performance of libcds.

Part of the higher memory usage of psta stems from the allocation of e′, m′,
M ′ and n′ arrays to store the partial excess values in the algorithm. Storing these
values, however, is a key factor that helps psta to achieve very good performance.

5 Conclusions and Future Work

In this paper, we demonstrated that it is possible to improve the construction
time of succinct trees using multicore parallelism. We introduced a practical
algorithm that takes O(n/p + lg p) time to construct a succinct representation
of a tree with n nodes using p threads. This representation supports a rich set
of operations in O(lg n) time. Our algorithm substantially outperformed state-
of-the-art sequential constructions of this data structure, achieved very good
speed-up up to 64 cores, and is to the best of our knowledge the first parallel
construction algorithm of a succinct representation of ordinal trees.

While we focused on representing static trees succinctly in this paper, the
approach we have taken may also extend to the construction of dynamic succinct
trees (e.g., [19]), of succinct representations of labelled trees, and of other succinct
data structures that use succinct trees as building blocks (e.g., the succinct
representation of planar graphs).
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Abstract. We revisit tree compression with top trees (Bille et al. [2]),
and present several improvements to the compressor and its analysis. By
significantly reducing the amount of information stored and guiding the
compression step using a RePair-inspired heuristic, we obtain a fast com-
pressor achieving good compression ratios, addressing an open problem
posed by [2]. We show how, with relatively small overhead, the com-
pressed file can be converted into an in-memory representation that sup-
ports basic navigation operations in worst-case logarithmic time without
decompression. We also show a much improved worst-case bound on the
size of the output of top-tree compression (answering an open question
posed in a talk on this algorithm by Weimann in 2012).

Keywords: Tree compression · Grammar compression · Top trees ·
XML compression

1 Introduction

Labelled trees are one of the most frequently used nonlinear data structures in
computer science, appearing in the form of suffix trees, XML files, tries, and
dictionaries, to name but a few prominent examples. These trees are frequently
very large, prompting a need for compression for on-disk storage. Ideally, one
would like specialized tree compressors to certainly get much better compression
ratios than general-purpose compressors such as bzip2 or gzip, but also for the
compression to be fast; as Ferragina et al. note [10, p4:25]. 1

In fact, it is also frequently necessary to hold such trees in main mem-
ory and perform complex navigations to query or mine them. However,
common in-memory representations use pointer data structures that have signif-
icant overhead—e.g. for XML files, standard DOM2 representations are typically
8-16 times larger than the (already large) XML file [22,24]. To process such large
trees, it is essential to have compressed in-memory representations that directly
support rapid navigation and queries, without partial or full decompression.

1 Their remark is about XML tree compressors but applies to general ones as well.
2 Document Object Model, a common interface for interacting with XML documents.
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Before we describe previous work, and compare it with ours, we give some
definitions. A labelled tree is an ordered, rooted tree whose nodes have labels from
an alphabet Σ of size |Σ| = σ. We consider the following kinds of redundancy
in the tree structure. Subtree repeats are repeated occurrences of rooted subtrees,
i.e. a node and all of its descendants, identical in structure and labels. Tree
pattern repeats or internal repeats are repeated occurrences of tree patterns, i.e.
connected subgraphs of the tree, identical in structure as well as labels.

1.1 Previous Work

Nearly all existing compression methods for labelled trees follow one of three
major approaches: transform-based compressors that transform the tree’s struc-
ture, e.g. into its minimal DAG, grammar-based compressors that compute a tree
grammar, and–although not compression–succinct representations of the tree.

Transform-Based Compressors. We can replace subtree repeats by edges
to a single shared instance of the subtree and obtain a smaller Directed Acyclic
Graph (DAG) representing the tree. The smallest of these, called the minimal
DAG, is unique and can be computed in linear time [9]. Navigation and path
queries can be supported in logarithmic time [3,4]. While its size can be expo-
nentially smaller than the tree, no compression is achieved in the worst case (a
chain of nodes with the same label is its own minimal DAG, even though it is
highly repetitive). Since DAG minimization only compresses repeated subtrees,
it misses many internal repeats, and is thus insufficient in many cases.

Bille et al. introduced tree compression with top trees [2], which this paper
builds upon. Their method exploits both repeated subtrees and tree structure
repeats, and can compress exponentially better than DAG minimization. They
give a log0.19

σ n worst-case compression ratio for a tree of size n labelled from an
alphabet of size σ for their algorithm. They show that navigation and a number
of other operations are supported in O(log n) time directly on the compressed
representation. However, they do not give any practical evaluation, and indeed
state as an open question whether top-tree compression has practical value.

Tree Grammars. A popular approach to exploit the redundancy of tree
patterns is to represent the tree using a formal grammar that generates the
input tree, generalizing grammar compression from strings to trees [5,6,14,16–
18]. These can be exponentially smaller than the minimal DAG [16]. Since it is
NP-Hard to compute the smallest grammar [7], efficient heuristics are required.

One very simple yet efficient heuristic method is RePair [15]. A string com-
pressor, it can be applied to a parentheses bitstring representation of the tree.
The output grammars produced by RePair can support a variety of navigational
operations and random access, in time logarithmic in the input tree size, after
additional processing [3]. These methods, however, appear to require significant
engineering effort before their practicality can be assessed.

TreeRePair [17] is a generalization of RePair from strings to trees. It achieves
the best grammar compression ratios currently known. However, navigating
TreeRePair’s grammars in sublinear time with respect to their depth, which
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Fig. 1. Five kinds of cluster merges in top trees. Solid nodes are boundary nodes,
hollow ones are boundary nodes that become internal. Source of this graphic: [2, § 2.1].

can be linear in their size [2], is an open problem. For relatively small docu-
ments (where the output of TreeRePair fits in cache), the navigation speed for
simple tree traversals is about 5 times slower than succinct representations [17].

Several other popular grammar compressors exist for trees. Among them,
BPLEX [5,6] is probably best-known, but is much slower than TreeRePair.
The TtoG algorithm is the first to achieve a good theoretical approximation
ratio [14], but has not been evaluated in practice.

Succinct Representations. Another approach is to represent the tree using
near-optimal space without applying compression methods to its structure, a
technique called succinct data structures. Unlabelled trees can be represented
using 2n + o(n) bits [13] and support queries in constant time [21]. There are a
few n log σ + O(n) bit-representations for labelled trees, most notably that by
Ferragina et al. [10], which also yields a compressor, XBZip. While XBZip has
good performance on XML files in their entirety, including text, attributes etc.,
evidence suggests that it does not beat TreeRePair on pure labelled trees. As
the authors admit, it is also slow.

1.2 Our Results

Our primary aim in this paper is to address the question of Bille et al. [2]
regarding the practicality of the top tree approach, but we make some theoretical
contributions as well. We first give some terminology and notation.

A top tree [1] is a hierarchical decomposition of a tree into clusters, which
represent subgraphs of the original tree. Leaf clusters correspond to single edges,
and inner clusters represent the union of the subgraphs represented by their two
children. Clusters are formed in one of five ways, called merge types, shown in
Figure 1. A cluster can have one or two boundary nodes, a top- and optionally
a bottom boundary node, where other clusters can be attached by merging. A
top tree’s minimal DAG is referred to as a top DAG. For further details on the
fundamentals of tree compression with top trees, refer to [2]. Throughout this
paper, let T be any ordered, labelled tree with nT nodes, and let Σ denote
the label alphabet with σ := |Σ|. Let T be the top tree and T D the top DAG
corresponding to T , and nT D the total size (nodes plus edges) of T D. We assume
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a standard word RAM model with logarithmic word size, and measure space
complexity in terms of the number of words used. Then:

Theorem 1. The size of the top DAG is nT D = O
(

nT

logσ nT
· log logσ nT

)
.

This is only a factor of O(log logσ nT ) away from the information-theoretic lower
bound, and greatly improves the bound of O(

n/ log0.19
σ n

)
obtained by Bille et

al. and answers an open question posed in a talk by Weimann.
Next, we show that if only basic navigation is to be performed, the amount

of information that needs to be stored can be greatly reduced, relative to the
original representation [2], without affecting the asymptotic running time.

Theorem 2. We can support navigation with the operations Is Leaf, Is Last
Child, First Child, Next Sibling, and Parent in O(log nT ) time, full decompression
in time O(nT ) on a representation of size O(nT D) storing only the top DAG’s
structure, the merge types of inner nodes (an integer from [1..5]), and leaves’
labels.

We believe this approach will have low overhead and fast running times in prac-
tice for in-memory navigation without decompression, and sketch how one would
approach an implementation.

Furthermore, we introduce the notion of combiners that determine the order
in which clusters are merged during top tree construction. Combiners aim to
improve the compressibility of the top tree, resulting in a smaller top DAG. We
present one such combiner that applies the basic idea of RePair [15] to top tree
compression, prioritizing merges that produce subtree repeats in the top tree, in
Section 3. We give a relatively naive encoding of the top tree, primarily using
Huffman codes, and evaluate its compression performance. Although the output
of the modified top tree compressor is up to 50 % larger than the state-of-the-art
TreeRePair, it is about six times faster. We believe that the compression gap
can be narrowed while maintaining the speed gap.

2 Top Trees Revisited

2.1 DAG Design Decisions

The original top tree compression paper [2] did not try to minimize the amount
of information that actually needs to be stored. Instead, the focus was on imple-
menting a wide variety of navigation operations in logarithmic time while main-
taining O(nT D) space asymptotically. Here, we reduce the amount of additional
information stored about the clusters to obtain good compression ratios.

Instead of storing the labels of both endpoints of a leaf cluster’s correspond-
ing edge, we store only the child’s label, not the parent’s. In addition to reducing
storage requirements, this reduces the top tree’s alphabet size from σ2+5 to σ+5,
as each cluster has either one label or a merge type. This increases the likeli-
hood of identical subtrees in the top tree, improving compression. Note that this
change implies that there is exactly one leaf cluster in the top DAG for each
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distinct label in the input. To code the root, we perform a merge of type (a) (see
Section 1.2 and Figure 1) between a dummy edge leading to the root and the
last remaining edge after all other merges have completed.

With these modifications, we reduce the amount of information stored with
the clusters to the bare minimum required for decompression, i.e. leaf clusters’
labels and inner clusters’ merge types.

Lastly, we speed up compression by directly constructing the top DAG dur-
ing the merge process. We initialize it with all distinct leaves, and maintain a
mapping from cluster IDs to node IDs in T D, as well as a hash map mapping
DAG nodes to their node IDs. When two edges are merged into a new cluster,
we look up its children in the DAG and only need to add a new node to T D
if this is its first occurrence. Otherwise, we simply update the cluster-to-node
mapping.

2.2 Navigation

We now explain how to navigate the top DAG with our reduced information
set. We support full decompression in time O(nT ), as well as operations to move
around the tree in time proportional to the height of the top DAG, i.e. O(log nT ).
These are: determining whether the current node is a leaf or its parent’s last
child, and moving to its first child, next sibling, and parent. Accessing a node’s
label is possible in constant time given its node number in the top DAG.

Proof (Theorem 2). As a node in a DAG can be the child of any number of other
nodes, it does not have a unique parent. Thus, to allow us to move back to a
node’s parent in the DAG, we need to maintain a stack of parent cluster IDs
along with a bit to indicate whether we descended into the left or right child. We
refer to this as the DAG stack, and update it whenever we move around in T D
with the operations below. Similarly, we also maintain a tree stack containing
the DAG stack of each ancestor of the current node in the (original) tree.

Decompression: We traverse the top DAG in pre-order, undoing the merge
operations to reconstruct the tree. We begin with nT isolated nodes, and then
add back the edges and labels as we traverse the top DAG. As this requires con-
stant time per cluster and edge, we can decompress the top DAG in O(nT ) time.

Label Access: Since only leaf clusters store labels, and these are coded as the
very first clusters in the top DAG (cf. Section 2.4), their node indices come before
all other nodes’. Therefore, a leaf’s label index i is its node number in the top
DAG. We access the label array in the position following the (i− 1)th null byte,
which we can find with a Select0(i − 1) operation, and decode the label string
until we reach another null byte or the end.

Is Leaf: A node is a leaf iff it is no cluster’s top boundary node. Moving up
through the DAG stack, if we reach a cluster of type (a) or (b) from the left
child, the node is not a leaf (the left child of such a cluster is the upper one in
Figure 1). If, at any point before encountering such a cluster, we exhaust the
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DAG stack or reach a cluster of type (b) or (c) from the right, type (d) from the
left, or type (e) from either side, the node is a leaf. This can again be seen in
Figure 1.

Is Last Child: We move up the DAG stack until we reach a cluster of
type (c), (d), or (e) from its left child. Upon encountering a cluster of type (a)
or (b) from the right, or emptying the DAG stack completely, we abort as the
upward search lead us to the node’s parent or exhausted the tree, respectively.

First Child and Next Sibling: First, we check whether the node is a leaf (First
Child) or its parent’s last child (Next Sibling), and abort if it is. First Child then
pushes a copy of the DAG stack onto the tree stack. Next, we re-use the upward
search performed by the previous check, removing the elements visited by the
search from the DAG stack, up until the cluster with which the search ended. We
descend into its right child and keep following the left child until we reach a leaf.

Parent: Since First Child pushes the DAG stack onto the tree stack, we simply
reset the DAG stack to the tree stack’s top element, which is removed. ��

We note here that the tree stack could, in theory, grow to a size
of O(nT log nT ), as the tree can have linear height and the logarithmically sized
DAG stack is pushed onto it in each First Child operation. However, we argue
that due to the low depth of common labelled trees, especially XML files, this
stack will remain small in practice. Even when pessimistically assuming a very
large tree with a height of 80 nodes, with a top tree of height 50, the tree stack
will comfortably fit into 32 kB when using 64-bit node IDs. Our preliminary
experiments confirm this.

To improve the worst-case tree stack size in theory, we can instead keep a log
of movements in the top DAG, which is limited in size to the distance travelled
therein. We expect this to be significantly less than O(nT log nT ) in expectation.

2.3 Worst-Case Top DAG Size

Bille et al. show that a tree’s top tree has at most O(
nT / log0.19

σ nT

)
distinct

clusters [2]. This bound, however, is an artifact of the proof. By modifying the
definition of a small cluster in the compression analysis and carefully exploiting
the properties of top trees, we are able to show a new, tighter, bound, which
directly translates to an improvement on the worst-case compression ratio. We
omit the full proof of Theorem 1 for brevity, and instead give the following
essential lemmata, which we use to prove the theorem in the full version of this
paper. Let s(v) be the size of v’s subtree, and p(v) denote its parent.

Lemma 1. Let T be any ordered labelled tree of size nT , and let T be its top
tree. For any node v of T , the height of its subtree is at most �log8/7 s(v)�.
Lemma 2. Let T be any ordered labelled tree of size nT , let T be its top tree,
and t be an integer. Then T contains at most O((nT /t) · log t) nodes v so
that s(v) ≤ t and s(p(v)) > t.
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2.4 Encoding

In the top DAG, we need to be able to access a cluster’s left and right child, as
well as its merge type for inner clusters or the child node’s label for the edge
that it refers to for leaf clusters. To realize this interface, we decompose the top
DAG into a binary core tree and a pointer array. The core tree is defined by
removing all incoming edges from each node, except for the one coming from
the node with lowest pre-order number. All other occurrences are replaced by a
dummy leaf node storing the pre-order number of the referenced node. Leaves
in the top DAG are assigned new numbers as label pointers, which are smaller
than the IDs of all inner nodes. All references to leaves, including the dummy
nodes, are coded in an array of pointers, ordered by the pre-order number of the
originating node. Similarly, the inner nodes’ merge types are stored in an array
in pre-order. Lastly, the core tree itself can be encoded using two bits per inner
node, indicating whether the left and right children are inner nodes in the core
tree.

Using this representation, all that is required for efficient navigation is an
entropy coder providing constant-time random access to node pointers and merge
types, and a data structure providing rank and select for the core tree and label
strings. All of these building blocks can be treated as black boxes, and are well-
studied and readily available, e.g. [23] and the excellent SDSL [11] library.

Simple Encoding. To obtain file size results with reasonable effort, we now
describe a very simple encoding that does not lend itself to navigation as easily.
We compress the core tree bitstring and merge types using blocked Huffman
coding. The pointer array and null byte-separated concatenated label string are
encoded using a Huffman code. The Huffman trees are coded like the core tree
above. The symbols are encoded using a fixed length and concatenated. Lastly,
we store the sizes of the four Huffman code segments as a file header.

3 Heuristic Combiners

As described in the original paper [2], the construction of the top tree exposes
internal repetitions. However, it does not attempt to maximize the size or num-
ber of identical subtrees in the top tree, i.e. its compressibility. Instead, the merge
process sweeps through the tree linearly from left to right and bottom to top.
This is a straight-forward cluster combining strategy that fulfills all the require-
ments for constructing a top tree, but does not attempt to maximize compression
performance. We therefore replace the standard combining strategy with heuris-
tic methods that try to increase compressibility of the top tree. Here, we present
one such combiner that applies the basic idea of RePair to the horizontal merge
step of top tree compression. (In preliminary experiments, it proved detrimental
to apply the heuristic to vertical merges, and we limit ourselves to the horizontal
merge step, but note that this is not a general restriction on combiners.)

We hash all clusters in the top tree as they are created. The hash value com-
bines the cluster’s label, merge type, and the hashes of its left and right children
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Table 1. XML corpus used for our experiments. File sizes are given for stripped doc-
uments, i.e. after removing whitespace and tags’ attributes and contents.

File name size (MB) #nodes height
1998statistics 0.60 28 306 6
dblp 338.87 20 925 865 6
enwiki-latest-p 229.78 14 018 880 5
factor12 359.36 20 047 329 12
factor4 119.88 6 688 651 12
factor4.8 143.80 8 023 477 12
factor7 209.68 11 697 881 12
JST-gene.chr1 5.79 173 529 7

File name size (MB) #nodes height
JST-snp.chr1 27.31 803 596 8
nasa 8.43 476 646 8
NCBI-gene.chr1 35.30 1 065 787 7
proteins 365.12 21 305 818 7
SwissProt 45.25 2 977 031 5
treebank-e 25.92 2 437 666 36
uwm 1.30 66 729 5
wiki 42.29 2 679 553 5

if these exist. As the edges in the auxiliary tree correspond to clusters in the top
tree during its construction, we assign the cluster’s hashes to the corresponding
edges. Defining a digram as two edges whose clusters can be merged with one
of the five merge types from Figure 1, we can apply the idea of RePair, identi-
fying the edges by their hash values. In descending order of digram frequency,
we merge all non-overlapping occurrences, updating the remaining edges’ hash
values to those of the newly created clusters.

Since this procedure does not necessarily merge a constant fraction of the
edges in each iteration, we may need to additionally apply the normal horizontal
merge algorithm if too few edges were merged by the heuristic. The constant
upon which this decision is based thus becomes a tuning parameter. Note that
we need to ensure that every edge is merged at most once per iteration.

4 Evaluation

We now present an experimental evaluation of top tree compression. In this
section, we demonstrate its qualities as a fast and efficient compressor, compare
it against other compressors, and show the effectiveness of our RePair-inspired
combiner.

Experimental Setup. All algorithms were implemented in C++11 and com-
piled with the GNU C++ compiler g++ in version 4.9.2 using optimization
level fast and profile-guided optimizations. The experiments were conducted on
a commodity PC with an Intel Core i7-4790T CPU and 16 GB of DDR3 RAM,
running Debian Linux from the sid channel. We used gzip 1.6-4 and bzip2
1.0.6-7 from the standard package repositories. Default compression settings
were used for all compressors, except the -9 flag for gzip. All input and output
files were located in main memory using a tmpfs RAM disk to eliminate I/O
delays.

XML Corpus. We evaluated the compressor and our heuristic improvement on
a corpus of common XML files [8,12,20,25], listed in Table 1. In our experiments,
we give file sizes for our simple encoding, which represent pessimistic results that
can serve as an upper bound of what to expect from a more optimized encoding.
We give these file sizes to demonstrate that even a simple encoding yields good
results with regard to file size, speed, and ease of navigation (see Section 2.2).
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Fig. 2. Comparison of compression ratios, measured by comparing file sizes against a
succinct encoding of the input file (higher is better)

Results. We use a minimum merge ratio of c = 1.26 for the horizontal merge
step using our RePair-inspired heuristic combiner in all our experiments. This
is the result of an extensive evaluation which showed that values c ∈ [1.2, 1.27]
work very well on a broad range of XML documents. We observed that values
close to 1 can improve compression by up to 10 % on some files, while causing
a deterioration by a similar proportion on others. Thus, while better choices
of c exist for individual files, we chose a fixed value for all files to provide a fair
comparison, similar to the choice of 4 as the maximum rank of the grammar in
TreeRePair [17].

We use a parenthesis bitstring encoding of the input tree as a baseline to
measure compression ratios. The unique label strings are concatenated, sepa-
rated by null bytes. Indices into this array are stored as fixed-length numbers
of �log2 #labels	 bits. TreeRePair3, which has been carefully optimized to pro-
duce very small output files, serves us as a benchmark. We are, however, reluc-
tant to compare tree compression with top trees to TreeRePair directly, as our
methods have not been optimized to the same degree.

In Figure 2 we give a compression ratios relative to the succinct encoding.
We evaluated our implementation of top tree compression using the combining
strategy from [2] as well as our RePair-inspired combiner. We also give the file
sizes achieved by TreeRePair and those of RePair on a parentheses bitstring
representation of the input tree and the concatenated nullbyte-separated label
string (note that no deduplication is performed here, as this is up to the compres-
sor). We represent RePair’s grammar production rules as a sequence of integers
with an implicit left-hand side and encode this representation using a Huffman
code. Figure 2 shows that top tree compression consistently outperforms RePair

3 https://code.google.com/p/treerepair

https://code.google.com/p/treerepair


24 L. Hübschle-Schneider and R. Raman

19
98
st
at
is
ti
cs

JS
T
-g
en
e.
ch
r1

JS
T
-s
np
.c
hr
1

N
C
B
I-
ge
ne
.c
hr
1

Sw
is
sP
ro
t

db
lp

en
w
ik
i-
la
te
st
-p

fa
ct
or
12

fa
ct
or
4

fa
ct
or
4.
8

fa
ct
or
7

na
sa

pr
ot
ei
ns

tr
ee
ba
nk
-e

uw
m

w
ik
i1

1.2

1.4

1.6

1.8

2

2.932.27

O
u
tp

u
t

si
ze

ra
ti

o
v
s

T
re

eR
eP

a
ir

Classic TopTrees

TopTrees + RePair

Fig. 3. Comparison of output file sizes produced by top tree compression with and
without the RePair combiner, measured against TreeRePair file sizes (lower is better)

already, but does not achieve the same level of compression as TreeRePair at
this stage. We can also clearly see the impact of our RePair-inspired heuristic
combiner, which improves compression on nearly all files in our corpus and is
studied in more detail in the next paragraph. Table 3 gives the exact numbers
for the output file sizes, supplementing them with results for general-purpose
compressors.

RePair Combiner. Figure 3 compares the two versions of top tree compres-
sion, using TreeRePair as a benchmark. The RePair combiner’s effect is clearly
visible, reducing the maximum disparity in compression relative to TreeRe-
Pair from a file 2.93 times the size (factor12) to one that is 52 % larger
(NCBI-gene.chr1). This constitutes nearly a four-fold decrease in overhead
(from 1.93 to 0.52). On average, files are 1.39 times the size of TreeRePair’s,
down from a factor of 1.64 before. On our corpus, using the heuristic combiner
reduced file sizes by 10.9 % on average, with the median being a 5.0 % improve-
ment compared to classical top tree compression. Reduced compression perfor-
mance was observed on few files only, particularly smaller ones, while larger files
tended to fare better.
Speed. Using our RePair-inspired combiner increases the running time of the
top tree creation stage, doubling it on average. Our implementation of classical
top tree compression was 10.4 times faster than TreeRePair on average over the
corpus from Table 1, and still 6.2 times faster when using our RePair combiner.
Detailed running time measurements are given in Table 2. In particular, classical
top tree compression takes only twice as long as gzip -9 on average, and 3.3 times
when using our RePair combiner (TreeRePair: 22.4). In contrast, bzip2 is 15.1
times slower than top tree compression on average, and 9.5 times when using our
RePair combiner. This strikingly demonstrates the method’s qualities as a fast
compressor.
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Table 2. Running times in seconds, median over ten iterations

File name TopTrees TT+RePair TreeRePair RePair gzip -9 bzip2
1998statistics 0.00 0.01 0.05 0.04 0.00 0.13
dblp 6.07 11.22 45.72 39.57 2.46 74.77
enwiki-latest-p 3.97 7.15 32.98 28.33 1.29 49.12
factor12 7.21 11.60 109.47 54.19 4.48 81.86
factor4.8 2.85 4.72 46.22 21.61 1.79 33.09
factor4 2.43 3.96 39.47 17.75 1.49 28.21
factor7 4.25 6.83 67.83 31.55 2.61 48.60
JST-gene.chr1 0.04 0.06 0.38 0.54 0.03 1.27
JST-snp.chr1 0.25 0.38 2.12 3.40 0.17 6.33
nasa 0.15 0.23 0.94 0.85 0.06 1.86
NCBI-gene.chr1 0.32 0.51 2.25 3.33 0.20 7.97
proteins 7.00 11.85 50.17 53.27 2.41 81.92
SwissProt 1.14 2.12 12.35 5.74 0.50 11.15
treebank-e 1.36 1.98 12.70 4.00 2.80 3.62
uwm 0.01 0.02 0.11 0.09 0.00 0.28
wiki 0.79 1.18 5.59 4.28 0.22 9.21

Table 3. Compressed file sizes in Bytes

File name Succinct TopTrees TT+RePair TreeRePair RePair gzip -9 bzip2
1998statistics 18 426 788 851 692 1 327 4 080 1 301
dblp 13 740 160 1 486 208 1 416 538 1 093 533 2 037 878 2 476 347 1 116 311
enwiki-latest-p 7 901 904 516 638 525 532 379 410 866 161 1 490 278 544 606
factor12 16 402 888 2 069 437 948 167 705 740 3 092 194 6 342 947 2 913 894
factor4.8 6 565 499 1 070 045 784 519 548 853 1 587 043 2 542 773 1 168 654
factor4 5 473 158 937 660 704 105 490 945 1 429 872 2 119 269 973 463
factor7 9 571 503 1 421 376 855 063 625 094 2 248 370 3 702 132 1 700 043
JST-gene.chr1 96 159 5 332 5 523 3 672 8 273 33 316 7 027
JST-snp.chr1 547 594 29 084 27 039 20 654 50 347 194 862 49 857
nasa 341 161 42 077 39 883 29 310 60 394 83 231 34 404
NCBI-gene.chr1 721 803 17 880 17 418 11 459 29 912 199 308 47 901
proteins 17 315 832 905 613 860 366 614 892 1 537 249 3 214 663 1 141 697
SwissProt 2 343 730 598 960 574 466 395 417 699 757 829 119 398 197
treebank-e 2 396 061 1 173 463 1 170 304 830 324 1 537 334 1 858 722 1 032 303
uwm 37 491 2 177 2 070 1 366 3 101 7 539 2 102
wiki 1 242 418 110 686 102 371 75 090 171 075 247 898 93 858

5 Conclusions

We have demonstrated that tree compression with top trees is viable, and sug-
gested several enhancements to improve the degree of compression achieved.
Using the notion of combiners, we demonstrated that significant improvements
can be obtained by carefully choosing the order in which clusters are merged
during top tree creation. We showed that the worst-case compression ratio is
within a log logσ nT factor of the information-theoretical bound. Further, we
gave efficient methods to navigate the compressed representation, and described
how the top DAG can be encoded to support efficient navigation without prior
decompression.

We thus conclude that tree compression with top trees is a very promising
compressor for labelled trees, and has several key advantages over other com-
pressors that make it worth pursuing. It is our belief that its great flexibility,
efficient navigation, high speed, simplicity, and provable bounds should not be
discarded easily. While further careful optimizations are required to close the
compression ratio gap, tree compression with top trees is already a good and
fast compressor with many advantages.
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Future Work. We expect that significant potential for improvement lies in
more sophisticated combiners. The requirements for combiners give us a lot of
space to devise better merging algorithms. Combiners might also be used to
improve locality in the top tree in addition to compression performance, leading
to better navigation performance. Moreover, additional compression improve-
ments should be achievable with carefully engineered output representations.
Since the vast majority of total running time is currently spent on the construc-
tion of the top DAG, using more advanced encodings may improve compression
without losing speed. One starting point to replace our relatively näıve repre-
sentation could be a decomposition of the top DAG into two spanning trees [19].
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23. Pătraşcu, M.: Succincter. In: Proc. 49th FOCS, pp. 305–313. IEEE (2008)
24. Wang, F., Li, J., Homayounfar, H.: A space efficient XML DOM parser. Data &

Knowledge Engineering 60(1), 185–207 (2007)
25. Wikimedia: enwiki dump. http://dumps.wikimedia.org/enwiki/

http://www.cs.washington.edu/research/xmldatasets
http://www.cs.washington.edu/research/xmldatasets
http://hdl.handle.net/2381/27744
http://hdl.handle.net/2381/27744
http://dumps.wikimedia.org/enwiki/


A Bulk-Parallel Priority Queue in External
Memory with STXXL

Timo Bingmann(B), Thomas Keh, and Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany
{bingmann,sanders}@kit.edu

Abstract. We propose the design and an implementation of a bulk-
parallel external memory priority queue to take advantage of both
shared-memory parallelism and high external memory transfer speeds to
parallel disks. To achieve higher performance by decoupling item inser-
tions and extractions, we offer two parallelization interfaces: one using
“bulk” sequences, the other by defining “limit” items. In the design, we
discuss how to parallelize insertions using multiple heaps, and how to
calculate a dynamic prediction sequence to prefetch blocks and apply
parallel multiway merge for extraction. Our experimental results show
that in the selected benchmarks the priority queue reaches 64% of the
full parallel I/O bandwidth of SSDs and 49% of rotational disks, or the
speed of sorting in external memory when bounded by computation.

1 Introduction

Priority queues (PQs) are fundamental data structures which have numerous
applications like job scheduling, graph algorithms, time forward processing [8],
discrete event simulation, and many greedy algorithms or heuristics. They man-
age a dynamic set of items, and support operations for inserting new items
(push), and reading and deleting (top/pop) the item smallest w.r.t. some order.

Since the performance of such applications usually heavily depends on the
PQ, it is unavoidable to consider parallelized variants of PQs as parallelism is
today the only way to get further performance out of Moore’s law. However,
even the basic semantics of a parallel priority queue (PPQ) are unclear, since
PQ operations inherently sequentialize and synchronize algorithms. Researchers
have previously focused on parallelizing main memory PQs which provide lock-
free concurrent access, and/or relaxed operations delivering some small item.

In this work we propose a PPQ for applications where data does not fit into
internal memory and thus requires efficient external memory techniques. Paral-
lelizing external memory algorithms is one of the main algorithmic challenges
termed as “Big Data”. We propose a “bulk” and a “limit” parallelization inter-
face for PQs, since the requirements of external memory applications are different
from those working on smaller PQ instances. One application of these interfaces
is bulk-parallel time forward processing, where one uses the graph’s structure to

This paper is a short version of the technical report [6].
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identify layers of nodes that can be processed independently. For example, the
inducing process of an external memory suffix sorting algorithm [5] follows this
pattern. This paper continues work started in Thomas Keh’s bachelor thesis [13].

We implemented our PPQ design in C++ with OpenMP and STXXL [9],
and compare it using four benchmarks against the fastest EM priority queue
implementations available. In our experiments we achieve 49% of the full I/O
throughput of parallel rotational disks and 64% of four parallel solid-state-disks
(SSDs) with about 2.0/1.6 GiB/s read/write performance. We reach these per-
centages in all experiments except when internal work is clearly the limitation,
where our PPQ performs equally well as a highly tuned sorter. For smaller
bulk sequences, the PPQ’s performance gradually degrades, however, already
for bulks larger than 20 K or 80 K 64-bit integers (depending on the platform)
our PPQ outperforms the best existing parallelized external memory PQ.

After preliminaries and related work, we discuss our parallelization interfaces
in Section 2. Central is our PPQ design in Section 3 where we deal with parallel
insertion and extraction. Details of our implementation, the rationale of our
experiments, and their results are discussed in Section 4.

1.1 Preliminaries

A PQ is a data structure holding a set of items, which can be ordered w.r.t
some relation. All PQs support two operations: insert or push to add an item,
and deleteMin or top and pop to retrieve and remove the smallest item from the
set. In this paper we use the push, top, pop notation, since our implementation’s
interface aims to be compatible to the C++ Standard Template Library (STL).
Addressable PQs additionally provide a decreaseKey operation, but we omit this
function since it is difficult to provide efficiently in external memory.

We use the external memory (EM) model [21], which assumes an internal
memory (called RAM) containing up to M items, and D disks containing space
for N items, used for input, output and temporary data. Transfer of B items
between disks and internal memory costs one I/O operation, whereas internal
computation is free. While the EM model is good to describe asymptotically
optimal I/O efficient algorithms, omitting computation time makes the model
less and less practical as I/O throughput increases. For example, data trans-
fer to a single modern SSD reaches more than 450 MiB/s (MiB = 220 bytes),
while sorting 1 GiB of random 64-bit integers sequentially reaches only about
85 MiB/s on a current machine. Thus exploiting parallelism in modern machines
is unavoidable to achieve good performance with I/O efficient algorithms. For
this experimental paper, we assume a shared memory system with p proces-
sors or threads, which have a simple set of explicit synchronization primitives.
In future, one could consider a detailed theoretical analysis using the parallel
external memory model [3].

1.2 Related Work

There has been significant work on bulk-parallel PQs in an internal memory
setting [11,15,17]. We owe to the earlier of these results [11,15] the idea to replace
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Listing 1. Bulk Pop/Push Loop

vector<item> work;
while (!ppq.empty()) {
ppq.bulk pop(work, max size);
ppq.bulk push begin(approx bulk size);

#pragma omp parallel for
for (i = 0; i < work.size(); ++i) {
// process work[i], maybe bulk push()

}
ppq.bulk push end();

}

Listing 2. Bulk-Limit Loop

for (...) {
ppq.limit begin(L, bulk size);
while (ppq.limit top() < L) {
top = ppq.limit top();
ppq.limit pop();
// maybe use limit push()

}
ppq.limit end();

}

elements in a heap by sorted sequence and the basic operations on heap nodes by
sorting and merging. Previous work on external sequential PQs [2,7,18] reduced
the number of times an element moves between heap nodes from O(log2 N) to
O(logM/B N/M) by increasing the degree of the involved tree structures.

There has also been a lot of work on concurrent PQs that allow asynchronous
insertion and deletion by independent threads. Since this is not scalable with
strict PQ semantics, there has recently been interest in concurrent PQs with
relaxed semantics. Bulk-parallel PQs can be viewed as synchronous relaxed PQs
with simple and clear semantics. We refer to recent work for details [1,16].

We parallelize the external sequence heap [18]. At the bottom level, a sequence
heap consists of R groups of k = O(M/B) sorted external arrays. This PQ design
was implemented for external memory in STXXL [9], and later also in TPIE [14],
so it is probably the most widely used today. Beckmann, Dementiev and Sin-
gler [4] have partially parallelized sequence heaps without touching the sequential
semantics. However, this gives only little opportunity for parallelization – mostly
for merging in groups with large external arrays.

The most sophisticated parallelization tool we use in our PPQ is the parallel
k-way merge algorithm first proposed by Varman et al. [20], and engineered by
Singler et al. in the MCSTL [19] and later the GNU Parallel Mode library. Since
this algorithm’s details and implementation are important for our PPQ design,
we briefly describe it: given p processors and k sorted arrays with in total n items
and of maximum length m, each array is split into p range-disjoint parts where
the sum of each processor’s parts are of equal size. The partition is calculated
by running p intertwined multisequence selection algorithms, which take O(k ·
log k · log m). After partitioning, the work of merging the p disjoint areas can
be done independently by the processors, e.g., using a k-way tournament tree in
time O(np log k). For our EM setting it is important that the output is generated
as p equal-sized parts in parallel, with each part being written in sequence. We
also note that the multisequence selection is implemented sequentially.

2 Bulk-Parallel Interface and Limit Items

Before we discuss our PPQ design, we focus on the proposed application
interface. As suggested by the related work on PQs, substantial performance
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Fig. 1. Decoupling insertion and extraction operations with a limit item L

gains from parallelization are only achievable when loosening some semantics of
the PQ. Put plainly, an alternating sequence of dependent push/pop s is inher-
ently sequential. Since we focus on large amounts of data, the more natural
relaxation of a PQ is to require insertion and extraction of multiple items, or
“bulks” of items. This looser semantic decouples insert and delete operations
both among themselves (i.e., items within a bulk) as well as the operation phases
from another. This enables us to apply parallel algorithms on larger amounts of
items, and our experiments in Section 4 show how speedup depends on the bulk
sizes.

Thus the primary interface of our EM PPQ is bulk insertion and extraction
(see Listing 1). A bulk insertion phase is started with bulk push begin(k), where
k is an estimate of the bulk size. Thereafter, the application may insert a bulk of
items using bulk push, possibly concurrently from multiple threads, and termi-
nate the sequence with bulk push end. There are two bulk extraction primitives:
bulk pop(v, k) which extracts up to k items into v, and bulk pop limit(v, L, k),
which extracts at most k items strictly smaller than a limit item L. The limit
extraction also indicates whether more items smaller than L are available.

Beyond the primary bulk interface, we also propose a second interface (see
Listing 2), which is geared towards the canonical processing loop found in most
sequential applications using a PQ: extract an item, inspect it, and reinsert zero
or more items into the PQ. To decouple insertions and extractions in this loop,
we let the application define a “limit item” L, and require that all insertions
thereafter are larger or equal to L (see Figure 1). By defining this limit, all
extractions of items less than L become decoupled from insertions. The drawback
of this second interface is that the application does not process items in parallel,
however, this can easily be accomplished by using bulk pop limit.

3 Design of a Bulk-Parallel Priority Queue

Our PPQ design (see Figure 2) is based on Sanders’ sequence heap [18], but we
have to reevaluate the implicit assumptions, duplicate data structures for inde-
pendent parallel operations and apply parallel algorithms where possible. After
briefly following the lifetime of an item in the PPQ, we first discuss separately
how insertions and extractions can be processed in parallel, and then focus on
the difficulty of balancing both.
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An item is first inserted into an insertion heap, which is kept in heap order.
As simple binary heaps are not particularly cache-efficient, they are given a fixed
maximum size. When full, an insertion heap is sorted and transformed into an
internal array. To limit the number of internal arrays, they may be merged with
others to form longer internal arrays. When memory is exhausted, all internal
arrays and the extract buffer are merged into one sorted external array which
is written to disk. Again, shorter external arrays may also be merged together.
Extracts from the set of external arrays are amortized using the extract buffer.

Insertion, Multilevel Merging, and External Writing. To accelerate par-
allel push operations, the first obvious step is to have p insertion heaps, one for
each processor. This decouples insertions on different processors and parallelizes
the work of maintaining the heaps. Once a heap is full, the processor can inde-
pendently sort the heap using a general sorter. Remarkably, these initial steps
are among the most time consuming in a sequence heap, and can be parallelized
well. In our PPQ design, we then use a critical section primitive to synchronize
adding the new internal array to the common list. This was never a bottleneck,
since such operations happen only when an insertion heap is full.

In bulk push sequences, we can accelerate individual push operations much
further. While pushing, no items from the insertion heap can be extracted, thus
we can postpone reestablishing heap order to bulk push end ; a bulk push just
appends to the insertion heap’s array. If the heap overflows, then the array
is sorted anyway. In our experiments, this turned out to be the best option,
probably because the loop sifting items up the heap becomes very tight and
cache efficient. For larger bulk operations (as indicated by the user’s estimation)
we even let the insertion heap’s array grow beyond the usual limit to fill up the
available RAM, since sorting is more cache efficient than keeping a heap.

Instead of separating internal arrays into groups, as in a sequence heap,
we label them using a level number starting at zero. If the number of internal
arrays on one level grows larger than a tuning parameter (about 64) and there is
enough RAM available, then all internal arrays of one level are merged together
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and added to the next higher level. The decisive difference of parallel multiway
merge over sequentially merging sorted arrays is that no state is kept to amortize
operations. Hence, in our PPQ design the indicated tournament trees over the
insertion heaps and arrays are useless for parallel operations. When applying
parallel multiway merge, we want to have the total number of items as large as
possible, however, at the same time the number of sequences should be kept as
small as possible.

When the PPQ’s alloted memory is exhausted, one large parallel multiway
merge is performed directly into EM. This is possible without an extra copy
buffer, by using just Θ(p) write buffers and overlapping I/O and computation,
since parallel multiway merge outputs p sorted sub-sequences. We use ≥ 2p
write buffer blocks to keep the merge boundaries in memory; thus avoiding any
rereading of blocks from disk during the merge.

An item may travel multiple times to disk and back, since the extract buffer
is included while merging into EM. However, as in the sequence heap structure,
this only occurs when internal memory is exhausted and all items are written
to disk; thus we can amortize the extra I/Os for the extract buffer with the
Θ(M/B) I/Os needed to flush main memory.

Extraction, Prediction, and Minimum of Minima. To support fast non-
bulk pop operations, we keep a hierarchy of tournament trees to save results
of pairwise comparisons of items. The trees are built over the insertion heaps,
internal arrays, and extract buffer. External arrays need not be included, since
extraction from them is buffered using the extract buffer. The tournament trees
need to be updated each time an insertion heap’s minimum element changes, or
a heap is flushed into an internal array. In bulk push operations these actions
are obviously postponed until the bulk’s end.

When merging external arrays with parallel multiway merge we are posed
(again) with the discrepancy between parallelism, which requires large item
counts for efficiency, and relatively small disk blocks (by default 2–8 MiB). To
alleviate the problem, we increase the number of read buffers and calculate an
optimal block prediction sequence, as also done for sorting [12], which contains
the order in which the EM blocks are needed during merging and fetch as many
as fit into RAM. In sorting, the prediction sequence is fixed and can be deter-
mined by sorting the smallest items of each block as a representative (also called
“trigger” element). In the parallel disk model, the independent disks need to
be considered as well. In our PPQ setting, the prediction sequence becomes a
dynamic problem, since external arrays may be added. We define four states for
an external block: in external memory, hinted for prefetching, loaded in RAM,
and finished (see Figure 3). To limit the main memory usage of the PPQ, the
number of prefetched and blocks loaded in RAM must be restricted.

Since the next k external blocks needed for merging are determined by the k
smallest block minima, we keep track of these items in a tournament tree over
the block minima sequences of the external arrays (see items hi in Figure 3).
This allows fast calculation of the next block when another can be prefetched.
However, when a new external array is added, the dynamic prediction sequence
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changes, and we may have to cancel prefetch hints. This is done by resetting the
tournament tree back to the first block minima merely hinted for prefetching,
but not loaded in RAM, and replaying it till the new k smallest block minima are
determined. This costs less than k +k log S comparisons, where S is the number
of sequences. We then compare the new predictions with the old by checking
how many blocks are to be prefetched in each array, and cancel or add hints.

For parallel merging, we need to solve another problem: the merge ranges
within the blocks in RAM must be limited to items smaller than the smallest
item still in EM, since otherwise the PQ invariant may be violated. To determine
the smallest item in EM we reuse the block minima sequences, and build a second
tournament tree over them containing the smallest items of the next “loadable”
block, not guaranteed to be in RAM (items mi in Figure 3). When performing
a parallel multiway merge into the extract buffer, all hinted external blocks are
first checked (in order) whether the prefetch is complete, and the tournament
tree containing the smallest external items is updated. The tip then contains
m = mini mi, the overall smallest external item, which serves as merge limit.
We then use binary search within the loaded blocks of each array and find the
largest items smaller than m. We thus limit the multisequence selection and
merge range on each array by m. Additionally, by using smaller selection ranks
during parallel multiway merging one can adapt the total number of elements
merged. These rank limits enable us to efficiently limit the extract buffer’s size
and the output size of bulk pop(v, k) and bulk pop limit(v, L, k) operations. To
limit extraction up to L, we simply use min(L,m) as merge limit.

As with internal arrays, the number of external arrays should be kept small
for multiway merge to be efficient. One may suspect that merging from EM
is I/O bound, however, if the merge output buffers are smaller than the read
buffers, then this is obviously not the case. Thus, the parallelization bottleneck
of refilling the extract buffer or of bulk pop operations largely depends on the
number of arrays. We also adapt the number of read buffers (both for prefetching
and holding blocks in RAM) dynamically to the number of external arrays. Each
newly added external array requires at least one additional read buffer.

As with internal arrays, instead of keeping external arrays in separate groups,
we label them with a level number, and merge levels when the contained number
grows too large. This enables more dynamic memory pooling than in the rigid
sequence heap data structure, while maintaining the optimal I/O complexity.
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Trade-Offs between Insertion and Extraction. As already discussed, to
enable non-bulk pop operations we keep a hierarchy of tournament trees. Using
this hierarchy instead of one large tournament tree skews the depth of nodes
in the tree, making replays after pops from the extract buffer and the insertion
heaps cheaper than from internal arrays.

When a new external array is created, then the read prediction sequence may
change and previous prefetch requests need to be canceled and new ones issued.
In long bulk push sequences (as the ascending sequence in our experiments),
this can amount to many superfluous prefetch reads of blocks. Thus we disable
prefetching during bulk push operations and issue all hints at the end. This
suggests that bulk push sequences should be as long as possible, and that they
are interleaved with bulk pop operations.

4 Implementation in STXXL and Experimental Results

We implemented our PPQ design in C++ with OpenMP and the STXXL
library [9], since it provides a well-designed interface to asynchronous I/O, and
allowing easy overlapping of I/O and computation. It also contains two other PQ
implementations that we compare our implementation to. Our implementation
will be available as part of the next STXXL release 1.4.2, which will be publicly
available under the liberal Boost software license. At the time of submission it
is available in the public development repository.

Other PQ Implementations. In these experiments we compare our PPQ
implementation (PPQ) with the sequential sequence heap [18] (SPQS) con-
tained in the STXXL, a partially parallelized version [4] of it (SPQP), which
uses parallel multiway merging only when merging external arrays, and with
the STXXL’s highly tuned stream sorting implementation [10] (Sorter) as a
baseline.

Experimental Platforms. We run the experiments on two platforms. Plat-
form A-Rot is an Intel Xeon X5550 from 2009 with 2 sockets, 4 cores and
4 Hyperthreading cores per socket at 2.66 GHz clock speed and 48 GiB RAM,
and eight rotational Western Digital Blue disks with 1 TB capacity and about
127 MiB/s transfer speed each, which are attached via an Adaptec ASR-5805
RAID controller. Platform B-SSD is an Intel Xenon E5-2650 v2 from 2014
with 2 sockets, 8 cores and 8 Hyperthreading cores per socket at 2.6 GHz clock
speed with 128 GiB RAM. There are four Samsung SSD 840 EVO disks with
1 TB each attached via an Adaptec ASA-7805H Host adapter, yielding together
2 GiB/s read and 1.6 GiB/s write transfer speed to/from EM. The platforms run
Ubuntu Linux 12.04 and 14.04, respectively, and all our programs were compiled
with gcc 4.6.4 and 4.8.2 in Release performance mode using STXXL’s CMake
build system.

Experiments and Parameters. To compare the three PQs we report results
of four sets of experiments. In all experiments the PQ’s items are plain 64-bit
integer keys (8 bytes), which places the spotlight on internal comparison work
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as payload only increases I/O volume. (See our report [6] for additional results
with 24 byte items.) The PQs are allotted 16 GiB of RAM on both platforms,
since in a real EM application multiple data structures exist simultaneously and
thus have to share RAM.

In the first two experiments, called a) push-rand-pop and b) push-asc-pop,
the PQ is filled a) with n uniformly random generated integer items, or b)
with n ascending integers, and then the n items are extracted again. In these
canonical benchmarks, the PQ is used to just sort the items, but it enables
us to compare the PQs against the highly optimized sorting implementation,
which also employs parallelism where possible. In the ascending sequence, the
first items inserted are removed first, forcing the PQs to cycle items. Considering
the amount of internal work, the push-asc-pop benchmark is an easy case, since
all buffers are sorted and merging is skewed. Thus the focus of this benchmark
is on I/O overlapping. On the other hand, in the push-rand-pop benchmark the
internal work to sort and merge the random numbers is very high, which makes it
a test of internal processing speed. We ran the experiments for n = 227, . . . , 235,
which is an item volume of 1 GiB, . . . , 256 GiB.

The third and forth experiments, asc-rbulk-rewrite and bulk-rewrite, fully
rewrite the PQ in bulks: the PQ is filled with n ascending items, then the n items
are extracted in bulks of random or fixed size v, and after each bulk extraction
v items are pushed again. During the rewrite, in total n items are extracted and
n items inserted with higher ids. We measure only the bulk pop/push cycles as
these experiments are designed to emulate traversing a graph for time forward
processing. We use bulk rewriting in two different experiment scenarios: in the
first, we select the bulk size uniformly at random from 0 to 640 000, and let n
increase as in the first two experiments. For the second, n = 4·230 items (32 GiB)
is fixed and the bulk size v is varied from 5 000 to 5 120 000.

All experiments were run only once due to long execution times and little
variation in the results over large ranges of input size. During the runs we pinned
the OpenMP threads to cores, which is important since it keeps the insertion
heaps local. Due to the large I/O bandwidth of the SSDs, we increased the
number of write buffers of the PPQ to 2 GiB on B-SDD to better overlap I/O
and computation. Likewise, we allotted 128 MiB read buffers per external array.
On A-Rot we set only 256 MiB write buffers and 32 MiB read buffers per array.
For the STXXL PQ, of the 16 GiB of RAM one fourth is allocated for read and
one fourth for write buffers. We used in all experiments the new “linuxaio” I/O

Table 1. Speedup of PPQ over parallelized STXXL PQ (SPQP), sequential STXXL
PQ (SPQS), and STXXL Sorter for 64-bit integers, averaged for experiments n ≥ 230.5

Platform A-Rot Platform B-SSD
Experiment SPQP SPQS Sorter SPQP SPQS Sorter

push-rand-pop 1.39 3.58 0.87 2.25 4.83 0.83
push-asc-pop 1.81 3.40 1.37 4.29 6.71 1.20

asc-rbulk-rewrite 1.89 4.70 2.91 3.43
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interface of STXXL 1.4.1, which uses system calls to Linux’s asynchronous I/O
interface with native command queuing (NCQ) and bypasses system disk cache.

Results and Interpretation. The results measured in our experiments are
shown in Figure 4 as throughput in items per second. We measured “throughput”
at the PQ interface, and this is not necessarily the I/O throughput to/from disk,
since the PQs may keep items in RAM. In all four experiments, items are read
or written twice, so throughput is two times item size divided by time. If one
assumes that a container writes and reads all items once to/from disk (as the
sorter does), then on A-Rot at most 39 million items/s and on B-SSD at most
106 million item/s could be processed, considering the maximum I/O bandwidth
as measured using stxxl tool.

In all our experiments, except the bulk size benchmark, our PPQ is faster
than the parallelized and sequential STXXL PQ. Assuming the PQs use 12 GiB
of the 16 GiB RAM for storing items, then the containers only need EM for about
n ≥ 230.5 (indicated by dashed horizontal line in plots). In Table 1 we show
the average execution time speedups of our PPQ for the available competitors,
averaged over all inputs where the input cannot fit into RAM. Remarkably,
on both platforms the PPQ is faster than the sorter for both inputs except
random on A-Rot, which indicates that I/O overlaps computation work very well,
often even better than the sorter. Comparing to SPQS, we achieved speedups of
3.6 – 4.7 on A-Rot (which has 8 real cores), and speedups of 3.4–6.7 on B-SSD
(16 real cores). Compared to the previously parallelized SPQP, we only gain
1.4 –1.9 on A-Rot and 2.2 – 4.3 speedup on B-SSD. While this relative comparison
may not seem much, by comparing the PPQ’s throughput to the sorter and the
absolute I/O bandwidth of the disks, one can see that the PPQ reaches 64% of
the available I/O bandwidth in push-asc-pop on B-SSD, and 49% on A-Rot. For
asc-rbulk-rewrite the PQ-throughput is naturally higher than the possible I/O
bandwidth, since the PQs keep items in RAM. In push-rand-pop, the PPQ is
limited by compute time of sorting random integers, just as the STXXL sorter
is. For asc-rbulk-rewrite, which is a main focus of the PPQ, we achieve a speedup
of 1.9 on A-Rot and 2.7 on B-SSD for bulk sizes of on average 320 000 items.
Considering the increasing bulk sizes in bulk-rewrite, we see that larger bulks
yield better performance up to a certain sweet spot, but the break even of the
PPQ over the SPQP is quite low: 20K items for A-Rot and 80K items for B-SSD.

5 Conclusions and Future Work

We presented a PPQ design and implementation for EM, and successfully demon-
strated that for specific benchmarks the high I/O bandwidth of parallel disks
and even SSDs can be utilized. By relaxing semantics, our bulk-parallel inter-
face enables parallelized processing of larger amounts of items in the PPQ. In
the future, we want to apply our PPQ’s bulk-parallel processing to the eSAIS
external suffix and LCP sorting algorithm [5], where in the largest recursion level
each alphabet character (and repetition count) is a bulk.
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During our work on the PPQ two important issues remained untouched: how
does one balance work in an EM algorithm library when the user application,
the EM containers, and I/O overlapping require parallel work? We left this to
the operating system scheduler and block the user application during paral-
lel merging, which is not desirable. As indicated by theory and experiments,
bulk pop limit requires large bulks to work efficiently, however, the PPQ can-
not know the resulting bulk sizes without performing a costly multisequence
selection. One could require the user application to provide an estimate of the
resulting size, or develop an online oracle. Finally, experiments with other inter-
nal memory PPQs and d-ary heaps may improve performance by using larger
insertion heaps.
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Abstract. The closeness and the betweenness centralities are two well-
known measures of importance of a vertex within a given complex net-
work. Having high closeness or betweenness centrality can have positive
impact on the vertex itself: hence, in this paper we consider the problem
of determining how much a vertex can increase its centrality by creating
a limited amount of new edges incident to it. We first prove that this
problem does not admit a polynomial-time approximation scheme (unless
P = NP ), and we then propose a simple greedy approximation algorithm
(with an almost tight approximation ratio), whose performance is then
tested on synthetic graphs and real-world networks.

1 Introduction

Looking for the most important vertices within a given complex network has
always been one of the main goals in the field of real-world network analysis.
Different measures of importance have been introduced in the literature, and
several of them are related to the notion of “centrality” of a vertex. This lat-
ter notion, in turn, has been explicitly formalized in different ways: two of the
most popular ways are closeness centrality and betweenness centrality (see, for
example, [5]). The first one somehow measures the efficiency of a vertex while
spreading information to all other vertices in its connected component, while the
second one intuitively quantifies how much a vertex controls the information flow
between all pairs of vertices in a graph. More formally, the closeness centrality
of v is equal to the sum of the reciprocal of the distances to v from all other
vertices, while the betweenness centrality of a given vertex v is the portion of
the shortest paths between all pairs of vertices that pass through v.

Both closeness and betweenness centrality, however, are computationally
expensive, since they require O(nm) time [7] (in order to be computed for
each vertex) which is clearly infeasible for networks with millions of vertices
and edges (which is the “normal” size of many interesting real-world networks).

c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 43–55, 2015.
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For this reason, several randomized and/or approximation algorithms have been
proposed for the computation of these two centrality measures [9,20].

In this paper, instead, we consider a different problem related to the closeness
and betweenness centrality, that is, the problem of identifying which “strategy” a
vertex should adopt in order to increase its own centrality value. Indeed, increas-
ing its own ranking in terms of centrality, can have positive consequences for the
vertex. For example, in the field of author citation networks both closeness and
betweenness centrality seem to be significantly correlated with citation counts
(as it has been already observed in the case of collaboration networks) [23], while,
in the field of transportation network analysis, the betweenness centrality seems
to be positively related to the efficiency of an airport, as observed in [16] where
a network of 57 European airports has been analyzed.

More specifically, we consider the problem of efficiently determining, for a
given vertex v, the set of k edges entering v that, when added to the original
directed graph, allows v to increase as much as possible its closeness (respectively,
betweenness) centrality and its ranking according to this measure. We first prove
that this problem is hard to be approximated within an approximation factor
greater than 1− 1

3e (respectively, 1− 1
2e ), and we then show that a greedy approach

yields an (1− 1
e )-approximation algorithm (for both closeness and betweenness).

Successively, we present several experiments that we have performed (i) in order
to evaluate how good is the approximation factor in the case of relatively small
randomly generated graphs, and (ii) in order to apply the greedy approach to
real-world citation and transportation networks. As a result of the first set of
experiments, we have that the greedy algorithm seems to perform much better
than the theoretical results, since it often computes an optimal solution and,
in any case, it achieves an approximation factor significantly larger than 1 − 1

e .
By applying the greedy algorithm to real-world networks, instead, we observe
that by adding very few edges a vertex can drastically increase its centrality
measure and, hence, its ranking. For example, the first (respectively, second)
author of this paper could pass from ranking 2540 to ranking 346 (respectively
from ranking 6398 to 380), with just three citations. However, he has to convince
Robert Tarjan, Christos Papadimitriou and Leslie Valiant (respectively, Richard
Karp) to cite one of his papers. In the field of transportation networks, instead,
the Paris Orly airport could increase its betweenness centrality (in the Easyjet
connection network) by 218%, and pass from ranking 22 to ranking 15, with just
three new connections from Ljubljana, Newquay, and Ponta Dalgada.

As far as we know, the problem analyzed in this paper has never been
attacked before, even though similar problems have been studied for other cen-
trality measures, i.e. page-rank [4,19], eccentricity [10], average distance [17], and
some measures related to the number of paths passing through a given node [13].
Hence, we had no other algorithms to compare with. However, we also consider
the naive approach of connecting the vertex with the top-k vertices in the central-
ity ranking and we experimentally show that the greedy algorithm significantly
outperforms this simple heuristic, whenever k > 1.
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1.1 Preliminary Definitions and Results

Let G = (V,E) be a directed graph. For each node v, Nv denotes the set of
in-neighbors of v, i.e. Nv = {u | (u, v) ∈ E}. Given two vertices s and t, we
denote by dst, σst, and σstv the distance from s to t in G, the number of shortest
paths from s to t in G, and the number of shortest paths from s to t in G that
contain v, respectively. Given a set S of edges not in E, we denote by G(S) the
graph augmented by adding the edges in S to G, i.e. G(S) = (V,E ∪ S). For a
parameter x of G, we denote by x(S) the same parameter in graph G(S), e.g. the
distance from s to t in G(S) is denoted as dst(S). For each node v, the closeness
centrality (also called harmonic centrality [5]) of v is defined as follows

cv =
∑

s∈V \{v}
dsv<∞

1
dsv

,

while the betweenness centrality [5] of v is defined as

bv =
∑

s,t∈V
s �=t;s,t�=v

σst �=0

σstv

σst
.

The closeness and the betweenness centralities of a vertex clearly depend on the
graph structure: if we augment a graph by adding a set of edges S, then the
centrality of a vertex might change. Generally speaking, adding edges incident
to some vertex v can only increase the centrality of v. We are interested in
finding the set S of edges incident to a particular vertex v that maximizes such
an increment. Therefore, we define the following optimization problem.

Maximum Closeness Improvement (MCI)
Given: A directed graph G = (V,E); a vertex v ∈ V ; and an integer k ∈ N

Solution: A set S of edges incident to v, S = {(u, v) | u ∈ V \ N(v)}, such
that |S| ≤ k

Goal: Maximize cv(S)

Analogously, we can define the Maximum Betweenness Improvement
(in short, MBI), by referring to the betweeness centrality measure.

In this paper, we will use the the maximum set coverage problem [12] to
derive approximation hardness results. Such problem is defined as follows.

Maximum Set Coverage (MSC)
Given: A set X; a family of subsets of X, F = {S1, S2, . . . S|F|}; and an

integer k′

Solution: A family F ′ ⊆ F such that |F ′| ≤ k′

Goal: Maximize s(F ′) = | ∪Si∈F ′ Si|
It has been shown [12] that MSC cannot be approximated within a factor greater
than 1 − 1

e , unless P = NP . Moreover, the following greedy algorithm matches
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Algorithm: GreedyImprovement
Input : A directed graph G = (V,E); a vertex v ∈ V ; and an integer k ∈ N

Output: Set of edges S ⊆ {(u, v) | u ∈ V \ Nv} such that |S| ≤ k

1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach u ∈ V \ (Nv ∪ S) do Compute fv(S ∪ {(u, v)});
4 umax := arg max{fv(S ∪ {(u, v)}) | u ∈ V \ (Nv ∪ S)};
5 S := S ∪ {(umax, v)};

6 return S;

Fig. 1. The greedy centrality improvement algorithm (fv denotes cv or bv)

such upper bound [18]: start with the empty set, and repeatedly add an element
that gives the maximal marginal gain. The greedy algorithm can be extended
to any monotone submodular1 objective function defined on F thanks to the
following result.

Theorem 1 ([18]). For a non-negative, monotone submodular function f , let S
be a set of size k obtained by selecting elements one at a time, each time choosing
an element that provides the largest marginal increase in the value of f . Then S
provides a

(
1 − 1

e

)
-approximation.

In this paper, we exploit this result by showing that cv and bv are mono-
tone and submodular w.r.t. the possible set of edges incident to v. Hence, the
greedy algorithm reported in Fig. 1 (where fv denotes either cv or bv) provides
a

(
1 − 1

e

)
-approximation. Note that the computational complexity of such algo-

rithm is O(k · n · g(n,m)), where g(n,m) is the complexity of computing either
cv or bv.

2 Improving Closeness Centrality

We first prove that the problem of improving the closeness centrality of a vertex
does not admit a polynomial-time approximation scheme.

Theorem 2. Problem MCI cannot be approximated within a factor greater than
1 − 1

3e , unless P = NP .

Proof. We give an L-reduction with parameters a and b [22]. In detail, we will
give a polynomial-time algorithm that transforms any instance IMSC of MSC
into an instance IMCI of MCI and a polynomial-time algorithm that transforms
any solution S for IMCI into a solution F ′ for IMSC such that the following two

1 For a ground set X, a function f : 2X → N is submodular if for any pair of sets
S ⊆ T ⊆ X and for any element e ∈ X\T , f(S∪{e})−f(S) ≥ f(T ∪{e})−f(T ) [18].
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vx1

vx2

...
vx|X|

vS1

vS2

...
vS|F|

v

Fig. 2. The reduction used in Theorem 2 (in this example, x1 ∈ S1, x1 ∈ S2, x2 ∈ S1,
and x2 ∈ S|F|). The dashed edges denote those added in a solution.

conditions are satisfied for some values a and b:

OPT (IMCI) ≤ aOPT (IMSC) (1)
OPT (IMSC) − s(F ′) ≤ b (OPT (IMCI) − cv(S)) . (2)

where OPT denotes the optimal value of an instance of an optimization prob-
lem. If the above conditions are satisfied and there exists a α-approximation
algorithm for MCI, then there exists a (1 − ab(1 − α))-approximation algorithm
for MSC [22]. Since MSC is hard to approximate within a factor greater than
1− 1

e , then 1−ab(1−α) < 1− 1
e , unless P = NP . This implies that α < 1− 1

abe .
Given an instance IMSC = (X, F , k′) of MSC, we define an instance IMCI =

(G, v, k) of MCI as follows (see Fig. 2): k = k′ and G = (V,E), where V =
{v} ∪ {vxi

| xi ∈ X} ∪ {vSj
| Sj ∈ F} and E = {(vxi

, vSj
) | xi ∈ Sj}.

Without loss of generality, we can assume that any solution S of MCI con-
tains only edges (vSj

, v) for some Sj ∈ F . In fact, if a solution does not satisfy this
property, then we can improve it in polynomial time by repeatedly applying the
following rule: if S contains an edge (vxi

, v), for some xi ∈ X, then exchange such
edge with an edge (vSj

, v) such that (vSj
, v) �∈ S (note that such an edge must

exist, since otherwise |F| ≤ k = k′ and IMSC could be easily solved). The above
rule does not decrease the value of cv(S): indeed, if we exchange an edge (vxi

, v)
with an edge (vSj

, v) such that (vSj
, v) �∈ S, then the closeness centrality of

v decreases by either 1 or 1
2 (because of the deletion of (vxi

, v)) but certainly
increases by 1 (because of the insertion of (vSj

, v)).
Given a solution S of MCI, let F ′ be the solution of MSC such that Sj ∈ F ′

if and only if (vSj
, v) ∈ S. We now show that cv(S) = 1

2s(F ′) + k. To this
aim, let us note that the distance from a vertex vxi

to v is equal to 2 if an
edge (xSj

, v) such that xi ∈ Sj belongs to S, and it is ∞ otherwise. Similarly,
the distance from a vertex vSj

to v is equal to 1 if (xSj
, v) ∈ S, and it is ∞

otherwise. Moreover, the set of elements xi of X such that dvxi
v(S) < ∞ is

equal to {xi | xi ∈ Sj ∧ (vSj
, v) ∈ S} =

⋃
Sj∈F ′ Sj . Therefore,
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cv(S) =
∑

s∈V \{v}
dsv(S)<∞

1
dsv(S)

=
∑

xi∈X
dvxi

v(S)<∞

1
dvxi

v(S)
+

∑

Sj∈F
dvSj

v(S)<∞

1
dvSj

v(S)

=
1
2
|{xi ∈ X | dvxi

v(S) < ∞}| + |{Sj ∈ F | dvSj
v(S) < ∞}|

=
1
2

∣
∣
∣
∣
∣
∣

⋃

Sj∈F ′
Sj

∣
∣
∣
∣
∣
∣
+ |{Sj | (vSj

, v) ∈ S}| =
1
2
s(F ′) + k′ =

1
2
s(F ′) + k.

It follows that Conditions (1) and (2) are satisfied for a = 3
2 and b = 2.

Indeed, OPT (IMCI) = 1
2OPT (IMSC) + k ≤ 3

2OPT (IMSC), where the inequal-
ity is due to the fact that OPT (IMSC) ≥ k, since otherwise the greedy algo-
rithm would find an optimal solution for IMSC. Moreover, OPT (IMSC)−s(F ′) =
2 (OPT (IMCI) − k) − 2 (cv(S) − k) = 2 (OPT (IMCI) − cv(S)). The theorem fol-
lows by plugging the values of a and b into α < 1 − 1

abe . 
�

2.1 Greedy Algorithm and Submodularity

We now prove that the GreedyImprovement algorithm provides a (1 − 1
e )-

approximation for the MCI problem. To this aim, because of Theorem 1, it suf-
fices to prove that the closeness centrality measure is monotone and submodular.

Theorem 3. For each vertex v, function cv is monotone and submodular with
respect to any feasible solution for MCI.

Proof. To show that cv is monotone increasing, it is enough to observe that
for each solution S to MCI, each vertex u such that (u, v) �∈ E ∪ S, and each
s ∈ V \{v} such that dsv(S ∪{(u, v)}) �= ∞, then dsv(S ∪{(u, v)}) ≤ dsv(S) and
therefore 1

dsv(S∪{(u,v)}) ≥ 1
dsv(S) . We now show that for each pair S and T of

solutions to MCI such that S ⊆ T and for each vertex u such that (u, v) �∈ T ∪E,

cv(S ∪ {(u, v)}) − cv(S) ≥ cv(T ∪ {(u, v)}) − cv(T ).

To simplify notation, we assume that 1
dst(X) = 0 whenever dst(X) = ∞, for any

solution X to MCI. We prove that each term of cv is submodular, that is, that,
for each vertex s ∈ V \ {v} such that dsv(T ∪ {(u, v)}) �= ∞, we show that

1
dsv(S ∪ {(u, v)})

− 1
dsv(S)

≥ 1
dsv(T ∪ {(u, v)})

− 1
dsv(T )

. (3)

Let us consider the shortest paths from s to v in G(T ∪ {(u, v)}). The following
two cases can arise:

1. The last edge of a shortest path from s to v in G(T ∪ {(u, v)}) is (u, v)
or belongs to S ∪ E. In this case, such a path is a shortest path also in
G(S∪{(u, v)}), as it cannot contain edges in T \S. Then, dsv(S ∪ {(u, v)}) =
dsv(T ∪ {(u, v)}) and 1

dsv(S∪{(u,v)}) = 1
dsv(T∪{(u,v)}) . Moreover, dsv(S) ≥

dsv(T ) and, therefore, − 1
dsv(S) ≥ − 1

dsv(T ) .
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2. The last edge of all shortest paths from s to v in G(T ∪ {(u, v)}) belongs to
T \S. In this case, dsv(T ) = dsv(T ∪{(u, v)}) and, therefore, 1

dsv(T∪{(u,v)}) −
1

dsv(T ) = 0. As 1
dsv(S) is monotone increasing, then 1

dsv(S∪{(u,v)}) − 1
dsv(S) ≥ 0.

In both cases, we have that the inequality (3) is satisfied and, hence, the theorem
follows. 
�

2.2 Experimental Evaluation

We conducted two types of experiments: in the first type we evaluate the quality
of the solution produced by the greedy algorithm by measuring the approxi-
mation ratio on several randomly generated networks; in the second type we
measured the improvement in the value of closeness of v and in the closeness
ranking of v within the network (these latter experiments are conducted on three
real-world networks). All our experiments have been performed on a computer
equipped with an AMD Opteron 6376 CPU with 16 cores clocked at 2.30GHz
and 64GB of main memory, and our programs have been implemented in C++
(gcc compiler v4.8.2 with optimization level O3).

We measured the approximation ratio of the greedy algorithm on four
types of randomly generated networks, namely directed Preferential Attachment
(in short, PA) [6], Erdős-Rényi (in short, ER) [11], Copying (in short, COPY) [14],
and Compressible Web (in short, COMP) [8]. The size of the graphs is reported
in Table 1. For each combination (n, m), we generated five random graphs and
used five vertices as v. These vertices have been chosen on the basis of their
original closeness ranking: in particular, we divided the list of vertices sorted by
their original ranking in five parts and choose the vertices in the boundaries. We
denote by vX% the vertex on the boundary of the top Xth percentile (e.g. v25%
is a vertices on the boundary of the top 25th percentile).

In the experiments, we measured the ratio between the value of the solution
found by the greedy algorithm and the optimal value computed by using an
Integer Program (in short, IP). We solved IP by using the GLPK solver [3].
However, since solving IP requires long time on large instances, in some cases
we used the solution to the Linear Relaxation (in short, LP) of IP as an upper
bound to the optimal value. In these cases, the ratio is obtained by using the
LP upper bound as a denominator, and therefore it represents a lower bound to
the actual approximation ratio.

The results are reported in Table 1, where we show the number of times that
the approximation ratio is equal to one and the minimum ratio obtained. The
experiments clearly show that the measured approximation ratio is by far better
than the theoretical one proven in the previous section. In fact, in more than
91% cases, the greedy algorithm found an optimal solution, and in the worst
case the ratio is 0.9694.

For the second type of experiments we used real-world citation networks
obtained by the Arnetminer database [1]. In such networks, there is a vertex for
each author and an edge from vertex x to vertex y if the author corresponding to
vertex x cited in his paper one paper written by the author corresponding to y.
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Table 1. Closeness centrality: comparison between the greedy algorithm and the opti-
mum (or an upper bound to the optimum). The first three columns report the type
and size of the graphs; the fourth column reports the relative number of times that
the greedy algorithm finds an optimal solution. The fifth column reports the minimum
measured approximation ratio. The last column indicates whether the optimum has
been found by using the integer program (IP) or its linear relaxation (LP), in the
latter case it is an upper bound to the optimum.

Network n = |V | m = |E| OPT% Min Approx. Ratio IP/LP

PA 100,500,1000 ≈ 1.3 × n 93.25 0.9831 IP

ER 100 200, 500, 1000 88.60 0.9788 IP
ER 500 5000, 12500, 25000 74.28 0.9694 LP

COMP 100 200, 500, 1000 99.88 0.9764 LP
COMP 500 5000, 12500, 25000 99.47 0.9854 LP

COPY 100 200, 500, 1000 97.48 0.9885 LP
COPY 500 5000, 12500, 25000 89.65 0.9697 LP

We parsed the Arnetminer database in order to select three sub-networks induced
by the authors that published at least a paper in one of the main conferences or a
journals in (i) algorithms (THEORY network, with 9274 vertices and 130419 edges),
social network analysis (SN network, with 3666 vertices and 32413 edges), and
computer science education (CSE network, with 3680 vertices and 35691 edges).
As in the previous experiment, for each graph, we used five vertices as v. The
value of k ranges from 1 to 100.

The results for THEORY are plotted in Fig. 3 (the results for the other networks
are similar). In the two top charts we plot the closeness centrality and the ranking
of vertex v as a function of k. We observe that any vertex become central by
adding just few edges. For example a vertex with the smallest closeness centrality
which initially has closeness 0 and is ranked 6398, improves its closeness and
ranking to 2705.97 and 215, respectively, by adding only 10 edges, and it is
among the top 10 vertices by adding 57 edges. On average, the algorithm required
3.68 seconds of computational time for each iteration of the algorithm (i.e. for
each added edge).

In the charts on the bottom, we compare the greedy algorithm with a naive
algorithm that adds the edges from the k vertices with the highest closeness
centrality to v. In this case we choose 10 vertices for v instead of 5. We report
the ratio between the closeness value (respectively, ranking) obtained by the
naive algorithm and that obtained by the greedy one. It is easy to prove that
the two algorithms find the same solution for k = 1, while in any other case the
experiments show that the greedy algorithm outperforms the naive approach. In
fact, the solution computed by this latter is up to 12 times worse in terms of
ranking.
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Fig. 3. Closeness centrality: (Top) performance of the greedy algorithm on network
THEORY. (Bottom) comparison of the greedy algorithm with the naive method on net-
work THEORY.

3 Improving Betweenness Centrality

Similarly to the case of the closeness centrality, we can prove, in the case of the
betweenness centrality, the following two results.

Theorem 4. Problem MBI cannot be approximated within a factor greater than
1 − 1

2e , unless P = NP .

Theorem 5. For each node v, function bv is monotone and submodular with
respect to any feasible solution for MBI.

As a consequence of the previous theorem and of Theorem 1, we have that the
GreedyImprovement algorithm is a (1 − 1

e )-approximation algorithm for the
MBI problem. We now report the results of our experimental study on this
algorithm. We used the same platform used for closeness and the parallel imple-
mentation of betweenness centrality of the NetworKit library [21]. First, we
measured the approximation ratio of the greedy algorithm on the four types of
randomly generated networks used for closeness centrality. The size of the graphs
is reported in Table 2. For each combination (n, m), we generated five random
graphs and used five vertices as v chosen like in the case of closeness centrality.
The value of k ranges from 1 to 100.
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Table 2. Betweenness centrality: comparison between the greedy algorithm and an
upper bound to the optimum. The first three columns report the type and size of the
graphs; the fourth (fifth, respectively) column reports the average (standard deviation,
respectively) of the ratio between the value found by the greedy algorithm and the
upper bound to the optimal value.

Network n = |V | m = |E| Avg. Std. Dev.

PA 50 65 0.9586 0.1252
PA 100 130 0.9500 0.1739

ER 50 100, 250, 500 0.7459 0.1946

COMP 50 100, 250, 500 0.8196 0.1946

COPY 50 100, 250, 500 0.8187 0.1557

In this case, we are not able to determine the optimum of MBI by means of
an integer program. This is due to the non-linearity of the objective function.
Therefore, in the experiments, we measured the ratio between the value of the
solution found by the greedy algorithm and the optimal value of problem MBI-d,
which consists in maximizing the following centrality measure:

dv =
∑

s,t∈V
s �=t;s,t�=v

1SP (s,t)(v).

In the above formula SP (s, t) denotes the set of all the vertices that belong to
a shortest path from s to t and 1A(x) is the indicator function (i.e. 1A(x) = 1
if x ∈ A and 1A(x) = 0, otherwise). It is easy to show that the optimal value
of any instance of MBI-d is an upper bound for the optimal value of the corre-
sponding MBI instance. The optimal value for MBI-d is computed by using an
integer program. We solved the linear relaxation of such integer program by using
GLPK. The results are reported in Table 2, where we show the average value
and the standard deviation of the measured lower bound to the approximation
ratio. Also in this case, the experiments show that the measured approximation
ratio is by far better than the theoretical one.

For the second type of experiments we used real-world networks representing
flight connection. Vertices in these networks represent airports and edges repre-
sent a connection from one airport to another. In detail, we used three networks:
(i) a network obtained by crawling the EasyJet website [2] (EasyJet network,
with 136 vertices and 1510 edges), (ii) the directed network of flights between
US airports in 2010 (USAirports network, with 501 vertices and 5960 edges),
and (iii) a network constructed from the USA Federal Aviation Administration
(USA Traffic Control network, with 1227 vertices and 2615 edges). The last
two networks are available from Konect [15]. As in the previous experiments, for
each graph we used five vertices as v and we let k range from 1 to 100. The results
for EasyJet are plotted in Fig. 4 (the results for the other networks are similar).
As in the case of closeness, in the two top charts we plot the betweenness cen-
trality and the ranking of node v as a function of k, in the two bottom charts,
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Fig. 4. Betweenness centrality: (Top) Performance of the greedy algorithm on network
EasyJet; (Bottom) Comparison of the greedy algorithm with the naive method on
network EasyJet

we compare the greedy algorithm with the naive algorithm. Similar results as
for closeness can be observed. However, in this case, the improvement in value
and in ranking is smaller than in the case of closeness. This is due to the fact
that we only add incoming edges while the number of shortest paths passing
through v also depends on the edges outgoing from v. We leave the problem of
adding both incoming and outgoing edges as an open problem. Also in this case
our algorithm outperforms the naive approach by computing solutions that are
up to 7 times better in terms of ranking. On average, the algorithm required
0.33 seconds of computational time for each iteration of the algorithm (i.e. for
each added edge).

4 Conclusion and Future Research

In this paper, we have proposed a greedy approximation algorithm for efficiently
computing a set of edges that a node can decide to add to a graph in order to
increase its betweenness or closeness centrality. The algorithm has been tested on
several relatively small random graphs and, then, applied to several real-world
collaboration networks. As future works, we plan to extend our approach to
weighted graphs and to other centrality measures, to analyze a generalization of
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the problem considered in this paper (by allowing the addition of edges incident
to other vertices), to study the problem of maximizing the ranking improvement
(instead of the centrality value), to apply algorithmic game theoretical techniques
(in order to deal with the concurrent addition of edges by different vertices of
the graph), and dynamic algorithm techniques (in order to make the greedy
algorithm more efficient).

References

1. Arnetminer (accessed: 2015–01-15). http://arnetminer.org
2. Easyjet (accessed: 2015–01-15). http://www.easyjet.com
3. GLPK - GNU Linear Programming Kit. http://www.gnu.org/software/glpk
4. Avrachenkov, K., Litvak, N.: The effect of new links on google pagerank. Stoc.

Models 22(2), 319–331 (2006)
5. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)
6. Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In:

Proc. of the 14th Annu. ACM-SIAM Symp. on Disc. Alg. (SODA), pp. 132–139.
SIAM (2003)

7. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163–177 (2001)

8. Chierichetti, F., Kumar, R., Lattanzi, S., Panconesi, A., Raghavan, P.: Models for
the compressible web. In: Proc. of the 50th Annu. Symp. on Found. of Comput.
Sci. (FOCS), pp. 331–340. IEEE (2009)

9. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness cen-
trality, at scale. Technical Report MSR-TR-2014-71 (2014)

10. Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using
shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431.
Springer, Heidelberg (2010)
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Abstract. We propose a new algorithm to compute the diameters of
large real directed graphs. In contrast to recent algorithms, the proposed
algorithm is designed for general directed graphs, i.e., it does not assume
that given graphs are undirected or strongly connected. Experimental
results on large real graphs show that the proposed algorithm is several
orders of magnitude faster than the naive approach, and it reveals the
exact diameters of large real directed graphs, for which only lower bounds
have been known.

1 Introduction

The diameter of a graph is the distance between the most distant pairs of
vertices. Because of the connection to the small-world phenomenon, the diam-
eters of real-world graphs have been of interest in sociology and network sci-
ence [1,3,11,14].

However, even with the recent availability of large real graph data, the diam-
eters of such graphs have remained unclear because computing diameters has
been too computationally expensive. In theory, currently no algorithm has bet-
ter time complexity than all-pairs shortest path algorithms. Our target graphs
are sparse unweighted graphs; thus, this approach corresponds to a naive algo-
rithm that conducts a breadth first search (BFS) from every vertex, which is
obviously too slow for large graphs with millions of vertices.

Therefore, practical heuristic algorithms that are tailored to real graphs have
been studied [2,5–7,10,12]. Table 1 summarizes such previous methods. Experi-
ments on real-world networks have shown that these methods work surprisingly
well; they can successfully give accurate bounds or exact values of diameters,
especially for undirected or strongly connected graphs. Nevertheless, the table
highlights a lack of practical exact algorithms for general (i.e., not necessarily
strongly connected) directed graphs. On the other hand, from a practical per-
spective, it is of great interest to reveal the exact values of the diameters of large
real directed graphs, such as web graphs and some online social networks.

In this study, we propose a new algorithm to compute the diameters of large
real directed graphs. The proposed algorithm is designed for general directed
graphs, i.e., it does not assume that given graphs are undirected or strongly

c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 56–67, 2015.
DOI: 10.1007/978-3-319-20086-6 5
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Table 1. Previous empirical algorithms for graph diameters

Method Graph Output

Classic Methods:
Naive (all-pairs) any exact value
Random sampling any lower bound
Double sweep [4,8] any lower bound

Recent Methods:
Magnien, et al., 2009[10] undirected upper and lower bound
Crescenzi, et al., 2010 [6] undirected upper and lower bound
Takes and Kosters, 2011 [12] undirected exact value
Crescenzi, et al., 2012 [7] strongly connected exact value
Crescenzi, et al., 2013 [5] undirected exact value
Borassi, et al., 2014 [2] strongly connected exact value

This work any exact value

connected. The main technical challenge is to efficiently deal with unreachable
vertex pairs, which do not exist in undirected or strongly connected graphs. As
demonstrated by our experimental results, the proposed algorithm works quite
well on large real directed graphs, and, to the best of our knowledge, it has
yielded a list of precise diameters of famous large real graph datasets for the
first time.

Contributions. Our technical contributions are as follows:

1. We propose the first practical algorithm that can compute the exact diam-
eters of large real directed graphs with millions of vertices and edges.

2. Using the proposed algorithm, we present the first precise list of the diame-
ters of famous large real directed graph datasets from SNAP [9].

3. Using the exact diameter values, the accuracy of classic approximation
heuristics is evaluated on large real directed graphs for the first time.

4. As mentioned in Section 7, our implementation is publicly available online.

Organization. In Section 2, we discuss the definitions and notations used in
this paper. In Section 3, we examine inequalities on vertex eccentricities, which
are key components of the proposed algorithm. Section 4 details the proposed
algorithm. We present experimental results in Section 6 and conclude the paper
in Section 7.

2 Preliminaries

Let G = (V,E) be a graph, where V is the vertex set and E is the edge set.
The number of vertices and number of edges are denoted n and m, respectively.
We assume that graph G is weakly connected and unweighted. We define Nin(v)
and Nout(v) as the in- and out-neighbors of vertex v. The subgraph induced
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by a vertex set S is denoted G[S], and GT describes the transpose graph of
a graph G. In addition, let d(v, w) denote the distance from a vertex v to a
vertex w. When w is not reachable from v, for simplicity, we define d(v, w) = ∞,
where ∞ is considered a sufficiently large number. The eccentricity ecc(v) of
vertex v is defined as the distance from v to the farthest reachable vertex, i.e.,
ecc(v) = max {d(v, w) | w ∈ V, d(v, w) �= ∞}. The diameter D of a graph G is
the maximum eccentricity, i.e., D = max{ecc(v) | v ∈ V }.

Strongly Connected Components. A strongly connected component (SCC)
of a graph is defined as a strongly connected maximal subgraph. Each SCC does
not overlap; therefore, we can partition the vertex set V into SCCs. The set of
SCCs is denoted VSCC, and the vertex set of the SCC that a vertex v belongs
to is denoted VSCC(v). Note that this decomposition can be obtained in linear
time [13].

Double Sweep Algorithm. The double sweep algorithm [4,8] works as follows.
First, we randomly select a vertex v and conduct a breadth first search (BFS)
from this vertex. Then, we select a vertex w such that d(v, w) = ecc(v) and
conduct a backward BFS from w. Finally, the double sweep algorithm outputs
max{d(u,w) | u ∈ V, d(u,w) �= ∞} as the lower bound of the diameter. Note that
this runs in O(n + m) time. The precision can be improved by conducting the
algorithm repeatedly with a different initial vertex. Typically, a few iterations
of double sweep give quite precise approximation for real graphs [6,7,10]. In the
proposed algorithm, we use the double sweep algorithm to initialize the diameter
lower bound.

3 Upper Bounds

In this section, we study the upper bounds on the eccentricities. In previous work
that focused on undirected or strongly connected graphs, upper bounds based
on the triangle inequality turned out to be quite effective [2,12]. However, as
discussed in Section 3.1, this does not hold between vertices in different SCCs.
Therefore, we propose new inequalities (Sections 3.2 and 3.3) that can propagate
the upper bounds of vertices in other SCCs.

3.1 Triangle Inequality

Due to its effectiveness, the following inequality is often solely used as the upper
bound of the eccentricity in undirected or strongly connected graphs [2,12]. This
inequality can be obtained easily from the triangle inequality.

Lemma 1 (Borassi, et al. [2]). If the graph is strongly connected, for any pair
of vertices v and u, ecc(v) ≤ d(v, u) + ecc(u).

Unfortunately, on general directed graphs, this inequality does not hold
between any pair of vertices. Here, we illustrate this point with an example.
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In Figure 1, ecc(2) is 2. However, the sum of the distance d(2, 1) and ecc(1) is
1+0 = 1, which is less than ecc(2). This is because vertex 1 cannot reach vertices
3 and 4.

3

4

12

Fig. 1. An example of a general directed graph, on which the upper bound based on
the triangle inequality does not necessarily hold

Therefore, we use this upper bound only inside an SCC to form the following
corollary.

Corollary 1. If vertices v and u are in the same SCC, ecc(v) ≤ d(v, u)+ecc(u).

3.2 Inequality for Propagation

For vertices in large SCCs, similar to those in undirected or strongly connected
graphs, good eccentricity upper bounds can be obtained using the above inequal-
ity. However, as there are many small SCCs in real-world networks, using the
aforementioned inequality results in the eccentricities of vertices in those small
SCCs remaining unbounded.

Therefore, we propose new inequalities that can propagate the eccentric-
ity bounds of vertices in different SCCs. We begin with the following simple
inequalities.

Lemma 2. For any vertex v, ecc(v) ≤ max{ecc(w) + 1 | w ∈ Nout(v)}.
Proof. Let u be a vertex with ecc(v) = d(v, u). Since there exists a vertex w∗ ∈
Nout(v) such that d(v, u) = d(w∗, u)+1, we obtain ecc(v) = d(v, u) = d(w∗, u)+
1 ≤ ecc(w∗) + 1 ≤ max{ecc(w) + 1 | w ∈ Nout(v)}.

Although this inequality is quite simple, it enables us to obtain the upper
bounds of vertices in small SCCs effectively. Moreover, it becomes significantly
more effective when combined with vertex ordering strategies that consider the
topological order of SCCs. Note that if we contract each SCC to a single vertex,
we obtain a directed acyclic graph, which defines the topological order of SCCs.
Therefore, by visiting each SCC in reverse topological order, this inequality works
more effectively because, when we examine a vertex, we have already visited all
of its out-neighbors. Thus, their eccentricity bounds are already tightened with
the inequality using the bounds of their out-neighbors. In other words, we can
propagate the upper bounds from lower SCCs to upper SCCs efficiently.
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3.3 Tight Inequality for Propagation

By considering SCCs, we can obtain the following inequality, which is tighter
than the above simple inequality. Note that we use this inequality in the proposed
algorithm.

Lemma 3. For any vertex v,
ecc(v) ≤ max {min {ecc(w) + 1 | w ∈ Nout(v) ∩ C} | C ∈ VSCC}.
Proof. Let u be a vertex with ecc(v) = d(v, u) and C∗ be an SCC with d(v, u) =
min(d(w, u) + 1 | w ∈ Nout(v) ∩ C∗). As any vertex in C∗ can reach u, it holds
that d(w, u) ≤ ecc(w) for any vertex w ∈ C∗. Thus, we obtain ecc(v) = d(v, u) =
min(d(w, u) + 1 | w ∈ Nout(v) ∩ C∗) ≤ min(ecc(w) + 1 | w ∈ Nout(v) ∩ C∗) ≤
max(min(ecc(w) + 1 | w ∈ Nout(v) ∩ C) | C ∈ VSCC)

4 Algorithm Description

Here, we present the proposed algorithm for computing diameters. The proposed
algorithm and some of the previous algorithms share a common approach that
maintains and gradually tightens a diameter lower bound and eccentricity upper
bounds [2,12]. The main technical challenge in designing the proposed algorithm
is handling pairs in different SCCs efficiently using SCC decomposition and the
new upper bound inequalities.

4.1 Overall Algorithm

Algorithm 1 shows an overview of the proposed algorithm. The variable ecc[v]
maintains an upper bound of the eccentricity of each vertex v (i.e., ecc[v] ≥
ecc(v)), and variable D maintains a lower bound of the diameter of the given
graph (i.e., D ≤ D). At the end of Algorithm 1, ecc[v] becomes less than or
equal to D for any vertex v. From the inequality D ≤ D = max(ecc(v) | v ∈
V ) ≤ max(ecc(v) | v ∈ V ) ≤ D, D matches the exact value of the diameter D.

Algorithm 1. Proposed algorithm
1: procedure Diameter(G)
2: VSCC ← StronglyConnectedComponents(G)
3: ecc[v] ← ∞ for all v ∈ V
4: D ← DoubleSweep(G)
5: for all v ∈ V do
6: e′ ← max {min {ecc[w] + 1 | w ∈ Nout(v) ∩ C} | C ∈ VSCC}
7: ecc[v] ← min(ecc[v], e′)
8: if ecc[v] > D then
9: SearchAndBound(G, v)

10: return D
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First, we decompose the graph into SCCs. The SCCs are later used for vertex
ordering and eccentricity upper bounds. Next, we initialize the diameter lower
bound D using the double sweep algorithm. We also set the initial eccentricity
upper bound ecc[v] to ∞ for each vertex v.

We then examine every vertex v ∈ V in sequence. First, we refine the eccen-
tricity upper bound ecc[v] by Lemma 3. We then compare ecc[v] and D, and skip
vertex v if ecc[v] ≤ D because the lengths of paths from v are bound by ecc[v];
thus, they never update the diameter lower bound D. Otherwise, we conduct
breadth first searches (BFSs) from v to update the bounds.

4.2 Updating Bounds by BFSs

The process of updating bounds by BFSs from vertex u is described in Algo-
rithm 2. We conduct two BFSs, a forward BFS from u to the whole graph (lines
1–4) and a backward BFS from u only to the SCC to which u belongs (lines 5–7).
In Algorithm 2, we assume that the BreadthFirstSearch function performs
a BFS and returns an array that represents distances, i.e., df [v] = d(u, v) for
any v ∈ V and db[v] = d(v, u) for any v ∈ VSCC(u).

Algorithm 2. Breadth first searches from vertex u to update bounds
1: procedure SearchAndBound(G, u)
2: df ← BreadthFirstSearch(G, u)
3: ecc[u] ← max {df [v] | v ∈ V, df [v] �= ∞}
4: ecc[u] ← ecc[u]
5: D ← max(D, ecc[u])
6: db ← BreadthFirstSearch(G[VSCC(u)]T , u)
7: ecc[v] ← min(ecc[v], db[v] + ecc[u]) for all v ∈ VSCC(u)

The forward BFS computes the exact eccentricity of u. Once the eccentric-
ity is obtained, the diameter lower bound is compared to the eccentricity and
updated if necessary. We then perform a reverse BFS to compute the distances
to vertex u. This reverse BFS updates the eccentricity upper bounds of other
vertices. Here we only visit vertices in the SCC to which u belongs because we
are dealing with general (not necessarily strongly connected) directed graphs. As
discussed in Section 3, this upper bound holds only within an SCC (Corollary 1).

5 Vertex Ordering Strategies

Here, we discuss vertex ordering strategies. The proposed algorithm examines
each vertex sequentially and conducts BFSs if necessary. While its correctness is
not dependent on the order of vertices, the order has considerable effect on the
performance of the proposed algorithm.
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Ordering SCCs. First, we consider the overall graph. We update the upper
bound of the eccentricity by checking all out-neighbors and using the upper
bound for the out-neighbors. Therefore, we check each SCC in reverse topological
order. This enables us to obtain a better upper bound because, when we check a
neighbor in a different SCC, the neighbor has been visited and the upper bound
of the neighbor has been tightened.

Ordering inside an SCC. Next, we consider each SCC. In each SCC, we use
the triangle inequality to update the upper bound of the eccentricity. When we
examine a central vertex, distances to the vertex are small; therefore, by exam-
ining such vertices first, we can tighten the upper bounds. We order vertices
based on the degree of vertices to select central vertices. However, we can con-
sider various strategies based on the degree in directed graphs. We propose and
empirically compare the following five vertex ordering strategies.

– Random: A random permutation of vertices is used as the vertex order.

– In-Degree: We order vertices based on the in-degree of vertices, i.e., we use
|Nin(v)| as the index.

– Out-Degree: We order vertices based on the out-degree of vertices, i.e., we
use |Nout(v)| as the index.

– Degree-Product: We order vertices based on the product of the in-degree
and out-degree of vertices, i.e., we use |Nin(v)| · |Nout(v)| as the index.

– Degree-Component-Product: We order vertices based on the product
of the in-degree and out-degree for vertices in the same SCC, i.e., we use
|Nin(v)∩VSCC(v)|·|Nout(v)∩VSCC(v)| as the index. We consider that vertices
in different SCCs have little to do with the centrality in the SCC.

6 Experiments

Here, we present our experimental results. In Section 6.1, we discuss an exper-
imental evaluation of the practicality of the proposed method and compare it
to previous methods. In Section 6.3, we analyze the behavior of the proposed
method empirically.

Setup. We conducted experiments on a Linux server with an Intel Xeon X5675
processor (3.06 GHz) and 288 GB of main memory. All algorithms were imple-
mented in C++ and compiled with gcc 4.1.2 using optimization level 3. We did
not parallelize the proposed algorithm and used only a single core. We used
various real-world directed networks from the Stanford Large Network Dataset
Collection [9]. We treated all graphs as unweighted. In addition, we used the
largest weakly connected component of the graphs. Unless otherwise stated,
we used the Degree-Component-Product strategy for vertex ordering, and
the initial lower bound was obtained by performing the double sweep algorithm
from 10 randomly selected vertices.



An Exact Algorithm for Diameters of Large Real Directed Graphs 63

6.1 Evaluating the Proposed Method

We evaluate the performance of the proposed method with real graphs and vir-
tually compare performance to the naive method. Table 2 shows the results. We
counted each call of function SearchAndBound (Algorithm 2) as a single BFS;
SearchAndBound conducts one whole BFS and one small BFS that is limited

Table 2. Performance of the proposed algorithm on real graphs. #BFS denotes the
number of BFSs to compute the diameter and Speed-up denotes the improvement
factor of the number of BFSs against the naive approach.

Dataset Proposed method
Name n m D #BFS Speed-up

Social Networks:
ego-Twitter 81,306 1,768,149 15 353 230.3
soc-Epinions1 75,878 508,837 16 1,066 71.2
soc-LiveJournal1 4,843,953 68,983,820 22 53,819 90.0
soc-Pokec 1,632,803 30,622,564 18 2,110 773.8
soc-Slashdot0811 77,361 905,469 12 6,744 11.5
soc-Slashdot0922 82,169 948,465 13 6,891 11.9
soc-sign-Slashdot081106 77,350 516,575 15 970 79.7
soc-sign-Slashdot090216 81,867 545,671 15 983 83.3
soc-sign-Slashdot092221 82,140 549,202 15 975 84.2
soc-sign-epinions 119,130 833,390 16 1,269 93.9
wiki-Vote 7,067 103,664 10 2 3,533.5

Communication Networks:
email-EuAll 224,833 395,271 11 206 1,091.4
wiki-Talk 2,388,954 5,018,446 11 935 2,555.0

Citation Networks:
cit-HepPh 34,401 421,485 49 915 37.6
cit-HepTh 27,400 352,542 37 2,412 11.4

Web Graphs:
web-BerkStan 654,783 7,499,426 694 5,977 109.6
web-Google 855,803 5,066,843 51 12,347 69.3
web-NotreDame 325,730 1,497,135 93 3,626 89.8
web-Stanford 255,266 2,234,573 580 3,027 84.3

Product Co-Purchasing Networks:
amazon0302 262,112 1,234,878 88 1,666 157.3
amazon0312 400,728 3,200,441 53 593 675.8
amazon0505 410,237 3,356,825 55 388 1,057.3
amazon0601 403,365 3,387,225 54 450 896.4

Internet Peer-to-Peer Networks:
p2p-Gnutella04 10,877 39,995 26 30 362.6
p2p-Gnutella05 8,843 31,838 22 24 368.5
p2p-Gnutella06 8,718 31,526 21 50 174.4
p2p-Gnutella08 6,300 20,777 20 51 123.5
p2p-Gnutella09 8,105 26,009 20 110 73.7
p2p-Gnutella24 26,499 65,360 29 45 588.9
p2p-Gnutella25 22,664 54,694 22 138 164.2
p2p-Gnutella30 36,647 88,304 24 165 222.1
p2p-Gnutella31 62,562 147,879 31 210 297.9
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to an SCC. Speed-up represents the improvement factor of the number of BFSs
against the naive approach, which requires n BFSs (i.e., n divided by #BFS).

We emphasize that the proposed algorithm can compute the diameters of
large real directed graphs with up to tens of millions of edges. Obviously, this is
too large for the naive method. However, the proposed algorithm can compute
diameters several tens to several thousand times faster than the naive method.
In addition, we do not necessarily visit all vertices in a BFS. Thus, the proposed
algorithm can compute diameters faster than it appears.

6.2 Evaluating the Previous Approximation Heuristics

We then evaluate the classic lower bound heuristics. Note that the evaluation of
these methods on large directed networks became possible for the first time using
the proposed algorithm. We evaluated both random sampling and the double
sweep algorithm. For random sampling, we sampled 10, 100, or 1,000 vertices
and conducted BFSs from these vertices. We ran the double sweep algorithm
from 10 randomly selected vertices. The results are given in Table 3.

Note that the lower bounds obtained by random sampling are far from exact
diameters. For any graph, we could not compute exact diameters by sampling
less than 100 vertices. Even if we sampled 1,000 vertices, we could compute exact
diameters in only eight graphs. On the other hand, the lower bounds obtained
by the double sweep algorithm were correct for many graphs. However, these
bounds varied greatly from the exact diameters in a few graphs.

6.3 Analysis

Upper Bounds. Table 4 compares the effectiveness of inequalities for eccentric-
ity upper bounds. In Table 4, (1), (2), and (3) represent Corollary 1, Lemma 2,
and Lemma 3, respectively. We reduced the number of BFSs by approximately
five percent on average using Lemma 3 rather than Lemma 2. This indicates
that Lemma 3 is effective for obtaining tighter upper bounds. In addition, if we
did not use Lemma 3, the number of BFSs increased drastically due to many
small SCCs. On the other hand, we could compute diameters efficiently for many
graphs using only Lemma 3. These results confirm the effectiveness of our new
upper bounds by propagation.

Vertex Ordering Strategies. Table 5 shows the number of BFSs for each ver-
tex ordering strategy. Essentially, we used the Degree-Component-Product
strategy. However, all strategies demonstrated nearly the same performance,
with exception of the Random strategy. The reason is as follows. We use two
inequalities with Corollary 1 and Lemma 3. As mentioned previously, Lemma 3
is quite powerful. In addition, the ordering inside an SCC affects only the trian-
gle inequality. Therefore, performance is insulated from the influence of ordering
inside an SCC. As can be seen, the Random strategy is worse. However, the
difference between the Random strategy and other strategies is small in many
cases. This confirms that the order of vertices in each SCC has less effect on
performance.
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Table 3. Comparison between exact diameters and lower bounds using heuristics.
Sampling denotes the lower bound computed by 10, 100, or 1,000 random samplings.
Double Sweep denotes the lower bound computed by performing the double sweep
algorithm 10 times.

Dataset Sampling Double
Name n m D 10 100 1,000 Sweep

Social Networks:
ego-Twitter 81,306 1,768,149 15 10 10 11 15
soc-Epinions1 75,878 508,837 16 12 12 14 16
soc-LiveJournal1 4,843,953 68,983,820 22 15 17 18 22
soc-Pokec 1,632,803 30,622,564 18 12 14 14 18
soc-Slashdot0811 77,361 905,469 12 9 9 12 12
soc-Slashdot0922 82,169 948,465 13 10 10 13 13
soc-sign-Slashdot081106 77,350 516,575 15 13 13 13 15
soc-sign-Slashdot090216 81,867 545,671 15 11 12 13 15
soc-sign-Slashdot092221 82,140 549,202 15 10 13 13 15
soc-sign-epinions 119,130 833,390 16 12 12 13 16
wiki-Vote 7,067 103,664 10 6 8 8 10

Communication Networks:
email-EuAll 224,833 395,271 11 9 9 11 11
wiki-Talk 2,388,954 5,018,446 11 7 7 8 11

Citation Networks:
cit-HepPh 34,401 421,485 49 32 47 49 49
cit-HepTh 27,400 352,542 37 29 32 34 37

Web Graphs:
web-BerkStan 654,783 7,499,426 694 580 585 645 694
web-Google 855,803 5,066,843 51 36 39 41 51
web-NotreDame 325,730 1,497,135 93 8 54 66 64
web-Stanford 255,266 2,234,573 580 148 149 557 244

Product Co-Purchasing Networks:
amazon0302 262,112 1,234,878 88 69 75 85 88
amazon0312 400,728 3,200,441 53 38 40 48 53
amazon0505 410,237 3,356,825 55 37 41 55 55
amazon0601 403,365 3,387,225 54 36 48 48 54

Internet Peer-to-Peer Networks:
p2p-Gnutella04 10,877 39,995 26 19 22 23 26
p2p-Gnutella05 8,843 31,838 22 18 20 22 22
p2p-Gnutella06 8,718 31,526 21 16 19 20 21
p2p-Gnutella08 6,300 20,777 20 16 17 20 20
p2p-Gnutella09 8,105 26,009 20 18 19 19 20
p2p-Gnutella24 26,499 65,360 29 25 25 27 29
p2p-Gnutella25 22,664 54,694 22 17 18 19 21
p2p-Gnutella30 36,647 88,304 24 20 22 22 24
p2p-Gnutella31 62,562 147,879 31 24 28 31 31
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Table 4. Comparison of the number of BFSs between different sets of eccentricity
upper bound inequalities

Dataset Upper Bounds
Name n m (1)+(3) (1)+(2) (1) (3)

ego-Twitter 81,306 1,768,149 353 350 11,704 540
soc-Pokec 1,632,803 30,622,564 2,110 2,118 307,827 5,476
soc-sign-epinions 119,130 833,390 1,269 1,022 53,346 1,254
wiki-Talk 2,388,954 5,018,446 935 515 2,257,197 750
cit-HepPh 34,401 421,485 915 2,023 19,265 1,315
web-Google 855,803 5,066,843 12,347 12,550 304,516 25,302
amazon0601 403,365 3,387,225 450 450 1,573 5,637
p2p-Gnutella30 36,647 88,304 165 226 27,969 892
p2p-Gnutella31 62,562 147,879 210 256 47,906 1,430

Table 5. Comparison of the number of BFSs between different vertex ordering
strategies

Degree
Component

Dataset In Out Product Product Random

ego-Twitter 364 350 355 353 406
soc-Pokec 2,110 2,111 2,110 2,110 3,799
soc-sign-epinions 1,027 1,040 1,103 1,269 1,050
wiki-Talk 925 1,272 978 935 983
cit-HepPh 856 1,573 859 915 977
web-Google 12,071 12,085 12,064 12,347 12,118
amazon0601 450 466 450 450 508
p2p-Gnutella30 213 269 244 165 327
p2p-Gnutella31 187 273 264 210 241

7 Conclusion

In this paper, we have proposed an algorithm to exactly compute the diameters
of large real graphs. The proposed algorithm gradually tightens the diameter
lower bound and eccentricity upper bound, and they are guaranteed to match
when the algorithm terminates. Note that the worst-case time complexity is still
Θ(nm). However, as demonstrated by our experimental results, the proposed
algorithm works surprisingly well in practice; it yielded the exact diameters of
real directed graphs with millions of vertices and edges.

Software Available Publicly. Our implementation of the proposed algorithm
is publicly available online at http://git.io/graph-diameter. It is our hope that
further scientific findings will be enabled by our public code.
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Abstract. Computing maximum independent sets in graphs is an
important problem in computer science. In this paper, we develop an
evolutionary algorithm to tackle the problem. The core innovations of
the algorithm are very natural combine operations based on graph parti-
tioning and local search algorithms. More precisely, we employ a state-of-
the-art graph partitioner to derive operations that enable us to quickly
exchange whole blocks of given independent sets. To enhance newly com-
puted offsprings we combine our operators with a local search algorithm.
Our experimental evaluation indicates that we are able to outperform
state-of-the-art algorithms on a variety of instances.

1 Introduction

In a simple and connected graph, an independent set is a subset of the nodes
such that every pair of nodes that can be formed from the set is not adjacent.
The maximum independent set problem is then to find the independent set in
the graph with the largest possible cardinality. There are lots of applications
that benefit from large independent sets such as information retrieval, signal
transmission analysis, classification theory, economics, scheduling or computer
vision [9]. As a more specific example, finding large independent sets is use-
ful in map labeling [11] where one wants to maximize the number of visible
non-overlapping labels on a map. Here, a graph model is built such that labels
correspond to nodes and there is an edge between two nodes if the associated
labels are overlapping. It is easy to see that a maximum independent set in the
model yields a maximum number of non-overlapping labels.

The maximum independent set problem is closely related to the maximum
clique problem and the minimum vertex cover problem. More precisely, the com-
plement of an independent set I results in a vertex cover V \I and an indepen-
dent set is a clique in the complement graph G. However, note that results from
the maximum clique problem are usually only partially transferable to practical
algorithms for the maximum independent set problem since building the com-
plement of sparse graphs yields dense graphs. It is well known that all of these
problems are NP-hard [10]. Thus, one relies on heuristic algorithms to find good
solutions on large graphs. Most of the work in literature considers heuristics
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and local search algorithms for the maximum clique problem (see for example
[5,13–16,21]). These algorithms keep a single solution and try to improve it by
using node deletions, insertions, swaps as well as the concept of plateau search.
In this context, plateau search only accepts moves that do not change the objec-
tive function of the optimization problem. Heuristics usually employ node swaps
to achieve that. A node swap refers to the replacement of a node by one of its
neighbors; Hence, a node swap cannot directly increase the size of the indepen-
dent set but can yield a situation where an additional node may get inserted to
the solution. A very successful approach for the maximum clique problem has
been presented by Grosso et al. [14]. In addition to the plateau search approach,
different diversification operations are performed and restart rules are added. In
the independent set context, Andrade et al. [1] extended the notion of swaps to
(j, k)-swaps. A (j, k)-swap removes j nodes from the current solution and inserts
k nodes. The authors present a fast linear-time implementation that, given a
maximal solution, can find a (1, 2)-swap or prove that none exists. We imple-
mented the algorithm and use it within our evolutionary algorithm to improve
newly computed offsprings.

There are very few papers considering evolutionary algorithms for the maxi-
mum independent set problem. The general idea behind evolutionary algorithms
is to use mechanisms which are highly inspired by biological evolution such as
selection, mutation, recombination and survival of the fittest. An evolutionary
algorithm starts with a population of individuals (in our case independent sets
of the graph) and evolves the population into different populations over several
rounds. In each round, the evolutionary algorithm uses a selection rule based on
the fitness of the individuals of the population to select good individuals and
combine them to obtain improved offspring [12].

Bäck and Khuri [3] and Borisovsky and Zavolovskaya [6] use fairly similar
approaches. They encode solutions as bitstrings such that the value at position
i equals one if and only if node i is in the current solution. In both cases a
classic two-point crossover is used which randomly selects two crossover points
p1, p2. Then all bits in between these positions are exchanged between both input
individuals. Note that this likely results in invalid solutions. To guide the search
towards valid solutions a penalty approach is used. A major drawback of the
work by Bäck and Khuri [3] is that the authors only test their algorithm on
synthetic instances. Moreover, in both cases the graphs under consideration are
very small.

The main contribution of our paper is a very natural evolutionary framework
for the computation of large maximal independent sets. The core innovations of
the algorithm are combine operations based on graph partitioning and local
search algorithms. More precisely, we employ the state-of-the-art graph parti-
tioner KaHIP [22] to derive operations that enable us to quickly exchange whole
blocks of given individuals. The newly computed offsprings are then improved
using a local search algorithm. In contrast to previous evolutionary algorithms,
each computed offspring is valid. Hence, we only allow valid solutions in our
population and thus are able to use the cardinality of the independent set as a
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fitness function. The rest of paper is organized as follows. We begin in Section 2
by introducing basic concepts and related work. We describe the core compo-
nents of our evolutionary algorithm in Section 3. This includes a number of
partitioning based combine operators that take two individuals as input as well
as combine operators that can take multiple individuals as input. A summary of
extensive experiments done to tune the algorithm and evaluate its performance
is presented in Section 4. Experiments indicate that our algorithm computes
very good independent sets and outperforms state-of-the-art algorithms on a
large variety of instances. Finally, we conclude with Section 5.

2 Prelimiaries

2.1 Basic Concepts

Let G = (V = {0, . . . , n − 1}, E) be an undirected graph with n = |V | and
m = |E|. The set N(v) := {u : {v, u} ∈ E} denotes the neighbors of v. The
complement of a graph is defined as G = (V,E) with E being the complement
of E. An independent set is a subset I ⊆ V , such that there are no adjacent
nodes in I. It is maximal, if it is not a subset of any larger independent set.
The independent set problem is that of finding the maximum cardinality set
among all possible independent sets. A vertex cover is a subset of nodes C ⊆ V ,
such that every edge e ∈ E is at least incident to one node within the set.
The minimum vertex cover problem asks for the vertex cover with the minimum
number of nodes. It is worth mentioning that the complement of a vertex cover
V \ C always is an independent set by definition. A clique is a subset of the
nodes Q ⊆ V such that there is an edge between all pairs of nodes from Q.

A k-way partition of a graph is a division of V into blocks of nodes V1,. . . ,Vk,
i.e. V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i �= j. A balancing constraint
demands that ∀i ∈ {1..k} : |Vi| ≤ Lmax := (1 + ε)
 |V |

k � for some imbalance
parameter ε. The objective is to minimize the total cut

∑
i<j w(Eij) where

Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The set of cut edges is also called edge
separator. The k-node separator problem asks to find k +1 blocks, V1, V2, . . . , Vk

and a separator S, that partition V , such that there are no edges between the
blocks. Again, a balancing constraint demands |Vi| ≤ (1 + ε)
|V |/k�. However,
there is no balancing constraint on the separator S. The objective is to minimize
the size of the separator |S|. Note that removing the set S from the graph results
in at least k connected components and that the blocks Vi itself do not need to
be connected components. By default, our initial inputs will have unit edge and
node weights.

2.2 Detailed Related Work

We now discuss algorithmical details of the algorithm by Andrade et al. [1].
We call the algorithm ARW as an abbreviation for Andrade, Resende and Wer-
neck. While we compare our algorithm against ARW, we also use it within our
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algorithm to improve newly created offsprings. Moreover, we shortly present the
KaHIP graph partitioning framework since we use it to compute partitions and
node separators.

ARW. One iteration of the ARW algorithm consists of a perturbation and a
local search step. The ARW local search algorithm uses simple 2-improvements or
(1, 2)-swaps to gradually improve a single current solution. A (j, k)-swap removes
j nodes from the solution and then inserts k new nodes into it. A (1, 2)-swap in
particular removes a single node from the solution and adds two other free nodes.
A node is called free, if none of its neighbouring nodes can be found in the current
solution. The tightness of a node τ(v) is the number of neighbouring solution
nodes. Hence, free nodes have zero tightness. The simple version of the local
search algorithm then iterates over all solution nodes of the graph and looks for
a (1, 2)-swap. It is shown, that this procedure can find a valid (1, 2)-swap in linear
time O(m), if it exists. This is achieved by using a data structure that allows
insertion and removal operations on nodes in time proportional to their degree.
The data structure basically divides the nodes into solution nodes, free nodes
and non-free non-solution nodes. The perturbation step used for diversification,
forces nodes into the solution and removes neighboring nodes as necessary. In
most cases, one node is forced into the solution per iteration. With a small
probability the number of forced nodes f is set to higher value: f is set to i + 1
with probability 1/2i. Moreover, the current node to be forced into a solution is
picked from a number of random candidates. Among those candidates the vertex
that has been outside the solution for the longest time is picked. We refer the
reader to original paper for more details about the ARW algorithm [1]. There is
also an even faster incremental version of the algorithm that maintains a list of
candidates. We use this version of the algorithm in our framework.

KaHIP. Karlsruhe High Quality Partitioning – is a family of graph partitioning
programs that tackle the balanced graph partitioning problem [22,23]. The algo-
rithms in KaHIP have been able to compute the best results in various bench-
marks. It implements different sequential and parallel algorithms to compute
k-way partitions and node separators. In this work, we use the sequential multi-
level graph partitioner KaFFPa (Karlsruhe Fast Flow Partitioner) to obtain
partitions and separators for the graphs. In particular, we use specialized parti-
tioning techniques based on multi-level size-constrained label propagation [19].

3 Evolutionary Components

We now discuss the main contributions of the paper. We begin by outlining the
general structure of our evolutionary algorithm and then explain how we build
the initial population. Finally, we present our new combine operations and the
methods we use formutation.
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Algorithm 1. Steady State Evolutionary Algorithm with Local Search
create initial population P
while stopping criterion not fulfilled

select parents I1, I2 from P
combine I1 with I2 to create offspring O
ARW local search+mutation on offspring O
evict individual in population using O

return the fittest individual that occurred

3.1 General Structure

As previous work [3,6] we use bitstrings as a natural way to represent solutions
in our population. More precisely, an independent set I is represented as an
array s = {0, 1}n where s[v] = 1 if and only if v ∈ I. The general structure of
our evolutionary algorithm is very simple. Our algorithm starts with the creation
of a population of individuals (in our case independent sets in the graph) and
evolves the population into different populations over several rounds until a
stopping criterion is reached.

In each round, our evolutionary algorithm uses a selection rule that is based
on the fitness of the individuals (in our case the size of the independent set) of
the population to select good individuals and combine them to obtain improved
offspring. In contrast to previous work [3,6], our combine and mutation operators
always create valid independent sets. Hence, we use the size of the independent
set as a fitness function. That means that there is no need to use a penalty
function to ensure that the final individuals generated by our algorithm are
independent sets. As we will see later when an offspring is generated it is possible
that it is a non-maximal independent set. Hence, we apply one iteration of ARW
local search without the perturbation step to ensure that it is locally maximal
and apply a mutation operation to the offspring. We use mutation operations
since it is of major importance to keep the diversity in the population high [2],
i.e. the individuals should not become too similar, in order to avoid a premature
convergence of the algorithm.

We then use an eviction rule to select a member of the population and replace
it with the new offspring. In general one has to take both into consideration, the
fitness of an individual and the distance between individuals in the population
[2]. Our algorithm evicts the solution that is most similar to the newly computed
offspring among those individuals of the population that have a smaller or equal
objective than the offspring itself. Once an individual has been accepted into the
population we further refine it using additional iterations of the ARW algorithm.
The general structure of our evolutionary algorithm follows the steady-state app-
roach [8] which generates only one offspring per generation. We give an outline
in Algorithm 1.
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3.2 Initial Solutions

We use three different approaches to create initial solutions. Each time we create
an individual for the population we pick one of the approaches uniformly at
random. The first and most simplistic way is to start from an empty independent
set and add nodes at random until no further nodes can be added. To ensure that
adding a node results in a valid independent set we have to check if the node is
free. We do this by simply checking if any of the surrounding nodes is already in
the set. The method adds a decent amount of diversity during the construction
phase, which over an extended period of time can lead to good solutions.

Secondly, we use a greedy approach similar to Andrade et al. [1]. Starting
from an empty solution, we always add the node with the least residual degree
which is the number of free neighbors. After a node is added to the solution,
we remove all its neighbouring nodes from the graph and update the residual
degree of their neighbors. We repeat the procedure until no further node can be
added. The implementation is done using a simple bucket priority queue which
groups nodes into buckets based on their residual degree. This allows us to pick
a random node each time multiple nodes share the same residual degree.

The last approach that we use to create initial solutions is also a greedy one.
Here, we take a detour and generate an independent set by computing a vertex
cover. We first create a vertex cover and then compute its complement to get
an independent set. The algorithms also starts with an empty solution and then
always adds the node that will cover the most currently uncovered edges. We
repeat this until all edges are covered and then return the corresponding inde-
pendent set. Note that the two greedy algorithms compute different independent
sets (e.g. consider a path with five nodes). While the first approach always main-
tains an independent set and tries to improve it, the second approach can only
return an independent set once the algorithm has terminated.

3.3 Combine Operations

We perform different kinds of combine operations which are all based on graph
partitioning. The main idea of our operators is to use a partition of the graph to
exchange whole blocks of solution nodes. In general our combination operators
try to generate new independent sets that are not necessarily maximal. We then
perform a maximization step that adds as many free nodes as possible. After-
wards, we apply a single iteration of the ARW local search algorithm to ensure
that our solution is locally optimal. Depending on the type of the operator, we
use a node separator or an edge separator of the graph that has been computed
by the graph partitioning framework KaHIP. As a side note, small edge or node
separators are vital for our combine operations to work well. This is due to the
fact that large separators in the combine operations yield offsprings that are far
from being maximal. Hence, the maximization step performs lots of fixing and
the computed offspring is not of high quality. This is supported by experiments
presented in Section 4.1.
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The first and the second operator need precisely two input solutions while
our third operator is a multi-point combine operator – it can take multiple
input solutions. In the first case, we use a simple tournament selection rule [20]
to determine the inputs, i.e. I1 is the fittest out of two random individuals r1, r2
from the population. The same is done to select I2. Note that due to the fact
that our algorithms are randomized, a combine operation performed twice using
the same parents can yield a different offspring.

Node Separator Combination. In its simplest form, the operator starts by com-
puting a node separator V = V1 ∪V2 ∪S of the input graph. We then use S as a
crossover point for our operation. The operator generates two offsprings. More
precisely, we set O1 = (V1 ∩ I1) ∪ (V2 ∩ I2) and O2 = (V1 ∩ I2) ∪ (V2 ∩ I1). In
other words, we exchange whole parts of independent sets from the blocks V1

and V2 of the node separator. Note that the exchange can be implemented in
time linear in the number of nodes. Recall that the definition of a node separator
implies that there are no edges running between V1 and V2. Hence, the computed
offsprings are independent sets, but may not be maximal since separator nodes
have been ignored and potentially some of them can be added to the solution.
We maximize the offsprings by using the greedy independent set algorithm from
Section 3.2. The operator finishes with one iteration of the ARW algorithm to
ensure that we reached a local optimum and to add some diversification. An
example illustrating the combine operation is shown in Figure 1.

Edge Separator Combination. This operator computes offsprings by taking a
detour over vertex covers. It starts by computing a bipartition V = V1 ∪ V2 of
the graph. Let Ci be the vertex cover V \Ii. We define temporary vertex cover
offsprings similar to before: D1 = (C1 ∩ V1) ∪ (C2 ∩ V2) and D2 = (C1 ∩ V2) ∪
(C2∩V1). Unfortunately, it is possible that an offspring created this way contains
some non-covered edges. These edges can only be a subset of the cut edges of
the partition. We want to add as little nodes as possible to our solution to fix
this. Hence, we add a minimum vertex cover of the bipartite graph induced by
the non-covered cut edges to our vertex cover offspring. The minimum vertex
cover in a bipartite graph can be computed using the Hopcroft-Karp algorithm.
Afterwards, we transform the vertex cover back to an independent set, and follow
our general approach by applying ARW local search to reach a local optimum.

Multi-way Combination. Our last two operators are multi-point crossover opera-
tors that extend the previous two operators. Both of them divide the graph into
a number of blocks k. Depending on the type of the operator, a node or edge
separator is used. We start with the description of the node separator approach
where V = V1 ∪ . . . ∪ Vk ∪ S. The operator selects a number of parents. We
then calculate the score for every possible pair of a parent Ii and a block Vj .
The score of a pair is the number of the parents solution nodes inside the given
block. We then select the parent with the highest score for each of the blocks to
compute the offspring. As before, since we left out the separator nodes we use
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V1 S V2 V1 S V2

V1V1 SS V2V2 V1V1 SS V2V2

Fig. 1. An example combine operation using a node separator V = V1 ∪V2 ∪S. On top
two input individuals/independent sets, I1 and I2, are shown. Bottom left: a possible
offspring that uses the independent set of I1 in block V1 and the independent set of
I2 in block V2. Bottom right: the improved offspring after ARW local search has been
applied to improve the given solution and to add nodes from the separator to the
independent set.

a maximization step to make the solution maximal and afterwards apply ARW
local search to ensure that our solution is a local optimum.

If we use an edge separator for the combination, we start with a k-way
partition of the nodes V = V1 ∪ . . . ∪ Vk. This approach also computes scores
for each pair of parent and block. This time the score of a pair is defined as
the number of the vertex cover nodes of the complement of an independent set
inside the given block. We then select the parent with the lowest score for each
of the blocks to compute the offspring. As in the simple vertex cover combine
operator, it is possible that some cut edges are not covered. We use the simple
greedy vertex cover algorithm to fix the offspring since the graph induced by the
non-covered cut edges is not bipartite anymore. We then once again complement
our vertex cover to get our final offspring.

3.4 Mutation Operations

After we performed a combine operation, we apply a mutation operator to intro-
duce further diversification. Previous work [3,6] uses bit-flipping for mutation,
i.e. every bit in the representation of a solution has a certain probability of being
flipped. We can not use this approach since our population only allows valid solu-
tions. Instead we perform forced insertions of new nodes into the solution and
remove adjacent solution nodes if necessary as in the perturbation routine of
the ARW algorithm. Afterwards we perform ARW local search to improve the
perturbed solution.
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3.5 Miscellanea

Instead of computing a new partition for every combine operation, we hold a
pool of partitions and separators that is computed in the beginning. A combine
operation then picks a random partition or node separator from the pool. If the
combine operations have been unsuccessful for too many iterations, we compute
a fresh set of partitions. In our experiments we used two-hundred unsuccess-
ful combine operations as a threshold. Additionally, we have to ensure that the
partitions created for the combine operations are sufficiently different over mul-
tiple runs. However, although KaHIP is a randomized algorithm, small cuts in
a graph may be similar. To avoid similar cuts and increase diversification of the
partitions and node separators, we additionally give KaHIP a random imbal-
ance ε ∈rnd [0.05, 0.75] to solve the partitioning problem. Additionally, we tried
one more combine operator based on set intersection. This operator computes
an offspring by keeping the nodes that are in both inputs which is by definition
an independent set. However, our experiments with the operator did not yield
good results so that we omit further investigations here.

4 Experimental Evaluation

Methodology. We have implemented the algorithm described above (EvoMIS)
using C++ and compiled all algorithms using gcc 4.63 with full optimization’s
turned on (-O3 flag). We mainly compare our algorithm against the ARW algo-
rithm since it has a relatively clear advantage in Resende et al. [1]. The algorithm
by Grosso et al. [14] has originally been formulated for the maximum clique
problem. Andrade et al. [1] used an implementation of the algorithm for the
maximum independent set problem. Hence, we also compare against the results
of the algorithm by Grosso et al. presented in the paper of Andrade et al. [1].
Additionally, we compare ourselves with our implementation of the evolutionary
algorithm presented by Bäck and Khuri [3].

Unless otherwise mentioned, we perform five repetitions where each algorithm
that we run gets ten hours of running time to compute a solution. Each run was
made on a machine that is equipped with two Quad-core Intel Xeon processors
(X5355) which run at a clock speed of 2.667 GHz. It has 2x4 MB of level 2 cache
each, 64 GB main memory and runs Suse Linux Enterprise 10 SP 1. We used
the fastsocial configuration of the KaHIP v0.6 graph partitioning package [22]
to obtain graph partitions and node separators. The test results for the ARW
algorithm were obtained by using the original algorithm from Andrade et al. [1].
Within the evolutionary algorithm we used our own implementation of the ARW
algorithm.

We mostly present two kinds of data: maximum values, average values, mini-
mum values as well as plots that show the evolution of solution quality. We now
explain how we compute the convergence plots. Whenever an algorithm creates
a new best independent set S it reports a tuple (t, |S|), where the time stamp
t is the currently elapsed time and |S| refers to the size of the independent set
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that has been created. Since we perform multiple repetitions, the final plots cor-
respond to average values over these repetitions. To compute these we take the
time stamps of all repetitions and sort them in ascending order. For each time
stamp in this series, we report the average value of the best solution size of each
repetition at that time.

Algorithm Configuration. After an extensive evaluation of the parameters [17],
we fixed the population size to two hundred fifty, the partition pool size to
thirty, the number of ARW iterations to 15 000 as well as the number of blocks
used for the multi-way combine operations to sixty-four. In each iteration, one
of our three combine operations is picked uniformly at random. However, our
experiments indicate that our algorithm is not too sensitive about the precise
choice of the parameters. We mark the instances that have also been used for
the parameter tuning in [17] in the TR [18] with a *.

Instances. We use graphs from various sources to test our algorithm. We divide
them into five categories: social networks, meshes, road networks, networks
from finite element computations as well as networks stemming from matri-
ces. Social networks include citation networks, autonomous systems graphs or
web graphs taken from the 10th DIMACS Implementation Challenge benchmark
set [4]. Road networks and meshes are taken from Andrade et al. [1] and have
been kindly provided by Renato Werneck. Meshes are dual graphs of triangular
meshes. Networks stemming from finite element computations have been taken
from Chris Walshaw’s benchmark archive [24]. Graphs stemming from matrices
have been taken from the Florida Sparse Matrix Collection [7]. We randomly
selected one from each group of all real, symmetric matrices having between
10K and 65K columns. A graph is derived by inserting a node for each column
and creating an edge between two nodes u, v if the corresponding matrix entry
is non-zero. Singletons and self-loops are removed from the graphs.

4.1 Main Results

We now shortly summarize the main results of our experiments. First of all,
in 50 out of the 67 instances, we either improve or reproduce the maximum
result computed by the ARW algorithm. Our algorithm computes a maximum
solution that is strictly larger than the maximum solution computed by the ARW
algorithm in 21 cases. Contrarily, in 17 cases the maximum result of the ARW
algorithm is larger then the maximum result of our algorithm. When looking
at average values, we get 23 cases in which our algorithm strictly outperforms
the ARW algorithm, and 17 cases for the opposite direction. Remarkably, when
looking at the graphs obtained from the Florida Sparse Matrix collection, the
average value of the ARW algorithm only outperforms our algorithm on one
instance. The mesh family that we use in this paper has also been used in the
original ARW paper [1]. We like to stress that most of the maximum results
of the ARW algorithm are strictly larger than the maximum values originally
reported by Andrade et al. [1] (including the maximum values presented there of
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the algorithm by Grosso et al. [14]). Except for four instances the same holds for
our algorithm. On these four instances, our algorithm is worse than the original
maximum value of the ARW algorithm. On the mesh family, in 8 out of 14
cases our algorithm computes the best result ever reported in literature. On
road networks and the largest graphs from the mesh family as well as Walshaw
family the ARW algorithm outperforms our algorithm. We tried to give both
algorithms more time, i.e. a whole day of computation, but did not see much
different results. Lastly, there is an interesting observation on social networks,
that is in 5 out of 9 cases the minimum, average and maximum result produced
by both algorithms are precisely the same. We suspect that these instances are
in a sense easy and that both algorithms compute the optimal result or are very
close to the optimum. We provide detailed per instance results in the TR [18].

Figure 2 shows how solution quality evolves over time on four example
instances from the mesh family for both algorithms. As one would suspect, our
algorithm almost keeps its level of solution quality in the beginning since it has
to build the full population before it can start with combine and mutation oper-
ations. Contrarily, the ARW algorithm can directly start with local search and
improve its solution. Hence, the solution quality of the ARW algorithm rises
above the solution quality of our algorithm. As soon as our algorithm finished to
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Fig. 2. Solution size evolving over time for four instances from the mesh family: feline
and gameguy [top] as well as buddha and dragon [bottom].
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compute the population, solution quality starts to improve and eventually the
size of the computed independent sets becomes better than the solution quality
of the ARW algorithm.

We also implemented the algorithm presented by Bäck and Khuri [3]. The
algorithm uses a two-point crossover as a combine operation, as well as a bit-flip
approach for mutation. Solutions created by the combine and mutation oper-
ations can be invalid. Hence, a penalty approach is used to deal with invalid
solution candidates. In the original paper, the algorithm is only tested on small
synthetic or random instances (≤ 200 nodes). We tested the algorithm on the
four smallest graphs from the mesh family and gave the algorithm ten hours of
time to compute a solution. However, the best valid solution created during the
course of the algorithm never exceeded the size of the best solution after the
initial population has been created. This is due to the fact that the two-point
crossover and the mutation operations found valid solutions very rarely so that
the average solution quality of the population degrades over time. On average,
final solution quality of the algorithm has been more than 20% worse than the
final result of our algorithm. Due to the bad solution quality observed, we did
not perform additional experiments with this algorithm.

The Role of Graph Partitioning. To estimate the influence of good partitionings
in this context, we performed an experiment in which partitions of the graph
have been obtained by simple breadth first searches. More precisely, we obtain
a two-way partition of the graph using a breadth first search starting from a
random node. Every node touched by the breadth first search is added to the
first block, and every node not touched by the breadth first search is added to the
second block. The breadth first search is stopped as soon as a specified number of
nodes has been touched. In our experiments, using this approach instead of the
approach that uses a graph partitioner to compute a partition yields significantly
worse results. The influence of all the different combine operators that we use
here is presented in the thesis [17].

5 Conclusion

We presented a very natural evolutionary framework for the computation of
large maximal independent sets. Our core innovations are combine operations
that are based on graph partitioning and local search algorithms. More precisely,
our combine operations enable us to quickly exchange whole blocks of given
individuals. In contrast to previous evolutionary algorithms for the problem, our
operators are able to guarantee that the created offspring is valid. Experiments
indicate that our algorithms outperforms state-of-the-art algorithms on a large
variety of instances – some of which are better than ever reported in literature.
Important future work includes a coarse-grained parallelization of our approach
which can be done by using an island-based approach. Moreover, it would be
interesting to improve the solution quality of our approach on road networks
and to compare our algorithms with exact approaches. Additionally, it would be
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interesting to overcome the slow start of our algorithm due to the initialization
of the population. For example, one could try to adjust the size of the population
dynamically.
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Abstract. We consider the following problem. Given a graph and a
rational number µ, 0 < µ ≤ 1, find a connected subgraph of density
at least µ with the largest number of vertices. Here, the density of an
n-vertex graph with m edges is m/

(
n
2

)
. This problem arises in many

application contexts such as community detection in social networks.
We implement a branch and bound algorithm and tune it for efficiency
on sparse real-world graphs for the case µ ≥ 1/2. Central issues for the
implementation are the choice of branching candidates, two new upper
bounding procedures, and several data reduction and early termination
rules.

1 Introduction

Identifying dense subgraphs is a problem arising in the analysis of social [4],
financial [5], and biological networks [3]. In most applications, the desired dense
subgraphs do not contain an edge between each vertex pair but rather adhere to
a more relaxed notion of density. Many different, mathematically precise defini-
tions of such desired subgraphs have been proposed [4,9]. We consider the con-
cept of μ-cliques, used for example by Abello et al. [1,2]. It is defined as follows.

Definition 1. The density of an n-vertex graph with m edges is m/
(
n
2

)
. A graph

is a μ-clique if its density is at least μ.

In general, μ-cliques need not be connected. However, this is an important prop-
erty expected from a community. Hence, we impose connectivity as a further
constraint on the μ-cliques we are looking for. As observed previously, demand-
ing connectivity also allows for a simple solving algorithm [8].

Our goal in this work is to develop an implementation for finding large con-
nected μ-cliques in a given graph for some fixed μ ≥ 1/2. Most input graphs in
the mentioned applications are sparse with few high-degree vertices [5,13]. We
thus aim to tune the implementation to perform well on graphs with this struc-
ture. Our implementation is based on an exact algorithm which, given k, either
finds a μ-clique with k vertices or determines correctly that no such subgraph
exists. Exact algorithms are desirable because they yield reference points for the
performance of heuristics and because surprising results can be attributed to the
model (here: connected μ-cliques) rather than to deficiencies of the algorithm.
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 82–93, 2015.
DOI: 10.1007/978-3-319-20086-6 7
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Contribution. Our implementation follows the branch and bound paradigm and
is based on an algorithm proposed by a subset of the authors [8]. The input
is a graph G, the density threshold μ, and the minimum required number k of
vertices in the desired μ-clique. The algorithm proceeds roughly as follows. In
each step, we maintain a set P of vertices which we aim to extend to a μ-clique.
To do this, we maintain also an active vertex v whose neighbors we will consider
to add to P first. That is, given P and v we branch into all possibilities of adding
a neighbor of v to P , and into the possibility of making v permanently inactive
and consequently choosing a new active vertex in P . We terminate this process
if P has size k and report G[P ] if it is a connected μ-clique.

This algorithm is called for increasing values of k. If for some value of k
no connected μ-clique is found, then it stops and returns the largest μ-clique
computed so far. This approach is only correct if the nonexistence of a μ-clique
of order k implies that there is also no μ-clique of order k + 1. In a first step, we
thus examine whether connected μ-cliques fulfill a nestedness property (which
is called quasi-heredity [11]). We obtain that for μ ≥ 1/2, connected μ-cliques
are quasi-hereditary, but that for μ < 1/2, they cannot be assumed to be quasi-
hereditary. Accordingly, we focus on the case μ ≥ 1/2 in our experiments.

We develop several approaches to improve the running time of the above
algorithm and we detail them in Sections 3 and 4: First, we consider upper
bounds on the density we can achieve when we are given P . If the upper bound
is smaller than the given μ, then we can terminate branching early. We modify a
known upper bound [10], obtaining two new variants. Second, we develop scoring
functions to determine which vertex should be chosen as active vertex and which
of its neighbors should be included into P first, so to quickly find solutions.
Finally, we also employ several further “early termination” rules (either finding a
connected μ-clique of the desired order or deciding that there is none), improved
branching rules, as well as several heuristic tricks that speed up the computation
of the upper bounds, for example.

In Section 5 we report our experimental findings. Briefly, we find that our
branching approach for connected μ-cliques is competitive with the state of the
art algorithm for possibly disconnected μ-cliques. The upper bound k imposed on
the solution order (which is incremented until we face a no-instance) seems to be
crucial to limit the search space. Using this approach we find optimal connected
μ-cliques for several real-world instances for the first time. Furthermore, we find
that a very simple bound performs best, since the upper bounds are often applied
without avail. Due to lack of space, we defer proofs to a full version of this article.

Related Work. Finding a μ-clique of order k in a given graph is a decision version
of Densest k-Subgraph, where we seek to find a k-vertex subgraph with the
maximum number of edges. This problem is NP-hard even on graphs with max-
imum degree three [7]. Moreover, it is W[1]-hard with respect to k [6] and thus
unlikely to be solvable in f(k) ·nO(1) time. Under the Unique Games Conjecture
there is no polynomial-time constant-factor approximation algorithm [12]. Find-
ing μ-cliques with k vertices remains NP-hard for every rational μ [11]. On the



84 C. Komusiewicz et al.

positive side, finding μ-cliques of maximum order is tractable on graphs with
small maximum degree and on graphs with few high-degree vertices [8].

We are aware of two experimental studies for finding large μ-cliques via exact
algorithms. Pattillo et al. [11] develop two mixed-integer programming (MIP)
formulations for this problem, which were used to solve several real-world
instances with up to 154 vertices with CPLEX. Pajouh et al. [10] instead imple-
mented an algorithm which implicitly enumerates vertex subsets. They devel-
oped an easy-to-compute upper bound for the number of edges induced by any
extension of a vertex set P to one with k vertices. Their algorithm seems to
be the state of the art, improving on the MIP formulation in almost all test
instances. Hence, we use it as a main reference point here. Note that, in contrast
to our algorithm, both algorithms may report disconnected μ-cliques.

There is also a large body of work on heuristic algorithms for finding μ-cliques
(see [1,2,14], for example) as well as heuristics and exact algorithms for other
concepts of dense subgraphs (see Balasundaram and Pajouh [4] for a survey).

Preliminaries. We consider only undirected and simple graphs G = (V,E) where
V = V (G) denotes the vertex set and E = E(G) denotes the edge set. Unless
stated otherwise, n denotes the number of vertices, also called order of the
graph, and m the number of edges of G. The open neighborhood of a vertex v
is denoted by N(v). The degree of a vertex v is denoted by deg(v) := |N(v)|.
For a vertex set S ⊆ V , we use NS(v) := N(v) ∩ S and degS(v) := |NS(v)|
to denote the neighborhood and degree restricted to S. Furthermore, we use
G[S] := (S, {{u, v} ∈ E | {u, v} ⊆ S}) to denote the subgraph of G induced
by S. The degeneracy of a graph G is the smallest integer d such that every
subgraph of G has a vertex of degree at most d.

2 Connected µ-Cliques and Quasi-Heredity

We now study some properties of connected μ-cliques. The property of being
a μ-clique, without the connectivity constraint, is not hereditary [9,11]. That is,
there are μ-cliques G such that some induced subgraph of G is not a μ-clique.
Being a μ-clique is, however, quasi-hereditary, that is, every μ-clique G or order n
has an induced subgraph of order n−1 which is a μ-clique. This is implied by the
following which slightly extends [9, Proposition 6.3.2] and [11, Proposition 2].

Lemma 1. Let G = (V,E) be a graph with density exactly μ and let v be a vertex
in G. Then, G[V \ {v}] has density at least μ if and only if deg(v) ≤ 2m/n.

Thus, removing a vertex of minimum degree in a μ-clique yields a μ-clique,
implying the quasi-heredity of μ-cliques.

The argument for μ-cliques does not extend easily to connected μ-cliques:
it could be the case that all vertices v with deg(v) ≤ 2m/n are cut-vertices.
Moreover, it is not hard to check that additionally demanding connectedness
does not yield a hereditary graph property (consider a clique with a degree-
one vertex attached to it). Thus, it is interesting to know whether connected
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μ-cliques are at least quasi-hereditary. Somewhat surprisingly, this depends on μ:
for large μ we observe quasi-heredity whereas for small μ this is impossible.

Theorem 1. If μ ≥ 1/2, then “being a connected μ-clique” is quasi-hereditary.

In contrast, for μ < 1/2, we obtain a family of counterexamples, showing
that we can use quasi-heredity safely only when μ ≥ 1/2.

Theorem 2. For any fixed rational μ = a/b such that 0 < μ < 1/2 and b is
odd, “being a connected μ-clique” is not quasi-hereditary.

3 Upper Bounds

In this section we detail several upper bounds that are used in the algorithm.
We start with a previously known upper bound on the order of the μ-clique that
depends on the number of edges m and number of vertices n in the graph G.

Proposition 1 (Edge bound [11]). If G[S] is a μ-clique in a connected
graph G, then |S| ≤

(
μ + 2

√
(μ + 2)2 + 8(m − n)μ

)
/2μ.

This upper bound obviously also applies to connected μ-cliques. In the course of
the algorithm, some vertices of the input graph G are discarded in some recursive
branches. Thus m and n decrease in these branches and the bound may then
show that no μ-clique of order k exists. While the bound is easy to compute, it
rarely leads to early termination.

The following bounds are based on the strategy to gradually extend the
“pivot” set P . The aim is to decide whether it is still possible to extend P to
a μ-clique of order k. In the following, let � := k − |P | denote the number of
vertices that we still need to add. Moreover, for a vertex set S ⊆ V let m(S)
denote the number of edges in G[S]. Pajouh et al. [10] proved the following.

Proposition 2 (Inner P -bound [10]). Let G = (V,E) be a graph and P ⊆ V
a vertex subset. Then, for any S ⊇ P with |S| − |P | = �, we have

m(S) ≤ m(P ) +
1
2

∑

v∈P

min{degV \P (v), �}

+
1
2

�∑

i=1

degP (vi) + min{degV \P (vi), � − 1},

where v1, . . . , v� ∈ V \ P exhibit the largest values of

(degP (vi) + min{degV \P (v), � − 1})/2.

Note that the degree of the vertices in P can be large, and hence, the sum over
all v ∈ P does not make a good estimate on the number of edges between P
and S \ P in this case. We now aim to make this estimate from “outside” of P
instead. This often yields a better bound because |P | is usually relatively small
in the course of the algorithm.
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Proposition 3 (Outer P -bound). Let P ⊆ V be a vertex set in G = (V,E).
Then for any S ⊇ P with |S| − |P | = �, we have

m(S) ≤ m(P ) +
�∑

i=1

(
degP (vi) + min{degV \P (vi), � − 1}/2

)
,

where v1, . . . , v� ∈ V \ P exhibit the largest values of

degP (vi) + min{degV \P (vi), � − 1}/2.

By replacing the estimate of the edges contained in G[S \ P ] by the trivial
upper bound

(
�
2

)
, we get the following.

Proposition 4 (Simple P -bound). Let P ⊆ V be a vertex set in G = (V,E).
Then for any S ⊇ P with |S| − |P | = �, we have

m(S) ≤ m(P ) +
(

�

2

)

+
�∑

i=1

degP (vi)/2,

where v1, . . . , v� ∈ V \ P exhibit the largest values of degP (vi)/2.

While the simple P -bound is the least tight of these three P -bound variants, it
is also the one with the least computational overhead. It thus is a crucial feature
of our algorithm (see Section 5).

4 Algorithm and Heuristic Improvements

We now describe our algorithm in detail, including several heuristic speed-ups; a
pseudocode is shown in Algorithm 1. As outlined in the introduction, we main-
tain a partial solution P throughout the execution of the algorithm as well as an
active vertex v. Initially, P contains a single vertex (we try all possibilities). We
successively either add a neighbor of v to P (trying all possibilities) or make v
inactive, meaning that no further neighbors of v should be added to P . Inactive
vertices are maintained in a set I ⊆ P . The procedure is terminated if P reaches
size k or all vertices are inactive. As previously shown, this strategy finds a con-
nected μ-clique with k vertices if there is one [8]. After each step of either adding
a vertex to P or making a vertex inactive, we check whether the bounds from
Section 3 imply that no k-vertex μ-clique containing P exists.

Our general strategy to find the largest μ-clique is to apply Algorithm 1 with
successively increasing k. Due to quasi-heredity, once the algorithm asserts that
there is no k-vertex μ-clique subgraph, then there is also none with more than k
vertices. Next, we describe several speed-up tricks.

4.1 Simple Early Termination Rules and Improved Branching

The goal of the following modifications is to avoid branching (Line 9,
Algorithm 1) if a solution can be obtained greedily or if some branches are
symmetric to others that have been already explored.
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Algorithm 1. Find μ-clique
Input: A graph G, k ∈ N, 1/2 ≤ µ ≤ 1
Output: A connected µ-clique in G of order k if there is one, otherwise ⊥.

11 foreach v ∈ V (G) do
2 Recurse(G, {v}, ∅, v)
3 Remove v from G

4 return ⊥
5 Procedure Recurse(G, P , I, a)
6 if |P | = k and G[P ] is a µ-clique then return P
7 if |P | = k and G[P ] is not a µ-clique then break
8 if edge bound, simple P -bound, or outer P -bound are violated then break
99 foreach u ∈ N(a) \ P do

10 Recurse(G, P ∪ {u}, I, a)
11 Remove u from G

12 I ← I ∪ {a}
13 if P = I then break
14 Remove all vertices in N(a) \ P from G, choose w ∈ P \ I, and set a ← w
15 Recurse(G, P , I ∪ {u}, a)

Simple Rules.We use two greedy termination rules. First, if at some time in
Algorithm 1 the graph G is a connected μ-clique, then we can obtain a k-vertex
μ-clique using Theorem 1 by greedily deleting a non-cut vertex of minimum
degree. Second, if adding k − |P | edges to G[P ] would yield a μ-clique, then it
suffices to simply check whether the connected component containing P is large
enough.

Pending Trees. The latter observation can be extended to any pending tree
on P , that is, an induced tree T in G containing exactly one vertex v of P
such that deleting v cuts T from the rest of the graph. We avoid branching on
vertices in pending trees as follows. Adding � vertices from such a tree to P adds
exactly � edges. Hence, any solution containing pending tree vertices is found by
first branching on the vertices that are not in pending trees and then applying
the simple check described above. Hence, after computing the set of all pending
trees, we can restrict the branching step in Line 9 of Algorithm 1 to vertices not
contained in any pending tree.

Twins. We call two vertices u and v twins if N(u) \ {v} = N(v) \ {u}. While
we cannot assume that, if a vertex is in a solution, then also all its twins are,
we do have the following property. Given P ⊆ V (G), if there is no k-vertex
μ-clique that contains P and a vertex v ∈ V (G) \ P , then there is no μ-clique
containing P and any of the twins of v in V (G) \ P . Note that after Line 10 in
Algorithm 1 we know that no k-vertex μ-clique containing u exists. Hence, we
may not only remove u in Line 11, but also all its twins in V (G) \ P . In order
to do this, we compute the set of twins for each vertex in the beginning. (Note
that two twins in a graph remain twins after deleting any subset of vertices.)
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Pre-evaluation of the Modifications. Since the simple rules above can be com-
puted very quickly, we enabled them in all variants of Algorithm 1 we tested.
Regarding pending trees and twins, we found that their benefits overlapped
strongly in our benchmark instances of Section 5. That is, enabling both at the
same time did not yield meaningful speed-up over the variants in which only
one of them was enabled. Hence, we enabled only the twin modification, which
showed a slightly greater reduction in calls to Recurse.

4.2 Order of Adding Vertices to P

We now consider the order in which vertices are added to the partial solution P
in Lines 1 and 9 of Algorithm 1. Intuitively, for a yes-instance, we would like to
order the vertices in such a way that a solution is discovered within only few
branches. This approach is followed in our optimistic ordering. The optimistic
ordering also serves as a greedy heuristic by determining which vertices to add
in the first descent in the recursion. For a no-instance, however, it is better to
add vertices to P that lead to sparse partial solutions, so that it can be easily
determined that these vertices are not in a solution. Subsequently, these vertices
will be removed in Lines 3 and 11, truncating the search space. This approach
is followed in our pessimistic ordering.

Basic Optimistic Ordering. The optimistic ordering is based on two simple
heuristics. The first heuristic, MaxDegKeep, starts with a highest-degree vertex
and then recursively selects neighbors of already selected vertices with highest
degree, until k vertices are selected. The second one, MinDegDel, instead removes
vertices of minimum degree—omitting cut vertices—until only k vertices remain.
In preliminary experiments we observed that the inequality d ≥ Δ/10 seems to
be a good predictor on which of the two heuristics performed better. Here, Δ is
the maximum degree of the input graph, and d is its degeneracy. If d ≥ Δ/10,
then MaxDegKeep worked better and MinDegDel otherwise.

Based on the above observation we define score(v) for each vertex v and we
first add vertices with the higher scores to P in Lines 1 and 9. If d ≥ Δ/10,
then score(v) is simply the degree of v in the input graph. If d < Δ/10, then
score(v) is the largest degree encountered when deleting vertices of minimum
degree from the input graph until v is deleted.

Breaking Ties. Most of our instances, and most of the instances we expect
to be encountered in practice, fall into the “d < Δ/10” category. Since often
these graphs have thousands of vertices and small maximum score, many ver-
tices receive the same score. Thus, we try to break ties by modifying the score.
We tested two alternatives for tie-breaking: a) the number of neighbors with
larger score, and b) the number of edges in the neighborhood of the vertex.
Interestingly, pre-evaluation showed that a) performed worse than without tie
breaking, increasing running times and calls to Recurse. Tie breaker b) showed
improvements on some instances, so we opted to test only b) in Section 5.

Neighborhood-based Scoring. As the set P grows, it intuitively becomes more
important to add many edges to G[P ] when adding vertices. Thus, in a variant
of the vertex scoring, for each vertex v ∈ V \ P , we add |NP (v)| to score(v).
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Pessimistic Ordering. The pessimistic ordering is obtained by essentially
reversing the ordering given by the score of the vertices. That is, we first con-
sider vertices, which we expect to not be in a μ-clique of order k. We break ties
among them by considering first vertices with the fewest number of edges in the
neighborhood. In the neighborhood-based scoring for the pessimistic variant, we
score vertices with the fewest neighbors in P highest.

4.3 Application of the Upper Bounds

We now list several optimizations we employed for Line 8 of Algorithm 1.
− Since the edge bound and simple P -bound can be computed quickly, we

determined in preliminary experiments that it is always better to enable both
bounds. In particular, the simple P -bound has to be enabled in any good con-
figuration of the algorithm. Thus, both bounds are always enabled in Section 5.

− The simple P -bound and outer P -bound rely on knowing the number of
neighbors in P for each vertex outside of P . To amortize the corresponding
computation cost, this information is kept and updated in each call to Recurse.

− The outer P -bound is based on certain values for each vertex. Then, from
the � largest of these values, it derives an upper bound on the density achiev-
able in a k-vertex subgraph containing P . Compared to the trivial approach of
computing all values, a considerable speed-up can be achieved by computing
the values one-by-one, and only as long as the upper bound derived from the
� largest values computed so far still is below μ.

5 Implementation and Experiments

The algorithm described in Section 4 was implemented in Haskell and compiled
using ghc version 7.4.1; the source code and test data is freely available, see
http://fpt.akt.tu-berlin.de/connected-mu-clique. All experiments were run on
an Intel Xeon E5-1620 computer with 4 cores at 3.6 GHz and 64 GB RAM. The
operating system was Debian GNU/Linux 6.0. Our implementation does not use
multiprocessing capabilities, however, up to four experiments were run on the
machine at once (one on each core). Unless stated otherwise, the time limit was
one hour.

We performed the following experiments. First, for μ = 0.7, we compared all
configuration variants of our algorithm in order to identify the best ones. The
comparison is done on 25 real-world and benchmark instances. Then, we compare
our algorithm to the one of Pajouh et al. [10] on a representative subset of the
real-world instances for several values of μ. Finally, we perform experiments on
random graphs to determine more precisely the limits of our algorithm and of
the algorithm of Pajouh et al. [10].

5.1 Finding the Best Algorithm Variants

Our test bed consists of 25 networks overall. Of these networks, 12 are from the
Second DIMACS Implementation Challenge, chosen to represent hard instances

http://fpt.akt.tu-berlin.de/connected-mu-clique
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Table 1. Reported µ-clique orders and running times (s) of the algorithm configura-
tions across the test data set. The “# solved” column denotes the number of instances
solved to optimality. Optimality is also indicated by a star on the µ-clique order. For
any variant, the “# max k” column denotes the number of graphs where the largest µ-
clique order was achieved among all variants. This is also indicated by a bold µ-clique
order. A bold time means that this variant was the fastest among all variants that
solved this instance.

for dense subgraph problems, and 13 are real-world social and biological net-
works, chosen from several applications to represent instances one might face in
practice. Table 1 shows the performance of four algorithm variants (including
the three best) on a subset of these instances. Each variant is represented by a
string in which O denotes that the outer P -bound is enabled, B denotes that
tie-breaking is enabled, N denotes that neighborhood-based scoring is enabled,
↑ denotes the optimistic ordering and ↓ denotes the pessimistic ordering.

Our observations are roughly as follows: For instances with larger maxi-
mum k, the optimistic ordering outperforms the pessimistic one. Those with
small maximum k are solved slightly faster with pessimistic ordering. The outer
P -bound usually does not reduce search tree size significantly but it runs fast
enough to have only a small negative effect on running times. Tie-breaking allows
to discover several μ-cliques in instances of medium difficulty which otherwise
seem to be hard to find. The effect of neighborhood-based scoring is negligible.

5.2 Comparison with a Previous Approach

We compared our algorithms with an exact branch and bound algorithm for
finding μ-cliques by Pajouh et al. [10]. In the following, we denote their algo-
rithm by BB. (Recall that BB may report disconnected μ-cliques.) For the
comparison, we chose several real-world instances from the test bed above and
the three values of μ = 0.55, 0.7, 0.9. The results are shown in Table 2. In terms
of quickly finding large solutions, BB performs better than our algorithm but



Finding Connected Subgraphs of Fixed Minimum Density 91

Table 2. Largest µ-cliques found by the branch and bound algorithm (BB) by Pajouh
et al. [10], and by our algorithm (O)-(↑)-(B,N), indicated by A1, and (O)-(↑)-(N),
indicated by A2. Bold values represent maximum connected µ-clique orders as reported
by the corresponding algorithm.

µ = 0.55 µ = 0.7 µ = 0.9
BB A1 A2 BB A1 A2 BB A1 A2

Acker-all 32 32 32 25 25 25 15 15 15
Human-all 41 37 39 31 26 27 20 20 18

email-Enron 86 81 68 55 58 44 29 29 21
ERDOS-99-2 20 19 20 14 14 14 9 9 9

GEOM-0 39 32 32 30 28 28 23 23 23
wiki-Vote 104 84 103 65 62 61 31 28 26

the favor shifts towards ours for larger μ. Our algorithm could verify optimality
for several instances with larger values of μ, whereas BB was never able to verify
optimality within the time limit. Disabling the outer P -bound does not change
the results or quality of running times. In some instances, enabling the outer
P -bound reduces the number of calls to Recurse, but this is rare.

5.3 Evaluation on Random Instances

Erdős-Rényi Random Graphs. For each combination of n = 10, 20, . . . , 1200 ver-
tices and edge probability p = 0.05, 0.1, 0.2, we generated 15 Erdős-Rényi ran-
dom graphs. The average running times of our algorithm variant (↑)-(B,N) and
algorithm BB are shown in Figure 1 for those n, where all 15 instances were
solved to optimality within 20 minutes. For p = 0.1 and p = 0.2, the reported
maximum μ-cliques of our algorithm were around ten at the cut-off points due
to the time limit. Our algorithm clearly outperforms BB in terms of verifying
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Fig. 1. Running times for varying order and edge probability p of Erdős-Rényi graphs.
A3 denotes our algorithm in variant (↑)-(B,N).
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Table 3. Comparison of the retrieved µ-clique orders in random small-world networks.
Here, k denotes the order of the planted µ-clique, n denotes the order of the input
graph, and each * denotes an instance that was solved within the time limit.

k n (↑)-(B,N) (↑)-(N) (O)-(↑)-(N) (O)-(↑)-(B,N) BB

500 11.0 (**) 11.0 (**) 11.0 (**) 11.0 (**) 10.0
10 1000 12.0 (**) 12.0 (**) 12.0 (**) 12.0 (**) 11.0

2000 12.0 (**) 12.0 (**) 12.0 (**) 12.0 (**) 11.0

500 21.5 (*) 21.5 (*) 21.0 21.0 21.5
20 1000 21.0 21.0 21.0 21.0 21.0

2000 20.5 20.5 20.5 20.5 20.5

500 26.0 26.0 25.5 25.5 30.5
30 1000 29.0 29.0 29.0 29.0 31.0

2000 30.0 30.0 30.0 30.0 30.0

optimality on these instances. Furthermore, the differences get more pronounced
as p gets smaller, that is, the graphs get sparser.

Random Small-World Graphs with Planted μ-cliques. In order to assess the
order of the retrieved μ-cliques, we generated random networks with a planted μ-
clique of order 10, 20, and 30. For each order, we created six networks, two
networks with 500 vertices, two with 1000 vertices, and two with 2000 vertices.
First, we sample a μ-clique of the appropriate order using the Erdős-Rényi model
with edge probability p = μ and ensuring density at least μ. Then, we add ver-
tices according to the Barabási-Albert model, making a new vertex adjacent to

k/i� previous ones with probability proportional to their degrees. Herein, k is
the μ-clique order and i = 2 for the first graph and i = 4 for the second one.
Table 3 shows our results. If the planted μ-clique has order 10, our algorithm out-
performs BB as it can exactly solve these instances. For planted μ-cliques of order
30, BB outperforms our algorithm. For order 20, they behave roughly the same.
The algorithm variants without outer P -bound perform slightly better than the
ones with the outer P -bound, tie-breaking has no effect in these instances.

6 Conclusion and Outlook

We proposed a new algorithm for finding connected μ-cliques which is based on
searching for successively larger solutions. As known upper bounds are appar-
ently not tight enough, this strategy seems to be imperative for bounding the
search space in each iteration. Using this approach, we could verify optimality
for several real-world instances.

In ongoing work, we developed two tighter upper bounds. They showed
promising reductions of the search space for some instances. However, they
require more computational overhead which increases the overall computation
time. It is thus interesting to improve the corresponding implementations and
to find easily checkable conditions on when the bounds might apply.
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Abstract. We propose a new cutting plane algorithm for Integer Lin-
ear Programming, which we refer to as the bound-optimal cutting plane
method. The algorithm amounts to simultaneously generating k cuts
which, when added to the linear programming relaxation, yield the (prov-
ably) largest bound improvement. We show that, in the general case,
the corresponding cut generating problem can be cast as a Quadrati-
cally Constrained Quadratic Program. We also show that, for a large
family of cuts, the latter can be reformulated as a Mixed-Integer Lin-
ear Program. We present computational experiments on the generation
of bound-optimal stable set and cover inequalities for the max clique
and knapsack problems. They show that, with respect to standard algo-
rithms, the bound-optimal cutting plane method allows for a substantial
reduction in the number of cuts and iterations needed to achieve either
a given bound or an optimal solution.

1 Introduction

Cutting planes are one of the key components of modern Integer and Mixed-
Integer Linear Programming (ILP and MILP) solvers [BR07]. The textbook cut-
ting plane method is fairly simple: it generates a single cut, adds it to the Linear
Programming (LP) relaxation, performs a reoptimization, and iterates. Although
practical methods are usually more involved, they typically share a feature with
the textbook one: they are, primarily, driven by the maximization of the cut
violation.

We speculate that looking for cuts which are maximally violated (as it is
done in what we call the standard cutting plane method) might be not the most
advisable option. Consider the correspondence between pivoting on a nonbasic
column in the primal simplex method and generating a cut in a cutting plane
method. In light of such relationship, adding a maximally violated cutting plane
and reoptimizing amounts to, in the dual, pivoting on a column with the most
negative reduced cost. Notably, this pivoting rule is usually considered, in the
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literature on the simplex method, a rule as poor as pivoting entirely at ran-
dom [Bix09]. An alternative idea which, according to [Har73], dates back to
Dantzig, is that of considering a “greatest change” criterion, corresponding to
looking for the best improving solution within a pivoting operation. This idea
has given rise to alternative pivoting rules which, although only providing an
approximation of the actual objective function improvement, are, computation-
ally, very effective [FG92]. In this work, we present an adaptation of the “greatest
change” criterion to the context of cutting plane generation.

This paper1 belongs to a larger stream of work, see, e.g., [ZFB11,ACG14],
where alternative paradigms for cutting plane generation are sought. The aim
is of, at least primarily, finding alternatives to the standard method which allow
for a reduction in the number of cuts needed to achieve a given bound. This issue
is of high practical relevance in branch-and-cut algorithms as, in their context,
the number of cuts greatly affects the size of the LP relaxations that are solved
at each node, with a large impact on the overall efficiency of the algorithm.

In this work, we propose and investigate a method which generates, at the
same time, up to k cutting planes which simultaneously yield the (provably)
largest bound improvement. We refer to such cuts as to bound-optimal cuts. We
will show that, in the general case, they can be generated via a Quadratically
Constrained Quadratic Program (QCQP) which, for many relevant families of
cuts, can be cast as an MILP. Experiments on the generation of stable set and
cover inequalities for the max clique and knapsack problems will show that,
when compared to standard algorithms, the bound-optimal cutting plane method
yields a substantial reduction in the number of cuts and cutting plane iterations.

2 Bound-Optimal Cutting Planes

Let P I be the ILP maxx∈Z
n
+
{cx : Ax ≤ b} with n variables and m constraints and

let P be its LP relaxation. Consider a family Π of cutting planes πx ≤ π0, valid
for P I , with coefficients (π, π0) ∈ Π. We assume that Π is finitely generated
and that it can be expressed as a mixed-integer set.

Throughout the paper, the focus will be on optimizing over the closure of P
under Π, i.e., over the set: PΠ = maxx∈R

n
+
{cx : Ax ≤ b, πx ≤ π0 ∀(π, π0) ∈ Π}.

W.l.o.g., we assume that P may subsume some of the inequalities in Π as already
contained in Ax ≤ b (e.g., because added in a previous cutting plane iteration).
We will denote rows and columns of an MILP by, resp., i and j and adopt the
notation [n] for index sets of type {1, . . . , n}.

In this work, we look for k bound-optimal cutting planes, i.e., for k cuts
πhx ≤ πh

0 , with (πh, πh
0 ) ∈ Π for all h ∈ [k], whose introduction into P yields the

largest bound improvement. Let P ′ be the problem obtained after introducing
the new cuts into P . Formally, by letting z and z′ be the optimal values of P
and P ′, we are thus looking for k cuts which maximize the quantity z − z′.

1 A partial, preliminary version appeared in [Con13].
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2.1 Generation of a Single Bound-Optimal Cut

Let us first consider the case of k = 1. We can cast the problem of generating a
single bound-optimal cutting plane as the following nonlinear bilevel program:

max
x∈R

n
+

(π,π0)∈Π

⎧
⎪⎨

⎪⎩

const
︷︸︸︷
z −

z′
︷︸︸︷
cx : x ∈

P ′
︷ ︸︸ ︷

argmax
x∈R

n
+

{
cx : Ax ≤ b

πx ≤ π0

}

⎫
⎪⎬

⎪⎭
, (1)

whose nonlinearity is a consequence of the bilinear terms in πx. Leveraging LP
duality, we obtain the following characterization:

Proposition 1. A bound-optimal cutting plane can be found by solving the fol-
lowing single level QCQP with 2n + m + 2 variables and n + m + 2 constraints:

min
x∈R

n
+

y∈R
m+1
+

(π,π0)∈Π

⎧
⎪⎪⎨

⎪⎪⎩

∑n
j=1 cjxj :

∑n
j=1 aijxj ≤ bi ∀i ∈ [m]∑n
j=1 πjxj ≤ π0∑m
i=1 aijyi + πjym+1 ≥ cj ∀j ∈ [n]∑n
j=1 cjxj =

∑m
i=1 biyi + π0ym+1

⎫
⎪⎪⎬

⎪⎪⎭

. (2)

Proof. For any (π, π0) ∈ Π, we guarantee that x ∈ R
n
+ be feasible for P ′ by

imposing
∑n

j=1 aijxj ≤ bi, for all i ∈ [m], and
∑n

j=1 πjxj ≤ π0. Let y ∈ R
m+1

be the dual variables of P ′, with ym+1 corresponding to the new inequality
πx ≤ π0. We impose dual feasibility by introducing

∑m
i=1 aijyi + πjym+1 ≥ cj ,

for all j ∈ [n]. By imposing
∑n

j=1 cjxj =
∑m

i=1 biyi +π0ym+1, we guarantee that
(x, y) form an optimal primal-dual pair for any (π, π0) ∈ Π. Since, this way, any
feasible solution x is optimal for P ′, a bound-optimal cut is found by minimizing
the objective function of P ′, rather than by maximizing it. ��

By projecting the x variables out, we obtain a simpler construction:

Proposition 2. A bound-optimal cutting plane can be found by solving the fol-
lowing single level QCQP with n + m + 2 variables and n constraints:

min
y∈R

m+1
+

(π,π0)∈Π

{∑m
i=1 biyi + π0ym+1 :

∑m
i=1 aijyi + πjym+1 ≥ cj ∀j ∈ [n]} . (3)

Problem (3) is a QCQP due to the bilinear products πjym+1 and π0ym+1.
Under the following assumptions, the problem can be reformulated as an MILP:

Proposition 3. Assume that π ∈ {0, 1}n and that π0 is an affine function of π,
i.e., π0 =

∑n
j=1 gjπj + g0, for some (g, g0) ∈ R

n+1. Let zj := πjym+1. Assuming
ym+1 ≤ yU for some yU ∈ R+, Problem (3) can be cast as the MILP:

min
y∈R

m+1
+

z∈R
n
+

(π,π0)∈Π

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑m
i=1 biyi +

∑n
j=1 gjzj + g0ym+1 :∑m

i=1 aijyi + zj ≥ cj ∀j ∈ [n]
zj ≥ ym+1 + πjy

U − yU ∀j ∈ [n]
zj ≤ πjy

U ∀j ∈ [n]
zj ≤ ym+1 ∀j ∈ [n]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4)
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This result follows by linearizing the bilinear products πjym+1 by means of
the McCormick envelope [McC76]. We remark that Proposition 3 encompasses
many families of “combinatorial” cutting planes, such as clique and stable set
inequalities (where π0 = 1), cut-set inequalities (where π0 = 1 or 2), or knapsack
cover inequalities and subtour elimination constraints (where π0 =

∑n
j=1 πj−1).

2.2 Simultaneous Generation of k Bound-Optimal Cuts

One of the most interesting features of bound-optimal cutting planes is that
Propositions 2 and 3 can be easily generalized so to generate any number k of
cuts which, jointly, yield the largest bound improvement. The generalization of
Proposition 2, from which that of Proposition 3 is straightforward, is as follows:

Proposition 4. A set of k bound-optimal cutting planes can be found by solving
the following QCQP with m + kn + 2k variables and n constraints:

min
y∈R

m+k
+

(πh,πh
0 )∈Π,h∈[k]

{∑m
i=1 biyi +

∑k
h=1 πh

0 ym+h :
∑m

i=1 aijyi +
∑k

h=1 πh
j ym+h ≥ cj ∀j ∈ [n]

}

, (5)

where, for each h ∈ [k], ym+h is the dual variable of πhx ≤ πh
0 .

2.3 Convergence of the Bound-Optimal Cutting Plane Method

The cutting plane method that is obtained when generating bound-optimal cuts,
which we refer to as the bound-optimal cutting plane method, iterates over two
steps: i) it solves Problem (3) for k = 1 or Problem (5) for k > 1 and ii) it adds
the k new inequalities πhx ≤ πh

0 , for h ∈ [k], to Ax ≤ b.
Differently from the standard cutting plane algorithm, the bound-optimal

cutting plane method does not require to reoptimize the LP relaxation, the
dual of which is implicitly reoptimized in step i), nor it involves the concept of
separation of an infeasible solution x∗. Notably, the method does not account for
cut violation at all. Also note that, regardless of the number of inequalities in Π,
it allows to solve any problem PΠ , at least in principle, by solving Problem (5)
only once, for k = n, i.e., by generating k = n bound-optimal cuts in a single
iteration. This is because any vertex of PΠ is uniquely identified by at most n
inequalities (exactly n in the full dimensional case).

Differently, for small values of k, an iteration of the bound-optimal cutting
plane method may stall. As illustrated in Figure 1, this is the case when the
current LP relaxation admits an optimal facet but Π does not contain any set
of k cuts which, jointly, allow to cut the entire facet away. We remark that this
issue can always be circumvented by increasing k whenever the method fails to
improve the bound. Another option is to couple the method with a standard
cutting plane algorithm whenever a stalling iteration occurs. We discuss it in
Section 4.
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Fig. 1. Let Π contain four cuts (a), (b),
(c), (d), with (a) and (b) already added to
the relaxation. Assume that the objective
function gradient is orthogonal to the facet
AD. The bound (given by AD) cannot be
improved by the introduction of a single
cut, as a subset of AD will remain feasible
in any case. Hence, for k = 1, the bound-
optimal cutting plane method stalls while,
for k = 2, it reaches the (unique) optimal
solution S by generating (c) and (d) simul-
taneously.

3 Case Studies

In this section, we show an application of bound-optimal cutting planes to two
classical combinatorial optimization problems: max clique and binary knapsack.
For the sake of readability, we will report the bound-optimal cut generating
problems as QCQPs for k = 1, as in Proposition 2. The derivation of the corre-
sponding MILPs, as in Proposition 3, and the extension to k > 1 is left to the
reader.

3.1 Application to the Max Clique Problem

Given an undirected graph G = (V,E) with n vertices, consider the max clique
problem calling for a clique of maximum cardinality. Let S := {S1, . . . , S|S|}
be the set of all the (maximal) stable sets of G. For any Si ∈ S, the stable set
inequality

∑
j∈Si

xj ≤ 1 is valid. The corresponding closure yields the following
LP relaxation:

max
x∈R

n
+

{∑
j∈V xj :

∑
j∈Si

xj ≤ 1 ∀Si ∈ S }
, (6)

whose optimal value is the so-called fractional clique number of G. Its dual reads:

min
y∈R

|S|
+

{∑
Si∈S yi :

∑
Si∈S:j∈Si

yi ≥ 1 ∀j ∈ V
}

. (7)

Given a point x∗ ∈ R
n
+, the standard separation problem calling for a maximally

violated stable set inequality can be cast as the ILP:

max
π∈{0,1}n

{∑
j∈V x∗

jπj : πi + πj ≤ 1 ∀{i, j} ∈ E
}

. (8)

Let us assume that m stable set inequalities have been generated. By virtue
of Proposition 2, a bound-optimal stable set inequality is obtained by solving
the following QCQP:

min
y∈R

m+1

π∈{0,1}n

{∑m
i=1 yi + ym+1 :

∑m
i=1:j∈Si

yi + πjym+1 ≥ 1 ∀j ∈ V
πi + πj ≤ 1 ∀{i, j} ∈ E

}

. (9)
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Note that the only nonlinear term is πjym+1 as, due to π0 = 1, the term π0ym+1

in Problem (3) reduces to ym+1. The corresponding MILP formulation as in
Proposition 3 is obtained after introducing the upper bound ym+1 ≤ 1 which,
due to the direction of the objective function, holds in any optimal solution.

3.2 Application to the Knapsack Problem

Consider the 0-1 knapsack problem with a set of items [n], a weight function
a : [n] → N+, a profit function c : [n] → N+, and a budget b ∈ N+. Let
C = {C1, . . . , C|C|} be the set of covers of [n], where Ci ∈ C if and only if∑

j∈Ci
aj ≥ b + 1. For any Ci ∈ C, the cover inequality

∑
j∈Ci

xj ≤ |Ci| − 1 is
valid. When optimizing over the corresponding closure, we have the LP:

max
x∈[0,1]n

{∑n
j=1 cjxj :

∑n
j=1 ajxj ≤ b∑
j∈Ci

xj ≤ |Ci| − 1 ∀Ci ∈ C
}

. (10)

By letting u be the dual variable of
∑n

i=1 ajxj ≤ b, vj that of xj ≤ 1, for all
j ∈ [n], and yi that of each cover inequality of index i, the dual reads:

min
(u,v,y)∈R

1+n+|C|
+

{
ub +

∑n
j=1 vj +

∑
Ci∈C(|Ci| − 1)yi :

aju + vj +
∑

Ci∈C:j∈Ci
yi ≥ cj ∀j ∈ [n]

}

. (11)

Given x∗ ∈ R
n
+, the standard cutting plane generation problem is the ILP:

min
π∈{0,1}n

{∑n
j=1(1 − x∗

j )πj :
∑n

j=1 ajπj ≥ b + 1
}

. (12)

Let us assume that m cuts have been generated. Due to Proposition 2, a
bound-optimal cover inequality is obtained by solving the following QCQP:

min
u∈R+,v∈R

n
+

y∈R
m+1
+

π∈{0,1}n

⎧
⎨

⎩

ub +
∑n

j=1vj +
∑m

i=1(|Ci| − 1)yi + (
∑n

j=1 πj − 1)ym+1 :
aju + vj +

∑m
i=1:j∈Ci

yi + πjym+1 ≥ cj ∀j ∈ [n]∑n
j=1 ajπj ≥ b + 1

⎫
⎬

⎭
. (13)

We can derive an MILP reformulation via Proposition 3 after the introduction
of an upper bound ym+1 ≤ yU . As it is easy to see, if yU is an upper bound on
the value of an optimal solution to Problem (13), then ym+1 ≤ yU holds in any
of its optimal solutions. We can thus initialize yU = maxx∈[0,1]n{∑n

j=1 cjxj :
∑n

j=1 ajxj ≤ b} and update it at each iteration with the new, tighter bound
that is found by generating a bound-optimal cutting plane.

3.3 Cut Domination

From a practical point of view, ensuring that we only generate nondominated
cuts is paramount to a competitive cutting plane algorithm. Recall that a stable
set (resp., cover) inequality is dominated if and only if the corresponding stable
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set (cover) is not inclusionwise maximal (minimal). To guarantee nondomination,
we propose two families of inequalities.

For stable set inequalities, observe that a stable set S is maximal if and only
if, for each vertex j ∈ V \ S, at least one vertex i ∈ S shares an edge with j.
Therefore, the following holds for any π denoting a maximal stable set:

∑
{i,j}∈E πi ≥ 1 − πj ∀j ∈ V . (14)

For cover inequalities, given a cover C = {j ∈ [n] : πj = 1}, we must
guarantee that, for all � ∈ C,

∑
j∈C\{�} aj ≤ b. Thus, we introduce:

∑
j∈[n]\{�} ajπj ≤ b + (

∑
j∈[n]\{�} aj − b)(1 − π�) ∀� ∈ [n] . (15)

4 Computational Experiments

We evaluate the impact of the bound-optimal cutting plane method on the two
problems discussed in the previous section. We address the following algorithms:

– BOC: generation of k bound-optimal cuts at time;
– STD: (standard) generation of a maximally violated inequality πx ≤ π0;
– COORD: generation of a coordinated cutting plane, as proposed in [ACG14]; at

any iteration t, a cut πx ≤ π0 is coordinated if and only if, among all the cuts
of maximum violation, it also maximizes the 1-norm difference between π
and the average of the vectors π1, . . . , πt−1 of the previous cuts;

– BOC+STD and BOC+COORD: extension of BOC where cut generation is switched
to, resp., STD and COORD as soon as an iteration of BOC stalls.

– N-X: algorithm X where Constraints (14) or (15) are introduced to guarantee
the generation of nondominated cuts.

We consider a set of 24 instances taken from the second DIMACS challenge
on “cliques, coloring, and satisfiability” [JT96] for max clique and a set of 30
instances of type 2 (weakly correlated), 14 (bounded strongly correlated), and
15 (no small weights) generated via Pissinger’s gen2.c generator [MPT99], with
a range parameter of 105 and 125 items. We compiled the data sets so to have a
pool of nontrivial instances for which the different cutting plane algorithms can
be run within a reasonable amount of computing time.

All the experiments are carried out with CPLEX 12.4, adopting AMPL as
modeling language, on a single threaded 3.40GHz Intel i7-3770 CPU with 32GB
of RAM. For each method, we impose a time limit of 7200 seconds.

4.1 Comparisons for a Given Bound on Max Clique Instances

With these experiments, we illustrate an important feature of bound-optimal
cutting planes, i.e., that, when compared to the other methods, the number of
cuts and iterations that BOC needs to achieve a given bound (we consider that
at which BOC halts due to a stalling iteration) is substantially smaller.
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To better highlight this feature, we compare the different algorithms in their,
arguably, best setting, i.e., when guaranteeing that they only generate nondom-
inated inequalities by means of the introduction of Constraints (14). Hence, we
compare thee methods: N-BOC, N-STD, and N-COORD. We consider three values
of k, namely: k = 1, 2, 3, halting the execution of N-STD and N-COORD as soon as
the target bound is reached.

Figure 2 reports a graphical representation of the typical evolution of the
bounds for the different methods, highlighting that N-BOC provides a large
improvement over N-STD and N-COORD. Indeed, it shows that, for all values of k
and at every iteration, the bound provided by N-BOC is always tighter than that
given by N-STD and N-COORD, and much tighter for k = 2, 3.

Fig. 2. Bound improvement vs number of iterations for N-BOC (k = 1, 2, 3), N-STD, and
N-COORD on the instances hamming-6-2 and c-fat200-5

The complete results are illustrated in Tables 1, 2, and 3, one per value
of k. The tables not only confirm the improvement of N-BOC over the other two
methods, but they also show that the difference in the number of cuts generated
by N-BOC w.r.t. that for N-STD and N-COORD is very large for larger values of k.
For k = 1, we register that N-STD and N-COORD generate, resp. and in geometric
mean, 2.0 and 1.5 times the number of cuts generated by N-BOC. For k = 2, the
factors increase to 2.3 and 1.8, reaching 2.4 and 1.8 for k = 3. The difference can
be very large even for k = 1. Consider, as an example, the instance hamming8-2,
where N-BOC generates only 127 cuts, as opposed to 367 for N-STD (2.9 times as
much) and 412 for N-COORD (3.2 times as much).

Since N-BOC generates k cuts at a time, the comparison w.r.t. the number
of iterations is even more favorable for it than that w.r.t. the number of cuts.
Starting from k = 1, we have that N-STD and N-COORD require, resp., 2.0 and
1.5 times the iterations of N-BOC (same factors as for the number of cuts). The
factors increase to, resp., 4.5 and 3.7 for k = 2, reaching 7.2 and 5.3 for k = 3.

We also note that the bound at which a stalling iteration of N-BOC occurs
improves substantially for the different values of k. Neglecting the instances for
which the time limit is hit, we have a gap, for k = 1, of 34.2% w.r.t. the value of



On the Generation of Cutting Planes which Maximize 105

Table 1. Comparison w.r.t. the number of cuts on max clique instances between N-BOC,
N-STD, and N-COORD, halting the latter two as they reach the bound at which N-BOC

stalls, for k = 1. The best method per instance is highlighted in boldface.

N-BOC N-STD N-COORD
Instance |V | |E| Opt Bnd Cuts Time Cuts Time Cuts Time
C-fat200-1 200 1533 12.0 14.0 13 0.5 38 0.8 14 0.3
C-fat200-2 200 3234 24.0 24.0 22 0.9 70 2.0 22 0.6
C-fat200-5 200 8472 66.7 83.0 59 4.4 171 8.9 69 3.6
Hamming6-2 64 1824 32.0 33.0 31 1.0 89 2.7 63 1.9
Hamming6-4 64 704 5.3 8.0 8 0.8 17 0.4 13 0.6
Hamming8-2 256 31616 128.0 129.0 127 222.4 367 583.2 412 657.5
Johnson8-4-4 70 1855 14.0 18.0 19 3.4 27 1.7 21 1.3
Johnson16-2-4 120 5460 8.0 14.0 14 13.0 16 3.2 16 3.8
MANN a9 45 917 18.0 21.0 12 0.5 12 0.3 12 0.3
myciel4 23 70 3.2 5.0 4 0.1 5 0.0 5 0.1
myciel5 47 235 3.6 6.0 5 0.2 5 0.1 5 0.1
myciel6 95 755 3.8 7.0 6 0.4 6 0.1 6 0.2
myciel7 191 2359 4.1 8.0 7 1.8 7 0.4 7 0.5
queen6 6 36 289 7.0 9.0 9 0.2 14 0.2 12 0.2
queen7 7 49 475 7.0 7.0 7 0.2 54 0.8 31 0.5
queen8 12 96 1367 12.0 14.0 13 0.5 37 0.9 26 0.6
queen9 9 81 1055 9.0 13.0 10 0.6 12 0.3 12 0.3
queen10 10 100 1469 10.0 14.0 12 1.0 29 0.8 13 0.5
queen11 11 121 1979 11.0 14.0 15 2.0 38 1.3 27 1.1
queen12 12 144 2595 12.0 15.0 15 2.4 43 1.8 35 1.7
queen13 13 169 3327 13.0 17.0 15 3.8 36 1.8 33 2.1
queen14 14 196 4185 14.0 17.0 17 5.0 55 3.5 47 3.5
queen15 15 225 5179 15.0 18.0 18 11.1 63 4.6 48 4.3
queen8 8 64 627 8.4 11.0 9 0.5 10 0.2 13 0.3

Table 2. Comparison w.r.t. the number of cuts on max clique instances between N-BOC,
N-STD, and N-COORD, halting the latter two as they reach the bound at which N-BOC

stalls, for k = 2. The best method per instance is highlighted in boldface.

N-BOC N-STD N-COORD
Instance |V | |E| Opt Bnd Iters Cuts Time Cuts Time Cuts Time
C-fat200-1 200 1533 12.0 12.5 8 16 3.0 104 2.2 72 1.5
C-fat200-2 200 3234 24.0 24.0 11 22 1.7 70 2.0 22 0.6
C-fat200-5 200 8472 66.7 74.0 35 70 9.3 213 11.1 138 7.3
Hamming6-2 64 1824 32.0 32.0 17 34 9.1 91 2.8 80 2.5
Hamming6-4 64 704 5.3 7.0 6 12 6.6 24 0.5 15 0.6
Hamming8-2 256 31616 128.0 174.0 41 82 7200.0 204 324.2 230 364.8
Johnson8-4-4 70 1855 14.0 17.0 9 18 21.9 31 1.9 24 1.5
Johnson16-2-4 120 5460 8.0 14.0 7 14 212.2 16 3.2 16 3.8
MANN a9 45 917 18.0 21.0 6 12 1.0 12 0.3 12 0.3
myciel4 23 70 3.2 5.0 2 4 0.2 5 0.0 5 0.1
myciel5 47 235 3.6 3.6 30 60 1007.9 77 5.3 69 5.1
myciel6 95 755 3.8 7.0 3 6 6.0 6 0.1 6 0.2
myciel7 191 2359 4.1 4.6 15 30 7200.0 81 30.7 39 8.6
queen6 6 36 289 7.0 8.0 6 12 0.7 16 0.2 17 0.2
queen7 7 49 475 7.0 7.0 5 10 1.2 54 0.8 31 0.5
queen8 12 96 1367 12.0 13.0 7 14 6.9 45 1.1 39 1.0
queen9 9 81 1055 9.0 12.0 6 12 5.9 28 0.6 18 0.4
queen10 10 100 1469 10.0 12.0 6 12 13.3 46 1.3 35 1.1
queen11 11 121 1979 11.0 13.0 7 14 24.0 55 1.9 40 1.6
queen12 12 144 2595 12.0 14.0 8 16 45.0 74 3.2 49 2.3
queen13 13 169 3327 13.0 15.0 8 16 40.5 79 4.2 59 3.5
queen14 14 196 4185 14.0 17.0 9 18 142.3 55 3.5 47 3.5
queen15 15 225 5179 15.0 142.0 3 6 7200.0 6 0.6 6 0.6
queen8 8 64 627 8.4 10.0 6 12 3.7 10 0.2 26 0.5
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Table 3. Comparison w.r.t. the number of cuts on max clique instances between N-BOC,
N-STD, and N-COORD, halting the latter two as they reach the bound at which N-BOC

stalls, for k = 3. The best method per instance is highlighted in boldface.

N-BOC N-STD N-COORD
Instance |V | |E| Opt Bnd Iters Cuts Time Cuts Time Cuts Time
C-fat200-1 200 1533 12.0 13.0 5 15 8.0 67 1.4 27 0.5
C-fat200-2 200 3234 24.0 24.0 8 24 5.0 70 2.0 22 0.6
C-fat200-5 200 8472 66.7 67.0 28 84 1771.7 248 13.1 189 10.1
Hamming6-2 64 1824 32.0 32.0 11 33 49.6 91 2.8 80 2.5
Hamming6-4 64 704 5.3 7.0 3 9 56.5 24 0.5 15 0.6
Hamming8-2 256 31616 128.0 250.0 2 6 7200.0 7 11.1 6 9.5
Johnson8-4-4 70 1855 14.0 14.0 7 21 144.0 56 3.3 56 3.4
Johnson16-2-4 120 5460 8.0 8.0 6 18 4941.3 16 3.2 16 3.8
MANN a9 45 917 18.0 18.0 7 21 6.5 29 0.6 34 0.8
myciel4 23 70 3.2 3.5 3 9 2.2 14 0.1 7 0.1
myciel5 47 235 3.6 4.0 4 12 34.9 25 0.3 15 0.2
myciel6 95 755 3.8 4.3 7 21 7200.0 48 4.5 22 1.0
myciel7 191 2359 4.1 15.0 2 6 7200.0 5 0.3 5 0.3
queen6 6 36 289 7.0 8.0 3 9 2.3 16 0.2 17 0.2
queen7 7 49 475 7.0 7.0 3 9 4.5 54 0.8 31 0.5
queen8 12 96 1367 12.0 13.0 5 15 28.4 45 1.1 39 1.0
queen9 9 81 1055 9.0 11.0 4 12 84.8 38 0.8 28 0.6
queen10 10 100 1469 10.0 12.0 4 12 59.9 46 1.3 35 1.1
queen11 11 121 1979 11.0 13.0 5 15 1264.1 55 1.9 40 1.6
queen12 12 144 2595 12.0 14.0 6 18 2824.4 74 3.2 49 2.3
queen13 13 169 3327 13.0 15.0 6 18 7200.0 79 4.2 59 3.5
queen14 14 196 4185 14.0 16.0 6 18 7200.0 91 6.0 72 5.1
queen15 15 225 5179 15.0 30.0 5 15 7200.0 16 1.5 16 2.0
queen8 8 64 627 8.4 9.1 11 33 7200.0 56 1.0 49 1.0

an optimal solution to the fractional clique number problem (where all the stable
set inequalities are introduced). For k = 2, the gap reduces to 21.5%, reaching
8.2% for k = 3. This corroborates that, as it can be expected, the chance of
stalling decreases for larger values of k.

We remark that, in our experiments, the aim is of assessing the impact,
as well as the potential, of bound-optimal cutting planes w.r.t. the reduction in
number of cuts and iterations. Since, in N-BOC, we solve each separation problem
to proven optimality (without any algorithmic sophistications), the computing
times required to find bound-optimal cutting planes (which we report for com-
pleteness) become quite large for a large k. Starting from being, in geometric
mean, 1.4 and 1.5 times those for, resp., N-STD and N-COORD for k = 1, they
reach a factor of two and three orders of magnitude for, resp., k = 2 and k = 3.
The number of instances for which the time limit is hit also increases from 0 for
k = 1 to 3 for k = 2 to 7 for k = 3.

4.2 Comparisons to Optimal Solutions for the Knapsack Problem

We illustrate a set of experiments carried on the knapsack problem to highlight
two features of bound-optimal cutting plane generation. First, that, if we switch
to a standard cutting plane algorithm (such as STD or COORD) once an iteration of
BOC stalls, the resulting method allows for a significant reduction in the number of
cuts. Secondly, that the majority of the cuts produced by BOC are nondominated
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even if nondomination is not imposed. For this reason, in these experiments, we
do not resort to Constraints (15).

We compare BOC+STD and BOC+COORD with k = 1 to STD and COORD. The
results are reported in Table 4. All the instances are solved to optimality, except
for 14 3, where BOC+STD and BOC+COORD are interrupted due to a numerical preci-
sion issue2. The column Cuts+ reports the number of “standard” cuts generated
when switching to STD or COORD. The table shows that BOC+COORD and BOC+STD

Table 4. Comparison w.r.t. the number of cuts on knapsack instances for BOC+STD and
BOC+COORD (k = 1), STD, and COORD. The best method per instance is highlighted in
boldface.

BOC+COORD BOC+STD COORD STD
Inst. Cuts Cuts+ Time Cuts Cuts+ Time Cuts Time Cuts Time
2 1 128 17 30.5 196 85 31.3 489 10.0 915 18.1
2 2 127 6 51.8 135 14 51.8 330 6.9 1942 51.8
2 3 136 8 60.1 147 19 60.2 329 7.0 1778 45.0
2 4 122 5 49.0 125 8 49.1 284 5.8 949 20.8
2 5 128 10 43.3 149 31 43.4 291 5.7 9071 649.4
2 6 116 7 36.9 143 34 37.0 242 4.5 1601 40.9
2 7 107 0 44.1 107 0 44.1 162 3.2 671 12.1
2 8 129 9 47.9 148 28 48.1 350 6.8 11100 1273.4
2 9 118 4 44.6 123 9 44.6 276 5.4 1109 24.1
2 10 87 0 17.8 87 0 17.8 153 2.9 626 10.4
14 1 117 22 73.6 116 21 73.5 103 1.7 301 4.3
14 2 103 6 41.7 105 8 41.6 92 1.6 330 4.8
14 3 173 0 680.8 173 0 680.8 143 2.8 492 9.1
14 4 74 5 12.9 75 6 12.8 90 1.6 267 3.4
14 5 132 35 74.3 143 46 74.3 122 2.4 353 5.5
14 6 121 1 227.0 121 1 226.9 132 2.8 365 5.9
14 7 87 0 13.5 87 0 13.4 60 0.9 284 3.6
14 8 140 23 785.9 143 26 785.9 162 3.4 533 9.9
14 9 100 4 31.8 100 4 31.8 89 1.5 270 3.7
14 10 93 16 26.3 94 17 26.2 86 1.5 292 3.9
15 1 72 0 10.1 72 0 10.2 118 2.2 464 7.1
15 2 119 0 64.0 119 0 63.8 172 3.4 613 10.9
15 3 81 1 15.8 82 2 15.8 109 1.9 362 4.8
15 4 102 13 26.9 107 18 27.0 130 2.5 378 5.4
15 5 110 0 62.7 110 0 62.7 144 2.4 445 7.1
15 6 107 0 123.7 107 0 123.7 123 2.4 350 5.5
15 7 50 0 5.4 50 0 5.5 81 1.6 303 3.8
15 8 148 0 93.3 148 0 93.4 198 3.7 706 13.4
15 9 120 0 94.8 120 0 94.8 151 2.9 428 7.0
15 10 92 0 27.8 92 0 27.7 151 2.9 420 6.3

manage to solve all the instances to optimality in a substantially smaller number
of cutting planes (and iterations, as the two numbers coincide for k = 1). When
compared to BOC+STD, STD and COORD generate, resp. and in geometric mean,
1.38 and 5.59 times the number of cuts generated by BOC+STD. When compared
to BOC+COORD, the factors increase to, resp., 1.45 and 5.84.

2 In all our experiments, validity is always checked before a cut is added to the relax-
ation, thus guaranteeing the correctness of the bounds that we produce.
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As for the case of max clique, computing times for BOC are, in both variants,
quite large, slightly more than an order of magnitude larger than those for COORD
and slightly more than 4 times larger w.r.t. those for STD. Nevertheless, they still
allow to assess the substantial reduction in the number of cutting planes provided
by BOC, highlighting the potential of bound-optimal cutting plane generation.

We remark that the comparison between either BOC+STD or BOC+COORD and
STD is quite impressive. Over all the instances, the latter produces a total of 37718
cuts, whereas BOC+COORD and BOC+STD only produce, resp., 3339 and 3524 cuts
(equal to, resp., only 8.9% and 9.3% the number of cuts for STD). Also note that,
for the cases where STD generates an extremely large number of cuts, such as for
the instances 2 5 and 2 8, BOC+COORD and BOC+STD are much faster, exhibiting
computing times that are, resp. for the two instances, more than one and two
orders of magnitude smaller, in spite of the more involved cut generating problem
that BOC entails. This better highlights that, even by generating a single cut at
each iteration which maximizes the bound improvement, with BOC we are very
likely to produce strong cutting planes, implicitly discarding the dominated ones.
Indeed, 90% of the cuts generated by BOC+STD and BOC+COORD are, on arithmetic
average, nondominated, as opposed to only 20% for STD. This feature might be
very interesting for problems where nondomination cannot be easily imposed via
the introduction of a compact set of inequalities, such as Constraints (14), (15).

5 Concluding Remarks

We have proposed the bound-optimal cutting plane method, a new paradigm for
cutting plane generation which produces, at each iteration, up to k cuts which,
jointly, yield the provably largest bound improvement.

We have compared our method to the standard separation of maximally
violated inequalities and to the generation of coordinated cutting planes. Exper-
iments on the fractional clique number and on the 0-1 knapsack problem show
that, compared to other techniques, with bound-optimal cuts we can obtain a
given bound within a substantially smaller number of cuts and iterations.

With this work, we have highlighted the potential of bound-optimal cutting
plane generation, hopefully motivating further developments in this direction.
Future studies include more efficient ways to solve the bound-optimal cut gen-
erating problem, possibly via heuristic approaches, as well as the investigation
of its combinatorial nature for special classes of problems.
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Abstract. Dantzig-Wolfe reformulation of a mixed integer program par-
tially convexifies a subset of the constraints, i.e., it implicitly adds all
valid inequalities for the associated integer hull. Projecting an optimal
basic solution of the reformulation’s LP relaxation to the original space
does in general not yield a basic solution of the original LP relaxation.
Cutting planes in the original problem that are separated using a basis
like Gomory mixed integer cuts are therefore not directly applicable.
Range [22] (and others) proposed as a remedy to heuristically compute
a basic solution and separate this auxiliary solution also with cutting
planes that stem from a basis. This might not only cut off the auxiliary
solution, but also the solution we originally wanted to separate.

We discuss and extend Range’s ideas to enhance the separation proce-
dure. In particular, we present alternative heuristics and consider addi-
tional valid inequalities strengthening the original LP relaxation before
separation. Our full implementation, which is the first of its kind, is
done within the GCG framework. We evaluate the effects on several prob-
lem classes. Our experiments show that the separated cuts strengthen
the formulation on instances where the integrality gap is not too small.
This leads to a reduced number of nodes and reduced solution times.

1 Introduction

Branch-and-price has become a widely used technique for solving mixed integer
programs (MIPs) with an embedded structure. The original problem is first
reformulated using Dantzig-Wolfe reformulation and the reformulated problem
is then solved with branch-and-price [12], where the linear programming (LP)
relaxation is solved using column generation and specialized branching rules are
applied. When additionaly cutting planes are separated, the algorithm is called
branch-price-and-cut [12].

Most often implementations are tailored for particular problems with known
structure that can be exploited, but in the last decade also generic implementa-
tions were developed [15,20,21,25]. Bergner et al. [3] provide a computational
proof-of-concept that the automatic detection of a suitable structure can be
successful even when considering general problems.

Among others, cutting planes formulated with original variables were studied
in the branch-price-and-cut literature. Adding these cuts to the problem does
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 110–121, 2015.
DOI: 10.1007/978-3-319-20086-6 9
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not change the structure of the pricing problem, whereas other types of cuts
do [11]. In several applications problem specific cuts formulated with original
variables are separated. Combinatorial cuts exploiting a particular substructure
can also be separated in a generic way [15]. Moreover, Range [22] introduced a
procedure to separate cuts in the original problem using a basis, but he only did
a preliminary computational study on elementary shortest path problems with
resource constraints, which was not successful (personal communication, 2013).

Our Contribution. A separation procedure that generates cuts in the origi-
nal problem using a basis was mentioned by many authors [12,14], but only
Range [22] presented such a procedure without providing a computational study.
We discuss Range’s ideas and present some extensions to enhance the separation
procedure. Furthermore, we implemented all ideas in the branch-price-and-cut
solver GCG [15] and tested the implementation on instances of several problem
classes. In particular, we computationally investigate the strength of the sepa-
rated cutting planes and determine their influence on the overall solution process.

2 Dantzig-Wolfe Reformulation and Branch-and-Price

Let n,m1,m2 ∈ Z≥1, q ∈ Z≥0 be some integers, let A ∈ Q
m1×n,D ∈ Q

m2×n be
some matrices, and let b ∈ Q

m1 , d ∈ Q
m2 , c ∈ Q

n be some vectors. Suppose we
are given the following original problem

min{cTx : Ax ≥ b,Dx ≥ d, x ∈ Z
n−q × Q

q}
with mixed integer hull PMIP := conv({x ∈ Z

n−q × Q
q : Ax ≥ b,Dx ≥ d}),

where conv(S) denotes the convex hull of a set S. We will refer to its LP relax-
ation as original LP relaxation and denote the polyhedron of LP-feasible solu-
tions by PLP := {x ∈ Q

n : Ax ≥ b,Dx ≥ d}.
When reformulating the original problem using Dantzig-Wolfe reformulation

for mixed integer programs [12], a part of the constraints, here Dx ≥ d, is
convexified. Every solution x ∈ X := {x ∈ Z

n−q × Q
q : Dx ≥ d} is reformulated

as a convex combination of extreme points {xp}p∈P plus a non-negative linear
combination of extreme rays {xr}r∈R of the associated convex hull conv(X):

∑

p∈P

xpλp +
∑

r∈R

xrλr = x,
∑

p∈P

λp = 1, λp ∈ Q≥0 ∀p ∈ P ∪ R .

Replacing x by this combination while introducing new λ-variables results in
an extended formulation called the master problem. The corresponding LP
relaxation is called linear master problem and is solved with column genera-
tion, where a pricing problem over X is iteratively solved in order to generate
columns/variables having negative reduced cost. This procedure embedded in a
branch-and-bound tree is called branch-and-price [12].

It is known [26] that the optimal solution value of the linear master problem
is equal to min{cTx : Ax ≥ b, x ∈ conv(X)}, which corresponds to implicitly
adding all valid inequalities for conv(X) to the original LP relaxation.
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3 Separation of Cutting Planes in Branch-and-Price

In each node of the branch-and-bound tree cutting planes can be added in order
to strengthen the LP relaxation, which is then called branch-price-and-cut [12].

We can deal with valid inequalities formulated with original variables of the
form πTx ≥ π0, where π ∈ Q

n and π0 ∈ Q, in the same way as with constraints
Ax ≥ b. Therefore, adding these inequalities as cutting planes to the problem
does not change the structure of the pricing problem, i.e., the set X is not affected.
On the contrary, other types of cutting planes, e.g., cuts formulated with λ-
variables that were introduced in the master problem, may change the structure
of the pricing problem, which can hamper its computational tractability.

Let λ̄ be an optimal basic feasible solution [4] of the linear master prob-
lem and suppose that the projection x̄ :=

∑
p∈P xpλ̄p +

∑
r∈R xrλ̄r onto the

x-variables is not integer feasible for the original problem. We can try to sepa-
rate x̄ using problem specific cuts. Some of these cuts, e.g., knapsack or clique
cuts, are implemented in state-of-the-art MIP solvers [1] and can automatically
be applied in branch-price-and-cut algorithms if the original problem contains a
particular substructure [15]. Additionally, there exist cuts that stem from a basis
like Gomory mixed integer (GMI) cuts. These cuts are in general not directly
applicable, because x̄ does not have to be basic in the original LP relaxation [16],
see Fig. 1.

Ax ≥ b

Dx ≥ d

conv(X)

PLP

PDW

x̄ x̂

x1 x2

x3

Fig. 1. Solution x̄ is not a vertex of the polyhedron PLP = {x : Ax ≥ b, Dx ≥ d} and
solution x̂ is not even a vertex of PDW = {x : Ax ≥ b, x ∈ conv(X)}

In general we can check if the solution x̄ is basic in the original LP relaxation
by calculating the number of linear independent inequalities active at x̄, i.e.,
satisfied with equality by x̄. The solution x̄ is basic if and only if this number is
equal to the dimension n of the underlying vector space [4]. In case a description
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of conv(X) is known explicitly, Goncalves’ criterion [16] can be applied. Rios
and Ross [23] proved that if the pricing problem consists of affinely independent
extreme points, Goncalves’ criterion is satisfied.

Motivated by the fact that cuts obtained from a basis have in general a
larger impact than combinatorial cuts [5], we would like to apply these cuts in
the context of branch-price-and-cut, too.

4 Basis Separation

We recall that cutting planes in the original problem stemming from a basis
are not directly applicable, because the projected solution x̄ is in general not
basic in the original LP relaxation. An idea to overcome this issue is to calculate
some basic feasible solution x∗ and separate x∗. Since x∗ is basic feasible, cuts
stemming from a basis can be applied. The obtained cuts might not only cut
off the basic feasible solution x∗, but also the solution x̄ that we wanted to cut
off initially. If the solution x̄ is not cut off, we can strengthen the original LP
relaxation by temporarily adding the obtained cuts to the problem formulation
and repeat the procedure. Since the solution x∗ is not feasible for the strength-
ened original LP relaxation, we will calculate a different basic feasible solution
that can be used for separation in the following iteration. The resulting generic
algorithm is described as Algorithm 1 and was initially proposed by Range [22].

Data: PMIP , PLP , x̄, pmin, and imax.
Result: Feasible solution x∗ ∈ PMIP or set of coefficients Π̄ ⊆ Q

n+1

corresponding to cuts πTx ≥ π0 with (π, π0) ∈ Π̄ separating x̄.

i := 0, Π̄ := ∅, Π∗ := ∅, P ′
LP := PLP ;

while |Π̄| < pmin and i < imax do
Calculate a vertex x∗ of P ′

LP (guided by x̄);
if x∗ ∈ PMIP then

return x∗;
Separate the solution x∗ from PMIP and let Π∗ be the set of coefficients
corresponding to the generated cuts;
if Π∗ = ∅ then

break;
for (π, π0) ∈ Π∗ do

if πT x̄ < π0 then
Π̄ := Π̄ ∪ {(π, π0)};

end for

P ′
LP := P ′

LP ∩ {x : πTx ≥ π0, (π, π0) ∈ Π∗};
i := i + 1;

end while
return Π̄;

Algorithm 1. The basis separation procedure
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Note that we cannot guarantee to generate cuts that cut off the solution x̄
when using Algorithm 1. Moreover, it highly depends on the types of cuts that
are separated and how the basic feasible solutions are calculated.

4.1 Basis Heuristics

In this section we present approaches to cope with the crucial step in Algorithm 1
of calculating a basic feasible solution. Suppose we are given an optimal solution
λ̄ of the linear master problem. We want to find a basic feasible solution x∗ of
the original LP relaxation such that cuts separating x∗ also tend to separate
the solution x̄ :=

∑
p∈P xpλ̄p +

∑
r∈R xrλ̄r. Approaches to obtain such a basic

feasible solution are called basis heuristics. They were introduced by Range [22]
in the context of branch-price-and-cut as well as by Dash and Goycoolea [10] in
order to heuristically separate rank-1 GMI cuts. We will focus on basis heuristics
based on solving linear programs in the following.

Original Objective. Probably the first idea that comes to mind is that we can
obtain a basic feasible solution x∗ of the original LP relaxation by solving the
original LP relaxation. This basis heuristic will be called the original objective.

This approach is similar to cut-first branch-and-price second [6], where the
original LP relaxation is solved first, cutting planes are added, and then the
strengthened original problem is reformulated and solved using branch-and-price.
A crucial difference is that cuts are added a priori to the problem in cut-first
branch-and-price second without knowing if future solutions will ever violate
these cutting planes. If we use the basis separation procedure instead, only cuts
violated by the current solution of the master LP relaxation will be added, which
is a clear advantage. A disadvantage of both approaches is that they are inde-
pendent from the solution x̄. They only depend on the original problem.

Range’s Face Objective. In the following we present an alternative approach
introduced by Range [22], where also the solution x̄ is considered. Let

A′ :=
(

A
D

)

∈ Q
m×n and b′ :=

(
b
d

)

∈ Q
m

with m := m1 + m2 be the constraint matrix and the left-hand side of the
original problem. Furthermore, denote by A′

i the i-th row of the matrix A′ for
i ∈ {1, . . . , m} and let I0 := {i ∈ {1, . . . , m} : A′

ix̄ = b′
i} be the set of indices

corresponding to constraints of the original problem that are active at x̄.
With the aim of obtaining a basic feasible solution of the original LP relax-

ation near x̄, we solve the original LP relaxation using the face objective function

f(x̄, x) :=
∑

i∈I0

A′
ix − b′

i

||A′
i||2

,

where || · ||2 is the Euclidian norm.
The following proposition was initially proposed by Range [22].
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Proposition 1 ([22]). The solution x̄ is an optimal feasible solution for the
original LP relaxation with face objective and the optimal solution value is zero.

Note that the face [4] F := {x ∈ Q
n : A′x ≥ b′, A′

ix = b′
i ∀i ∈ I0} of the

polyhedron PLP is by definition of I0 the face of smallest dimension containing
x̄. Since x∗ ∈ F holds, the solution x∗ is at least contained in all faces the
solution x̄ is contained in. Hence, when solving the original LP relaxation with
face objective using the simplex algorithm we obtain an optimal basic feasible
solution x∗ with x∗ �= x̄ if and only if x̄ is not basic feasible.

When the number of linearly independent rows A′
i with i ∈ I0 is small in

comparison to n, the information provided by the face objective is rather poor,
because many linear independent inequalities active at x̄ are missing to describe
a basic solution.

Extended Face Objective. In the following we present an extension of the
face objective taking also non-active constraints into account. For k ∈ Z≥0 we
define the k-activity gk(x̄, a, a0) of an inequality aTx ≥ a0 with a ∈ Q

n and
a0 ∈ Q at a given solution x̄ as

gk(x̄, a, a0) := max
(

1 − aT x̄ − a0

||a||2 , 0
)k

.

The k-activity gk(x̄, a, a0) describes how close to being active the inequality
aTx ≥ a0 is at x̄. Note that 0 ≤ gk(x̄, a, a0) ≤ 1 holds and gk(x̄, a, a0) = 1 if
and only if the constraint aTx ≥ a0 is active at x̄. Furthermore, the greater the
value k is chosen the smaller is the k-activity of a fixed non-active inequality.

We define the k-extended face objective, which is an extension of the face
objective using the k-activity as a measure of the influence of a constraint:

fk(x̄, x) :=
m∑

i=1

gk(x̄, A′
i, b

′
i) · A′

ix − b′
i

||A′
i||2

.

We additionally consider constraints that are almost active at x̄, because if many
of these constraints are active at a basic solution, this solution is intuitively a
good approximation of the solution x̄ we want to separate. Solving the original
LP relaxation using the k-extended face objective yields such a basic solution.

Combination. We previously introduced three objectives that can be used as
basis heuristics in combination with the original LP relaxation. The original
objective is independent from the solution x̄, whereas the face and the extended
face objective are independent from the original objective function, they only
depend on the solution x̄ and the polyhedron PLP . In the following we combine
these objective functions in order to exploit as much information as possible.

We will combine the face and the original objective function by using a convex
combination with coefficient α ∈ [0, 1]

min α · f(x̄, x)
|I0| + (1 − α) · cTx

||c||2 .



116 M.E. Lübbecke and J.T. Witt

Note that |I0| is the norm of the face objective. Analogously, we can com-
bine the extended face objective and the original objective by using the norm∑m

i=1 gk(x̄, A′
i, b

′
i) of the k-extended face objective. In the following we will

present an approach to automatically choose a good value for α.
Remark that n linear independent inequalities are active at x̄ if and only if

the solution x̄ is basic. Let n(x̄) be the maximum number of linear independent
inequalities active at x̄ and define α(x̄) := n(x̄)

n ∈ [0, 1], which can be used as a
measure of how close x̄ is to being basic. In the following we describe why α(x̄)
is intuitively a suitable value for the convex combination coefficient α.

Obviously, α(x̄) = 1 if and only if x̄ is basic. If α(x̄) ≈ 1, then only few linear
independent inequalities are missing to describe a basic solution. The influence
of the face objective is increased, whereby the almost complete basis information
of x̄ will be exploited. On the contrary, if α(x̄) 	 1, many linear independent
inequalities are missing to describe a basic solution and the influence of the face
objective, which contains only poor information, will be decreased.

5 Strengthening of the Original LP Relaxation Before
Separation

In many applications the constraints Dx ≥ d are chosen in such a way that
the LP relaxation of the master problem is much stronger than the one of the
original problem. Thus, a basic solution of the original LP relaxation calculated
during the basis separation procedure can only poorly approximate the solution
x̄ that was projected from the linear master problem. To counteract this and to
enhance the basis separation procedure, we can try to imitate the convexification
of the constraints Dx ≥ d by adding valid inequalities for PDW := {x ∈ conv(X) :
Ax ≥ b} ⊇ PMIP before separation. In the following we present valid inequalities
for PDW that can be obtained while applying a branch-price-and-cut algorithm.

Range’s Original Objective Cut. Range [22] suggests to add the original
objective cut cTx ≥ cT x̄ to the problem in order to potentially strengthen the
original LP relaxation. Note that this inequality holds for all x ∈ PDW , because
x̄ is optimal for min{cTx : x ∈ PDW }. If the objective function is known to be
integral, e.g., c ∈ Z

n and q = 0, the inequality cTx ≥ �cT x̄� can be added.

Reduced Cost Cuts. In each column generation iteration we solve a pricing
problem over the set X in order to find negative reduced cost columns. Let
πTx be the objective function of the pricing problem in some column generation
iteration and let π0 := min{πTx : x ∈ X} be the optimal solution value of the
corresponding pricing problem. Note that πTx ≥ π0 is valid for conv(X). Since
conv(X) ⊇ PDW , the inequality is also valid for PDW . Inequalities of this type
will be called reduced cost cuts, because they state that the reduced costs of all
potential columns are greater than or equal to a specific value.
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Pricing Cuts. Suppose the pricing problem is solved using branch-and-cut and
in some column generation iteration a cutting plane πTx ≥ π0 is separated in
the pricing problem during separation at the root node. Since we optimize over
X in the pricing problem, πTx ≥ π0 is valid for conv(X) ⊇ PDW . We will call
such inequalities pricing cuts, because they are generated in the pricing problem.

6 Computational Setup and Results

We implemented the basis separation procedure including all presented features
in GCG 2.0.1 [15] based on a development version of SCIP 3.1.0 [1] with CPLEX
12.5.0.0 as LP-solver. All computations were performed on Intel Core i7-2600
CPUs with 16GB of RAM on openSUSE 13.1 workstations running Linux kernel
3.11.10. We used a time limit of 3600 seconds in all our tests.

In GCG combinatorial cuts in the original problem are separated by default,
but we will only report on the number of cuts that were separated by the basis
separation procedure and were applied to the problem. Note that SCIP/GCG filters
the separated cuts and only applies a subset of them. We used SCIP’s separators
with the aggressive setting to separate a basic feasible solution in Algorithm 1
and only separated cuts at the root node. In all our tests we used the values
pmin = 1 and imax = 100 for Algorithm 1. In order to compute α(x̄), we used
the QR decomposition with column pivoting from Gnu Scientific Library [13].

We applied the branch-price-and-cut algorithm including basis separation to
instances of the following problems: capacitated p-median problem (cpmp) [2],
generalized assignment problem (gap) [8,9,18], resource allocation/temporal
knapsack problem (rap) [7], and lot sizing problem (lotsizing) [24]. Furthermore,
we applied the algorithm to instances of MIPLIB 2003 and MIPLIB 2010 (miplib)
that were already successfully tested with a generic branch-price-and-cut code [3].
We only considered instances where separation at the root node could be applied.

6.1 Performance of the Basis Separation Procedure

In Table 1 we compare GCG using the default settings (def), basis separation with
face objective (face), basis separation with the combination of face and original
objective (face-conv), basis separation with the combination of 8-extended face
and original objective (8-ext-conv), and basis separation with original objec-
tive (origobj). Additionally, we considered basis separation with k-extended face
objective as well as the combination of k-extended face and original objective
for k ∈ {4, 8, 12}, but preliminary tests have shown that the combination of
8-extended face and original objective outperforms these heuristics.

As we can see, on the majority of the cpmp, lotsizing, and miplib instances
cuts are separated no matter which basis heuristic is used. Although the number
of applied cuts is in shifted geometrical mean at most 19 over a test set and
mostly much smaller, a non negligible part of the integrality gap at the root
node is closed in comparison to the default setting. When using basis separation
with the combination of 8-extended face and original objective, 8 percent of the



118 M.E. Lübbecke and J.T. Witt

Table 1. Comparison of the percentage of affected instances (aff), i.e., some cuts were
separated, the shifted geom. mean with shift value 1 of the int. gap at the root node
in percent (gap), the number of applied cuts at the root node of the affected instances
(cuts), and the time spent in the basis separation procedure (tm) over the whole testset.
The best gap is written bold.

def face face-conv 8-ext-conv origobj

gap gap aff cuts tm gap aff cuts tm gap aff cuts tm gap aff cuts tm

cpmp easy 1.21 1.15 78.8 4.3 1.0 1.15 79.8 4.3 1.1 1.11 81.7 4.0 1.1 1.18 35.6 1.9 1.7

cpmp hard 4.18 4.05 87.5 9.3 2.5 4.04 87.5 9.4 2.8 4.01 89.1 9.3 3.4 4.13 48.4 1.9 4.3

gap easy 0.15 0.15 4.2 1.0 0.5 0.15 4.2 1.0 0.6 0.14 16.7 2.8 0.5 0.15 8.3 1.0 0.5

gap hard 0.31 0.31 0.0 0.0 3.3 0.31 0.0 0.0 3.9 0.31 0.0 0.0 3.8 0.31 0.0 0.0 4.5

ls easy 3.31 2.08 95.2 5.8 0.5 2.11 95.2 5.8 0.6 2.07 85.7 6.4 0.6 2.36 85.7 4.0 0.5

ls hard 13.36 13.04 66.7 14.5 0.5 13.07 66.7 15.5 1.5 12.83 66.7 17.5 1.4 12.96 66.7 8.2 0.5

rap easy 0.04 0.04 0.0 0.0 0.9 0.04 0.0 0.0 1.0 0.04 0.0 0.0 1.0 0.04 6.2 2.0 1.5

rap hard 0.09 0.09 0.0 0.0 2.4 0.09 0.0 0.0 2.5 0.09 0.0 0.0 2.5 0.09 20.7 1.7 2.9

miplib easy 1.30 1.13 100.0 2.7 0.5 1.13 100.0 2.7 0.5 0.87 100.0 4.1 0.5 1.04 33.3 1.4 0.5

miplib hard 4.94 4.79 66.7 16.2 1.6 4.77 73.3 14.0 11.9 4.91 73.3 14.4 11.6 4.56 73.3 14.0 1.6

gap on easy cpmp, 33 percent of the gap on easy miplib, and 37 of the gap percent
on easy lotsizing instances is closed. Using any other basis heuristic closes less
of the gap. On the corresponding hard instances up to 8 percent of the gap was
closed due to basis separation, where the usage of the original objective or the
combination of 8-extended face and original objective perform best.

On the contrary, almost no cuts were separated on gap and rap instances,
which is probably due to the already very small integrality gap. Consequently,
the usage of basis separation closes hardly anything of the integrality gap.

Note that most often only a few seconds are spent in the basis separation
procedure. Only when using basis heuristics that have to compute the number
of linear independent inequalities active at the current solution x̄ in order to
determine the value α(x̄), separation can take a bit longer on some hard instances.
But in shifted geometrical mean over a test set it does not exceed 12 seconds.

In Fig. 2 the number of nodes and the solution times required by the settings
with basis separation are compared to the default settings. On most test sets the
solution time and even more significantly the number of nodes is reduced due to

Fig. 2. Ratio between the shifted geom. mean with shift 100 (10) of the number of
nodes (solution times) required by the settings with basis separation and the default
settings.
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separation. Only on gap and rap instances, where almost no cuts were separated,
the solution time is increased. But since the basis separation procedure is quite
fast, the increase in solution time is relatively small. Note that these results
match the previous made observations concerning the integrality gap.

On lotsizing and miplib instances the solution time is decreased by up to
12 and 30 percent, respectively. On cpmp instances the solution time is only
marginally decreased. During our computational study, we additionally observed
that the number of solved instances of these problems is slightly increased when
applying the basis separation procedure.

6.2 Influence of Strengthening the Original LP Relaxation Before
Separation

In Table 2 the influence of the valid inequalities presented in section 5 on basis
separation with the combination of the 8-extended face and the original objective
is investigated. Namely these valid inequalities are the original objective cut
(origobjcut), the pricing cuts (ppcuts), and the reduced cost cuts (redcostcuts).

Table 2. Comparison similar to Table 1

basis-conv-8-ext +origobjcut +ppcuts +redcostcuts

gap aff cuts tm gap aff cuts tm gap aff cuts tm gap aff cuts tm

cpmp easy 1.69 86.2 5.4 1.5 1.72 84.1 5.3 1.5 1.70 81.2 12.0 41.6 1.74 79.0 5.9 33.8

cpmp hard 3.25 91.3 8.6 3.2 3.27 89.1 8.4 3.3 3.24 78.3 24.6 159.6 3.30 82.6 8.6 261.3

gap easy 0.18 14.8 2.8 0.6 0.18 14.8 1.9 0.6 0.17 18.5 1.9 0.6 0.17 29.6 2.3 2.7

gap hard 0.40 0.0 0.0 1.0 0.40 0.0 0.0 0.9 0.40 0.0 0.0 0.5 0.40 0.0 0.0 110.8

ls easy 2.02 88.2 6.5 0.5 1.72 88.2 5.7 0.5 2.32 94.1 6.5 0.6 1.97 94.1 4.8 0.5

ls hard 31.18 42.9 30.6 2.1 24.39 42.9 6.3 0.8 29.48 57.1 38.1 3.6 25.34 42.9 6.3 1.2

rap easy 0.04 0.0 0.0 0.9 0.04 0.0 0.0 0.9 0.04 0.0 0.0 0.9 0.04 0.0 0.0 6.2

rap hard 0.09 0.0 0.0 1.9 0.09 0.0 0.0 1.9 0.09 0.0 0.0 2.0 0.09 0.0 0.0 86.8

miplib easy 0.91 100.0 4.3 0.5 0.91 100.0 3.6 0.5 1.36 80.0 5.9 34.6 0.95 100.0 4.1 0.8

miplib hard 4.91 73.3 14.4 11.6 4.90 73.3 14.0 12.1 5.26 80.0 13.0 15.6 4.77 73.3 13.6 25.3

Notice that the percentage of affected instances is of similar magnitude no
matter if the additional valid inequalities were added or not, whereas the num-
ber of applied cuts and the integrality gap vary considerably. Surprisingly, every
setting that is shown in Table 2 provides on some test set the smallest integral-
ity gap. So the impact of the valid inequalities is not solely positive. The same
observation can be made when considering the number of applied cuts. Further-
more, the number of applied cuts and the size of the integrality do not seem to
correlate.

On some instances the time spent in the basis separation procedure is notice-
ably increased due to the valid inequalities that were added before separation.

7 Conclusions and Future Work

We discussed and extended Range’s approach [22] to separate cuts in the orig-
inal problem using a basis in the context of branch-price-and-cut algorithms.
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Furthermore, we implemented all ideas in GCG and presented the first computa-
tional study on a separation procedure of this kind. The cuts close part of the
integrality gap at the root node on instances of various problem types, reducing
the number of nodes and the solution time. On instances, where no cuts were
found, solution times just slightly increased, because the separation procedure
is relatively fast.

Whereas the combination of the 8-extended face and the original objective
seems to be the basis heuristic that improves performance the most, computa-
tional results concerning the strengthening of the original LP relaxation before
separation are not that clear, because they do not solely improve the performance.
A task of future research should be finding a selection of valid inequalities that
exclusively have a positive influence on the separation procedure.

The presented basis heuristics only compute feasible basic solutions, but Dash
and Goycoolea [10] also use basis heuristics that compute infeasible basic solu-
tions in order to heuristically separate rank-1 GMI cuts. Future work should
include the implementation of these basis heuristics in our framework.

Since only auxiliary basic solutions and not the solutions we want to separate
are used to generate cutting planes, a subject of future research should be the
generation of additional valid inequalities as discussed in section 5 such that
the solution we want to separate becomes a basic solution in the original LP
relaxation whenever this is possible. If we managed to achieve this, we could
obtain a corresponding dual solution and apply reduced cost fixing [17,19].

Our experiments suggest that there is a strong relation between the strength
of the Dantzig-Wolfe reformulation and the success of separating violated cuts in
the original problem. Future research should further examine this relation both
computationally and theoretically.
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Abstract. The Euclidean Steiner Tree Problem in dimension greater
than 2 is notoriously difficult. Successful methods for exact solution
are not based on mathematical-optimization — rather, they involve
very sophisticated enumeration. There are two types of mathematical-
optimization formulations in the literature, and it is an understatement
to say that neither scales well enough to be useful. We focus on a known
nonconvex MINLP formulation. Our goal is to make some first steps
in improving the formulation so that large instances may eventually be
amenable to solution by a spatial branch-and-bound algorithm. Along
the way, we developed a new feature which we incorporated into the
global-optimization solver SCIP and made accessible via the modeling
language AMPL, for handling piecewise-smooth univariate functions that
are globally concave.

1 Introduction

The Euclidean Steiner tree problem (ESTP) in IRn is: Given a set of finite points
in IRn, find a tree of minimal Euclidean length spanning these points, using or
not additional points. Original points are terminals and additional nodes in the
tree are Steiner points. The ESTP is NP-Hard [9], and interest in the problem
stems from both the mathematical challenge and its potential applications (e.g.,
communications, infrastructure networks). In biology, [3] gives an application of
the ESTP to phylogenetic analysis (i.e., the construction of evolutionary trees).

Basic properties of an optimal solution, called a Steiner minimal tree (SMT),
are: (i) A Steiner point in an SMT has degree 3; a Steiner point and its adjacent
nodes lie in a plane, and the angles between the edges connecting the point to its
adjacent nodes are 120 degrees. (ii) A terminal in an SMT has degree between 1
and 3. (iii) An SMT on p terminals has at most p−2 Steiner points (see [5,12])).

The topology of a Steiner tree is the tree for which we have fixed the number
of Steiner points and the edges between all points, but not the position of the
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 122–133, 2015.
DOI: 10.1007/978-3-319-20086-6 10
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Steiner points. A topology is a Steiner topology if each Steiner point has degree
3 and each terminal has degree 3 or less. A Steiner topology with p terminals
is a full Steiner topology if there are p − 2 Steiner points and each terminal has
degree 1. A full Steiner tree is a Steiner tree corresponding to a full Steiner
topology. A Steiner tree corresponding to some topology, but with certain edges
shrunk to zero length, is degenerate. Any SMT with a non-full Steiner topology
can be associated with a full Steiner topology for which the tree is degenerate.

Many papers have addressed exact solution in IR2, and impressive results
were obtained with the GeoSteiner algorithm [18]. But these algorithms cannot
be applied when n ≥ 3, and only a few papers have considered exact solution in
this case. [11] proposed solving the problem in IRn by enumerating all Steiner
topologies and computing a min-length tree associated with each topology, which
in practice, can only solve very small instances because of the fast growth of the
number of topologies as p increases. A branch-and-bound (b&b) algorithm for
finding SMTs in IRn was proposed by Smith [14]. He presented a scheme for
implicitly enumerating all full Steiner topologies on a given set of terminals,
and he gave computational results sufficient to disprove for all 3 ≤ n ≤ 9, an
important conjecture of Gilbert and Pollak on the “Steiner ratio”. Fampa and
Anstreicher [6] used Smiths’s enumeration scheme and proposed a conic formula-
tion for the problem of locating the Steiner points for a given topology, to obtain
a lower bound on the min tree length and to implement a “strong branching”
technique. [15] presented geometric conditions that are satisfied by Steiner trees
with a full topology and applied those conditions to eliminate candidate topolo-
gies in Smith’s scheme. The best computational results for the ESTP for n ≥ 3
are presented in these two last papers.

None of the works mentioned above have considered a math-programming
formulation for the ESTP, which was presented only in [13] and [7]. [13] formu-
lated the ESTP as a non-convex mixed-integer nonlinear programming (MINLP)
problem and proposed a b&b algorithm using Lagrangian dual bounds. [7] pre-
sented a convex MINLP formulation that could be implemented in a b&b algo-
rithm using bounds computable from conic problems. Both formulations use
0/1 variables to indicate whether the edge connecting two nodes is present in a
Steiner topology. The presence of these 0/1 variables leads to a natural branching
scheme, however neither [13] nor [7] present computational results.

We did some preliminary experiments with the nonconvex model. We solved
some randomly generated instances using SCIP [1,16], and the results are dismal.
Two difficulties observed have motivated this research: the weakness of the lower
bounds given by the relaxations, and non-differentiability at points where the
solution degenerates. In what follows, we investigate strategies to deal with these
difficulties: (i) the use of approximate differentiable functions for the Euclidean
norm, and (ii) nonconvex cuts based on geometric considerations.

2 A Nonconvex MINLP Formulation

[13] formulates the ESTP as a nonconvex MINLP problem, first defining a special
graph G = (V,E). Let P := {1, 2, ..., p} be the indices associated with the given



124 C. D’Ambrosio et al.

terminals a1, a2, ..., ap and S := {p+1, p+2, ..., 2p−2} be the indices associated
with the Steiner points xp+1, xp+2, ..., x2p−2. Let V = P ∪ S. Denote by [i, j]
an edge of G, with i, j ∈ V such that i < j. Define E := E1 ∪ E2, where
E1 := {[i, j] : i ∈ P, j ∈ S} and E2 := {[i, j] : i ∈ S, j ∈ S}. Define a 0/1 yij

for each edge [i, j] ∈ E, where yij = 1 if the edge [i, j] is present in the SMT and
0 otherwise. The ESTP is then formulated as

(MMX) min
∑

[i,j]∈E1

‖ai − xj‖yij +
∑

[i,j]∈E2

‖xi − xj‖yij , (1)

∑

j∈S

yij = 1, for i ∈ P, (2)

∑

i∈P

yij +
∑

k<j,k∈S

ykj +
∑

k>j,k∈S

yjk = 3, for j ∈ S, (3)

∑

k<j,k∈S

ykj = 1, for j ∈ S − {p + 1}, (4)

yij ∈ {0, 1}, [i, j] ∈ E, xi ∈ IRn, i ∈ S, (5)

where ‖v‖ :=
√∑n

l=1 v2
l is the Euclidean norm of v ∈ IRn. The constraints model

a full Steiner topology for p given terminals in IRn. Constraints (2) enforce that
the degree of each terminal node is equal to 1. Constraints (3) enforce that the
degree of each Steiner point is equal to 3, and constraints (4) eliminate cycles.
Every full Steiner tree corresponds to a feasible solution of the formulation.

We aim to solve MMX using a spatial branch-and-bound (sbb) algorithm, as
implemented in SCIP. This is not nearly straightforward, as we have to deal with
non-differentiability of the distance function and with poor bounds that arise.
In what follows, we propose approaches for handling these difficulties.

3 Dealing with the Non-differentiability

The continuous relaxation of MMX is a nonconvex NLP problem. Convergence of
most NLP solvers (e.g. Ipopt [17]) requires that functions be twice continuously
differentiable. This is not the case for MMX due to the non-differentiability of the
Euclidean norm when the solution degenerates (i.e., when the norm is zero); and
it is easy to see examples where the optimal solution does degenerate. In water-
network optimization, [2] smooths away non-differentiability at zero of another
function (modeling the pressure drop due to friction of the turbulent flow of water
in a pipe). There are different ways that we can deal with the non-differentiability
that we face. Let w(xi − xj) := ‖xi − xj‖2, so that ‖xi − xj‖ =

√
w(xi − xj). In

this way, we can focus on
√·, the source of the non-differentiability.

3.1 Implicit Square Roots

One possibility is to introduce an auxiliary variable z, and use the additional
inequality −z2 + w ≤ 0 and the nonnegativity constraint z ≥ 0. In this way,
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any optimal solution will have z =
√

w. This looks possibly attractive, but
the overhead of so many additional nonnegatively-constrained variables and the
difficulty of many additional nonconvex constraints is prohibitive.

On the other hand, while nonconvex, these functions −z2+w manifest them-
selves as −z2ij +

∑n
l=1 v2

l , with v = xi−xj . The nonconvexity in −z2ij +
∑n

l=1 v2
l is

isolated to −z2ij , so it may be possible to adapt the techniques of [4] (exploiting
concave separability), though we have to deal with the multiplication of distance
variables zij by 0/1 variables yij in the objective function of MMX.

Another view is that −z2 + w ≤ 0 is equivalent to
√

w ≤ z, which is mani-
fested as the second-order cone constraint ‖xi−xj‖2 ≤ zij . We can try to exploit
methods for handling such constraints, though we have to deal with the multi-
plication of distance variables zij by 0/1 variables yij in the objective function.

3.2 Shifting

A simple fix is to approximate
√

w by h(w) :=
√

w + δ − √
δ for some small

δ > 0. Then we underestimate all positive distances (via the triangle inequality).
Because our objective function is increasing in each distance, we get a relaxation
of MMX. But a strong downside is that we underestimate all positive distances,
and the error in each distance calculation rapidly approaches

√
δ as w increases.

3.3 Linear Extrapolation

The following approximation, depending on the choice of a σ > 0, was proposed
in [10] to avoid non-differentiability of the Euclidean-distance function for the
“traveling-salesman problem with neighborhoods.”

l(w) :=
{√

w, if w ≥ σ2;
σ
2 + 1

2σ w, if w ≤ σ2.

The function l is well-defined at w = σ2. It is analytic except when w = σ2, and
in this case, it is still differentiable once. In fact, l simply uses the tangent at
w = σ2 of the graph of the strictly concave function

√
w to overestimate

√
w on

[0, σ2). We already see that because l is not twice continuously differentiable, we
should not expect good behavior from most NLP solvers. A strong shortcoming
for our context is that l miscalculates zero distances; that is, l(0) = σ/2, while
obviously

√
0 = 0. Because l(w) is an upperbound on

√
w, and because our

objective function is increasing in distances, using the approximation l, we do
not get a relaxation of MMX. Moreover, for degenerate Steiner trees, we will
systematically overestimate distances that should be zero.

3.4 Smooth Under-Estimation

We propose another piecewise smoothing, using a particular homogeneous cubic
depending on the choice of a λ > 0, that has very nice properties:

c(w) :=
{√

w, if w ≥ λ2;
15
8λw − 5

4λ3 w2 + 3
8λ5 w3, if w ≤ λ2.
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We have depicted all of these smoothings in Fig. 1.

Fig. 1. Behavior of all smoothings (λ2 = σ2 = 0.01):

– the solid curve (——–) is the true
√· function.

– the “smooth underestimation” c, which we advocate, follows the dotted curve (··········)
below w = 0.01.

– the “linear extrapolation” l follows the dot-dashed line (· - · - · - ·) below w = 0.01.
– both piecewise-defined functions c and l follow the true

√· function above w = 0.01.
– the “shift” h (with δ = (4λ/15)2 chosen so that it has the same derivative as c

does at 0) follows the consistent underestimate given by the dashed curve (- - - -).

The next result makes a very strong case for the smoothing c.

Thm. 1.

1. c(w) agrees with
√

w in value at w = 0;
2. c(w) agrees with

√
w in value, derivative and second derivative at w = λ2;

hence c is twice continuously differentiable;
3. c is strictly concave on [0,+∞] (just like

√·);
4. c is strictly increasing on [0,+∞] (just like

√·); consequently, c(‖xi − xj‖2)
is quasiconvex (just like ‖xi − xj‖);

5.
√

w − c(w) ≥ 0 on [0,+∞];
6. For all λ > 0, max{(

√
w − c(w))/λ : w ∈ [0,+∞]} is the real root γ of

−168750+1050625x+996300x2+236196x3, which is approximately 0.141106.

Because distances only appear in the objective, and in a very simple manner,
the approximation with c is a relaxation (due to (5) of Thm. 1). Meaning that
the objective value of a global optimum using distance approximation is a lower
bound on the true global optimum. And plugging the obtained solution into
the true objective function gives an upper bound on the value of a true global
optimum. So, in the end we get a solution and a bound on how close to optimal
we can certify it to be. To be precise, for any λ > 0, let MMX(λ) denote MMX
with all square roots in the norms replaced by the function c.

Cor. 2. The optimal value of MMX is between the optimal value of MMX(λ)
and the optimal value of MMX(λ) plus λγ(2p − 3) (γ ≈ 0.141106).



On the Euclidean Steiner Tree Problem 127

We note that the upper bound of Cor. 2 is a very pessimistic worst case —
only achievable when the optimal tree has a full Steiner topology and all edges are
very short. If such were the case, certainly λ should be decreased. Furthermore,
we emphasize that if the length of every edge in the SMT that solves MMX(λ)
is either zero (degenerate case) or greater than or equal to λ, then the optimal
values of MMX and MMX(λ) are the same.

For δ = (4λ/15)2, we have c′(0) = h′(0). That is, at this value of δ we can
expect that c and h will have the same numerical-stability properties near 0.

Prop. 3. For δ = (4λ/15)2, we have h(w) < c(w) on (0,+∞). Moreover c(w)−
h(w) is strictly increasing on [0,+∞).

Hence the relaxation provided using c is always at least as strong as the relaxation
provided using h. In fact, strictly stronger in any realistic case (specifically, when
there is more than 1 terminal). We make a few further observations about c:

Choosing λ. Note that c′(0) = 15
8λ , so we should not be too aggressive in picking

λ extremely small. But a large derivative at 0 is the price that we pay for getting
everything else; in particular, any concave function f that agrees with

√
w at

w = 0 and w = λ2 has f ′(0) ≥ 1
λ . By Cor. 2, choosing λ to be around 2p−1 would

seem to make sense, thus guaranteeing that our optimal solution of MMX(λ) is
within a universal additive constant of the optimal value of MMX. If the points
are quite close together, either they should be scaled up or λ can be decreased.

Secant Lower Bound. Owing to the strict concavity, in the context of an sbb
algorithm, c is always best lower bounded by a secant on any subinterval. Of
course, it can be an issue whether a sbb solver can recognize and exploit this.
In general, such solvers (e.g., Baron and Couenne) do not yet support general
piecewise-smooth concave functions, while conceptually they could and should.
However, we implemented a feature in SCIP (version 3.2) that allowed us to
solve the proposed relaxation. In particular, by using the modeling-language
AMPL interface and its general suffix facility (see [8]), we are able to specify to
SCIP to treat a piecewise-defined constraint as globally concave. With this new
SCIP feature we were able to solve the secant relaxation — see Section 5.

4 Tightening Relaxations

4.1 Integer Extreme Points

Here, we examine the continuous relaxation of the feasible region of MMX, just
in the space of the y-variables. That is, the set of yij ∈ [0, 1] satisfying (2-4).
The coefficient matrix of the system (2-4) is not totally unimodular (TU). How-
ever, for each j ∈ S − {p + 1}, we can subtract the equation of (4) from the
corresponding equation of (3) to arrive at the system:
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∑

j∈S

yij = 1, for i ∈ P, (6)

∑

i∈P

yij +
∑

k>j,k∈S

yjk =
{

3, for j = p + 1,
2, for j ∈ S − {p + 1}, (7)

∑

k<j,k∈S

ykj = 1, for j ∈ S − {p + 1}. (8)

This resulting system is the set of constraints for the ordinary formulation
of a bipartite 0/1 “b-matching” problem. Such a formulation has a TU con-
straint matrix. So we immediately have the following theorem (also observed in
[13, §4.3,pp.217-9] via a much more complicated and less revealing proof) and
corollaries:

Thm. 4. The set of yij ∈ [0, 1] satisfying (2-4) has integer extreme points.

Cor. 5. No valid linear inequality in the y-variables alone can improve the linear
relaxation of the equations (2-4) describing full Steiner topologies.

This is not to say that optimality-based (linear) inequalities in the y-variables
alone cannot be derived (see §4.2.2).

Cor. 6. Given a globally-optimal solution of the continuous relaxation of MMX,
in polynomial time we can calculate a globally-optimal solution of MMX.

The relevant b-matching problem is depicted in Fig. 2. There is a node for every
constraint of (6-8) and an edge for every variable. To the right of each node is its
required degree. All possible edges exist between nodes at levels (6) and (7); i.e.,
those node sets induce a complete bipartite graph. All possible edges extending
“down to the right” exist between nodes at levels (7) and (8); i.e., between nodes
at level (7) and all nodes of greater number at level (8). A feasible choice of edges
(selecting a full Steiner topology) is one that meets the degree requirements. E.g.,
we can see that we must choose the edge between node p + 1 of level (7) and
node p + 2 of level (8).

4.2 Geometric Cuts

Based on various geometric considerations concerning optimal solutions, we can
derive several families of valid inequalities seeking to improve relaxations of our
formulation. Some of these are nonlinear, and it is an ongoing challenge to take
advantage of them computationally. Until we address it in §4.2.3, assume that
all norms are taken exactly — not smoothed.

Let ηi be the distance from terminal ai to the nearest other terminal; i.e.,

ηi := min
j∈P, j �=i

{‖ai − aj‖}, ∀ i ∈ P. (9)
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1

· · · 2p-2

1
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Fig. 2. The bipartite b-matching model for selecting a full Steiner topology

4.2.1 Non-combinatorial Cuts

Thm. 7. For all n ≥ 2, we have

yik

(‖xk − ai‖) ≤ ηi, ∀ i ∈ P, k ∈ S. (10)

Lem. 8. Among triangles with edge lengths a, b, c and corresponding angles
x,y,z, with c and z fixed, the one maximizing a + b is isosceles (that is a = b,
x = y).

Thm. 9. For all n ≥ 2, we have

yikyjk

(‖xk − ai‖ + ‖xk − aj‖) ≤ 2√
3
‖ai − aj‖, ∀ i, j ∈ P, i < j, k ∈ S. (11)

In computations, we treat the bilinear term yikyjk by replacing it with a variable
yijk and using the standard McCormick inequalities.

Another way to try and use the same principle is as follows:

Thm. 10. For all n ≥ 2, we have

yikyjk‖xk−ai‖‖xk−aj‖
(
‖xk − ai‖ − 1√

3
‖ai − aj‖

)
=0, ∀ i, j ∈ P, i < j, k ∈ S.

(12)

Thms. 9 and 10 easily extend to the case where the Steiner point xk is
adjacent to only 1 terminal in the SMT and also to the case where xk is not
adjacent to any terminal. In the such cases, we have

yikykl

(‖xk − ai‖ + ‖xk − xl‖) ≤ 2√
3
‖ai − xl‖, ∀ i ∈ P, k, l ∈ S, k < l; (13)

yklykm

(‖xk − xl‖ + ‖xk − xm‖) ≤ 2√
3
‖xl−xm‖, ∀ k, l,m ∈ S, k < l < m. (14)

Via another geometric principle, we have the following result.
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Thm. 11. For n = 3 and i, j ∈ P, i < j, k, l ∈ S, k < l, we have

yikyjkykl · det
[

ai aj xk xl

1 1 1 1

]

= 0. (15)

We note that the determinant of the 4×4 matrix in Thm. 11 is quadratic in the
x-variables — actually bilinear between xk and xl. In computations, we treat
the trilinear term yikyjkykl by replacing it with a variable yijkl and using the
standard inequalities

yijkl ≤ yik, yijkl ≤ yjk, yijkl ≤ ykl,

yik + yjk + ykl ≤ 2 + yijkl.

Thm. 11 easily extends to dimensions n > 3.

Thm. 12. For n ≥ 3, i, j ∈ P, i < j, k, l ∈ S, k < l, and for every 3 × 4
submatrix B = [bi, bj , ξk, ξl] of the n × 4 matrix

[
ai, aj , xk, xl

]
, we have

yikyjkykl · det
[

bi bj ξk ξl

1 1 1 1

]

= 0. (16)

4.2.2 Combinatorial Cuts. In this section, we introduce some valid linear
inequalities satisfied by optimal topologies of the ESTP.

Thm. 13. For n ≥ 2 and i, j ∈ P, i < j, we have

If ‖ai − aj‖ > ηi + ηj , then yik + yjk ≤ 1, ∀ k ∈ S. (17)

Considering the valid inequalities in (17), we note that the inequalities (11) can
only be active for i, j ∈ P, i < j, k ∈ S, such that ‖ai −aj‖ ≤ ηi +ηj . Therefore,
only such valid inequalities should be included in MMX. Furthermore, the result
in Thm. 13 extends to the more general case addressed in Thm. 14.

Thm. 14. Let H be a graph with vertex set P , and such that i and j are adjacent
if ‖ai − aj‖ > ηi + ηj. Then for each k ∈ S, the set of i ∈ P such that yik = 1 in
an optimal solution is a stable set of H. Therefore, every valid linear inequality∑

i∈P αiyi ≤ ρ for the stable set polytope of H yields a valid linear inequality∑
i∈P αiyik ≤ ρ for each k ∈ S.

Let T be a min-length spanning tree on terminals ai, i ∈ P . For i, j ∈ P , let

βij := length of the longest edge on the path between ai and aj in T . (18)

The proof of the following well-known lemma can be found for example in [12].
We use it to prove the validity of cuts presented in Cor. 16.

Lem. 15. An SMT contains no edge of length greater than βij on the unique
path between ai and aj, for all i, j ∈ P .

Cor. 16. For n ≥ 2 and i, j ∈ P, i �= j, we have

If ‖ai − aj‖ > ηi + ηj + βij , then yik + ykl + yjl ≤ 2, ∀ k, l ∈ S, k < l. (19)
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4.2.3 Smoothing in the Context of Cuts. In the definition and derivation
of all cuts, we assumed that norms are taken exactly — not smoothed. Now, we
confront the issue that we prefer to work with smoothed norms in the context
of mathematical optimization.

First of all, for any norm that just involves data and no variables, we do not
smooth. This pertains to all occurrences of ‖ai − aj‖, and hence also all occur-
rences of the parameters defined in (9) and (18). Any valid equation or inequality
based only on such use of norms (or not based on norms at all) is valid for the
original problem. So, these equations and inequalities do not exclude optimal
solutions of the original problem, and so these solutions are candidate solutions
to the problem where distances are smoothly underestimated (employing h or c),
possibly with lower objective value. Therefore, any such equation or inequality
is valid for the problem with distances smoothly underestimated. This applies
to (15), (16), (17), inequalities based on Thm. 14, and (19).

For (10) and (11), norms involving variables occur only on the low side of
the inequalities, so smooth underestimation of these norms, employing h or c,
keeps them valid.

Inequalities (13,14) also contain norms involving variables on the high side
of those inequalities. For those norms, we should replace them with smooth
overestimates. For example, we could use an “overestimating shift” ĥ(w) :=√

w + δ, or the linear extrapolation l (possibly with a different breakpoint).
In fact, by choosing the breakpoint for l at σ2 := (4λ/15)2, where λ2 is the
breakpoint for c, we get c′(0) = l′(0) (= 15/8λ). That is, if we can numerically
tolerate a breakpoint for the underestimate c at w = λ2, then we can equally
tolerate a breakpoint for the overestimate l at w = σ2 = (4λ/15)2. While global
sbb solvers do not yet support piecewise functions, at the modeling level we could
utilize tangents of the concave

√· at a few values of w greater than (4λ/15)2. I.e.,
choose some values σ2

r > · · · > σ2
1 > σ2

0 := (4λ/15)2, let τσi
(w) := σi

2 + 1
2σi

w,
and we can instantiate (13) and (14) r + 1 times each, replacing the

√· implicit
on the high side of these inequalities with τσi

, for i = 0, 1, . . . , r.
Finally, we have the equation (12). The norms ‖xk − ai‖ and ‖xk − aj‖

can be smoothed in any way that correctly evaluates the norm at 0, and the
equation remains valid. So employing h or c leaves the equation valid. The norm
involving xk in the multiplicand

(‖xk − ai‖ − ‖ai − aj‖/
√

3
)

is thornier. One
way to address it is to simply replace it with

(‖xk − ai‖2 − ‖ai − aj‖2/3
)
, with

these (smooth) squared norms calculated exactly.

5 Experiments

In this section, we demonstrate the impact of our cuts on the solution of the
ESTP, with results on 25 instances in IR3, where the terminals are randomly
distributed in the cube [0, 10]3. For each value of p from 4 to 8, we created five
instances. We show the effect of the cuts by solving the instances a few times with
the sbb code SCIP, adding different cuts each time to MMX. In our experiments,
we considered cuts (10,11, 13–15, 17). We compare the performance of SCIP on
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Table 1. Average % improvements on running time compared to MMX

p MMX+
(10) (11) (13) (14) (15) (17) (10,14,17)

4 51 2 20 0 -21 24 41
5 44 -10 21 0 -82 4 56
6 92 72 91 88 -462 93 93
7 81 -274 48 56 -654 76 84
8 29 0 0 6 0 15 32

eight models, running with a time limit of 2 hours. The first model is MMX,
with no cuts, the following six are MMX with the independent addition of cuts,
and the last model is MMX with the addition of the three most effective cuts on
the previous experiments.

Summarizing our results, we have that adding the cuts have significant effect
on improving the lower bounds and decreasing the running time. The three
classes of cuts, (10), (14) and (17) together improve the lower bound computed
in the time limit, in the only two instances still not solved to optimality in 51%
and 52%, and decreased the overall running time in 61% on average. Three extra
instances, all with p = 8, were solved to optimality in the time limit, after the
addition of the cuts. In Table 1, we show for each value of p, the average percent-
age improvements on the running time of each model tested, when compared to
MMX (100(Time(MMX) − Time(Model))/Time(MMX)). (Negative values indi-
cate worse times with the addition of the cuts)

Although these are still preliminary results, we see that our cuts can poten-
tially improve the quality of the lower bounds computed by SCIP. The two other
cuts proposed (16,19) have a positive effect in instances with more terminals or
in higher dimensions. Finally, we see that using several families of cuts together
can bring further improvements.

6 Conclusions

The ESTP is very difficult to solve for n > 2, and the application of sbb solvers
to test instances using the MMX formulation points out considerable drawbacks,
concerned with the non-differentiability of the Euclidean norm, and also to the
extreme weakness of the lower bounds given by relaxations. MMX in its original
form, with today’s sbb solvers, leads to dismal results.

We presented different approximations for the square-roots — the source
of our non-differentiability, which can be judiciously applied in the context of
valid inequalities. In particular, we introduced a smooth underestimation func-
tion, and we established several very appealing properties. We implemented this
smoothing with a new feature of SCIP that we developed. This feature could be
specialized to automatically smooth roots and other power functions.

To improve the quality of lower bounds computed in an sbb algorithm, we
presented a variety of valid inequalities, based on known geometric properties of
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a SMT. Preliminary numerical experiments demonstrates the potential of these
cuts in improving lower bounds. Many of these cuts are nonconvex, and it is an
interesting research direction to apply similar ideas to other nonconvex gloabl-
optimization models. We demonstrated that the performance of the MMX model
can be significantly improved, though it is still not the best method for ESTP
with n > 2. So more work is needed to make the MMX approach competitive.
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Abstract. We propose a constant approximation algorithm for general-
izations of the Flexible Flow Shop (FFS) problem which form a realistic
model for non-preemptive scheduling in MapReduce systems. Our results
concern the minimization of the total weighted completion time of a set
of MapReduce jobs on unrelated processors and improve substantially
on the model proposed by Moseley et al. (SPAA 2011) in two directions:
(i) we consider jobs consisting of multiple Map and Reduce tasks, which
is the key idea behind MapReduce computations, and (ii) we introduce
into our model the crucial cost of the data shuffle phase, i.e., the cost for
the transmission of intermediate data from Map to Reduce tasks. More-
over, we experimentally evaluate our algorithm compared with a lower
bound on the optimal cost of our problem as well as with a fast algorithm,
which combines a simple online assignment of tasks to processors with
a standard scheduling policy. As we observe, for random instances that
capture data locality issues, our algorithm achieves a better performance.

1 Introduction

The widespread use of MapReduce [6] to implement massive parallelism for data
intensive computing motivates the study of new challenging shop scheduling
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problems. Indeed, a MapReduce job consists of a set of Map tasks and a set of
Reduce tasks that can be executed simultaneously, provided that no Reduce task
of a job can start execution before all the Map tasks of this job are completed.
Moreover, a significant part of the processing cost in MapReduce applications
is the communication cost due to the transmission of intermediate data from
Map tasks to Reduce tasks (a.k.a. data shuffle, see e.g., [1]). To exploit the
inherent parallelism, the scheduler, which operates in centralized manner, has to
efficiently assign and schedule Map and Reduce tasks to the available processors.
In this context, standard shop scheduling problems are revisited to capture key
constraints and singularities of MapReduce systems. In fact, a few results have
been recently proposed based on simplified abstractions and resulting in known
variants of the classical Open Shop and Flow Shop scheduling problems [3,4,12].

In this work, we significantly generalize the Flexible Flow Shop (FFS) model
for MapReduce scheduling proposed in [12]. Recall that in the FFS problem,
we are given a set of jobs, each consisting of a number of tasks (each task
corresponds to a stage), to be scheduled on a set of parallel processors dedicated
to each stage. The jobs should be executed in the same fixed order of stages,
without overlaps between different stages of the same job. Our generalization
extends substantially the model proposed in [12] by taking into account all the
important constraints of MapReduce systems: (a) each job has multiple tasks
in each stage; (b) the assignment of tasks to processors is flexible; (c) there are
dependencies between Map and Reduce tasks; (d) the processors are unrelated
to capture data locality; and (e) there is a significant communication cost for
the data shuffle. Our goal is to find a non-preemptive schedule minimizing the
standard objective of total weighted completion time for a set of MapReduce
jobs.

Related Work. Known results for the FFS problem concern the two-stage
case on parallel identical processors. For the makepsan objective a PTAS is
known [13], while for the objective of total weighted completion time, a simple
2-approximation algorithm was proposed in [8] for the special case where each
stage has to be executed on a single processor. For the latter case, [12] recently
proposed a QPTAS which becomes a PTAS for a fixed number of task processing
times.

In the MapReduce context, most of the previous work concerns the experi-
mental evaluation of scheduling heuristics, from the viewpoint of finding good
tradeoffs between different practical criteria (see e.g., [15]). From a theoretical
viewpoint, all known results [3,4,12] concern the minimization of total weighted
completion time. Chang et al. [3] studied a simple model, equivalent to the
well-known concurrent open shop problem [11], where there are no dependen-
cies between Map and Reduce tasks and the assignment of tasks to processors
is given. Chen et al. [4] generalized the last model by considering dependencies
between Map and Reduce tasks and presented an LP-based 8-approximation
algorithm. Moreover, they managed to incorporate the data shuffle into their
model and to derive a 58-approximation algorithm. Finally, Moseley et al. [12]
suggested the connection of MapReduce scheduling to the FFS problem and
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proposed a 12-approximation algorithm, for the case of identical processors, and
a 6-approximation algorithm for the very restricted case of unrelated proces-
sors where each job has a single Map and a single Reduce task. For both cases
they also proposed constant competitive online algorithms with constant speed
augmentation.

Our Results and Contributions. We present constant approximation algo-
rithms which substantially generalize the results of [12] for MapReduce schedul-
ing on unrelated processors in two directions motivated by practical applications
of MapReduce systems. In fact, we deal with jobs consisting of multiple Map
and Reduce tasks and also incorporate the shuffle phase into our setting. As it
has been observed in [12], new ideas and techniques are required for both these
directions.

In Section 2, we present a 54-approximation algorithm for the Map-Reduce
scheduling problem when jobs consist of multiple Map and Reduce tasks. We
first give an interval-indexed LP-relaxation for the problem of minimizing the
total weighted completion times separately for Map and Reduce tasks on unre-
lated processors. Our LP-relaxation is inspired by that proposed by Hall et
al. [9] for scheduling a set of single task jobs on unrelated processors under the
same objective. However, in our setting, only the task finishing last (instead
of all tasks) contributes to the objective value, which complicates the analysis.
Recently, Correa et al. [5] proposed a similar LP-relaxation for a more general
problem, where, instead of jobs consisting of tasks, they have a set of job orders
and the completion time of each order is specified by the completion of the job
finishing last. Since scheduling multitask jobs is quite similar to the setting con-
sidered in [5], we can apply their approximation result to scheduling the Map
and Reduce tasks separately. Next, extending the ideas in [12] for single task
jobs, we concatenate the two schedules into a single schedule that respects the
task dependencies.

In Section 3, we incorporate the data shuffle phase into our model by intro-
ducing an additional set of Shuffle tasks, each one associated with a communica-
tion cost (expressed as processing time). When the Shuffle tasks are scheduled on
the same processors as the corresponding Reduce tasks, we are able to keep the
same approximation ratio of 54 for the Map-Shuffle-Reduce scheduling problem.
Moreover, we prove an approximation ratio of 81 when the Shuffle tasks can be
executed on different processors than their corresponding Reduce tasks. To the
best of our knowledge, this is the most general setting of the FFS problem (with
a special third stage) for which a constant approximation guarantee is known.

In Section 4, we compare experimentally the performance of our LP-based
approximation algorithm with a lower bound on the optimal cost of our problem
as well as with a simple and fast algorithm. The latter algorithm combines a
simple assignment of the tasks, using an online algorithm for makespan mini-
mization on unrelated processors with logarithmic competitive ratio [2], with the
standard Weighted Shortest Processing Time first (WSPT) scheduling policy. As
we observe, for instances where the processing times of Map and Reduce tasks
are drawn from the same uniform distributions, the simple algorithm performs
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well enough, while, for instances that capture data locality issues, the more
sophisticated LP-based algorithm achieves a better performance also in practise.
Moreover, we show that the (empirical) approximation ratio of our algorithms is
considerably smaller than the corresponding theoretical upper bound. As far as
we know, these are the first experimental results for evaluating the performance
guarantee of MapReduce scheduling on unrelated processors.

Problem Statement and Notation. In the sequel we consider a set J =
{1, 2, . . . , n} of n MapReduce jobs to be executed on a set P = {1, 2, . . . ,m} of
m unrelated processors. Each job is available at time zero, is associated with a
positive weight wj and consists of a set of Map tasks and a set of Reduce tasks.
Let M and R be the set of all Map and all Reduce tasks respectively. Each
task is denoted by Tk,j ∈ M ∪ R, where k ∈ N is the task index of job j ∈ J
and is associated with a vector of non-negative processing times {pi,k,j}, one for
each processor i ∈ Pb, where b ∈ {M,R}. Let PM and PR be the set of Map
and the set of Reduce processors respectively. For convenience, we assume that
PM ∩ PR = ∅, however we are able to extend our results to the case where the
two sets of processors are not necessarily disjoint (or are even identical). Each
job has at least one Map and one Reduce task and every Reduce task can start
its execution after the completion of all Map tasks of the same job.

For a given schedule we denote by Cj and Ck,j the completion times of each
job j ∈ J and each task Tk,j ∈ M∪R respectively. Note that, due to the prece-
dence constraints between Map and Reduce tasks, Cj = maxTk,j∈R{Ck,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the schedule, i.e., the comple-
tion time of the job which finishes last. Our goal is to schedule non-preemptively
all Map tasks on processors of PM and all Reduce tasks on processors of PR,
with respect to their precedence constraints, so as to minimize the total weighted
completion time of the schedule, i.e.,

∑
j∈J wjCj . We refer to this problem as

Map-Reduce scheduling problem.
Concerning the complexity of Map-Reduce scheduling problem, it generalizes

the FFS problem which is known to be strongly NP-hard [7], even when there
is a single Map and a single Reduce task that has to be assigned only to one
Map and one Reduce processor respectively.

2 The Map-Reduce Scheduling Problem

In this section, we present a 54-approximation algorithm for the Map-Reduce
scheduling problem. Our algorithm is executed in the following two steps: (i) it
computes a 27/2-approximate schedule for assigning and scheduling all Map
tasks (resp. Reduce tasks) on processors of the set PM (resp. PR) and (ii) it
merges the two schedules in one, with respect to the precedence constraints
between Map and Reduce tasks of each job. Step (ii) is performed by increasing
the approximation ratio by a factor of 4.
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LP(b) : minimize
∑

j∈J
wjCDj

subject to :
∑

i∈Pb,�∈L
yi,k,j,� ≥ 1, ∀Tk,j ∈ b (1)

CDj
≥ Ck,j , ∀j ∈ J , Tk,j ∈ b (2)

∑

i∈Pb

∑

�∈L
(1 + δ)�−1yi,k,j,� ≤ Ck,j , ∀Tk,j ∈ b (3)

∑

Tk,j∈b

pi,k,j

∑

t≤�

yi,k,j,t ≤ (1 + δ)�, ∀i ∈ Pb, � ∈ L (4)

pi,k,j > (1 + δ)� ⇒ yi,k,j,� = 0, ∀i ∈ Pb, Tk,j ∈ b, � ∈ L (5)
yi,k,j,� ≥ 0, ∀i ∈ Pb, Tk,j ∈ b, � ∈ L

Scheduling Map Tasks and Reduce Tasks. To schedule the Map and Reduce
tasks separately on the processors PM and PR, respectively, we formulate the
interval-indexed LP-relaxation above for minizing the total weighted completion
time. For notational convenience, we use an argument b ∈ {M,R} to refer either
to Map or to Reduce sets of tasks. We define (0, tmax =

∑
Tk,j∈b maxi∈Pb

pi,k,j ]
to be the time horizon of potential completion times, where tmax is an upper
bound on the makespan of a feasible schedule. We discretize the time horizon
into intervals [1, 1], (1, (1+ δ)], ((1+ δ), (1+ δ)2], . . . , ((1+δ)L−1, (1+ δ)L], where
δ ∈ (0, 1) is a small constant, and L is the smallest integer such that (1+δ)L−1 ≥
tmax. Let I� = ((1 + δ)�−1, (1 + δ)�], for 1 ≤ � ≤ L, and L = {1, 2, . . . , L}. Note
that, interval [1, 1] implies that no job finishes its execution before time 1; in fact,
we can assume, w.l.o.g., that all processing times are positive integers. Note also
that the number of intervals is polynomial in the size of the instance and in 1/δ.
For each processor i ∈ Pb, task Tk,j ∈ b and � ∈ L, we introduce a variable yi,k,j,�

that indicates if task Tk,j is completed on processor i within the time interval I�.
Furthermore, for each task Tk,j ∈ T , we introduce a variable Ck,j corresponding
to its completion time. For every job j ∈ J , we introduce a dummy task Dj with
zero processing time processed after the completion of each task Tk,j ∈ b. Note
that, the corresponding integer program is a (1 + δ)-relaxation of the original
problem.

Our objective is to minimize the sum of weighted completion times of all jobs.
Constraints (1) ensure that each task is completed on a processor of the set Pb in
some time interval. Constraints (2) assure that for each job j ∈ J , the completion
of each task Tk,j precedes the completion of task Dj . Constraints (3) impose a
lower bound on the completion time of each task. For each � ∈ L, constraints
(4) and (5) are validity constraints which state that the total processing time of
jobs executed up to an interval I� on a processor i ∈ Pb is at most (1 + δ)�, and
that if processing a task Tk,j on a processor i ∈ Pb takes more than (1 + δ)�,
Tk,j should not be scheduled on i, respectively.

Our algorithm, called Algorithm TaskScheduling(b), starts from an opti-
mal fractional solution (ȳi,k,j,�, C̄k,j , C̄Dj

) to LP(b) and, working similarly to
[5, Section 5], rounds it to an integral 27/2-approximate schedule of the jobs
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J on processors Pb. The idea is to partition the set of tasks Tk,j into classes
S(�) = {Tk,j ∈ b | (1 + δ)�−1 ≤ aC̄k,j ≤ (1 + δ)�}, where � ∈ {1, . . . , L} and
a > 1 is a parameter, according to their (fractional) completion time in the
optimal solution of LP(b), and to use [14, Theorem 2.1] for scheduling the tasks
in each class S(�) independently. In fact, Algorithm TaskScheduling(b) can
be regarded as a generalization of the approximation algorithm in [9, Section 4],
where the objective is to minimize weighted completion time, but each job con-
sists of a single task (see also the discussion in [5, Section 5]).

More specifically, we first observe that by the definition of S(�) and due
to constraints (1) and (3), for each task Tk,j ∈ S(�),

∑
i∈Pb

∑
t≤� yi,k,j,t ≥ a−1

a .
Otherwise, it would be

∑
i∈Pb

∑
t≥�+1 yi,k,j,t > 1

a , which implies aC̄k,j > (1+δ)�.
Therefore, if we set y∗

i,j,k,t = 0, for all t ≥ � + 1, and y∗
i,j,k,t = a

a−1 ȳi,k,j,t, for
all t ≤ �, we obtain a solution y∗

i,k,j,t that satisfies the constraints (1), (4), and
(5) of LP(b), if the right-hand side of (4) is multiplied by a/(a − 1). Therefore,
for each � = 1, . . . , L, the tasks in S(�) alone can be (fractionally) scheduled on
processors Pb with makespan at most a

a−1 (1+δ)�. Now, using [14, Theorem 2.1],
we obtain an integral schedule for the tasks in S(�) alone with makespan at most
( a

a−1 + 1)(1 + δ)�. By the definition of S(�), in this integral schedule, each task
Tk,j ∈ S(�) has a completion time of at most a( a

a−1 + 1)(1 + δ)C̄k,j . Therefore,
if we take the union of these schedules, one after another, in increasing order of
� = 1, . . . , L, the completion time of each job j is at most a( a

a−1+1+ 1
δ )(1+δ)C̄Dj

.
Choosing a = 3/2 and δ = 1/2, we obtain that:

Theorem 1. [5] Algorithm TaskScheduling(b) is a 27/2-approximation for
scheduling a set of Map tasks (resp. Reduce tasks) on a set of unrelated processors
PM (resp. PR), in order to minimize their total weighted completion time.

Merging Task Schedules. Let σM, σR be two schedules computed by
TaskScheduling(b), for b = M and b = R, respectively. Let also CσM

j =
maxTk,j∈M{Ck,j} and CσR

j = maxTk,j∈R{Ck,j} be the completion times of all
Map and all Reduce tasks of a job j ∈ J within these schedules, respectively.
Depending on these completion time values, we assign each job j ∈ J a width
equal to ωj = max{CσM

j , CσR
j }. The following algorithm computes a feasible

schedule for Map-Reduce scheduling.

Algorithm MR. Every time a processor i ∈ Pb becomes available, schedule:
either the Map task, assigned to i ∈ PM in σM, with the minimum width, or
the available (w.r.t. its “release time” ωj) Reduce task, assigned to i ∈ PR in
σR, with the minimum width.

Theorem 2. Algorithm MR is a 54-approximation for Map-Reduce scheduling.

Proof (Sketch). By the execution of MR, it is immediate to verify the feasibility
of the final schedule. So, it suffices to prove that in such a schedule σ, all tasks of a
job j ∈ J are completed by time 2max{CσM

j , CσR
j }. Let Cσ

j , be the completion
time of a job j ∈ J in σ. Note that, for each of the Map tasks of j, their
completion time is upper bounded by ωj . On the other hand, the completion
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time of each Reduce task is upper bounded by a quantity equal to r +ωj , where
r is the earliest time when the task is available to be scheduled in σ. However,
r = CσM

j ≤ ωj and thus Cσ
j ≤ 2ωj = 2max{CσM

j , CσR
j }. Then, the theorem

follows from Theorem 1. 
�

3 The Map-Shuffle-Reduce Scheduling Problem

In practical MapReduce systems, data shuffle represents a significant cost for the
key-value pairs with the same key to be transmitted from their Map tasks to the
corresponding Reduce task. Motivated by [4], we model this cost by introducing
a number of Shuffle tasks for each Map task. However, in contrast to [4], where
the assignment of Shuffle tasks to processors is fixed, our model distinguishes
between two variants: a) Each Shuffle task is scheduled on the same processor
as its corresponding Reduce task and b) the Shuffle tasks are scheduled on a
different set of processors. For both variants, we present O(1)-approximation
algorithms.

The number of different keys is usually significantly larger than the number
of Reduce processors. Hence, a Reduce task receives all key-value pairs with key
in a set of different keys. Allowing the transmission time of some Shuffle tasks to
be 0, we may assume wlog that all Reduce tasks receive key-value pairs from all
Map tasks. We also assume that only a single key-value pair can be transferred to
a Reduce processor at any time and moreover, the transmission process cannot
be interrupted. Thus, since the key-value pairs allocated to the same Reduce
task cannot be transmitted in parallel, we can assume that all key-value pairs
from a Map task, assigned to the same Reduce task, can be considered as a
single Shuffle task. Hence, the number of Shuffle tasks per Map task equals the
number of Reduce tasks. The following summarizes the above discussion.

Properties: i) Each Shuffle task cannot start its execution before the completion
of its corresponding Map task.
(ii) For every Map task of a job j, there are as many Shuffle tasks as j’s Reduce
tasks. When no key-value pairs are transmitted from a Map task to a Reduce
task, the transmission time of the corresponding Shuffle task is equal to 0.
(iii) Each Shuffle task is executed non-preemptively.
(iv) Shuffle tasks transmitting to the same processor do not overlap.

Before presenting our results for the Map-Shuffle-Reduce scheduling problem,
we introduce some additional notation. For each Map task Tk,j ∈ M of a job
j ∈ J , we introduce a set of Shuffle tasks Tr,k,j , 1 ≤ r ≤ τj , with τj denoting the
number of Reduce tasks of job j. We denote by H the set of Shuffle tasks; note
that for each Map task of a job, there is a bijection between its Shuffle tasks
and the job’s Reduce tasks. Each Shuffle task Tr,k,j ∈ H is associated with a
transmission time tr,k,j , which is independent of the processor assignment.

The Shuffle Tasks are Executed on the Reduce Processors. The key step
here is the integration of the Shuffle phase into the Reduce phase. In this direc-
tion, we consider a Reduce task Tr,j of a job j and let sr

j = {Tr,k,j | Tk,j ∈ M}
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be the set of Shuffle tasks that must be completed before task Tr,j starts its
execution. The tasks in sr

j are executed in the same processor as Reduce task
Tr,j . Thus, we obtain that:

Lemma 1. There is an optimal schedule of Shuffle tasks and Reduce tasks on
processors of PR such that (i) there are no idle periods, and (ii) all the Shuffle
tasks in sr

j are executed together and are completed exactly before the execution
of Tr,j.

Proof. (i) Let σ be a feasible schedule. There are three cases where an idle time
can occur: either between the execution of two Shuffle or two Reduce tasks or
between a Shuffle and a Reduce task. Since all Shuffle and Reduce tasks are
assumed to be available from time zero and there are no precedence constraints
among only Shuffle tasks or only Reduce tasks, skipping the idle times in the
first two cases can only decrease the objective value of σ. For the third case,
we observe that since the Shuffle tasks precede the corresponding Reduce tasks,
skipping the idle intervals can only decrease the completion time of the Reduce
tasks. Hence, σ can be transformed into a schedule with no idle periods without
increasing the total weighted completion time.
(ii) Let us consider a schedule σ that violates the claim and has the last Reduce
task Tr,j of a job j completed on some processor i ∈ PR. We fix the completion
time of Tr,j and shift all the Shuffle tasks in sr

j to execute just before Tr,j ,
consecutively and in arbitrary order. Then, the completion time of j remains
unchanged, while the completion time of every task preceding Tr,j in σ may
decrease. After a finite number of shifts, we obtain a schedule that satisfies (ii)
and has at most the total weighted completion time of σ. 
�

Using Lemma 1, we can incorporate the execution of the Shuffle tasks of
each job into the execution of the corresponding Reduce tasks. Namely, for each
Reduce task Tr,j of a job j, 1 ≤ r ≤ τj , we increase its processing time pi,r,j , on
each processor i ∈ PR, by a quantity equal to the total transmission time of the
Shuffle tasks in sr

j , i.e., equal to p(sr
j) =

∑
Tr,k,j∈sr

j
tr,k,j . Let p′

i,r,j = pi,r,j +p(sr
j)

be the increased processing time for each task Tr,j ∈ R on processor i ∈ PR,
referred to as Shuffle-Reduce task and let RH be the new set of Shuffle-Reduce
tasks.

Now, running Algorithm TaskScheduling(b), for b ∈ {M,RH}, we obtain
two 27/2-approximate schedules, one for the Map tasks and one for the Shuffle-
Reduce tasks. Moreover, by considering the same precedence constraints as for
the Map and Reduce tasks, we can merge the above schedules by applying Algo-
rithm MR. Despite satisfying Property (i), these dependencies are more gen-
eral than the precedence constraints among Map and Shuffle tasks of each job,
because in order to start the execution of a Shuffle task, we have to wait for
all the Map tasks of a job to finish. However, since the completion time of a
job j in the optimal schedule is lower bounded by the completion time in opti-
mal schedules of either the Map or the Shuffle-Reduce tasks, regardless of their
precedences, we have that:
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Theorem 3. Algorithm MR is a 54-approximation for Map-Shuffle-Reduce
scheduling.

The Shuffle Tasks are Executed on Different Processors. To deal with
this case, we assume that for any processor i ∈ PR, there exists an “input”
processor which receives data from the Map processors. Therefore, the input
processor executes the Shuffle tasks that correspond to the Reduce tasks which
have been assigned to processor i. We refer to the set of input processors as PS .

Lemma 2. Consider two optimal schedules σ and σ′ of Shuffle and Reduce tasks
on processors in PR ∪PS and PR, respectively. Let also Cσ

k,j , C
σ′
k,j be the comple-

tion times of any Reduce task Tk,j in σ and σ′, respectively. Then, Cσ′
k,j ≤ 2Cσ

k,j.

Proof. We start with an optimal schedule σ on the set PR ∪ PS of processors.
We fix a Reduce processor ir, the corresponding input processor is and a Reduce
task Tk,j ∈ R of a job j. We build the schedule σ′ on ir by executing the Reduce
tasks in the same order as in σ and just before each Reduce task, we execute
the corresponding Shuffle task. Let B(k) be the set of Reduce tasks executed on
processor ir, before Tk,j and let Sh(k) the set of the shuffle tasks that correspond
to the Reduce tasks in B(k) ∪ {Tk,j}. Then, we have that

Cσ′
k,j =

∑

Tl,j∈B(k)

pir,l,j +
∑

Tq,l,j∈Sh(k)

tq,l,j ,

which holds because there are no idle intervals in σ′, by Lemma 1. Moreover,
since both B(k) and Sh(k) have to be completed before Tk,j in σ, we have that

Cσ
k,j ≥ max

⎧
⎨

⎩

∑

Tl,j∈B(k)

pir,l,j ,
∑

Tq,l,j∈Sh(k)

tq,l,j

⎫
⎬

⎭
,

and therefore Cσ′
k,j ≤ 2Cσ

k,j . 
�
Combining Lemma 2 and Theorem 1, we obtain a 27-approximation for

scheduling the Shuffle-Reduce tasks. Then, running Algorithm MR, we get the
following corollary. Here, the Shuffle tasks form a special third stage in the FFS
problem.

Corollary 1. Algorithm MR is a 81-approximation for Map-Shuffle-Reduce
scheduling, in the general case where the Shuffle tasks run on a separate set
of processors.

4 Experimental Evaluation

In this section we experimentally evaluate the performance of Algorithm MR.
To deal with data shuffle in our model, in Section 3, we apply Algorithm MR
to instances of the Map-Reduce scheduling problem with increased processing
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times for the Reduce tasks that take the data transmission time of the Shuffle
tasks into account. Thus, to simplify the experimental evaluation, we restrict
our attention to instances of Map-Reduce scheduling. We compare the solutions
of Algorithm MR, for two different families of random instances, with a lower
bound on the optimal cost and with the solutions of a simple and fast scheduling
algorithm, called Fast-MR, that we propose below.

To compute a lower bound on the optimal solution of Map-Reduce scheduling,
we include in the LP-relaxation LP(b) all the Map and Reduce tasks and also
the precedence constraints among them. These dependencies can be captured by
the following set of constraints in LP(b):

Ck,j ≥ Ck,j′ +
∑

i∈PR

∑

�∈L
pi,k,jyi,k,j,� ∀j ∈ J , Tk,j ∈ R, Tk,j′ ∈ M.

Our Fast-MR algorithm consists of two steps: First it finds a online assign-
ment of tasks to processors and then schedules them using a variant of the well
known Weighted Shortest Processing Time first (WSPT) policy.

Fast-MR. Step A: Apply the online algorithm AssignU, presented in [2] for
makespan minimization on unrelated processors: For an arbitrary order of jobs,
arriving one-by-one in an arbitrary order, assign each task Tk,j of the current
job j to the processor k = arg mini∈Pb

{λLi+pi,k,j −λLi}, where Li is the current
load of processor i and λ > 1 an appropriately chosen constant. The tasks of
each job are considered one-by-one in an arbitrary order.
Step B : Order the tasks assigned to each processor, in Step A, by applying the
following version of the WSPT policy:

For each pair of jobs j, j′ ∈ J , if (wj/
∑

Tk,j∈j pk,j) > (wj′/
∑

Tk,j′ ∈j′ pk,j′),

then job j precedes j′ in the schedule.

When a processor becomes available, schedule the task that is not yet executed,
while respecting the precedences among Map and Reduce tasks.

4.1 Computational Experiments and Results

We performed the experiments on a machine with 4 packages (Intel(R) Xeon(R)
E5-4620 @ 2.20GHz) of 8 cores each (16 threads with hyperthreading) and a
total memory of 256 GB. The operating system was a Debian GNU/Linux 6.0.
We used Python 2.7 for scripting. The solver used for the linear programs was
Gurobi Optimizer 6.0.

An instance of the problem consists of a n×|{Tk,j ∈ M∪R}|×m matrix that
describes the processing times of the tasks, a vector of size n that describes the
job weights, and a precedence graph for the tasks of the same job. We use two
disjoint sets of processors, each consisting of 40 Map and 40 Reduce processors.
We consider instances from 5 to 50 jobs; each job has 30 map tasks and 10 reduce
tasks. Moreover, we fix δ = 0.5 and a = 1.5, for the parameters of Algorithm
MR. For each of the n jobs, its weight is uniformly distributed in [1, n].
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The quality of the solutions in our experiments depend on whether there is
any correlation between jobs and processors. Based on [10], in order to exper-
iment with two representative cases, we generate the task processing times
in each processor in two different ways, uncorrelated and processor-job cor-
related, and test experimentally both Algorithm MR and Fast-MR by run-
ning 10 different trials for each possible number of jobs. The instances and
the code used in our experiments are available at http://www.corelab.ntua.gr/
∼opapadig/mrexperiments/.

Uncorrelated Input. The processing times {pi,k,j}i∈PM of the Map tasks Tk,j ∈
M of each job j are selected uniformly at random (u.a.r.) from [1, 100]. Similarly
to [3], we set the processing times {pi,k,j}i∈PR of the Reduce tasks Tk,j ∈ R to
thrice a value selected u.a.r. from [1, 100] plus some “noise” selected u.a.r. from
[1, 10].

Fig. 1. (i)-(ii): The objective values of the solutions found by algorithms Fast-MR and
MR and a lower bound on the optimal. (iii)-(iv): The observed approximation ratios
of Fast-MR and MR for instances with uncorrelated processing times.

In Fig. 1.(i)-(ii), we observe that Fast-MR performs better than MR in gen-
eral when the processing times are uncorrelated. For a small number of jobs,
Fast-MR gives up to 21% (on average) better solutions. However, as the number
of jobs increases, the gap between Fast-MR and MR decreases, e.g., for n = 45
and n = 50 Fast-MR gives 6% and 5% (on average) better solutions, respectively.

http://www.corelab.ntua.gr/~opapadig/mrexperiments/
http://www.corelab.ntua.gr/~opapadig/mrexperiments/
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In fact, since the processing times are selected u.a.r. from identical uniform dis-
tributions, the processors tend to behave as essentially identical, rather than
unrelated, which gives a significant practical advantage to Fast-MR, especially
for small instances. This holds for both the assignment and the scheduling phase
of Fast-MR, since WSPT is also known to perform quite well on identical proces-
sors. With respect to performance guarantees, as we can see, in Fig. 1.(iii)-(iv),
the (empirical) approximation ratio of MR ranges from 1.68 to 2.58 (on average),
while the approximation ratio of Fast-MR ranges from 1.43 to 2.42 (on average).
These values are far from MR’s worst-case approximation guarantee of 54.

Processor-Job Correlated Input. To better capture issues of data locality in our
unrelated processors setting, we next focus on instances which use processor
and job correlations. In this direction, the processing times {pi,k,j}i∈PM of the
Map tasks Tk,j ∈ M of each job j are uniformly distributed in [αiβj , αiβj + 10],
where αi, βj are selected u.a.r. from [1, 20], for each processor i ∈ M and each
job j ∈ J respectively. As before, the processing time of each Reduce task is set
to three times a value selected u.a.r. from [αiβj , αiβj + 10] plus some “noise”
selected u.a.r. from [1, 10].

In Fig. 2.(i)-(ii), we observe that Algorithm MR outperforms Fast-MR for
any number of jobs. Specifically, MR leads to 11% − 34% (on average) smaller

Fig. 2. (i)-(ii): The objective values of the solutions found by algorithms Fast-MR and
MR and a lower bound on the optimal. (iii)-(iv): The observed approximation ratios
of Fast-MR and MR for instances with correlated processing times.
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total weighted completion times than Fast-MR. Due to the processor-job corre-
lation in task processing times, the environment now resembles better that of
MapReduce scheduling with unrelated processors and data locality. Then, the
more sophisticated assignment and the scheduling procedures of Algorithm MR
have a significant advantage over the simple online assignment and WSPT-based
scheduling of Fast-MR. In fact, even for a small number of jobs, n = 5, Algo-
rithm MR results in up to 11% (on average) better solutions. The (empirical)
approximation ratio of MR, in Fig. 2.(iii)-(iv), ranges from 2.13 to 3.12 (on
average), while, for Fast-MR, the approximation ratio ranges from 3.19 to 3.95
(on average). Again, both algorithms are far from MR’s worst-case approxima-
tion guarantee of 54. Furthermore, we observe that the empirical approximation
ratio of MR (and also its advantage over Fast-MR) seem to improve as the num-
ber of jobs increases and the assignment and scheduling problem becomes more
demanding.
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Abstract. We study a dynamic allocation problem that arises in various
scenarios where mobile clients joining and leaving have to communicate
with static stations via radio transmissions. Restrictions are a maximum
delay, or laxity, between consecutive client transmissions and a maximum
bandwidth that a station can share among its clients. Clients are assigned
to stations so that every client transmits under those restrictions. We
consider reallocation algorithms, where clients are revealed at its arrival
time, the departure time is unknown until they leave, and clients may
be reallocated to another station, but at a cost determined by the laxity
We present negative results for related previous protocols that motivate
the study; we introduce new protocols that expound trade-offs between
station usage and reallocation cost; we prove theoretically bounds on
our performance metrics; and we show through simulations that, for
realistic scenarios, our protocols behave even better than our theoretical
guarantees.

1 Introduction

We study a dynamic allocation problem in scenarios where data on mobile
devices has to be gathered and uploaded periodically to one of the static access
points available1. Examples include wearable health-monitoring systems, where
data gathered via physiological sensors on ambulatory patients must be peri-
odically uploaded, and participatory sensing, where mobile device users upload
periodically environment information.

Mobile devices, called clients, join and leave continuously, and they com-
municate with the static access points, called stations, The clients’ ephemeral
nature is modeled by the life interval of each client (from its arrival to depar-
ture), during which the client has to communicate with some station periodically.
Periodic communication is modeled by the client’s laxity, which bounds the max-
imum duration a client is not transmitting to some stations. The intrinsically
shared nature of the access to stations is modeled by a maximum shared station
bandwidth, by a client bandwidth, and by the client laxity.

1 We consider an upstream model, but the same results apply to downstream commu-
nication.
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Based on the above model, we study the problem of assigning clients to
stations so that every client transmits to some stations satisfying the laxity and
bandwidth constraints. We consider settings where clients are revealed at its
arrival time and their departure time is only revealed when they depart (as
in online algorithms). Clients may be reassigned from one station to another
and we call such reassignment reallocation. Intuitively reallocation causes more
disturbance to a client with small laxity. Therefore, we assume reallocation incurs
a cost inversely proportional to a client’s laxity. We aim to reduce the number
of active stations and reduce the reallocation cost. However, these two goals are
orthogonal, e.g., we can reallocate the clients every time a client arrives/departs
so that the number of active stations is minimized while incurring a very high
reallocation cost; alternatively we can keep the reallocation cost to zero but we
may use many active stations after a sequence of client departures. In this paper,
we aim to obtain a balance between the two performance metric. We call this
problem Station Assignment Problem with Reallocation (SA).

Previous Work. The closest work to the present paper is [12], where reallo-
cation algorithms were presented for Windows Scheduling (WS). The WS prob-
lem [6,7,11,12] is a particular case of SA where the bandwidth requirement of
each client is the same and each channel (a.k.a. station in our case) can only
serve one client at a time. In [12], a unit cost is incurred for each client reallo-
cated and the objective is to minimize an aggregate sum reflecting the amortized
reallocation cost and the number of channels used. A protocol called Classified
Reallocation is shown to guarantee an amortized constant number of realloca-
tions. This protocol is also evaluated experimentally together with two other
protocols Preemptive Reallocation and Lazy Reallocation.

WS [6,7,11] was first studied without reallocation and the objective function
was the number of channels. Both static case where clients never depart [6,7]
and dynamic case where clients may depart [11] have been studied. For the
dynamic case, the comparison is against peak load which may occur at different
time in the online algorithm and the optimal offline algorithm. In [12] and this
work, we compare against current load. Clients with same laxity were considered
in [14]. We also extend the objective function in [12] such that the number of
reallocated clients is weighted inversely by their laxity, and we provide trade-off
between reallocation cost and number of stations.

SA and Other Assignment Problems. Our problem differs from various
scheduling problems. The load balancing problem [4] also assigns tasks of differ-
ent load to servers, yet does not consider periodic tasks and disallow reallocation.
Interval coloring [1] concerns the number of machines used but not periodic tasks.
Periodic appearance of tasks in real time scheduling [8] is determined by the
input but not by the algorithm to satisfy laxity constraint. The SA problem is
also related to b-matching [15], fractional matching [5], and adwords [13]. Among
other details, the objective function is different.

There are two typical approaches of handling orthogonal objectives: to min-
imize the summation of two costs, e.g., energy efficient flow time scheduling
minimizes the sum of energy usage and total flow time of the tasks [2]; and to
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formulate two approximation ratios, e.g., energy efficient throughput scheduling
algorithm is t-throughput-competitive and e-energy-competitive [10]. We adopt
the later approach.

Reallocation has been considered in scheduling [3,9,16]. In [9], a distinction
is made between reassignment within server (reschedule) and between servers
(migration). Here, we assume rescheduling within a station is free and we use
“reallocation” to refer to reassignment to other stations. It is often that the num-
ber/size of jobs reallocated is bounded, e.g., by a function of the number of jobs
in the system [9], the size of the arriving job [16] or the number of machines [3].
In our problem, we bound the reallocation by the weight (cumulative inverse
laxity) of the clients departed.

2 Our Results

In this paper, we study reallocation algorithms for SA assuming that clients
have arbitrary laxities and bandwidth requirements, that clients depart from
the system at arbitrary times, and that they may be reallocated, but at some
cost proportional to the resources needed. Specifically, our contributions are the
following.

– We define a characterization of SA reallocation algorithms, which we call
(α, β)- approximation, as a combination of the competitive ratio on station
usage (α) and the cost of reallocations contrasted with the resources released
by departures (β).

– We show a sequence of negative results proving that worst-case guarantees
cannot be provided by previous protocols Classified Reallocation and Pre-
emptive Reallocation [12], even if they are modified to our reallocation cost
function.

– We present a novel SA protocol called Classified Preemptive Reallocation
(CPR) where clients are classified according to laxity and bandwidth require-
ments, and upon departures the remaining clients are preemptively reallo-
cated to minimize station usage, but only within their class. The protocol
presented includes a range of classifications that exposes trade-offs between
reallocation cost and station usage. In fact, we found first experimentally
what is the classification function that better balances these goals, and then
we provided theoretical guarantees for all functions.

– In our main theorem, we prove bounds on both of our performance metrics,
and we instantiate those bounds into three classifications and for specific
scenarios in two corollaries (refer to Section 5 for the specific bounds.)

– Finally, we present the results of our extensive simulations that allowed us
to find the function that best balances station usage and reallocation cost.
Additionally, our simulations show that, for a variety of realistic scenarios,
CPR performs better than expected by the worst-case theoretical analysis,
and close to optimal on average.
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3 Definitions

Model. We consider a set S of stations and a set C of clients. Each client must
transmit packets to some station. Time is slotted so that each time slot is long
enough to transmit one packet. A client can be assigned to transmit to only one
station in any given time slot. Starting from some initial time slot 1, we refer to
the infinite sequence of time slots 1, 2, 3, . . . as global time . Each client c ∈ C
is characterized by an arrival time ac and a departure time dc, that define
a life interval τc = [ac, dc] in which c is active . That is, client c is active from
the beginning of time slot ac up to the end of time slot dc. We define C(t) ⊆ C to
be the set of clients that are active during time slot t. With respect to resources
required, each client c is characterized by a bandwidth requirement bc, and a
laxity 0 < wc ≤ |τc|, such that c must transmit to some station in S at least
one packet within each wc consecutive time slots in τc

2. On the other hand,
each station s ∈ S is characterized by a station bandwidth or capacity B,
which is the maximum aggregated bandwidth of clients that may transmit to s
in each time slot.

Notation. Let the schedule of a client c be an infinite sequence σc of values from
the alphabet {0} ∪ S. Let σc(t) be the tth value of σc. A station assignment
is a set σ of schedules that models the transmissions from clients to stations.
That is, for each client c ∈ C and time slot t, it is σc(t) = s if c is scheduled
to transmit to station s ∈ S in time slot t, and σc(t) = 0 if c does not transmit
in time slot t. If a client c is scheduled to transmit to a station s we say that c is
assigned to station s. We say that a station that has clients assigned is active ,
and inactive or empty otherwise.

Problem. The Station Assignment problem (SA) is defined as follows. For
a given set of stations and set of clients, obtain a station assignment such that
(i) each client transmits to some station at least once within each period of length
its laxity during its life interval, (ii) in each time slot, no station receives from
clients whose aggregated bandwidth is more than the station capacity. Notice
that, for any finite set of stations, there are sets of clients such that the SA
problem is not solvable. We assume in this work that S is infinite and what we
want to minimize is the number of active stations.

Algorithms. We study reallocation algorithms for SA. That is, the parame-
ters wc and bc needed to assign the client to some station are revealed at time ac,
but the departure time dc is unknown to the algorithm until the client actually
leaves the system (as in online algorithms). Then, at the beginning of time slot t,
an SA reallocation algorithm returns the transmission schedules of all clients that
are active in time slot t, possibly reassigning some clients from one station to
another. (I.e., the schedules of clients that were already active may be changed
from one time slot to another.) We refer to the reassignment of one client as

2 To maintain low station usage, we will assume that the laxity can be relaxed during
reallocation.
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a reallocation , whereas all the reassignments that happen at the beginning of
the same time slot are called a reallocation event .

Performance Metric. Previous work [12] has considered the number of clients
reallocated as the reallocation cost. In the present work, we consider a differ-
ent scenario where the cost of reallocating a client is proportional to resources
requested by that client. Specifically, we assume a cost for the reallocation of
each client c of ρ/wc, where ρ > 0 is a parameter. Then, letting R(ALG, t)
be the cost of the reallocation event incurred by algorithm ALG at time t, and
R(ALG, t) be the set of clients being reallocated, the overall cost is the following.

R(ALG, t) = ρ
∑

c∈R(ALG,t)

1
wc

. (1)

We will drop the specification of the algorithm whenever clear from the context.
With respect to performance, we aim for algorithms with low reallocation

cost and small number of active stations. Unfortunately, these are contradictory
goals. Indeed, the reallocation cost could be zero if no client is reallocated (online
algorithm), but the number of active stations could be as big as the number of
active clients (e.g. initially multiple clients assigned to each station, and then all
but one client from each active station depart). On the other hand, the number
of active stations could be minimized applying an offline algorithm on each time
slot, but the reallocation cost could be large. Thus, we characterize algorithms
with both metrics as follows.

For any SA algorithm ALG, let S(ALG, t) be the number of active stations
at time t in the schedule, let D(ALG, t) be the set of clients departed since the
last reallocation up to time t. Denoting

∑
c∈C′ 1/wc as the weight of the clients

in C ′ ⊆ C, let D(ALG, t) be the weight of the clients departed since the last
reallocation up to time t, that is, D(ALG, t) =

∑
c∈D(ALG,t) 1/wc. Also, we

denote the minimum number of active stations needed at time t as S(OPT, t).
Throughout, we will drop the specification of the algorithm whenever it is clear
from the context. Then, we say that an SA reallocation algorithm ALG achieves
an (α, β)-approximation if the following holds for any input.

max
t

S(ALG, t)
S(OPT, t)

≤ α

max
t

R(ALG, t)
D(ALG, t)

≤ β.

In words, the overhead on the number of stations used by ALG is never more than
a multiplicative factor α over the optimal, and the reallocation cost, amortized
on the “space” left available by departing clients is never more than β. The latter
is well defined since reallocations only occur after departures. Notice that these
ratios are strong guarantees, in the sense that they are the maximum of the ratios
instead of the ratio of the maxima. (This distinction was called previously in the
literature against current load versus against peak load respectively.) Moreover,
the reallocation ratio computed as the maximum over reallocation events is also
stronger than the ratio of cumulative weights since the system started.
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Fig. 1. Illustration of a binary broadcast tree. (a) A depth-2 tree corresponds to peri-
odic broadcast of period 22. (b) Clients are assigned to leaves, e.g., client c with laxity
4 is assigned the black node meaning timeslot 1, 5, 9, etc. are reserved for it. (c) Open
leaf (white node) corresponds to available slot.

4 Algorithms

Broadcast Trees. A common theme in WS algorithms with periodic transmis-
sion schedules is to represent those schedules with Broadcast Trees [6,11,12]. See
Figure 1 for illustration. Throughout the paper, we refer to a set of broadcast
trees as the forest , and to the distance in edges from a node to the root as the
depth . Generalizing, the 2d nodes at depth d in a complete binary tree represent
the time slots t mod 2d (see Figure 1(a)). Then, to indicate that some (periodic)
time slot has been reserved for a client c to transmit to a given station s, we say
informally that c is assigned to the corresponding node in the broadcast tree of s.
Throughout the rest of the paper, we use both indistinctively. Refer to [6,11] for
further details on broadcast trees.

WS Algorithms. Chan et al. [11] presented a WS algorithm preserving the fol-
lowing invariant. For each station, the broadcast tree has at most one available
leaf at each depth. In order to preserve this invariant, when a client departs, the
remaining clients in the same tree are rearranged. If reallocations among trees
are possible, the algorithm Preemptive Reallocation (PR) [12] extended the same
idea to all trees, maintaining the invariant that throughout all trees there is at
most one available leaf at each depth. For laxities that are powers of 2, PR
achieves an optimal station usage. However, we show in Lemma 1 (1) and (2)
that simple modification to PR leads to negative results.

A WS algorithm with provable bounded reallocation cost guarantees was
shown also in [12]. The protocol, called Classified Reallocation (CR), guarantees
that all clients assigned to the same station have the same laxity, except for
one distinguished station that handles all laxities linear and above. To attain
constant amortized reallocation cost, clients are moved to/from the distinguished
station only after the number of clients has halved/doubled. However, for the
reallocation cost function in Equation 1, CR has an arbitrarily bad reallocation
cost ratio, as we show in Lemma 1 (3).



Station Assignment with Reallocation 157

Algorithm 1. Classified Preemptive Reallocation. ��x�� is the largest
power of 2 that is not larger than x. We represent the transmission sched-
ules with broadcast trees. A node with both children available becomes
an available leaf. A station with no client assigned becomes non-active.
〈wlow, whigh〉 are the boundaries of the class of the input client.

1 Algorithm
2 upon arrival or departure of a client c do
3 if arrival then allocate(c, 〈wlow, whigh〉)
4 else consolidate(c, 〈wlow, whigh〉)
5 Procedure allocate(c, 〈wlow, whigh〉)
6 for each depth i = �log wc� − �log wlow� down to 0 do
7 for each active station s of class 〈wlow, whigh, 1/��B/bc��〉 do
8 if there is a leaf � available at depth i in the broadcast tree of s then
9 allocate to � a new subtree with client c assigned at depth

�log wc� − i − �log wlow� of the broadcast subtree
10 return

11 activate a new station s in class 〈wlow, whigh, 1/��B/bc��〉
12 choose one of the leaves � at depth 0 of the broadcast subtrees of s
13 allocate to � a new subtree with client c assigned at depth

�log wc� − �log wlow� of the broadcast subtree

14 Procedure consolidate(c, 〈wlow, whigh〉)
15 for each depth i = �log wc� − �log wlow� down to 1 do
16 if there are two active stations of class 〈wlow, whigh, 1/��B/bc��〉 both

with a leaf at depth i available then reallocate sibling subtree of
smaller weight

17 else return

// reallocations cleared a whole broadcast subtree

18 if there are two active stations of class 〈wlow, whigh, 1/��B/bc��〉 with
empty broadcast subtrees then reallocate a subtree from the station with at
least one empty subtree to the station with exactly one empty subtree

Classified Preemptive Reallocation. The negative results in Lemma 1 apply
to WS. Given that WS is a particular case of SA fixing bc = B for all clients,
the same negative results apply to SA. Thus, should the reallocation cost be
maintained low, a new approach is needed. We present now an online SA proto-
col (Algorithm 1), which we call Classified Preemptive Reallocation (CPR), that
provides guarantees in channel-station usage and reallocation cost. The proto-
col may be summarized as follows. Clients are classified according to laxity and
bandwidth requirements. Upon arrival, a client is allocated to a station within
its corresponding class to guarantee a usage excess (with respect to optimal) of
at most one station per class plus one station throughout all classes. Upon depar-
ture of a client, if necessary to maintain the above-mentioned guarantee, clients
are reallocated, but only within the corresponding class. The protocol includes
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three different classifications providing different trade-offs between reallocation
cost and station usage. We recreate the idea of broadcast trees, but now we have
multiple trees representing the schedule of each station. On one hand, we use
broadcast trees with depth bounded by the class laxities. We call them broad-
cast subtrees to reflect that they are only part of a regular broadcast tree. On
the other hand, we have the multiplicity yielded by the shared station capacity
B. An example of broadcast subtrees can be seen in Figure 2. Further details
follow.

The mechanism to allocate an arriving client can be described as follows.
Upon arrival, a client c is classified according to its laxity and bandwidth require-
ment. Specifically, c is assigned to a class for clients with bandwidth requirement
B/��B/bc�� and laxity in [wlow, whigh), for some wlow and whigh that depend on
the classification chosen. Notice that each station has up to ��B/bc�� · 

wlow��
subtrees. That is, ��B/bc�� ways to share its capacity B and 

wlow�� ways to
share its schedule (see Figure 2). Within its class, we assign c to an available leaf
at depth �log wc� − 
log wlow� in any subtree in the forest (see Figure 2(b)). If
there is no such leaf available, we look at smaller depths up in the forest one by
one. If we find an available leaf at depth 
log wlow� ≤ i < �log wc� − 
log wlow�,
we allocate to that leaf a new subtree with c assigned at depth �log wc� − i with
respect to the root of the broadcast subtree (see Figures 2(a) and 2(c)). If no
such leaf is available at any depth, a new broadcast subtree T is created with c
assigned at depth �log wc� − 
log wlow�, and T is assigned to a newly activated
station. Refer to Algorithm 1 for further details.

The above allocation mechanism maintains the following invariant: (1) there
is at most one leaf available at any depth larger than 
log wlow� of the forest,
and (2) there is at most one station with leaves available at depth 
log wlow� (an
empty broadcast subtree). When a client departs, this invariant is re-established
through reallocations as follows. When a client c departs, if �log wc� > 
log wlow�,
we check if there was already a leaf � available at depth �log wc� − 
log wlow�. If
there was one, either the sibling of c or the sibling of � has to be reallocated to
re-establish the invariant. We greedily choose to reallocate whichever sibling has
smaller weight of the two (see Figure 3(a)). The process does not necessarily stop
here because, if �log wc� − 1 > 
log wlow� and there was a leaf already available
at depth �log wc�−1−
log wlow�, together with the newly available leaf at depth
�log wc� − 1 − 
log wlow� due to the reallocation at depth �log wc� − 
log wlow�,
it yields two leaves available at depth �log wc�−1−
log wlow�. Hence, again one
of the sibling subtrees has to be reallocated (see Figure 3(b)). This transitive
reallocations upwards the forest may continue until a depth where no reallocation
is needed or until the depth 
log wlow�+1 is reached, when the reallocation leaves
a broadcast subtree empty. In the latter case, we reallocate a whole broadcast
subtree so that only one station has empty subtrees and the invariant is re-
established. Refer to Algorithm 1 for further details.

Notice that when a client is reallocated (even within a station) its laxity may
be violated once. Consider for instance the schedule in Figure 1(c). Let wa = 4,
that is, a is transmitting at its lowest possible frequency. If at the end of time
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Fig. 2. Illustration of allocation mechanism. Class: laxities [4, 16), bandwidth 1/2.
Subtrees are depicted connected to a broadcast tree to reflect their location in the
station schedule.

slot 7 client b departs, at the beginning of time slot 8 client a will be reallocated
to the slot of client b, that is, to transmit next in slot 11. This new schedule
violates wa because the previous slot when a transmitted was 5. For WS, in [11]
the issue is approached making a client transmit once more within the original
schedule. As the authors say, this approach introduces a transition delay. In their
model, there is no impact on station usage because their ratio is against peak
load. However, for a ratio against current load such as our model, reserving a
slot for a client in more than one station implies an overhead on channel usage.
Indeed, for any given allocation/reallocation policy, an adversarial input can be
shown so that either the laxity is stretched or the channel usage is not optimal.
Hence, in our model we assume that when a client is reallocated the laxity may
be stretched, folding the cost in the reallocation cost.

5 Analysis

We start with negative results in Lemma 1, which apply to WS, and to SA fixing
bc = B for all clients. The proofs, left to the full paper, are all based on showing
an adversarial client set for which the claim holds.
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Fig. 3. Illustration of reallocation mechanism. Class: laxities [4, 16), bandwidth 1/2.
After the second reallocation Station 2 is left empty and, hence, deactivated. Sub-
trees are depicted connected to a broadcast tree to reflect their location in the station
schedule.

Lemma 1. 1. There exists a client arrival/departure schedule such that, in
Preemptive Reallocation [12], the ratio of number of clients reallocated
against the number of arrivals plus departures is unbounded.

2. For Preemptive Reallocation [12], modified so that the sibling subtree of
smaller weight is reallocated to restore the invariant, rather than the sub-
tree with less clients, the following holds. For any d > 0, there exists a client
arrival/departure schedule such that it is maxt R(t)/D(t) ≥ ρ(2d − 1)2/2d.

3. For any integer x > 0 and any w ≥ 2x+5 arbitrarily big such that w is
a power of 2, there exists a client arrival/departure schedule such that, in
Classified Reallocation [12], it is maxt R(t)/D(t) ≥ ρ/4

7·2x w.

The above lemma shows that the application of previous WS reallocation
algorithms to SA is not feasible. Theorem 1 gives guarantees on station usage
and reallocation cost for CPR. The proof, left to the full paper, shows that the
invariant is re-established after each arrival or departure. Then, competitiveness
on station usage is derived from the invariant properties. Finally, to bound β,
a worst case scenario minimizing the weight of departed clients and maximizing
the reallocated weight is shown. To provide intuition and comparison for the
simulations, we instantiate Theorem 1 on a setting where all laxities are powers
of 2 and all bandwidth requirements are the full capacity of a station.
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Theorem 1. At any time slot t, CPR achieves an (α, β)-approximation as fol-
lows.

α = max
t

4(1 + Γ (ALG, t) + S(OPT, t))
S(OPT, t)

β = max
t

ρ(2��whighmax(t)��/

wlowmax(t)�� − 1).

Where Γ (ALG, t) is the number of classes used by CPR at time t, and whighmax(t)
and wlowmax(t) are the maximum upper and lower limits of a class at time t.

Corollary 1. For a set of clients C such that, for all c ∈ C, it is bc = B and
wc = 2i for some i ≥ 0, and for all t it is wmax(t) > wmin(t) ≥ 4, the following
holds. At any time slot t, CPR achieves an (α, β)-approximation as follows.

1. If the client classification boundaries are [wi, wi+1), where w1 = 1, and wi =
2wi−1, for any i > 1, then

α = 1 + (2 + log(wmax(t)/wmin(t))) /H(C(t))
β = 3ρ.

2. If the client classification boundaries are [wi, wi+1), where w1 = 1, w2 =
2, w3 = 4, and wi = wi−1 log wi−1, for any i > 3, then

α = 1 + (2 + log wmax(t)/ log log wmin(t)) /H(C(t))
β = ρ(2 log wmax(t) − 1).

3. If the client classification boundaries are [wi, wi+1), where w1 = 1, w2 = 2,
and wi = w2

i−1, for any i > 2, then

α = 1 + (2 + log(log wmax(t)/ log wmin(t))) /H(C(t))

β = ρ
(
2
√

wmax(t) − 1
)

.

Where H(C(t)) = 
∑c∈C(t) 1/wc�, wmax(t) = maxc∈C(t) wc, wmin(t) =
minc∈C(t) wc, bmax(t) = maxc∈C(t) bc, and bmin(t) = minc∈C(t) bc.

6 Simulations

In this section, we present the main experimental simulations results of the CPR
algorithm. We highlight here that the classification factor (logarithmic) that
balances station usage and reallocation cost was found through experimentation
with various functions. For the specific cases presented (constant, logarithmic,
and linear factors) we have focused on a scenario where ∀c ∈ C, bc = B and
wc = 2i, i ≥ 0 (as in Corollary 1). Simulations for arbitrary bandwidths and
laxities are left to the full version of this paper.

To evaluate thoroughly the performance of our protocol, we have produced
various sets of clients (recall that each client is characterized by arrival time,
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Fig. 4. Worst case α vs. β. |C| = 4000, wmax = 1024, wmin = 1, ρ = 1.

departure time, and laxity). The laxity of each client was chosen independently at
random from {1, 2, 4, . . . , 1024}, with a distribution biased towards large laxities.
More precisely, for each client c, wc = 1 with probability 1/1024, or wc = 2i with
probability 2i/211, for 1 ≤ i ≤ 10. For n = 4000 clients, time was discretized
in 2n slots. The arrival time of each client was chosen: (a) uniformly at random
within [1, 2n]; (b) in 3 batches of n/3 clients arriving at t = 1, t = n/2, and t = n;
and (c) as a Poisson process with rate 0.7. For each client, the departure time
was chosen uniformly at random from the interval [ta, 2n], where ta is the time of
arrival of such client. With respect to the protocol, three different classification
factors: constant, logarithmic, and linear, were used.

For each of the nine scenarios arising from the combination of the variants,
we evaluated experimentally the (α, β)-approximation of CPR. Our simulations
showed that the performance in practical settings is as expected or better than
the theoretical bounds. The reallocation vs. departures weight ratio (bounded
by β) is around 1 most of the time for all three algorithms. On the other hand,
after a period upon initial arrivals and a period before last departures, the sta-
tion usage ratio against H(C(t)), which is only a lower bound of the optimal,
(bounded by β) is most of the time below 2.

To evaluate the behavior of our algorithms in adverse conditions, we extended
the number of cases considering |C| = 4000, 8000, and 16000 clients, and the
range of laxities to {16, 32, 64, . . . , wmax}, for wmax = 1024, 4096, and 16384.
The laxities were drawn uniformly at random. These cases, combined with the
arrival distributions and the classification factors, yielded 81 scenarios tested.
We observed that the trade-offs between α and β according to the algorithm
used apply to all these scenarios. Indeed, having more clients and setting higher
wmax does not affect the trade-offs, only their magnitude as expected from the
functions bounding α and β in Corollary 1. Should the reallocation ratio be
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minimized, the constant factor classification achieves better performance at a
higher station usage. On the other hand, if channel usage must be kept low, the
linear factor classification performs better incurring in higher reallocation cost.
The logarithmic factor balances both costs. Figure 4 illustrates these trade offs
for one of the scenarios. In comparison with the bounds proved in Corollary 1,
for the scenarios simulated CPR behaves better than expected.
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Abstract. We propose a new variant of the more standard online
knapsack problem where the only information missing to the provided
instances is the capacity B of the knapsack. We refer to this problem as
the online Knapsack of Unknown Capacity problem. Any algorithm must
provide a strategy for ordering the items that are inserted in the knapsack
in an online fashion, until the actual capacity of the knapsack is revealed
and the last inserted item might not fit in. Apart from the interest in a
new version of the fundamental knapsack problem, the motivations that
lead to define this new variant come from energy consumption constraints
in smartphone communications. We do provide lower and upper bounds
to the problem for various cases. In general, we design an optimal algo-
rithm admitting a 1

2
-competitive ratio. When all items admit uniform

ratio of profit over size, our algorithm provides a 49
86

= .569 . . . competi-
tive ratio that leaves some gap with the provided bound of 1

ϕ
= .618 . . .,

the inverse of the golden number. We then conduct experimental anal-
ysis for the competitive ratio guaranteed algorithms compared to the
optimum and to various heuristics.

1 Introduction

In this paper, we consider a new variant of the knapsack problem where we are
given with a set of items {a1, a2, . . . , an}, each associated with a profit p(ai)
and a size s(ai), 1 ≤ i ≤ n. The capacity B of the knapsack itself is unknown.

A resolution algorithm must provide the order in which the items have to be
inserted in the knapsack. Capacity B is then revealed in an online fashion, so
that the capability to substitute items already inserted is not applicable. The
solution found by the algorithm is given by the initial sequence of consecutive
items that completely fit in the knapsack, while all subsequent items, including
the first one that does not fit, are ignored.

We are interested in designing an online algorithm for the proposed variant
of the knapsack problem with a ‘good’ competitive ratio guarantee. We remind
that the competitive ratio of an online algorithm is defined as the ratio between

Research partially supported by the Research Grant 2010N5K7EB ‘PRIN 2010’ ARS
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the gain incurred by such an algorithm and that of an optimal solution provided
by an offline algorithm.

It is easy to show that the problem defined so far does not admit any constant
competitive ratio. An instance can be provided with two items a1 and a2 such
that s(a1) = 1, s(a2) = 1 + ε, p(a1) = 1, p(a2) = ∞, and the capacity B chosen
by the adversary is either 1 or 1 + ε. Any deterministic online algorithm will
be infinitely worse than the offline algorithm on at least one of the inputs. In
fact, if the online algorithm chooses to insert a1, then B = 1 + ε provides a bad
performance, as well as if the algorithm chooses to insert a2 and B = 1 because a2

does not fit into the knapsack. Further constraints are then necessary in order
to be able to guarantee a reasonable competitive ratio. We want to consider
the minimal set of constraints that permits to obtain significant results. We
simply assume that each item has size not bigger than B. Actually, the constraint
on the capacity B arises from practical observations conducted on smartphone
communications. In fact, beyond the interest on the new combinatorial problem,
it turns out that the issue of saving energy in smartphone communications is well
related to our variant of knapsack. It has been observed that while serving some
tasks, a smartphone may optimize the available bandwidth by parallelizing other
services. Parallel communications (e.g., voice call and data transfer) turn out to
require less energy than their stand-alone execution (see, e.g. [2]). This can be
modeled by our new knapsack problem, for instance considering a voice call as
the knapsack - we do not know the call duration before it ends - and available
data to upload or download as items to be inserted in the knapsack. Each item
is associated with a profit which represents the energy saved by performing the
data transfer in parallel with the voice call, and a size which is the duration of
the data transfer adapted to the available bandwidth.

Summarizing, we consider the knapsack problem with unknown capacity B
and we assume that each of the items fits within capacity B that will be revealed
in an online fashion. So, the only constraint we assume on the capacity of the
knapsack is B ≥ smax = max1≤i≤n{s(ai)}. We refer to this problem as the
online Knapsack of Unknown Capacity problem, KUC for short.

1.1 Related Work

While there is much literature concerning the variant of the knapsack prob-
lem where B is known and the items appear online, or follow some probability
distribution, little has been done with respect to the case of unknown B.

The knapsack problem with known B and items appearing online was first
studied in [12] where it has been shown that non-trivial competitive algorithms
do not exist for the general case. Many special cases of the basic online knap-
sack version have been studied (see, e.g. [3,17]). These include stochastic online
knapsack problem [9,11,16], the removable online knapsack problem [6–8] and
the online partially fractional knapsack problems [15]. None of them do imply
our assumptions.

To the best of our knowledge, the only paper dealing with the KUC prob-
lem without any constraint on the capacity of the knapsack is [14]. The authors
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consider the problem from a robustness point of view, rather than our online
acceptation (see [1,10] and references therein for a survey on robustness). Never-
theless, providing a robustness factor for their problem would result in a compet-
itive ratio for our problem. As shown above, without any further constraint the
problem defined does not admit any reasonable competitive ratio. The authors
of [14] then study the problem with respect to the so called instance-sensitive
performance guarantees. This is a very interesting way for designing specific algo-
rithms with respect to each input instance. This permits to design a PTAS to
achieve a competitive ratio arbitrarily close to the best possible factor for every
specific instance but not in general.

In [5], still the capacity B of the knapsack is unknown. In contrast to our
model, whenever an item does not fit in the knapsack, it is discarded but the
remaining items still can be inserted if they fit in. With this variant, two algo-
rithms are presented: the first provides a general 1

2 -competitive ratio; the sec-
ond provides a competitive ratio equal to the inverse of the golden number,
1
ϕ = .618 . . ., holding when all items admit the same profit over size ratio. Both
factors are shown to be optimal by providing two lower bounds for the two cases.
As we are going to see we borrow from them the lower bounds that hold also for
our model, whereas we cannot do the same for their algorithms.

Another paper dealing with a similar variant of our KUC problem is [4]. The
authors assume that B is not fixed but it is modeled as a random variable whose
distribution is assumed to be known. They provide an optimal formulation in
terms of integer linear programming, and then conduct experimental studies.

1.2 Our Results

We do provide lower and upper bounds to the problem for the general case
and for instances where the ratio between the profit and the size of each item
is uniform. In the former case our algorithm admits an optimal 1

2 -competitive
ratio. The lower bound of 1

2 is borrowed from [5]. In addition, we show that the
competitive ratio of our algorithm grows like function x−1

x , x > 2 as long as B
grows like x ·smax, and that this trend is optimal. The achieved time complexity
is O(n log n), with n being the number of given items.

In the uniform case, our algorithm provides a 49
86 = .569 . . . competitive ratio

while the lower bound is 1
ϕ = .618 . . ., the inverse of the golden number. The

achieved time complexity is linear in the number of given items.
As last theoretical result, we show that the algorithm designed for the uniform

case can be sometimes useful also in general. Given an instance I of KUC, let
psm and psM be the minimum and the maximum ratios, respectively, of profit
over size provided by the items in I. We can obtain a competitive ratio of 49

86
psm

psM

that might be better than 1
2 when the two values psm and psM are sufficiently

close to each other.
We then conduct experimental analysis for the competitive ratio guaranteed

algorithms compared to the optimum and to various heuristics. Experiments are
conducted on random data and synthetic daily smartphone communications.
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2 Solving the Online KUC Problem

In this section, we do provide our theoretical results concerning lower and upper
bounds for the online Knapsack Unknown Capacity problem. Actually, our prob-
lem admits the same lower bound of 1

2 provided in [5].

Theorem 1 ([5]). Any online algorithm cannot achieve a competitive ratio
greater than 1

2 + ρ, for any ρ > 0.

The proof proceeds by defining a family of instances. For every item i of an
instance of n items, there is a capacity B, such that by inserting item i as first
can only lead to a solution worse than the optimum by a factor of at least 1

(2− 4
n )

.

This approaches 1
2 from above for increasing values of n. The instance is given

setting s(ai) = Fn + Fi − 1 and p(ai) = 1 + i
n , with Fi being the i-th Fibonacci

number (F1 = 1, F2 = 1, and Fi = Fi−1 + Fi−2). If the first item inserted by
any online algorithm is ai, i ≥ 3, then B is chosen by the adversary equal to
2Fn + Fi − 2, whereas if i < 3 then B is set to 2Fn − 1. In any case, no further
items can be inserted in the knapsack.

Theorem 2. Any online algorithm cannot achieve a competitive ratio greater
than x−1

x + ρ, for any x > 2 and any ρ > 0 (even though items admit uniform
ratio of profit over size).

Proof. Consider the case with items admitting uniform ratio of profit over size.
We define a family of instances as follows. There are always two “big” items of
size smax and k “small” items of size ε < 1

2 , such that k · ε = c · smax, for some
c > 1. Varying on c defines different instances. We now define the adversary
behavior and then we look for the best strategy in terms of competitive ratio
guarantee. The adversary fixes B to cut the first big item of size smax inserted
by any algorithm A, unless such an item is inserted as first. In this latter case,
the adversary fixes B to cut the second big item inserted by A. The cut is such
that the item does not fit in the knapsack for just an ε space. If SOL is the profit
achieved by A, then the optimal solution achieves SOL + smax − ε. In order to
obtain the best competitive ratio, it is desirable that A inserts as first element
a big one, and then postpones the insertion of the second big item as much as
possible, hence obtaining: SOL

OPT ≤ SOL
SOL+smax−ε ≤ smax+kε

2smax+(k−1)ε = (c+1)smax

(c+2)smax−ε =
x−1

x + ρ for any x > 2 and any ρ > 0. ��
As absolute value, the above theorem provides a useless bound greater than

that achieved by Theorem 1. In fact, function x−1
x , tends to one as x grows.

However, the importance of the statement resides in observing that when the
capacity of the knapsack B grows, the competitive ratio of any algorithm cannot
grow better than function x−1

x + ρ as for any x > 2 there always exists an
instance where any algorithm cannot guarantee a competitive ratio greater than
that function.

We now provide a new greedy algorithm, called greedy-KUC, that in gen-
eral guarantees a competitive ratio of 1

2 . The algorithm is optimal with respect
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to the absolute lower bound. Moreover, we show that it is optimal also when-
ever the capacity B of the knapsack reveals to be greater than 2smax. This is
particularly important as the 1

2 ratio can be forced only for small values of B.
The algorithm makes use of the substitution technique usually exploited by

greedy algorithms in the offline knapsack problem. This allows to replace an item
already inserted in the knapsack with one not yet included in the solution. Since
the capacity B of the knapsack is unknown, we cannot apply substitution to the
whole final solution but only for that arising by assuming B = smax. Indeed,
this is the only known limit for B. Algorithm greedy-KUC works as follows:

– Items are sorted in non-increasing order according to the profit per size unit,
that is, p(ai)

s(ai)
≥ p(ai+1)

s(ai+1)
, for each 1 ≤ i < n;

– Let ai be the first item not fitting in B when considering B = smax;
– If p(ai) >

∑i−1
j=1 p(aj) then move item ai at the first position of the ordered

items;
– Fill the knapsack according to the computed order until the current item

does not fit in.

Note that, the last item considered by the above algorithm is always discarded
unless B reveals to be at least the sum of the size of all items.

Theorem 3. greedy-KUC is 1
2 -competitive, and runs in time O(n log n).

Proof. Let OPT be the optimal solution computed once B is revealed. If B =
smax then the competitive ratio is clearly 1

2 . In fact, in this case our algorithm
works exactly like the basic greedy algorithm for the off-line knapsack (see, [13]).
By increasing B, we can observe the following. Let item ai be the item detected
by greedy-KUC at the second step, and let aj be the first item not fitting in
the knapsack once the actual capacity B is revealed. If j ≤ i, then by the above
arguments still the 1

2 competitive ratio holds, since the items involved are the
same. If j > i, then by the ordering provided at the first step of the algorithm,
all inserted items have the best ratio profit over size. The optimal solution could
have fit the same set of items plus filling up the remaining part of the knapsack
by means of shorter items with respect to aj . This implies OPT < SOL+p(aj).
Moreover, by the defined ordering of the items p(aj) ≤ SOL as otherwise item
aj would have been ranked before other items. Hence, SOL

OPT > SOL
SOL+p(aj)

≥ 1
2 .

For the time complexity, it is sufficient to point out that the most expensive
step of the algorithm is the sorting at the first step. ��

It is worth noting that the competitive ratio of 1
2 is achieved only for small

values of B. To have an idea of the growing of the competitive ratio with respect
to the capacity B, the next corollary can be stated.

Corollary 1. When B = x · smax, for any x > 2, greedy-KUC is x−1
x -

competitive.

Proof. It is sufficient to note that when B = x · smax, the optimal solution can
insert more than greedy-KUC at most a set of items such that the sum of their
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sizes cannot be larger than smax. By the provided ordering, the profit of such
a set cannot be greater than the profit that greedy-KUC achieves for each
preceding portion of size smax. ��

This reflects what one expects, that is, the more is the actual capacity B,
the less is the possibility for greedy-KUC to loose with respect to the optimal
solution. Moreover, by Theorem 2 we obtain:

Corollary 2. When B ≥ x · smax, for any x > 2, greedy-KUC is optimal.

3 Uniform Ratio of Profit Over Size

When all items admit the same ratio of profit over size, better bounds can be
provided. For the lower bound, still the one provided in [5] holds.

Theorem 4. Any online algorithm cannot achieve a competitive ratio greater
than 1

ϕ + ρ, for any ρ > 0.

As competitive ratio guarantee, we now define a new algorithm specific for
the case of uniform ratio of profit over size. As we are going to see, we can assure
a competitive ratio of 49

86 .
Given 1 < β < 2 and α > β, Algorithm Uniform-KUC works as follows:

– Items are partitioned into three sets: I1 being items smaller than 1
αsmax, I2

being items not in I1 and smaller than 1
β smax, and I3 being all items greater

than or equal to 1
β smax.

– If I2 �= ∅ or
∑

a∈I1
s(a) ≥ 1

αsmax then insert in the knapsack first the biggest
item of size smax, then

• If
∑

a∈I1
s(a) ≥ 1

αsmax then insert all items from I1, then all items from
I2

• Else insert all items from I2, then all items from I1;
• finally, insert all items from I3;

– Else insert first all items from I3 in the non-decreasing order according to
their size then insert all items from I1.

Theorem 5. Uniform-KUC provides a competitive ratio of 49
86 when items

admit uniform ratio of profit over size. It can be implemented to run in Θ(n)
time. Moreover, when B ≥ x · smax, for any x > 2, Uniform-KUC is optimal.

Proof. Consider the If branch of the algorithm when I2 �= ∅ or
∑

a∈I1
s(a) ≥

1
αsmax. When B is revealed, we distinguish three cases according to the possible
item that Uniform-KUC looses: the item belongs to a) I1; b) I2; or c) I3.
In case a), the algorithm looses an element of size smaller than 1

αsmax with
respect to the optimal solution. Hence the induced competitive ratio is SOL

OPT ≥
SOL

SOL+ 1
α smax

≥ α
1+α . In fact, since items admit uniform ratio of profit over size,

all items inserted by Uniform-KUC provide an optimal profit. So the minimum
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of the above function is obtained for the smallest value of SOL, which is at least
smax. Similarly, in case b) the competitive ratio guarantee is β

1+β . Since α > β,
the competitive ratio obtained for case b) dominates the one obtained for case
a). In case c), SOL is obtained by inserting in the knapsack at least the element
of size smax and one of size 1

αsmax, and the loss item may have been of size

smax. Hence, the competitive ratio guarantee is not smaller than 1+ 1
α

2+ 1
α

= α+1
2α+1 .

In the Else branch of the algorithm, when I2 = ∅ and
∑

a∈I1
s(a) < 1

αsmax,
we distinguish among two cases where Uniform-KUC looses an element belong-
ing to a) I1; b) I3. In case a), the competitive ratio guarantee is again α

1+α . In
fact, elements from I3 have been all inserted in the knapsack and I2 is empty. The
smallest value of SOL is then obtained when it is composed of just the element
of size smax, while the optimum cannot do better than SOL + 1

αsmax. In case
b), since items from I3 are chosen by Uniform-KUC in a non-decreasing order,
then the number of items from I3 in OPT cannot be bigger than the number
inserted by our algorithm. It follows that if SOL is composed by considering the
first c items from I3, the optimal solution can be composed of at most c items
of size smax plus all items from I1. Since

∑
a∈I1

s(a) < 1
αsmax, this provides a

competitive ratio guarantee of SOL
OPT ≥ c 1

β smax

c·smax+
1
α smax

=
c
β

c+ 1
α

≥ α
β(α+1) .

Considering the obtained ratios all together by means of function f(α, β) =
min{ β

1+β , α+1
2α+1 , α

β(α+1)}, we look for the maximum achievable by f(α, β) for 1 <

β < 2 and α > β. By means of numerical evaluations we obtain max f(α, β) =
49
86 = .569 . . . for α = 37

12 and β = 49
37 .

For the time complexity, it is worth noting that the sorting described at the
third step of the algorithm is not fully necessary. In fact, it is sufficient to find out
the smallest three items belonging to I3. If all of them are successfully inserted
in the knapsack, then the algorithm starts behaving as described by Corollary 1
regardless the actual order of the items, and by Corollary 2 it is optimal. ��

Note that there is still some gap between the competitive ratio guaranteed
by Uniform-KUC and the lower bound provided by Theorem 4.

As last result, it is worth nothing that Uniform-KUC can be useful also in
the non-uniform case. Given an instance I of KUC, we remind that psm and psM

denote the minimum and the maximum ratios, respectively, of profit over size
for items in I. Uniform-KUC can be applied on I by considering all items of
profit over size ratio equal to psM . In doing so, the next theorem can be stated.

Theorem 6. Uniform-KUC applied in the non-uniform case provides a com-
petitive ratio of 49

86
psm

psM
.

Proof. Let SOL′ be the profit of the solution provided by Uniform-KUC for
an input instance I when considering all items of profit over size ratio equal to
psM . Let SOL be the profit of the same solution when considering the actual
profits associated to the items. Clearly, SOL′ ≤ psM

psm
SOL. Moreover, OPT ′ ≥

OPT , with OPT ′ being the optimal profit achievable for the modified instance,
and OPT being the optimal profit achievable for the original instance. Then
SOL
OPT ≥ psm

psM

SOL′
OPT ′ , and by Theorem 5 the claim holds. ��
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When 49
86

psm

psM
> 1

2 , the above result provides a better competitive ratio than
that given by Theorem 1. As we are going to see in the next section, this is of
practical interest when dealing with smartphones communications.

4 Experimental Analysis

In this section, we present the performance of our algorithms greedy-KUC and
Uniform-KUC compared with the optimal solution and various heuristics:

Randomize (complexity O(n)): it chooses items in a totally random way;
Decrease (complexity O(n log n)): it chooses items in a non-increasing order

with respect to the size. The rational is to try to insert bigger items at the
beginning rather than after having consumed a portion of the knapsack;

Increase (complexity O(n log n)): it chooses items in a non-decreasing order
with respect to the size. In this way we increase the probability to let the
current item fitting in the knapsack, and to compose a “critical mass” com-
parable with the optimum;

Balance (complexity O(n2)): Let Bmax =
∑n

i=1 s(ai) and St be the size of the
items already inserted in the knapsack. Balance inserts the item a that max-
imizes (Bmax −St −s(a)) ·p(a). Differently from the previous two heuristics,
Balance depends on both the size and the profit of the items;

Uniform-KUC-H (complexity O(n)): let aj be such that p(aj) =
maxn

i=1 p(ai). When items admit different ratios of profit over size, we set
a new profit p′ of each item ai as p′(ai) = p(aj)

s(ai)
s(aj)

. In so doing the new
ratios of profit over size are uniform. After executing Uniform-KUC, we
replace the new profits with the real ones for each item.

In the following, DiffKnap denotes experiments where the size of the knap-
sack vary while keeping the same set of items. DiffItems denotes experiments
where the set of the items grows while keeping the same size for the knapsack.

For each configuration, we run the algorithms on 100 different instances,
and we plot the average results of the obtained competitive ratios. For each
instance, the optimal solution is obtained by the classic Dynamic Programming
algorithm [13]. Since the optimal algorithm requires integer values, we run each
algorithm on approximated instances multiplying s(ai) and B by 102 and using
the ceil of the obtained values. We consider two main scenarios:

Smartphone Scenario. To simulate a real user experience we compare the
algorithms on instances extracted from the dataset described in [2]. The dataset
is synthetic and contains 100 days of smartphone’s usage by a hypothetical user.
For each day, the dataset contains all the arisen communications.

A communication service is characterized by a duration τ , a starting time
and a type. The services are classified in real-time and delay-tolerant. The
type of a real-time service is characterized by a couple (a, b), with a ∈
{Voice call, VoIP call, YouTube, Internet Radio} and b ∈ {3G, 4G, WiFi}. The
type j of a delay-tolerant service is in the set {Download, Upload}.
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Each knapsack represents a real-time service, say R. Let the duration τ of
R be the length B of the knapsack. Each delay-tolerant service represents an
item to be inserted in the knapsack. Let ai be a delay-tolerant service of type
j and (stand-alone) duration τi. When ai is processed in parallel with R (that
is, item ai has been inserted in the knapsack R) then the duration of executing
ai may vary depending on its own type j and the type (a, b) of R. We compute
s(ai) = τispeed(a,b)(j), with speed(a,b)(j) being the time increment in percentage
necessary for executing ai paired with R. Finally, we set p(ai) = τi · gain(a,b)(j),
where gain(a,b)(j) represents the gain in percentage of energy saving when ai

is paired with R. A study summarizing the gains obtained by pairing services
along with the bandwidth values can be found in [2]. Fixed the type of R, there
are only two different ratios of profit over size in the computed instances because
the delay-tolerant services admit only two types, namely Download and Upload.
This allows to optimize the sorting in greedy-KUC so as it works in O(n) time.

In DiffKnap experiments, we firstly extract the delay-tolerant services in
a 12 hours interval and the first real-time service successive to that interval.
The real-time service determines only the type of the knapsack while we vary
the size uniformly in the interval [smax, 10 · smax]. It is worth remarking that
varying on the knapsack type changes the size of the items and hence of smax.
The competitive ratios averaged on 100 different instances are shown in the left
plot of Figure 1 varying x in [1, 10], with B = x · smax.

In DiffItems experiments, we firstly randomly pick a real-time service R as
knapsack, and then we extract groups of items that precede R in such a way that
the sum of their sizes vary in the interval [B, 10 · B]. Precisely, each group will
consist of n items such that the Length Ratio LR =

∑n
i=1 s(ai)/B grows from 1

to 10. The competitive ratios averaged on 100 different instances are shown in
the right plot of Figure 1 varying on LR.

For the uniform case, without loss of generality, we choose only items of
download type. Some results are shown in Figure 2.

Generic Scenario. In this scenario, we generate items with sizes and profits
uniformly distributed in the interval [1, 50], while the knapsack size varies in the
interval [50, 250]. In the uniform case, profits are set equal to the sizes.

In DiffKnap experiments, the set of items is fixed to 10 in each run. The
competitive ratio is evaluated by varying B uniformly in the interval [50, 250].

In DiffItems experiments, B is fixed to 125 in each run. The competitive
ratio is evaluated using a number of items increasing from 5 to 25.

Figures 3 and 4 show the results for algorithms greedy-KUC and Uniform-
KUC, respectively.

Outcomes from the experiments. In general, our greedy-KUC and Uniform-
KUC algorithms behave really well, providing an approximation ratio most of
the times greater than the 90% of the optimum. As shown in the reported results,
the standard deviation of greedy-KUC and Uniform-KUC is also small.

In the DiffKnap experiments, when the size of the knapsack is very large,
almost all the items can be fit in the knapsack, and thus all algorithms tend to the
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Fig. 1. Experiments from the Smartphone Scenario in the non-uniform case
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Fig. 2. Experiments from the Smartphone Scenario in the uniform case

optimum value. In contrast, in the DiffItems experiments, when the number
of items increases, the selection criterium becomes more important, and the
performances of all heuristics, but greedy-KUC and Balance, become worse.

In the Smartphone scenario, both greedy-KUC and Balance reveal a much
better behavior than those of all the other heuristics, see Figure 1. This is due
to the fact that greedy-KUC and Balance make their item selection on the
basis of profit and size, while the other heuristics either select items at random
(Randomize) or based only on the size. It follows that the heuristics not taking
into account both the criteria poorly perform.

It is worthy to note that when psm and psM are close, the choice of a ‘wrong’
item implies a smaller loss than when psM >> psm, and thus all the heuristics
improve their performance. In Figure 1, for instance, in Voip Call on 3G we have
psm = .235 and psM = 1.9, and the curves are set apart one from the other.
Contrary, in Figure 2 that shows the uniform case (i.e., psm = psM ), curves are
very close to each other.



Online Knapsack of Unknown Capacity 175

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250

C
om

pe
tit

iv
e 

R
at

io

B

DiffKnap

Greedy-KUC
Uniform-KUC-H

Randomize
Balance

Increase
Decrease

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

n

DiffItems

Fig. 3. Experiments from the Generic Scenario in the non-uniform case

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250

C
om

pe
tit

iv
e 

R
at

io

B

DiffKnap

Uniform-KUC Randomize Increase Decrease

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

n

DiffItems

Fig. 4. Experiments from the Generic Scenario in the uniform case

In the Generic scenario, Figure 3 reports the results when the ratios of profit
over size assume a larger set of possible values. The different ratios do not seem
to influence much greedy-KUC, while a deeper impact is faced for the other
heuristics. The Decrease heuristic is always the worse since it takes always the
highest risk. Clearly, the paid penalty is higher for small values of B. In the
uniform case, reported in Figure 4, again the differences become less extreme, and
the curves appear flatten towards the up border of the figure. In the DiffKnap
experiments, since the items are longer it appears that the knapsack is saturated
less frequently than in the Smartphone scenario and thus the curves do not easily
reach the optimum value.

5 Conclusion

We have proposed a new variant of the more standard online knapsack problem
where the only information missing to the provided instances is the capacity B
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of the knapsack. We have designed optimal or near optimal algorithms both for
the general and more specific cases. Apart from the interest in a new version of
the fundamental knapsack problem, the motivations that lead to define this new
variant come from energy saving constraints in smartphone communications. We
have provided experimental analysis for the competitive ratio guaranteed algo-
rithms compared to various heuristics. As the experiments have been conducted
on simulators, it would be interesting to check the behavior and the effectiveness
of our algorithms on real smartphones.
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Abstract. Recently, there have been many successful applications of
optimization algorithms that solve a sequence of quite similar mixed-
integer programs (MIPs) as subproblems. Traditionally, each problem
in the sequence is solved from scratch. In this paper we consider reop-
timization techniques that try to benefit from information obtained by
solving previous problems of the sequence. We focus on the case that
subsequent MIPs differ only in the objective function or that the feasible
region is reduced. We propose extensions of the very complex branch-and-
bound algorithms employed by general MIP solvers based on the idea to
“warmstart” using the final search frontier of the preceding solver run.
We extend the academic MIP solver SCIP by these techniques to obtain a
reoptimizing branch-and-bound solver and report computational results
which show the effectiveness of the approach.

1 Introduction

In the last decades many powerful decomposition- and reformulation-based tech-
niques for solving hard optimization problems were developed, e.g., column gen-
eration and Lagrangian relaxation. These methods decompose a problem into a
master problem and several subproblems which are repeatedly solved to update
the master problem. Frequently, the subproblems solved in successive iterations
differ only in the cost vector, reflecting updated information from the master
problem. It is a natural idea to exploit this property in order to improve the
running time of the overall algorithm for solving the master problem. Methods
to achieve this are known as reoptimization techniques. They have been investi-
gated in the context of decomposition methods, e.g., in the context of Lagrangian
relaxation [20], column generation [8], and for generic branch-and-bound [17].

In the literature, reoptimization techniques have been investigated for poly-
nomial solvable problems mainly, e.g., the shortest path problem [21] or the min
cost flow problem [12]. This is partly due to the fact that traditionally, decom-
position methods have been applied such that the resulting subproblems are
(pseudo)polynomially solvable. More recently, Mixed Integer Programs (MIPs)
have been used as subproblems, e.g., for cut generation [10,11] or in generic
decomposition schemes [14,22] and corresponding solvers [9,15]. The resulting
subproblems are solved by standard MIP solvers, which are very sophisticated
branch-and-bound algorithms. Thus there is a need for reoptimization techniques
in MIP solvers to benefit from the knowledge obtained in previous iterations.

One of the first investigations on reoptimizing MIPs was done by Güzelsoy
and Ralphs [16,23]. They addressed sequences of MIPs that differ only in the
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 181–192, 2015.
DOI: 10.1007/978-3-319-20086-6 14
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right-hand side. Their approach is mainly based on duality theory, which they
employed to develop techniques for “warm starting” using dual information
obtained through primal algorithms. Our approach to reoptimizing MIPs is sim-
ilar to the One-Tree algorithm [6] for generating multiple solutions of a single
MIP. Similar techniques have also been used in [18] to benefit from a preliminary
restricted branching phase when solving a single MIP instance.

In this paper, we propose a reoptimizing variant of the general LP-based
branch-and-bound algorithm used by modern MIP solvers. It is based on the
idea [17] to “continue” the search at the last known search frontier of the branch-
and-bound tree. As the performance of state-of-the-art MIP solvers is based to
a substantial extend on exploiting dual information, we introduce a mechanism
to deal with this. This mechanism is in particular applied to cope with strong
branching. It is intuitively clear that continuing the solving process is a poor
idea if the objective function has changed a lot or the search frontier is rather
huge. To deal with the first situation, we use a similarity measure for objective
functions to decide whether to reoptimize or to start from scratch. Moreover,
we propose heuristics to start with a reduced search frontier that is still based
on the previous one. Our ideas have been carefully implemented using the MIP
solver SCIP [2,25]. We test our reoptimization techniques on sequences aris-
ing from the generic column generation solver GCG [15] and on instances of the
k-constrained shortest path problem arising from a ship navigation problem1.
More details and computational results can be found in the master thesis of the
last author[27].

The paper is outlined as follows. Sec. 2 provides a summary of the relevant
ingredients of a state-of-the-art MIP solver (i.e., SCIP) together with an in-depth
motivation to reoptimization for MIPs. Sec. 3 presents our technical contribu-
tions summarized above. Computational results are discussed in Sec. 4. Finally,
Sec. 5 concludes the paper.

2 Mixed Integer Programming and Reoptimization

In this paper we consider mixed integer linear programs (MIPs) of the form

zMIP = min{cT x : Ax ≥ b, � ≤ x ≤ u, xi ∈ Z for all i ∈ I} (1)

with objective function c ∈ R
n, constraint matrix A ∈ R

m×n and constraint
right-hand sides b ∈ R

m, variable lower and upper bounds �, u ∈ R̄
n where

R̄ := R ∪ {±∞}, and a subset I ⊆ N = {1, . . . , n} of variables which need to
be integral in every feasible solution. In the remainder of the paper, we focus on
mixed-binary programs, i.e., MIPs with �i = 0, ui = 1 for all i ∈ I.

When omitting the integrality restrictions, we obtain the linear program (LP)

zLP = min{cT x : Ax ≥ b, � ≤ x ≤ u}. (2)

1 Thanks to Mirai Tanaka from Tokyo Institute of Technology and Kazuhiro Kobayashi
from National Maritime Research Institute Japan for providing the instances.
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It is a relation of the corresponding MIP and provides a lower bound on its opti-
mum, i.e., zLP ≤ zMIP . This fact plays an important role in the most widely used
method to solve general MIPs, the LP-based branch-and-bound method [5,19].
It is a divide-and-conquer method which starts by solving the LP relaxation
of the problem to compute a lower bound and a solution candidate x�. If x�

fulfills the integrality restrictions, the problem is solved to optimality, if not,
it is split into (typically) two disjoint subproblems, thereby removing x� from
both feasible LP regions. Typically, a fractional variable xi, i ∈ I with x�

i /∈ Z

is selected and the restrictions xi ≥ �x�
i 	 and xi ≤ 
x�

i � are added to the two
subproblems, respectively. This step is called branching. While this process is
iterated, we store and update the best solution x̄ found so far whenever one
of the subproblems has an integral LP solution. The key observation is that a
subproblem can be disregarded when its lower bound is not smaller than the
objective value of x̄. This is called bounding. This leads to the following cases
that need to be distinguished when regarding a subproblem:

1. the LP relaxation is infeasible: the subproblem can be disregarded
2. x� is integral: the subproblem is solved to optimality
3. cT x� ≥ cT x̄: the current subproblem can be disregarded due to bounding
4. else: the current subproblem is split (branching).

The branch-and-bound process is typically illustrated as a tree. The root
node represents the original problem and the two subproblems created by the
branching step correspond to two child nodes being created for the current node.

This general scheme is extended by various algorithms to enhance the per-
formance (see [1]). We briefly sketch those advanced components that we need
to handle specifically in the context of reoptimization. One of these components
is presolving, which is done before the branch-and-bound process starts and ana-
lyzes the problem, removes redundancies and tightens the formulation. A reduced
form of this, called domain propagation, is also done during the branch-and-
bound phase before the LP relaxation of a node is solved. For more details,
we refer to [1,24]. Finally, the decision on which variable to branch is of high
importance for a fast convergence. It is typically supported by a technique called
strong branching [3]. Strong branching precomputes lower bounds for potential
child nodes of a candidate variable by solving auxiliary LPs with the branching
bound change added. Besides providing very accurate lower bound predictions,
it can also deduce bound changes or even infeasibility of the current node, if one
or both of the regarded children for a candidate variable are infeasible or their
lower bound exceeds the upper bound.

All these reductions can be divided into two classes: primal and dual reduc-
tions. The former are based only on feasibility arguments and remove only infea-
sible parts of the search space. In contrast to that, dual reductions are based
on an optimality argument and may exclude feasible solutions as long as they
retain at least one optimal solution. Therefore, dual reductions are not neces-
sarily valid anymore if the objective is changed and we need to treat them with
care in the reoptimization context.
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Reoptimization for General MIP. In recent years, there is a growing interest
in reoptimization techniques for MIP solvers. One of the major applications is
the repeated solution of pricing problems within generic branch-cut-and-price
solvers. Those solvers are based on a Dantzig-Wolfe decomposition [7] of the
given original problem. The resulting problem is solved by a column generation
approach, i.e., the LP relaxation is solved with just a subset of the variables
and improving variables are searched for by solving the pricing problem, which
is a MIP whose objective function depends on the current LP solution. For
more details on generic branch-cut-and-price, we refer to [13,14,22]. Since the
pricing problem is solved repeatedly with updated objective function, this would
greatly benefit from an effective reoptimization technique and is thus our main
application in the following.

Another application of reoptimization is the computation of the k best solu-
tions of binary programs. This can be accomplished by iteratively solving the
problem to optimality and excluding each optimal solution x̄ for the next itera-
tion by a logic-or constraint.

Definition 1 (Logic-or Constraint). Let B ⊆ I be a set of binary variables
and C−, C+ ⊆ B disjoint subsets. A logic-or constraint has the form

∑

i∈C−
xi +

∑

j∈C+

(1 − xj) ≥ 1. (3)

As a shortcut, we use the notation x(C−, C+) :=
∑

i∈C− xi +
∑

j∈C+(1 − xj).
As can easily be seen, the logic-or constraint with C− = {i ∈ I | x̄i = 0} and
C+ = {i ∈ I | x̄i = 1} forbids the optimal solution x̄ and no other solution.
Logic-or constraints play an important role in the remainder of this paper. Note
that the sets C− and C+ do not need to be a partition of the variable set, but
can also cover only a part of the variables in order to exclude all solutions with
these variables set to the given values.

While there are more efficient ways to compute the k best solutions for a
fixed k, the iterated approach proves useful if the limit k is decided during the
optimization process. An example for this case is a mixed-integer nonlinear ship
navigation problem investigated by Mirai Tanaka and Kazuhiro Kobayashi [26].
They repeatedly solve a MIP relaxation of the problem to compute a lower
bound and a solution candidate. For this candidate, exact costs are computed
and it is excluded from the MIP relaxation. The procedure continues until the
MIP lower bound exceeds the cost of the best solution found. Therefore, the
number k of best solutions needed cannot be determined a priori and an iterated
approach is preferred. In contrast to the reoptimization for branch-cut-and-price,
the difference between two iterations is not in the objective function, but the
additional constraint excluding the previously computed optimum.

In the following section, we will discuss how these two applications of reop-
timization cases can be handled within a state-of-the-art MIP solver.
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3 Extending SCIP to a Reoptimizing Branch-and-Bound
Solver

For our approach we follow the ideas of [17]. Consider the sequence of MIPs

(Pi) min
{
cT
i x | Ax ≥ b, � ≤ x ≤ u, xi ∈ Z

}
for all i ∈ I (4)

for a given sequence of objective vectors (ci)i∈I , for some index set I =
{1, . . . , m}. Moreover, let S be the function mapping an optimization problem
P ⊆ Pi to its set of feasible solutions X. Solving one problem of this sequence
with a standard LP-based branch-and-bound algorithm up to a given stopping
criterion, e.g., optimality, provides search space dividing subsets:

– a set of subproblems with an infeasible LP relaxation,
– a set Pobj of subproblems that have been either pruned due to bounding or

are solved to optimality,
– a set Σ of all feasible solutions found so far, and
– the set Po of as-yet unprocessed subproblems,

such that X = S(Po) ∪ S(Pobj) ∪ Σ holds, where S(Po) and S(Pobj) denote the
set of solutions of Po and Pobj , respectively. Usually, the set Po is empty at the
end of the computation and there are open nodes only if the solving process
terminates due to a stopping criterion different to optimality, e.g., time limit.

We call the solving process of (Pi) an iteration. To summarize the basic idea
consider two iterations i, i+1. The authors of [17] proposed that solving Pi+1 can
be started at the last search frontier of iteration i. The set of leaf nodes generated
in iteration i can be divided into the sets of unprocessed nodes (Po) and nodes
pruned because their dual bound exceeds the best known primal bound (Pobj).
Additionally, all feasible solutions found during the solving process of Pi are
collected in Σ. Obviously, by changing the objective function ci to ci+1 from
iteration i to i + 1, subproblems that are discarded since the LP relaxation is
infeasible cannot become feasible. Thus, an optimal solution of Pi has to be in
S(Po), S(Pobj) or Σ. Therefore, in the next iteration, we restore all subproblems
in Po ∩ Pobj as children of the root node. Additionally, all solutions from Σ are
added to the solution pool. Note that in case additional constraints were added,
we can apply this method as well but need to check these solutions for feasibility.

Additionally, we define a set Pf ⊆ Pobj which contains all subproblems with
an integral LP solution. We use this set in Sec. 3.2 where we present two heuris-
tics which operate on the set of feasible nodes Pf only.

3.1 Handling Dual Information

Most state-of-the-art MIP solvers use, in addition to branch-and-bound, various
preprocessing and domain propagation techniques. In connection with reopti-
mization, we have to be very careful when using these techniques. Dual meth-
ods provide bound changes based on the current objective function. Thus, the
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pruned part, i.e., the subproblem discarded by fixing variables, could contain fea-
sible solutions which might be of interest after changing the objective function.
Hence, it is necessary to disable all dual methods or treat them with special care.
In the following we focus on binary and mixed binary programs of the form (1),
where {li, ui} = {0, 1} for all i ∈ I. Let us denote the set of binary variables
by B. Moreover, consider a subproblem P of P and a method D based on dual
information. Calling D for P fixes variables C = C− ∪ C+ ⊆ B to 0 and 1,
respectively, where C− = {i ∈ C | xi = 0} and C+ = {i ∈ C | xi = 1}. There
are two ways to deal with these fixings. On the one hand, we can remember
the subproblem P as before calling D and forget all decisions in the subtree
induced by P. The disadvantage of this approach is that some methods using
dual information, e.g., strong branching, provide the most advantage at the root
node. Thus, revoking these decisions will lead to the original problem P. Hence,
we do not benefit from reoptimizing. On the other hand, we can ensure that the
pruned part may be reconstructed in the next iteration. In this paper we will
follow the latter approach. The idea is to split problem P ⊆ P into two nodes
at the beginning of the next iteration. The first node corresponds to P with all
fixings C− ∪ C+; the second node corresponds to P with an additional logic-or
constraint C depending on C− and C+. This logic-or constraint ensures that at
least one variable get value different from the fixings C− ∪ C+.

Theorem 2. Let P be a binary or mixed binary problem, P ⊆ P a subprob-
lem, and C−, C+ ⊆ B disjoint sets of binary variables. A complete and disjoint
representation of the solution space S(P) of P is given by S(PF)∪S(PC), where

S(PF) = S(P) ∩ {x ∈ R
n | xi = 0 ∀i ∈ C− and xj = 1 ∀j ∈ C+} (5)

S(PC) = S(P) ∩ {x ∈ R
n | x(C−, C+) ≥ 1}, (6)

i.e., S(PC) contains all solutions with at least one variable xi = 1 or xj = 0 for
i ∈ C− and j ∈ C+.

Proof. We only have to focus on variables xi with i ∈ C+ ∪ C−. Assume S(PF)
and S(PC) are not disjoint. Let x ∈ S(PF) ∩ S(PC). By definition of S(PF)
the solution x has to fulfill xi = 0 and xj = 1, for all i ∈ C− and j ∈ C+.
Thus, the constraint x(C−, C+) ≥ 1 is violated by x. Hence, x /∈ S(PC) and
S(PF) ∩ S(PC) = ∅. Finally, consider x ∈ P and assume x /∈ S(PF) ∪ S(PC).
Since x /∈ S(PF) at least one variable i ∈ C− and j ∈ C+ needs to be different
from xi = 0 and xj = 1, respectively. Hence, by the definition of S(PC) it follows
x ∈ S(PC), which is a contradiction. ��

3.2 Heuristics

In the following we present a primal heuristic which is fitted to column generation
and two heuristics for reducing the size of the search frontier that needs to be
reoptimized. The latter heuristics – so-called compression heuristics – are needed
because we have to solve the whole stored search frontier to prove optimality.
Hence, a small search frontier of “good quality” would be desirable.
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A Primal Heuristic: Trivialnegation. Consider a binary or mixed binary
optimization problem P with n variables and two objective vectors c, c̃ ∈ R

n.
Furthermore, let x� ∈ P be an optimal solution with cT x� = minx∈P cT x. The
impact of variable i ∈ B w.r.t. c and c̃ is defined by

Ψi =

{
1 if sgn(ci) · sgn(c̃i) ≤ 0 and ci �= 0 ∨ c̃i �= 0
0 otherwise.

Based on the impact Ψi of a variable i ∈ B we construct a (not necessarily
feasible) solution candidate x̃B for each subset B ⊆ B by setting x̃B

i = 1 − x�
i if

Ψi = 1 and x̃B
i = x�

i otherwise.

Compressing the Search Tree. Consider a search tree with nodes V and the
set of leaf nodes Vleaf ⊆ V resulting from solving a (mixed) binary optimization
problem consisting of n variables with a branch-and-bound algorithm. Each node
v ∈ V corresponds to a subproblem

(Pv) min{cT x : Avx ≥ bv, �v ≤ x ≤ uv, xi ∈ Z for all i ∈ I}, (7)

where the constraint set Avx ≥ bv contains all constraints Ax ≥ b plus other
constraints added during the branch-and-bound procedure, e.g., logic-or con-
straints. For each subproblem the set of binary variables can be partitioned into
a set of unfixed variables, i.e., �v

i < uv
i , and the sets

X0
v = {i ∈ B | uv

i = 0} and X1
v = {i ∈ B | �v

i = 1}.

The key idea of our compression heuristics is to find a set of subproblems Pr, r ∈
R of the form (7), such that each leaf v ∈ Vleaf is represented by a unique r
(for short: r � v), i.e., S(Pv) ⊆ S(Pr). Moreover, we classify the quality of a
representative by the loss of information w.r.t. the represented leaves

loss(Vleaf , r) =
∑

v∈Vleaf : r�v

|(X0
v ∪ X1

v

) \ (
X0

r ∪ X1
r

)| (8)

and the quality of a set R by the sum of losses of information for its represen-
tatives r ∈ R.

To keep the search frontier small we use two heuristics. The first heuristic
is called largest representative and reduces the search frontier to two nodes. In
this paper we describe the basic idea only and refer to [27] for more details.
Consider a subset of leaf nodes W ⊆ Vleaf . Based on an arbitrary node v ∈ W
we construct a representative r iteratively. First, we set X0

r = X0
v and X1

r = X1
v .

Afterwards, we add each node w ∈ W greedily to the set of represented nodes
as long as r and w have at least one common fixed variable and we update

X0
r ← X0

r ∩ X0
w and X1

r ← X1
r ∩ X1

w.
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The compressed search frontier is then given by Pr
F and Pr

C, where

S(Pr
F) = S(P) ∩ {x ∈ R

n | xi = 0∀i ∈ X0
r and xi = 1∀i ∈ X1

r }
S(Pr

C) = S(P) ∩ {x ∈ R
n | x(X0

r ,X1
r ) ≥ 1}.

Since we are interested in finding good solutions fast, we run the heuristic on the
set of feasible nodes Pf only. Moreover, to ensure that the compressed search
frontier is as good as possible we run the procedure for each node v ∈ Pf and
choose the representation with minimal loss of information.

The second heuristic is called weak compression and we have to distinguish
between trees where the only difference between nodes are the sets of fixed
variables (Av = A) and trees with additionally added constraints, e.g., logic-or
constraints. Due to page limitation we give the basic ideas only and refer to [27]
for a complete description. Consider a tree without added constraints, its search
frontier Vleaf and a subset of leaf nodes W ⊆ Vleaf . For each node v ∈ W let v be
a representative for itself. This leads to |W | disjoint representatives. To ensure
that the representation is complete, i.e., no feasible solution gets lost, we need to
construct a subproblem covering S(P) \⋃

v∈W S(Pv). Such a representative can
be constructed as before using Theorem 2, i.e., by including a logic-or constraint
for each v ∈ W . Therefore, a complete representation of the search frontier is
given by R = {Pv1 , . . . ,Pvk ,PCW

}, where W = {v1, . . . , vk} and

S(PCW
) = S(P) ∩

⋂

v∈W

{x ∈ R
n | x(X0

v ,X1
v ) ≥ 1}.

If the search tree consists of nodes containing additional constraints, this con-
struction cannot be adapted while guaranteeing completeness and disjointness.
Thus, we restrict ourselves to the case |W | = 1. Assume W = {v} ⊆ Vleaf with at
least one fixed variable and potentially added logic-or constraints to handle dual
reductions in previous iterations (see Sec. 3.1). Each of these constraints corre-
sponds to disjoint variable sets Cl = C−

l ∪C+
l ⊂ B. For guaranteeing a complete

and disjoint representation we have to reconstruct subproblems which were cut
off by the added constraints, for an illustration see Figure 1. Therefore, a com-
plete and disjoint representation is given by R = {Pv

C,Pv,1
F ,Pv,2

F , . . . ,Pv,k
F ,Pv,k

C }
(drawn solid in Figure 1), where

S(Pv
F ) = S(P) ∩ {x ∈ R

n | xi = 0∀i ∈ X0
v and xj = 1∀j ∈ X1

v},

S(Pv
C) = S(P) ∩ {x ∈ R

n | x(X0
v ,X1

v ) ≥ 1},

S(Pv,1
F ) = S(Pv

F ) ∩ {x ∈ R
n | xi = 0∀i ∈ C−

1 and xj = 1∀j ∈ C+
1 },

S(Pv,1
C ) = S(Pv

F ) ∩ {x ∈ R
n | x(C−

1 , C+
1 ) ≥ 1},

and for all l = 2, . . . , k

S(Pv,l
F ) = S(Pv,l−1

C ) ∩ {x ∈ R
n | xi = 0∀i ∈ C−

l and xj = 1∀j ∈ C+
l },

S(Pv,l
C ) = S(Pv,l−1

C ) ∩ {x ∈ R
n | x(C−

l , C+
l ) ≥ 1}.
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Pv
F

Pv,1
F Pv,1

C

Pv,2
F Pv,2

C

Pv,3
F Pv,k

C

Pv,k
F Pv,k

C

Pv
C

Fig. 1. Construction of the weak compression heuristic

3.3 Similarity of Objective Functions

If two objective functions are quite similar – whatever similar means at this
point – we expect the resulting search trees to be similar as well. On the other
hand, if two objective functions are quite different the resulting search trees
might be very different, too. An immediate consequence is that continuing the
solving process at the last search frontier might need much more effort than
solving the problem from scratch. The following criterion can be used to estimate
the similarity of the resulting search trees a priori.

Definition 3 (Similarity of Objective Functions). Let c, c̃ ∈ R
n be two

objective functions. Then the similarity of c and c̃ is given by

Λ(c, c̃) =
〈c, c̃〉

‖c‖2‖c̃‖2 .

This corresponds to the cosine between the two objective vectors. We apply
reoptimization only if the similarity measure is above a certain threshold (per
default 0.8), since reoptimizing the search frontier in spite of very different objec-
tive functions seems to be not promising.

4 Computational Results

For evaluating our reoptimization approach we performed computational experi-
ments on vertex coloring instances and on instances of the k-constrained shortest
path problem. For the latter problem the sequence consists of k identical objec-
tive functions and the consecutive subproblems differ in exactly one logic-or
constraint, cf. Sec. 2 and [26]. For generating sequences of objective functions
for the vertex coloring problem we use a subset of the COLOR02/03/04 [4] test
set and the generic branch-cut-and-price solver GCG [15] which was introduced
in [13]. The pricing subproblems that GCG needs to solve during the column gen-
eration process (see Sec. 2) only differ in the objective function. In order to test
SCIP and ReoptSCIP on these problems, we write out the sequence of pricing
problems of a GCG run, which avoids side-effects that a different optimal solution
computed by any of the two solvers might have.
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Table 1. Computational results on the vertex coloring (left) and k-constrained shortest
path (right) test sets

variant vertex coloring k-constrained shortest path

algorithm TN LR WC solved faster slower nodes time solved faster slower nodes time

SCIP
47/47 0 37 3,896 47 66/66 0 60 1,143 55

47/47 28 6 3,775 43 – – – – –

ReoptSCIP

47/47 33 4 6,590 38 66/66 48 11 1,310 38

47/47 32 5 6,602 38 – – – – –

47/47 36 1 4,909 33 66/66 57 1 1,112 35

47/47 36 1 4,825 32 66/66 56 0 1,149 30

– – – – – 66/66 57 3 1,125 36

47/47 37 0 4,493 28 – – – – –

We performed all tests on an Intel Xeon CPU E3-1290 V2 @ 3.70GHz with
16GB RAM. Our implementation is based on SCIP 3.1.0.1 using CPLEX 12.6 as
LP solver. We limited the solving time of each sequence by 3600 seconds and used
the technique described in Sec. 3.1 in order to handle dual reductions obtained
by strong branching. The benefits obtained by dual presolving and propagation
are less substantial and are outweighted by the enlargement of the search frontier
they cause when applying the technique from Sec. 3.1. Therefore, we disabled
all dual presolving and propagation techniques. We compute averages of solved
nodes and solving time by using the shifted geometric mean [1, Appendix A]
with shift s = 10 for running times and s = 100 for nodes.

In our computational experiments, we skip reoptimizing the search frontier if
two consecutive objective functions are not similar enough, i.e., if the similarity
is less than 0.8 (see Sec. 3.3). Furthermore, we solve the problem from scratch if
the search frontier consists of more than 2000 nodes, because proving optimality
needs more effort for a larger search frontier and thus the chance increases that
solving from scratch succeeds faster. In order to shrink the search frontier, we
run the largest representative (LR) heuristic exclusively on the set of feasible
nodes Pf and we compress the search tree only if the determined representation
is better than the last compression of a previous round, i.e., if the loss of infor-
mation decreases or the number of fixings of the representative increases. We run
the weak compression (WC) heuristic for one node only, since in almost every
iteration the search tree includes nodes with added constraints. We choose the
node with the largest dual bound in the previous iteration and demand that the
number of fixed variables is at least one and not less than the number of fixed
variables in the last weak compression. Additionally, we do not want to use the
same node for weak compression twice in a row.

In Table 1 we compare the results of our reoptimization approach with
plain SCIP on both test sets. To this end, we compare different variants, e.g.,
SCIP in combination with the trivialnegation (TN) heuristic or ReoptSCIP in
combination with a single one or all three presented heuristics, as indicated
in column “variant”. Note that the trivialnegation heuristic is not applied to
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the k-constrained shortest path instances, since the objective function does not
change. We compare the number of instances that are solved within the time
limit and those solved significantly (at least 5%) faster or slower than plain SCIP.
In a slight abuse of notation, we count an instance to be solved faster by plain
SCIP if no other variant solved it at least 5% faster. Finally, we list the average
number of branch-and-bound nodes needed to solve a sequence and the average
solving time in seconds.

Our computational experiments show that SCIP does not solve any instance
faster than our new reoptimizing version ReoptSCIP. The best results on the
vertex coloring instances can be achieved by using all three heuristics together.
As opposed to that, the best results on the k-constrained shortest path instances
can be achieved by using the weak compression heuristic only. Using the trivial-
negation heuristic in combination with plain SCIP provides much more benefit
than in combination with ReoptSCIP. This is caused by the number of nodes
that need to be reoptimized to prove the optimality. Thus, the benefit obtained
from constructing an optimal solution is consumed by proving its optimality, i.e.,
reoptimizing the search frontier. The compression heuristics can speed up the
solving process of the vertex coloring instances by a factor of approximately 1.4.
Thus, the constructed representatives are of good quality, i.e., they provide good
dual and primal bounds. A pleasant observation is that the number of branch-
and-bound nodes ReoptSCIP needs to solve the test sets is not much more than
that of SCIP, which we did not expect. Summing up, we can state that using
reoptimization improves the performance of SCIP significantly on our test sets.

5 Conclusions

We presented a reoptimization approach for MIP solvers which is based on a
reconstruction of the branch-and-bound tree. We are able to handle dual reduc-
tions and introduced heuristics for compressing the tree. Applied carefully within
SCIP, this method is able to reduce the solving time for two applications signif-
icantly. Therefore, it will be part of the next SCIP release.
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16. Güzelsoy, M.: Dual methods in mixed integer linear programming. Ph.D. thesis,

Lehigh University, Bethlehem, Pennsylvania, USA (2009)
17. Hiller, B., Klug, T., Witzig, J.: Reoptimization in branch-and-bound algorithms

with an application to elevator control. In: Demetrescu, C., Marchetti-Spaccamela,
A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 378–389. Springer,
Heidelberg (2013)

18. Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branch-
ing schemes for binary linear mixed integer problems. Mathematical Programming
Computation 1(4), 249–293 (2009)

19. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

20. Létocart, L., Nagih, A., Plateau, G.: Reoptimization in Lagrangian methods for
the 0–1 quadratic knapsack problem. Comput. Oper. Res. 39(1), 12–18 (2012)

21. Miller-Hooks, E., Yang, B.: Updating paths in time-varying networks given arc
weight changes. Transportation Science 39(4), 451–464 (2005)

22. Ralphs, T.K., Galati, M.V.: Decomposition in integer linear programming. In:
Karlof, J.K. (ed.) Integer Programming: Theory and Practice. CRC Press (2006)

23. Ralphs, T.K., Güzelsoy, M.: Duality and warm starting in integer programming.
In: The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees
and Research Conference (2006)

24. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer pro-
gramming problems. ORSA Journal on Computing 6, 445–454 (1994)

25. SCIP - Solving Constraint Integer Programs. http://scip.zib.de/
26. Tanaka, M., Kobayashi, K.: MISOCP formulation and route generation algorithm

for ship navigation problem. Tech. Rep. 2013–8, Tokyo Inst. of Technology (2013)
27. Witzig, J.: Reoptimization Techniques for MIP Solvers. Master’s thesis, TU Berlin

(2014)

http://mat.gsia.cmu.edu/COLOR03/
https://projects.coin-or.org/Dip
http://www.or.rwth-aachen.de/gcg/
http://scip.zib.de/


Submodular Minimization in the Context
of Modern LP and MILP Methods and Solvers

Andrew Orso, Jon Lee(B), and Siqian Shen

Department of Industrial and Operations Engineering,
University of Michigan, 1205 Beal Ave., Ann Arbor, MI 48109-2117, USA

{orso,jonxlee,siqian}@umich.edu

Abstract. We consider the application of mixed-integer linear program-
ming (MILP) solvers to the minimization of submodular functions. We
evaluate common large-scale linear-programming (LP) techniques (e.g.,
column generation, row generation, dual stabilization) for solving a LP
reformulation of the submodular minimization (SM) problem. We present
heuristics based on the LP framework and a MILP solver. We evaluated
the performance of our methods on a test bed of min-cut and matroid-
intersection problems formulated as SM problems.

Keywords: Submodular minimization · Lovász extension · Column
generation · Row generation · Dual stabilization

1 Introduction

Let E be a finite (ground) set. A function f : 2E → R is submodular if:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) ∀S, T ⊆ E.

The goal of submodular minimization (SM) is to choose S ⊆ E such that f(S)
is minimized. SM has strong ties to problems in machine learning, graph theory,
and matroid theory. For example, in graph theory, a cut function, evaluated as
the sum of capacities of arcs that originate from a subset of nodes containing a
given source s, but not containing a given sink t, to nodes in the complementary
set, is well known to be submodular; thus, the minimum s-t cut problem can be
recast as an SM problem (see [11], for example). Additionally, we can recast the
max-cardinality matroid-intersection problem, as a SM problem (see [3]).

SM is well known to be solvable in polynomial time using the ellipsoid method
(see [7]). But the practicality of such an algorithm is very limited. Iwata, Fleis-
cher, and Fujishige (see [8]) and Schrijver (see [14]) developed the first “combi-
natorial” polynomial-time algorithms for SM, however, again the practical use
of such algorithms is quite limited. An algorithm that has had the most success
seeks the minimum-norm point of the “base polyhedron” (see [5]), but even that
algorithm has been found to be slow and/or inaccurate (see [9]). So we regard
the challenge of developing practically-efficient approaches for SM as open.
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 193–204, 2015.
DOI: 10.1007/978-3-319-20086-6 15
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The aforementioned algorithms for SM take advantage of the Lovász exten-
sion of a submodular function. This function is an extension of a submodular
function, viewed as defined on the vertices of the unit hypercube [0, 1]E , to
the entire hypercube, as a piecewise-linear convex function (see [11]). Using the
Lovász extension, one can derive an equivalent linear-programing (LP) problem
with a very large number of columns (see [13], for example). Solving this LP
problem had been deemed highly impractical (see [1], for example). In what fol-
lows, we demonstrate that large-scale LP techniques can be employed with some
success, giving evidence that the LP approach should not be abandoned. Finally,
we consider the use of modern MILP solvers such as Gurobi for solving SM prob-
lems as 0-1 integer programs. We take advantage of heuristics and cutting-plane
methods in these solvers to develop heuristics for approximate SM.

The remainder of this paper is organized as follows. In §2, we present an
equivalent LP formulation, as well as column- and row-generation procedures for
solving it. In §3, we present computational results of these methods to compare
row and column generation, as well as their stabilized method variants. In §4,
we present experimental results of using MILP solvers for solving the dual of
our LP reformulation by utilizing solver cutting-plane methods. Finally, in §5,
we make brief conclusions and give future research directions.

2 Large-Scale LP Representation

Without loss of generality, we assume that f(∅) = 0. For c ∈ R
E , we define

c(S) =
∑

k∈S ck. The base polyhedron of f is B(f) := {c ∈ R
E | ∀S ⊆ E, c(S) ≤

f(S), c(E) = f(E)}. Now, define c ∈ R
E by (c )k := max{ck, 0}, for k ∈ E.

The SM problem min{f(S) : S ⊆ E} can be recast as max{c (E) : c ∈ B(f)}
(see [13], for example). This maximization problem can be formulated as an LP
problem with a large number of variables as follows. Letting c1, . . . , cm be the
extreme points of B(f), and defining the matrix C := [c1, . . . , cm] ∈ R

E×m, we
have the equivalent LP problem

SMP: min 1�β (1)
s.t. Cx − α + β = 0, (2)

1�x = 1, (3)
x ∈ R

m
+ , α ∈ R

E
+, β ∈ R

E
+, (4)

where 1 (resp. 0) is a vector of appropriate dimension with all entries equal to 1
(resp., 0). To construct a minimizer of f from a basic dual optimum of this LP
problem, we consider the dual variables corresponding to constraints (2); these
dual variables turn out to be binary and correspond to a minimizer of f (see
[13], for example).

2.1 Column Generation

Column generation is a standard technique for handling LP formulations in
which we have a manageable number of equations (in a standard-form LP prob-
lem) but a very large (but structured) set of variables. In our context, SMP has
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only |E| + 1 equations but m variables (which would typically be exponentially
large, relative to |E|). Define RSMP to be a restricted version of SMP, in which
C is replaced by C̃, having a subset of the columns of the full matrix C. We
iteratively solve instances of RSMP, further incorporating variables that have
negative reduced cost for the current RSMP, and possibly dropping variables
that are nonbasic, after each iteration. Typically, a basis of SMP has |E| + 1
variables, and so we maintain at least |E|+1 (but much fewer than m) variables
in RSMP.

To determine which variable to add to the model at the end of each iteration,
we solve a (typically) well-structured problem known as the pricing problem,
which determines a variable, not already in the model, that has negative reduced
cost. Our pricing problem is max{u�c : c ∈ B(f)}, where u ∈ R

E is the vector
of optimal dual variables corresponding to the constraints C̃x − α + β = 0
in RSMP. This is simply the maximization of a linear function over the base
polyhedron of f , which can be efficiently evaluated via the greedy algorithm
(see [10], for example). Furthermore, we can take advantage of the structure of a
particular function f to improve the greedy algorithm. For example, for min-cuts,
the value of a cut during the greedy algorithm can be used in the subsequent
greedy step, after adding one node, by subtracting the capacities of those arcs
no longer in the cut and adding the capacities of the new arcs introduced.

The ease of solution of the pricing problem makes column generation a viable
method for SMP, though a common pitfall of these methods is that they tend
to “tail-off”, where convergence begins to slow considerably as the solution nears
the optimum. To combat such woes, we implemented a dual-stabilization tech-
nique, which has been shown to decrease these effects in practice (see [12], for
example). In particular, the optimal dual solutions at each iteration tend to fluc-
tuate considerably, rather than following a smooth trajectory. Dual stabilization
seeks to localize the dual variables from iteration to iteration, hoping to mod-
erate this behavior (see [12], for example). There exist numerous methods for
stabilizing the dual problem (e.g., interior point stabilization (see [4]), bundle
methods (see [2]), etc.). One such method is the box-step method: consider a
dual optimal solution (ui, vi) ∈ R

E × R at iteration i of the column-generation
procedure. We introduce new constraints to the dual, which is equivalent to
adding columns to the primal, of the form ui+1

j ∈ [ui
j − ε, ui

j + ε] for all j ∈ E,
where ε > 0 denotes the user-defined width of the box. In the subsequent itera-
tion, if the optimal dual solution ui+1

j is at either the upper or lower bound of
the box, then the box is recentered at that bound and the procedure continues.

2.2 Row Generation

Alternatively, we consider solving the dual of SMP

SMD: max v (5)
s.t. C�u + 1v ≤ 0, (6)

0 ≤ u ≤ 1, (7)
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with variables u ∈ R
E and v ∈ R corresponding to equations (3) and (4) respec-

tively. SMD typically has a very large number of constraints, as opposed to the
large number of variables present in SMP. Of course, by the LP strong-duality
theorem, the optimal values of SMP and SMD are the same. Moreover, in some
sense SMD is more natural to consider since we are really after a dual basic opti-
mum of SMP. For solving SMD, we consider a row-generation procedure, which
is analogous to column generation for SMP. We will refer to the constraints gen-
erated as greedy cuts, as they are the cuts generated using the greedy algorithm
at each iteration. Thus, we maintain a relaxed version RSMD of SMD, replac-
ing C with C̃, as before. We can start with C̃ having no columns, and we employ
the pricing problem from before to determine greedy cuts to be added at every
iteration. We can apply dual stabilization again, by explicitly bounding the vari-
ables u in RSMD. The significance of solving SMD, as opposed to SMP, is not
readily apparent, though computational tests on a number of problem instances
demonstrates that row generation may perform better than column generation,
depending on the structure of the problem instance.

3 Computational Results: LP

We tested our LP-based algorithms on classical min s-t cut and matroid-
intersection problems.

For the min-cut problem, we produced RMFGEN networks (see [6]) as b
copies of an a×a grid of vertices in which each vertex within a grid is connected
to each of its neighbors, as well as to a random vertex in the adjacent grid. The
source is the lower-left vertex of the first grid, and the sink is the upper-right
vertex of the last grid.

For the matroid-intersection problem, let M1 = (E, I1) and M2 = (E, I2)
be matroids with independent sets I1 and I2 respectively on the common ground
set E. The matroid-intersection problem is the problem of finding the maximum-
cardinality independent set that is in both I1 and I2. By a result of Edmonds
(see [3]), this problem is equivalent to minimizing the submodular function

f(S) := r1(S) + r2(E \ S) ∀S ⊆ E,

where ri is the rank function of Mi, i = 1, 2. For our test instances, we chose
M1 to be the graphic matroid of a random connected graph on p+1 vertices and
2p edges, and M2 = M∗

1 to be its dual. This choice of instances has relevance
in determining whether a “bar-and-joint framework” in the plane is “minimally
generically rigid” (see [10], for example).

We identify our test problems with the following key: Type y-z where Type
denotes the type of problem [MC = minimum cut, MI = matroid intersection],
and y-z denotes the size, e.g., for MC, y = a, z = b, and for MI, y = p, z = 2p.
The problem sizes we consider are given in Table 1.

All computations were performed using Gurobi 5.6.3 with a time limit of
12000 seconds on a Linux cluster with 4GB RAM per core, using four cores for
each MC instance, and one core for each MI instance. All results are given as an
arithmetic average across 10 instances for each problem type.
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Table 1. Test Instances

Problem Sizes

Minimum Cut Matroid Intersection

4-32 (512 Nodes, 2032 Arcs) 150-300
8-8 (512 Nodes, 2240 Arcs) 175-350
7-13 (637 Nodes, 2772 Arcs) 190-380
9-9 (729 Nodes, 3200 Arcs) 200-400
5-32 (800 Nodes, 3335 Arcs)

3.1 Standard LP Formulations

We first tested the column- and row-generation procedures. Results are given
in Table 2 and Table 3, for row and column generation, respectively. The Time
column reports the total time, in seconds, required to solve the corresponding
problem to optimality, the #I column reports the total number of iterations
required to solve to optimality, and the Timej% and #Ij% columns, where j = 1
or 5, report the amount of time and number of iterations required to reach a j%
optimality gap, respectively.

Table 2. Results of Using Row Generation

Row Generation

Problem Type Problem Time #I Time5% #I5% Time1% #I1%

Minimum Cut

MC 8-8 493 826 282 480 360 602
MC 9-9 2563 1218 1383 687 1769 851
MC 4-32 494 803 263 432 364 617
MC 5-32 3947 1330 1719 695 2688 998
MC 7-13 1844 1075 938 616 1244 773

Matroid
Intersection

MI 150-300 1044 284 110 28 830 223
MI 175-350 2173 329 13 0 1568 235
MI 190-380 9172 312 61 0 6937 211
MI 200-400 3776 397 74 6 2502 259

Concerning the min-cut problem, we observe that while the number of iter-
ations required to prove optimality is similar in the two methods, row gener-
ation requires considerably less time. Our tests indicate that the relaxed LP
problems solved during each iteration of row generation require less time than
the restricted LP problems solved during each iteration of column generation,
resulting in an overall decrease in time. Similar results extend to the 5% and
1% optimality gap, where row generation achieves these optimality gaps in fewer
iterations and less time. Further, both methods require only about 50% of the
total time in order to reach a 5% optimality gap and only about 75% of the
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Table 3. Results of Using Column Generation

Column Generation

Problem Type Problem Time #I Time5% #I5% Time1% #I1%

Minimum Cut

MC 8-8 1017 819 407 480 621 602
MC 9-9 4023 1186 1533 683 2303 847
MC 4-32 950 816 331 434 575 624
MC 5-32 9222 1333 2791 691 5238 993
MC 7-13 2800 1054 1070 623 1739 797

Matroid
Intersection

MI 150-300 1172 334 131 36 841 240
MI 175-350 2407 370 13 0 1506 232
MI 190-380 3103 377 16 0 1783 217
MI 200-400 4273 434 62 4 2442 248

total time in order to reach a 1% optimality gap. This quick, early convergence
motivates the development of MILP heuristics in the next section.

For the matroid intersection, we see that row generation is only marginally
better than column generation for the instances tested. While this result holds
across many instances, instance MI 190-380 seems to be difficult for row gener-
ation. We will see that dual stabilization, introduced in the next section, helps
to reduce this difficulty.

3.2 Dual-Stabilized Formulations

For the dual-stabilized variants of the row and column generation, we ran all
problem instances with ε = 0.25, where ε is the width of the box constraints.
The results reported in Table 4 and Table 5 follow the same format as was
described for the standard LP formulations.

Both methods derive some benefit from dual stabilization. In fact, both meth-
ods see a decrease in the number of iterations required to solve to optimality
by approximately 15%. For the min-cut problem, row generation is still a clear
front runner, though the improvement derived from stabilizing the dual problem
seems to be consistent across both methods, in terms of time and iterations.
For the matroid-intersection problem, stabilizing row generation yields a greater
improvement in running time. This is in contrast to the standard LP methods,
in which neither algorithm proved to be more effective.

4 Computational Results: MILP

In this section, we take advantage of the fact that extreme-point optima of
SMD are integer and correspond to minima of f . We demonstrate that there
exists some number M of greedy cuts at which point RSMD can be solved
to optimality with a pure integer-programming approach via branch and bound
(B&B). We examine the use of this idea in solving SMD, as well as for heuristics.
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Table 4. Results of Using Dual-Stabilized Row Generation

Dual-Stabilized Row Generation

Problem Type Problem Time #I Time5% #I5% Time1% #I1%

Minimum Cut

MC 8-8 432 738 225 466 308 571
MC 9-9 1659 1124 824 689 1113 836
MC 4-32 381 769 165 416 252 587
MC 5-32 3234 1255 1251 686 2126 980
MC 7-13 982 997 444 605 683 779

Matroid
Intersection

MI 150-300 701 194 30 0 30 0
MI 175-350 1260 209 50 0 50 0
MI 190-380 1730 208 69 0 69 0
MI 200-400 2427 250 81 0 81 0

Table 5. Results of Using Dual-Stabilized Column Generation

Dual-Stabilized Column Generation

Problem Type Problem Time #I Time5% #I5% Time1% #I1%

Minimum Cut

MC 8-8 1069 745 511 475 713 569
MC 9-9 6118 1096 3049 702 3917 806
MC 4-32 1010 752 393 416 677 598
MC 5-32 8785 1177 3576 678 5861 930
MC 7-13 3030 1005 1290 614 2027 776

Matroid
Intersection

MI 150-300 832 240 29 0 37 2
MI 175-350 1661 267 51 0 180 22
MI 190-380 2219 275 66 0 66 0
MI 200-400 3123 331 77 0 77 0

4.1 Submodular Minimization Using Integer Programming

The goal of this test was to explore the utility of modern integer-programming
techniques for SM. We carried this out by a procedure we call “submodular
minimization using integer programming” (SMIP). In the first phase of this
method, we solve SMD to optimality using standard row generation and define
K to be the number of greedy cuts necessary to verify optimality. By resolving
RSMD with the first L greedy cuts generated, for some choice of L, the result is
a suboptimal solution of the LP problem SMD. But, we can pass this relaxation
having L greedy cuts to an MILP solver and allow the MILP solver to run until
completion, utilizing B&B, heuristics, cutting planes, etc. At completion, we can
then run our greedy-cut-generation procedure again to determine if there exists
any violated greedy cuts; if not, then the MILP solution is optimal to SMD,
otherwise the MILP solver was unable to achieve a true optimum when provided
with the L greedy cuts. We carried out such a scheme, continuing to decrement
the number of cuts added to RSMD, until the MILP solution returned was not
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optimal to SMD, at which point we set M to the previous number of cuts for
which the MILP solution was optimal for SMD. So, M/K is the proportion
of greedy cuts actually needed to solve an instance to optimality in this MILP
framework, which is typically very low in practice.

In the second phase, we initialized RSMD with the M sufficient constraints
from the first phase and formulated RSMD as an integer program with variables
u ∈ {0, 1}E . We solved the integer variant of RSMD as efficiently as possible
with varying levels of cut aggressiveness under the MILPFocus Gurobi parameter
that controls the focus on proving optimality of the given MILP.

We ran SMIP on MC 8-8, MC 4-32, and MC 7-13 as well as MI 150-300 and
MI 175-350. We report the following results for these procedures: the number
of iterations K required to solve instances to optimality using row generation,
the number of iterations M sufficient to solve instances using a pure integer-
programming method, the total amount of time, in seconds, for both phases,
Time, the amount of time required to get the true optimal solution as an incum-
bent solution in the B&B search of the second phase, TimeI, and the number of
Gomory and MIR cuts generated.

The results reported in Tables 6 and 7 demonstrate that a pure integer-
programming approach to solving these problems may be beneficial, especially in
the case of matroid intersection, where the function evaluations during the greedy
algorithm generally require a large number of computationally-expensive matrix-
rank calculations. We also note the increase in the amount of time required to
solve these problems as the aggressiveness of the cuts increases. The min-cut
problem saw little benefit from this method as the average reduction in the
number of iterations is not significant enough to warrant the long MILP solve
time. In fact, compared to row generation, the times recorded are far worse. Con-
versely, for matroid intersection, the number of greedy cuts sufficient to solve
to optimality in an MILP framework was approximately 60% of the total num-
ber required in the row-generation setting, while we required only a fraction
of the time that would be required to generate the difference in cuts solving
using integer-programming techniques. On the two matroid-intersection prob-
lems, the integer-programming approach performed similarly to dual-stabilized
row generation.

4.2 Greedy-Cut Integer-Programming Method

In a similar vein, we can enhance SMIP by integrating greedy cuts throughout
the B&B search in the second phase. We solved problems MC 4-32, MC 7-13,
MC 8-8, MI 150-300, MI 175-350, and MI 190-380 and report the total number
of cuts required to solve to optimality using row generation, K, the number of
cuts sufficient to solve to optimality using the greedy cut MILP method, M , the
average time, in seconds, to solve to optimality, TimeIP, and the average time
to solve the equivalent row-generation problem as a comparison point, TimeRG.

The results in Table 8 for the min-cut problem demonstrate that this method
is competitive with the standard row-generation method proposed previously.
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Table 6. Results of Using SMIP on Minimum Cut

Min-Cut SMIP

Size Cut Level K M Time TimeI Gomory MIR

8-8

0 826 492 1192 15 0 0
1 826 492 1193 10 6 6
2 826 492 2220 27 12 2911
3 826 492 3370 52 12 9780

4-32

0 803 548 1251 20 0 0
1 803 548 903 23 5 0
2 803 548 1462 61 13 302
3 803 548 2060 100 12 1317

7-13

0 1070 761 1831 39 0 0
1 1070 761 1827 47 4 0
2 1070 761 2495 87 9 5575
3 1070 761 2642 135 9 5575

Table 7. Results of Using SMIP on Matroid Intersection

Matroid-Intersection SMIP

Size Cut Level K M Time TimeI Gomory MIR

150-300

0 284 199 859 10 0 0
1 284 199 835 4 11 0
2 284 199 2354 722 29 0
3 284 199 1710 721 27 0

175-350

0 329 251 1673 6 0 0
1 329 251 2353 7 11 0
2 329 251 3089 26 29 0
3 329 251 3199 23 45 0

Table 8. Collection of Greedy Cut SMIP Data

SMIP Utilizing Greedy Cuts

Problem Type Problem K M TimeIP TimeRG

Minimum Cut
MC 4-32 803 507 539 493
MC 7-13 1072 669 1664 1843
MC 8-8 826 435 546 492

Matroid Int
MI 150-300 284 185 1077 1043
MI 175-350 329 218 2076 2173
MI 190-380 335 209 2426 9171
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In fact, for a problem requiring a larger number of rows generated to solve to opti-
mality, e.g., MC 7-13, the IP method performs better than the row-generation
procedure. For matroid intersection, we see little improvement in terms of com-
putation time over the row-generation method, and it is actually worse than
SMIP without greedy cuts.

4.3 Heuristic Methods

We demonstrated not only the practicality of an MILP-based algorithm for solv-
ing SM problems, but also the relatively small amount of time in which the true
optimal solution becomes an incumbent of the B&B search. We take advantage
of this fact, in conjunction with local-search heuristics, to develop a fast method
for getting good, approximate solutions to SMP, and equivalently SMD.

We use a simple local-search method in the heuristics that follow. Given a
vector u ∈ {0, 1}E , we repeatedly change at most two components, so as to get
the maximum decrease in f .

The first heuristic we develop can be employed in the context of row or col-
umn generation. We initialize RSMD (or RSMP) and proceed with row (resp.,
column) generation. At some point (say after a fixed number γ of iterations), we
give up and switch to local search, starting that from a rounding of the primal
(resp., dual) solution u ∈ [0, 1]E to the nearest point in {0, 1}E . Results for the
row-generation version are given in Table 9 with #Cuts being the number of
greedy cuts generated before switching to local search, Time being the total
time in seconds, and Ratio being the ratio of the difference between the optimal
and heuristic value with the optimal value.

The second heuristic is identical to the first heuristic until local search is
called. Before switching to local search, we run an MILP solver until some user-
defined state is reached. A good option seems to be to run the MILP solver until
three incumbent solutions of the B&B search have been found, at which point
we start local-search from the best incumbent found. Computational results for
SMIP demonstrate that on average, the true minimum of f is found as an MILP
incumbent very quickly. Results for this method are given in Table 10, with
columns indexed the same as in previous section, except TimeIP, which is the
time required to find the third incumbent of the B&B search.

From the results in Table 9, we see that the first heuristic competes with
standard row-generation method for the min-cut problem, yielding shorter times
and near optimal solutions in most cases. For the matroid-intersection problem,
optimality is achieved in all cases, though the time benefit does not become
significant until we consider problems of larger size. For the second heuristic,
results in Table 10 indicate poor performance on the min-cut problem, with long
solve times and larger ratios. Conversely, the time required to solve the matroid-
intersection problem is cut down significantly and the ratio is very small.
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Table 9. Results from heuristic method without MILP extension

Heuristic w/o MILP Extension

Problem Type Problem # Cuts Time Ratio

Minimum Cut

MC 8-8
500 437 7.3
650 463 0

MC 9-9
800 1728 0.02
1000 1964 0

MC 4-32
600 525 0.37
700 463 0

MC 7-13
600 972 0.11
700 1064 0.11

Matroid
Intersection

MI 150-300
100 1243 0
200 1202 0

MI 175-350
150 4144 0
300 2935 0

MI 190-380
200 4106 0
300 4482 0

Table 10. Results from heuristic method utilizing MILP extension

Heuristic with MILP Extension

Problem Type Problem # Cuts Time TimeIP Ratio

Minimum Cut

MC 8-8
500 1515 1110 0.77
650 1027 453 3.49

MC 9-9
800 4095 1708 1.55
1000 3955 667 3.62

MC 4-32
600 1499 925 1.97
700 1059 327 1.96

MC 7-13
600 2112 1127 1.55
700 3742 2487 2.24

Matroid
Intersection

MI 150-300
100 371 4 0.02
200 667 5 0.05

MI 175-350
150 935 8 0.02
300 1812 6 0.04

MI 190-380
200 1588 8 0.02
300 2247 11 0.05

5 Conclusion

We explored the applicability of modern LP/MILP methods for SM. For LP, we
saw that row generation typically performs better than column generation, and
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we saw that MILP methods can help in an exact or heuristic context. We are
currently expanding our tests and exploring how to incorporate side constraints.
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Abstract. Linear system solving is one of the main workhorses in
applied mathematics. Recently, theoretical computer scientists have
contributed sophisticated algorithms for solving linear systems with sym-
metric diagonally dominant matrices (a class to which Laplacian matrices
belong) in provably nearly-linear time. These algorithms are highly inter-
esting from a theoretical perspective, but there are no published results
on how they perform in practice.

With this paper we address this gap. We provide the first implemen-
tation of the combinatorial solver by [Kelner et al., STOC 2013], which
is particularly appealing due to its conceptual simplicity. The algorithm
exploits that a Laplacian matrix corresponds to a graph; solving Lapla-
cian linear systems amounts to finding an electrical flow in this graph
with the help of cycles induced by a spanning tree with the low-stretch
property.

The results of our comprehensive experimental study are ambivalent.
They confirm a nearly-linear running time, but for reasonable inputs the
constant factors make the solver much slower than methods with higher
asymptotic complexity. One other aspect predicted by theory is con-
firmed by our findings: Spanning trees with lower stretch indeed reduce
the solver’s running time. Yet, simple spanning tree algorithms perform
better in practice than those with a guaranteed low stretch.

1 Introduction

Solving square linear systems Ax = b, where A ∈ R
n×n and x, b ∈ R

n, has
been one of the most important problems in applied mathematics with wide
applications in science and engineering. In practice system matrices are often
sparse, i. e. they contain o(n2) nonzeros. Direct solvers with cubic running times
do not exploit sparsity. Ideally, the required time for solving sparse systems
would grow linearly with the number of nonzeros 2m. Moreover, approximate
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 205–218, 2015.
DOI: 10.1007/978-3-319-20086-6 16
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solutions usually suffice due to the imprecision of floating point arithmetic. Spiel-
man and Teng [23], following an approach proposed by Vaidya [26], achieved a
major breakthrough in this direction by devising a nearly-linear time algorithm
for solving linear systems in symmetric diagonally dominant matrices. Nearly-
linear means O(

m · polylog(n) · log(1/ε)
)

here, where polylog(n) is the set of
real polynomials in log(n) and ε is the relative error ‖x − xopt‖A/‖xopt‖A we
want for the solution x ∈ R

n. Here ‖ · ‖A is the norm ‖x‖A :=
√

xTAx given
by A, and xopt := A+b is an exact solution. A matrix A = (aij)i,j∈[n] ∈ R

n×n

is diagonally dominant if |aii| ≥ ∑
j �=i |aij | for all i ∈ [n]. Symmetric matrices

that are diagonally dominant (SDD matrices) have many applications: In ellip-
tic PDEs [5], maximum flows [8], and sparsifying graphs [22]. Thus, the problem
inv-sdd of solving linear systems Ax = b for x on SDD matrices A is of signifi-
cant importance. We focus here on Laplacian matrices (which are SDD) due to
their rich applications in graph algorithms, e. g. load balancing [10], but this is
no limitation [14].

Related Work. Spielman and Teng’s seminal paper [23] requires a lot of sophisti-
cated machinery: a multilevel approach [21,26] using recursive preconditioning,
preconditioners based on low-stretch spanning trees [24] and spectral graph spar-
sifiers [16,22]. Later papers extended this approach, both by making it simpler
and by reducing the exponents of the polylogarithmic time factors.1 We focus
on a simplified algorithm by Kelner et al. [14] that reinterprets the problem of
solving an SDD linear system as finding an electrical flow in a graph. It only
needs low-stretch spanning trees and achieves O(

m log2n log log n log(1/ε)
)

time.
Another interesting nearly-linear time SDD solver is the recursive sparsifica-

tion approach by Peng and Spielman [20]. Together with a parallel sparsification
algorithm, such as the one given by Koutis [15], it yields a nearly-linear work
parallel algorithm.

Spielman and Teng’s algorithm crucially uses the low-stretch spanning trees
first introduced by Alon et al. [3]. Elkin et al. [11] provide an algorithm for com-
puting spanning trees with polynomial stretch in nearly-linear time. Specifically,
they get a spanning tree with O(m log2n log log n) stretch in O(m log2n) time.
Abraham et al. [1] as well as Abraham and Neiman [2] later showed how to get
rid of some of the logarithmic factors in both stretch and time.

Motivation, Outline and Contribution. Although several extensions and simplifi-
cations to Spielman and Teng’s nearly-linear time solver [23] have been proposed,
none of them has been validated in practice so far. We seek to fill this gap by
implementing and evaluating an algorithm proposed by Kelner et al. [14] that
is easier to describe and implement than Spielman and Teng’s original algo-
rithm. Thus, in this paper we implement the KOSZ solver (the acronym follows
from the authors’ last names) by Kelner et al. [14] and investigate its practi-
cal performance. To this end, we start in Section 2 by settling notation and

1 Spielman provides a comprehensive overview of later work at http://www.cs.yale.
edu/homes/spielman/precon/precon.html (accessed on February 10, 2015).

http://www.cs.yale.edu/homes/spielman/precon/precon.html
http://www.cs.yale.edu/homes/spielman/precon/precon.html
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outlining KOSZ. In Section 3 we elaborate on the design choices one can make
when implementing KOSZ. In particular, we explain when these choices result
in a provably nearly-linear time algorithm. Section 4 contains the heart of this
paper, the experimental evaluation of the Laplacian solver KOSZ. We consider
the configuration options of the algorithm, its asymptotics, its convergence and
its use as a smoother. Our results confirm a nearly-linear running time, but at
the price of very high constant factors, in part due to memory accesses. We
conclude the paper in Section 5 by summarizing the experimental results and
discussing future research directions.

2 Preliminaries

Fundamentals. We consider undirected simple graphs G = (V,E) with n
vertices and m edges. A graph is weighted if we have an additional func-
tion w : E → R>0. Where necessary we consider unweighted graphs to be
weighted with we = 1 ∀e ∈ E. We usually write an edge {u, v} ∈ E as uv
and its weight as wuv. Moreover, we define the set operations ∪, ∩ and \
on graphs by applying them to the set of vertices and the set of edges sep-
arately. For every node u ∈ V its neighbourhood NG(u) is the set NG(u) :=
{v ∈ V : uv ∈ E} of vertices v with an edge to u and its degree du is
du :=

∑
v∈NG(u) wuv. The Laplacian matrix of a graph G = (V,E) is defined

as Lu,v := −wuv if uv ∈ E,
∑

x∈NG(u) wux if u = v and 0 otherwise for u, v ∈ V .
A Laplacian matrix is always an SDD matrix. Another useful property of the
Laplacian is the factorization L = BTR−1B, where B ∈ R

E×V is the incidence
matrix and R ∈ R

E×E is the resistance matrix defined by Bab,c = 1 if a = c,
= −1 if b = c and 0 otherwise. Re1,e2 = 1/we1 if e1 = e2 and 0 otherwise. This
holds for all e1, e2 ∈ E and a, b, c ∈ V , where we arbitrarily fix a start and end
node for each edge when defining B.

With xTLx = (Bx)TR−1(Bx) =
∑

e∈E(Bx)2e · we ≥ 0 (every summand is
non-negative), one can see that L is positive semidefinite. (A matrix A ∈ R

n×n

is positive semidefinite if xTAx ≥ 0 for all x ∈ R
n.)

Cycles, Spanning Trees and Stretch. A cycle in a graph is usually defined as a
simple path that returns to its starting point and a graph is called Eulerian if
there is a cycle that visits every edge exactly once. In this work we will interpret
cycles somewhat differently: We say that a cycle in G is a subgraph C of G such
that every vertex in G is incident to an even number of edges in C, i. e. a cycle
is a union of Eulerian graphs. It is useful to define the addition C1 ⊕ C2 of two
cycles C1, C2 to be the set of edges that occur in exactly one of the two cycles,
i. e. C1 ⊕ C2 := (C1 \ C2) ∪ (C2 \ C1). In algebraic terms we can regard a cycle
as a vector C ⊆ F

E
2 such that

∑
v∈NC(u) 1 = 0 in F2 for all u ∈ V and the cycle

addition as the usual addition on F
E
2 . We call the resulting linear space of cycles

C(G).
In a spanning tree (ST) T = (V,ET ) of G there is a unique path PT (u, v) from

every node u to every node v. For any edge e = uv ∈ E\ET (an off-tree-edge with
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Input: Laplacian L = L(G) and vector b ∈ im(L).
Output: Solution x to Lx = b.

1 T ← a spanning tree of G
2 f ← unique flow with demand b that is only nonzero on T
3 while there is a cycle with potential drop �= 0 in f do
4 c ← cycle in C(T ) chosen randomly weighted by stretch

5 f ← f − cTRf
cTRc

c

6 return vector of potentials in f with respect to the root of T

Algorithm 1. inv-laplacian-current solver KOSZ.

respect to T ), the subgraph e ∪ PT (u, v) is a cycle, the basis cycle induced by e.
One can easily show that the basis cycles form a basis of C(G). Thus, the basis
cycles are very useful in algorithms that need to consider all the cycles of a graph.
Another notion we need is a measure of how well a spanning tree approximates
the original graph. We capture this by the stretch st(e) :=

(∑
e′∈PT (u,v) we′

)
/we

of an edge e = uv ∈ E. This stretch is the detour you need in order to get from
one endpoint of the edge to the other if you stay in T , compared to the length
of the original edge. In the literature the stretch is sometimes defined slightly
differently, but we follow the definition in [14] using we in the denominator.
The stretch of the whole tree T is the sum of the individual stretches st(T ) :=∑

e∈E st(e). Finding a spanning tree with low stretch is crucial for proving the
fast convergence of the KOSZ solver.

KOSZ (Simple) Solver. We can regard G as an electrical network where each
edge uv corresponds to a resistor with conductance wuv and resistance ruv :=
1/wuv as well as x as an assignment of potentials to the nodes of G. Then xv−xu

is the voltage across uv and (xv − xu) · wuv is the resulting current along uv.
Thus, (Lx)u is the current flowing out of u that we want to be equal to the
right-hand side bu. Furthermore, one can reduce solving SDD systems to the
related problem inv-laplacian-current [14]: Given a Laplacian L = L(G)
and a vector b ∈ im(L), compute a function f : Ẽ → R with (i) f being a
valid graph flow on G with demand b and (ii) the potential drop along every
cycle in G being zero, where a valid graph flow means that the sum of the
incoming and outgoing flow at each vertex respects the demand in x and that
f(u, v) = −f(v, u) ∀uv ∈ E. Also, Ẽ is a bidirected copy of E and the potential
drop of cycle C is

∑
e∈C f(e)re. The idea of the algorithm is to start with any

valid flow and successively adjust the flow such that every cycle has potential
zero. We need to transform the flow back to potentials at the end, but this can
be done consistently, as all potential drops along cycles are zero.

Regarding the crucial question of what flow to start with and how to choose
the cycle to be repaired in each iteration, Kelner et al. [14] suggest using the
cycle basis induced by a spanning tree T of G and prove that the convergence of
the resulting solver depends on the stretch of T . More specifically, they suggest
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starting with a flow that is nonzero only on T and weighting the basis cycles
by their stretch when sampling them. The resulting algorithm is shown as Algo-
rithm 1; note that we may stop before all potential drops are zero and we can
consistently compute the potentials induced by f at the end by only looking at T .

The solver described in Algorithm 1 is actually (our reformulation of) the
SimpleSolver by Kelner et al. [14]. They also show how to improve this solver
by adapting preconditioning to the setting of electrical flows. In informal exper-
iments we could not determine a strategy that is consistently better than the
SimpleSolver, so that we do not pursue this scheme any further here. In the
original SimpleSolver description, the error bound ε is part of the input and
determines the number of loop iterations. Our pseudocode is slightly simpli-
fied to emphasize the conceptual ideas, but our implementation is based on the
original description. Kelner et al. derive the following running time for KOSZ:

Theorem 1 (comp. [14], Thm. 3.2). SimpleSolver can be implemented to
run in time O(m log2 n log log n log(ε−1n)) while computing an ε-approximation
of x.

3 Implementation

While Algorithm 1 provides the basic idea of the KOSZ solver, it leaves open
several implementation decisions that we elaborate on in this section.

Spanning Trees. As suggested by the convergence result in Theorem 1, the
KOSZ solver depends on low-stretch spanning trees. Elkin et al. [11] presented
an algorithm requiring nearly-linear time and yielding nearly-linear average
stretch. The basic idea is to recursively form a spanning tree using a star
of balls in each recursion step. We use Dijkstra with binary heaps for grow-
ing the balls and that we take care not to need more work than necessary to
grow the ball. In particular, ball growing is output-sensitive and growing a ball
B(x, r) := {v ∈ V : Distance from x to v is ≤ r} should require O(d log n) time
where d is the sum of the degrees of the nodes in B(x, r). The exponents of the
logarithmic factors of the stretch of this algorithm were improved by subsequent
papers, but Papp [19] showed experimentally that these improvements do not
yield better stretch in practice. In fact, his experiments suggest that the stretch of
the provable algorithms is usually not better than just taking a minimum-weight
spanning tree. Therefore, we additionally use two simpler spanning trees without
stretch guarantees: A minimum-distance spanning tree with Dijkstra’s algorithm
and binary heaps; as well as a minimum-weight spanning with Kruskal’s algo-
rithm using union-find with union-by-size and path compression.

To test how dependent the algorithm is on the stretch of the ST, we also
look at a special ST for n1 × n2 grids. As depicted in Figure 1, we construct
this spanning tree by subdividing the n1 × n2 grid into four subgrids as evenly
as possible, recursively building the STs in the subgrids and connecting the
subgrids by a U-shape in the middle.
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(a) Recursive construction (b) ST for n1 = n2 = 4

Fig. 1. Special spanning tree with O( (n1+n2)
2 log(n1+n2)
n1n2

)
average stretch for the n1×n2

grid

Proposition 1. The special ST has O( (n1+n2)
2 log(n1+n2)
n1n2

)
average stretch on

an n1 × n2 grid.

Flows on Trees. Since every basis cycle contains exactly one off-tree-edge, the
flows on off-tree-edges can simply be stored in a single vector. To be able to
efficiently get the potential drop of every basis cycle and to be able to add a
constant amount of flow to it, the core problem is to efficiently store and update
flows in T . More formally, we want to support the following two operations for
all u, v ∈ V and α ∈ R on the flow f :

– query(u, v): return the potential drop
∑

e∈PT (u,v) f(e)re
– update(u, v, α): set f(e) := f(e) + α for all e ∈ PT (u, v)

We can simplify the operations by fixing v to be the root r of T :
query(u): return the potential drop

∑
e∈PT (u,r) f(e)re and update(u, α): set

f(e) := f(e) + α for all e ∈ PT (u, r). The itemized two-node opera-
tions can then be supported with query(u, v) := query(u) − query(v) and
update(u, v, α) :=

{
update(u, α) and update(v,−α)

}
since the changes on the

subpath PT

(
r,LCA(u, v)

)
cancel out. Here LCA(u, v) is the lowest common

ancestor of the nodes u and v in T , the node farthest from r that is an ancestor of
both u and v. We provide two approaches for implementing the operations, first
an implementation of the one-node operations that stores the flow directly on the
tree and uses the definitions of the operations without modification. Obviously,
these operations require O(n) worst-case time and O(n) space. With an LCA
data structure, one can implement the itemized two-node operations without the
subsequent simplification of using one-node operations. This does not improve
the worst-case time, but can help in practice. Secondly, we use the improved
data structure by Kelner et al. [14] that guarantees O(log n) worst-case time
but uses O(n log n) space. In this case the one-node operations boil down to a
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dot product (query) and an addition (update) of a dense vector and a sparse
vector. We unroll the recursion within the data structure for better performance
in practice.

Cycle Selection. The easiest way to select a cycle is to choose an off-tree edge uni-
formly at random in O(1) time. However, to get provably good results, we need
to weight the off-tree-edges by their stretch. We can use the flow data structure
described above to get the stretches. More specifically, the data structure initially
represents f = 0. For every off-tree edge uv we first execute update(u, v, 1), then
query(u, v) to get

∑
e∈PT (u,v) re and finally update(u, v,−1) to return to f = 0.

This results in O(m log n) time to initialize cycle selection. Once we have the
weights, we use roulette wheel selection in order to select a cycle in O(log m) time
after an additional O(m) time initialization.

In the full version of this paper we summarize the implementation choices for
Algorithm 1 in a table for the reader’s convenience. Note that the convergence
theorem requires a low-stretch spanning tree and weighted cycle selection.

4 Evaluation

4.1 Settings

We implemented the KOSZ solver in C++ using NetworKit [25], a toolkit focused
on scalable network analysis algorithms. As compiler we use g++ 4.8.3. The
benchmark platform is a dual-socket server with two 8-core Intel Xeon E5-2680
at 2.7 GHz each and 256 GB RAM. Only a representative subset of our exper-
iments are shown here. More experiments and their detailed discussion can be
found in [13]. We compare our KOSZ implementation to existing linear solvers
as implemented by the libraries Eigen 3.2.2 [12] and Paralution 0.7.0 [17]. CPU
performance characteristics such as the number of executed FLOPS (floating
point operations), etc. are measured with the PAPI library [7].

We mainly use two graph classes for our tests: (i) Rectangular k×l grids given
by Gk,l :=

(
[k] × [l],

{{(x1, y1), (x2, y2)} ⊆ (
V
2

)
: |x1 − x2| = 1 ∨ |y1 − y2| = 1

})
.

Laplacian systems on grids are, for example, crucial for solving boundary value
problems on rectangular domains; (ii) Barabási-Albert [4] random graphs with
parameter k. These random graphs are parametrized with a so-called attach-
ment k. Their construction models that the degree distribution in many natu-
ral graphs is not uniform at all. For both classes of graphs, we consider both
unweighted and weighted variants (uniform random weights in [1, 8)). We also
did informal tests on 3D grids and graphs that were not generated synthetically.
These graphs did not exhibit significantly different behavior than the two graph
classes above.

4.2 Results

Spanning tree. Papp [19] tested various low-stretch spanning tree algorithms and
found that in practice the provably good low-stretch algorithms do not yield
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Specia l ST

Fig. 2. Average stretch st(T )/m with different ST algorithms

better stretch than simply using Kruskal. We confirm and extend this obser-
vation by comparing our own implementation of Elkin et al.’s [11] low-stretch
ST algorithm to Kruskal and Dijkstra in Figure 2. Except for the unweighted
100 × 100 grid, Elkin has worse stretch than the other algorithms and Kruskal
yields a good ST. For Barabási-Albert graphs, Elkin is extremely bad (almost
factor 20 worse). Interestingly, Kruskal outperforms the other algorithms even
on the unweighted Barabási-Albert graphs, where it degenerates to choosing an
arbitrary ST. Figure 2 also shows that our special ST yields significantly lower
stretch for the unweighted 2D grid, but it does not help in the weighted case.

Convergence. In Figure 3 we plot the convergence of the residual for different
graphs and algorithm settings. We examined a 100 × 100 grid and a Barabási-
Albert graph with 25,000 nodes. While the residuals can increase, they follow a
global downward trend. Also note that the spikes of the residuals are smaller if
the convergence is better. In all cases the solver converges exponentially, but the
convergence speed crucially depends on the solver settings. If we select cycles by
their stretch, the order of the convergence speeds is the same as the order of the
stretches of the ST (cmp. Figure 2), except for the Dijkstra ST and the Kruskal
ST on the weighted grid. In particular, for the Elkin ST on Barabási-Albert
graphs, there is a significant gap to the other settings where the solver barely
converges at all and the special ST wins. Thus, low-stretch STs are crucial for
convergence. In informal experiments we also saw this behavior for 3D grids and
non-synthetic graphs.

We could not detect any correlation between the improvement made by a
cycle repair and the stretch of the cycle. Therefore, we cannot fully explain the
different speeds with uniform cycle selection and stretch cycle selection. For the
grid the stretch cycle selection wins, while Barabási-Albert graphs favor uniform
cycle selection. Another interesting observation is that most of the convergence
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Fig. 3. Convergence of the residual. Terminate when residual ≤ 10−4.

speeds stay constant after an initial fast improvement at the start to about
residual 1. That is, there is no significant change of behavior or periodicity. Even
though we can hugely improve convergence by choosing the right settings, even
the best convergence is still very slow, e.g. we need about 6 million iterations
(≈ 3000 sparse matrix-vector multiplications (SpMVs) in time comparison) on
a Barabási-Albert graph with 25,000 nodes and 100,000 edges in order to reach
residual 10−4. In contrast, conjugate gradient (CG) without preconditioning only
needs 204 SpMVs for this graph.

Asymptotics. Now that we know which settings of the algorithm yield the best
performance for 2D grids and Barabási-Albert graphs, we proceed by looking
at how the performance with these settings behaves asymptotically and how
it compares to conjugate gradient (CG) without preconditioning, a simple and
popular iterative solver. Since KOSZ turns out to be not competitive, we do not
need to compare it to more sophisticated algorithms.
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Fig. 4. Asymptotic behaviour for 2D grids. Termination when relative residual was ≤
10−4. The error bars give the standard deviation.

In Figure 4 each occurrence of c stands for a new instance of a real constant.
We expect the cost of the CG method to scale with O(n1.5) on 2D grids [9],
while our algorithm should scale nearly-linearly. This expectation is confirmed
in the plot: Using Levenberg-Marquardt [18] to approximate the curves for CG
with a function of the form axb + c, we get b ≈ 1.5 for FLOPS and memory
accesses, while the (more technical) wall time and cycle count yield a slightly
higher exponent b ≈ 1.6. We also see that the curves for our algorithm are
almost linear from about 650×650. Unfortunately, the hidden constant factor is
so large that our algorithm cannot compete with CG even for a 1000×1000 grid.
Note that the difference between the algorithms in FLOPS is significantly smaller
than the difference in memory accesses and that the difference in running time
is larger still. This suggests that the practical performance of our algorithm
is particularly bounded by memory access patterns and not by floating point
operations. This is noteworthy when we look at our special spanning tree for the
2D grid. We see that using the special ST always results in performance that is
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better by a constant factor. In particular, we save a lot of FLOPS (factor 10),
while the savings in memory accesses (factor 2) are a lot smaller. Even though
the FLOPS when using the special ST are within a factor of 2 of CG, we still
have a wide chasm in running time.

The results for the Barabási-Albert graphs are basically the same (and hence
not shown in detail): Even though the growth is approximately linear from about
400,000 nodes, there is still a large gap between our algorithm and CG since
the constant factor is enormous. Also, the results for the number of FLOPS
are again much better than the result for the other performance counters. In
conclusion, although we have nearly-linear growth, even for 1,000,000 graph
nodes, the KOSZ algorithm is still not competitive with CG because of huge
constant factors, in particular a large number of iterations and memory accesses.

Smoothing. One way of combining the good qualities of two different solvers is
smoothing. Smoothing means to dampen the high-frequency components of the
error, which is usually done in combination with another solver that dampens
the low-frequency error components. It is known that in CG and most other
solvers, the low-frequency components of the error converge very fast, while the
high-frequency components converge slowly. Thus, we are interested in finding an
algorithm that dampens the high-frequency components, a good smoother. This
smoother does not necessarily need to reduce the error, it just needs to make its
frequency distribution more favorable. Smoothers are particularly often applied
at each level of multigrid or multilevel schemes [6] that turn a good smoother
into a good solver by applying it at different levels of a matrix hierarchy. To test
whether the Laplacian solver is a good smoother, we start with a fixed x with
Lx = b and add white uniform noise in [−1, 1] to each of its entries in order
to get an initial vector x0. Then we execute a few iterations of our Laplacian
solver and check whether the high-frequency components of the error have been
reduced. Unfortunately, we cannot directly start at the vector x0 in the solver.
Our solution is to use Richardson iteration. That is, we transform the residual
r = b − Lx0 back to the source space by computing L−1r with the Laplacian
solver, get the error e = x − x0 = L−1r and then the output solution x1 =
x0 + L−1r.

Figure 5 shows the error vectors of the solver for a 32 × 32 grid together
with their transformations into the frequency domain for different numbers of
iterations of our solver. We see that the solver may indeed be useful as a smoother
since the energies for the large frequencies (on the periphery) decrease rapidly,
while small frequencies (in the middle) in the error remain.

In the solver we start with a flow that is nonzero only on the ST. Therefore,
the flow values on the ST are generally larger at the start than in later iterations,
where the flow will be distributed among the other edges. Since we construct the
output vector by taking potentials on the tree, after one iteration x1 will, thus,
have large entries compared to the entries of b. In subplot (c) of Figure 5 we
see that the start vector of the solver has the same structure as the special ST
and that its error is very large. For the 32 × 32 grid we, therefore, need about
10000 iterations (≈ 150 SpMVs in running time comparison) to get an error of x1
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Fig. 5. The Laplacian solver with the special ST as a smoother on a 32 × 32 grid.
For each number of iterations of the solver we plot the current error and the absolute
values of its transformation into the frequency domain. Note that (a) and (k) have a
different scale.
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similar to x0 even though the frequency distribution is favorable. Note that the
number of SpMVs the 10000 iterations correspond to depends on the graph size,
e.g. for an 100 × 100 grid the 10000 iterations correspond to 20 SpMVs.

While testing the Laplacian solver in a multigrid scheme could be worthwhile,
the bad initial vector creates robustness problems when applying the Richard-
son iteration multiple times with a fixed number of iterations of our solver. In
informal tests multiple Richardson steps lead to ever increasing errors without
improved frequency behavior unless our solver already yields an almost perfect
vector in a single run.

5 Conclusions

At the time of writing, the presented KOSZ [14] implementation and evaluation
provide the first comprehensive experimental study of a Laplacian solver with
provably nearly-linear running time. Our study supports the theoretical result
that the convergence of KOSZ crucially depends on the stretch of the chosen
spanning tree, with low stretch generally resulting in faster convergence. This
particularly suggests that it is crucial to build algorithms that yield spanning
trees with lower stretch. Since we have confirmed and extended Papp’s [19]
observation that algorithms with provably low stretch do not yield good stretch
in practice, improving the low-stretch ST algorithms is an important future
research direction. Even though KOSZ proves to grow nearly linearly as predicted
by theory, the constant seems to be too large to make it competitive, even
compared to the CG method without preconditioner. Hence, our initial question
in the paper title can be answered with “yes” and “no” at the same time: The
running time is nearly linear, but the constant factors prevent usefulness in
practice. While the negative results may predominate, our effort is the first
to provide an answer at all. We hope to deliver insights that lead to further
improvements, both in theory and practice. A promising future research direction
is to repair cycles other than just the basis cycles in each iteration, but this would
necessitate significantly different data structures.
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Abstract. We consider the problem of designing efficient iterative meth-
ods for solving linear systems. In its full generality, this is one of the oldest
problems in numerical analysis with a tremendous number of practical
applications. We focus on a particular type of linear systems, associ-
ated with Laplacian matrices of undirected graphs, and study a class of
iterative methods for which it is possible to speed up the convergence
through combinatorial preconditioning. We consider a class of precondi-
tioners, known as tree preconditioners, introduced by Vaidya, that have
been shown to lead to asymptotic speed-up in certain cases. Rather than
trying to improve the structure of the trees used in preconditioning, we
propose a very simple modification to the basic tree preconditioner, which
can significantly improve the performance of the iterative linear solvers
in practice. We show that our modification leads to better conditioning
for some special graphs, and provide extensive experimental evidence for
the decrease in the complexity of the preconditioned conjugate gradient
method for several graphs, including 3D meshes and complex networks.

1 Introduction

Solving general linear systems of equations is one of the oldest and best studied
areas of numerical analysis, with an abundance of both exact and approximate
solutions of varying efficiency (see e.g., [12]). In this paper, we focus on iterative
methods for solving a particular type of linear systems, associated with Laplacian
matrices of undirected graphs. These linear systems arise in a variety of applica-
tions, which are related to solving the Poisson equation on discretized domains,
including physical (e.g. fluid) simulation, complex system analysis, geometry
processing and computer graphics [16,17], among many others. One class of
techniques, which is especially useful in solving large systems of equations with
Laplacians matrices of certain (sparse) graphs is the conjugate gradient method.
This method can be classified as an iterative approach, since it provides pro-
gressively better estimates of the final solution, and only requires the ability to
compute matrix-vector products. It is also known to terminate in a finite number
of steps depending on the quality of the initial guess and the condition number
of the matrix in question [25]. The convergence speed of the conjugate gradient
method can further be improved significantly using preconditioning, which aims
to approximate the given matrix A by another matrix B (a preconditioner),
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 219–231, 2015.
DOI: 10.1007/978-3-319-20086-6 17
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whose inverse can be readily computed. The quality of the improvement pro-
vided by the preconditioner is directly related to the difference between B−1A
and identity. Recently a class of preconditioners has been proposed for solving
the Poisson equation on undirected graphs, by using the so-called combinatorial
(or geometric) preconditioning [5,24]. The main idea, proposed by Vaidya, is to
approximate a given graph by its subgraph, on which the system of equations
can be solved easily. The canonical example of this type of preconditioner is a
spanning tree of the graph. Since the Poisson equation can be solved in linear
time if the graph is a tree, the main idea in Vaidya’s approach is to use the
Laplacian of the spanning tree as a preconditioner to improve the convergence
of iterative methods, such as the conjugate gradient. This basic framework has
been extended significantly to both obtain near-optimal trees that can approx-
imate arbitrary graphs, and to use a recursive approach in which a graph can
be approximated by a progressively more accurate subgraphs, which can lead
to very significant asymptotic speed-up in solving linear systems on general
graphs [23]. While the theoretical framework for combinatorial preconditioners
has been developed and in some ways settled, with a few notable exceptions,
the practical implementations of these ideas are still largely lacking. This can be
attributed, in part, to the highly complex nature of the algorithms for obtaining
the optimal preconditioners, with potentially very large constants in the asymp-
totic analysis on the one hand [22,23], and the relatively little improvement
provided by the tree preconditioner on the other hand [9]. As a result, despite
the theoretical appeal and the near-optimality in the asymptotic sense of the
resulting algorithms [10], the practitioners have not yet fully benefited from the
potential practical improvements provided by the combinatorial preconditioners.

Contribution. In this paper, we concentrate on the basic setting of Vaidya’s
preconditioners where the Laplacian matrix of a single spanning tree is used as
a preconditioner for the conjugate gradient method. Indeed, by extending the
experiments of Chen et al. [9] to a variety of graphs and large networks, we
show empirically that in most cases the improvement given by a single precon-
ditioner is either minor or even non-existent compared to the baseline conjugate
gradient approach. In this context, our main contribution is to propose a very
simple modification to Vaidya’s tree preconditioner, which provides significant
practical improvements, with minimal implementation effort. Our modification
can be seen as a combination of a basic Jacobi (diagonal) preconditioner with
a combinatorial (tree) one. Despite its extreme simplicity, we show that on a
set of important special cases, our approach can lead to a decrease in the con-
dition number of the resulting system, compared to the baseline combinatorial
preconditioner. Perhaps more importantly, however, we also show via extensive
experimentation, that our modification can also lead to practical speedup in the
convergence of the conjugate gradient method compared to both the Jacobi and
tree preconditioners for a large number of classes of graphs and different target
functions. Our approach is not meant to provide a preconditioner structurally
very different from the existing ones, or to improve their asymptotic complexity.
Rather, by showing that a simple modification can potentially lead to significant
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practical improvements, we hope to demonstrate the usefulness of such precon-
ditioners and to help eventually bridge theory and practice in this field.

Related works. A tremendous amount of progress has been done in solving lin-
ear systems associated to symmetric diagonally dominant matrices in the recent
past. Classical iterations, as described in [12], were very sensitive to systems
of poor condition number, and until quite recently efficient preconditioning was
mostly a matter of heuristics. A major step was done by Spielman and Teng [23],
presenting the first nearly linear algorithm (see [20–22]). The feat was made
possible by the introduction and refinement of ideas such as spectral sparsi-
fication, ultra-sparsifiers and algorithms for constructing low-stretch spanning
trees, which they cleverly combined to build a recursively preconditioned iter-
ative solver. The idea of recursive preconditioning is the basis of today’s best
solvers [10], and its individual parts have been separately improved over the
years. For instance, methods for obtaining low-stretch spanning trees, first intro-
duced with no link to preconditioning [2], have been seen a lot of progress over
the years. Their use as preconditioners was suggested in [24], in the continuity
of the ideas of support theory and combinatorial preconditioning (see [5–7] for
early work and formalizations of this theory). Interested readers can read the
progression of the stretch in [1], where the currently best algorithm for com-
puting trees of total stretch O(m log n log log n) in time O(m log n log log n) is
give. If no better bound has been found since then, recent works introduced a
generalization of stretch [11], creating new possibilities of optimization. Spectral
sparsification has seen similar improvements, however its progression is less lin-
ear than that of spanning trees. Better sparsifiers are described in [3] and fast
construction algorithms are given in recent works [14] (see [4] for more details).

2 Preliminaries and Background

Throughout the paper, we consider simple, undirected, unweighted graphs G =
(V,E) with #V = n and #E = m, and d(i) = #{j, (i, j) ∈ E} the degrees of
the vertices. The unweighted (and un-normalized) Laplacian matrix LG is given
via its relation to the diagonal degree matrix DG and the adjacency matrix AG:

DG =
{

d(i) if i = j
0 o/w , AG =

{
1 if (i, j) ∈ E
0 o/w , LG = DG − AG

The Laplacian matrix LG is symmetric, diagonally dominant, and only has
non-negative eigenvalues. Indeed, it is easy to see that the number of connected
components of G equals the dimension of the null space of LG. Throughout our
paper we assume to be working with a connected and unweighted graph G (most
of the material can be adapted to the case of positively-weighted edges). The
eigenvalues of LG are given as 0 = λ1 < λ2 ≤ . . . ≤ λn.

Solving Linear Systems. The canonical problem that we consider is to solve a
linear system of equations of the form Ax = b, where, in our case A = LG for
some known vector b. Depending on the domain, a problem of this form may
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also be known as solving the discrete Poisson equation. In general, although the
number n of vertices in the graph can be very large, the matrix LG is typically
sparse, which can make direct solvers inefficient or even not applicable, since a
full n2 set of variables can easily exceed the available memory. Instead, iterative
solvers have been used to solve this problem, and most notably the Conjugate
Gradient (CG) method, which is especially useful in cases with limited mem-
ory, since it requires only matrix-vector product computations. This method is
applicable to symmetric positive (semi)-definite systems, and computes succes-
sive approximations of x by taking a step in a direction conjugate to previously
taken steps, where conjugacy between two vectors x1, x2 is defined as xT

1 Ax2 = 0
(please see Chap. 11 in [12] for a full discussion of this method, and Figure 1
below for the pseudo-code). It is well-known that in the absence of rounding
errors, the conjugate gradient method will converge in at most n iterations in
the worst case. A more relevant bound, however, can be given by using the con-
dition number κ(A) of the matrix A, given by the ratio of its largest and smallest
non-zero eigenvalues. After t iterations, the error of the algorithm is bounded
by:

||x(t) − x||A ≤ 2

(

1 − 2
√

λn/λ2 + 1

)t

||x||A (1)

Note that while the Conjugate Gradient method is best suited for positive def-
inite matrices, it can also be easily adapted to positive semi-definite systems,
such as the ones including the graph Laplacian. One simply has to make sure
that the right hand side of the equation lies in the span of the matrix. For us,
this means that the vector b has to sum to zero. Let us also stress that λ1 in
the definition of the condition number is the first non-zero eigenvalue. This will
become particularly important when we define and analyze the properties of the
preconditioned conjugate gradient.

Preconditioning. Since the condition number gives a simple bound on the effi-
ciency of iterative solvers, and of the conjugate gradient method in particular,
it is natural to try to introduce linear systems equivalent to the original one,
but with a lower condition number, and therefore better convergence properties.
This process, called preconditioning, requires a non-singular matrix M , such that
M−1 ≈ A−1. Then, instead of solving Ax = b directly, we solve :

C−1AC−1x̃ = C−1b (2)

where C2 = M , and x is found by solving Cx = x̃. Ideally, the preconditioner
M should be a positive (semi)-definite matrix, such that the condition number
of M−1A is significantly smaller than that of A itself. The design of optimal
preconditioners typically involves a trade-off: on the one hand, M−1A should
be as close to identity as possible. On the other hand, it should be possible
to solve a linear system of the form Mx = b very quickly, since it has to be
done at every CG iteration. An example of potentially useful preconditioning
is the Jacobi Preconditioner for diagonally dominant systems. This consists in
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Initialization
r(0) = b − Ax(0)

p(0) = r(0)

Iteration

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α(k) = ||r(k)||2
||p(k)||2

A

x(k+1) = x(k) + α(k)p(k)

r(k+1) = r(k) − α(k)Ap(k)

β(k) = ||r(k+1)||2
||r(k)||2

p(k+1) = r(k+1) + β(k)p(k)

Initialization

⎧
⎨

⎩

r(0) = b − Ax(0)

z(0) = M−1r(0)

p(0) = z(0)

Iteration

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(k) = r(k),z(k)

||p(k)||2
A

x(k+1) = x(k) + α(k)p(k)

r(k+1) = r(k) − α(k)Ap(k)

z(k+1) = M−1r(k+1)

β(k) = z(k+1),r(k+1)

z(k),r(k)

p(k+1) = z(k+1) + β(k)p(k)

Fig. 1. Conjugate Gradient and Preconditioned Conjugate Gradient : this pseudocode
shows the general idea of orthogonalization in both algorithms as well as how the
preconditioning takes place in PCG

taking the matrix D = (δijA(i,j))(i,j), i.e the diagonal of the original matrix, as
preconditioner. This is both very easy to compute, and solving Dx = b takes an
optimal O(n) operations. When both A and M are symmetric positive definite,
then solving Eq. 2 can be done without explicitly computing the matrix C,
by modifying the steps taken during the iterations of the Conjugate Gradient
method. This results in the Preconditioned Conjugate Gradient for which we
provide the pseudo-code in Figure 1. Note that for positive semi-definite systems,
one has to use the pseudo-inverse in Eq. 2 above, and make sure that the kernel
of M is contained in the kernel of A, for otherwise the system Mx = b, may not
have a solution. In most cases, when the preconditioning is applied to positive
semi-definite systems the kernels of M and A coincide, although the framework
can also be applied in a more general case.

Spanning Trees as Preconditioners for Graphs. While both the basic and the
preconditioned Conjugate Gradient method can be applied for any positive
(semi)-definite linear system, the design of preconditioners can benefit from the
knowledge of the structure of the matrix in question. As mentioned above, in
this paper, we concentrate on the linear systems arising from the Laplacian
matrices of undirected graphs. In this case, a particularly promising idea, first
proposed by Vaidya and then extended significantly in the recent years, is to use
the Laplacian matrix of a subgraph as a preconditioner to the original system.
Note that, if the subgraph is connected over the same set of nodes as the original
graph, then the kernels of the Laplacian matrices both have dimension 1, and
they contain the constant vector 1n and all the vectors parallel to it, making
the use of preconditioning directly applicable. An appealing candidate for a sub-
graph to be used as a preconditioner is a spanning tree T of the graph G. This
is because if LT is the Laplacian matrix of the tree T , then the problem of type
LTx = b can be solved very efficiently, in time O(n), with two tree traversals.
This makes spanning trees good candidates for preconditioning, because their
use keeps the cost per PCG iteration in O(m). It can be shown [25] that for a
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spanning tree T of G, κ(L†
TLG) ≤ stretchT (G), where the stretch is defined as

the sum of the distances in the tree between any two vertices connected by an
edge in G. Together with Eq. 1 this can be used to establish the convergence of
the preconditioned Conjugate Gradient for Laplacian matrices.

We note briefly that better bounds can be proved by also looking at the dis-
tribution of the eigenvalues. A proof using a lower bound for all eigenvalues and
an upper bound on the number of eigenvalues above a certain threshold yields
that PCG computes an ε−approximation in O

(
(stretchT (G))1/3 log(1/ε)

)
iter-

ations (see Lemma 17.2 in [25]). In the past several years, this basic frame-
work for solving linear systems with Laplacian matrices has been extended
significantly, with two major research directions: finding trees that can optimize
the stretch with respect to arbitrary large graphs [1], and changing this basic
framework to use a more sophisticated hierarchical graph approximation scheme
in which preconditioners themselves can be solved via iterative (and possibly
recursive) schemes [16]. Unfortunately, both of these directions lead to highly
complex algorithms and their practical performance has been evaluated only
very recently [13]. Rather than trying to improve either of these two directions,
our goal is to show that a simple modification to the tree preconditioner can
significantly improve the performance of the iterative solver both in theory (for
some restricted cases) and in practice (over a large number of graph classes).

3 Contribution: Enhancing Tree-Based Preconditioners

As mentioned in the introduction, our main goal is to show that a simple mod-
ification of the combinatorial (tree) preconditioner can have a positive impact
on the practical performance of the preconditioned conjugate gradient. Indeed,
as has been noted by Chen et al. [9] and we confirm in Section 4, the basic
version of Vaidya’s approach rarely results in significant practical benefits for
PCG. The critical remark behind our work is that it is possible to add posi-
tive terms to the diagonal of the preconditioning matrix LT without changing
its combinatorial structure that enables the fast resolution of associated linear
systems. Thus, we introduce the matrix HT = LT + DG − DT = DG − AT .
Note that the matrix HT has the same diagonal as the Laplacian LG, but the
same sparsity structure as the Laplacian of the subgraph T . Therefore, solving
a linear system of equations of the type HTx = b can still be done in exactly the
same time as solving LTx = b. Nevertheless, as we show below theoretically (on
some restricted cases) and empirically on a large number of different graphs and
linear systems, this simple modification can significantly boost the performance
of the PCG method. Before proceeding to the analysis of our modification to
Vaidya’s preconditioner, we first note that unless T = G, the matrix HT will be
full-rank, unlike the LG which has a kernel consisting of vectors parallel to the
constant vector 1n. While in practice, this does not change the method shown in
Figure 1, we note that the analysis needs to be adapted slightly. Namely, since
we are operating in the space orthogonal to the constant vector 1n, we need to
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make sure that the condition number of the preconditioned system is calculated
correctly. For this, the following Lemma, which is readily verified, is useful:

Lemma 1. The eigenvalues of the generalized eigenvalue system LGx = λHTx
are the same as those of the system LGx = λPHTx, where P = (In − 1

n1n1
T
n )

is the projection onto the space of vectors orthogonal to the constant vector.

Therefore, computing the condition number κ(LG,HT ) of the preconditioned
system can be done by considering the ratio of the largest to smallest non-zero
eigenvalues of the matrix H−1

T LG. Equivalently, one can consider the smallest
and largest value c such that xT (LG−cHT )x ≥ 0 for all x, such that xTHTxc = 0.

To motivate the use of our preconditioner as well as to provide some intuition
on its behavior we proceed in two stages. First, we show some bounds on the
condition number for special graphs, and second, we demonstrate empirically
that for a very wide range of large scale graphs and linear systems our approach
can significantly outperform other baseline preconditioners (Section 4).

3.1 Some Bounds for Special Graphs

Here we provide bounds on the condition number of the preconditioned sys-
tem for Laplacians and show that we can obtain significant improvement over
Vaidya’s preconditioners in some important special cases (proofs are given in [8]).

The Complete Graph. Let us first consider G = Kn, the complete graph on
n vertices and let T be a star spanning tree, consisting of one root vertex of
degree n − 1 which is adjacent to all remaining n − 1 vertices.

Lemma 2. Given the complete graph G and the tree T described above, then for
any n > 2 we have κ(LG,HT ) = n

n−1 < κ(LG, LT ) = n.

Note, in particular that κ(LG,HT ) → 1 whereas κ(LG, LT ) grows with n.

The Ring Graph. Another important example is the cycle (ring) graph with
n vertices. Here, the tree T differs from G by a single edge. In this case:

Lemma 3. If G is a cycle and T is a spanning tree of G, then κ(LG,HT ) < 2,
while κ(LG, LT ) = n for any n.

Note that again, the system preconditioned with HT remains well-conditioned for
all n, unlike the system preconditioned by the tree itself, which has an unbounded
condition number. Indeed, a strictly more general result holds:

Lemma 4. Let G be any graph and T be a tree on G, such that the edge-
complement T c of T in G is a star. Then: κ(LG,HT ) ≤ 2.

Note that this lemma generalizes the previous one since the complement of
the tree in the ring graph is a single edge.
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Fig. 2. Condition numbers for unweighted graphs: we consider a few example of com-
plex networks and random triangulations. Left pictures show the metabolic system of
the C. elegans worm and a random planar triangulation (picture by Nicolas Curien).

The Wheel Graph. Our final example is the wheel graph, consisting of a cycle
with n − 1 vertices that are all connected to a central vertex s, which does not
belong to the cycle. In this case, let T be the star graph centered around s.

Lemma 5. Given the graph G and the spanning tree T described above then,
for any n odd, κ(LG,HT ) < κ(LG, LT ) = 5.

This example is instructive since the wheel graph can be considered to be a
simple case of a triangle mesh, a class of graphs for which we show empirically
a significant improvement over Vaidya’s preconditioners in the next section.

A Counterexample. We also note that there exist graphs for which the con-
dition number of our system is worse than that of the unmodified approach. The
simplest example of such a graph is a path-graph with 6 nodes, with additional
edges between nodes (1, 3) and (4, 6), and where the tree is the path. In this case,
it can be shown that κ(LG, LT ) = 3 < κ(LG,HT ). Nevertheless our experiments
suggest that such cases are rare, and seem to occur when G is very close to the
tree T . We leave the characterization of such cases as interesting future work.

4 Experimental Results

We provide experimental evaluations1 of the performance of our preconditioner
against CG (conjugate gradient with no preconditioning), the diagonal precondi-
tioner JPCG (Jacobi preconditioned conjugate gradient) and TPCG (tree-based
Vaidya’s preconditioned conjugate gradient). As our preconditioner is a combi-
nation of the tree-based and diagonal approaches, we denote it by JTPCG.We
run our experiments on a wide collection of graphs including triangle meshes
(obtained from the AIM@SHAPE Shape repository), 2D regular grids, and com-
plex networks (from the Stanford Large Network Dataset Collection). We also
consider random planar triangulations, generated by the uniform random sam-
pler by Poulalhon and Schaeffer [19], as well as graphs randomly generated
according to the small-world and preferential attachment models.

1 A pure Java implementation of our algorithms is available at www.lix.polytechnique.
fr/∼amturing/software.html.

www.lix.polytechnique.fr/~{}amturing/software.html
www.lix.polytechnique.fr/~{}amturing/software.html


Efficient and Practical Tree Preconditioning for Solving Laplacian Systems 227

Fig. 3. We compute condition numbers for regular (unweighted) grids endowed with
different spanning trees: blue and red edges correspond to trees with high and low
stretch factors respectively. Our precondition matrix H allows to drastically decrease
the condition number in both cases, when compared to standard tree preconditioning
(dashed lines).

3D Mesh n m κ(LG) κ(LG, LT ) κ(LG,HT) κ(LG, LT ) κ(LG,HT)

(max tree) (max tree) (min tree) (min tree)

Sphere 162 480 33.4 723. 25.6 1384 26.06
Helmet 496 1482 245.8 2885 142.4 5341 143.8
Venus 711 2106 411.8 2591 229.6 3950 251.46
Genus 3 mesh 1660 4992 304.9 5862 226.5 13578 227.2
Triceratops 2832 8490 2079 12342 1454 13332 1530
Cow 2904 8706 2964 15184 1853 8868 1982

Fig. 4. Condition numbers for 3D surface meshes: we compare tree preconditioning
and Jacobi-tree preconditioning. Meshes are endowed with both minimum (blue) and
maximum (red) spanning trees (weights correspond to Euclidean edge length).

4.1 Evaluating the Condition Number

Regular grids. Our first experiments concern the evaluation of the condition
numbers for regular grids, for which we know how to construct spanning trees of
high and low stretch factors. It is not difficult to see that the total stretch of the
blue tree Th in Fig. 3 is Θ(n

√
n) (observe that a vertical edge (ui, vi) ∈ G \ T

belonging to the i-th column contributes with a stretch of Θ(i), where i ranges
from 1 to

√
n). The red edges in Fig. 3 define a spanning tree Tl having a low

stretch factor, which can be evaluated to be O(n log n) using an inductive argu-
ment (we refer to [16] for more details). These bounds reflect the numerical
evaluation of the condition numbers for both trees Th and Tl (plotted as dashed
lines in Fig. 3). Experimental evaluations show that our Jacobi-tree precondi-
tioner allows to drastically decrease the condition numbers for both trees Th

and Tl. More interestingly, using HT instead of LT we obtain new bounds which
are extremely close, despite the very different performances of the correspond-
ing spanning trees. Not surprisingly, this behavior does not only concern regular
grids, but it is common to a wide class of graph Laplacians, as suggested by
experimental evidence provided in next sections.

Mesh graphs and complex networks. We also compute the condition numbers for
Laplacians corresponding to several 3D meshes, of different sizes and topology
(see Fig. 4). We test and compare our preconditioner against the CG method
(without preconditioning) and tree preconditioning, using as test trees both min-
imum and maximum spanning trees. We consider min spanning trees because
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Fig. 5. Fluid simulation: we compare JTPCG against CG and TPCG (the performance
of JPCG is very similar to CG). We plot the proportion of the number of iterations
required to solve 100 (resp. 200) linear systems with a precision of 1e−5. For instance,
JTPCG (colored curves) takes between 51 and 127 iterations per system on a grid of
size 4096, while CG (black curve) requires between 75 and 184 iterations.

their performances are in general worse than those of maximum spanning trees:
weights are computed according to the Euclidean edge length of the 3D embed-
ding (in the case of unweighted graphs, in order to compute min and max span-
ning tree, we reweight edges according to a vertex degree driven strategy). We
note that our experiments confirm the intuition of Vaidya’s seminal work: max-
imum spanning trees perform in general better as preconditioners than other
trees. Once again, our preconditioner is able to get condition numbers which are
significantly lower than the ones obtained with the simple preconditioner LT .
We note that this difference in performance is much less prominent when using
HT . These phenomena occur for all tested graphs and result in a significant
improvement of the performance of iterative solvers.

4.2 Counting Iterations: Comparison of Iterative Linear Solvers

In this section we provide experimental evidence for the improvement achieved by
our JTPCG preconditioner. We test it against other linear solvers (CG, JPCG,
and TPCG) on a large set of surface meshes and random graphs. In order to
obtain a fair comparison, we measure the convergence rates of linear solvers for
Lx = b counting the total number of iterations required to achieve a given error:
as metrics we use the standard relative residual error. We use iterative solvers as
core linear solvers for simulating fluid diffusion on regular 2D grids of different
sizes, while counting the number of iterations required by different solvers at each
time step (we use fixed precision 1e−5). As shown by the plots in Fig. 5, JTPCG
is able to drastically decrease the number of iterations, using both the high and
low stretch factor spanning trees (red and blue curves). Observe that tree-based
preconditioner perform pretty well (even without diagonal modification) when
combined with low stretch factors (red curves in Fig. 5).

Solving mesh laplacians. The results reported in Table 1 concern the resolution
of linear systems of the form Ax = b, where the vector b is a random vector
orthogonal to the constant vector. We use the same starting vector as an initial
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Table 1. Solving linear systems: we compare the JTPCG against the classical CG
method, the JPCG and TPCG preconditioners. We count total number of iterations
required to achieve fixed precision 1e− 7.

Graph n m CG JPCG TPCG JTPCG TPCG JTPCG
no prec. (max tree) (max tree) (min tree) (min tree)

Triceratops 2832 8K 225 196 341 188 426 181

Cow 2904 8K 214 192 347 170 366 182

Egea 8268 24K 305 249 701 219 974 221

Bunny 26002 78K 536 432 1632 416 1892 419

Feline 49864 149K 962 745 1946 663 2362 682

Eros 476596 1.4M 2185 1560 16122 1474 13257 1488

Random triang. 100002 300K 2382 1215 1776 1082 1247 1006

Graph n m CG JPCG TPCG JTPCG TPCG JTPCG
no prec. (max tree) (max tree) (min tree) (min tree)

Triceratops 2832 8K 5139 5057 6811 4842 7505 4997
Cow 2904 8K 5158 5145 6854 4907 6989 4980
Egea 8268 24K 7980 7314 12525 6988 15206 7031
Bunny 26002 78K 32187 30634 49048 30231 51405 30312
Aphrodite 46096 138K 13669 12228 37547 11803 41991 11303
Feline 49864 149K 46404 42217 62595 40371 71095 40727
Iphigenia 49922 149K 19490 18111 54008 16984 60973 17306

Fig. 6. The picture above shows a mesh together with its 3D spectral embedding. The
table reports the total number of iterations performed by the iterative linear solvers
during the inverse power iteration (our tests are run with fixed precision 1e− 5).

Network n m CG JPCG TPCG JTPCG nan
(max tree) (max tree) nan

C. Elegans 453 2025 8123 7129 7795 7051 nan

Email URV 1133 5451 24395 23540 25684 23435 nan

Facebook social circles 4039 88234 11832 7702 8044 7677 nan

Power grid network 4941 6594 15623 13430 8812 10481 nan

PGP network 10680 24316 64068 54806 55356 53852 nan

Pref. attachment 100000 500K 61125 59399 80451 59455 nan

Small world 100000 500K 4972 5010 125446 4963 nan

Gowalla 196591 950K 202247 146883 176644 147322 nan

Fig. 7. Spectral clustering and complex networks: the picture above shows a partition
into five sets of a social network (facebook, 4k nodes) obtained by applying the K-means
algorithm to the spectral embedding of the graph.

guess for all linear solvers (tests are repeated several times, in order to take
into account the dependency of the convergence speed on the initial guess). As
confirmed by the results reported in Table 1, our preconditioner always performs
better than other solvers (this has been confirmed for all tested meshes).

Iterative eigensolvers. Spectral methods proved their relevance in various appli-
cation domains, ranging from graph drawing and data visualization to complex
networks analysis (for more details we refer to [15,25]). We also have integrated
our preconditioner as the core of an iterative eigensolver (we have implemented
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a hybrid version of the inverse power iteration). We evaluate its performance by
computing the smallest non-trivial eigenvalues of the Laplacian: a fundamental
step in problems such as spectral drawing and spectral clustering. Tables in Fig. 6
and 7 report the number of iterations performed by the linear solvers required
to compute the first three eigenvalues for 3D meshes and complex networks.

Acknowledgments. This work is supported by the ANR EGOS 12 JS02 002 01,
a Google Faculty Research Award, the Marie Curie grant CIG-334283-HRGP, and a
CNRS chaire dexcellence, Jean Marjoulet professorial chair.
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Abstract. In this paper we describe an algorithm which generates all
colored planar maps with a good minimum sparsity from simple motifs
and rules to connect them. An implementation of this algorithm is avail-
able and is used by chemists who want to quickly generate all sound
molecules they can obtain by mixing some basic components.

1 Introduction

Carbon dioxide, as well as methane can be absorbed by large organic cages [1].
These cages are formed by spontaneous assembly of small organic molecules,
called motifs, bearing different reacting centres. The prediction of the overall
shape of the cage that will be obtained by mixing the starting motifs is rather
difficult, especially because a given set of reacting partners can lead to very
different cages. It is hence crucial for chemists to have an operating tool that is
capable of generating the many shapes of cages accessible from predetermined
molecular motifs.

In this paper we present the algorithms we have designed and implemented to
generates molecules that are much larger and less regular that what the chemists
usually design by hand. The molecules are modelled by maps i.e. planar embed-
dings of planar graphs, as explained in Sec. 2. The use of maps may seem unsuit-
able since they do not represent spatial positions. Though, planar maps are a
good model for spherical topologies and the embedding capture the rigidity of
the motifs. We must also be able to select the most relevant molecules among the
huge number we generate. In Sec. 3.4, we characterize what a “good” molecule is
through graph parameters which are then used to filter the best molecules. The
relevance of our modeling and of our parameters is validated by the results we
obtain: All small molecules (5-10 motifs) we generate and consider to be good
according to our parameters have been studied before by chemists. Some of the
very regular molecules of medium size (10-20 motifs) we generate correspond to
the largest cages chemists have ever produced. We also have produced cages of
shape unknown to chemists that they now try to synthesize.

Authors thank the French Labex CHARMMMAT for the financial support of this
work and David Auger for fruitful discussions about the folding algorithm.
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The aim of this paper is the generation of all colored planar maps up to
isomorphism representing possible molecules obtained from a set of elementary
starting motifs (colors). As with all enumeration problems, one difficulty is to
avoid to produce a solution several times. Moreover the number of solutions may
grow exponentially with their size, it is here the case for all bases of motifs but
the most contrived. The complexity of such enumeration problems must then
take into account the number of produced solutions (see [2] for more details on
enumeration).

We say that an algorithm is in polynomial total time if its complexity is
polynomial in the number of solutions and polynomial in the size of the produced
solutions. In our context, where the number of solutions is always exponential in
their size, we are interested in linear total time algorithms. The best algorithms
are in constant amortized time (CAT): the algorithm uses on average a constant
time to generate each solution. This kind of efficient algorithms exists for simple
enumeration problems such as listing all trees [3]. We may also want to bound
the delay that is the time between the production of two consecutive solutions.
Good algorithms have a delay polynomial, linear or even constant in the size of
the generated solutions.

There exist numerous works on enumeration and generation of planar
maps [4], but none of them deals with the generation of planar maps built with
a set of starting motifs and color constraints. Moreover, most of the literature
deals with non-constructive tools [5] or yields algorithms which are not in poly-
nomial total time. There are a few programs such as plantri [6] and CaGe [7]
which generate efficiently some particular class of planar graphs such as cubic
graphs or graphs with bounded size of face but they are not general enough for
our purposes.

The algorithm we present in Sec. 3 is far from being in polynomial total time
since we are not able to bound the number of isomorphic copies of each solution
we generate. However, we will present several subroutines used in our algorithm
which are either CAT, for instance the generation of paths and almost foldable
paths in Sec. 3.1, or in linear delay such as the folding of unsaturated maps of
motifs in Sec. 3.2. Moreover, we study several heuristics and improvements which
makes the enumeration feasible for maps of medium size. Sec. 4 presents numer-
ical results which supports this assertion and illustrates the relative interest of
our heuristics.

2 Modeling of the Problem

In this section, we propose the modeling of our problem by maps. A map is a
connected planar graph drawn on the sphere considered up to continuous defor-
mation. Note that by Steinitz’s theorem, when a planar graph is 3-connected,
there is only one corresponding map, but otherwise there may be several of
them. It is relevant to distinguish between two maps with the same underlying
graph, since the geometrical informations contained in the maps are useful to
the chemist who are interested in their 3D representation. All maps used in this
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paper are vertex-colored maps. The representation of a map is a graph and a
cyclic order of the neighbors around each vertex.

We first model the basic chemical elements with maps we call motifs. Then
the motifs are assembled to form a map of motifs and from this map we derive
a molecular map that is a more faithful model of the molecular cages we try to
design.

We use a finite even set of colors A = {a, a, b, b, c, c, . . . } where each positive
color a in A has a unique complementary negative color denoted by a and a is
the complementary color of a. Each color represents a different kind of reacting
center. Let us give the definition of motifs.

Definition 1. A map G = (Vc � V,E,next) is a motif if, (1) Vc contains only
one vertex c called the center, (2) each vertex in V is colored with a color
in A, (3) E = {(c, u), u ∈ V }, and (4) next gives an order on the edges
of c: next((c, u)) = (c, v) means that the edge (c, v) is ”following” the edge
(c, u) in a clockwise drawing of G. For all k < |V |, nextk((c, u)) �= (c, u) and
next|V |((c, u)) = (c, u).

Note that a motif is a star graph. We assume as input M a finite set of motifs
all different. Each motif is identified by a distinct color from an alphabet AM

disjoint from A induced by the colors existing in M. Fig. 1 gives examples of
motifs.

Y

a

a

a

next I

a

a

X

a a

a a

V

b b

a

J

a

b

Fig. 1. Example of motifs on AM = {Y, I,X,V,J} and A = {a, a, b, b}

Definition 2. A connected planar map G = (Vc �V,E,next) is a map of motifs
based on M if, (1) the closed neighborhood of each vertex in Vc is a motif,
(2) each vertex in V is connected to exactly one vertex in Vc and at most one
vertex in V . If u and v in V are connected, the colors of u and v must be
complementary. The number of vertices in Vc is called the size of G.

Note that each motif of M may appear any number of times in a map of
motifs, it may also be not present. A motif is a map of motifs of size 1. In a map
of motifs, a vertex of degree 1 in V is called a free vertex. A map of motifs with
no free vertex is called saturated otherwise it is called unsaturated.

Based on a saturated map of motifs we construct the molecular map that is
the graph model of the cages.

Definition 3. Let G = (Vc � V,EG,nextG) be a saturated map of motifs based
on M, we define the molecular map M as the map G where all paths of size
three between vertices of Vc are replaced by an edge.
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Fig. 2. Example of two maps of motifs based on M = {Y, I}, the first map is unsatu-
rated while the second map is saturated

3 Description of the Algorithm

The aim of this paper is to solve the following problem: given a base of motifs
M and an integer n, enumerate all molecular maps of size n based on M. The
complexity depends only on n since the size of M and the size of its elements are
assumed to be small constants (usually less than 4). In this section, we describe
an algorithm which solves this problem and explain in details its two main steps.

The first one, the concatenation, consists in adding edges between comple-
mentary vertices of two maps of motifs in such a way the result is still a map of
motifs. In this paper, we always concatenate a single motif to a map of motifs,
see [8] for other concatenations. Sec. 3.1 presents the different strategies of con-
catenation. The second, the fold or folding, consists in adding an edge between
two complementary vertices of a map of motifs, in such a way the result is a
map of motifs. Sec. 3.2 presents an efficient approach to folding that we use to
saturate the maps obtained by concatenation. Then, Sec. 3.3 explain how we
detect and discard isomorphic copies of the same graph. Finally in Sec. 3.4, we
introduce the indices which characterize a good molecular map and explain how
we compute them.

3.1 Backbone Generation

The first step is to generate all backbones, that is unsaturated maps of motifs of
a given size n which are of a very simple shape. The aim is that, by folding these
backbones in a second step, we will recover all saturated maps of motifs. Since
every map of motifs have a spanning tree, we can choose trees as backbones and
be sure to recover all saturated maps. But for performance reason, we will also
use paths and cycles as backbones. This turns out to be good heuristics, speeding
up considerably our algorithm while only mildly reducing the set of generated
maps of motifs. We would also like to restrict the backbones to those which can
be folded into some saturated map. We address this problem by enumerating
only what we call the almost foldable backbones, with a complexity as good as
for the generation of regular backbones. This new algorithm greatly improve the
computation time.

Spanning tree. In a first version of our algorithm [8], the set of non isomorphic
trees of size n was explicitly stored. To produce the set of trees of size n + 1, a
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single motif of every possible color was concatenated to each free vertex of each
tree of size n. This generates all trees of size n + 1, but the drawback is that
some trees are generated several times. The algorithm was thus not in linear total
time and we needed to do an isomorphism test on every generated tree. We now
generate all trees where the root and its first edge are fixed with a simple CAT
algorithm. This method generates a tree as many times as edges in the tree: one
for each choice of a vertex as root and for each choice of first edge of this root.
Therefore, the implemented algorithm do not need to store the trees which are
produced on the fly, and has a linear delay. A way to further improve this would
be to use ideas from CAT algorithms which generate unrooted trees [3]. The
main idea is to choose as root the centroid of the tree. However we have to deal
with a second and harder problem: we generate maps of motifs and their vertices
are colored. We can generate all maps of motifs sharing the same underlying tree
efficiently but they may turn out to be isomorphic.

Hamiltonian paths. Since generating trees is not easy, we propose to use simpler
objects as backbones, here maps of motifs such that all vertices of Vc are on a
path. These maps are caterpillar trees, but since the elements of Vc on the central
path entirely determine the elements at distance one, we will consider them as
paths and call them so. There are two advantages to generating paths instead
of trees: they are easier to generate and their number is smaller. The drawback
is that not any planar graph has an Hamiltonian path, therefore we could miss
some planar maps in our enumeration. However, most small planar graphs have
an Hamiltonian path, for instance all planar cubic 3-connected graphs of size
less than 38 [9] and, if Barnette’s conjecture holds, all fullerene graphs.

The regularity of the graphs (all vertices of the same degree) crucially matters
in the existence of an Hamiltonian path. Consider for instance the base of motifs
M = {I,Y} from Fig. 1. All molecular maps based on M are bipartite graphs:
the I’s in one set of the bipartition and the Y’s in the other. But in saturated
maps of motifs, we have twice the number of Y equal three times the number of
I because all vertices in V must be connected, therefore there are no Hamiltonian
path except in graphs with exactly three I and two Y. This problem can be easily
solved by building from M a new base of motifs which in the end generates the
same molecular maps (see [10]).

Let us now explain how we generate all paths based on a set of motifs M.
We first build for each letter a ∈ A a list La of all non isomorphic motifs whose
first edge is incident to a vertex of label ā. This data structure allows us to have
a complexity independent of the size of M and of A. Then to build all possible
paths of size n + 1 from a path of size n, we consider its last vertex c ∈ Vc

and for each of the free vertex v connected to c and of color a, we attach every
motif of La. Remark that beginning by the empty path, we generate all possible
paths of a given size by applying recursively the algorithm. If we consider the
paths as rooted at the first vertex produced during the algorithm, every path
generated is clearly different. However, we can also consider the last concatenated
vertex as the beginning of the path, which means we generate every path but
the palindromes twice. To avoid that, we put an ordering on AM , the colors
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of the center vertices, and we consider the sequence of colors in a path. If the
sequence of colors from the beginning to the end is lexicographically larger than
the sequence from the end to beginning we output the path otherwise we do not.
This is implemented in our algorithm and adds only in average a constant time.

Proposition 1. The previous algorithm produces all maps of motifs which are
paths without redundancies in constant amortized time, when in the base of motifs
no two motifs of degree 2 can be concatenated.

Proof. The tree of recursive calls of our algorithm can always be seen as of degree
at least 3 by merging nodes of degree 2 to nodes of degree larger. Therefore it has
at least as many internal nodes as leaves which correspond to output solutions.
Since the algorithm needs only a constant time to go from one node to another,
the generation of all paths can be done in constant amortized time. ��

In our practical examples, there are never motifs of degree two which can be
concatenated. Without this condition, the algorithm has still a linear delay.

Hamiltonian cycles. If we want to further restrict the backbones we generate,
a simple idea is to consider cycles instead of paths. Again it is a good choice if
all motifs have the same degree or can be made so, since for instance all planar
cubic 3-connected graphs of size less than 23 have an Hamiltonian cycle [11].
Moreover, we will only generate 2-connected graphs and not the ones which are
only 1-connected. It is a desirable side effect, since those graphs have a bridge
they are always the worse for the two main indices we are interested with, i.e.
the minimum sparsity and the size of the largest cycle (see Sec. 3.4).

Almost foldable backbones. In each backbone we build, all free vertices will even-
tually be folded to get a saturated map of motifs. A simple necessary condition
on the colors of a saturated map of motifs is that for each color a ∈ A, there are
as many vertices in V labeled by a and ā. A backbone which satisfies this con-
dition is said to be almost foldable. Let G be a map of motifs and let a1, . . . , ak
be the positive colors of the alphabet A. We denote by CG the characteristic
vector of G, it is of size k and its ith component is the number of elements in V
labeled by ai minus the number of elements labeled by āi. Note that a map G
is almost foldable if and only if CG is the zero vector.

We propose here a method to generate in constant amortized time only the
almost foldable paths. We introduce a function F : N× A ×Z

k → 2A which has
the following semantic: a′ ∈ F (n, a, (c1, . . . , ck)) if and only if (1) there is a path
P of size n with a free vertex in the first motif labeled by a, (2) CP = (c1, . . . , ck),
(3) a vertex of the last motif is labeled by a′.

Proposition 2. There is an algorithm which enumerates all almost foldable
paths in constant amortized time plus a precomputation in O(nk+1), when in
the base of motifs no two motifs of degree 2 can be concatenated.



Efficient Generation of Stable Planar Cages for Chemistry 241

Proof. First, we explain how to generate all needed values of the function F
in time O(nk+1) by dynamic programming. Denote by f the maximal number
of vertices in a motif labeled by the same color. For a path P of size n, it is
clear that the coefficients in CP are all in the interval [−nf, nf ]. Therefore, to
generate paths of size n, since f and the size of A are constants, we need to store
O(nk+1) values of F only.

F is easy to compute for n = 1: we consider each motif M ∈ M and each v
of label a in M , and let F (1, a, CM ) be the set of labels of all vertices of M but
v. Assume we have generated the values of F for n, we generate the values for
n + 1 in the following way. For each a, C and each a′ ∈ F (n, a, C), we consider
all motifs M ∈ M such that one of their vertex is labeled by ā. We add all the
labels of the other vertices to the set F (n, a, C +CM ). This algorithm only does
a constant number of operations for each value of F it computes, therefore its
complexity is O(nk+1).

Now that F is computed, we use it in our path generation algorithm to
generate only the almost foldable paths. Assume we have generated a path P
of size n′, its characteristic vector CP and we want to add a node at the end
by connecting it to a node of label a. Assume we have already computed CP .
The algorithm checks if F (n − n′, ā,−CP ) �= ∅. If it is the case the algorithm
go on normally otherwise it backtracks since this extension cannot yield a non
foldable path. This improvement only adds a single test at each step of the
original algorithm, plus an addition of a constant sized vector to maintain the
value of CP . Therefore it is in constant amortized time. ��

The complexity of the precomputation may seem to be large but k must
be seen as a small constant (less than 4). It is negligible with respect to the
generation of paths, which is exponential in n because of the number of non
isomorphic paths. In practice, the precomputation takes only a few milliseconds
for size of graphs up to 40 on a regular desktop computer. On the other hand,
this optimization makes the time to computes all the backbones much smaller
than the time to do the next steps.

The same kind of method has been implemented for trees (see [10]).

3.2 Folding of the Backbones

Let G be a map of motifs, the fold operation on the vertices u and v is adding
the edge (u, v) to G. The operation is valid if u and v are free, of complementary
colors and in the same face of G. Therefore, the graph obtained after the fold is
still a map of motifs. In this section we generate from a backbone, by sequences
of folds, all possible saturated maps of motifs.

The outline of a face is the list in order of traversal of the free vertices.
An outline is a circular sequence of vertices (v1, . . . , vn) ∈ V n. Sequence means
that the order is significant and circular means that the starting point is not.
For instance, (v1, v2, v3) and (v3, v1, v2) are the same circular sequence but are
different from (v3, v2, v1). Remark that a tree or a path has a single outline,
a cycle has two and a saturated map has only empty outlines. The color of
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an outline (v1, . . . , vn) is the word w1 . . . wn with wi the color of vi. Folding two
vertices vi and vj in the same outline of color W1wiW2wjW3 creates two outlines
of color W3W1 and W2. The fold operation can then be seen as an operation from
words over A to multiset of words. Remark that this operation is very similar to
the reduction of consecutive complementary parentheses which enables to define
the classical Dyck language of balanced string parentheses.

J

a

b

V1 a

a

a

V2b

a

a

outline = {a, a, a, a}

J

a

b

V1 a

a

a

V2b

a

a

outline = {a, a}

Fig. 3. A map on AM = {V1,V2,J} and its outline before and after a fold operation

Applying a sequence of fold to a backbone to get a saturated map is the same
as applying a sequence of reductions to the colors of an outline so that we obtain
only empty words. We work from now on only on the words w1 . . . wn and on
sequences of reductions. If in a sequence of reductions, the reduction is applied
to wi and wj we say that the sequence pairs i with j.

Let us call a word (or a multiset of words) which reduces to a multiset of
empty words a foldable word. As in the case of parentheses languages, we can
restrict the reduction to consecutive complementary letters which transforms
W1aaW2 into the word W1W2. Indeed, when a word is foldable, it can be reduced
to empty words using the restricted reduction of consecutive letters only by
reordering the sequence of reductions. We call result of a sequence of reductions
the set of pairs (i, j) such that the sequence has paired i and j. The previous
remark shows that it is indeed a set of pairs and not a sequence. Our aim is to
generate all different results of sequences of reductions on foldable words without
redundancies.

Lemma 1 (Folklore). The restricted reduction on words is confluent i.e. each
sequence of restricted reduction starting from a foldable word can be extended so
that we get an empty word.

As a consequence of this lemma, we get a simple algorithm for testing whether
a word is foldable: reduce the word as long as it is possible and if an empty word
is obtained, the word is foldable. This algorithm can be implemented in linear
time by using a doubly linked list and a good order on the reductions (see [10]).
We use this algorithm each time we produce a backbone to test whether it can
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be folded into a saturated map of motifs. Note that, even if we generate almost
foldable backbones only, we may generate some which are not foldable such as
those with outline bab̄ā.

Proposition 3. There is an algorithm which enumerates all distinct results of
sequences of reduction on a foldable word, with a linear delay and a quadratic
precomputation.

Proof. For a given word W we first build the lists Li which contain the set of
indices j > i such that wi can be folded with wj and the obtained set of words
is still foldable.

The lists Li are built from a boolean matrix M such that Mi,j is true if
and only if the word wi . . . wj is foldable. The matrix is computed by dynamic
programming: Mi,i+1 is true if and only if wi and wi+1 are complementary. We
compute Mi,j once we have computed all Mi′,j′ such that (j′ − i′) < (j − i) by
using the fact that wi . . . wj is foldable if and only if wi . . . wk and wk+1 . . . wj are
foldable for some k in [i+1, j] or wi and wj are complementary and wi+1 . . . wj−1

is foldable. By this method, the matrix M is computed in time cubic in the size of
the word. In fact, by Lemma 1, if there is a k such that wi . . . wk and wk+1 . . . wj

are foldable, then for all l such that wi . . . wl is foldable, then wl+1 . . . wj is
foldable. We store for each i the smallest k > i such that wi . . . wk is foldable.
Hence we can decide whether there is a k such that wi . . . wk is foldable in
constant time and we compute the matrix M in quadratic time.

Remark that a sequence of reductions applied to a word W yields a set of
subwords which are consecutive letters of W . Therefore we can represent the
result of several reductions by a set of pairs {(l1, r1), . . . , (lk, rk)} with (li, ri)
representing the word wli . . . wri and li < ri < li+1. We build the results of
sequences of reductions in a recursive way. Assume we have already built a
result R through a sequence of reductions applied to W , which has produced
the set {(l1, r1), . . . , (lk, rk)}. We consider l1, the index of the first letter which
has not been reduced and we do the reduction with every possible letter of index
i ∈ [l1, r1] ∩ Ll1 which produces the set {(l1, i), (i + 1, r1) . . . , (lk, rk)} and the
result R∪{(l1, i)}. By using recursively this algorithm starting on W , we obtain
all possible results R corresponding to a reduction to a multiset of empty words.
It is not possible to generate twice a result since at any point of the algorithm
we make recursive calls on R ∪ {(l1, i)} for different values of i which makes the
results produced by each call disjoint. Between two recursive calls we do only a
constant number of operations, therefore the delay is bounded by the depth of
the tree of recursive calls, that is the size of the word W . ��

The enumeration algorithm we have described is exponentially better than
the naive one where each possible letter is folded when it is next to a comple-
mentary letter and so on recursively. The complexity of the naive algorithm is
proportional to the number of sequences of reductions while our is proportional
to the number of results. For instance, on words of the form Wn with W = aāāa,
there is only one result but (2n)! sequences of reductions.
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3.3 Dealing with Isomorphic Copies

Since the construction process does not guaranty uniqueness of the generated
maps, we need to detect during the enumeration the isomorphic copies of already
generated maps to discard them. From a theoretical point of view, planar iso-
morphism is well understood since it has been proved to be solvable in almost
linear time [12]. However this algorithm is not practical and hard to implement
as observed in [13], especially if we want a signature rather than just an isomor-
phism test. This is particularly true for our small graphs of size about 20, which
is the reason why we rely on a simpler algorithm of quadratic complexity in the
spirit of [14] (see [10]).

Moreover, the computed signature allows to detect chiral molecules, a very
important notion in chemistry. Two maps are chiral if one is isomorphic to the
other when the order of the next predicate is reversed for all neighborhoods.

3.4 Indices Computed on the Molecular Map

A molecular map is a candidate to be a “good” cage for chemistry. The definition
of a “good” cage is merely topological: the 3D shape must be close to a sphere, it
must be resistant to deformations and cuts and it must have an ”entrance”. We
are able to check if a molecule satisfies or not these requirements only by consid-
ering the structure of its molecular map: First the map is planar and connected
by construction. In quadratic time we compute the equivalence classes of vertices
up to automorphism, using the same technique as to compute a signature, which
helps measure the sphericity of the cage. The entrance is given by the size of its
largest face, which is easily computed in linear time. The resistance of a map is
given by its minimum sparsity. We now define the sparsity and explain how to
compute it, since it is the most relevant index and the hardest to compute.

A cut of a graph G = (V,E) is a bipartition of V . The size of a cut S =
(S1, S2) is the number of edges with one end in S1 and the other in S2. The
sparsity of a cut is sparsity(S) = size(S)

min(|S1|,|S2|) . The Sparsest Cut problem is
to find the minimum sparsity over all cuts. We first implemented a brute-force
algorithm, using a Gray code which enumerates all possible partitions of the set
of vertices in time O(2n) where n is the number of vertices in our graph.

Although computing the minimum sparsity is NP-complete in general (mini-
mum cut into bounded set in [15]), there is a polynomial time algorithm when
the graph is planar [16]. Since the time to compute the minimum sparsity was
the limiting factor of our program, we have implemented and adapted to our
case this more complicated algorithm (which has never been done as far as we
know).

The main idea is that a cut in a graph corresponds exactly to a cycle in the
dual graph (see [17] for graph definitions useful in this paragraph). A weight
is associated to each cycle of the dual: if the corresponding cut in the primal
partitions it into S1 and S2, the weight is min(|S1|, |S2|). From a spanning tree
of the dual, we build a base of its fundamental cycles. A fundamental cycle is
given by any edge not in the spanning tree completed by edges of the spanning



Efficient Generation of Stable Planar Cages for Chemistry 245

tree to form a minimal cycle. From symmetric differences of fundamental cycles,
we can generate every cycle and its weight.

For each edge in the dual, we build a graph such that paths from a given
vertex correspond to cycles of the dual which use the edge. Moreover, the weight
of the cycle can be read in the last vertex of the path, and the size of the
corresponding cut is the length of the path. Therefore, computing a single source
shortest-path in each of these graphs enables us to compute the value of the
sparsest-cut. While in the original article this was done by a modified Dijkstra
algorithm, we use a breadth first-search. This is faster and it enables us to use
a good heuristic: at any point of one of the breadth first-search, we know the
current distance from the source can only increase. We can stop the search, if
this distance divided by the maximal weight (equal to the number of vertices) is
larger than the current minimum sparsity value. This implementation has very
good practical performances: on a regular desktop computer the mean time
to compute the sparsest cut of a graph of size 30 is 0.2 ms while the brute force
algorithm needs 6000 ms.

4 Results

The code and the exhaustive results of our approach can be found at the following
address http://kekule.prism.uvsq.fr. For several sets of motifs, one can find the
set of generated maps and their indices. We stopped all computations at 300
seconds an put a – in the tables when the algorithm has not finished. All times
are given in second, a.f. stands for almost foldable.

In Tab. 1, we give the time to compute the backbones and the number of
backbones generated (we also count isomorphic copies which are generated).
The time to compute cycles is not given since they are computed from paths,

Table 1. Number of backbones and generation time for J (a, b), V1 (ā, ā, b), V2 (a, b̄, b̄)

Size Tree A.f. tree Path A.f. path

Backbones Time Backbones Time Backbones Time Backbones Time

9 5.70 105 0.09 3.85 105 0.05 4.92 104 0.01 9.87 103 0.01
12 1.16 108 14.28 5.55 107 7.98 1.77 106 0.28 2.46 105 0.08
15 – – – – 7.26 107 10.88 6.17 106 1.74
18 – – – – – – 1.56 108 45.84

Table 2. Number of maps and time to generate them and their indices for J (a, b),
V1 (ā, ā, b), V2 (a, b̄, b̄)

Size A.f. tree A.f. path A.f. cycle

A.f. backb. Maps Time A.f. backb. Maps Time A.f. backb. Maps Time

9 3.85 105 236 0.32 9.87 103 236 0.03 8.06 103 148 0.01
12 5.55 107 4476 53.99 2.46 105 4463 0.71 2.03 105 1931 0.32
15 – > 98100 – 6.17 106 97112 28.40 5.13 106 29164 8.81
18 – – – 1.56 108 2307686 – 1.30 108 501503 184.48

http://kekule.prism.uvsq.fr
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the difference is seen in the number of folded maps and the time to generate
them. In Tab. 2, we give the time to generate all unique maps and their indices.
Remark that the number of unique maps generated by trees, paths or cycles are
different, since only the generation from trees is exhaustive. However, most of
the maps with the largest minimum sparsity are generated with paths or cycles
as backbones.
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Abstract. Multiple sequence alignment is a core computational task in
bioinformatics and has been extensively studied over the past decades.
This computation requires an implicit assumption on the input data: the
left- and right-most position for each sequence is relevant. However, this
is not the case for circular structures; for instance, MtDNA. Efforts have
been made to address this issue but it is far from being solved. We have
very recently introduced a fast algorithm for approximate circular string
matching (Barton et al., Algo Mol Biol, 2014). Here, we first show how
to extend this algorithm for approximate circular dictionary matching;
and, then, apply this solution with agglomerative hierarchical cluster-
ing to find a sufficiently good rotation for each sequence. Furthermore,
we propose an alternative method that is suitable for more divergent
sequences. We implemented these methods in BEAR, a programme for
improving multiple circular sequence alignment. Experimental results,
using real and synthetic data, show the high accuracy and efficiency of
these new methods in terms of the inferred likelihood-based phylogenies.

1 Introduction

Sequence comparison is an important step in many important tasks in bioin-
formatics. It is used in many applications; from phylogenetic reconstruc-
tion to genome assembly. Traditional techniques for measuring approximation
in sequence comparison are based on the notions of distance or similarity between
sequences; and these are computed through sequence alignment.

The computation of optimal alignments is usually realised by dynamic pro-
gramming techniques. These techniques are efficient for the case of pairwise
sequence alignment, however, when it comes to the case of multiple sequence
alignment finding the global optimum has been shown to be NP-hard [26]. Due to
the difficulty of computing the optimal multiple sequence alignment, many
heuristic methods have been proposed, including ClustalW [14], MMAFT [13],
MUSCLE [6], and T-Coffee [19]. These heuristics require an implicit assumption
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 247–258, 2015.
DOI: 10.1007/978-3-319-20086-6 19
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on the input data: the left- and right-most position for each sequence is rele-
vant; so should the sequences have a circular structure, there may be a number
of issues with the produced alignment. For instance, taking different rotations
of the sequences into account may lead to a better alignment. In other words,
in circular sequences the chosen left- and right-most position for each sequence
is irrelevant; and not considering rotations could lead to erroneously classifying
similar sequences as dissimilar.

Circular DNA can be found in viruses; as plasmids in archaea and bacteria;
and in the mitochondria and plastids of eukaryotic cells. Hence, algorithms on
circular sequences can be important in the analysis of organisms containing such
structures. An application of circular sequences has been in the context of recon-
structing phylogenies using Mitochondrial DNA (MtDNA) [9,10,27]. MtDNA is
generally conserved from parent to offspring, and so it can be used as an indica-
tor of evolutionary relationships among species. The absence of recombination
in these sequences allows it to be used as a simple test of phylogenetic evolution,
and the high mutation rate leads to a powerful discriminative feature. However,
when sequencing a DNA molecule, the position where a circular genome starts
can be totally arbitrary. Due to this arbitrary definition, using conventional
tools to align such sequences could yield an incorrectly high genetic distance
between closely-related species. For instance, the linearised human (NC 001807)
and chimpanzee (NC 001643) MtDNA sequences do not start in the same region.
Their pairwise sequence alignment using EMBOSS Needle [20] gives a similarity
of 85.1% and consists of 1195 gaps; taking different rotations of these sequences
into account yields an alignment with a similarity of 91% and only 77 gaps.

The problem of finding the optimal linear alignment of two circular sequences
of length n and m ≤ n under the edit distance model can be solved in time
O(nm log m) [16]. The same problem can trivially be solved in time O(nm2)
with scoring matrices and affine gap penalty scores [17]. Progressive multiple
sequence alignments can be constructed by generalising the pairwise algorithm
to profiles, similar to ClustalW [14]. This generalisation is implemented in cyc-
lope [17], a programme for improving multiple circular sequence alignment: this
method can be used to first obtain the best-aligned rotations, and then realign
the rotations by using conventional alignment tools. The cubic runtime of the
pairwise alignment algorithm becomes a bottleneck in practical terms. Other fast
heuristic methods were also implemented in cyclope, but they are only based on
the first two sequences from the input dataset. Another approach to improve
multiple circular sequence alignment was implemented in CSA [7], a tool based
on the generalised circular suffix tree construction [25]. The best-aligned rota-
tions are found based on the largest chain of non-repeated blocks that belong
to all sequences. Unfortunately, CSA is no longer maintained. It also has the
restriction that there can be only up to 32 sequences in the input dataset, and
that there must exist a block that occurs in every sequence only once.

Our Contribution. We have very recently introduced a fast average-case linear-
time algorithm for approximate circular string matching [2]. A similar result was
also presented in [11]; an average-case optimal algorithm was later presented
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in [3]. In this article, we first show how to extend the algorithm of [2] for
approximate circular dictionary matching; and, then, apply this solution with
agglomerative hierarchical clustering to find a sufficiently good rotation for each
sequence. Furthermore, we propose an alternative method that is suitable for
more divergent sequences. It uses state-of-the-art algorithms for solving the fixed-
length approximate string matching problem [12]. We have implemented these
two methods in BEAR (BEst-Aligned Rotations), a programme for improving
multiple circular sequence alignment. Experimental results, using real and syn-
thetic data, establish this improvement in terms of the likelihood-based inferred
phylogenies, and show the high accuracy and efficiency of these new methods.

2 Definitions and Notation

To provide an overview of our results, we begin with a few definitions. We think
of a string x of length n as an array x[0 . . n − 1], where every x[i], 0 ≤ i < n, is
a letter drawn from some fixed alphabet Σ of size σ = O(1). The empty string
of length 0 is denoted by ε. A string x is a factor of a string y if there exist two
strings u and v, such that y = uxv. Consider the strings x, y, u, and v, such that
y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a suffix of y. Let
x be a non-empty string of length n and y be a string. We say that there exists
an occurrence of x in y, or, more simply, that x occurs in y, when x is a factor
of y. Every occurrence of x can be characterised by a position in y. Thus we say
that x occurs at the starting position i in y when y[i . . i + n − 1] = x.

Given a string x of length m and a string y of length n ≥ m, the edit distance,
denoted by δE(x, y), is defined as the minimum total cost of operations required
to transform one string into the other. For simplicity, we only count the number
of edit operations, considering the cost of each to be 1 [15]. The allowed edit
operations are as follows: insertion of a letter in y, not present in x; deletion of
a letter in y, present in x; and substitution of a letter in y with a letter in x. We
write x ≡E

k y if the edit distance between x and y is at most k. Equivalently, if
x ≡E

k y, we say that x and y have at most k differences. We refer to the standard
dynamic programming matrix of x and y as the matrix defined by
D[i, 0] = i, 0 ≤ i ≤ m, D[0, j] = j, 0 ≤ j ≤ n

D[i, j] = min

⎧
⎨

⎩

D[i − 1, j − 1] + (1 if x[i − 1] �= y[j − 1])
D[i − 1, j] + 1
D[i, j − 1] + 1

, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Similarly, we refer to the standard dynamic programming algorithm as the algo-
rithm to compute the edit distance between x and y through the above recurrence
in time O(mn). Given a non-negative integer threshold k for the edit distance,
this can be computed in time O(mk) [24]. We say that there exists an occurrence
of x in y with at most k differences, or, more simply, that x occurs in y with at
most k differences, when u ≡E

k x and u is a factor of y.
Given a string x of length n, we denote by xi = x[i . . n − 1]x[0 . . i − 1],

0 < i < n, the i-th rotation of x and x0 = x. Consider, for instance, the string
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x = x0 = abababbc; this string has the following rotations: x1 = bababbca, x2 =
ababbcab, x3 = babbcaba, x4 = abbcabab, x5 = bbcababa, x6 = bcababab,
x7 = cabababb.

In this article, we consider the following two problems, the solutions for which
form the basis of our contribution to multiple circular sequence alignment.

ApproximateCircularDictionaryMatching
Input: a set D = {x0, x1, . . . , xd−1} of patterns of total length M , a text t
of length n, such that n > |xj |, 0 ≤ j < d, and an integer threshold k < |xj |
Output: all factors u of t such that u ≡E

k xi
j , 0 ≤ j < d, 0 ≤ i < |xj |

FixedLengthApproximateStringMatching
Input: a pattern x of length m, a text t of length n, an integer � ≤ m, and
an integer threshold k < �
Output: all factors u of t such that u ≡E

k v, where v is any factor of length
� of x

3 Algorithmic Toolbox

In this section, we give a generalisation of our algorithm for approximate circular
string matching [2], denoted here by ACSM, and show that it can easily be
modified to solve the problem of approximate circular dictionary matching under
the edit distance model. We denote this new algorithm by ACDM. Algorithm
ACDM follows a similar approach to ACSM but with a few key differences. We
will make use of the following important fact and lemmas.

Fact 1 ([2]). Let x be a string of length m. Any rotation of x is a factor of
x′ = x[0 . . m − 1]x[0 . . m − 2]; and any factor of length m of x′ is a rotation of
x.

Lemma 1 ([1]). Let x and y = y0y1 . . . yk be two strings, such that y0, y1, . . . , yk

are k + 1 non-empty strings and x ≡E
k y. Then there exists at least one string

yi, 0 ≤ i ≤ k, occurring in x.

Lemma 2 ([2]). Let x be a string of length m. If we partition x′ = x[0 . . m −
1]x[0 . . m − 2] in 2k + 4 fragments of length �(2m − 1)/(2k + 4)� and �(2m −
1)/(2k + 4)	, at least k + 1 of the 2k + 4 fragments are factors of any factor of
length m of x′.

We start by constructing the string x′
j = xj [0 . . |xj | − 1]xj [0 . . |xj | − 2], for

all 0 ≤ j < d. Then string x′
j is partitioned in 2k + 4 fragments of length

�(2|xj | − 1)/(2k + 4)� and �(2|xj | − 1)/(2k + 4)	. By Lemma 2, at least k + 1
(application of Lemma 1) of the 2k + 4 fragments are factors of any rotation of
xj (application of Fact 1). We then match the 2k + 4 fragments of x′

j , for all
0 ≤ j < d, against the text t using an Aho Corasick automaton [5]. Let L be a
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list of size Occ of tuples, where < px′
j
, �, j, pt >∈ L is a 4-tuple such that: px′

j
is

the position where the fragment occurs in x′
j ; � is the length of the corresponding

fragment; j identifies the pattern the fragment was extracted from; and 0 ≤ pt <
n is the position where the fragment occurs in t. These tuples, returned by the
automaton, give us the necessary information to perform the verification step
if a fragment is indeed matched. For each tuple < px′

j
, �, j, pt >∈ L, we try to

extend to the right by computing the standard dynamic programming matrix
of x′

j [px′
j

+ � . . |x′
j |] and t[pt + � . . pt + |x′

j | − px′
j

− 1 + k]. Similarly, we try to
extend to the left. By merging the results of the left and the right extension, we
can report all factors u of t such that u ≡E

k xi
j , 0 ≤ j < d, 0 ≤ i < |xj |.

Theorem 1. Given a set D = {x0, x1, . . . , xd−1} of patterns of total length M
drawn from alphabet Σ, σ = |Σ|, a text t of length n > |xj |, where 0 ≤ j < d,
drawn from Σ, and an integer threshold k < |xj |, algorithm ACDM requires
average-case time O((1 + dk2|xmax|

σ
2|xmin|−1

2k+4

)n + M) to solve the ApproximateCircu-

larDictionaryMatching problem, where xmin and xmax are the minimum-
and maximum-length patterns in D, respectively.

Proof. Constructing and partitioning the strings x′
0, x

′
1, . . . , x

′
d−1 from D can

be done trivially in time O(M). Building the Aho Corasick automaton of the
(2k + 4)d fragments requires time O(M); and the search time is O(n + Occ).
Computing two standard dynamic programming matrices for each occurrence of
fragment < px′

j
, �, j, pt > of x′

j requires time O(k|xj |Occ) [24]. For each extended
occurrence of some fragment, we may report, in the worst case, O(|xj |) valid
starting positions. The expected number of occurrences for any fragment of x′

j

is n/σ(2|xj |−1)/(2k+4) thus (2k +4)n/σ(2|xj |−1)/(2k+4) for all 2k +4 fragments. So

the total expected number Occ of occurrences is
d−1∑

j=0

(2k + 4)n

σ
2|xj |−1
2k+4

= O(
dkn

σ
2|xmin|−1

2k+4

),

where xmin is the minimum-length pattern in D. Since the expected number Occ
of occurrences of the fragments in t is O( dkn

σ
2|xmin|−1

2k+4

), algorithm ACDM requires

average-case time O((1+ dk2|xmax|
σ

2|xmin|−1
2k+4

)n+M), where xmax is the maximum-length

pattern in D. ��
Algorithm ACDM achieves average-case time O(n + M) iff

d(2k + 4)k|xmax|
σ

2|xmin|−1
2k+4

n ≤ cn

for some fixed constant c. So we have

d(2k + 4)k|xmax|
σ

2|xmin|−1
2k+4

≤ c

d(2k + 4)k|xmax|
c

≤ σ
2|xmin|−1

2k+4
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logσ(
d|xmax|

c
) + logσ((2k + 4)k) ≤ 2|xmin| − 1

2k + 4

logσ d + logσ |xmax| − logσ c + logσ 2 + logσ(k + 2) + logσ k ≤ 2|xmin| − 1
2k + 4

.

Some simple rearrangement and by setting c such that logσ c ≥ logσ 2+1/4 gives
a sufficient condition for ACDM to achieve average-case time O(n + M):

(k + 2)(logσ d + logσ |xmax| + logσ(k + 2) + logσ k) ≤ |xmin|.

We, therefore, obtain the following result which is relevant to the application of
multiple circular sequence alignment.

Corollary 1. Given a set D = {x0, x1, . . . , xd−1} of patterns of total length
M = dm, such that m = |x0| = |x1| = . . . = |xd−1|, drawn from alphabet Σ, σ =
|Σ|, a text t of length n > |xj |, where 0 ≤ j < d, drawn from Σ, and an integer
threshold k = O(m/ log M), algorithm ACDM requires average-case time O(n +
M) to solve the ApproximateCircularDictionaryMatching problem.

Since this approach is online—it avoids the computation of global data structures
over t—algorithm ACDM can be implemented in space O(M).

Corollary 2. Given a set D = {x0, x1, . . . , xd−1} of patterns of total length M
drawn from alphabet Σ, σ = |Σ|, a text t of length n > |xj |, where 0 ≤ j < d,
drawn from Σ, and an integer threshold k < |xj |, algorithm ACDM requires space
O(M) to solve the ApproximateCircularDictionaryMatching problem.

4 Implementation

Given a set of strings x0, x1, . . . , xd−1 as input, our objective is to compute
an array R of size d, such that R[j], for all 0 ≤ j < d, stores a sufficiently
good rotation of xj . Then x

R[0]
0 , x

R[1]
1 , . . . , x

R[d−1]
d−1 could be used as the input

dataset for a conventional multiple sequence alignment algorithm to obtain the
alignment. In this section, we describe two heuristic methods to compute R: the
first one is suitable for less divergent sequences and is based on algorithm ACDM
(see Section 3) and standard agglomerative hierarchical clustering; the latter is
suitable for more divergent sequences and is based on fixed-length approximate
string matching [4,12] and standard agglomerative hierarchical clustering. For
clarity of presentation, we assume that m = |x0| = |x1| = . . . = |xd−1|.

4.1 Method for Less Divergent Sequences

We start by applying algorithm ACDM with D := {x0, x1, . . . , xd−1}, t :=
x0#x1# . . . #xd−1, and an integer threshold k < m. The efficiency of the pro-
posed method relies on the fact that common fragments (see Section 3) will
be matched simultaneously, as strings that share a common prefix also share a
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corresponding set of ancestor nodes in the automaton. Given the output of algo-
rithm ACDM, we construct a matrix M of size d × d of pairs, such that M[i, j]
stores (e, r), denoting that the edit distance between x

M[i,j].r
i and xj is M[i, j].e.

This pair can be derived from the output of algorithm ACDM; i.e. x
M[i,j].r
i occurs

at position j × m + j of t with M[i, j].e differences.
We then apply agglomerative hierarchical clustering with average linkage [22].

As the input dataset, we use a d × d matrix N which stores the pairwise edit-
distance information stored in matrix M, i.e. N[i, j] = M[i, j].e. Consider S =
{s1, s2, . . . , sq} and L = {l1, l2, . . . , lp} be clusters that require merging such
that q ≤ p, then we must also maintain the rotations array R as follows:

R[si] =
{

(R[si] + ρ) mod m : ρ > 0
(R[si] + ρ + m) mod m : ρ ≤ 0

for all 1 ≤ i ≤ q, such that, for some 1 ≤ j ≤ p,
∑q

i=0 M[si, lj ].e is minimal, and
ρ = M[si, lj ].r − (R[si] − R[lj ]). We denote this method by LDS.

Example 1. Let the following input dataset.

x0 : GGGTCTA
x1 : TCTAGAG
x2 : CGCGTCT

We start by applying algorithm ACDM with D := {GGGTCTA, TCTAGAG, CGCGTCT},
t := GGGTCTA#TCTAGAG#CGCGTCT, and k := 2. x3

0 occurs at position 8 with 1
difference. x6

0 occurs at position 16 with 2 differences. x4
1 occurs at position

0 with 1 difference. x3
1 occurs at position 16 with 2 differences. x1

2 occurs at
position 0 with 2 differences. x4

2 occurs at position 8 with 2 differences. We obtain
matrices M and N below. We then apply standard agglomerative hierarchical
clustering with average linkage. We first merge S = {1} and L = {0}, set R[1] := 4
mod 7 = 4, and update matrix N accordingly. We then merge S′ = {2} and
L′ = {0, 1} and set R[2] := 1 mod 7 = 1. We therefore obtain the following
rotation for each string as output of the proposed approach. This output can
now be used as the input dataset for a conventional multiple sequence alignment
algorithm.

(a) Matrix M

x0 x1 x2

x0 (0,0) (1,3) (2,6)
x1 (1,4) (0,0) (2,3)
x2 (2,1) (2,4) (0,0)

(b) Matrix N

x0 x1 x2

x0 0 1 2
x1 1 0 2
x2 2 2 0

(c) Output

x0
0 : GGGTCTA

x4
1 : GAGTCTA

x1
2 : GCGTCTC

4.2 Method for More Divergent Sequences

In this section, we provide a brief description and analysis of an algorithm to solve
the FixedLengthApproximateStringMatching problem. We then show
how approximate circular string matching can be reduced to the fixed-length
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approximate string matching problem. Finally, we provide an informal structure
of our approach.

We consider the FixedLengthApproximateStringMatching problem
under the Hamming distance model. Let D′[0 . . m, 0 . . n] be a DP matrix, where
D′[i, j] contains the Hamming distance between factor x[max{0, i−�} . . i−1] of x
and factor t[max{0, j −�} . . j −1] of t, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Crochemore,
Iliopoulos, and Pissis devised an algorithm [4] that solves the FixedLength-
ApproximateStringMatching problem under the Hamming distance model.

Theorem 2 ([4]). Given a string x of length m, a string t of length n, an
integer � ≤ m, and the size of the computer word w, matrix D′ can be computed
in time O(m��/w	n) and space O(m��/w	).

By using word-level parallelism, we are able to compute matrix D′ efficiently.
The algorithm requires constant time for computing each cell D′[i, j] by using
word-level operations, assuming that � ≤ w. In the general case, it requires
O(��/w	) time. Hence, the algorithm requires time O(mn), under the assumption
that � ≤ w. The space complexity is only O(m) since each column of D′ only
depends on the immediately preceding column. The same result can also be
obtained under the edit distance model [12,18].

In order to compute array R, the idea is to apply an algorithm for fixed-
length approximate string matching, for every pair of strings (xi, xj), with x′

i =
xi[0 . . m−1]xi[0 . . �−1] and x′

j = xj [0 . . m−1], for some 1 ≤ � ≤ m. Notice that
cell D′[p, q], say D′[p, q] = e, denotes that factor x′

i[p − � . . p − 1] matches factor
x′

j [q − � . . q − 1] with e mismatches. Equivalently, suffix xp mod m
i [m− � . . m− 1]

matches suffix xq mod m
j [m−� . . m−1] with e mismatches. Hence, setting � := m

solves exactly the approximate circular string matching problem; however, setting
� to smaller values can be sufficient in practice for the considered application
(see Section 5 in this regard). Given the output of this approach, for all pairs of
strings, we construct a matrix M of size d × d of pairs, such that M[i, j] stores
(e, r), denoting that the minimum distance between any factor of length � of
x
M[i,j].r
i and some factor of xj is M[i, j].e. This step requires time O(d2m2��/w	),

which, in practice, is much faster than the O(d2m3)-time algorithm implemented
in cyclope [17]. After constructing matrix M, we apply standard agglomerative
hierarchical clustering, similar to LDS; we denote this method by MDS.

We implemented the LDS and MDS methods, under the edit and Hamming
distance models, as programme BEAR to compute the BEst-Aligned Rotations
for a set of circular input sequences. Notice that, the simple distance model
is sufficient for this purpose as more complex scoring schemes will be applied
afterwards, in any case, to obtain the multiple sequence alignment. The pro-
gramme was implemented in the C programming language and developed under
GNU/Linux operating system. It takes, as an input argument, a file in Multi-
FASTA format, and any of the two methods, for more or less divergent sequences,
can be used based on the expected pairwise diversity—LDS is faster for error
ratios below 10%. It then produces a file in MultiFASTA format with the rotated
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sequences as output. The implementation is distributed under the GNU Gen-
eral Public License (GPL), and it is available at http://github.com/solonas13/
bear, which is set up for maintaining the source code and the man-page doc-
umentation. A very important feature of the proposed methods, compared to
cyclope, is that they both require space linear in the length of the sequences (see
Corollary 2 and Theorem 2). Hence, we were also able to implement BEAR using
the Open Multi-Processing (OpenMP) PI for shared memory multiprocessing
programming to distribute the workload across the available processing threads
without a large memory footprint.

Summary of Availability and Requirements

– Project name: BEAR
– Project home page: http://github.com/solonas13/bear
– Operating system: GNU/Linux
– Programming language: C with OpenMP
– Other requirements: compiler gcc version 4.6.3 or higher
– License: GNU GPL

5 Experimental Results

The experiments were conducted on a Desktop PC, using one core of Intel Xeon
E5540 CPU at 2.5 GHz and 8GB of main memory under 64-bit GNU/Linux. All
programmes were compiled with gcc version 4.8.2. Notice that all input datasets,
multiple sequence alignments, and phylogenetic trees referred to in this section
are publicly maintained at the same web-site.

To test the reliability of our programme, we performed the following experi-
ment. First, we simulated a basic dataset of DNA sequences using INDELible [8].
The number of taxa, denoted by α, was set to 12; the length of the sequence
generated at the root of the tree, denoted by β, was set to 250bp; and the sub-
stitution rate, denoted by γ, was set to 0.05 (LDS was used). We then generated
another instance of the basic dataset containing one random rotation of each
of the 12 sequences from the basic dataset. We repeated this random genera-
tion to obtain 50 such instances of the basic dataset. We then used these 50
datasets as input to BEAR; and the output of BEAR as input to ClustalW [14] to
obtain 50 multiple sequence alignments. We then used RAxML [23] to infer the 50
respective phylogenetic trees under the maximum-likelihood criterion. Finally,
we computed the pairwise Robinson-Foulds (RF) distance [21] between all pairs
of these 50 trees. All pairwise RF distances between the 50 provided trees were 0
suggesting that our method is in fact reliable. We repeated the same experiment
by setting the substitution rate to 0.35 (MDS was used with � := 15) to obtain
the same results: all pairwise RF distances were 0.

To test the accuracy of our programme, we performed the following experi-
ment. First, we simulated a basic dataset of DNA sequences using INDELible for
different values of < α, β, γ >. We also used the following parameters: a deletion

http://github.com/solonas13/bear
http://github.com/solonas13/bear
http://github.com/solonas13/bear
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Table 1. Accuracy measurements based on relative pairwise RF distance using syn-
thetic data

Dataset < α, β, γ, δ, ε > BEAR + ClustalW + RAxML ClustalW + RAxML cyclope + ClustalW + RAxML

< 12, 2500, 0.05, 0.06, 0.04 > 100% 88.89% 100%
< 12, 2500, 0.20, 0.06, 0.04 > 100% 77.77% 100%
< 12, 2500, 0.35, 0.06, 0.04 > 100% 55.56% 100%
< 25, 2500, 0.05, 0.06, 0.04 > 100% 95.45% 100%
< 25, 2500, 0.20, 0.06, 0.04 > 100% 50% 100%
< 25, 2500, 0.35, 0.06, 0.04 > 100% 72.72% 100%
< 50, 2500, 0.05, 0.06, 0.04 > 100% 93.62% 97.87%
< 50, 2500, 0.20, 0.06, 0.04 > 100% 100% 100%
< 50, 2500, 0.35, 0.06, 0.04 > 100% 19.15% 100%

rate, denoted by δ, of 0.06 relative to substitution rate of 1; and an insertion
rate, denoted by ε, of 0.04 relative to substitution rate of 1. The parameters
were chosen based on the genetic diversity standard measures observed for sets
of MtDNA sequences from primates and mammals [7]. We generated another
instance of the basic dataset, containing one random rotation of each of the α
sequences from the basic dataset. We then used this dataset as input to BEAR
(LDS was used for γ = 0.05; otherwise MDS was used with � := 45); and the
output of BEAR as input to ClustalW to obtain a multiple sequence alignment.
We then used RAxML to infer the respective phylogenetic tree T1 under the
maximum-likelihood criterion. We also inferred the phylogenetic tree T2 by fol-
lowing the same pipeline but without using BEAR, as well as the phylogenetic
tree T3 by using the basic dataset as input of this pipeline. Hence, notice that
T3 represents the original tree. Finally, we computed the pairwise RF distance
between: T1 and T3; and T2 and T3. Let us define accuracy as the difference
between 1 and the relative pairwise RF distance. The results in Table 1 suggest
the high accuracy of BEAR. Notice that 100% accuracy denotes a (relative) pair-
wise RF distance of 0. We repeated this procedure by using cyclope instead of
BEAR obtaining similar and partially identical results.

To test the efficiency of our methods, we compared BEAR (MDS was used,
due to divergence, with � := 45) to cyclope using real data. As input datasets,
we used three sets of MtDNA sequences: the first set includes sequences of 16
primates; the second set includes sequences of 12 mammals; and the last one is
a set of 19 distantly-related sequences (the 16 primates, plus the Drosophila
melanogaster, the Gallus gallus, and the Crocodylus niloticus). The MtDNA
genome size for each sequence in the datasets is between 16 and 20 Kbp. To
ensure a fair efficiency comparison between the two programmes, we made sure
that they both produce a unique phylogenetic tree (using the aforementioned
pipeline) by computing the pairwise RF distance of the inferred trees. The results
in Table 2 using a single core show that BEAR can accelerate the computations
by more than a factor of 20 compared to cyclope, producing, via ClustalW and
RAxML, identical trees.
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Table 2. Elapsed-time comparison and pairwise RF distance using real data

Dataset BEAR cyclope RF distance

First set (Primates) 2m11s 41m46s 0
Second set (Mammals) 1m15s 26m19s 0
Third set (Primates et al) 3m01s 61m35s 0

6 Final Remarks

In this article, our contribution is threefold:

1. We present an average-case algorithm for approximate circular dictionary
matching, which requires linear time (Corollary 1) and linear space (Corol-
lary 2) under realistic conditions, and may be of independent interest.

2. We present and make available BEAR, a programme for improving multiple
circular sequence alignment.

3. We present experimental results establishing this improvement in terms
of the inferred likelihood-based phylogenies; we show the high accuracy
(Table 1) and efficiency (Table 2) of BEAR compared to the state-of-the-
art.

Our immediate target is twofold:

1. We plan on extending BEAR by investigating and including different methods
for improving multiple circular sequence alignment.

2. We plan on implementing a web service based on BEAR that may be used
by researchers for performing analyses on molecular sequences with circular
genome structure.
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Abstract. In recent years, there have been major efforts to develop data
stream algorithms that process inputs in one pass over the data with little
memory requirement. For the k-means problem, this has led to the devel-
opment of several (1 + ε)-approximations (under the assumption that k
is a constant), but also to the design of algorithms that are extremely
fast in practice and compute solutions of high accuracy. However, when
not only the length of the stream is high but also the dimensionality of
the input points, then current methods reach their limits.

We propose two algorithms, piecy and piecy-mr that are based on
the recently developed data stream algorithm BICO that can process
high dimensional data in one pass and output a solution of high quality.
While piecy is suited for high dimensional data with a medium number of
points, piecy-mr is meant for high dimensional data that comes in a very
long stream. We provide an extensive experimental study to evaluate
piecy and piecy-mr that shows the strength of the new algorithms.

Keywords: k-means clustering · Data streams · SVD

1 Introduction

Partitioning points into subsets (clusters) with similar properties is an intuitive,
old and central question. Unsupervised clustering aims at finding structure in
data without the aid of class labels or an experts opinion. It has many appli-
cations ranging from computer science applications like image segmentation or
information retrieval to applications in other sciences like biology or physics
where it is used on genome data and CERN experiments. For an overview on the
broad subject, see for example the survey by Jain [14]. The k-means problem asks
to cluster data such that the sum of the squared error is minimized. It has been
studied since the fifties [18,22] and optimizing it is likely ‘the most commonly
used partitional clustering strategy’ [15]. It measures the quality of a partition-
ing of points from R

d based on the squared Euclidean distance function. Each
cluster in the partitioning is represented by a center, and the objective function
is the sum of the squared distances of all points to their respective center.

The popularity of the k-means problem is underlined by the fact that the
most popular algorithm for it, Lloyd’s algorithm, was named one of the ten
most influential algorithms in the data mining community by the organizers of
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 259–270, 2015.
DOI: 10.1007/978-3-319-20086-6 20
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the IEEE International Conference on Data Mining (ICDM) in 2008 [24]. Lloyd’s
algorithm [18] (independently by Steinhaus [22]) is a local search heuristic that
converges to a local optimum in finitely many steps. The quality in terms of the
sum of squared errors of the output of Lloyd’s algorithm depends on the local
optimum that is reached. Arthur and Vassilvitskii [4] propose the k-means++
method as an improved version of Lloyd’s algorithm which computes a O(log k)-
approximation in expectation. It chooses the initial solution randomly by itera-
tively sampling new centers from a probability distribution that makes it likely
that most optimal centers have a close center in the start solution.

The k-means++ method therefore provides a great tool for solving the k-
means problem in practice, with an (expected) worst-case guarantee, a very
good practical performance and the advantage that it is very easy to imple-
ment. The theoretically best approximation algorithms for the k-means problem
provide a constant factor approximation for the general case [16,23] and a (1+ε)-
approximation (even in linear time) if k and ε are assumed to be constants [9].

For big data, running Lloyd’s algorithm or k-means++ is less viable. Asymp-
totically, the running time of both algorithms is O(ndk) if the number of iter-
ations is bounded to a constant. This looks convincing since a straightforward
implementation of finding the closest center for a point takes Θ(dk) time, so even
evaluating a solution then has running time Θ(ndk). Additionally, the input size
is already O(nd), so the running time is linear for constant values of k. However,
both algorithms need random access to the data and iterate over it several times.
As soon as the data does not fit into main memory, the algorithms do thus not
scale very well. For example, k-means++ needed over seven hours to compute 50
centers for a 54-dimensional data set (Covertype) with half a million points [2].

A natural strategy to cope with this problem is to summarize the data before
running the respective algorithm. A famous example for this is BIRCH [25], a
SIGMOD Test of Time Award winning algorithm that computes a summary
by one pass over the input data and then clusters the points in the summary.
BIRCH is very fast and thus enables the processing of large data sets. However,
the quality in terms of the sum of squared errors can be low [2,11].

A more recent development is the design of fast data stream algorithms
based on coresets. A coreset S of a point set P is a weighted summary of P that
maintains a strong quality guarantee: For any choice C of k centers, the k-means
costs of the clustering induced by C on S are within an (1 + ε)-factor of the k-
means clustering that C induces on P . Thus, executing any k-means algorithm on
the coreset gives a good approximation of what the same algorithm would have
produced on P . Coresets are generally designed with a focus on strong theoretic
bounds, but can be made viable in practice with slight heuristic changes.

Two examples for this approach are StreamKM++ [2] and BICO [11]. The
latter enables the processing of data sets with millions of points in less than
an hour. The above mentioned test case needs 27 seconds for BICO and ten
minutes for StreamKM++ compared to the seven hours for k-means++, and
larger instances show even higher acceleration. The quality of the results is
competitive, and the memory usage is low (polylogarithmic in theory and O(k)
in experiments). The C++ source code of both algorithms is available online.
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For data sets with up to around 100 dimensions, this is a pleasant state of
affair. However, both the analysis of the running time and memory requirement
of StreamKM++ and BICO assume that the dimension is a constant. At least
for BICO, this is not a theoretically imposed restriction, but does indeed corre-
spond to an unfavorable dependency on the dimension. The reason is that BICO
covers the input data by spheres (in order to summarize all points in the same
sphere by one point). When the number of spheres is too large, a rebuilding step
reduces it by merging some spheres. Covering a set by spheres gets increasingly
difficult as the dimension gets higher, which results in several rebuilding steps
of BICO, and in a higher running time. On the theoretical level, however, there
are several results saying that it is possible to compute a coreset of a point set in
one pass and with low memory requirements. For example, Feldman and Lang-
berg [9] propose a one-pass algorithm that computes a coreset with storage size
of O (

kd log4 nε−3 log 1/ε
)
. It is thus theoretically possible to compute coresets

which scale well with the dimension, but there is no practical algorithm yet that
achieves a high quality summary and can cope with very high dimensional, large
data sets.

Our Contribution. We develop two new algorithms, piecy and piecy-mr that
can deal with high-dimensional big data. For that, we combine BICO with a
dimensionality reduction. This reduction is done by projecting onto the best fit
subspace (of a parameterized dimension) which can be computed by the singular
value decomposition (SVD). This is theoretically supported by recent results [6,
10] that say that projecting onto the best fit subspace of dimension �k/ε� and
then solving the k-means problem gives a (1 + ε)-approximation guarantee. We
find that 3k/2 dimensions are often sufficient to give highly accurate results.

The next challenge is to intertwine the dimensionality reduction with the
coreset computation in order to do both in one pass over the data. The first
algorithm, piecy, reads chunks (pieces) of the data and processes, reduces the
dimensionality of each chunk and feeds the resulting points into BICO. The
drawback of this approach is that the total dimensionality of the complete point
set that is fed into BICO increases with the number of pieces. For large data sets
and high input dimension, this approach will eventually run into the same trouble
as BICO (but for larger and higher dimensional data sets than BICO). In piecy-
mr, we resolve this potential limitation by adapting a technique called Merge-
and-Reduce [13]. It is a method that shows that any coreset computation can be
turned into a one-pass algorithm at the cost of additional polylogarithmic factors.
We change it to take advantage of the fact that we use a coreset computation
(BICO) which already is a one-pass algorithm.

As intermediate steps of our work, we evaluate two implementations for the
singular value decomposition, [1] and redSVD [20], comparing their speed and
quality, and we extend BICO to process weighted inputs (which is necessary for
our piecy-mr approach).

Full Version. The full version of this paper can be found at [17].
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2 The Algorithms

In the following, we describe BICO and our two new algorithms, piecy and piecy-
mr. For a point set P , we denote the centroid of P by μ(P ) :=

∑
x∈P x/|P |.

BICO. Being a streaming algorithm, BICO cannot store all the input points.
Instead the idea of BICO is to cover the input data with spheres and to then
replace the points inside of each sphere by sufficient statistics which are stored.
The statistics have to be updated on the fly whenever a new point is read. BICO
requires three numbers per sphere S: The number of points |S| in S, their sum∑

x∈S x and the sum
∑

x∈S xtx of their squared length. This triple is called a
clustering feature. This data can be updated in constant time and by the well-
known formula

∑
x∈P ||x − c||2 = |P | · ||μ(P ) − c||2 +

∑
x∈P ||x − μ(P )||2, which

holds for any point set P , its centroid μ(P ) and any c ∈ R
d, it is enough to

exactly compute the cost between S and one center c ∈ R
d. In order to keep

the overall error of this compression small, the sphere covering must satisfy
certain properties that BICO guarantees by managing the sphere in a well-
organized cluster tree. Each time a new point is read, the algorithm decides to
which clustering feature it should be added. The worst-case running time for
this operation is Θ(m) per point (where m is the core-set size), however, BICO
includes several heuristics that reduce the running time of the operation to O(1)
in many cases. Still, the quality of the heuristics depends on the dimension
of the point set. Whenever the number of spheres exceeds m, BICO performs a
rebuilding step on the cluster tree. For high-dimensional data sets, this rebuilding
step may occur more often, resulting in a higher running time.

Piecy. Our aim is to compute coresets for large high-dimensional data sets by
using BICO and dimensionality reduction techniques, but in only one pass over
the data. Piecy pursues the idea of running only a single instantiation of BICO
and subsequently feeding it with chunks of low dimensional points. Thus, piecy
reads a piece of p points, reduces its intrinsic dimension and inputs the resulting
points into BICO.

Choice of dimensionality reduction technique and number of dimensions. We
use the projection to the best fit subspace of dimension �, where � is a parameter
to be optimized. The best fit subspace can be computed by using the singular
value decomposition. The theoretical background of this approach is that pro-
jecting to best fit subspaces and then solving k-means (optimally) yields a good
approximation [6,7]. When projecting to k dimensions, a 2-approximation is
guaranteed, while projecting to �k/ε� guarantees a (1+ε)-approximation. Thus,
we test values between k and moderate multiples of k to get a reasonable com-
promise between approximation factor and running time.

Using SVD to project to the best fit subspace. When we say that we use ‘the’
SVD, we mean the SVD of the matrix A ∈ R

n×d where the input points are
stored in the columns. The SVD of A has the form A = UDV T for matrices
U ∈ R

n×n,D ∈ R
n×d, V ∈ R

d×d, where U and V are unitary matrices and D is
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a diagonal matrix. The matrix V contains the right singular vectors of A. The
projection of (the points stored in) A to the best fit subspace of dimension �
is the matrix A� = UD�V

T , where D� is obtained by replacing all but the first
� diagonal elements by zero. Notice that the resulting matrix still contains d-
dimensional points, but their intrinsic dimension is reduced to �. This still helps
since the �-dimensional point set is easier to cover for BICO.

Computation of the SVD. Numerically stable computation of the singular
value decomposition is a research field of its own. Basic methods that compute
the full SVD, e.g. U , V and D, have a running time of Ω (nd min (n, d)). This full
SVD can be used by dropping the appropriate entries of D to obtain a matrix
D� and evaluating the matrix product UD�V

t to obtain the projection onto the
best fit subspace of dimension �. However, a variety of more efficient algorithms
have been developed for this specific task, which are known as algorithms for the
truncated SVD that computes a decomposition A� = U�D�V

t
� directly without

computing the full SVD of A. Additionally, random variations are known that
reduce the running time sufficiently at the cost of a small error. Mahoney [19]
gives a very nice overview on different methods to compute the singular value
decomposition, then continuing with a detailed view on randomized methods and
also discussing practical aspects. For this work, we use an implementation that
is based on the randomized algorithm presented in [12] that multiplies A with a
randomly drawn matrix to reduce the number of its columns before computing
the SVD. The implementation is called redSVD [20]. In addition to reducing
the number of columns, it also reduces the number of rows before computing
the SVD. Below, we experimentally compare the performance of redSVD to the
performance of the lapack++ implementation of the full SVD computation.

Parameters. The authors of BICO propose using a coreset size of 200k for
BICO, which we adopt. That given, there are two parameters to be chosen: The
size of the pieces that are the input for one SVD, and the number of dimensions
we project to. As we argued above, the latter should be at least k and not more
than a reasonable multiple of k.

Memory requirement. At each point in time, we store at most one piece of
the input, one SVD object and one BICO object. The memory requirement of
BICO is proportional to the output size, i. e., to 200k.

Obtaining a solution. Running piecy computes a summary of the input points.
In order to obtain an actuall solution for the k-means problem, we run k-
means++[4] on the summary.

Piecy-MR. Notice that each chunk of data that is processed by piecy adds (in
the worst case) m dimensions to the intrinsic dimension of the point set that is
stored by the BICO instance, as long as the maximum dimension is reached. For
large data sets, this is unfavorable.

Helpful coreset properties. Assume that S1 and S2 are coresets for points sets
P1 and P2, i. e., their weighted cost approximates the weighted cost of P1 or
P2, respectively, for any possible solution, and up to an ε-fraction. Then the
weighted cost of their union S1 ∪ S2 approximates the cost of P1 ∪ P2 for any
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solution up to an ε-fraction as well. Furthermore, if we use a coreset construction
to reduce S1 ∪ S2 to a smaller set (since |S1 ∪ S2| will be larger than the size of
one coreset), then we obtain a coreset for P1 ∪ P2. The error gets larger but is
bounded by a (3ε)-fraction of the cost of P1 ∪P2 (which can be compensated by
choosing a smaller ε to begin with).

The Merge-and-Reduce technique. Assume for a moment that our aim is solely
to compute a coreset with no thoughts about the intrinsic dimension of the
points, but given a coreset computation that needs random access to the data.
Then an intuitive approach is to read chunks of the data, computing a coreset
for each chunk and joining it with previous corsets, until the union becomes
too large. Then we could reduce the union by another coreset construction. The
problem with this approach is that the first chunk of the data will participate in
all following reduce steps, making the error unnecessary high. The Merge-and-
Reduce technique [5] (for clustering for example used in [3,13]) organizes the
merge and reduce steps in a binary tree such that each point takes part in at
most O(log n) reduce steps for a stream of n points.

. . .

SVD SVD SVD SVD SVD SVD SVD SVD . . .

BICO BICO BICO

SVD SVD SVD

BICO

Fig. 1. The Merge-and-Reduce style tree built by piecy-mr with an exemplary piece
size of 5 and a number of pieces of 3. piece size many points are fed into an SVD.
The result of the SVD contains the same number of points but has a smaller intrinsic
dimension. It is then fed into an instantiation of the BICO algorithm. After number of
pieces many chunks, the BICO algorithm computes a coreset of size piece size. Then we
continue on the next layer. On each layer, the number of points is reduced by a factor
of number of pieces. We continue to call the SVD on each layer to keep the intrinsic
dimension of the point set small.

Our computation tree. The coreset construction that we use, BICO, does
not require random access to the data, so we have a different problem. We
wish to keep the dimension of the input data small. Assume we would consider
this problem independently from the coreset computation, by just computing
the SVD of chunks of the data and keeping the reduced points in memory (maybe
performing a second pass over the data to compute the coreset). This is infeasible
since the number of points is not reduced and hence we would store the complete
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data set (with a lower intrinsic dimension). Imagine even that at each point in
time, an oracle could provide us with the best fit subspace of dimension � of all
points seen so far. We could still not easily use this information since the best fit
subspace would change over time. So if we use one instance of BICO, and input
each point into it, projected to the best fit subspace of all points seen so far,
then we would still get a high intrinsic dimension for the points stored in BICO.

By also embedding BICO into the Merge-and-Reduce tree, we solve these
problems. The first way of doing this would be to view the two steps of reducing
the dimension and entering the points into BICO as one coreset computation,
and just embed this into the Merge-and-Reduce technique. However, this has
the drawback that we perform the same number of dimensionality reductions as
we use BICO for reducing sets to smaller sets. We do, however, expect that the
union of multiple dimensionality reduced sets will not immediately have a high
intrinsic dimension. In particular if the data evolves over time, then multiple
consecutive pieces of the input data will have approximately the same best fit
subspace (but over time, the subspace will change). We add more flexibility to
the algorithm by running more than one copy of BICO, while allowing that
more than one SVD output is processed by the same BICO instance. The actual
computation tree is visualized in Figure 1.

Parameters. The algorithm has three parameters, the dimension that the
SVD reduces to, the piece size which is the number of points that are read as
input for one SVD computation, and the number of pieces, which is the number
of SVD outputs that are processed by one instance of BICO. When BICO reaches
the limit, the computed coreset is given to a SVD instance and then entered into
a BICO on a higher level. It is convenient to set the piece size to 200k, which also
means that BICO computes a summary of size 200k, the summary size suggested
in the original BICO publication.

Memory requirement. We store one BICO element for each level of the com-
putation tree. The degree of the tree is equal to the number of pieces b, so we
have logb n levels. At each point in time, there is at most one SVD object in the
memory since there is always at most one SVD computation at the same time.
If the piece size is equal to 200k, then the memory requirement of each BICO
element is proportional.

Weighted BICO. In the original implementation, BICO processes unweighted
input points. In the piecy-mr computation tree, the instances of BICO on higher
levels of the computation tree have to process weighted inputs (since the coreset
points are weighted). Thus, we extended the source code of BICO to work for
weighted inputs. For an input point x with weight w, we have to simulate what
BICO would do for w copies of x. The main observation is that in most routines
of BICO, multiple copies of the same point can be treated as one. For example,
finding the closest reference point that is currently in the data structure can
be done once and the result is then valid for all copies of x. Additionally, if we
decide to open a new clustering feature with x as the reference point, we can
insert all (not yet inserted) copies into this clustering feature at no cost.
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What we have to adjust is the insertion process into already existing clus-
tering features, and the initial values for new clustering features. Setting the
correct values for a new clustering feature is straightforward: The new clus-
tering feature has reference point x, its sum of points is w · x, the sum of
squares is w · x2 and the number of points stored in the feature is w. When
we add w copies of a point x to an existing clustering feature with cen-
troid μ and s points in it, then the actual increase of the error due to this

is s · ‖μ − μn‖2 + w‖x − μn‖2 = s ·
∥
∥
∥μ − sμ+wx

s+w

∥
∥
∥
2

+ w
∥
∥
∥x − sμ+wx

s+w

∥
∥
∥
2

=
sw2

(s+w)2 ‖x − μ‖2 + ws2

(s+w)2 ‖x − μ‖2 = sw
s+w‖x − μ‖2 where we denote the new

centroid after adding w copies of x by μn. We conclude that the total error
made in the feature after inserting w points is c+ sw

s+w‖x−μ‖2, where c denotes
the original error made in the feature.

The original BICO implementation would have inserted the w copies sequen-
tially into the clustering feature until the features threshold error of T would
have been surpassed. It actually uses ‖x − μ‖2 to measure the additional error
and thus overestimates it. When adding single points, the effect of this overesti-
mation decreases with each added point such that this works well for BICO. In
the weighted version, however, using w · ‖x−μ‖2 is can be off by a large margin.

Instead, we compute how many copies w′ of x can be inserted into the feature
without surpassing the threshold, which is w′(s‖x − μ‖2 − T + c

) ≤ sT − sc. If
s · ‖x−μ‖2 −T + c ≤ 0, the threshold will not be reached for any w′ ≥ 0. and we
insert all w copies. Otherwise, we insert w′ = min{w, (sT−sc)/(s‖x−μ‖2−T+c)}
copies of x. If the threshold is reached before all w copies of x are inserted, i. e.,
if w′ < w, we continue recursively as in the original BICO implementation.

Best Fit Subspace for Weighted Points. The singular value decomposition
of a matrix is defined in an unweighted fashion, yet we want to use it for reduc-
ing the dimensionality of the weighted coreset points that result from BICO
runs. Actually, we want to project the points to the best fit subspace of the
point set where each point is replaced by several copies of itself according to its
weight. Translated into the matrix notation, this means that we want to com-
pute the projection of A to the best fit subspace of dimension � of a matrix F
which contains multiple copies of the points from A according to their (integral)
weight1.

Certainly, we do not want to actually create F . Instead, we construct a
matrix A′ where each row Ai∗ is replaced by

√
wiAi∗ where wi is the weight of

the ith point. By linear algebra, we can verify that for each pair of left and right
singular vectors u and v of F with singular value σ, there exists a vector u′ such
that u′ and v are a pair of left and right singular vectors of A′ for the same
singular value. The reverse direction also holds. Thus, A′ and F have the same
best fit subspace and we can compute the SVD of A′ in order to obtain it. After
obtaining A′

�, we divide each row i by
√

wi to get the projection of the points

1 The weights that are computed by BICO are always integral. In fact, they sum up
to the number of points BICO has processed.
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in A. Their weight does not change. Notice that we cannot replace weighted
points by some multiplied version when we input the points into BICO since the
clustering behaviour of a weighted point differs from the clustering behaviour of
any multiple (imagine a center that lies at the weighted point, so that it has no
cost – but any multiplied point would have).

3 Experiments

The experiments were performed in three settings. For class I, all source codes
were compiled using gcc 4.9.1, and experiments were performed on 20 identical
machines with a 3.2 GHz AMD Phenom II X6 1090T processor and 8GiB RAM.
For class II, all source codes were compiled with gcc 4.8.2 and all experiments
were performed on 7 identical machines with a 2.8 GHz Intel E7400 processor
and 8 GiB RAM. In class III, all source codes were compiled with gcc 4.9.1 and
all experiments were performed on one machine with a 2.6 GHz Intel Core i5-
4210M CPU processor and 16 GiB RAM. Our testbed consists of the following
benchmark instances.

CalTech128. The Caltech128 instance was created from the Caltech101
image database [8] and consists of 128 SIFT descriptors, resulting in 128 dimen-
sions and about 3.1 million points. The instance was used in [11] for BICO
benchmarks and was provided to the authors in private communication.

StructuredWithNoise. The idea of the StructuredWithNoise instances is
to hide � ∈ N random point sets of y ∈ N points in R

d. To build cluster
i ∈ {1, . . . , �}, select x dimensions Di = {d1, . . . , dx} ⊆ {1, . . . , d} uniformly at
random. Then build the y points for cluster i: For point j, choose the coordinates
corresponding to Di uniformly at random from [−10, 10]. Select the remaining
coordinates, i. e., the noise, uniformly at random from [−1/2, 1/2]. We get � · y
points in d dimensions.

LowerBound. Arthur and Vassilvitskii [4] propose the following class of
instances where the kmeans++ algorithm can achieve no better approximation
than Ω(log n) in expectation. Define the (affine) (k,Δ)-simplex as the convex
combination of the k unit vectors e1, . . . , ek in R

k, scaled by Δ > 0. Now, embed
such a (k,Δ)-simplex S in the first k dimensions of Rk+n. Then use the remain-
ing n dimensions of Rk+n to place a (n/k, δ)-simplex Si in each vertex i of S
such that all Si use disjoint dimensions. We use a generator by Stallmann [21]
to generate instance of this type.

We repeated all experiments at least five times.

Redsvd as a Replacement for the Lapack++ SVD. Replacing the exact
SVD computation in our algorithm by an approximate one as outlined in
Section 2 can only work if the approximation is fast and provides reliable results.
We found that the error made by redSVD is indeed very small (at most 7%)
while computation times become significantly faster: instances with 30,000 rows
in 1000 columns can still be solved by redSVD in about 3s while lapack++’s
takes 3000s on the same instace. RedSVD was able to compute approximate
SVDs of matrices with 500,000 rows and 500 columns in 40s.
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3.1 Performance of BICO, Piecy and Piecy-MR

All numerical results discussed in this section are contained in the full ver-
sion [17]. We use BICO as a base line to compare our results. Notice that we
use the current version of the source code from the BICO website. In contrast to
the version used in [10], this version has varying running times. This shows both
in the BICO experiments itself as in the experiments for piecy and piecy-mr
since they both use BICO. Obviously, piecy and piecy-mr will improve when the
source code of BICO is updated. For this reason, we will pay most attention to
the median of the running times and not the average running time. We denote
the number of points by n, the dimension by d and the number of centers by k.

Piecy. For piecy, we test the influence of two parameters, the piece size, abbre-
viation ps, and the number of dimensions to which we project the points, abbre-
viation svd. We computed an extensive number of test cases for the data set
CalTech128 to study the influence of the parameters. For k = 5, 10, 50, piecy is
always faster than BICO. Larger values of svd increase the running time, which
is expected, but it stays below the running time of BICO for these test cases.
The accuracy of piecy is high, in particular for larger svd values. At k = 100, the
situation starts to change as there are three test cases where piecy is slower than
BICO. For k = 250, 1000 the results by piecy become somewhat unpredictable.
Notice that the number of centers is here higher than the input dimension of
the points (which is 128). Thus, piecy cannot gain anything from projecting to
a number of dimensions ≥ k, and the SVD processing becomes overhead. It is
thus clear that piecy does not perform as well on these test cases.

On the Random instance, piecy performs rather badly. The instance is large
(one million points with 1000 dimensions, i. e., a total of 109 input numbers).
In this case, most of the advantage due to the dimensionality reduction is lost
because too many pieces are processed and contribute to the intrinsic dimension
of the point set that is given to BICO. A similar behavior can be observed for
the three largest StructuredWithNoise data sets. In particular when n reaches
a million points, piecys running time goes up.

On the smaller LowerBound test cases though, piecy again outperforms
BICO’s running time. The LowerBound instances have a huge dimension of 105

but the number of points is also bounded by 105. Thus, there is less time for
piecy to accumulate too many intrinsic dimensions.

Piecy-mr. Piecy-mr also uses ps, the piece size, as a parameter, as well as svd,
the number of dimensions to project to. The additional parameter np is the
number of pieces that processed into the same BICO instance.

For CalTech128, the overhead of piecy-mr does not pay off and it performs
worse than piecy. On the LowerBound test cases, piecy-mr is always slightly faster
than BICO and comparable to piecy. On the Random instances, piecy-mr is much
faster than BICO, close to a factor of 2 on most test cases. This is in particular
a much better running time than for piecy. The fact that Random has both a
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Fig. 2. Results for a StructuredWithNoise data set with 106 points in 103 dimensions.
Left side reports quality, right side run times. Variances stem from different parameters.

huge number of points and a high dimension means that the strength of piecy-
mr shows and is not dominated by the overhead of the computation tree. The
study of the three StructuredWithNoise data sets confirms this behaviour. In
all three cases, the running time of piecy-mr is much faster or at least comparable
to BICO with very few exceptions. This effect is particularly clear for the largest
data set with one million points and a dimension of 1000, showing the speed of
piecy-mr for large high-dimensional data sets. Figure 2 shows results for this
data set. Notice that the large variance for piecy and piecy-mr is due to very
different parameter choices. The best parameter choices yield a significant speed-
up, particularly for large values of k. See the full version [17] for details.

Conclusion. The experiments show the potential speed-up by using piecy and
piecy-mr. When choosing the algorithm, one should take the dimensions of the
input matrix into account. For large dimension but a moderate number of points,
piecy is ideal since it reduces the dimension effectively with little overhead. For
data sets where the dimension is high and the number of points is also high, the
additional overhead of piecy-mr pays off.

Acknowledgments. We thank Cameron Musco and Chris Schwiegelshohn for insight-
ful discussions on the topic of this paper, Hendrik Fichtenberger and Lukas Pradel for
sharing some pieces of source code and Jan Stallmann and Ren Grzeszick for providing
the LowerBound and CalTech data sets.
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Abstract. We study the journey planning problem in public transit net-
works. Developing efficient preprocessing-based speedup techniques for
this problem has been challenging: current approaches either require mas-
sive preprocessing effort or provide limited speedups. Leveraging recent
advances in Hub Labeling, the fastest algorithm for road networks, we
revisit the well-known time-expanded model for public transit. Exploit-
ing domain-specific properties, we provide simple and efficient algorithms
for the earliest arrival, profile, and multicriteria problems, with queries
that are orders of magnitude faster than the state of the art.

1 Introduction

Recent research on route planning in transportation networks [5] has produced
several speedup techniques varying in preprocessing time, space, query perfor-
mance, and simplicity. Overall, queries on road networks are several orders of
magnitude faster than on public transit [5]. Our aim is to reduce this gap.

There are many natural query types in public transit. An earliest arrival
query seeks a journey that arrives at a target stop t as early as possible, given
a source stop s and a departure time (e. g., “now”). A multicriteria query also
considers the number of transfers when traveling from s to t. A profile query
reports all quickest journeys between two stops within a time range.

These problems can be approached by variants of Dijkstra’s algorithm [13]
applied to a graph modeling the public transit network, with various techniques
to handle time-dependency [18]. In particular, the time-expanded (TE) graph
encodes time in the vertices, creating a vertex for every event (e. g., a train depar-
ture or arrival at a stop at a specific time). Newer approaches, like CSA [12] and
RAPTOR [11], work directly on the timetable. Speedup techniques [5] such as
Transfer Patterns [4,6], Timetable Contraction Hierarchies [14], and ACSA [20]
use preprocessing to create auxiliary data that is then used to accelerate queries.
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For aperiodic timetables, the TE model yields a directed acyclic graph (DAG),
and several public transit query problems translate to reachability problems.
Although these can be solved by simple graph searches, this is too slow for our
application. Different methodologies exist to enable faster reachability computa-
tion [7,15,16,19,21–23]. In particular, the 2-hop labeling [8] scheme associates
with each vertex two labels (forward and backward); reachability (or shortest-
path distance) can be determined by intersecting the source’s forward label and
the target’s backward label. On continental road networks, 2-hop labeling dis-
tance queries take less than a microsecond [2].

In this work, we adapt 2-hop labeling to public transit networks, improv-
ing query performance by orders of magnitude over previous methods, while
keeping preprocessing time practical. Starting from the time-expanded graph
model (Section 3), we extend the labeling scheme by carefully exploiting prop-
erties of public transit networks (Section 4). Besides earliest arrival and pro-
file queries, we address multicriteria and location-to-location queries, as well as
reporting the full journey description quickly (Section 5). We validate our Public
Transit Labeling (PTL) algorithm by careful experimental evaluation on large
metropolitan and national transit networks (Section 6), achieving queries within
microseconds.

2 Preliminaries

Let G = (V,A) be a (weighted) directed graph, where V is the set of vertices
and A the set of arcs. An arc between two vertices u, v ∈ V is denoted by (u, v).
A path is a sequence of adjacent vertices. A vertex v is reachable from a vertex u
if there is a path from u to v. A DAG is a graph that is both directed and acyclic.

We consider aperiodic timetables, consisting of sets of stops S, events E,
trips T , and footpaths F . Stops are distinct locations where one can board a
transit vehicle (such as bus stops or subway platforms). Events are the sched-
uled departures and arrivals of vehicles. Each event e ∈ E has an associated
stop stop(e) and time time(e). Let E(p) = {e0(p), . . . , ekp

(p)} be the list
(ordered by time) of events at a stop p. We set time(ei(p)) = −∞ for i < 0,
and time(ei(p)) = ∞ for i > kp. For simplicity, we may drop the index of an
event (as in e(p) ∈ E(p)) or its stop (as in e ∈ E). A trip is a sequence of events
served by the same vehicle. A pair of a consecutive departure and arrival events
of a trip is a connection. Footpaths model transfers between nearby stops, each
with a predetermined walking duration.

A journey planning algorithm outputs a set of journeys. A journey is a
sequence of trips (each with a pair of pick-up and drop-off stops) and footpaths
in the order of travel. Journeys can be measured according to several criteria,
such as arrival time or number of transfers. A journey j1 dominates a journey j2
if and only if j1 is no worse in any criterion than j2. In case j1 and j2 are equal in
all criteria, we break ties arbitrarily. A set of non-dominated journeys is called a
Pareto set. Multicriteria Pareto optimization is NP-hard in general, but practical
for natural criteria in public transit networks [11,12,17,18]. A journey is tight
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if there is no other journey between the same source and target that dominates
it in terms of departure and arrival time, e. g., that departs later and arrives
earlier.

Given a timetable, stops s and t, and a departure time τ , the (s, t, τ)-earliest
arrival (EA) problem asks for an s–t journey that arrives at t as early as possible
and departs at s no earlier than τ . The (s, t)-profile problem asks for a Pareto
set of all tight journeys between s and t over the entire timetable period. Finally,
the (s, t, τ)-multicriteria (MC) problem asks for a Pareto set of journeys depart-
ing at s no earlier than τ and minimizing the criteria arrival time and number
of transfers. We focus on computing the values of the associated optimization
criteria of the journeys (i. e., departure time, arrival times, number of transfers),
which is enough for many applications. Section 5 discusses how the full journey
description can be obtained with little overhead.

Our algorithms are based on the 2-hop labeling scheme for directed graphs [8].
It associates with every vertex v a forward label Lf (v) and a backward label Lb(v).
In a reachability labeling, labels are subsets of V , and vertices u ∈ Lf (v) ∪ Lb(v)
are hubs of v. Every hub in Lf (v) must be reachable from v, which in turn must
be reachable by every hub in Lb(v). In addition, labels must obey the cover
property : for any pair of vertices u and v, the intersection Lf (u) ∩ Lb(v) must
contain at least one hub on a u–v path (if it exists). It follows from this definition
that Lf (u) ∩ Lb(v) �= ∅ if and only if v is reachable from u.

In a shortest path labeling, each hub u ∈ Lf (v) also keeps the associated
distance dist(u, v) (or dist(v, u), for backward labels), and the cover property
requires Lf (u)∩Lb(v) to contain at least one hub on a shortest u–v path. If labels
are kept sorted by hub ID, a distance label query efficiently computes dist(u, v)
by a coordinated linear sweep over Lf (u) and Lb(v), finding the hub w ∈ Lf (u)∩
Lb(v) that minimizes dist(u,w)+dist(w, v). In contrast, a reachability label query
can stop as soon as any matching hub is found.

In general, smaller labels lead to less space and faster queries. Many algo-
rithms to compute labelings have been proposed [2,3,7,15,21,23], often for
restricted graph classes. We leverage (as a black box) the recent RXL algo-
rithm [9], which efficiently computes small shortest path labelings for a variety
of graph classes at scale. It is a sampling-based greedy algorithm that builds
labels one hub at a time, with priority to vertices that cover as many relevant
paths as possible.

Different approaches for transforming a timetable into a graph exist (see [18]
for an overview). In this work, we focus on the time-expanded model. Since it
uses scalar arc costs, it is a natural choice for adapting the labeling approach.
In contrast, the time-dependent model (another popular approach) associates
functions with the arcs, which makes adaption more difficult.

3 Basic Approach

We build the time-expanded graph from the timetable as follows. We group all
departure and arrival events by the stop where they occur. We sort all events
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at a stop by time, merging events that happen at the same stop and time. We
then add a vertex for each unique event, a waiting arc between two consecutive
events of the same stop, and a connection arc for each connection (between the
corresponding departure and arrival event). The cost of arc (u, v) is time(v) −
time(u), i. e., the time difference of the corresponding events. To account for
footpaths between two stops a and b, we add, from each vertex at stop a, a
foot arc to the first reachable vertex at b (based on walking time), and vice
versa. As events and vertices are tightly coupled in this model, we use the terms
interchangeably.

Any label generation scheme (we use RXL [9]) on the time-expanded graph
creates two (forward and backward) event labels for every vertex (event),
enabling event-to-event queries. For our application reachability labels [21],
which only store hubs (without distances), suffice. First, since all arcs point
to the future, time-expanded graphs are DAGs. Second, if an event e is reach-
able from another event e′ (i. e., Lf (e′) ∩ Lb(e) �= ∅), we can compute the time
to get from e′ to e as time(e) − time(e′). In fact, all paths between two events
have equal cost.

In practice, however, event-to-event queries are of limited use, as they require
users to specify both departure and arrival times, one of which is usually
unknown. Therefore, we discuss earliest arrival and profile queries, which opti-
mize arrival time and are thus more meaningful. See Section 5 for multicriteria
queries.

Earliest Arrival Queries. Given event labels, we answer an (s, t, τ)-EA query
as follows. We first find the earliest event ei(s) ∈ E(s) at the source stop s
that suits the departure time, i. e., with time(ei(s)) ≥ τ and time(ei−1(s)) < τ .
Next, we search at the target stop t for the earliest event ej(t) ∈ E(t) that
is reachable from ei(s) by testing whether Lf (ei(s)) ∩ Lb(ej(t)) �= ∅ and
Lf (ei(s)) ∩ Lb(ej−1(t)) = ∅. Then, time(ej(t)) is the earliest arrival time. One
could find ej(t) using linear search (which is simple and cache-friendly), but
binary search is faster in theory and in practice. To accelerate queries, we prune
(skip) all events e(t) with time(e(t)) < τ , since Lf (ei(s)) ∩ Lb(e(t)) = ∅ always
holds in such cases. Moreover, to avoid evaluating Lf (ei(s)) multiple times, we
use hash-based queries [9]: we first build a hash set of the hubs in Lf (ei(s)),
then check the reachability for an event e(t) by probing the hash with hubs
h ∈ Lb(e(t)).

Profile Queries. To answer an (s, t)-profile query, we perform a coordinated
sweep over the events at s and t. For the current event ei(s) ∈ E(s) at
the source stop (initialized to the earliest event e0(s) ∈ E(s)), we find the
first event ej(t) ∈ E(t) at the target stop that is reachable, i. e., such that
Lf (ei(s)) ∩ Lb(ej(t)) �= ∅ and Lf (ei(s)) ∩ Lb(ej−1(t)) = ∅. This gives us the
earliest arrival time time(ej(t)). To identify the latest departure time from s for
that earliest arrival event (and thus have a tight journey), we increase i until
Lf (ei(s))∩Lb(ej(t)) = ∅, then add (time(ei−1(s)), time(ej(t))) to the profile. We
repeat the process starting from the events ei(s) and ej+1(t). Since we increase
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either i or j after each intersection test, the worst-case time to find all tight
journeys is linear in the number of events (at s and t) multiplied by the size of
their largest label.

4 Leveraging Public Transit

Our approach can be refined to exploit features specific to public transit networks.
As described so far, our labeling scheme maintains reachability information for all
pairs of events (by covering all paths of the time-expanded graph, breaking ties
arbitrarily). However, in public transit networks we actually are only interested
in certain paths. In particular, the labeling does not need to cover any path
ending at a departure event (or beginning at an arrival event). We can thus
discard forward labels from arrival events and backward labels from departure
events.

Trimmed Event Labels. Moreover, we can disregard paths representing domi-
nated journeys that depart earlier and arrive later than others (i. e., journeys that
are not tight, cf. Section 2). Consider all departure events of a stop. If a certain
hub is reachable from event ei(s), then it is also reachable from e0(s), . . . , ei−1(s),
and is thus potentially added to the forward labels of all these earlier events. In
fact, experiments show that on average the same hub is added to 1.8–5.0 events
per stop (depending on the network). We therefore compute trimmed event labels
by discarding all but the latest occurrence of each hub from the forward labels.
Similarly, we only keep the earliest occurrence of each hub in the backward labels.
(Preliminary experiments have shown that we obtain very similar label sizes with
a much slower algorithm that greedily covers tight journeys explicitly [2,9].)

Unfortunately, we can no longer just apply the query algorithms from
Section 3 with trimmed event labels: if the selected departure event at s does
not correspond to a tight journey toward t, the algorithm will not find a solu-
tion (though one might exist). One could circumvent this issue by also running
the algorithm from subsequent departure events at s, which however may lead to
quadratic query complexity in the worst case (for both EA and profile queries).

Stop Labels. We solve this problem by working with stop labels: For each stop p,
we merge all forward event labels Lf (e0(p)), . . . , Lf (ek(p)) into a forward stop
label SLf (p), and all backward event labels into a backward stop label SLb(p).
Similar to distance labels, each stop label SL(p) is a list of pairs (h, timep(h)),
each containing a hub and a time, sorted by hub. For a forward label, timep(h)
encodes the latest departure time from p to reach hub h. More precisely, let h be
a hub in an event label Lf (ei(p)): we add the pair (h, time(ei(p))) to the stop
label SLf (p) only if h /∈ Lf (ej(p)), j > i, i. e., only if h does not appear in the
label of another event with a later departure time at the stop. Analogously, for
backward stop labels, timep(h) encodes the earliest arrival time at p from h.

By restricting ourselves to these entries, we effectively discard domi-
nated (non-tight) journeys to these hubs. It is easy to see that these stop labels



278 D. Delling et al.

obey a tight journey cover property : for each pair of stops s and t, SLf (s)∩SLb(t)
contains at least one hub on each tight journey between them (or any equivalent
journey that departs and arrives at the same time; recall from Section 2 that we
allow arbitrary tie-breaking). This property does not, however, imply that the
label intersection only contains tight journeys: for example, SLf (s) and SLb(t)
could share a hub that is important for long distance travel, but not to get from
s to t. The remainder of this section discusses how we handle this fact during
queries.

Stop Label Profile Queries. To run an (s,t)-profile query on stop labels, we per-
form a coordinated sweep over both labels SLf (s) and SLb(t). For every match-
ing hub h, i. e., (h, times(h)) ∈ SLf (s) and (h, timet(h)) ∈ SLb(t), we consider
the journey induced by (times(h), timet(h)) for output. However, since we are
only interested in reporting tight journeys, we maintain (during the algorithm)
a tentative set of tight journeys, removing dominated journeys from it on-the-
fly. (We found this to be faster than adding all journeys during the sweep and
only discarding dominated journeys at the end.) We can further improve the effi-
ciency of this approach in practice by (globally) reassigning hub IDs by the time
of day. Note that every hub h of a stop label is still also an event and carries an
event time time(h). (Not to be confused with times(h) and timet(h).) We assign
sequential IDs to all hubs h in order of increasing time(h), thus ensuring that
hubs in the label intersection are enumerated chronologically. Note that this does
not imply that journeys are enumerated in order of departure or arrival time,
since each hub h may appear anywhere along its associated journey. However,
preliminary experiments have shown that this approach leads to fewer insertions
into the tentative set of tight journeys, reducing query time. Moreover, as in
shortest path labels [9], we improve cache efficiency by storing the values for
hubs and times separately in a stop label, accessing times only for matching
hubs.

Overall, stop and event labels have different trade-offs: maintaining the profile
requires less effort with event labels (any discovered journey is already tight),
but fewer hubs are scanned with stop labels (there are no duplicate hubs).

Stop Label Earliest Arrival Queries. Reassigned hub IDs also enable fast (s, t, τ)-
EA queries. We use binary search in SLf (s) and SLb(t) to find the earli-
est relevant hub h, i. e., with time(h) ≥ τ . From there, we perform a linear
coordinated sweep as in the profile query, finding (h, times(h)) ∈ SLf (s)
and (h, timet(h)) ∈ SLb(t). However, instead of maintaining tentative profile
entries (times(h), timet(h)), we ignore solutions that depart too early (i. e.,
times(h) < τ), while picking the hub h∗ that minimizes the tentative best arrival
time timet(h∗). (Note that time(h) ≥ τ does not imply times(h) ≥ τ .) Once we
scan a hub h with time(h) ≥ timet(h∗), the tentative best arrival time cannot be
improved anymore, and we stop the query. For practical performance, pruning
the scan, so that we only sweep hubs h between τ ≤ time(h) ≤ timet(h∗), is
very important.
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5 Practical Extensions

So far, we presented stop-to-stop queries, which report the departure and
arrival times of the quickest journey(s). In this section, we address multicriteria
queries, general location-to-location requests, and obtaining detailed journey
descriptions.

Multicriteria Optimization and Minimum Transfer Time. Besides optimizing
arrival time, many users also prefer journeys with fewer transfers. To solve the
underlying multicriteria optimization problem, we adapt our labeling approach
by (1) encoding transfers as arc costs in the graph, (2) computing shortest path
labels based on these costs (instead of reachability labels on an unweighted
graph), and (3) adjusting the query algorithm to find the Pareto set of solutions.

Reconsider the earliest arrival graph from Section 3. As before, we add a
vertex for each unique event, linking consecutive events at the same stop with
waiting arcs of cost 0. However, each connection arc (u,w) in the graph is sub-
divided by an intermediate connection vertex v, setting the cost of arc (u, v) to
0 and the cost of arc (v, w) to 1. By interpreting costs of 1 as leaving a vehicle,
we can count the number of trips taken along any path. To model staying in the
vehicle, consecutive connection vertices of the same trip are linked by zero-cost
arcs.

A shortest path labeling on this graph now encodes the number of transfers
as the shortest path distance between two events, while the duration of the
journey can still be deduced from the time difference of the events. Consider a
fixed source event e(s) and the arrival events of a target stop e0(t), e1(t), . . . in
order of increasing time. The minimum number of transfers required to reach
the target stop t never increases with arrival times. (Hence, the whole Pareto
set P of multicriteria solutions can be computed with a single Dijkstra run [18].)

We exploit this property to compute (s, t, τ)-EA multicriteria (MC) queries
from the labels as follows. We initialize P as the empty set. We then perform
an (s, t, τ)-EA query (with all optimizations described in Section 3) to compute
the fastest journey in the solution, i. e., the one with most transfers. We add
this journey to P . We then check (by performing distance label queries) for each
subsequent event at t whether there is a journey with fewer transfers (than the
most recently added entry of P ), in which case we add the journey to P and
repeat. The MC query ends once the last event at the target stop has been
processed. We can stop earlier with the following optimization: we first run a
distance label query on the last event at t to obtain the smallest possible number
of transfers to travel from s to t. We may then already stop the MC query once
we add a journey to P with this many transfers. Note that, since we do not need
to check for domination in P explicitly, our algorithm maintains P in constant
time per added journey.

Minimum Transfer Times. Transit agencies often model an entire station with
multiple platforms as a single stop and account for the time required to change
trips inside the station by associating a minimum transfer time mtt(p) with each
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stop p. To incorporate them into the EA graph, we first locally replace each
affected stop p by a set of new stops p∗, distributing conflicting trips (between
which transferring is impossible due to mtt(p)) to different stops of p∗. We then
add footpaths between all pairs of stops in p∗ with length mtt(p). A small set p∗

can be computed by solving an appropriate coloring problem [10]. For the MC
graph, we need not change the input. Instead, it is sufficient to shift each arrival
event e ∈ E(p) by adding mtt(p) to time(e) before creating the vertices.

Location-to-Location Queries. A query between arbitrary locations s∗ and t∗,
which may employ walking or driving as the first and last legs of the journey,
can be handled by a two-stage approach. It first computes sets S and T of
relevant stops near the origin s∗ and destination t∗ that can be reached by
car or on foot. With that information, a forward superlabel [1] is built from all
forward stop labels associated with S. For each entry (h, timep(h)) ∈ SLf (p) in
the label of stop p ∈ S, we adjust the departure time time∗

s(h) = timep(h) −
dist(s∗, p) so that the journey starts at s∗ and add (h, time∗

s(h)) to the superlabel.
For duplicate hubs that occur in multiple stop labels, we keep only the latest
departure time from s∗. This can be achieved with a coordinated sweep, always
adding the next hub of minimum ID. A backward superlabel (for T ) is built
analogously. For location-to-location queries, we then simply run our stop-label-
based EA and profile query algorithms using the superlabels. In practice, we
need not build superlabels explicitly but can simulate the building sweep during
the query (which in itself is a coordinated sweep over two labels). A similar
approach is possible for event labels. Moreover, point-of-interest queries (such as
finding the closest restaurants to a given location) can be computed by applying
known techniques [1] to these superlabels.

Journey Descriptions. While for many applications it suffices to report departure
and arrival times (and possibly the number of transfers) per journey, sometimes
a more detailed description is needed. We could apply known path unpacking
techniques [1] to retrieve the full sequence of connections (and transfers), but
in public transit it is usually enough to report the list of trips with associated
transfer stops. We can accomplish that by storing with each hub the sequences
of trips (and transfer stops) for travel between the hub and its label vertex.

6 Experiments

Setup. We implemented all algorithms in C++ using Visual Studio 2013 with
full optimization. All experiments were conducted on a machine with two 8-core
Intel Xeon E5-2690 CPUs and 384 GiB of DDR3-1066 RAM, running Windows
2008R2 Server. All runs are sequential. We use at most 32 bits for distances.

We consider four realistic inputs: the metropolitan networks of London (data.
london.gov.uk) and Madrid (emtmadrid.es), and the national networks of Swe-
den (trafiklab.se) and Switzerland (gtfs.geops.ch). London includes all modes of
transport, Madrid contains only buses, and the national networks contain both

data.london.gov.uk
data.london.gov.uk
emtmadrid.es
trafiklab.se
gtfs.geops.ch
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Table 1. Size of timetables and the earliest arrival (EA) and multicriteria (MC) graphs

EA Graph MC Graph

Instance Stops Conns Trips Footp. Dy. |V | |A| |V | |A|
London 20.8 k 5,133 k 133 k 45.7 k 1 4,719 k 51,043 k 9,852 k 72,162 k
Madrid 4.7 k 4,527 k 165 k 1.3 k 1 3,003 k 13,730 k 7,530 k 34,505 k
Sweden 51.1 k 12,657 k 548 k 1.1 k 2 8,151 k 34,806 k 20,808 k 93,194 k
Switzerland 27.1 k 23,706 k 2,198 k 29.8 k 2 7,979 k 49,656 k 31,685 k 170,503 k

Table 2. Preprocessing figures. Label sizes are averages of forward and backward labels.

Earliest Arrival Multicriteria

Event Labels Stop Labels Event Labels

RXL Hubs Hubs Space Hubs Space RXL Hubs Hubs Space
Instance [h:m] p. lbl p. stop [MiB] p. stop [MiB] [h:m] p. lbl p. stop [MiB]

London 0:54 70 15,480 1,334 7,075 1,257 49:19 734 162,565 26,871
Madrid 0:25 77 49,247 963 9,830 403 10:55 404 258,008 10,155
Sweden 0:32 37 5,630 1,226 1,536 700 36:14 190 29,046 12,637
Switzerland 0:42 42 11,189 1,282 2,970 708 61:36 216 58,022 12,983

long-distance and local transit. We consider 24-hour timetables for the metropoli-
tan networks, and two days for national ones (to enable overnight journeys).
Footpaths were generated using a known heuristic [10] for Madrid; they are part
of the input for the other networks. See Table 1 for size figures of the timetables
and resulting graphs. The average number of unique events per stop ranges from
160 for Sweden to 644 for Madrid. (Recall from Section 3 that we merge all coin-
cident events at a stop.) Note that no two instances dominate each other (w. r. t.
number of stops, connections, trips, events per stop, and footpaths).

Preprocessing. Table 2 reports preprocessing figures for the unweighted earliest
arrival graph (which also enables profile queries) and the multicriteria graph. For
earliest arrival (EA), preprocessing takes well below an hour and generates about
one gigabyte, which is quite practical. Although there are only 37–70 hubs per label,
the total number of hubs per stop (i. e., the combined size of all labels) is quite
large (5,630–49,247). By eliminating redundancy (cf. Section 4), stop labels have
only a fifth as many hubs (for Madrid). Even though they need to store an addi-
tional distance value per hub, total space usage is still smaller. In general, average
labels sizes (though not total space) are higher for metropolitan instances. This
correlates with the higher number of daily journeys in these networks.

Preprocessing the multicriteria (MC) graph is much more expensive: times
increase by a factor of 26.2–54.8 for the metropolitan and 67.9–88 for the national
networks. On Madrid, Sweden, and Switzerland labels are five times larger com-
pared to EA, and on London the factor is even more than ten. This is immediately
reflected in the space consumption, which is up to 26 GiB (London).
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Table 3. Evaluating earliest arrival queries. Bullets (•) indicate different features:
profile query (Prof.), stop labels (St. lbs.), pruning (Prn.), hashing (Hash), and binary
search (Bin.). The column “=” indicates the average number of matched hubs.

London Sweden Switzerland

P
ro

f.
St

. l
bs

.
P
rn

.
H
as

h
B
in

.

Lbls. Hubs = [µs] Lbls. Hubs = [µs] Lbls. Hubs = [µs]

◦ ◦ ◦ ◦ ◦ 108.4 6,936 1 14.7 68.0 2,415 1 6.9 89.0 3,485 1 8.7
◦ ◦ • ◦ ◦ 16.1 1,360 1 5.9 34.4 1,581 1 5.4 33.5 1,676 1 5.8
◦ ◦ • • ◦ 16.1 1,047 1 4.2 34.4 1,083 1 3.6 33.5 1,151 1 3.8
◦ ◦ • • • 7.0 332 4 2.8 6.5 179 3 2.1 7.6 204 4 2.1

◦ • ◦ ◦ ◦ 2.0 13,037 1,126 54.8 2.0 2,855 81 10.0 2.0 5,707 218 20.4
◦ • • ◦ ◦ 2.0 861 62 6.2 2.0 711 16 3.6 2.0 699 19 3.8

• ◦ ◦ ◦ ◦ 658.5 40,892 211 141.7 423.7 13,590 118 39.4 786.6 29,381 240 81.4
• • ◦ ◦ ◦ 2.0 13,037 1,126 74.3 2.0 2,855 81 12.1 2.0 5,707 218 24.5

Queries. We now evaluate query performance. For each algorithm, we
ran 100,000 queries between random source and target stops, at random depar-
ture times between 0:00 and 23:59 (of the first day). Table 3 reports detailed
figures, organized in three blocks: event label EA queries, stop label EA queries,
and profile queries (with both event and stop labels). We discuss MC queries
later.

We observe that event labels result in extremely fast EA queries (6.9–
14.7 µs), even without optimizations. As expected, pruning and hashing reduce
the number of accesses to labels and hubs (see columns “Lbls.” and “Hubs”).
Although binary search cannot stop as soon as a matching hub is found (see
the “=” column), it accesses fewer labels and hubs, achieving query times
below 3 µs on all instances.

Using stop labels (cf. Section 4) in their basic form is significantly slower than
using event labels. With pruning enabled, however, query times (3.6–6.2µs) are
within a factor of two of the event labels, while saving a factor of 1.1–2.4 in space.
For profile queries, stop labels are clearly the best approach. It scans up to a
factor of 5.1 fewer hubs and is up to 3.3 times faster, computing the profile of
the full timetable period in under 80µs on all instances. The difference in factors
is due to the overhead of maintaining the Pareto set during the stop label query.

Comparison. Table 4 compares our new algorithm (indicated as PTL, for Pub-
lic Transit Labeling) to the state of the art and also evaluates multicriteria
queries. In this experiment, PTL uses event labels with pruning, hashing and
binary search for earliest arrival (and multicriteria) queries, and stop labels
for profile queries. We compare PTL to CSA [12] and RAPTOR [11] (cur-
rently the fastest algorithms without preprocessing), as well as Accelerated
CSA (ACSA) [20], Timetable Contraction Hierarchies (CH) [14], and Transfer
Patterns (TP) [4,6] (which make use of preprocessing). Since RAPTOR always
optimizes transfers (by design), we only include it for the MC problem. Note
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Table 4. Comparison with the state of the art. Presentation largely based on [5], with
some additional results taken from [6]. The first block of techniques considers the EA
problem, the second the MC problem and the third the profile problem.

Instance Criteria

Stops Conns Prep. Query
Algorithm Name [·103] [·106] Dy. A

rr
.

T
ra

n.
P
ro

f.

[h] Jn. [ms]

CSA [12] London 20.8 4.9 1 • ◦ ◦ — n/a 1.8
ACSA [20] Germany 252.4 46.2 2 • ◦ ◦ 0.2 n/a 8.7
CH [14] Europe (LD) 30.5 1.7 p • ◦ ◦ < 0.1 n/a 0.3
TP [5] Madrid 4.6 4.8 1 • ◦ ◦ 19 n/a 0.7
TP [6] Germany 248.4 13.9 1 • ◦ ◦ 249 0.9 0.2
PTL London 20.8 5.1 1 • ◦ ◦ 0.9 0.9 0.0028
PTL Madrid 4.7 4.5 1 • ◦ ◦ 0.4 0.9 0.0030
PTL Sweden 51.1 12.7 2 • ◦ ◦ 0.5 1.0 0.0021
PTL Switzerland 27.1 23.7 2 • ◦ ◦ 0.7 1.0 0.0021

RAPTOR [11] London 20.8 5.1 1 • • ◦ — 1.8 5.4
TP [5] Madrid 4.6 4.8 1 • • ◦ 185 n/a 3.1
TP [6] Germany 248.4 13.9 1 • • ◦ 372 1.9 0.3
PTL London 20.8 5.1 1 • • ◦ 49.3 1.8 0.0266
PTL Madrid 4.7 4.5 1 • • ◦ 10.9 1.9 0.0643
PTL Sweden 51.1 12.7 2 • • ◦ 36.2 1.7 0.0276
PTL Switzerland 27.1 23.7 2 • • ◦ 61.6 1.7 0.0217

CSA [12] London 20.8 4.9 1 • ◦ • — 98.2 161.0
ACSA [20] Germany 252.4 46.2 2 • ◦ • 0.2 n/a 171.0
CH [14] Europe (LD) 30.5 1.7 p • ◦ • < 0.1 n/a 3.7
TP [6] Germany 248.4 13.9 1 • ◦ • 249 16.4 3.3
PTL London 20.8 5.1 1 • ◦ • 0.9 81.0 0.0743
PTL Madrid 4.7 4.5 1 • ◦ • 0.4 110.7 0.1119
PTL Sweden 51.1 12.7 2 • ◦ • 0.5 12.7 0.0121
PTL Switzerland 27.1 23.7 2 • ◦ • 0.7 31.5 0.0245

that the following evaluation should be taken with a grain of salt, as no stan-
dardized benchmark instances exist, and many data sets used in the literature
are proprietary. Although precise numbers are not available for several compet-
ing methods, it is safe to say they use less space than PTL, particularly for the
MC problem.

Table 4 shows that PTL queries are very efficient. Remarkably, they are faster
on the national networks than on the metropolitan ones: the latter are smaller in
most aspects, but have more frequent journeys (that must be covered). Compared
to other methods, PTL is 2–3 orders of magnitude faster on London than CSA
and RAPTOR for EA (factor 643), profile (factor 2,167), and MC (factor 203)
queries. We note, however, that PTL is a point-to-point algorithm (as are ACSA,
TP, and CH); for one-to-all queries, CSA and RAPTOR would be faster.

PTL has 1–2 orders of magnitude faster preprocessing and queries than TP
for the EA and profile problems. On Madrid, EA queries are 233 times faster
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while preprocessing is faster by a factor of 48. Note that Sweden (PTL) and Ger-
many (TP) have a similar number of connections, but PTL queries are 95 times
faster. (Germany does have more stops, but recall that PTL query performance
depends more on the frequency of trips.) For the MC problem, the difference is
smaller, but both preprocessing and queries of PTL are still an order of magni-
tude faster than TP (up to 48 times for MC queries on Madrid).

Compared to ACSA and CH (for which figures are only available for the
EA and profile problems), PTL has slower preprocessing but significantly faster
queries (even when accounting for different network sizes).

7 Conclusion

We introduced PTL, a new preprocessing-based algorithm for journey planning
in public transit networks, by revisiting the time-expanded model and adapting
the Hub Labeling approach to it. By further exploiting structural properties spe-
cific to timetables, we obtained simple and efficient algorithms that outperform
the current state of the art on large metropolitan and country-sized networks
by orders of magnitude for various realistic query types. Future work includes
developing tailored algorithms for hub computation (instead of using RXL as
a black box), compressing the labels (e. g., using techniques from [6] and [9]),
exploring other hub representations (e. g., using trips instead of events, as in
3-hop labeling [21]), using multicore- and instruction-based parallelism for pre-
processing and queries, and handling dynamic scenarios (e. g., temporary station
closures and train delays or cancellations [5]).
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Abstract. The following algorithm partitions road networks surpris-
ingly well: (i) sort the vertices by longitude (or latitude, or some linear
combination) and (ii) compute the maximum flow from the first k nodes
(forming the source) to the last k nodes (forming the sink). Return the
corresponding minimum cut as an edge separator (or recurse until the
resulting subgraphs are sufficiently small).

1 Introduction

Graph Partitioning is the well-studied problem of cutting a graph into dis-
joint regions of approximately equal size while minimizing the number of edges
between regions. An example partition of a road network is shown as Fig. 1.

Fig. 1. Recursive bisection using our separator algorithm Inertial Flow (with bal-
ance 1/4) for the road network of the United States (24M nodes, 29M edges) into
27 regions by cutting a total of 1,413 edges (0.005%). The largest region contains less
than 6% of the original graph.

Delling, Goldberg, Razenshteyn, and Werneck [DGRW11] discovered that
road networks have remarkably small separators. Prior to our work, their
patented method called PUNCH appeared to be the only one capable of effi-
ciently computing these separators (Buffoon [SS12], another high-quality parti-
tioner for road networks, uses PUNCH as a subroutine).
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 286–297, 2015.
DOI: 10.1007/978-3-319-20086-6 22
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1.1 Problem Statement

Given a graph G = (V,E), a Graph Partition is a partition of the vertex set V
into disjoint subsets V0, V1, . . . Vk−1 such that the regions (Vi, Ei) (subgraph
induced by Vi) are of roughly equal size, and for all Vi, Vj (i �= j) the set of
edges between Vi and Vj (denoted by E(Vi, Vj)) is as small as possible. A main
challenge of graph partitioning is the combined objective of minimizing the cut
size while keeping good balance. Various objective functions combine the two
quantities. Problem variants include balanced k–partitioning, where partitions
must satisfy ∀i : |Vi| � (1 + ε) |V | /k for some imbalance parameter ε > 0, or
the relaxed (and significantly easier) variant, where only ∀i : |Vi| � r for some
region size constraint r (as considered in this paper).

One way of obtaining such a partition is by cutting G into two pieces V0, V1

and then recursing on each subgraph V0, V1. The recursion ends when the result-
ing subgraphs are sufficiently small. For these bisections, there are also various
objective functions.

Definition 1 (Cuts and Balanced Cuts). Given a graph G = (V,E), a cut
is a partition of V into two disjoint subsets V0, V1. A b–balanced cut (for any
0 < b � 1/2) is a cut such that |Vi| � �b · |V |� for both i ∈ {0, 1}.

At each level of the recursion, the objective is to find a b–balanced cut (for
some b, say b = 1/4) that minimizes the number of cut edges, i.e. min |E(V0, V1)|,
where E(V0, V1) := {(u, v) ∈ E : u ∈ V0, v ∈ V1}.

Other well-known objective functions for cuts include the minimum st cut
and the sparsest cut. A minimum st cut is a cut minimizing |E(V0, V1)| with
the condition that s and t are separated, i.e., s ∈ V0 and t ∈ V1 (no balance
requirements). It can be found efficiently using maximum flow algorithms [GR98,
BK04,GHK+11,Mad13]. A sparsest cut is a cut minimizing |E(V0, V1)| /(|V0| ·
|V1|). Sparsest cuts are hard even to approximate [KV05,CKK+06].

1.2 Related Work

Theory. Various approximation algorithms for sparsest cut use maximum flow
computations [KRV09,AK07,OSVV08,She09]. Roughly speaking, these algo-
rithms iteratively refine an embedding of V by choosing source s and sink t
at extremal points (of the embedding), computing st flow, followed by re-
arranging V . A simplified statement of these results is that a poly-logarithmic
number of carefully chosen maximum-flow computations provides a logarithmic
approximation for sparsest cut (details in the corresponding papers). Previously,
Lang and Rao [LR04] and Andersen and Lang [AL08] also showed how to improve
cuts using maximum flow. Bui, Chaudhuri, Leighton, and Sipser [BCLS87] used
maximum flow to compute bisections of regular graphs.

Some graphs are guaranteed to have small balanced cuts. For exam-
ple, any planar, bounded-genus, or minor-free graph on n nodes has a bal-
anced separator of size O(

√
n) [Ung51,LT79,Dji85,GHT84,And86,AST90],

and recursive application yields partitions [LT79,Fre87,HKRS97,vWZA13,
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KMS13]. Partitions obtained by recursive bisection may be far from optimal
though [ST97].

Practice. The literature on graph partitioning is vast, see e.g. [BMSW13,
BMS+13] and references therein. In this brief review, we focus on recent
work on partitioning road networks. Delling, Goldberg, Razenshteyn, and Wer-
neck [DGRW11] introduce PUNCH, which first computes candidate cuts using
maximum flows between sources and sinks chosen as follows: for a node v ∈ V ,
all nodes within distance < r form the source, and all nodes at distance
> R form the sink (for two parameters r < R; distance can be measured
in terms of BFS, shortest-path, or rank distance). These candidate cuts are
then aggregated in various ways to form the final partition. Sanders and
Schulz [SS11,SS12,SS13] contribute KaFFPa[E] and KaHIP (following earlier
partitioners such as Ka{SPar,PPA}), all general-purpose partitioners, with a
variant called Buffoon optimized for road networks. Their methods are based on
the multi-level graph partitioning framework, where the input graph is first con-
tracted, followed by a partitioning step on the smaller graph, and a refinement
step to obtain a partition of the original graph. In KaFFPa, one of the refine-
ment steps is called adaptive flow iterations, which enforces a balance constraint
and computes maximum flow with source and sink chosen as BFS balls in two
adjacent regions. Similar refinements using maximum flows had also been used
by Boykov, Veksler, and Zabih [BVZ01].

Applications. Road network partitions can be used for applications such as
shortest-path queries [Som14] or data distribution [KLSV10]. In particular, the
performance of separator-based shortest-path algorithms [Fre87,Dji96,HKRS97,
FR06,HSW08,DHM+09,KKS11,MS12,DGPW13] depends on the size of the
separator. Most prominently, Delling, Goldberg, Pajor, and Werneck [DGPW13]
recently demonstrated that separator-based methods built upon a quality parti-
tion (such as those described in their joint work with Razenshteyn [DGRW11])
are highly practical. Their method recursively partitions the graph into a
multi-level partition and then, for each region and level, precomputes matri-
ces representing shortest-path costs between boundary nodes. For each region,
memory requirements are therefore proportional to the square of the num-
ber of boundary nodes, which makes the quality of the partition particularly
important. Partitioning is the most time-consuming step in their preprocess-
ing algorithm (approximately 10 minutes to compute a multi-level partition
for the US road network). Dibbelt, Strasser, and Wagner [DSW14] compute
metric-independent Contraction Hierarchies based on nested dissection, which
in turn is based on recursive bisection (corresponding theory in [BCRW13]).
Finding good bisections is the most time-consuming step in their preprocessing
algorithm.

1.3 Contribution

Our main contribution is a simple and efficient method to find sparse balanced
cuts in embedded graphs such as road networks. The method, which we call



On Balanced Separators in Road Networks 289

Inertial Flow, uses the embedding, initially sorts nodes geometrically (like the
well-known Inertial Partitioning), and then computes a maximum flow. The
corresponding minimum cut is used as the separator. Inertial Flow is straight-
forward to implement, yet its partitions are reasonably good. Our experiments
using such a straightforward implementation demonstrate that it is competi-
tive with the state-of-the-art partitioner PUNCH [DGRW11]. If the Natural Cut
Heuristic is interpreted as the heart of PUNCH then the objective of this paper
is to describe a new heart, and not the effects of its transplantation. We specu-
late that, in combination with the assembly phase of PUNCH or Buffoon [SS12],
partitions might improve further (particularly in terms of balance).

In addition to simplicity, another advantage of recursive bisection is that,
after computing the separator tree once, it contains the information for an entire
multi-level partition (see e.g. [KMS13]).

As discussed in the section on related work, various partitioners employ a
maximum-flow algorithm as an important subroutine. Their main differentiator
is the choice of source and sink. On one hand, when terminals consist of too
few nodes, minimum cuts may be highly unbalanced. On the other hand, when
terminals consist of too many nodes, the best cuts may be violated by the ini-
tial source/sink assignment. Many methods use BFS balls to assign terminals,
where the choice of radii is particularly delicate: obviously, balls must not inter-
sect, but they should also be reasonably far apart. Such kind of tuning is fairly
straightforward for our method, as there is just the balance parameter b to be
configured. State-of-the-art theoretical algorithms for sparsest cut first embed
the graph and then refine using maximum flow. The main observation leading
to our method is that a road network’s embedding (which is typically provided
as part of the input) may be sufficiently good to serve as the initial embedding
in an analogous algorithm.

2 Inertial Flow

We present an efficient heuristic to find b–balanced cuts in road networks. For
the sake of exposition, let us consider a simplified road network, defined as an
undirected graph G = (V,E) with an embedding f : V ↪→ R

2. We may assume
that G is connected, as typically partitioning algorithms are applied to each
connected component independently. Our method is rather simple as it merely
applies two standard primitives: sorting and maximum flow. (The well-known
Inertial Partitioning uses sorting, followed by sweeping, hence the name of our
method.)

1. Pick a line � ∈ R
2 and orthogonally project V onto �

(more precisely, for each vertex v, project its point in the embedding f(v)
onto �).

2. Sort V by order of appearance on � (ties broken arbitrarily but consistently).
3. Let the first �b · |V |� vertices (in projection order) be the source s, and

let the last �b · |V |� vertices be the sink t.
4. Compute a maximum flow between source s and sink t.
5. Return a corresponding minimum st cut.
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Key Properties

– By choice of s and t, all minimum st cuts are b–balanced.
– The running time is bounded by the time required to sort V plus the time

required to compute one maximum flow in G. Computing the entire separator
tree (recursive bisection) requires time proportional to sort plus log1/(1−b) |V |
times flow.

– A basic implementation using standard libraries is straightforward.

Choice of �

The quality of the cut depends on the line � ∈ R
2 chosen in the first step

of the algorithm. Obvious choices include random lines as well as simple fixed
directions such as horizontal, vertical, or diagonal. A natural heuristic is then
to try multiple lines and increasing balance values and return the best cut (for
some objective function that may involve balance and cut size).

Let us demonstrate the effect of � on the cut using the road network of New
York1 as an example. The cut sizes range from 5 (best) to 44 edges (see Fig. 2).
The choice of source and sink forces the cut to be in a corridor that, for b = 1/4,
contains half the graph. If the source/sink assignment violates a sparse cut and
the corridor is relatively dense, then Inertial Flow finds a suboptimal cut.

Fig. 2. The road network of New York (264K nodes) cut with balance 1/4 and four
different line values. From left to right: horizontal (5 edges cut), vertical (44 edges
cut), and diagonal (35 and 25 edges cut, respectively). Inertial Flow using horizontal
sorting provides the best cut, both visually (along the Hudson) as well as in terms of
the number of cut edges. The other sort orders yield comparatively large cuts as the
minimum balance criterion forces unfortunate source/sink assignments violating the
Hudson cut. Note that, compared to a typical worst-case guarantee on the order of√

n ≈ 514, all cuts are smaller by at least an order of magnitude.

1 The NY network contains 264K nodes and 734K arcs (interpreted as 367K undirected
edges). All US road networks used for experiments in this paper can be downloaded
from http://www.dis.uniroma1.it/challenge9/download.shtml

http://www.dis.uniroma1.it/challenge9/download.shtml
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3 Experiments

3.1 Setup

The main datasets we consider are the road networks of the United States and
Europe, respectively. The USA graph (as used for the 9th DIMACS Implemen-
tation Challenge on Shortest Paths [DGJ08]) has 24M nodes and 58M directed
arcs, which are typically interpreted as 29M undirected edges. The EUR graph
(as made available by PTV AG, and also used in [DGJ08]) has 18M nodes and
21M edges (42M arcs).

The method used for comparison is PUNCH [DGRW11]. Note that PUNCH
does not read the embedding, so Inertial Flow is given an unfair advantage. A
main convenience of Inertial Flow as compared to PUNCH (and Buffoon [SS12])
is that it is straightforward to implement.

Our experiments are meant as a proof of concept, and we use a vanilla imple-
mentation (in C++) without any additional heuristics. For this paper, our focus is
not on running times, and we also refrain from tuning parameters to experimen-
tal data. Unless indicated otherwise, balance is set to 1/4, the lines are chosen
to be horizontal, vertical, and diagonal (� ∈ {(1, 0), (0, 1), (1, 1), (−1, 1)}), and
the objective function is simply to minimize the number of cut edges. The main
subroutines employed are std::sort and maximum flow using Dinic’s algo-
rithm (augmenting paths, in the unit-capacity case computed by breadth-first
search) [Din70]. Our implementation is parallel in the most obvious ways: sepa-
rators for each line � are computed by separate threads (with cross-notification
of minimum cut upper bounds), and recursive calls are handled by a thread pool.
For recursive bisections, we run 16 threads on two 2.20GHz Intel Xeon CPUs
with 8 cores each. We encourage interested readers to combine Inertial Flow
with other heuristics and/or to write more efficient implementations.

3.2 Results

Graph size vs. separator size and boundary size. Worst-case bounds for planar
graphs on n nodes (and more general graph classes) guarantee the existence of
a 1/3–balanced cut/separator of size O(

√
n) [LT79]. Recursive separation yields

a partition into O(n/r) regions of size � r with total boundary size O(n/
√

r).
With some more work one can obtain an r–division [Fre87], where each region has
worst-case boundary O(

√
r). Road networks appear to have significantly smaller

separators: Delling, Goldberg, Razenshteyn, and Werneck [DGRW11] compare
the average boundary size to 3

√
r instead (confirmed later by Dibbelt, Strasser,

and Wagner [DSW14]). We provide plots for region size vs. total boundary size
in Fig. 3. For specific numbers on region size vs. total boundary size, see Table 1
and Table 2.

Running Time. As mentioned above, our main focus is not on running time.
Our implementation computes multi-level partitions for USA and EUR in minutes.
Specific numbers are provided in Tables 1, 2, and 3. Note that, as expected, the
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initial cuts on the largest graphs are the most expensive ones. Subsequent cuts
operate on smaller graphs and, by maintaining nodes in sorted order(s), do not
require sorting the nodes again. For example, cutting USA into 2 regions requires
81 seconds (Table 3, b = 1/4). Recursive bisection into 6K regions takes only
roughly twice as long (165.8 seconds, Table 2). Using this recursive bisection tree,
reading off an entire multi-level partition is straightforward (see e.g. [KMS13]).
By contrast, the Natural Cut Heuristic of PUNCH [DGRW11] depends on the
target region size and is run separately for each level.

3.3 Comparison

Comparing partitions is not straightforward [BMS+14]. We compare against
various partitions reported for PUNCH in Table 1 and observe that PUNCH
partitions are significantly more balanced. For example, when partitioning USA
into 27 regions as in Fig. 1, Inertial Flow cuts 1,413 edges with maximum region
size 1.4M, while PUNCH cuts only 1,404 edges and obtains maximum region size
1M (220). While recursive bisection with Inertial Flow typically uses around 50%
more regions than a perfectly balanced partition, PUNCH reportedly needs only
about 15% more regions. For most partition granularities, the average numbers
of cut edges per region are comparable.

We also compare our bisections against the optimal ones, obtained by an
efficient algorithm of Delling, Fleischman, Goldberg, Razenshteyn, and Wer-
neck [DFG+14]. Their algorithm guarantees optimal bisections for fairly large
graphs, so comparing our method without any guarantees on optimality (only
balance and running time have worst-case bounds) against their algorithm is
not fair. However, we believe that the value of an optimal bisection adds an
interesting perspective on cut quality (see Table 3).

Let us restate that the main advantage of Inertial Flow over PUNCH is
simplicity. Another advantage is that multi-level partitions can be computed
faster. As cut sizes are comparable, these advantages come at the cost of worse
balance. Depending on the application, if better balance is required, a post-
processing step (as in PUNCH or Buffoon) may further improve partitions.

Acknowledgments. Thanks to Ramana Idury for interesting discussions as well as
contributions to the experimental framework. Thanks also to Daniel Delling and the
anonymous reviewers for their feedback on earlier versions of this paper.
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Table 1. An attempt at comparing partitions obtained by PUNCH and recursive
bisection using Inertial Flow. Values for PUNCH were extracted from [DGRW11,
Table 1(averagevalues)]. Each PUNCH average is compared to two Inertial Flow par-
titions: a partition with the same region-size constraint r, and a partition with the
same number of regions. Center: when computing a partition with the same upper
bounds for the maximum region size r, PUNCH requires fewer regions; the average
number of cut edges per region is comparable. Right: when computing a partition with
the same number of regions, the two partitioners cut a similar number of edges (with
some PUNCH boundaries slightly smaller, particularly for Europe, and partitions more
balanced). The running times for PUNCH are fairly uniform; for recursive bisection,
the smaller r, the longer the computation. Note that a recursive bisection tree with
regions of size at most r also contains a partition for any r′ � r (enabling plots like
Fig. 3 with thousands of r values), hence it also contains multi-level partitions. Using
the USA values in this table as an example, Inertial Flow simultaneously computes all
14 partitions (r = 4,338,122 through 210) in 4.1 minutes.

Graph
PUNCH Inertial Flow, fixed r Inertial Flow, target regions

r regions boundary time regions boundary time r boundary time

Europe

1,024 20,129 168,767 79.7 27,129 208,280 209.5 1,378 171,064 216.0
4,096 5,000 69,304 62.5 6,808 84,291 211.0 5,536 69,016 204.5

16,384 1,248 28,448 61.6 1,708 34,839 214.0 22,367 28,236 194.7
65,536 314 11,403 80.5 431 14,054 218.4 88,856 11,317 199.3

262,144 81 4,194 106.1 106 5,275 210.5 349,449 4,246 209.2
1,048,576 22 1,464 147.9 28 2,036 213.9 1,299,633 1,694 202.8
4,194,304 6 371 196.6 7 573 176.3 4,861,623 461 171.8

USA

1,024 26,725 222,636 104.6 36,267 274,756 246.9 1,389 223,531 186.6
4,096 6,643 87,762 79.9 9,000 107,170 173.2 5,570 87,193 181.8

16,384 1,661 34,345 75.0 2,233 41,782 157.7 22,310 34,138 172.0
65,536 418 12,767 89.9 563 15,862 166.0 87,960 12,971 168.5

262,144 109 4,556 103.3 140 5,578 163.0 336,843 4,557 166.6
1,048,576 27 1,504 117.6 33 1,716 148.5 1,407,053 1,413 148.3
4,194,304 7 383 138.7 8 478 128.4 4,338,122 388 128.7

Fig. 3. Average boundary sizes for partitions with various maximum region sizes r
(number of edges, logarithmic scale) for the BAY, CAL, and USA road networks, respec-
tively. Worst-case results (such as those for planar graphs) guarantee average boundary
sizes proportional to r1/2. Delling, Goldberg, Razenshteyn, and Werneck [DGRW11]
compare the average boundary size to r1/3.
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Table 2. Recursive bisection using Inertial Flow (balance 1/4) on the road networks of
California and Nevada (CAL), the United States (USA), and Europe (EUR), respectively,
for various values of granularity (maximum region size r). Total region boundaries
(cut sizes) reported correspond to the number of edges. Note that these partitions
typically have around 50% more regions than necessary due to imperfect balance.
Time (in seconds) corresponds to the time of recursive bisection (in particular, reading
the graph and its embedding from disk is not included) as required by 16 threads (one
bisection occupies 4 threads, one per slope). The variance in running times is rather
substantial: even though we report the median among 11 consecutive runs, that median
running time, e.g., for USA with �|V | /r� = 64 is slower than that for 1,024 even though
only a relatively small subset of cuts is computed. The initial cuts of comparably large
(sub-)graphs are the most expensive ones.

CAL |V | = 1.89M USA |V | = 23.9M EUR |V | = 18.0M
�|V | /r� regions boundary time regions boundary time regions boundary time

2 3 53 3.3 3 140 121.9 3 276 106.2
4 6 103 4.6 6 324 114.7 7 573 135.5
8 12 215 5.8 12 648 125.9 13 1,058 157.8

16 25 441 5.6 24 1,223 120.1 26 1,867 164.3
64 99 1,437 6.0 96 4,234 165.7 98 4,990 169.2

256 387 4,418 6.3 397 12,482 141.5 399 13,280 172.2
1,024 1,561 12,957 6.1 1,593 33,197 145.5 1,592 33,228 170.5
4,096 6,326 36,129 6.9 6,307 84,274 165.8 6,321 80,332 174.7

16,384 25,543 98,232 11.1 25,401 216,078 188.6 25,208 198,433 175.3

Table 3. Bisection of various road networks: perfectly balanced bisections were
obtained by Delling, Fleischman, Goldberg, Razenshteyn, and Werneck [DFG+14,
Table 4]. The balance of bisections found by Inertial Flow depends on the slope
and the parameter b and there is no guarantee on optimality. In this table, for each
b ∈ {1/5, 1/4, 1/3, 2/5} we provide the minimum number of cut edges among 4 slopes.
Balance is reported as the number of nodes in the smaller subgraph divided by the
total number of nodes. As in Table 2, times reported are for the bisection (in seconds).
When b is close to 1/2, good balance is guaranteed, but cut sizes may be significantly
higher, see e.g. NY at 40 edges for b = 2/5, which is more than double the size of an
optimal bisection. When accepting worse balance, cuts may be substantially smaller.

Perfect b = 2/5 b = 1/3 b = 1/4 b = 1/5
Graph |V | Cut Time Cut Bal. Time Cut Bal. Time Cut Bal. Time Cut Bal. Time

NY 264K 18 381 40 0.48 0.1 5 0.43 0.1 5 0.43 0.1 5 0.43 0.1
BAY 321K 18 248 28 0.48 0.2 15 0.46 0.1 12 0.46 0.2 12 0.46 0.2
COL 436K 29 2,164 27 0.43 0.2 20 0.36 0.2 14 0.32 0.3 12 0.29 0.3
FLA 1.1M 25 1,640 28 0.42 0.6 22 0.40 0.7 17 0.29 0.9 15 0.27 1.0
NW 1.2M 18 463 24 0.49 0.7 17 0.50 0.6 17 0.50 0.7 17 0.50 0.9
NE 1.5M 24 751 20 0.49 1.3 20 0.49 1.4 20 0.49 1.7 20 0.49 2.3
CAL 1.9M 32 2,658 29 0.49 2.0 29 0.47 2.4 27 0.30 2.2 26 0.30 2.5
EUR 18M NA NA 229 0.46 69.3 201 0.45 95.3 188 0.45 124.9 95 0.30 81.4
USA 24M NA NA 61 0.48 58.3 61 0.48 63.9 61 0.48 81.2 61 0.48 84.3
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[BMS+13] Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent
advances in graph partitioning (2013). arXiv, abs/1311.3144

[BMS+14] Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner,
D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia
of Social Network Analysis and Mining, pp. 73–82 (2014)

[BMSW13] Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Par-
titioning and Graph Clustering. In: 10th DIMACS Implementation Chal-
lenge Workshop of Contemporary Mathematics, vol. 588 (2013)

[BVZ01] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23(11), 1222–1239 (2001). Announced at ICCV 1999

[CKK+06] Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On
the hardness of approximating multicut and sparsest-cut. Computational
Complexity 15(2), 94–114 (2006). Announced at CCC 2005

[DFG+14] Delling, D., Fleischman, D., Goldberg, A.V., Razenshteyn, I., Werneck,
R.F.: An exact combinatorial algorithm for minimum graph bisection.
Mathematical Programming Series A (2014)

[DGJ08] Demetrescu, C., Goldberg, A.V., Johnson, D.S.: Implementation challenge
for shortest paths. In: Encyclopedia of Algorithms (2008)

[DGPW13] Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route
planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol.
6630, pp. 376–387. Springer, Heidelberg (2011)

[DGRW11] Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.F.: Graph par-
titioning with natural cuts. In: 25th IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), pp. 1135–1146 (2011)



296 A. Schild and C. Sommer

[DHM+09] Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-
performance multi-level routing. In: The Shortest Path Problem: 9th
DIMACS Implementation Challenge, vol. 74, pp. 73–92 (2009)

[Din70] Dinic, E.A.: Algorithm for solution of a problem of maximum flow in a net-
work with power estimation. Doklady Akademii Nauk SSSR; Translation
in Soviet Mathematics Doklady 11(5), 1277–1280 (1970)

[Dji85] Djidjev, H.N.: A linear algorithm for partitioning graphs of fixed genus.
Serdica. Bulgariacae mathematicae publicationes 11(4), 369–387 (1985)

[Dji96] Djidjev, H.N.: Efficient algorithms for shortest path queries in planar
digraphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G.
(eds.) WG 1996. LNCS, vol. 1197, pp. 151–165. Springer, Heidelberg (1997)

[DSW14] Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies.
In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504,
pp. 271–282. Springer, Heidelberg (2014)

[FR06] Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest
paths, and near linear time. Journal of Computer and System Sciences
72(5), 868–889 (2006). Announced at FOCS 2001

[Fre87] Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing 16(6), 1004–1022 (1987)

[GHK+11] Goldberg, A.V., Hed, S., Kaplan, H., Tarjan, R.E., Werneck, R.F.: Max-
imum flows by incremental breadth-first search. In: Demetrescu, C.,
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Abstract. Although recent scientific literature focuses on multiple
shortest-path (SP) problem definitions for road networks, none of the
existing solutions can efficiently answer all the different SP query vari-
ations. This work proposes SALT, a novel framework that not only effi-
ciently answers most SP queries but also k-nearest neighbor queries not
tackled by previous methods. Our solution offers excellent query perfor-
mance and very short preprocessing times, thus making it also a viable
option for dynamic, live-traffic road networks and all types of practi-
cal use-cases. The proposed SALT framework is a deployable software
solution capturing a range of graph-related query problems under one
“algorithmic hood”.

Keywords: Shortest-paths · k-nearest neighbors · kNN · Salt
framework

1 Introduction

During the last decades, recent scientific literature has produced efficient meth-
ods for shortest-path (SP) queries on road networks (cf. [1] for the latest
overview). Unfortunately, most aforementioned algorithms are tuned to solving
a specific problem efficiently, but are rather inefficient when used in a differ-
ent context. Contrarily, engineering a framework that efficiently solves multiple
shortest-path problems, would be the first step towards the direction of a grand
unified SP toolkit. To this end, the GRASP algorithms [11], solve most variants of
the single-source shortest-path problems on road networks, including one-to-all
(finding SP distances from a source vertex s to all other vertices), one-to-many
(computing the SP distances between the source vertex s and a set of target
vertices T ) and range queries (find all vertices reachable from s within a given
timespan). GRASP requires minimal preprocessing and provides excellent query
performance needed in the context of practical and commercial applications.
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Another fundamental problem frequently encountered in location-based ser-
vices is the kNN query, i.e., given a query location and a set of objects on the
road network, the kNN search finds the k-nearest objects to the query location.
Unfortunately, even the latest work of [21] is not scalable with the network size,
since it requires several hours for preprocessing continental road networks. In
addition, for a large number of randomly distributed objects, an efficient Dijkstra
implementation could answer kNN queries by settling a few hundreds nodes and
requiring < 1ms. Moreover, most previous methods require a target-selection
phase, i.e., they need to mark the objects location within the underlying index.
This phase requires a few seconds, hence having limited appeal for applications
involving moving objects (e.g., vehicles). Therefore, it only makes sense to use
a complex (non-Dijkstra) kNN processing framework in cases of either rather
“small” numbers of objects or objects following skewed distributions (e.g., POIs
located near the city center), i.e., for cases in which Dijkstra does not perform
well.

The contribution of this work is to provide a unified algorithmic solution
that may be used in a dynamic road network context, while covering a wide
range of shortest-path problems, such as (i) single-pair, (ii) one-to-all, (iii) one-
to-many, (iv) range and (v) kNN queries. Specifically, we aim at combining the
fragmented approaches related to the various shortest-path problem definitions
and instead propose a unified framework that tackles all of them. Our proposed
SALT (graph Separators + ALT) framework requires seconds for preprocessing
continental road networks and provides excellent query performance for a wide
range of problems. We will show that SALT is (i) 3−4× faster for point-to-point
queries when compared to existing methods of similar preprocessing times, (ii) it
answers one-to-all, one-to-many and range queries with comparable performance
to state-of-the-art approaches, and most importantly, (iii) it may also answer
kNN queries in < 1ms, for both, static or moving objects. As such, our SALT
framework could be a swiss-army-knife for tackling all shortest-path problem
variants, making it a serious contender for use in commercial applications.

The outline of this work is as follows. Section 2 describes previous related
work. Section 3 describes our novel SALT framework and algorithms. Exper-
iments establishing SALT’s benefits are provided in Section 4 and Section 5
concludes the paper.

2 Related Work

Throughout this work, we use directed weighted graphs G(V,E,w), where V
is the set of vertices, E ⊆ V xV is the set the arcs and w is a positive weight
function E → R+. The reverse graph G = (V,E) is the graph obtained from
G by substituting each arc (u, v) ∈ E by (v, u). A partition of V is a family of
sets C = {c0, c1, . . . cM}, such that each node u ∈ V is contained in exactly one
set ci. An element of a partition is called a cell. A multilevel partition of V is a
family of partitions {C0, C1, . . . CL} where � denotes the level of a partition C�.
Similar to [4], level 0 refers to the original graph, L is the highest partition
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level and in this work we use nested multilevel partitions, i.e., for each � < L
and each cell c�

i there exists a unique cell c�+1
j (called the supercell of c�

i) with
c�
i ⊆ c�+1

j . Accordingly, c�
i is a subcell of c�+1

j . In this notation, c�(v) is the cell
containing the vertex v on level �. Likewise, the number of cells of the partition
C� is denoted as |C�|. For a boundary arc on level �, the tail and head vertices
are located in different level-� cells; a boundary vertex on level � is connected
with at least one vertex in another level-� cell. Note that for nested multilevel
partitions, a boundary vertex/arc at level � is also a boundary vertex/arc for all
levels below.

In kNN queries, given a query location s and a set of objects O, the kNN
search problem finds k-nearest objects to the query location. Throughout this
work, similar to [21], we assume that the query location and the objects are both
located at vertices.

The ALT algorithm. In the ALT algorithm [13], a small set of ver-
tices called landmarks is chosen. Then, during preprocessing, we precom-
pute distances to and from every landmark for each vertex. Given a set
S⊆V of landmarks and distances d(Li, v), d(v, Li) for all vertices v∈V and
landmarks Li∈S, the following triangle inequalities hold: d(u, v)+d(v, Li) ≥
d(u,Li) and d(Li, u)+d(u, v) ≥ d(Li, v) . Hence, the function πf =
maxLi

max{d(u,Li)−d(v, Li), d(Li, v)−d(Li, u)} provides a lower-bound for the
graph distance d(u, v). Later works [18], showed that landmarks may also pro-
vide upper-bounds on the graph distance between any two vertices. Overall,
landmarks may be used to approximate graph distances, according to Eq. 1
and 2. ALT then combines the classic A∗ algorithm with the aforementioned
lower-bounds. For bidirectional search, ALT uses the average potential func-
tion, defined as pf (v) = (πf (v) − πr(v))/2 for the forward and pr(v) =
(πr(v) − πf (v))/2 = −pf (v) for the backward search.

d(u, v) ≥ maxLi
max{d(u,Li) − d(v,Li), d(Li,v) − d(Li,u)} (1)

d(u, v) ≤ minLi
(d(u,Li) + d(Li, v)) (2)

Graph separators. In Graph Separator (GS) methods, such as CRP [4,6], a
partition C of the graph is computed. Then, the preprocessing phase builds an
overlay graph H containing all boundary vertices and arcs of G. It also contains
a clique for each cell c: for every pair (u, v) of boundary vertices in c, a clique
arc (u, v) is created whose cost is the same as the shortest path (restricted to the
inner arcs of c) between u and v. For a SP query between s and t, the Dijkstra
algorithm must be run on the graph consisting of the union of H, c0(s) and
c0(t). To further accelerate queries, we may use multiple levels of overlay graphs.
Currently, CRP is the most efficient SPSP algorithm in terms of preprocessing
time (since the recent Customizable Contraction Hierarchies [9] is only tested
on undirected networks) and is thus suitable for dynamic road networks.
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SSSP queries. Recently, Efentakis et al. [11] expanded graph separators and
proposed GRASP, a novel set of algorithms for handling all variants of single-
source shortest-path (SSSP) queries, including one-to-all, one-to-many and range
queries. All three algorithms, namely GRASP (one-to-all), isoGRASP (range)
and reGRASP (one-to-many) use the exact same data structures and share
all the advantages of graph-separator methods, such as very short prepro-
cessing times and excellent parallel query performance. Unfortunately, parallel
reGRASP requires a few ms for one-to-many que-ries on continental road net-
works and hence is not fast enough for handling kNN queries.

kNN queries There are many works on kNN queries for static objects on road
networks. Unfortunately, even the most recent G-tree [21] cannot scale for con-
tinental road networks, requiring 16 hours of preprocessing for the full USA net-
work. Moreover, all index-based approaches require a target selection phase to
index which tree-nodes contain objects (requiring few seconds) and thus, they
cannot be used for moving objects. There is also previous work around kNN
queries for moving objects on road networks. However, they are either disk-
based [20], have not been tested on continental road networks [14,17,20] and
cannot address dynamic road networks. Recently, CRP was also expanded [7]
to handle kNN queries. Unfortunately, (i) CRP also requires a target selection
phase and hence, cannot be applied to moving objects and (ii) it may only per-
form well for objects near the query location (otherwise the entire upper level of
the overlay graph must be traversed). Hence, this solution is also not optimal.

3 The SALT Framework

The main contribution of this work is to propose SALT, a unified framework
for answering single-pair, single-source (one-to-all, one-to-many and range) and
especially kNN queries which are not handled efficiently by existing approaches.
The main advantage of SALT is, that the exact same data structures may service
all the different type of SP queries on road networks and thus, SALT may be
easily integrated into commercial, real-world applications. What follows is a
detailed discussion of the SALT framework.

3.1 Preprocessing

SALT’s preprocessing consists of two distinct phases, (i) the graph-separator
(GS) phase and (ii) the landmarks preprocessing phase.

The GS phase of SALT mimics the preprocessing of GRASP [11] (see Fig. 1).
During this phase, we use the Kafpaa/Buffoon [19] partitioning tool to create
nested multilevel partitions of the road network graph in a top-down fashion.
This initial partitioning phase is metric independent and needs to be executed
only once, i.e., even in the case of arc-weights changes or for different metrics.
Following partitioning, the customization stage builds the overlay graph H con-
taining all boundary vertices and arcs of G. The graph H also contains a clique
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(a) A sample
graph G. |V |= 15,
L=2, |CL|=2

(b) Building the
level-1 overlay
graph

(c) Building the
level-2 overlay
graph

(d) Downward
arcs and the
GGS↓ graph

Fig. 1. SALT’s GS customization phase. Building the overlay H and the GGS↓ graphs

for each cell c: for every pair (u, v) of boundary vertices in c, we create a shortcut
arc (u, v) whose cost is the same as the shortest-path (restricted to inner edges
of c) between u and v (see Fig. 1(b), 1(c)). Similar to [11], we also calculate the
SP distances between all border vertices of level � and all vertices of level �−1
within each cell c� (see Fig. 1(d)). To differentiate between the two kinds of arcs
computed, we will denote as (i) clique arcs the added overlay arcs that connect
border vertices of the same level � and (ii) downward arcs of level � the vertices
connecting different levels, i.e., � and �−1. For added efficiency, downward arcs
are stored as a separate graph, referred to, as GGS↓. Both types of arcs are
computed bottom-up and starting at level one. To process a cell, the GS cus-
tomization stage for SALT executes a Dijkstra algorithm from each boundary
vertex of the cell. We also apply the arc-reduction optimization of [12], which
reports only distances of boundary vertices that are direct descendants of the
root of each executed Dijkstra algorithm.

Although SALT’s GS preprocessing phase is similar to GRASP, there are
two major differences. (i) In SALT, H and GGS↓ have the same number of
levels (L = 6 in our experiments) with |CL| = 16 (cf. the original GRASP
paper with |CL| = 128 and L = 16). Using a smaller number of cells at the
upper level slightly lowers one-to-all query parallel performance, but accelerates
point-to-point queries and reduces preprocessing time. Hence, it is a very logical
compromise, since our focus is on increased versatility. (ii) Moreover, we have
to repeat SALT’s GS customization stage twice, one for the forward and one for
the reverse graph. This is necessary for the landmarks phase of SALT, but it also
allows to answer, both, forward and reverse single-source queries. Thus, at the
end of SALT’s GS preprocessing we have built two versions of the overlay graphs,
H and GGS↓, one for forward and one for reverse graph queries, respectively.

The landmarks preprocessing phase for SALT extends the preprocessing pro-
posed by [10], which optimized and tailored the ALT algorithm for dynamic road
networks. Landmarks are selected by the partition - corners landmarks selection
strategy, in which we use the cells created by Kafpaa and from each cell we
select the four corner-most vertices as landmarks. For SALT, we accelerate the
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computation of distances of all graph vertices from and to landmarks by exe-
cuting two sequential GRASP algorithms (forward and reverse) instead of using
plain Dijkstra (as in all previous approaches). Moreover, we may perform those
2×|S| GRASP algorithms in parallel. By using these optimizations, the land-
marks preprocessing phase of SALT never takes more than 4s for 24 landmarks
and is therefore at least 6× faster than any existing work.

Thus, at the end of the preprocessing stage of SALT, we have built the over-
lay graphs H and GGS↓ for both forward and reverse searches and calculated
distances for all vertices from and to the selected landmarks. For dynamic road
networks, we only need to repeat the GS customization stage and the computa-
tion of distances of all vertices from and to the landmarks. Both phases require
less than 19s for the benchmark road networks we used. This makes SALT suit-
able for dynamic scenarios, as well.

3.2 Single-Pair Shortest-Path Queries

Using SALT’s preprocessing data, we can accelerate single-pair SP queries by our
SALT-p2p algorithm, that combines CRP (with arc-reduction) with the ALT’s
adaptation with SIMD instructions of [10]. In CRP, to perform a SP query
between s and t, Dijkstra’s algorithm must be run on the graph consisting of
the union of H, c0(s) and c0(t). The difference in SALT-p2p is that, instead of
Dijkstra, we use the ALT-SIMD algorithm on the aforementioned graph. Note
that both ALT and CRP may also be used in a unidirectional or a bidirectional
setting. A similar combination of CALT [2] and CRP was unofficially introduced
in [4], which uses the landmark lower-bounds strictly on the upper-level of the
GS overlay graph. Thus, local searches could not be accelerated. Local search is
crucial for kNN queries, since the kNN results for small values of k are usually
located close to the query location. In contrast, our SALT-p2p algorithm, com-
bining the ALT-SIMD algorithm of [10] and CRP (with arc-reduction), will be
much more efficient than stand-alone ALT or CRP. Moreover, since both meth-
ods are extremely robust to the metric used [2,4], their combination will provide
excellent performance for both travel times and travel distances.

Theorem 1. The SALT-p2p algorithm is correct. (Proof omitted for space restric-

tions)

3.3 kNN Queries

SALT’s preprocessing data may also be used to answer kNN queries. Instead of
initiating a kNN search from a query location s to objects O, we start a search
from all the objects at the same time to the query location in the reverse graph.
Hence, we take advantage of, both, GS and ALT acceleration for guiding the
search towards the query location. The SALT-kNN algorithm’s query phase is
divided in two independent stages. The Pruning phase excludes objects that can-
not possibly belong to the kNN set by using the upper and lower-bounds provided
by the landmarks preprocessing data. The Main phase executes a unidirectional
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SALT-p2p algorithm in the reverse graph from all remaining objects at the same
time to the query location until the query location is settled. Now we have found
the first nearest-neighbor. This process has to be repeated another k − 1 times
until all kNN are discovered. The algorithm is detailed in the following.

Pruning phase. To prune objects that cannot belong to the k-nearest neighbors
set, we must (i) calculate the k-th lowest upper-bound of graph distances between
the query location and the objects (cf. Equation 2) and (ii) exclude objects whose
distance lower-bounds between them and the query location (cf. Equation 1)
exceed the k-th lowest upper-bound. To the best of our knowledge, this is the
first work to utilize upper and lower landmark bounds in the context of kNN
queries.

Theorem 2. SALT-kNN’s pruning phase is correct. (Proof omitted for space

restrictions)

For computing the k-th lowest upper-bound between the query location and
the objects we use a bounded max-heap Q of size k and procedure getK-
thLowUpBound:

getKthLowUpBound(s, O, landDist)

1 Q = emptyMaxHeap

2 m = 0

3 for each o in O

4 if m < k

5 Q.push(upperBound(s, o))

6 m = m + 1

7 elseif (upperBound(s, o) < Q.top())

8 Extract − max(Q)

9 Q.push(upperBound(s, o))

10 return Extract − max(Q)

PrunePhase(s, O, landDist)

1 Osmall = {}
2 kBound = getKthLowBound(s, O, landDist)

3 for each o in O

4 if lowerBound(s, o) ≤ kBound

5 Osmall .add(o)

6 return Osmall

Since the bounded max-heap Q only stores k-upper-bound distances, we only
need to compare the next objects’s upper-bound with the top of the heap. If we
have found a lower upper-bound, we remove the top of the heap and add the
new upper-bound to Q. At the end of the procedure, the top of the max-heap
is the k-th lowest upper bound of distances between the query location and the
objects.

At the end of the pruning phase (see procedure PruningPhase), instead of
using the objects in O, we only need to check for the k-nearest neighbors within
the objects in Osmall. Our experimentation has shown that the pruning phase is
very effective, since it efficiently prunes more than 60% of the total number of
objects in O.

Main phase. Following the pruning phase, to find the first nearest-neighbor we
start by performing a search simultaneously from all objects in Osmall to the
query location s in the reverse graph. To do so, we use the idea of [16]. We add
a new vertex T ′ connected to all objects in Osmall using zero-weight edges and
then perform a unidirectional SALT-p2p algorithm from T ′ to s in the reverse
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graph. At the end of this process, we have found the first NN of query location s.
Then we eliminate this vertex from Osmall and repeat for another k−1 iterations
to retrieve the full kNN set (see procedure MainPhase).

Theorem 3. SALT-kNN’s main phase is correct. (Proof omitted for space restric-

tions)

MainPhase(s,Osmall , k, G)

1 for i = 0 to k−1

2 T ′ = newVertex

3 for each o ∈ Osmall

4 Conn. T ′ to o with 0-weight edges

5 (iNN , iNNdist) = SALT−p2p(T ′,s, G)

6 Osmall = Osmall − iNN

To retrieve not only the SP dis-
tance between the query location s
and the objects in Osmall but also the
actual kNN vertices, we need to main-
tain for each labeled vertex a reference
that points to the originating vertex in
the objects’ set Osmall. Thus, when we
extract s from the priority queue and

terminate the SALT-p2p algorithm at the i-th iteration, we know not only the
i-th SP distance but the i-th NN as well. Moreover, for each object o in Osmall,
we need to store the cell ID c1(o) of the cell this object belongs at the lowest
level of the GS hierarchy, to traverse the overlay graph H during each iteration
of the SALT-p2p algorithm. Note it is sufficient to store only the c1(o), since cell
IDs for higher levels may be calculated from that.

Although SALT-kNN will be very fast for retrieving the first NN object, it
will become progressively slower when retrieving the additional k − 1 NN, since
at each iteration, the SALT-p2p algorithm will start from scratch. To remedy
this, at the beginning of the i-th iteration, we reload the corresponding priority
queue with all vertices labeled during the i−1 iteration except those originating
from the previous NN vertex found, since most of those labeled vertices were
already assigned correct SP distances. Since we use a min-heap priority queue
(as all Dijkstra variants), this optimization significantly improves query times
and still ensures correctness of the SALT-kNN algorithm.

3.4 Summary and Expectations

Although SALT is very efficient for most SP queries, the main phase of SALT-
kNN could be performed with any valid unidirectional SP algorithm. However,
using SALT-p2p has multiple benefits: (i) Its constituent algorithms, ALT and
CRP have very fast preprocessing times suitable for dynamic road networks.
(ii) Unidirectional SALT-p2p provides better performance than bidirectional
SALT-p2p, contrary to existing hierarchical methods that may only be used
in a bidirectional setting. (iii) SALT-p2p and hence SALT-kNN are very robust
to the metric used. This is an important property for kNN queries identifying
Points-Of-Interest (POIs) based on walking distance. (iv) SALT-kNN’s pruning
phase is very crucial for a fast implementation. Only the landmarks preprocessing
data could provide this type of functionality. (v) Lastly, the main phase of the
SALT-kNN algorithm initially expands vertices closer to the query location s. As
such, “unattractive” objects furthest from s (as estimated by the lower-bounds)
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that cannot be excluded during the pruning phase, do not slow down SALT-kNN
queries. In fact, experiments showed that finding the first NN is as fast as a plain
SALT-p2p query. Hence, it is hard to provide a much better theoretical solution,
using standard SP techniques, with fast enough preprocessing times suitable for
dynamic road networks.

4 Experiments

The experimentation that follows, assesses the performance of the SALT-p2p
and SALT-kNN algorithms. For completeness, we also report the performance
of sequential and parallel GRASP [11] algorithm within the SALT framework for
single-source (one-to-all) queries. Experiments were performed on a workstation
with a 4-core i7-4771 processor clocked at 3.5GHz with 32Gb of RAM, running
Ubuntu 14.04 64bit. Our code was written in C++ and GCC 4.8 (with OpenMP).
Query times are executed on one core and augmented with SSE instructions. We
used the European road network (18M vertices / 42M arcs) and the full USA
road network (24M vertices / 58M arcs) [8] and experimented with both travel
times and travel distances.

For partitioning the graph into nested-multilevel partitions, similarly to [11],
we used Buffoon / KaFFPa [19] in a top-down approach. We use a partition-
ing setup similar to the best recorded CRP results of [3] with total number of
overlay levels set to L=6 and |C1|=1048576, |C2|=65536, |C3|=8192, |C4|=1024,
|C5|=128 and |C6|=16. We also used 24 landmarks, since adding more landmarks
did not offer significant performance benefits for either SALT-p2p or SALT-kNN
algorithms.

4.1 Preprocessing

Table 1. SALT, GRASP and G-tree preprocess-
ing

Preprocessing time (s)
Travel Times (TT) Travel Distances (TD)
EUR USA EUR USA

SALT (GS customiz.) 11.1 (5.5) 14.82 (7.4) 11.3 (5.7) 15.4 (7.7)
SALT (Landmarks) 2.6 (1.3) 3.6 (1.8) 2.7 (1.4) 3.6 (1.8)

SALT (Total) 13.7 (6.9) 18.4 (9.2) 14.0 (7.0) 18.9 (9.5)
GRASP (Orig) 8 (8) 12 (12) 10 (10) 13 (13)

G-tree (198,479) (5,736) (25,918) (5,001)

In this section we report the
preprocessing times for SALT,
in comparison to the original
GRASP version [11]) and G-
tree [21] (G-tree source code
was provided by its authors).
Note, that contrary to the SALT
framework that may simul-
taneously answer single-pair,
single-source (one-to-all, one-to-
many, range) and kNN queries,

GRASP only focuses on single-source queries and G-tree may only be used
for undirected networks and kNN queries. SALT and GRASP preprocessing
times refer to parallel execution and G-tree preprocessing time is sequential. For
GRASP and SALT and its graph-separator subphase we only report preprocess-
ing times for the customization stage, similar to [4] and [11], since this is the
preprocessing that must be repeated when arc-weights change, for live-traffic
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road networks. For a fair comparison, for G-tree we do not report the partition-
ing time required for the building of the G-tree index (which uses METIS [15])
and we only report the preprocessing time for calculating the SP distances inside
the respective index structure. Results are presented on Table 1. Numbers inside
parentheses represent preprocessing times for undirected versions of the bench-
mark road networks.

Results show that: (i) G-tree preprocessing times are very disappointing,
especially for Europe and travel times, when more than 24h are required for
preprocessing, contrary to SALT’s preprocessing time that never exceeds 19s for
all networks and metrics. (ii) In comparison to GRASP, SALT may calculate
both forward and reverse graph SSSP queries. If GRASP was to be extended
for reverse graph SSSP queries, its preprocessing time would double and hence
it would be 16−43% slower than SALT. (iii) SALT’s preprocessing time is very
robust to the metric used and preprocessing time is similar for both metrics.
(iv) For undirected versions of the road networks (for comparing results to G-
tree), SALT’s preprocessing time drops in half, both for the GS customization
and landmarks phase. Note that although SALT’s total preprocessing time is
better than any other previous ALT based approach including [10], the GS
customization phase could be potentially further accelerated by using the opti-
mizations of [6], namely SIMD instructions or contraction. Furthermore, SALT’s
memory requirements still remain quite modest, since it requires less than 8.5Gb
(including the original graph G) for both benchmark road networks and metrics.

4.2 Single-Pair/Single-Source Shortest-Path Queries

Table 2 compares unidirectional and bidirectional SALT-p2p query perfor-
mance for single-pair shortest-path (SPSP) queries, compared to its algorith-
mic components, namely the ALT-SIMD algorithm of [10] and CRP [4] with
the arc-reduction of [12], within the SALT framework, for a total of 10,000
queries with the pair of vertices selected uniformly at random. Regarding SSSP
queries, we report sequential and parallel performance of GRASP for one-to-all
queries within the SALT framework and compare it with the original version of
GRASP [11]. For both GRASP versions, the number in parentheses represent
sequential times. Results are presented in Table 2.

Results show that: (i) Unidirectional SALT-p2p is always faster than bidirec-
tional SALT-p2p. Thus, to the best of our knowledge, uniSALT-p2p is the faster
unidirectional algorithm for road networks, with preprocessing times of few sec-
onds. (ii) uniSALT-p2p is 100 − 266× faster than ALT and 3 − 4× faster than
CRP. Note that our CRP’s query performance is almost identical to the best
CRP implementation of [3]. UniSALT-p2p path unpacking (i.e., providing full
paths) would also be faster than CRP, since it uses bidirectional ALT instead of
bidirectional Dijkstra used by CRP [3]. Moreover, uniSALT-p2p provides com-
parable performance to recent Customizable Contraction Hierarchies [9] which
was only tested on undirected networks. (iii) SALT-p2p is very robust to the
metric used. In fact, uniSALT-p2p is slightly faster for travel distances.
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Table 2. SALT-p2p and GRASP query per-
formance

SPSP Query times (ms)
Travel Times (TT) Travel Distances (TD)
EUR USA EUR USA

biALT 103 60 133 89
CRP (+AR) 1.6 1.8 2 2
uniSALT-p2p 0.6 0.6 0.5 0.5
biSALT-p2p 0.9 0.9 0.9 0.9

SSSP Query times (ms)
GRASP (Orig) 43 (150) 58 (207) 46 (156) 66 (218)
GRASP (SALT) 50 (169) 65 (224) 53 (175) 68 (228)

For SSSP queries, the GRASP
implementation within the SALT
framework is 5−12% slower for
sequential and 3−16% slower for
parallel execution than the origi-
nal GRASP implementation. Still,
it is fast enough for most practical
cases and the SALT framework may
also execute forward and reverse
SSSP queries, which is a consider-

able advantage. Note, that the slightly less efficient implementation of GRASP
within SALT is attributed to the fact that now |CL| = 16 (in comparison to
|CL| = 128 in [11]). However, setting |CL| = 16 is the optimal setting for SPSP
and kNN queries and thus, we kept the setting that benefits the most frequent
type of queries.

4.3 kNN Queries

Next, we compare SALT-kNN, Dijkstra and G-tree [21] performance for kNN
queries. For each experiment, we generate 100 sets of random objects of varying
size |O| and for each such set we generate 100 random query locations, for a
total of 10, 000 kNN queries per |O|. Figure 2 reports average query times for
k = 1 and k = 4. Note, that G-tree requires a target selection phase, for each set
of objects |O| (requiring 1.9−2.4s). Thus, contrary to Dijkstra and SALT-kNN,
G-tree cannot be used for moving objects.

Results show that SALT-kNN provides stable performance and query times
significantly below 1ms for k=1. Contrarily, G-tree is almost two - three orders
of magnitude slower and cannot compete with either SALT-kNN or Dijkstra.
Dijkstra starts very slow for small values of |O| but manages to surpass SALT-
kNN performance for |O| > 8192. These results are similar to [7], where Dijkstra
also outperforms online CRP for k = 10 and |O| = 0.01 × |V |. Still, since for
static points of interest we are usually interested in a specific type of objects
(e.g., gas stations) and in the case of moving objects we rarely have such large
vehicle fleets (i.e., taxis, trucks) to monitor and we usually aim for kNN queries
among the available vehicles (a much smaller subset of total vehicles), then the
SALT-kNN algorithm is surely to perform better for most practical applications.

After establishing the superiority of SALT-kNN over G-tree, we next evaluate
the impact of objects distribution to SALT-kNN and Dijkstra’s performance. To
this end, similar to [5], we pick a vertex at random and run Dijkstra’s algorithm
from it until reaching a predetermined number of vertices |B|. If B is the set
of vertices visited during this search, we pick our objects O as a random subset
of B. We keep the number of objects |O| steady at 214 and we experiment
with different values of |B| ranging from 214 . . . 224, to simulate cases of either:
(i) POIs mainly located near the city-center or (ii) vehicle fleets which may
service an entire continent but operate mainly on a particular country. Results
are presented in Figure 3.
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(a) Europe (k=1) (b) USA (k=1)

(c) Europe (k=4) (d) USA (k=4)

Fig. 2. SALT-kNN Dijkstra and G-tree comparison for varying values of |O|

(a) Europe (k=1) (b) USA (k=1)

(c) Europe (k=4) (d) USA (k=4)

Fig. 3. SALT-kNN and Dijkstra comparison for |O| = 214 and varying values of |B|

Results show, that SALT-kNN is one - two orders of magnitude faster than
Dijkstra when objects are not uniformly located in the road network (as is the
typical case, either for static or moving objects). Thus, SALT-kNN guarantees
excellent and stable performance, regardless of: (i) the number of objects and
(ii) the objects distribution. Moreover, it does not need a target selection phase,
such as G-tree or CRP and therefore, it may be used for either static or moving
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objects. Note, than even without building an index, CRP would still require
10ms for the target selection phase and 16,384 objects for the Europe road
network [7] and therefore, CRP would be at least 10 times slower than SALT-
kNN for moving objects.

5 Summary and Conclusions

This work presented SALT, a novel framework for answering shortest-path
queries on road networks, including point-to-point, single-source (one-to-all, one-
to-many, range) and kNN queries. By combining ideas from the ALT, CRP
and GRASP algorithms, the SALT framework efficiently answers point-to-point
queries 3−4 times faster than previous algorithms of similar preprocessing times
and answers kNN queries orders of magnitude faster than previous index-based
approaches. Moreover, the proposed SALT-kNN algorithm was shown to be espe-
cially robust, regardless of the metric used, the number of objects or the dis-
tribution of objects in the road network. Hence, the SALT framework presents
itself as an excellent solution for most practical use-cases and the best overall
solution for real-world applications.
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Abstract. Non–prefix–free (NPF) codes are not uniquely decodable,
and thus, have received very few attention due to the lack of that most
essential feature required in any coding scheme. Augmenting NPF codes
with compressed data structures has been proposed in ISIT’2013 [8] to
overcome this limitation. It had been shown there that such an aug-
mentation not only brings the unique decodability to NPF codes, but
also provides efficient random access. In this study, we extend this app-
roach and compare augmented NPF codes with the 0th–order Huffman
codes in terms of compression ratios and random access times. Basi-
cally, we benchmark four coding schemes as NPF codes augmented with
wavelet trees (NPF–WT), with R/S dictionaries (NPF–RS), Huffman
codes, and sampled Huffman codes. Since Huffman coding originally does
not provide random access feature, sampling is a common way in prac-
tice to speed up access to arbitrary symbols in the encoded stream. We
achieve sampling by simply managing an additional array that marks
the beginnings of the codewords in steps of the sampling ratio, and keep-
ing that sparse bit array compressed via R/S dictionary data structure.
The experiments revealed that augmented NPF codes achieve compres-
sion very close to the Huffman with the additional advantage of random
access. When compared to sampled Huffman coding both the compres-
sion ratios and random access performances of the NPF schemes are
superior.

1 Introduction

Representing more frequent symbols with less number of bits is the central idea in
variable–length coding for compression. Since its invention in 1952, the Huffman
codes [7] along with its numerous variants have been used in many areas. In
Huffman coding, none of the codewords is a prefix of another. This prefix–free
structure avoids ambiguities in the decoding phase, and once the encoded stream
is received on the decoder side, the symbols are easily decoded one-by-one, from
left–to–right, following the order of their appearance in the original data. It
had been shown in the original paper [7] that Huffman codes are asymptotically
optimal, which means they represent the source sequence within its entropy.
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 315–326, 2015.
DOI: 10.1007/978-3-319-20086-6 24
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The main limitation in Huffman coding has been the lack of efficient ran-
dom access. In the Huffman–encoded bit sequences, the boundary positions
of the codewords are unknown, and thus, to extract the kth codeword, one
needs to decode all preceding k − 1 items after which decoding of the kth sym-
bol can be achieved. Particularly in today’s big data era, this limitation may
cause severe problems while retrieving a random portion of the data from an
archive.

One quick solution to overcome that problem is to maintain an additional
array, which tells us the beginning positions of the each bth codeword on the
encoded stream. With such an information, instead of decoding the whole
sequence from its very beginning, accessing the randomly selected kth sym-
bol requires at most b decoding operations by first landing to the �k

b �th block
directly, and then extracting the remaining symbols sequentially until reach-
ing the desired item. The sampling ratio b plays an important role here as
smaller b provides faster access with increased overhead, and larger b results
in reverse.

The question in such a scenario is how to keep that additional array that
includes the starting bit positions of the sampled items. One way is to keep it
as an array of n

b integers, where that integer array may also be represented via
compact integer encoding schemes [9]. Previous results reported in that direction
[8] seem not very promising in terms of space usage.

A second approach might be keeping another bit sequence of length equal
to the encoded stream, where the beginning of the each bth symbol is marked
with 1 and rest with 0 [1]. Depending on the b value this bit stream is expected
to be sparse composed of many 0s and n

b 1s, which reminds us to integrate
rank/select (R/S) dictionaries that are especially helpful in compressing such
redundant bit arrays with efficient rank and select operations support. In this
study we investigate this option to support random access in Huffman encoded
sequences. We augment Huffman codes with R/S dictionaries and refer to that
Huffman–RS(S), which represents the sampled Huffman coding with sampling
ratio S.

Prefix–free condition, which ensures self delimiting of codewords during the
decoding phase, is the indispensable obligation in any coding scheme for unique
decodability. In that sense, non–prefix–free codes are not of interest since they are
not uniquely decodable, and thus, normally received very few attention till today
[2,8]. In [8], it is proposed to use wavelet trees to provide unique decodability and
random access in non-prefix free codes. In this study we extend this approach
and besides the wavelet trees we consider incorporating R/S dictionaries also.
We refer to non–prefix-free codes augmented with wavelet trees as NPF–WT,
and similarly NPF–RS corresponds to the other augmentation option with R/S
dictionaries.

We analyse the compression ratios and random access times of the investi-
gated schemes. We show in practice that non–prefix–free codes may catch the
compression ratio of regular Huffman with better random access times than the
sampled Huffman codes, particularly on large alphabets.
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2 Preliminaries and Notation

Let a given sequence of n symbols be shown by T = t1t2 . . . tn, where each ti,
1 ≤ i ≤ n, is drawn from the alphabet Σ = {ε1, ε2, . . . , εσ} of size σ. The array
F = {f1, f2, . . . , fσ} represents the number of occurrences of each symbol in T .
Without loss of generality we assume the symbols of the alphabet are listed in
decreasing order of their frequencies in T such that ε1 is the most frequent sym-
bol, and εσ is the least frequent one. As an example T = NONPREFIXFREE,
Σ = {E,R,F,N,I,O,P,X}, and F = {3, 2, 2, 2, 1, 1, 1, 1}.

The coding scheme C assigns distinct codewords W = {w1, w2, . . . , wσ} for
each εi ∈ Σ such that wi is the codeword corresponding to symbol εi. Each
codeword wi is composed of varying number of bits. Thus, the encoding of T
with C creates the sequence C(T ) = c1c2 . . . cn, where ci ∈ W is the codeword
of ti ∈ Σ according to coding scheme C : Σ → W .

The rank(i) and select(i) operations on a bitmap B = b1b2 . . . bn, bi ∈
{0, 1}, return the number of bits set to 1 (or 0) in b1b2 . . . bi, and the index of
the ith bit set to 1(0), respectively. Several studies have appeared on efficient
calculation of rank and select queries [10,11]. The general purpose in any R/S
dictionary data structures is to represent the underlying bit sequence entropy
compressed while supporting constant time rank and select operations.

0 ←{E,R,F,N} 1 ← {I,O,P,X}
NONPREFIXFREE

0101000110000

0 ←{E,R} 1 ← {F,N}
NNREFFREE

110011000

0 ←E 1 ←R

REREE

10100

0 ←F 1 ←N

NNFF

1100

0 ←{I,O} 1 ←{P,X}
OPIX

0101

0 ←I 1 ←O

OI

01

0 ←P 1 ←X

PX

01

Fig. 1. Wavelet tree example

The wavelet tree data structure introduced by Grossi et.al [6] makes the rank
and select operations available on non–binary alphabets in logarithmic time. The
main idea is to first create a bitmap from T by splitting the alphabet Σ into two
equal parts and representing ti ∈ {ε1, ε2, . . . , ε�σ/2�} with 0 and others by 1 for
all 1 ≤ i ≤ n. We proceed by creating left and right children of the root node
by collecting the symbols represented by 0 on the left and others on the right.
We repeat the same procedure by again splitting the corresponding alphabets
into two for each child, and continue this until the alphabet for a node becomes
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less than or equal to two. An example of such a wavelet tree created for T =
NONPREFIXFREE is depicted in Figure 1. The height of the balanced WT
is log σ and the rank/select queries over the bitmaps of the wavelet tree can
be achieved in constant time via the R/S dictionary data structures. Thus, by
traversing the tree in O(log σ) time one can achieve rank, select, and access
operations on non-binary alphabets.

3 Huffman Coding

The Huffman codeword generation algorithm can be found in any data com-
pression textbook, e.g., [3]. Mainly, the symbols are listed in decreasing order
of their frequencies, and initially the codewords are all empty. Bits 0 and 1 are
concatenated to the codewords of the bottom two symbols, and those symbols
are packed into a meta-symbol by summing their frequencies. This meta-symbol
is inserted into the correct position in the list of all symbols. Thus, at each step,
the number of symbols decreases by one, and the procedure is repeated σ times.
Notice that when we add a bit to a meta-symbol, we add the same bit to the all
codewords included in it.

T = NONPREFIXFREE

Σ : E R F N I O P X
F : 3 2 2 2 1 1 1 1
W : 01 00 100 101 1110 1111 1100 1101

Huffman(T ) =
= 10111111011100000110011101101100000101

Fig. 2. Huffman coding example

The Huffman codeword tree generated1 for T = NONPREFIXFREE is
depicted in Figure 2. Due to the prefix–free property of Huffman, the bit stream
Huffman(T ) is uniquely decodable from left-to-right without any need to a
delimiter between the variable length codewords.

3.1 Huffman–RS(S): Sampled Huffman Codes with R/S
Dictionaries

The main limitation in Huffman coding is the lack of an efficient method to
support random access. We can simply overcome this by managing an additional
1 The figure is generated by the website http://huffman.ooz.ie/.

http://huffman.ooz.ie/
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bit array of size equal to the |C(T )|, where the beginnings of the each code word
in steps of a predetermined sampling frequency S are marked with 1 and the
rest is set to 0. This additional bit array can be stored compressed with the
appropriate R/S dictionary data structures that allow constant time select
queries. To access the ith keyword, we simply query the additional bit array
with select(� i

S �), and begin decoding the symbols until we extract the ith
one. Since each block contains S codewords, in the worst case one needs to
decode at most S items for any random access query.

Huffman(T ) 1011111101110000011001110 1101100000101

A(Huffman(T )) 10000001000000100010000001000000100010

Fig. 3. The example case given Figure 2 is augmented with sampling to support random
access. The beginning bit positions of the 1, 3, 5, 7, 9, 11, 13th codewords are marked
with 1. The A(Huffman(T )) array is to be represented by a R/S dictionary data
structure to answer select queries in constant time.

In the additional bit array there are �n
S � 1 bits and the entropy of that bit

array is then
(� n

S �
n

)
. Larger sampling frequencies produce more sparse arrays,

which require less space in R/S dictionary representations, with an obvious per-
formance degrade in random access.

4 Non–Prefix–Free (NPF) Codes

In NPF codes we let the codewords to be a prefix of others. The only restriction
we need to obey is that the codewords should be distinct.

Definition 1. Non–Prefix–Free Codes: Assuming that the symbols in the alpha-
bet Σ = {ε1, ε2, . . . , εσ} are listed in decreasing order of their occurrences in a
given text T , the non-prefix-free codeword assigned to symbol εi, 1 ≤ i ≤ σ, is
the bit sequence obtained by removing the leftmost 1 bit from the binary repre-
sentation of integer (i + 1).

Given Σ and F arrays, we assign codeword 0 to the most frequent symbol,
and codeword 1 to the next frequent one. We then continue assigning the 2–
bits long codewords 00, 01,10, and 11 to the next most frequent four symbols.
In a mathematical notation, what we do is to assign number 1 + i to the ith,
1 ≤ i ≤ σ, most frequent character, and then remove the leftmost significant
1 bit from its minimum–length binary representation. For example, the most
frequent one is assigned number 210 = (10)2, and when we drop the leftmost
1 bit, the corresponding codeword is simply the bit 0. Notice that the shorter
length codewords may be prefixes of longer codewords.
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Lemma 1. The length of the longest codeword in the described NPF coding
scheme is at most �log(σ + 1)� bits.

Proof. According to the definition 1, the least frequent symbol in Σ will be
assigned the integer σ + 1, whose bit length is �log(σ + 1)�. The number of bits
that remains after removing the leftmost 1 bit from the binary representation of
(σ + 1) is �log(σ + 1)� − 1 = �log(σ + 1)�.
Lemma 2. Given the number of occurrences of symbols in Σ as F =
{f1, f2, . . . , fσ}, where f1 ≥ f2 ≥ . . . ≥ fσ, total length of the NPF encoded
bit stream is

(f2�log(σ+1)�−1 + . . . + fσ) · �log(σ + 1)� +
�log(σ+1)�−1∑

k=1

(f2k−1 + . . . + f2k+1−2) · k

Proof. The first two most frequent ones will have codewords of length 1 bit long.
The next four will be assigned codewords of length 2 bits, as there can be at
most 22 = 4 distinct two bits long sequences. Continuing in the same way the
last chunk will begin from the 2�log(σ+1)�−1 th symbol up to the last σth symbol,
where all will be assigned codewords of length �log(σ + 1)�.
Lemma 3. The NPF codes described in definition 1 are not uniquely decodable.

Proof. The codewords are not prefix–free as the shorter length codewords are
possibly the prefixes of the longer codewords. Thus, NPF is itself ambiguous and
cannot be correctly decoded without using additional data structures.

4.1 NPF–RS: NPF Codes Augmented with R/S Dictionaries

We can maintain an additional bit array over the NPF encoded sequence such
that the starting positions of each codeword are marked with 1 and rest set
to 0. We store this additional array compressed in a R/S dictionary structure
supporting constant time select operation.

T = NONPREFIXFREE, Σ = {E, R, F, N, I, O, P, X}, F = {3, 2, 2, 2, 1, 1, 1, 1}
Σ → W :E → 0, R → 1, F → 00, N → 01, I → 10, O → 11, P → 000, X → 001,

NPF–RS(T) = 01110100010001000100100
A(NPF–RS(T))= 10101010011101010010111

Fig. 4. NPF–RS coding example

We can extract the ith codeword wi by running two select queries on the
additional bit array to retrieve the beginning of the ith and i + 1th codeword.
Assuming a word-RAM model, where the word size is larger than or equal to
the maximum codeword length, the bits in between these two indices can be
retrieved in constant time and be decoded by a table (W → Σ) lookup.
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4.2 NPF–WT: NPF Codes Augmented with Wavelet Trees

Another method to bring unique decodability and random access capability
to the NPF codes is to use the wavelet tree structure [8]. After mapping the
symbols to the codewords via the NPF : Σ → W scheme described in def-
inition 1, we create an array L = �1�2 . . . �n such that �i denotes the num-
ber of bits in the codeword corresponding to character ti. As an example, for
T=NONPREFIXFREE, the NPF : Σ → W scheme maps E,R, F,N, I,O, P,X to
codewords 0, 1, 00, 01, 10, 11, 000, 001, respectively. Thus, the L array becomes
L=2223112232111, and the alphabet of L is {1, 2, 3}.

We create a Huffman–shaped wavelet tree [4,6] over L. In Huffman–shaped
wavelet tree, the topology of the tree is created in a way that each symbol is
represented in levels equal to its corresponding Huffman code length. For our
sample sequence L, the Huffman code lengths for the symbols 1, 2, and 3 can
be computed as 2, 1, and 2 respectively2. Thus, in the Huffman–shaped wavelet
tree the items with label 2 are represented with one level and rest with two levels
as shown in Figure 5. The leaf nodes are reserved for the actual NPF codewords
corresponding that level’s code length, e.g., the left child of the root node in
Figure 5 collects the codewords that are two bits long in NPF (T ) preserving
their order of appearance.

Σ: E R F N I O P X

W : 0 1 00 01 10 11 000 001

T = N O N P R E F I X F R E E

NPF(T) = 01 11 01 000 1 0 00 10 001 00 1 0 0

L = 2 2 2 3 1 1 2 2 3 2 1 1 1

0 ← {2}, {1,3}→ 1
0001110010111

N O N F I F

01 11 01 00 10 00

PREXREE

3113111

0 ← {1}, {3}→ 1
1001000

R E R E E

1 0 1 0 0

P X

000 001

Fig. 5. NPF–WT coding example

2 The numbers 1, 2, and 3 occurs 5, 6, and 2 times in L. Running the standard Huffman
code generation assigns codewords 11 to 1, 0 to 2, and 01 to 3.
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In NPF–WT coding scheme the ith symbol can be reached by traversing
the tree. Assume we want to access the 13th element in the NPF–WT encoded
stream. We check the root bitmap and observe that 13th bit is the 5th 1 bit.
Therefore, we follow the right child and check the 5th bit in that node which
is the 3rd zero. We move to left child since it is 0, and arrive a leaf node with
the knowledge that this leaf node includes the 1 bit long codewords. We go to
3rd bit and extract codeword 1, which represents letter R, and actually the 13th
letter in the original sequence. Notice that all rank/select operations in the inner
nodes can be achieved in constant time by R/S dictionary data structures.

The overhead we have by the wavelet tree is equal to the 0–order entropy of
the L sequence. In other words the number of bits we used in the tree (excluding
the leaf nodes that represent the NPF codes of T ) is close to the size of the
0–order Huffman compressed L. The T → L transformation is a down sampling
that Σ is mapped onto set {1, 2, . . . , �log(σ + 1)�}, and thus, the entropy of L is
less than the entropy of T . Especially on large alphabets the difference becomes
more significant.

The random access time in NPF–WT is not O(1) as it was in previously
described NPF–RS. There can be at most log(σ + 1) levels in the Huffman–
shaped tree since the Huffman code tree created over L with log(σ + 1) symbols
may in worst be of depth equal to its alphabet size. Therefore, in the worst case,
NPF–WT guarantees random access in O(log σ) time, where we expect faster
response time while retrieving more frequent items.

5 Experimental Results

We have implemented the coding schemes by using the sdsl [5] library, and
performed tests on English language text, dna, and protein sequences obtained
from Pizza-Chili corpus3. The sdsl library provides several alternatives for com-
pressed bitmap representation, where we preferred to use the standard rrr struc-
ture that is based on the study of Raman et. al. [11]. We considered files of sizes
1MB, 10MB, 50MB, 100MB for each. On each file we also benchmarked the
behaviour of the coding schemes on enlarged alphabets by combining consecu-
tive q, 1 ≤ q ≤ 8, symbols into a meta–symbol.

For Huffman–RS(S) scheme, the sampling frequency S was taken to be 1, 10,
50, and 100. Notice that S = 1 means marking each codeword in the Huffman
encoded text, which actually eliminates the self–delimiting advantage of the
Huffman itself. We decided to include this option to give the sense of difference
in compression ratios.

We benchmarked the schemes in compression ratio measured in bits/symbol
and the random access performance measured in μsec/access on a computer run-
ning LinuxMint14 operating system with Intel i5 processor and 32GB of memory.
We performed the same 1 million random access operations for randomly selected
positions on each encoded file and reported their mean value.

3 http://pizzachili.dcc.uchile.cl

http://pizzachili.dcc.uchile.cl
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We observed very similar behaviour on each file size and decided to include
the results on the largest file size, 100MB, where the overhead in the encoded
stream effects the coding performance least.

q 1 2 3 4 5 6 7 8
σ 215 8380 65861 302992 845006 1710207 2801684 3965112

NPF-WT
bits/char. 4.770 4.205 3.801 3.504 3.335 3.295 3.362 3.480
μsec./acc. 2.016 2.999 3.678 4.327 4.934 5.913 5.891 5.726

NPF-RS
bits/char. 5.089 4.617 4.202 3.895 3.710 3.662 3.727 3.856
μsec./acc. 1.088 1.307 1.616 2.108 2.736 3.843 3.429 3.487

Huffman
bits/char. 4.593 4.112 3.738 3.466 3.314 3.290 3.367 3.509
μsec./acc. Efficient random access not available

Huffman-RS(1)
bits/char. 8.438 6.659 5.701 5.060 4.680 4.488 4.432 4.468
μsec./acc. 1.094 1.376 1.662 2.215 3.872 5.302 7.048 7.877

Huffman-RS(10)
bits/char. 5.720 4.903 4.380 4.017 3.804 3.730 3.770 3.878
μsec./acc. 2.823 12.194 25.241 39.927 54.941 69.940 82.229 90.402

Huffman-RS(50)
bits/char. 5.258 4.655 4.213 3.891 3.700 3.645 3.695 3.813
μsec./acc. 10.696 52.087 111.744 175.808 276.680 303.509 354.375 390.062

Huffman-RS(100)
bits/char. 5.193 4.620 4.190 3.873 3.684 3.632 3.683 3.803
μsec./acc. 20.368 102.648 221.471 346.821 524.471 600.441 687.150 801.020

Fig. 6. Compression and random access performances on 100MB English text

Figure 6 gives the results on the English text. The compression performance
of the NPF–WT is very close to the regular Huffman coding, and becomes better
especially on larger q values, in which we have larger alphabets. Notice that NPF–
WT provides random access which is not supported in Huffman. The random
access times in Huffman–RS(50) and Huffman–RS(100) are not competitive and
best sampling ration seems to be 10. When compared to NPF–RS and NPF–
WT, the Huffman–RS(10) is weaker in both the compression and random access
performance even in small alphabet sizes.

q 1 2 3 4 5 6 7 8
σ 4 16 64 256 1024 4096 16384 65491

NPF-WT
bits/char. 2.428 2.093 2.013 1.994 1.981 1.970 1.960 1.955
μsec./acc. 0.933 1.567 2.037 2.256 2.444 2.709 2.966 3.452

NPF-RS
bits/char. 2.734 2.438 2.414 2.410 2.391 2.384 2.362 2.338
μsec./acc. 0.949 0.959 1.021 1.112 1.180 1.319 1.492 1.937

Huffman
bits/char. 2.001 1.978 1.956 1.945 1.939 1.934 1.930 1.935
μsec./acc. Efficient random access not available

Huffman-RS(1)
bits/char. 4.152 3.749 3.411 3.181 3.051 2.927 2.837 2.784
μsec./acc. 0.917 0.962 1.005 1.071 1.167 1.308 1.518 1.916

Huffman-RS(10)
bits/char. 2.769 2.496 2.387 2.326 2.288 2.262 2.244 2.236
μsec./acc. 0.895 1.574 3.053 6.174 10.779 17.091 25.435 38.039

Huffman-RS(50)
bits/char. 2.357 2.270 2.224 2.201 2.188 2.177 2.170 2.171
μsec./acc. 2.026 5.194 11.849 25.693 46.463 74.878 112.954 170.510

Huffman-RS(100)
bits/char. 2.295 2.238 2.202 2.184 2.174 2.165 2.159 2.162
μsec./acc. 3.450 9.783 22.668 50.095 90.602 148.513 226.115 335.800

Fig. 7. Compression and random access performances on 100MB DNA data
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The results obtained on DNA sequence are reported in Figure 7. The inter-
esting point here is the small alphabet size which makes original Huffman coding
to achieve best compression ratios. However, the NPF codecs are very compet-
itive to that with the additional advantage of providing random access. When
compared to Huffman–RS(10, the compression of NPF–WT is always superior,
and NPF–RS is slighty better for q = 1 and q = 2. On q = 1, the random
access timing of the Huffman–RS(10) is better then both NPF codecs, where on
all remaining ones the NPF codes make a better job and the NPF–RS is the
leader.

The number of symbols in the protein sequence data is in between the
English text and DNA sequences, and thus, the results provided in Figure 8
give clues about middle scale alphabets. We observe here that both the com-
pression and random access achieved by the NPF codecs are significantly better
in all cases.

q 1 2 3 4 5 6 7 8
σ 20 400 8000 159932 2588365 10115106 11707427 10696098

NPF-WT
bits/char. 4.505 4.308 4.230 4.208 4.533 5.673 5.802 5.647
μsec./acc. 1.699 2.402 2.843 4.247 5.287 5.836 5.683 5.443

NPF-RS
bits/char. 5.108 5.090 5.090 5.020 5.322 6.435 6.516 6.280
μsec./acc. 0.980 1.166 1.451 2.393 3.603 4.504 4.365 4.196

Huffman
bits/char. 4.196 4.180 4.170 4.185 4.613 5.751 5.921 5.777
μsec./acc. Efficient random access not available

Huffman-RS(1)
bits/char. 7.861 6.754 6.217 5.950 6.162 7.098 7.082 6.793
μsec./acc. 1.033 1.143 1.480 2.729 7.565 15.736 16.975 15.106

Huffman-RS(10)
bits/char. 5.268 4.979 4.866 4.826 5.213 6.294 6.395 6.189
μsec./acc. 1.702 7.549 20.571 51.948 89.293 122.323 129.657 122.618

Huffman-RS(50)
bits/char. 4.811 4.729 4.696 4.696 5.108 6.205 6.318 6.122
μsec./acc. 5.685 31.599 91.758 218.822 379.034 510.066 539.238 509.973

Huffman-RS(100)
bits/char. 4.747 4.695 4.672 4.676 5.093 6.191 6.306 6.112
μsec./acc. 10.746 61.587 183.345 447.087 761.633 1004.790 1009.100 998.729

Fig. 8. Compression and random access performances on 100MB protein sequence

6 Conclusions

In this study we described the NPF codes augmented with R/S dictionaries and
wavelet trees, which gave us the opportunity for efficient random access. We
compared them against the original Huffman coding, in which random access is
not available. We considered a similar augmentation of Huffman codes with the
R/S dictionaries to add this support.

Interestingly, the augmented NPF codecs compression capabilities are very
close to the original Huffman with the additional random access ability that is
missing in Huffman. NPF–WT is the choice for best compression with reason-
able random access performance, and NPF–RS behaves the reverse as providing
best random access timing with a little bit penalty paid in compression ratio
compared to NPF–WT. When compared to Huffman–RS(S) schemes, it seems
NPF codes are more advantageous in both metrics.
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As a summary, the graphs in Figure 9 depicts the results obtained on 100MB
files for q = 1 (smallest alphabet size) and also for the q value that provides best
compression ratios for the NPF codecs.
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Fig. 9. Summary of the results

The NPF codes have received very few attention upto date. It is shown in
this study that augmenting them with the compressed data structures they may



326 B. Adaş et al.

achieve quite well. The experiments conducted in this study are all static 0–order
compression studies. New NPF schemes for higher order compression might be
an avenue of future research.
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Abstract. Dictionary matching for regular expressions has gained
recent interest because of a multitude of applications, including DNA
sequence analysis, XML filtering, and network traffic analysis. In some
applications, allowing wildcard and character class gaps in strings is
enough, but usually the full expressive power of regular expressions is
needed. In this paper we present and analyze a new algorithm for online
dictionary matching for regular expressions. The unique feature of our
algorithm is that it builds upon an algorithm for dictionary matching of
string patterns with wildcard gaps, but is also capable of treating more
complex regular expressions. In our experiments we used real data from
expressions used for filtering spam e-mail. The size of the dictionary,
that is, the number of different regular expressions to be matched varied
from one to 3080. To find out how our algorithm scales to much larger
numbers of patterns, we made small random changes to these patterns
to produce up to 100000 patterns that are similar in style. We found out
that the scalability of our algorithm is very good, being at its best for
10000–20000 patterns. Our algorithm outperforms the tested competi-
tors for large dictionaries, GNU grep already for tens of patterns and
Google’s RE2 for hundreds of patterns.

Keywords: Regular-expression matching · Aho–Corasick · Wildcard
gaps · Character classes · Spam filtering

1 Introduction

We consider dictionary matching for regular expressions with a large set of oper-
ations, not only including wildcards (.), union (|), concatenation and the Kleene
star (*), but also many operations that appear in practical applications. These
include character classes (e.g., [A-Z] matches any capital letter), bounded and
unbounded iteration ({l,h} iterates at least l and at most h times and {l,} at
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least l times), and subexpressions enclosed in parentheses. (Our examples follow
the standard syntax of posix extended regular expressions [11].)

For example, in a set of regular expressions used by an e-mail spam filter the
following two patterns appear:

urgent.{0,16}(assistance|business|buy|confidential|notice|
proposal|reply|request|response)

free.{0,12}((instant|express|
online|no.?obligation).{0,4})+.{0,32}quote

Here ? means that the previous character is possibly missing (same as {0,1}),
and + that the argument is repeated at least once ({1,}).

In addition to e-mail spam filters, applications include network traffic analysis
in general, such as load balancing and intrusion detection and prevention. Other
application areas are xml filtering (see e.g. [7]) and computational biology, one
example being patterns with variable-length gaps in protein searching [5,6,9].

We require that the matching algorithm works online, that is, the text is
scanned only once, and the matches (at most one match for a pattern at a text
position) are reported at the point of occurrence. Online solutions are needed
for constantly arriving possibly long inputs in data streaming applications, such
as xml document filtering.

Our new algorithm is based on a previous solution of the string matching
problem, in which the dictionary contains patterns with gaps of the forms .{l,}
and .{l,h} [8]. The algorithm of Haapasalo et al. [8] is based on locating “key-
words” of the patterns in the input text, that is, maximal substrings in the pat-
terns that contain only input characters. For computing the keyword matches
the Aho–Corasick multiple string matching algorithm [1] is used [8]. For a single
pattern, the same approach was previously used by Pinter [12] for fixed-length
gaps, and by Morgante et al. [9], Rahman et al. [13], and Bille et al. [3] for
variable-length gaps, but not unbounded gaps .{l,}. A recent work by Amir
et al. [2] on dictionary matching for patterns with one gap is based on keyword
matching without using Aho–Corasick automata, but its generalization to multi-
ple gaps is open. Bille and Thorup [4] have presented several results on matching
regular expressions with gaps, but their algorithm is not directly applicable to
multiple patterns.

The idea in the matching of patterns with gaps [8] was that once a prefix of
a pattern ending with a keyword has been found, the keyword with preceding
gap allowed to arrive next will be searched for. How can we then extend this
idea to expressions containing union and iteration operations? We simply num-
ber the keywords in the order they appear in the expression, and match prefixes
of expression instances that end with a keyword. In this process we need to
compute as a preprocessing task for all keywords i the sets follow(i) containing
the numbers of all keywords that can follow keyword i. That is, once we have
found an instance prefix ending with keyword i we start searching for all key-
words in follow(i), observing the preceding gaps. If the found next keyword is a
possible last keyword of an instance, a match of the regular pattern is reported.
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Another recent multiple regular-expression-matching algorithm [14] has similar
properties, but it cannot handle unbounded gaps as elementary operations.

For our experiments we used 3080 patterns extracted from the popular Spam-
Assassin software (which uses large numbers of complex regular expressions to
detect e-mail advertising) and actual e-mail messages. We compared the perfor-
mance of our algorithm with gnu grep and Google’s RE2. We could not find
any research article reporting an implemented multi-pattern regular expression
matching algorithm that would have been close to the expressive power of ours.
In the online case, that is, the input is scanned only once within the matching
process, grep became intolerably slow already for more than about 20 patterns,
and RE2 after about 200 patterns, but our algorithm scaled up very well up to
the workload of the 3080 real-world patterns. (See Fig. 2 in the Experiments
section.) Both grep and RE2 improve if they are allowed to work “offline”, that
is, they read the input separately for each pattern. For 1000–3080 patterns the
best offline competitor took at least 4.5 times as much time as our algorithm.

2 Decomposing Regular Expressions into Keywords

Assume that we are given a string T (called the text) over a character alphabet
Σ, whose size is assumed to be bounded, and a finite set D (called a dictionary)
of regular expressions (called patterns) Pi.

We decompose each pattern into keywords and gaps: the keywords are maxi-
mal substrings in Σ+ of patterns, and the gaps maximal substrings of wildcards,
character classes and iteration. We assume that each keyword is always preceded
by a gap, which thus may be ε, the empty string. Complex patterns can be sup-
ported by introducing empty keywords; for instance, if a pattern ends at a gap,
then an empty keyword can be inserted to follow the gap. (Actually, introduc-
ing empty keywords makes matching inefficient, and we present a more efficient
solution for these complex cases in Section 5.)

Our task is to determine all occurrences of all patterns Pi ∈ D in text T .
We report a pattern occurrence by a pair of a pattern number and the character
position in T of the last character of the occurrence. A pattern may have many
occurrences that end at the same character position; all these occurrences are
reported once by the same pair of pattern number and character position.

For each pattern Pi, we number the occurrences of its gaps and keywords,
so that gap(i, j) denotes the jth gap and keyword(i, j) denotes the jth keyword,
that is, the keyword following gap(i, j), j = 1, 2, . . . ,mi, where mi denotes the
number of keywords in pattern Pi. For pattern Pi, we denote by mingap(i, j)
and maxgap(i, j), respectively, the minimum and maximum lengths of strings
that can be matched by gap(i, j). The length of the jth keyword of pattern Pi

is denoted by length(i, j).
To keep track of how the keywords relate to each other, we define, for

each pattern Pi, the set begin(i) to contain all j such that gap(i, j)keyword(i, j)
appears as a prefix of some instance of Pi, and the set end(i) to contain all j such
that gap(i, j)keyword(i, j) appears as a suffix of some instance of Pi. Furthermore,
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for each j = 1, . . . , mi, we define the set follow(i, j) to contain all k such that
gap(i, k)keyword(i, k) immediately follows gap(i, j)keyword(i, j) in some instance
of Pi.

For example, for pattern Pi = aa(bb|.{1,3}c)*d, begin(i) = {1}, end(i) =
{4}, follow(i, 1) = follow(i, 2) = follow(i, 3) = {2, 3, 4}, follow(i, 4) = ∅.

The sets begin(i), end(i), and follow(i, j) can be computed using a depth-
first traversal of the abstract syntax tree of the pattern Pi (during traversal,
keep track of the keywords that precede the current position, and when reaching
a keyword, add its number to the follow sets of the preceding keywords). If
Pi contains union or iteration, the combined size of the sets may be quadratic
in the number of keyword occurrences in Pi, as is the case with the pattern
a?b?c? · · · z?, for example. In the special case in which Pi contains neither union
nor iteration, the sets begin(i), end(i), and follow(i, j) are all singletons and their
computation takes only linear time.

3 Aho–Corasick with Dynamic Output

We construct an Aho–Corasick pattern-matching automaton from the set of
all keywords in the patterns. While the output function of the standard Aho–
Corasick pma is a fixed mapping from states to keywords, we instead use a
dynamically changing output function, denoted current-output(q) for state q.
This allows us to keep only relevant keywords enabled in the pma: for instance,
at the beginning the pma only recognizes the first keywords from each pattern.

The dynamically changing output function is represented by sets current-
output(q) containing output tuples of the form (i, j, b, e), where q = state(keyword
(i, j)), the state corresponding to the jth keyword of the ith pattern (the state
reached from the initial state upon reading the keyword), and b and e are the
earliest and latest character positions in text T at which some partial match of
pattern Pi up to and including an instance of the jth keyword can possibly be
found. The latest possible character position e may be ∞, meaning the end of
the text. Tuples (i, j, b, e) are inserted into current-output(q) only at the point
when char-count (the current text position) has reached the value b, so that
tuples (i, j, b, e) are stored and often denoted as triples (i, j, e).

The output tuples are inserted to the sets current-output(q) through a set
called pending-output, using an array of maxdist = max{mingap(i, j)+length(i, j)
| i ≥ 1, j ≥ 1} elements such that for any character position b in the input
text, the element pending-output(b mod maxdist) contains an unordered set of
tuples (i, j, e), called pending output tuples. Before reading the first charac-
ter of the text, the initial pending output tuples (i, j, e) for all patterns Pi,
with j ∈ begin(i) and e = maxgap(i, j) + length(i, j), are inserted into the
sets pending-output(b mod maxdist), where b = mingap(i, j)+ length(i, j). Before
reading each new character of the text, all tuples (i, j, e) from the set pending-
output(char-count mod maxdist) are distributed into the sets current-output(q),
q = state(keyword(i, j)).

Detailed algorithms for matching string patterns with gaps are given in our
earlier article [8]. The main difference here is that we may have many possibilities
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traverse-output-path(state) :
q ← state
traversed ← false
while not traversed do

for all (i, j, e) ∈ current-output(q) do
if e < char-count then

Delete (i, j, e) from current-output(q).
else if gap and boundaries match (see Section 5) then

if j ∈ end(i) then
Report a match of pattern Pi at position char-count.

end if
for all k ∈ follow(i, j) do

q′ ← state(keyword(i, k))
b′ ← char-count + mingap(i, k) + length(i, k)
e′ ← char-count + maxgap(i, k) + length(i, k)
Insert (i, k, e′) into pending-output(b′ mod maxdist).
if e′ = ∞ and follow(i, j) = {k} and j �∈ end(i) then

Delete (i, j, e) from current-output(q).
end if

end for
end if

end for
if q = initial-state then

traversed ← true
else

q ← output-fail(q)
end if

end while

Fig. 1. The traverse-output-path algorithm

of continuation given by follow(i, j), not only the following keyword preceded by
a gap.

When visiting a state q (Alg. 1), in addition to current-output(q) we need to
process output tuples from states in the fail path from q for which the current
output is nonempty, denoted output-fail in the algorithm.

If current-output(q) contains a tuple (i, j, e), where char-count ≤ e, then a
match of the jth keyword of pattern Pi is obtained. This keyword match must
then be validated by examining character classes in gap(i, j) and some other
restrictions, as described later in Section 5. For now, we assume that there are no
character classes nor other restrictions. If j ∈ end(i), then a match of the entire
pattern Pi is obtained. Otherwise, output tuples (i, k, e′) with k ∈ follow(i, j)
are inserted into the sets pending-output(b′ mod maxdist), where

b′ = char-count + mingap(i, k) + length(i, k), and
e′ = char-count + maxgap(i, k) + length(i, k).

Here e′ = ∞ if maxgap(i, k) = ∞. If e′ = ∞ and follow(i, j) = {k} and j �∈
end(i), we can delete (i, j, e) from current-output(q). This is because (i, j, e) can
no longer lead to any complete match that we could not obtain from (i, k, e′).

In general, it is sufficient to store for each (i, j) only one output tuple (i, j, e),
namely the one with the greatest e determined thus far. (For details see [8].)
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4 Correctness and Complexity

Each instance of pattern Pi is of the form

gap(i, j1)keyword(i, j1) . . . gap(i, jm)keyword(i, jm),

where j1 ∈ begin(i), jm ∈ end(i), and jk+1 ∈ follow(i, jk), for k = 1, . . . , m − 1.
Let us denote by Pi,jk the prefix of such an instance that ends at keyword(i, jk):

Pi,jk = gap(i, j1)keyword(i, j1) . . . gap(i, jk)keyword(i, jk).

Whenever the prefix Pi,jk has been recognized at some character position (indi-
cated by the global variable char-count in the algorithm), a pending out-
put tuple (i, jk+1, b

′, e′) will be created by inserting (i, jk+1, e
′) into the set

pending-output(b′ mod maxdist) in Alg. 1. This tuple will be further moved
to current-output(state(keyword(i, jk+1))) when char-count has reached the
value b′. It is easy to see that Alg. 1 finds exactly all prefixes of the pattern
instances that match the text, and reports as matches all those that are com-
plete instances of some pattern in the dictionary.

Within each iteration of the while loop in Alg. 1 the outer for loop is per-
formed for all tuples (i, j, e) that belong to current-output(q). Because for any
pair (i, j) the set current-output(q) for q = state(keyword(i, j)) can contain at
most one output tuple (i, j, e), we can conclude that the number of iterations
performed in the outer for loop for state q is bounded by the number of dif-
ferent occurrences of keywords equal to keyword(i, j) = string(q) found at state
q. Moreover, as output tuples for the same pair (i, j) cannot occur in different
states, we conclude that the total number of iterations of the performed for
loops at character position char-count is bounded by the number of keyword
occurrences at char-count.

The inner for loop in Alg. 1 will be traversed as many times as there are
elements in follow(i, j). Altogether we have:

Theorem 1. Let D be a dictionary of regular patterns Pi with gaps as defined
above, and T a text to be matched using Alg. 1. After preprocessing in time
O(|D| + K2), the time complexity of the algorithm is

O(|T | + K

|T |∑

c=1

Kc + occ(pattern-prefixes)),

where K denotes the maximal number of keywords in one pattern, Kc is the num-
ber of different keyword strings in D that match at text position c = char-count,
and occ(pattern-prefixes) denotes the number of occurrences of pattern-instance
prefixes Pi,jk = gap(i, j1)keyword(i, j1) . . . gap(i, jk)keyword(i, jk) in text T .

For an individual text position c = char-count the factor K is usually overly
pessimistic, because the size of the set follow(i, j) is often very small. Notice
that there may be many different keyword occurrences in D that are the same
as a string, called a keyword string.
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5 Character Classes

A character class specifies a range of characters that can match at a partic-
ular point. For instance, the pattern [a-f]{3} matches abc and fff but not
a01. Since character classes commonly occur together with iteration, we store
information on character classes in the gap associated with each keyword.

For supporting character classes (and for line-based matching, Section 6),
we need to store b in the output tuples, i.e., (i, j, b, e) instead of just (i, j, e).
Assume that the pma finds an output tuple (i, j, b, e) in current-output, denoting
a match of keyword j of pattern Pi. Before accepting the match, we check that
any character-class constrains in gap(i, j) are satisfied by the text preceding the
keyword – if not, we can simply ignore the keyword match. The gap needs to
match text positions starting from what char-count was at the point where the
output tuple was added (this is b − mingap(i, j) − length(keyword(i, j)) due to
how b is calculated) up to the current char-count − length(keyword(i, j)).

To match the gap efficiently, we split the pattern that forms the gap into three
parts: fixed-length parts at the beginning and end of the gap, and a variable-
length part in the middle. For each gap, we store (position, character class) pairs
from the fixed length parts, and the character class of the variable length part.
For instance, for .[a-z]..[0-9]{3}[a-z]*[0-9]{5} we store:

first part: length 7, [a-z] in position 2, [0-9] in positions 5 to 7
middle part: [a-z]

last part: length 5, [0-9] in all positions
mingap = 7 + 5 = 12, maxgap = ∞.

Length information for the variable-length middle part can be derived from
maxgap. Instances of the match-anything character class . need not be stored
explicitly, and a middle part with . lets us skip the corresponding text. The
required storage per gap is proportional to mingap.

We store a character class simply as a bit array of |Σ| bits specifying which
characters are acceptable (other representations are also possible). We can re-
use the bit array for all character classes (in any pattern) that have the same
content. The required storage is thus only c · |Σ| bits, where c is the number of
distinct character classes occurring in all the patterns.

The above representation is sufficient for many real-world patterns, but
it is too simple to match complex gaps such as [a-k]{5,10}[f-z]{3,7} or
([0-9]{3}|[0-9a-f]{2,4})*. A simple solution would be to introduce empty
keywords that split such gaps into simpler parts. However, empty keywords are
inefficient for the pma: they match at every character as long as they are active.

Instead of handling these complex cases ourselves, we decided to employ a
fallback matcher1: we form a conservative approximation of the complex gap and
1 We got the idea of using a fallback matcher from gnu grep, which has three levels

of matchers: a very fast Boyer–Moore implementation that looks for just one fixed
keyword, an automaton that does not support backreferences, and finally the full-
featured regular expression matcher from the C library, which is called only if the
other automaton matches and the pattern contains backreferences.
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set a flag specifying that a fallback matcher needs to be run if the full pattern
matches. This can be implemented using a bit array with one bit per pattern,
initialized to 0. In preprocessing, construct a set

F = {(i, j) | gap(i, j) requires the fallback matcher};

while matching, set the pattern-specific bit when a keyword (i, j) ∈ F is matched.
The approximation needs to be conservative in the sense that it matches all

texts that the actual gap would match. For instance, the above examples could
be approximated (using our three-part gaps) as [a-k]{5}[a-z]{0,9}[f-z]{3}
and [0-9a-f]{2,}. Union operations can produce slightly more complex cases;
for instance, in (foo[a-z]|bar[a-z0-9]{2,5})[h-z]baz the gap before baz
can be conservatively approximated by [a-z0-9]{1,5}[h-z] or more easily just
.{1,5}[h-z] or even .{2,6}.

In line-based matching mode (see below), the fallback matcher can be given
the full line, or the line up to where the pattern matched. Otherwise, we need to
keep track of the first keyword match of each pattern. If keyword (i, j) matches
at char-count and this is the first keyword match for pattern i, the first character
given to the fallback matcher is at position char-count−mingap(i, j)−length(i, j).

6 Line-Based Matching

Many real-world tools for regular expression searching (e.g., grep) operate in a
line-based fashion: matches cannot span lines, and often the default output of
the tool simply lists the matching lines. Supporting this requires the full state
of the pma to be reinitialized to the initial state whenever a line break character
is read. This is enough to support lines as well as other kinds of records with a
single-character record separator.

However, this trivial implementation is too slow to be practical for our pur-
poses: in the SpamAssassin public corpus we used in our experiments, line breaks
occur about every 45 characters. As described in Section 3, reinitializing the state
of the pma requires creating pending output tuples from the begin set of every
pattern; moreover, they will all be distributed into current-output while reading
the first maxdist characters of each line. Most of these states will normally not
be visited before the next line break, so updating current-output is unnecessary.

Instead, our solution is to keep track of line numbers and have a separate
array state-age that stores the line number when each state was last visited.
Also, initialize-output should distribute the initial output tuples directly into
current-output (leaving pending-output empty), and make a copy of the initial
state of current-output in a new array initial-current-output. Before visiting a
state q, if the line number in state-age(q) is not current, current-output(q) is
reinitialized from initial-current-output(q). The only thing remaining to be done
at a line break is to empty pending-output. Since initial output tuples now do not
use pending-output, Alg. 1 must now ignore output tuples with b < char-count.
This does not have an adverse effect on running time, since these only occur in
states visited when reading the first maxdist characters of each line. In practice,
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these modifications make line-based matching work at about the same speed as
when line breaks are ignored.

Our implementation also supports other real-world features from posix
extended regular expressions (the same feature set as gnu grep), either directly
or through the fallback matcher. For instance, almost all patterns in our exper-
iments specify word or line boundaries (aka anchors, ^ $ \< \> \b). They usu-
ally occur next to keywords, so we accept a keyword match only after checking
for such a boundary if one is specified.

7 Experiments

For our experiments, we used real-world regular expression patterns from the
SpamAssassin software2, which detects e-mail advertisements mainly by using a
large number of complex regular expressions. A reason for selecting this appli-
cation is that the regular expressions are more varied than typical patterns from
protein searching or xml filtering applications [6,7,9]: for instance they contain
complex character classes, short and long keywords, and several levels of union
and iteration in various contexts.

We compared our algorithm with gnu grep3 and Google’s RE2 library4. We
used these real-world matchers, as we could not find implementations of “aca-
demic” algorithms that would support even a reasonable subset of the features
required by the real-world regular expressions; for instance, we could not find a
nrgrep [10] implementation that would have supported {l,h} or anchors.

Our own implementation was written in C++, compiled using the gnu C++
compiler version 4.7.2, and run on a 3.2 GHz Intel i5-3470 cpu. As the fallback
matcher, we used the regular expression matcher from the gnu C library (version
2.13; grep uses the same as its final fallback matcher).

All experiments were repeated 10 times, each time with a new selection of
patterns; we show averages. All running times include preprocessing.

We optimized the Aho–Corasick pma in our algorithm as follows. Our state
transition function is a simple array of 256 entries (this was faster than binary
search from an array of active entries), and we copied transitions from fail states
into each state, so that the fail chain does not need to be traversed during
matching. For this input data, it was somewhat faster not to use pending-output
(instead distributing all output tuples directly to current-output), though this
increases the worst-case complexity. We also converted one-character keywords
to character classes, so that they become parts of gaps instead of keywords to be
matched by the pma (this last optimization gave a moderate increase in speed
for large numbers of patterns).

2 SpamAssassin standard ruleset version 3.4.0.r1565117 plus rules used by Debian
mailing lists, svn://svn.debian.org/svn/pkg-listmaster revision 450.

3 Version 2.12 from Debian gnu/Linux 7. We used the “C” locale, avoiding Unicode
characters which make matching much slower in some cases. We used grep options
-Ec: support extended regular expressions and count the number of matched lines.

4 RE2 version 20140304 as packaged in Debian.

svn://svn.debian.org/svn/pkg-listmaster
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SpamAssassin uses Perl regular expressions, which have a slightly different
syntax; we converted them to posix syntax. We had to leave out about 440 pat-
terns that used various non-regular features, mostly look-ahead matching, that
are only supported by Perl (though we could support them by making our algo-
rithm as well as grep and RE2 use the Perl matcher as their final fallback
matcher). In addition, we left out 17 patterns that use backreferences (RE2
does not support them), 8 patterns which contain no keywords at all (these are
not supported by our keyword-based matcher) and 92 patterns that have only
single-character keywords (not supported after the last optimization described
above); we use the remaining 3080 patterns. SpamAssassin actually preprocesses
its input and matches patterns one by one, some against short portions of the
e-mails (e.g., only the Subject header); since we use multi-pattern matching, we
instead match all patterns together against the full raw e-mails. As input data,
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Fig. 2. Results from experiments: (a–b) actual SpamAssassin patterns on e-mails,
(c) SpamAssassin-derived synthetic patterns. Some values for grep and RE2 with large
numbers of patterns are missing, because they take too long to run. The “1p” variants
avoid multi-pattern matching by running the matcher one pattern at a time, re-reading
the input file (for RE2, each line) for each of the single-pattern matchers.
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we used the SpamAssassin public corpus5 (31 megabytes of e-mails collected for
testing spam filtering systems) and the 1.4-gigabyte Enron Email Dataset6.

Figures 2(a–b) show results from our experiment. As seen in the figure, grep
(resp. RE2) becomes very slow when given more than about 20 (resp. 200)
patterns. To get useful results for a larger number of patterns, we also ran a
separate instance of grep for each pattern (thus avoiding its multi-pattern mode;
this is “1p” in the figures). For RE2, we could control the matcher more closely,
so for its “1p” mode we precompiled all n patterns and gave each input line
separately to each of the n matchers.

Our SpamAssassin input data gave us only 3080 patterns. To find out how
our algorithm scales to much larger numbers of patterns, we made small random
changes to these patterns to produce more patterns that are similar in style.
Specifically, for each original pattern, we changed one randomly selected char-
acter in a keyword of at least 5 characters to a random character. We did this
for two randomly selected keywords in each pattern, since the original patterns
contain about two new keywords per pattern. This was repeated until we had
a total of more than 100000 distinct patterns. Results from this experiment are
shown in Figure 2(c).

It is clear from Figure 2 that our algorithm scales up much better than the
others. The best competitors are normal RE2 (for 2–100 patterns, takes 25–68%
of the time of our algorithm, but gets very slow for hundreds or thousands of
patterns) and one-pattern-at-a-time (1p) grep. The best competitor takes 12–16
times as much time for 2000–20000 patterns in Figure 2(c) (in Figure 2(a–b),
at least 4.5 times for 1000–3080 patterns). Our algorithm is not quite as fast
proportionally with more than 20000 patterns, but even for 100000 patterns the
best competitor takes 5.7 times as much time.

8 Conclusions

We have presented a new online algorithm for dictionary matching when pat-
terns are regular expressions over keywords and gaps. In addition to the basic
operations—catenation, union, and iteration—we support all posix extended
regular expression features, such as character classes and word boundaries.

Our experiment with SpamAssassin e-mail filters shows that our algorithm
scales up well with the size of the dictionary, and outperforms gnu grep for
dictionaries of size more than 50, and Google’s RE2 for dictionaries of size more
than 400. After these dictionary sizes the time needed by grep and RE2 seems to
grow very fast, and we could not measure their running times for large numbers
of patterns and/or for long inputs (cf. Fig. 2).

In order to measure the scalability of our algorithm for larger numbers of
patterns than the 3080 we got from SpamAssassin, we created up to 100000

5 http://spamassassin.apache.org/publiccorpus/, the file labeled “20050311”.
6 The version dated August 21 2009 from https://www.cs.cmu.edu/∼./enron/.

http://spamassassin.apache.org/publiccorpus/
https://www.cs.cmu.edu/~./enron/
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distinct patterns by slightly varying the ones from SpamAssassin. The results
show that the scalability is very good up to 10000–20000 patterns, but degrades
slightly thereafter.
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Abstract. While there have been a number of studies about the efficacy
of methods to find exact Nash equilibria in bimatrix games, there has
been little empirical work on finding approximate Nash equilibria. Here
we provide such a study that compares a number of approximation meth-
ods and exact methods. In particular, we explore the trade-off between
the quality of approximate equilibrium and the required running time to
find one. We found that the existing library GAMUT, which has been
the de facto standard that has been used to test exact methods, is insuf-
ficient as a test bed for approximation methods since many of its games
have pure equilibria or other easy-to-find good approximate equilibria.
We extend the breadth and depth of our study by including new inter-
esting families of bimatrix games, and studying bimatrix games upto size
2000×2000. Finally, we provide new close-to-worst-case examples for the
best-performing algorithms for finding approximate Nash equilibria.

1 Introduction

The computation of Nash equilibria in bimatrix games is one of the central topics
in game theory, which has received much attention from a theoretical point of
view. It has been shown that the problem of finding a Nash equilibrium is PPAD-
complete [3,5], which implies that we are unlikely to find a polynomial-time
algorithm for this problem. Naturally, this has led to a line of work studying the
complexity of finding approximate Nash equilibria [2,6,7,11,19].

Most of the work on approximation algorithms has focussed on additive
approximations, where two different notions are used. An ε-Nash equilibrium
requires that both players achieve an expected payoff that is within ε of a
best response, while the stronger notion of ε-well supported Nash equilibrium
(ε-WSNE) requires that both players only place probability on strategies that
are within ε of a best response. The current state of the art for ε-Nash equilibria
is the algorithm of Tsaknakis and Spirakis [19], which finds a 0.3393-Nash equi-
librium in polynomial time, and the current state of the art of ε-WSNE is the
algorithm of Fearnley et al. [7], which finds a (23 −0.00591)-WSNE in polynomial
time.

So far, most of the work on approximate equilibria has been theoretical in
nature. The goal of this paper is to answer the following question: Are approx-
imate equilibria relevant to the problem of solving bimatrix games in practice?
To answer this, we must study several related questions.
c© Springer International Publishing Switzerland 2015
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– Firstly, how good are the algorithms for finding exact Nash equilibria in
practice? If they are good enough, then there is no need for approximation.
Otherwise, how much faster are the approximation algorithms?

– Secondly, what quality of approximation do the approximation algorithms
provide in practice? If the best theoretical guarantee of a 0.3393-Nash equi-
librium is not beaten in practice, it is unlikely to be useful.

– Finally, is there a trade off between running time and approximation? We
have a wide variety of approximation algorithms, from those that solve a sin-
gle linear program, to those that perform complicated gradient descent pro-
cedures. Do fast algorithms generally produce worse approximate equilibria?
Should our desired quality of equilibrium impact our choice of algorithm?

Our contribution. While there have been several empirical studies on computing
exact equilibria [4,8,15,16], the empirical work for approximate equilibria has so
far been limited to a paper [20] that evaluates the algorithm of Tsaknakis and
Spirakis (TS) [19], and one that looks exclusively at symmetric games [12]. We
address this by performing a comprehensive study of approximation algorithms.
We compare the performance of five different algorithms for finding approximate
equilibria on 15 different types of game. Moreover, we include two algorithms for
finding exact equilibria: the Lemke-Howson algorithm and support enumeration.

This allows us to answer the questions posed earlier. Firstly, we find that
approximation algorithms can tackle instances that exact algorithms cannot.
With a timeout of 15 minutes, we found that exact algorithms were mostly
unable to solve instances of size 1000× 1000, whereas approximation algorithms
could easily tackle instances of size 2000 × 2000. Secondly, we find that approx-
imation algorithms often perform much better than their theoretical worst case
guarantees: in agreement with the experimental study of Tsaknakis et al. [20], we
find that the TS algorithm often finds 0.01-Nash equilibria or better. In answer
to the third question: while our data shows that the TS algorithm clearly wins
in terms of quality of approximation, it is usually the slowest, and if we only
require weaker approximate equilibria, then other algorithms can find one faster.

To obtain our results, we tested the algorithms on a wide variety of games.
Previous work on exact equilibria has typically used the GAMUT library [14].
However, almost all of the games provided by GAMUT have exact pure Nash
equilibria, so using only these games could skew our results. For example, the
work of Porter et al. [15] concluded that support enumeration typically outper-
forms the Lemke-Howson algorithm, based on the fact that support enumeration
can quickly find the pure equilibria in the games provided by GAMUT.

There are many practical applications of game theory where all equilibria
use mixed strategy profiles. Our second contribution is to define several natural
classes of games that do not have pure Nash equilibria. All of our game generators
and algorithm implementations are open source and freely available1. Our results
show that algorithms perform very differently on these games, so they should be
included in any future study of the practical aspects of computing equilibria.

1 http://bimatrix-games.github.io/

http://bimatrix-games.github.io/
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The excellent performance of the TS algorithm raises the question of whether
the upper bound of 0.3393 on the quality of approximation of this algorithm is
tight. We used a genetic algorithm to search for worst-case examples, and we
found a 5 × 5 bimatrix game in which the TS algorithm gives a 0.3385-Nash
equilibrium, which shows that the performance guarantee is essentially tight.
We applied this technique to the algorithm of Fearnley et al. [7] for finding ε-
WSNE, which likewise had no good theoretical lower bound. However, we were
only able to find an example for which the algorithm gives a 0.4799-WSNE,
which is far from the upper bound of (23 −0.00591375). Finally, to test the limits
of approximation techniques, we ran the same procedure against the combination
of our three best approximation algorithms (the TS algorithm, the algorithm of
Bosse et al. [2], and the best pure strategy pair). Here the fitness function was the
minimum of the approximations provided by the algorithms. We found a game
for which all of the algorithms gave no better than a 0.3189-Nash equilibrium,
which is relatively close to the theoretical upper bound of 0.3393, and indicates
that new techniques will be needed to advance the theoretical state of the art.

Related Work. For exact equilibria, Porter et al. [15] use GAMUT to com-
pare support enumeration (SE) with the Lemke-Howson (LH) algorithm. They
showed that SE performs well when compared to LH, because many of the games
in the library have small support equilibria. They also highlight random games
and covariant games as the most challenging GAMUT games for SE and LH,
which our results also confirm. Most of their experiments considered games of size
600×600, but they did consider random games at game sizes up to 1000×1000.

Sandholm at al. [16] describe four ways of solving games via mixed integer
programming (MIP). Experiments were carried out games of size 150 × 150
provided by GAMUT. It was found that MIP performed better than LH but
was outclassed by SE.

Codenotti et al. [4] studied of LH algorithm, on random and covariant games,
where it was found that LH has a running time of O(n7) for n × n covariant
games. They presented a heuristic which involves running different LH paths
in parallel, which showed an improvement over LH for random games, but not
covariant games. They looked at games of size up to 1000 × 1000.

Tsaknakis et al. [20] performed an experimental analysis of their algorithm
(TS) for finding a 0.3393-Nash equilibrium in polynomial time. They studied
games of size 100× 100, and they also constructed games with no small support
equilibria, to prevent easy solutions. It was found that TS always finds a 0.015-
Nash equilibrium or better. We confirm the result that in general TS performs
well, however among some of our games TS only finds a 0.14-Nash equilibrium.

Gatti et al. [8] evaluated the performance of LH, MIP and SE. They intro-
duced a number of heuristics, and compared their performance on the games
from GAMUT. They found that none of the methods was superior for all games.
They did look at the quality of approximation achieved by their heuristics and
algorithms, but the largest games they looked at were of size 150 × 150.
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2 Experimental Setup

Algorithms. Now, we describe the algorithms that are studied in this paper. For
the computation of exact equilibria, we study the following two algorithms.

– LH. The Lemke-Howson algorithm is a widely-used pivoting algorithm [13].
It has exponential worst case behaviour [17], and it is PSPACE-hard to
compute the equilibrium that it finds [10]. We use the implementation from
[4], modified so that degeneracy is resolved by the lexicographic minimum
ratio test.

– SE. Support enumeration is brute force algorithm that, for every possi-
ble pair of supports, solves a system of linear equations to check for an
equilibrium. Our implementation goes through supports from small to large
cardinality.

There is a wide variety of algorithms for finding ε-Nash equilibria, and we
have implemented the following (polynomial-time) algorithms:

– Pure. This algorithm checks all pure strategy profiles and returns one that
gives the best ε-Nash equilibrium.

– DMP. This algorithm was given by Daskalakis et al. [6]. It finds a 0.5-Nash
equilibrium using a very simple approach that starts with an arbitrary pure
strategy, and then makes two best response queries.

– BBM1. This is the first of two algorithms given by Bosse et al. [2]. It finds
a 0.3819-Nash equilibrium. Given a bimatrix game (R,C), BBM1 solves the
zero-sum game (R − C,C − R) using linear programming. Then it proceeds
in a similar manner to DMP, but uses the LP solution as the initial strategy.

– BBM2. This is the second of the two algorithms given by Bosse et al. [2]. It
finds a 0.3639-Nash equilibrium. It is an adaptation of BBM1 that contains
some extra steps to deal with cases where the first algorithm performs poorly.

– TS. This algorithm was given by Tsaknakis and Spirakis [19]. It finds a
(0.3393 + δ)-Nash equilibrium, where δ is an arbitrary positive constant.
The algorithm uses gradient descent over the space of mixed strategy profiles.
The objective function is the quality of approximate Nash equilibrium. The
algorithm finds a stationary point. If the stationary point is not a (0.3393 +
δ)-Nash equilibrium, then it can be used to find a second point that is a
(0.3393+δ)-Nash equilibrium. To investigate the dependence of the algorithm
on δ, we use two versions with δ = 0.2 and δ = 0.001. We refer to these as
TS2 and TS001, respectively. At the end of Section 3, we analyze the effect
of the choice of δ.

There has been comparatively less study of algorithms to find approximate
well-supported Nash equilibria. We implemented the following two algorithms:

– KS. This algorithm was given by Kontogiannis and Spirakis, and it finds a
2
3 -WSNE [11]. The algorithm first checks all pure strategy profiles in order
to determine if there is a pure 2

3 -WSNE. If not, then the algorithm solves
the same zero-sum game as BBM1/BBM2, and the equilibrium of this game
is a 2

3 -WSNE.
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– KS+. This algorithm gives an improved approximation guarantee compared
to KS [7] of (23 − 0.00591). It combines the KS algorithm with two extra
procedures: one that finds the best WSNE with 2 × 2 support, and one
that finds the best WSNE on the supports from an equilibrium to the KS
zero-sum game.

Game Classes. We now describe the classes of games used in our study. In order
to have a consistent meaning of approximation guarantees, all games are scaled
to have payoffs in [0, 1]. Firstly, we used games provided by the GAMUT library.
We used every class of games in GAMUT that could be scaled indefinitely. We
eliminated the classes of games that have fixed size, and we were also forced
to eliminate some classes of games because their generators either crashed or
produced invalid games when asked to produce games with more than 1000
strategies per player, which included BidirectionalLEG and RandomLEG. We
were left with the games shown below.

BertrandOligopoly CournotDuopoly CovariantGame
GrabTheDollar GuessTwoThirdAve MinimumEffortGame
TravelersDilemma RandomGame WarOfAttrition

In covariant games each pure strategy profile is drawn from a multivariate
normal distribution with covariance ρ. When ρ = 1 we have a coordination game
and when ρ = −1 we have a zero-sum game. Previous work [4,15] indicates that
these games are easy to solve when ρ > 0, with the hardest games in the range
[−0.9,−0.5]. We study 5 classes of games CovariantGame-p for p = 1, 3, 5, 7, 9
where ρ = −0.1,−0.3,−0.5,−0.7,−0.9 respectively.

With the exception of covariant and random games, the other bimatrix game
classes provided by GAMUT have pure equilibria, and are therefore easily solved
by support enumeration. In order to broaden our study, we chose to implement
generators for the following games, which generally do not have pure equilibria.

– Non-Zero Sum Colonel Blotto Games. The players have an equal num-
ber of soldiers T that must be assigned simultaneously to n hills. Each player
has a value for each hill that he receives if he assigns strictly more soldiers
to the hill than his opponent (ties are broken uniformly at random.) Each
player’s payoff is the sum of the value of the hills won by that player. To
avoid pure equilibria, the hill values are drawn from a multivariate normal
distribution with covariance of ρ > 0. In our experiments, we study families
of games with n = 3, 4 and ρ = 0.5, 0.7, 0.9, which we denote by Blotto-n-p
for p = 5, 7, 9, respectively. The number of soldiers T was varied in order to
generate a scalable family of games.

– Ranking Games [9]. Each player chooses an effort level with an associated
cost and score. A prize is given to the player with the higher score, or is split
in the case of a tie. The payoff of a player is the value of the prize minus the
cost of the effort. We generated scores and costs as increasing step functions
of effort with random step sizes. We denote these games by Ranking.

– SGC games. Sandholm et al. [16] also noted that most GAMUT games
have small support equilibria. They introduced a family of games where, in
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all equilibria, both players use half of their actions. We denote their games
as SGC. In these game the only equilibrium in a (2k− 1)× (k− 1) game has
support sizes k for both players, which makes these games hard for support
enumeration.

– Tournament Games [1]. Starting with a random tournament, an asymmet-
ric bipartite graph is constructed where one side corresponds to the nodes of
the tournament, and the other corresponds to subsets of nodes. The bipar-
tite graph is transformed into a win-lose game where the actions of each
player are the nodes on their side of the graph. We denote these games as
Tournament.

– Unit Vector Games (UVG) [18]. The payoffs for the column player are
chosen randomly from the range [0, 1], but for the row player each column
j contains exactly one 1 payoff with the rest being 0. In order to avoid pure
equilibria, we generated these games by placing the 1s uniformly at random
in the rows that do not generate a pure equilibrium. We denote these games
as Unit.

Some of these games are not square. So, in our results we use instances that
have roughly the same name number of payoffs as the corresponding square
games, e.g., we compare 100 × 100 games to non-square games with roughly
10000 payoff entries.

Unlike other studies [8,16], we do not include the exponential-time examples
for LH devised by Savani and von Stengel [17]. They are not suitable for an
experimental study on approximate equilibria because the games have a number
of large payoffs, so when they are normalised to the range [0, 1], almost all payoffs
in the game are close to 0. Hence these games are very easy to approximate. For
example, the 30× 30 instance has a pure 1.63× 10−10-WSNE. Furthermore, for
instances larger than 16×16, these games exhaust the precision of floating point.

Implementation details. All implementations are written in C. We used CPLEX
to solve the linear programs used in some of the algorithms. For our runtime
results, we only measured the amount of time spent by the solver, and discarded
the time taken to read the game from its input file. Our experiments were carried
out on a cluster of 8 identical machines running Scientific Linux 6.6, which each
have an Intel Core i5-2500k processor clocked at 3.30GHz with 16GB of RAM.

To verify our results, we implemented three programs that compute the qual-
ity of exact, approximate, and well-supported Nash equilibria, respectively. All
of these programs carry out their calculations in exact arithmetic. Our exact
equilibrium checker takes a pair of supports, and checks whether there exists a
Nash equilibrium on these supports. Both of the approximate checkers take a
mixed strategy profile, and output the value of ε that this profile achieves.

3 Experimental Results

Exact Algorithms. We tested LH and SE against our library of games with a
timeout of 15 minutes. Table 1 part A shows the percentage of games that were
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solved by these two algorithms for various game sizes. We have divided the
games into three classes. Firstly we have GAMUT games that always have pure
equilibria. As expected, SE performs well on these games, while LH is also able
to tackle the majority of instances. Secondly, we have the GAMUT games that
do not always have pure equilibria. Both algorithms performed very poorly for
covariant games, which is in agreement with previous studies. Finally, we have
the games that we proposed. Both algorithms struggle with the games in this
class, which supports the idea that GAMUT’s existing library does not give a
comprehensive picture of possible games. Ranking games provide an interesting
case that differentiates between LH and SE: these games only had equilibria with
medium sized support so SE was hopeless, however LH was able to solve these
games using a linear number of pivots. In conclusion, our results show that exact
methods are inadequate for the 2nd and 3rd classes of games, so it is for these
games that we are interested in the performance of approximation methods.

Approximation algorithms. Table 1 part B shows the running time and quality
of approximation, respectively, when the algorithms were tested on games of size
2000 × 2000. Again, there is a clear split in the data between the “easy” games
from GAMUT and the more challenging game classes. Note that, with only a
handful of exceptions, the approximation algorithms were easily able to deal
with games of this size. Only TS001 was observed to time out, and it timed out
on 17% of the instances that it was tested on. This indicates that approximation
algorithms can indeed be applied to games that cannot be tackled with exact
methods. We summarize the performance of the algorithms as follows.

– DMP. This algorithm runs quickly and usually gives a poor approximation.
In terms of quality, it is clearly outmatched by all of the other algorithms.

– BBM1 and BBM2. These algorithms were typically in the middle in terms
of both approximation quality and running time. Only a handful of Blotto
instances triggered the extra steps in BBM2, so these two algorithm are
mostly identical.

– Pure. Whenever the game has a pure NE, this algorithm performs well,
because it terminates once a pure NE has been found. Otherwise, it is among
the slowest of the algorithms, because it is never faster than n3, where n is
the number of strategies. The quality of approximation results confirm that
our new games succeed in avoiding pure strategy profiles that are close to
being Nash equilibria.

– TS2 and TS001. The TS algorithm was the clear winner in terms of quality
of approximation. The results show that the choice of δ can have a signif-
icant effect on the algorithm’s characteristics. TS2 often terminates in a
reasonable running time when compared to BBM, and it usually beats BBM
significantly on quality of approximation. However, TS001 always beats TS2
in quality of approximation, and always provides the best approximations
among all of the algorithms that we studied. This accuracy comes at the cost
of speed, as there are many games upon which TS001 is slower than TS2.
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Table 1 shows the results for the WSNE algorithms on the same set of
games. Due to its O(n4) running time, we found that that KS+ timed out on
all instances, so results for this algorithm are omitted. Recall that KS uses a
preprocessing step to search for pure WSNE, and then solves an LP. We found
that the preprocessing almost always provides the better approximation, but
the search over pure strategies is the dominant component of KS’s running time.
So, there is a significant cost for targeting ε-WSNE over ε-Nash equilibria, since
Pure is the slowest algorithm for ε-Nash equilibria, and KS is never faster than
Pure.

Fig. 1. Runtime vs Quality of approximation for CovariantGame-9 and Ranking for
instances of size 2000 × 2000

Finally, we comment on the trade off between running time and quality of
approximation. In Figure 1 we plot these two metrics against each other for
CovariantGame-9 and Ranking, which provide a fairly representative sample of
the results that we observed across the dataset. The points towards the lower left
of the diagrams are those that minimize the running time for a given approxima-
tion guarantee. In order of accuracy, we typically see points from DMP, BBM1,
TS2, and TS001 along this frontier.

The TS algorithm. Since our results indicate that the TS algorithm gives the
best approximations, it is worth spending more time analysing this algorithm.
Both the quality of approximation and the running time of the algorithm are
affected by the choice of δ. We now give more detailed results on how this
parameter affects the of the algorithm. To test the dependence on δ, we ran the
TS algorithm on one hundred 400 × 400 instances of RandomGame for various
values of δ in the range (0, 0.14]. The results of these experiments are displayed
in Figure 2. The left side of the figure shows the results for a single game, while
the right side of the figure shows the average results over all instances.
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The first two rows show the runtime and quality of approximation, respec-
tively. It can be seen that the algorithm does not scale smoothly with respect
to δ, and instead there are discontinuities in both running time and quality of
approximation. The explanation for these discontinuities can be found in the
third and fourth rows, which show the number of rows and the size of the LP
that is solved in each iteration, respectively. The third row shows that, as we
would expect, the number of iterations increases as δ decreases. However, the
data in the fourth row shows that the story is more complicated. The size of the
LP that is formulated in each iteration increases as δ increases. Thus, although
the number of iterations falls, the time per iteration gets larger.
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Fig. 2. TS performance plots of runtime (row 1), quality of approximation (row 2),
number of iterations (row 3,) and average LP-Size (row 4) against δ. Left diagrams
shows results for a single 400 × 400 instance of RandomGame, while right diagrams
show averages over one hundred 400 × 400 instances of RandomGame.

4 Worst Case Examples

The best theoretical upper bound on the performance of the TS algorithm is that
it produces a 0.3393-Nash equilibrium, but previous work has not been able to
show a matching lower bound. As we have seen, the algorithm usually finds a
very good approximation in practice. The Blotto games were the only class that
challenged the algorithm, and even then the approximations were usually good.
Figure 3 shows box and whisker plots for the quality of approximation of TS001
on the Blotto games that we considered. Almost all points were close to 0.01, and
only a handful of instances were larger. The worst approximation that we found
was a 0.14-Nash equilibrium, which is still far from the worst-case guarantee.

To test the limits of the TS algorithm, we used a genetic algorithm to try
and find worst-case examples. More precisely, we used a genome that encoded a
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Fig. 3. Box and whisker plots for quality of ε-NE found by TS001 on Blotto games

5 × 5 game, and a fitness function that measured the quality of approximation
found by TS001 on the game. The result of this was a 5 × 5 game2 for which
TS001 produces a 0.3385-Nash equilibrium. Note that this essentially matches
the theoretical upper bound.

Although this example provides a good lower bound against TS001, we found
that BBM2 produced a 0.024-NE when applied to this instance. For this reason,
we decided to test the limits of our entire portfolio of algorithms. We used the
same genetic algorithm, but this time the fitness function was the best of the
approximations found by TS001, Pure, and BBM2. We produced a 5 × 5 game
for which all of the above algorithms produced at best a 0.3189-Nash equilibrium
(TS produced a 0.3189-NE, Pure produced a 0.324-NE, and BBM2 produced a
0.321-NE.)

Both of the games mentioned so far contain dominated strategies. While
this does not invalidate the lower bounds, it is obviously undesirable. For this
reason, we reran the experiments with a fitness function that penalizes dominated
strategies. For TS, we found a game with no dominated strategies for which the
algorithm produces a 0.3254-NE, and for the portfolio we found a game with no
dominated strategies for which the portfolio finds a 0.3253-NE.

Finally, we applied the genetic algorithm to try and find a worst case example
for KS+, but we were unsuccessful. We were able to produce a 5 × 5 game for

2 All games found are given in the full version: http://arxiv.org/abs/1502.04980

http://arxiv.org/abs/1502.04980
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which KS+ finds a 0.4799-WSNE, but this is not particularly useful, as some of
the techniques used in this algorithm cannot possibly find an ε-WSNE where ε
is better 0.5.

5 Conclusion

In this paper, we have conducted experiments to test the applicability of approxi-
mation methods in practice. We found that the existing library of games provided
by GAMUT is biased towards games that always have pure Nash equilibria, so
we introduced several new classes of games where this is not the case. Having
done so, we are able to give conclusive answers to the questions that we posed
in the introduction. Firstly, we have seen that the exact algorithms LH and
SE are quite limited in their ability to solve large games, particularly on the
games that we have introduced. Secondly, in contrast to this, we have seen that
approximation methods can tackle much larger instances, and that they provide
approximate equilibria that are good enough to be practically useful. Finally, we
have seen that DMP, BBM, and the variations of TS, can all be useful depend-
ing on the quality of approximation that is required, which shows that there is
a trade-off between running time and quality of approximation. In addition to
this, we have also applied genetic algorithms to find a new worst case-example
for TS which essentially match the theoretical upper bound.

This work has highlighted the need for a comprehensive library of games upon
which game theoretic algorithms can be tested. In addition to the games that we
have introduced, there are also a number of other areas that could be represented
here. For example, there are many auction problems from which games could be
derived. Our study has focussed on algorithms with provable guarantees on the
quality of approximate equilibria found in polynomial time. One direction for
further study would to be to consider exact algorithms as heuristics for finding
approximate equilibria. For example, one could randomly sample supports and
find the best approximate equilibria on these supports using linear programming,
or one could run an algorithm like LH for a fixed time or number of steps and
check how good the strategy profiles it traces are as approximate equilibria. It
would be interesting to see the extent that genetic algorithms can be applied
to this. For example, what happens when we try to make LH bad, for quality
of approximation or for running time? For approximation results, we would be
interested in the approximation that is found after the algorithm has taken a
fixed number of steps, like linear, quadratic, or some other polynomial.
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Tübingen, Germany

{bekos,mk,krug}@informatik.uni-tuebingen.de
2 yWorks GmbH, Tübingen, Germany
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Abstract. Inspired by the recently-introduced slanted orthogonal graph
drawing model, we introduce and study planar Kandinsky drawings
with almost-empty faces (i.e., faces that were forbidden in the classi-
cal Kandinsky model).

Based on a recent NP-completeness result for Kandinsky drawings
by Bläsius et al., we present and experimentally evaluate (i) an ILP that
computes bend-optimal Kandinsky drawings with almost-empty faces,
and, (ii) a more efficient heuristic that results in drawings with relatively
few bends. Our evaluation shows that the new model, in the presence of
many triangular faces, not only improves the number of bends, but also
the compactness of the resulting drawings.

1 Introduction

The Kandinsky model [13] is a well-established graph drawing model that is a
special type of grid embeddings [15,17], which, however, can be employed to
draw any graph (that is, of arbitrary vertex-degree) in an orthogonal style. In
this model, two grids are present; a coarse one to accommodate the vertices
and a fine one to route the edges. More precisely, a Kandinsky drawing Γ (G)
of a graph G is one in which (a) every vertex is drawn as a box centered at
a point of the underlying coarse grid, (b) all vertex boxes are of uniform size,
(c) every edge is drawn as a rectilinear polyline on the underlying fine edge-grid,
and, (d) arbitrarily many edge-segments can be connected to each side of every
vertex; see Figure 2a.

Due to its high importance in practical applications, several different variants
of this model have been proposed and studied over the years (see, e.g., [3,6–
8,10]). The classical orthogonal model studied by Tamassia [16] can also be seen
as a restricted variant of the Kandinsky drawing model, where the graphs have
maximum degree four and no two edges can be attached to the same side of a
vertex.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. (a)-(b) Illustration of empty faces: (a) empty L, and, (b) empty T; (c)-(d)
Illustration of almost-empty faces: (c) almost-empty L, and, (d) almost-empty T; (e)-
(f) Sample Kandinsky drawings: (e) without almost empty faces, and, (f) with almost
empty faces, which results in height reduction. (e)-(f) Replacing a 90◦ bend by a pair
of half-bends of 135◦; (g)-(h) Illustration of a U-shaped edge drawn in the classical
orthogonal model and in the new model.

Beside the area minimization, a typical objective that has received consid-
erable attention is the bend minimization. For plane graphs, this problem was
initially modeled as a min-cost flow problem [8,13]. Subsequently, it has been
observed that the given algorithm needed additional constraints that could not
be handled efficiently, and therefore efficient 2-approximations have been pro-
posed [1,9]. The complexity of the problem was unknown for more than two
decades until the NP-completeness result was recently found [4]. As in previous
work, we only consider plane graphs.

Most of the known algorithms [1,9,13] for the Kandinsky drawing model
heavily depend on the absence of empty faces; see Figures 1a and 1b. A common
approach to avoid such faces is to adopt the so-called bend-or-end property. In
the work of Fößmeier and Kaufmann [13], this property is the result of the min-
cost flow formulation which assigns each angle of zero degrees between two edges
to a specific bend on one of these edges. From a practical point of view, such
faces are forbidden because it is too difficult to distinguish them in a drawing
(as they are of almost zero area). In addition, the empty L (see Figure 1a) is not
possible to be drawn without introducing vertex-edge crossings.

Inspired by recent work of Bekos et al. [2] on the so-called slanted orthogonal
graph drawing model, we use intermediate diagonal edge-segments, which allow
us to draw empty faces; see Figures 1c and 1d. In this way, we can create “empty
faces” of non-zero area, making them acceptable in a drawing. We refer to such
faces as almost-empty faces. To maintain a uniform approach in the way we draw
the bends of the edges, we replace all 90◦ bends by pairs of half-bends of 135◦;
see Figures 1e and 1f.
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For aesthetic reasons, we further require that all diagonal edge-segments
are short and of uniform length. We perform our comparisons based on the
assumption that the length of a diagonal edge-segment does not exceed one
third of the length of one unit of the underlying coarse grid in both x- and y-
direction. This allows us to draw a U-shaped edge in a 1 × 1 integer grid (as in
classical Kandinsky models); see Figures 1g and 1h.

We refer to such drawings as Kandinsky drawings with almost-empty faces
(or podevsaef-drawings1). Formally, a podevsaef drawing Γ (G) of a plane graph
G is one in which: (a) every vertex is drawn as a box centered at a point of the
underlying coarse grid, (b) all vertex boxes are of uniform size, (c) every edge is
drawn as a sequence of alternating horizontal, vertical and diagonal segments on
the underlying fine-grid, (d) arbitrarily many edge-segments can be connected
to one side of a vertex (so the resolution of the underlying fine-grid has to be
high enough to accommodate all edges), (e) a diagonal segment is of length at
most one third of the length of one unit of the underlying coarse grid in both
x- and y-direction and is never incident to a vertex, (f) the minimum of the
angles formed by two consecutive segments of an edge always is 135◦, which
suggests that a bend in Γ (G) is always incident to a diagonal segment and to
either a horizontal or a vertical one. For sample podevsaef drawings produced by
implementations of our algorithms refer to Figures 2b and 2c; the corresponding
bend-optimal Kandinsky drawing of the same graph is given in Figure 2a.

Our goal is to find out how much we can save with respect to bends and area
when allowing almost-empty faces in Kandinsky drawings. Note that almost-
empty faces are always triangular. So, we expect that the improvements will be
greater in graphs with many triangular faces. Since the recent NP-completeness
result of Bläsius et al. [4] implies that also our problem is NP-complete, we take
an experimental approach. To quantify the results of our experiments, we present
an ILP-formulation, which extends the standard one of Eiglsperger et al. [11] and
which results in bend-optimal podevsaef-drawings (see Section 2). By relaxing
the bend-optimality constraint on the resulting drawings, we are able to present
an efficient heuristic which results in podevsaef-drawings with relatively few
bends (see Section 3). In Section 4 we experimentally evaluate the podevsaef
drawing model and we also compare it with the classical Kandinsky drawing
model. We conclude in Section 5 with open problems and future work.

2 Bend-Optimal Podevsaef Drawings of Planar Graphs

In this section, we present an approach that results in podevsaef drawings of
minimum number of bends. Following standard practice, our approach consists
of two phases; the orthogonalization phase (where the angles and the bends of the
drawing are computed) and the compaction phase (where the actual coordinates
for the vertices and the edges are computed); refer, e.g., to [16]. For the first
1 The term is inspired by a term that also refers to Kandinsky drawings: podevsnef
drawings [13], which stands for Planar Orthogonal Drawings with Equal Vertex Sizes
and No Empty Faces.
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Fig. 2. A sample planar graph drawn (a) in the classical Kandinsky drawing model,
(b) in the podevsaef drawing model using the ILP of Section 2, and, (c) in the podevsaef
drawing model using the heuristic of Section 3. Almost-empty faces are drawn gray.

phase, we present a modification of a standard ILP-formulation of Eiglsperger
et al. [11] that results in representations of minimum number of bends. In the
compaction phase, we employ a transformation that allows us to use any known
compaction algorithm for the original Kandinsky model.

Before we proceed with the description of our modification for the orthogonal-
ization phase, we first quickly recall the ILP-formulation of Eiglsperger et al. [11].
For each edge e = (u, v), variable a(u,v) · 90◦ corresponds to the angle formed
by edge e and its cyclic predecessor at vertex u. Clearly, a(u,v) ∈ {0, 1, 2, 3, 4}.
Since the sum of the angles around a vertex equals to 360◦, it follows that for
each vertex u ∈ V ,

∑
(u,v)∈N(u) a(u,v) = 4 must hold, where N(u) denotes the

neighbors of u.
In order to count the number of left turns (or simply left-bends) along an

edge e = (u, v), three variables, lbu(u,v), lbv(u,v) and lb(u,v), are employed, which
correspond to the left Kandinsky-bend (that is, the special bend resulting from
the bend-or-end property) at vertex u, the left Kandinsky-bend at vertex v and
the remaining left-bends of edge (u, v). For the right-bends, variables rbu(u,v),
rbv(u,v) and rb(u,v) are defined similarly. Clearly, for reasons of symmetry lbu(u,v) =
rbu(v,u), lb(u,v) = rb(v,u) and lbv(u,v) = rbv(v,u) must hold. Note that variables
lbu(u,v), lbv(u,v), rbu(u,v) and rbv(u,v) are binary, while variables lb(u,v) and rb(u,v) are
non-negative integers.

Since only one Kandinsky-bend is allowed at each end of each edge, lbu(u,v) +
rbu(u,v) ≤ 1 must hold for each edge (u, v) ∈ E. For ease of notation, we denote by
l(u,v) and r(u,v) the total number of left and right bends per edge, respectively,
that is, l(u,v) = lbu(u,v) + lb(u,v) + lbv(u,v) and r(u,v) = rbu(u,v) + rb(u,v) + rbv(u,v).
Since the sum of the angles formed at the vertices and at the bends of a bounded
face f equals to 180 · (p(f) − 2), where p(f) denotes the number of such angles,
it follows that

∑
(u,v)∈f (a(u,v) + l(u,v) − r(u,v)) = 2a(f) − 4, where a(f) denotes

the number of vertex angles in f . If f is not bounded, the sum is increased by
8. The bend-or-end property (which guarantees the absence of empty faces) is
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min
∑

(u,v)∈E(l(u,v) + r(u,v))

s.t. a(u,v) ∈ {0, 1, . . . , 4} ∀(u, v) ∈ E (1)∑
(u,v)∈N(u) a(u,v) = 4 ∀u ∈ V (2)∑
(u,v)∈f (a(u,v) + l(u,v) − r(u,v))

=

{
2a(f) − 4; f bounded
2a(f) + 4; f unbounded

∀f ∈ F (3)

lbu(u,v) + rbu(u,v) ≤ 1 ∀(u, v) ∈ E (4)

lbu(u,v) = rbu(v,u) ∀(u, v) ∈ E (5)

lb(u,v) = rb(v,u) ∀(u, v) ∈ E (6)
lbv(u,v) = rbv(v,u) ∀(u, v) ∈ E (7)

a(v,u) + lbv(v,w) + rbv(v,u) ≥ 1 ∀(v, w), (v, u) subsequent in N(v) (8)

lbu(u, v), rbu(u, v) ∈ {0, 1} ∀(u, v) ∈ E (9)
lb(u, v), rb(u, v) ∈ N ∀(u, v) ∈ E (10)

Linear Program 1. The ILP of Eiglsperger et al. [11] for computing bend-
optimal Kandinsky representations

implied by requiring a(v,u)+lbv(v,w)+rbv(v,u) ≥ 1, for all pairs of consecutive edges
(v, w) and (v, u) around v. Of course, the objective function of the corresponding
ILP-formulation must minimize the sum of all (i.e., either left or right) bends,
that is min

∑
(u,v)∈E(l(u,v) + r(u,v)). The complete program is given in Linear

Program 1.
To enable the aforementioned ILP-formulation to use the almost-empty T and

almost-empty L-shapes (see Figures 1a and 1b, respectively), we observe that
a bend of a classical Kandinsky drawing always corresponds to a pair of half-
bends in our drawing model. So, in our formulation we are working with bends
(not half-bends), which we eventually replace with pairs of half-bends only in
the compaction phase. In addition, we replace Constraint 8 of Linear Program 1
with new constraints that we describe in the following (refer to Constraint Sets 1
and 2). For each triangular face f , we introduce two binary variables, say Tf and
Lf , that are set to 1 if and only if f is drawn using the almost-empty T or the
almost-empty L-shape, respectively. We also employ a large constant M which
we use to “activate” or “deactivate” constraints; a common trick used in ILPs.
It is known, however, that the choice of the value for the constant M might
significantly influence the time required to compute an optimal solution of an
ILP [5]. Our experimental evaluation showed, however, that in our case the choice
of the value of M did not have any particular effect on the computation time.

If variable Tf of face f is set to 1 (that is, f is drawn using the almost-empty
T-shape), then Constraint 11 ensures that all angles of f are zero. Constraints 12
and 13 force f to have in total two right-bends on all edges (hence, the third
edge of f must be bend-less). Constraint 14 ensures that no edge has a left-bend
and Constraint 15 guaranteed that all edges have at most one bend in total. On
the other hand, if Tf is set to 0, then all constraints are deactivated, so they
impose no restriction on the edges.
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The constraints for an L-shaped face f are similar. If variable Lf is set to
1, Constraints 16 and 17 ensure that there is one 90◦ angle in f . Constraints
18 and 19 force f to have exactly one right-bend and Constraint 20 makes sure
that there are no left-bends. Again, setting Lf to zero trivially fulfills all these
constraints and they pose no restriction on f .

Observe that the constraints for T-shaped and L-shaped faces exclude each
other. So, there is no reason to add an extra constraint for this purpose. Since
we intend to allow either the almost-empty T or the almost-empty L-shape, it
follows that it suffices to replace Constraint 8 of Linear Program 1 with the
following constraint for each triangular face f :

a(u,v) + lbv(v,w) + rbv(v,u) + Tf + Lf ≥ 1, ∀(v, w), (v, u) subsequent in N(v)

(11)
∑

e∈Ef
ae ≤ 0 + (1 − Tf ) · M

(12)
∑

e∈Ef
re ≥ 2 − (1 − Tf ) · M

(13)
∑

e∈Ef
re ≤ 2 + (1 − Tf ) · M

(14)
∑

e∈Ef
le ≤ 0 + (1 − Tf ) · M

(15)∀e ∈ Ef : re ≤ 1 + (1 − Tf ) · M

Constraint Set 1. f is T-shaped

(16)
∑

e∈Ef
ae ≤ 1 + (1 − Lf ) · M

(17)
∑

e∈Ef
ae ≥ 1 − (1 − Lf ) · M

(18)
∑

e∈Ef
re ≤ 1 + (1 − Lf ) · M

(19)
∑

e∈Ef
re ≥ 1 − (1 − Lf ) · M

(20)∀e ∈ Ef : le ≤ 0 + (1 − Lf ) · M

Constraint Set 2. f is L-shaped

In order to prove that the modified ILP-formulation results in podevsaef
representations with minimum number of bends, we observe that if we set all Tf

and Lf variables to 0, then all new constraints no longer affect the underlying
equation system and all old constraints stay exactly as before. So, the original
proof of correctness of Eiglsperger et al. [11] holds. On the other hand, it is not
difficult to see that if a face is to be drawn either as an almost-empty T or as an
almost-empty L-shape, then Constraint Sets 1 and 2, respectively, ensure that
all angles and bends are correctly computed. So, the corresponding podevsaef
representations are correctly computed.

As already stated, in the compaction phase, where the computed representa-
tion has to be transformed into an actual drawing (that is, the actual coordinates
of the vertices and edges have to be computed), we employ a simple transfor-
mation that allows us to use any known algorithm for the compaction phase
of the original Kandinsky model, e.g., [12]. The transformation is illustrated in
Figure 3. More precisely, for an almost-empty T-shaped face a new auxiliary
vertex is required (refer to the gray colored vertex in Figure 3a) and the angles
around it follow directly from the T-shape. Similarly, for an almost-empty L-
shaped face we simply ignore the bent edge involved (see Figure 3b).

Once all almost-empty T-shaped and L-shaped faces are transformed accord-
ing to the rules of Figure 3, we proceed to draw the new graph using any known
compaction algorithm for the original Kandinsky model. In the resulting draw-
ing, the applied transformations can be easily reversed by introducing the missing
edges of the L-shaped faces and replacing the auxiliary vertices of the T-shaped
faces with the original edges.
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(a) (b)

Fig. 3. (a) Transformation for T-shapes. (b) Transformation for L-shapes.

3 A Heuristic to Compute Podevsaef Drawings

As we will shortly see in Section 4, the running time needed to compute bend-
optimal podevsaef drawings may be high, because of the ILP that computes
the corresponding bend-optimal podevsaef representations. In this section, we
present a significantly more efficient heuristic which given an orthogonal repre-
sentation of minimum number of bends, computes a corresponding podevsaef
drawing by trying to minimize the number of half-bends as possible. Our eval-
uation shows that the produced drawings are comparable to the optimal ones
in terms of the total number of bends and the area requirement, which suggests
that the proposed heuristic is useful for practical purposes.

The idea of our approach is to start from a classical bend-optimal orthogo-
nal representation and try to modify the shape of as many triangular faces as
possible to become T or L-shaped. To achieve this, we have identified several
shapes that allow an easy transformation into the new almost-empty shapes;
see Figure 4. Note that, these transformations do not require a drawing, but
they are directly applicable to any orthogonal representation (not necessarily to
bend-optimal ones). For each transformation the number of half-bends of the
podevsaef representation either equals to twice (see Figures 4a, 4c, 4d) or is
less than twice (see Figures 4b, 4e, 4f) the number of bends of the orthogonal
representation. Note also the potential of saving gridlines; see Figure4f.

Once all triangular faces have been transformed according to the rules of
Figure 4, we proceed with the compaction phase to obtain the final drawing
(as described in the previous section). Alternatively, we could try to further
reduce the number of bends by adding another orthogonalization step (as the
transformed graph may allow a drawing with less bends). Particular attention
must be payed on keeping the shape of the edges that have been transformed
unchanged in subsequent steps. In particular, the angles around the grey colored
vertex of Figure 3a must not change and its incident edges must not be bent.
Similarly, one copes with the almost-empty L shape of Figure 3b.

In order to further improve the quality of the heuristic (in terms of the num-
ber of bends), we employ a preprocessing of the input, which according to our
evaluation has proved to be very effective. When the input representation is
computed in such a way that it is bend-optimal and simultaneously contains the
maximum number of S-shaped edges, then the number of half-bends in the result-
ing podevsaef drawings tends to be reduced. This is because all transformations
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(a) (b) (c) (d) (e) (f)

Fig. 4. Transformations into: (a),(b) L-shaped face; (c)-(f) T-shaped face

presented in Figure 4 that involve S-shaped edges require less half-bends than
twice the corresponding number of bends (see Figures 4b, 4e, 4f). To achieve this,
we introduce appropriate binary variables, which determine whether an edge is
S-shaped, and employ them to modify (or, more precisely, weight) the objective
function of the ILP of Eiglsperger et al. [11] so to “prefer” an S-shaped edge
rather than two edges with a single bend each, whenever this is possible.

4 An Experimental Evaluation of the Podevsaef Drawing
Model

In this section, we compare bend-optimal Kandinsky drawings computed with
the ILP of Eiglsperger et al. [11] with bend-optimal and close-to-optimal pode-
vsaef drawings computed with the algorithm of Section 2 and the heuristic of
Section 3.

Experimental Setup: We implemented all aforementioned algorithms using
Java and the yFiles library (http://www.yworks.com). The gurobi solver [14] was
employed to solve the different linear programs. The experiment was performed
on a desktop Linux machine with four cores at 2.5 GHz and 3 GB RAM.

As a test set for our experiment, we used three different graph-suites, each
containing planar graphs of different densities (recall that the density of a graph
is defined as the ratio of the number of its edges to the number of its ver-
tices): (i) the planar Rome graphs, which form a collection of 3279 graphs with
average density of 1.16 obtained from the graphdrawing.org website, (ii) the pla-
nar North graphs, which form a collection of 854 graphs with average density
of 1.14 also obtained from the graphdrawing.org website, and, (iii) 940 ran-
domly created triangulations with average density 2.82 which were uploaded to
http://www.graph-archive.org and were created (based on the yFiles approach)
as follows. Initially, an evenly distributed point set was created within a trian-
gular region T . Then, the points were sorted from left to right. The first three
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points formed a triangle and each following point was connected with the visi-
ble points to its left. Finally, the points that were still on the boundary of the
created drawing were appropriately connected to three additional vertices that
reside on the corners of T .

Due to space constraints, in the remainder of this section we present results
only for the test set of the randomly created triangulations. These graphs contain
only triangular faces. So, we expect that they will better show the effect of the
almost-empty faces on the Kandinsky model. The test sets of planar Rome and
planar North graphs show that no or not much progress can be expected without
many triangular faces (only 12% for the Rome graphs and only 13% for the North
graphs on average).

From our experiment, we quickly realized that the time required to solve
the ILPs which are used to compute bend-optimal podevsaef representations
increases rapidly with the number of triangular faces. So, we set a time-limit of
300 seconds in our experiment. If the solver was able to find a feasible solution
within this time-limit, then the solution closest to the optimal one was used for
our evaluation. Otherwise, the instance counted as failed and was excluded from
the experiment. In total, we found just two faulty instances, both stemmed from
the test set of the randomly created triangulations.

To obtain an input for our algorithms, we applied the combinatorial embedder
of the yFiles graph library, which guarantees that if the input graph is planar,
then the computed combinatorial embedding will be planar as well.

We are now ready to present the results of our evaluation. In all plots, the
curve denoted by “Kand” stands for results for orthogonal drawings, while the
curves denoted by “Pod” and “Heur” correspond to the results for bend-optimal
and heuristically computed podevsaef drawings, respectively. Also, the values
for a specific number of vertices were obtained by averaging over all instances
with the same number of vertices.

Number of Bends: In Figure 5a the required number of bends is plotted
against the number of vertices for the test set of the randomly generated trian-
gulations. Since a bend of a classical Kandinsky drawing always corresponds to
a pair of half-bends of a podevsaef drawing, in Figure 5a we plotted twice the
number of orthogonal bends against the number of half-bends produced by our
algorithms. As expected, the number of half-bends of bend-optimal (or, more
precisely, close-to-bend-optimal) podevsaef drawings is significantly less than
twice the number of bends of bend-optimal classical Kandinsky drawings, espe-
cially for graphs with relatively many vertices. As illustrated in Figure 5b, the
reduction of the number of bends for both algorithms tends to be around 13%
with respect to the classical Kandinsky drawings. The reason is that the graphs
of our test set contain only triangular faces, which facilitates the bend-reduction
under the podevsaef drawing model.

It is worth mentioning, though, that the drawings produced by the ILP of
Section 2 and the ones produced by the heuristic of Section 3 are of comparable
number of half-bends. More importantly, both seem to have the same tendency,
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(a)

(b)

Fig. 5. Experimental results for the test set of the randomly created triangulations:
(a) The total number of bends is plotted against the number of vertices, (b) the ratio
and the logarithm of the ratio of the total number of bends of our algorithms to the total
number of bends of bend-optimal Kandinsky drawings is plotted against the number
of vertices.

as can be seen in Figure 5b. This justifies our claim that the heuristic is of
practical importance.

For the test sets of planar Rome and planar North graphs the profit is sig-
nificantly smaller (all algorithms seem to produce drawings with very similar
number of bends on average) graphs are very sparse and with very few triangu-
lar faces.

Area Requirements: In Figure 6a the required area is plotted against the
number of vertices for the test set of the randomly generated triangulations.
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(a)

(b)

Fig. 6. Experimental results for the test set of the randomly created triangulations:
(a) The area requirement is plotted against the number of vertices, (b) the ratio and
the logarithm of the ratio of the area of our algorithms to the area of bend-optimal
Kandinsky drawings is plotted against the number of vertices.

Again, for graphs with relatively many vertices the area required for podevsaef-
drawings is less than the corresponding one for classical Kandinsky drawings.
We also observed that the ILP of Section 2 and the heuristic of Section 3 seem
to have comparable performance in terms of area requirements, which according
to Figure 6b corresponds to an area reduction of around 20% with respect to the
classical Kandinsky drawings. It is also worth mentioning that in several cases
the drawings computed by the heuristic of Section 3 were more compact than
those produced by the ILP of Section 2. However, both seem to have the same
tendency in terms of the area requirements, as can be seen in Figure 6b. For the
other two test sets of our experiment, the podevsaef drawings and the classical
Kandinsky ones require comparable area.
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Running Time: On the negative side, the time required by the ILP to compute
bend-optimal podevsaef representations increases rapidly with the number of
triangular faces of the graph. More precisely, in the test set of the randomly
created triangulations, we observed that for graphs with more than 20 vertices
the time required to compute an optimal podevsaef drawing exceeded the time-
limit of 300 seconds. On the other hand, this negative behavior was difficult to
be observed for the test sets of planar Rome and planar North graphs, where all
instances could be solved within a few seconds. The reason is that these graphs
are much more sparse and have very few triangular faces. This shows that the
test set of the randomly created triangulations was the most demanding one in
terms of running time.

On the positive side, however, it was almost always possible to compute at
least a close-to-optimal solution within the time-limit we set (except for just
two faulty cases, as we already mentioned). On the other hand, both the ILP of
Eiglsperger et al. [11] and the heuristic of Section 3 seem to require comparable
running times; i.e. in all test cases less than two seconds. Since the heuristic
of Section 3 eventually produced drawings of comparable number of bends and
area (with respect to the ones produced by the ILP of Section 2), it confirms
our claim that it is more suitable for practical applications.

5 Conclusion and Open Problems

In this paper, we introduced and experimentally evaluated the podevsaef graph
drawing model that is appropriate for drawing planar graphs of arbitrary vertex-
degree. Since the problem of minimizing the total number of bends in this model
turned out to be NP-complete, we modeled it as an ILP and we also presented a
more efficient heuristic. Our evaluation showed that the suggested model is able
to improve the quality of a classical Kandinsky drawing (in terms of total number
of bends and area requirements) in the presence of many triangular faces. We
strongly believe that our new model is of importance, as the Kandinsky drawing
model is well-established and widely used in practical applications. Of course,
our work is ongoing and raises several open problems:

1. A more sophisticated heuristic or a constant-factor approximation algorithm
for computing close-to-optimal podevsaef drawings would be of interest.

2. A different approach that will allow for faster computation of optimal (in
terms of the total number of bends) podevsaef drawings, especially when the
input graph is triangulated, is also of interest.

3. We only considered the bend-minimization problem. Is there an efficient
algorithm that results in podevsaef drawings of provable small drawing area
for given plane graphs, especially for triangulations? Are there any non-
trivial bounds that one could derive?

4. We considered only planar graphs. It is of interest to extend the proposed
model also to the case of non-planar graphs. A reasonable research direction
is again to adopt the slanted orthogonal drawing model, which restricts all
edge-crossings to diagonal edge-segments at 45◦.
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Abstract. We implement and evaluate a polynomial compression algo-
rithm for the Steiner Cycle problem that was recently developed by
Wahlström (STACS 2013). Steiner Cycle is a generalization of Hamil-
tonian Cycle and asks, given a graph G = (V, E) and a set of k ter-
minals T ⊆ V , whether there is a simple cycle containing T as well as
an arbitrary number of further vertices of G. Wahlström’s compression
algorithm takes any such instance and in polynomial time produces an
equivalent instance of size polynomial in k. The algorithm has several
distinguishing features that make it interesting as a test subject for eval-
uating theoretical results on preprocessing: It uses Gaussian elimination
on the Tutte matrix of (essentially) the input graph instead of explicit
reduction rules. The output is an instance of an artificial matrix prob-
lem, which might not even be in NP, rather than Steiner Cycle.

We study to what extend this compression algorithm is useful for
actually speeding up the computation for Steiner Cycle. At high level,
we find that there is a substantial improvement of using the compression
in comparison to outright running a O(2k · |V |c) algebraic algorithm also
due to Wahlström. This is despite the fact that, at face value, the cre-
ation of somewhat artificial output instances by means of nonstandard
tools seems not all that practical. It does benefit, however, from being
strongly tied into a careful reorganization of the algebraic algorithm.

1 Introduction

The present work provides an implementation and experimental evaluation of
the recent polynomial compression algorithm for the Steiner Cycle problem
presented by Wahlström [20]. In the Steiner Cycle problem we are given an
undirected graph G = (V,E) and a set T ⊆ V of terminals with the question of
whether there exists a simple cycle containing all vertices of T plus an arbitrary
number of additional vertices. We are interested in the parameterized version
with parameter k equal to the number of terminals in T .
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Steiner Cycle
Input: A graph G = (V,E) and a set of terminals T ⊆ V .
Parameter: k := |T |.
Output: Is there a simple cycle C in G such that each t ∈ T is in C?

Steiner Cycle is NP-hard since it generalizes Hamiltonian cycle using
T = V , but it can be solved in time O∗(2k)1 [4,20]. The main result of
Wahlström [20] is an efficient algorithm that transforms any given instance of
Steiner Cycle to an equivalent instance of size polynomial in the number k
of terminals. Let us outline why such polynomial compression algorithms are
interesting, and why we are interested in this particular one.

A polynomial compression algorithm is a relaxed variant of the notion of a
polynomial kernelization from parameterized complexity (see Section 2 for formal
definitions). Kernelization is a theoretical formalization of the pervasive notion of
preprocessing in the sense of data reduction and instance simplification. Unlike
practical applications of preprocessing, e.g., in the CPLEX package or within
SAT solvers, which are of a mostly heuristic flavor, the notion of kernelization
allows us to prove rigorous upper and lower bounds on worst-case performance
for preprocessing. In the case of Steiner Cycle, a polynomial kernelization
with respect to parameter k would be required to return an equivalent instance
of Steiner Cycle of total size polynomial in k; a polynomial compression may
instead return a polynomial in k sized instance of an arbitrary decision problem.2

There is a clear appeal of being able to complement the practical success of
preprocessing by rigorously proven bounds. Unsurprisingly, there is quite a large
gap between what is provable in theory vs. the empirical success of preprocessing
in practice. Similarly, it is not always clear that the theoretical results are imple-
mentable with reasonable effort and, crucially, that the reduction in instance size
also entails a substantial reduction in total runtime. Thus, experimental eval-
uation and checking practical feasibility seem like important complements to
theoretical breakthroughs.

In this light, Wahlström’s [20] polynomial compression for Steiner Cycle
is interesting for a couple of reasons: First, Steiner Cycle is quite similar to a
couple of other problems that all do not admit polynomial kernels/compressions.
Second, the arguments used in the compression are quite unique in that they
do not rely on reduction rules and create output instances of a fairly contrived
matrix problem that might not even be in NP. Thus, there is not even the
beginning of an idea for how to preprocess the problem by concrete reduction
rules (as is typical for kernelization and also in heuristic preprocessing). Finally,
it could be argued that Steiner Cycle is not that suitable for being solved
outright by heuristics since, assuming that we want to include all k terminals,
there is no natural notion of a suboptimal (or approximate) solution or of a
feasible starting solution. Thus, we might be more inclined to implement an
exact algorithm for it. Let us give a few more details about the first two aspects.
1 We use O∗ notation to suppress polynomial factors.
2 This can range from allowing additional annotations to, for example, returning a

small instance of CNF-Satisfiability instead.
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Status of Similar Problems. Problems similar to Steiner Cycle are for exam-
ple k-Cycle, where we seek a cycle of length exactly k, and the classic Steiner
Tree problem, where we seek a minimum size tree that connects a given termi-
nal set. Both problems can be solved in time O∗(ck) [2,17] but neither admits
a polynomial kernelization or compression unless the polynomial hierarchy col-
lapses [7,11].3 Furthermore, there is the Disjoint Paths problem, where the
task is to connect k pairs of terminals by finding disjoint paths (of arbitrary
length) that connects them. This problem is sufficiently general to be used as
a subroutine for solving Steiner Cycle; however, the best known algorithm
takes time O∗(22

k10

) [14] and the problem is known not to admit a polynomial
kernelization [8]. Thus, the polynomial compression for Steiner Cycle was a
surprising result.

Overview of the Compression. Like the problems of finding a cycle of length at
least k or a Steiner tree for k terminals (and several others), Steiner Cycle can
be solved by algebraic techniques that roughly follow the same paradigm: One
defines an implicit multivariate polynomial of exponential size such that solutions
to the instance correspond to the presence of particular monomials in the poly-
nomial. Using cancellation arguments over finite fields of characteristic two (or a
suitable group algebra) all other monomials vanish such that presence of “good”
monomials can be determined by testing whether the polynomial is nonzero; this
can be done via the Schwartz-Zippel-DeMillo-Lipton Lemma by evaluating the
polynomial at random spots. Computing the value at a certain position usually
comes down to dynamic programming or inclusion-exclusion, using a succinct
presentation of the polynomial, e.g., a recursive definition thereof.

An important insight of Wahlström [20] is that Steiner Cycle can also be
solved using the polynomial obtained from the determinant of the Tutte matrix
of (essentially) the input graph, when interpreting it as a polynomial over a
finite field of characteristic two. To clarify, when expanding out the polynomial
by formally computing the determinant one would still get exponentially many
monomials, i.e., products of formal variables. However, the algorithm only needs
to evaluate the polynomial at random points, for which determinant computa-
tions over a finite field suffice since we first plug in the values. Crucially, the
algorithm needs O(2k) determinant computations, which is the dominating fac-
tor in the overall runtime, but the involved matrices change only very little. The
polynomial-time preprocessing makes use of this and replaces the roughly n × n
matrix (for a graph with n vertices) by a 3k×3k matrix from which we can obtain
all required determinant values, and which can be encoded in space polynomial
in k. To this end, a small number of special variables are introduced, which are
not randomly assigned and which remain present in the 3k × 3k matrix. This
makes for a curious form of preprocessing: The operations on the matrix (i.e.,
partial Gaussian elimination) are not known to correspond to explicit reduction

3 We do not discuss lower bounds for kernelization in this work and instead refer to
recent surveys on kernelization [15,16]. All mentioned lower bounds are conditioned
on non-collapse of the polynomial hierarchy and all apply also to compressions.
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rules on the input graph. Implicitly, the output is an instance of a contrived
problem that asks whether certain evaluations of a given matrix sum up to a
nonzero value; it is not even known whether this problem is in NP. Thus, the
result is formally a polynomial compression, i.e., we are not concerned with the
particular problem of the output instance. Since that problem might not be in
NP, standard arguments for deriving a polynomial kernelization fail.4

Naturally, with this being the first example of such a behavior, it might seem
dubious at first whether this could be of any help in practically solving instances
of Steiner Cycle. Indeed, it comes with the arguable drawback that we do not
obtain a small instance of Steiner Cycle on which we could run some other
algorithm. Given the nature of the output problem, we are more or less bound
to continue the determinant computations (barring other clever insights into its
structure, but note that it is still hard for NP).

Our Work. We implement Wahlström’s [20] O∗(2k) time algorithm as well as the
polynomial compression. Particular consideration is given to handling the finite
field arithmetic (see also related work below) for which we have implemented
several variants. Similarly, a crucial detail is the partial Gaussian elimination
in the presence of the remaining formal variables since the single matrix entries
become (small) polynomials too. (Full Gaussian elimination would yield a diag-
onal matrix with some entries being polynomials of length exponential in k.)

We perform an experimental evaluation of both the algorithm by itself as well
as in combination with the preprocessing. At high level, the speed-up achieved
by applying the preprocessing is sizable: Without it, in at most ten minutes,5

we can solve instances with roughly 400 vertices, 16000 edges, and 11 termi-
nals. Using the preprocessing this goes up to 2400 vertices, 576000 edges, and 16
terminals. We also test different choices for implementing the finite field arith-
metic and, barring very small choices for the field, they all achieve very high
success probabilities. A detailed presentation of experimental results and choice
of problem instances can be found in Section 5.

Related Work. Similar experimental work on algebraic algorithms was performed
by Björklund et al. [5] who focused on quickly extracting a solution for the k-
Path problem based on an algebraic decision algorithm for the problem. We
recall that all algorithms based on these algebraic techniques are necessarily
decision algorithms only, but are of course amenable to self-reduction (or more
clever approaches [5]). Björjklund et al. also give detailed consideration to the
implementation of the finite field arithmetics. More recently, Björklund et al. [6]
presented an intricate engineering study for finding motifs in very large graphs.
(A motif here means a connected k-vertex subgraph whose vertices exhibit
exactly the colors from a specified multiset of size k.) We point out that both

4 The argument is simple: Because Steiner Cycle is NP-hard there must exist a
polynomial-time many-one reduction from whatever output problem in NP that we
have back to Steiner Cycle; this at most causes a polynomial blow-up in the size.

5 With an Intel Xeon E5-1620 processor and 64 GB main memory.
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problems are known not to admit polynomial kernels and compressions, so the
goals of these works are slightly different (impressive feasible input sizes notwith-
standing). We expect, that some of the used techniques (like bit packing) should
also be applicable for Steiner Cycle, while other savings are specific to the
way that the polynomial used for Graph Motif is defined.

Experimental work for kernelization seems somewhat rare. There are older
works of Abu-Khzam et al. [1], who considered kernels for the well-studied Ver-
tex Cover problem, and Weihe’s well known paper [21] about preprocessing for
a train maintenance problem on data from the German railway network. More
recently, Betzler et al. [3] studied the notion of partial kernelization for Kemeny
Rank from both theoretical and experimental perspective.

Organization. We start off with some preliminaries in Section 2 and proceed with
a description of Wahlström’s algebraic algorithm and polynomial compression
in Section 3. Implementation details are given in Section 4. The experimental
results are presented in Section 5 with concluding remarks in Section 6.

2 Preliminaries

Graphs. We use standard graph notation, mostly following Diestel [10]. Let us
define only a few slightly less common notions: A cycle cover of a directed graph
D = (V,A) is a set C of disjoint cycles in D such that each v ∈ V is part of some
cycle C ∈ C. A cycle C in a graph D = (V,A) is reversible if it has length at
least 3 and for each arc vivj in C there is an arc vjvi ∈ A, i.e., if we can traverse
C in the other direction. We call a cycle cover C reversible if at least one cycle
in C is reversible. An oriented cycle cover of an undirected graph G is a cycle
cover of the bidirectional graph corresponding to G.

The Tutte matrix AG corresponding to a graph G = (V,E) with V =
{v1, . . . vn} is an n × n matrix such that

AG(i, j) =

⎧
⎨

⎩

xij if vivj ∈ E and i < j,
−xji if vivj ∈ E and i > j,
0 otherwise,

where xij are indeterminates. The relation between the Tutte matrix and cycle
covers, in particular over fields of characteristic two, is discussed in the following
section. It is well known (and related to the cycle covers) that the Tutte matrix
has full rank if and only if the underlying graph has a perfect matching.

Parameterized Complexity. A parameterized problem is a language Q ⊆ Σ∗ ×N;
the second component of instances (x, k) ∈ Σ∗ × N is called the parameter.
A parameterized problem Q ⊆ Σ∗ × N is fixed-parameter tractable (and in the
class FPT) if there is an algorithm that, on input of (x, k) ∈ Σ∗ ×N, takes time
O(f(k)|x|c) = O∗(f(k)) and correctly determines whether (x, k) ∈ Q; here f is
an arbitrary computable function.
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A kernelization for a parameterized problem Q ⊆ Σ∗ ×N is an efficient algo-
rithm that, on input of (x, k) ∈ Σ∗ × N, takes time polynomial in |x| + k and
returns an equivalent instance (x′, k′) with |x′|+k′ ≤ h(k), where h : N → N is a
computable function, also called the size of the kernelization. If h is polynomially
bounded then we have a polynomial kernelization. The notion of (polynomial)
compression is defined similarly except that the output is an instance for an arbi-
trary decision problem L, i.e., on input (x, k) the compression returns x′ ∈ Σ∗

of size bounded by h(k) such that (x, k) ∈ Q if and only if x′ ∈ L. This general-
izes kernelization but, in most cases, the two notions behave almost exactly the
same, e.g., results obtained via the main lower bound framework for polynomial
kernelization also apply to polynomial compressions.

The Schwartz-Zippel-DeMillo-Lipton Lemma. The following well-known lemma
is a mainstay of (probabilistic) algebraic algorithms. Intuitively, it posits that
there is a randomized procedure for testing whether a given polynomial is
nonzero by evaluating it in randomly chosen positions over a sufficiently large
finite field.

Lemma 1 (Schwartz [19], Zippel [22], DeMillo and Lipton [9]). Let
P (x1, . . . xn) be a multivariate polynomial of total degree at most d over a field F,
and assume that P is not identically zero. Pick r1, . . . , rn uniformly at random
from F. Then Pr(P (r1, . . . , rn) = 0) ≤ d/|F|.

3 Overview of the Algebraic Algorithm and Compression

We give a brief overview of the randomized O∗(2k) time algebraic FPT algo-
rithm and the polynomial compression for Steiner Cycle by Wahlström [20],
followed by outlining more of the details. For a complete description and proof
of correctness see [20].

Algebraic Algorithm. At high level, the algorithm exploits a bijection between
cycle covers in a graph and the näıve summation of the determinant of the Tutte
matrix.6 One may view the Tutte matrix as a succinct representation of the
formal exponentially long multivariate polynomial that is obtained by computing
the determinant. When taking the polynomial to be over a field of characteristic
two, all terms corresponding to permutations with at least one cycle of length at
least three will cancel. By an easy trick, long cycles that pass through terminals
are still possible. By a “sieving argument”, i.e., a clever summation over roughly
2k slightly different determinant computations, similar to inclusion-exclusion,
also terms with multiple long cycles that together contain all terminals will

6 The determinant summation is over all n! permutations π ∈ Sn and the cycles in π
correspond to cycles in the cover. Permutations with non-adjacent consecutive ver-
tices are equal to zero due to a zero in the corresponding entry in the Tutte/adjacency
matrix. Transpositions in π give cycles of length two consisting of a single edge, and
fixed points in π correspond to loops, assuming the relevant edge entries are nonzero.
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cancel (in the summation), i.e., only terms with a single long cycle containing
all terminals will survive. Thus, the implicitly defined multivariate polynomial
is nonzero if and only if there is a Steiner cycle and the instance is yes. This
can be tested by Lemma 1 by performing point-wise evaluations rather than a
formal expansion; these can be performed on the matrix level and come down
to roughly 2k determinant computations for a matrix with finite field entries.

Polynomial Compression. The crux for the compression is that the 2k evalu-
ations are very similar: They correspond to choosing “directions” for passing
through the terminals. This can be captured by using k auxiliary variables that,
by being zero or nonzero, control the presence of either direction of the edge in
question. (Recall that each edge has two entries in the adjacency matrix, one
for either direction.) This in turn means, that we can effectively postpone the
2k evaluations and attempt to first extract the implicit polynomial on just the
auxiliary variables obtained after replacing all other variables by random field
elements. Of course, this polynomial could still have exponential size (in k), so
we have to proceed differently.

The solution is to perform a partial Gaussian elimination on the matrix after
replacing all but these k variables. Crucially, these variables occur only in the
“top left 3k × 3k corner” of the matrix. Thus, we can use column and row
operations to bring the matrix from

M =
(

A B
C D

)

into block form
(

M 0
0 R

)

.

Here A and M are 3k × 3k, and D and R about n × n. The special variables are
only in A, hence row and column operations can bring D into diagonal form D′

while changing only B and C. Then D′ can be used as pivot elements to replace
B and C by zeros, achieving block form; this does affect A, but only on the level
of creating additive values that are simple field elements (no blow-ups of formal
polynomials).

Finally, using that det(M) = det(M) ·det(R) one may discard R and restrict
the remaining computation to the 3k × 3k matrix M . (Multiplication of one row
of M by det(R) ensures that the exact same value is obtained, but for zero vs.
nonzero this is immaterial.) The matrix M can be represented in O(k3) bits,
using a sufficiently large field (see [20]). This constitutes an instance relative to
the artificial question of whether the summation of 2k determinants over matrices
obtained from M (by setting the k auxiliary variables) evaluates to nonzero.

More Details About Algorithm and Compression. For increased completeness,
we clarify some of the previously omitted details in the full version of this paper.
The reader is equally well encouraged to skip these or perhaps take the “full
tour” by reading the original paper [20].

4 Implementation

In this section we discuss some of the implementation details. Efficient implemen-
tation of the finite field arithmetic is vital for the performance of the algorithms
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in practice. We focus mainly on this component since the other steps in the
algorithms described in Section 3 are rather straightforward.

Finite Field Arithmetic. We consider a few variants for the implementation of
arithmetic in finite fields of characteristic two. For ease of discussion we assume
that we always work over a finite field F of size 2w and have an appropriate
polynomial g that is irreducible over F. (We use a hard-coded list of irreducibles
obtained from [13]). A common choice is to represent field elements as binary
numbers with w digits. We use unsigned 64-bit integers, which allows us to
support fields of size up to 264. Addition over F is done simply by xor-ing two
field elements. Up to this point, all of the variants are the same. We will now
describe how the variants deal with multiplication and division of elements in F.

In the naı̈ve variant, we multiply two field elements with the well-known
Peasant’s algorithm which takes O(w) bit-shifts and additions. For division of
a by b where a, b ∈ F, we first calculate the multiplicative inverse of b and then
multiply by a. Note that b2

w

= b, i.e., b2
w−1 = 1 and b2

w−2 = 1
b . Then

1
b

= b2
w−2 =

w−1∏

i=1

b2
i

can be computed with O(w) multiplications by iterative squaring to obtain pow-
ers b2

i

and multiplying with a running result. This yields division in time O(w2).
In the table variant, we precompute two 2w×2w tables in which we store the

multiplication (resp. division) result of each pair of field elements. This yields
constant time division and multiplication once these tables have been computed,
which is feasible for small w. This approach was used by Björklund et al. [5].

In the logtb variant, we use a similar approach by [18] for slightly bigger
values of w. Here, we precompute two length 2w arrays in which we store the
logarithm base g (resp. reverse logarithm base g) of each field element. Then,
multiplication can be performed in constant time since a · b = glogg a+logg b. In a
similar way, we also have division in constant time.

In the final variant, clmul, which was also used by [5], we use the pclmulqdq
operation which is supported by some modern processors. This operation can be
used to obtain the result of carry-less multiplication of two field elements. This
result can be reduced modulo g by a constant number of bit-shifts and xor’s. A
full description for multiplication of elements in GF (2128) can be found in [12].
We modify this and obtain constant time multiplication for elements in GF (264).
Division is performed similarly to the naı̈ve variant, i.e., in time O(w).

O∗(2k) Algorithm. We use the folklore O(n3) algorithm to calculate the deter-
minant of an n × n matrix A by using Gaussian elimination to transform A to
a triangular matrix.

Polynomial Compression. We introduce a new 3k × 3k matrix M ′ before the
compression starts in which we store the multiplicative factors that result from
introducing indeterminates a1, . . . , ak. I.e., when multiplying IG[x, y] = c by ai
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we set IG[x, y] to 0 and M ′[x, y] to c since c · ai = 0 · c + ai · c. Similarly, when
multiplying IG[x, y] = c by 1 − ai we set IG[x, y] to c and M ′[x, y] to c since
c · (1 − ai) = c − c · ai = c + c · ai. We can then proceed with reducing IG to
block form and obtain orientations afterwards by, e.g., adding M ′[k + 2i − 1, i]
to M [k + 2i − 1, i], etc, if we set ai = 1, or do nothing if we set ai = 0.

During the compression phase, if the algorithm detects a non-zero column
while partial Gaussian elimination is used to reduce IG to blocks form, it halts
and reports failure. Once the determinant of the lower-right block C is calculated,
we multiply the first row of M (and M ′) by the result since this row has only a
single non-zero value.

5 Experimental Results

In this section we present results of an experimental evaluation of the O∗(2k)
algorithm for Steiner Cycle and the compression described in Section 3. In
addition, we report on the impact of the finite field arithmetic implementation
variants described in Section 4 and observe how the size of a finite field influ-
ences the probability of finding a correct answer. The algorithms have been
implemented in C++ and the computations have been carried out with an Intel
Xeon E5-1620 processor and 64 GB main memory. Each combination of algo-
rithm and finite field arithmetic variant is given a maximum of 10 minutes of
computation time for a given instance. This does not include time required to
precompute multiplication (division) tables for the table variants, and logarithm
tables (inverse logarithm) tables for the logtb variants since it is conceivable
that these tables are precomputed once and stored in practice.

The experiments were performed on graphs of varying size and number of
terminals. Multiple instances were used for each specific setting. In Table 1 and
in Table 2 we exhibit the performance of the algorithm without the compression
step, and with the compression step respectively. Results are shown for 3 different
finite field arithmetic variants, where the size of the finite field is 2w. For each
graph size, we have generated 100 completely random instances (not including
instances with 400 nodes, for which we have 50). In Table 1 we report the
average time in milliseconds.7 The number of times (percentage) where it is
correctly determined whether there is a Steiner cycle is shown in the column
marked with %.8 In Table 2 we report under comp the average time used for
compression and the percent of times that the compression succeeds. The average
time for the 2k evaluations of determinants after compression and the number
of correct answers is shown under eval.

We report similar results for a different type of instance in the full version of
this paper. These instances where generated by placing all terminals on a simple

7 Dashes (—) indicate that the maximum time was reached before finding an answer.
8 For random instances we could assume that the correct answer is given with w = 64

as the chance of failure is extremely small. However, for all of the random instances
that we used we determined that the answer is yes (false positives cannot occur).
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Table 1. Results for normal evaluation on random instances

table logtb clmul

w = 8 w = 16 w = 64

|V | |E| |T | ms % ms % ms %

50 250 5 8 95 11 100 43 100
100 1000 7 290 93 422 100 1026 100
200 4000 9 9428 93 14829 100 24701 100
300 9000 10 62559 94 102113 100 143650 100
400 16000 11 292845 92 498462 100 —

Table 2. Results for compression + evaluation on random instances

table logtb clmul

w = 8 w = 16 w = 64

comp eval comp eval comp eval

|V | |E| |T | ms % ms % ms % ms % ms % ms %

50 250 5 2 98 < 1 93 2 100 < 1 100 7 100 1 100
100 1000 7 16 98 1 91 18 100 1 100 45 100 6 100
200 4000 9 124 97 6 91 145 100 8 100 288 100 43 100
300 9000 10 414 94 16 91 488 100 22 100 880 100 109 100
400 16000 11 982 94 41 86 1170 100 57 100 2008 100 268 100

Table 3. Results for compression + evaluation on large yes instances

table logtb clmul

w = 8 w = 16 w = 64

comp eval comp eval comp eval

|V | |E| |T | ms % ms % ms % ms % ms % ms %

800 64000 13 8190 95 256 80 9416 100 348 100 14944 100 1555 100
1600 256000 15 76784 85 1478 60 90710 100 2056 100 131630 100 8543 100
2400 576000 16 279550 90 3461 90 331984 100 4874 100 464706 100 19726 100
3200 1024000 17 — — —

cycle before adding random edges, thus guaranteeing that a solution is present.
Results for the naı̈ve variant with different field sizes are also available.

From the obtained results it is immediately clear that applying the compres-
sion yields superior running times. Furthermore, a correct answer is found in
large fraction of cases, even when the field is of relatively small size. For fields
of size 216 a correct answer is already found in all of the observed computations.
The naı̈ve field arithmetic variant is outperformed by other variants, even for
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small finite fields. The other variants show a seemingly constant factor divergence
in running times.

In Table 3 we explore the limit of what the compression algorithm can handle
in 10 minutes. Here, we have generated 20 instances for each setting. The results
seem quite impressive.

6 Concluding Remarks

We have implemented and tested the algorithm and polynomial compression
for the Steiner Cycle problem that was suggested in a theoretical work of
Wahlström [20]. At high level, we found that the impact of using the prepro-
cessing rather than just running the algorithm itself is sizable in that we can
solve much larger instances within the same time bounds. First of all, this is
a clear success for preprocessing and for the practical impact of kernelization
research. It also shows that somewhat atypical kernelization or compression
results are “nothing to be afraid off.” Second, including the implementation
work towards fast finite field arithmetic, this gives a fairly practical way of solv-
ing large instances of Steiner Cycle.

Arguably, one reason for the perceived impact of Wahlström’s compression for
Steiner Cycle is that, in hindsight, it benefits mainly from the reorganization
of the O∗(2k) determinant computations and harvesting the savings from not
computing the same quantities again and again. Crucially, this hinges on the
fact that the many evaluations can be expressed as different assignments of
a small number of variables (which rest in the upper 3k × 3k corner of the
matrix). This of course poses the question of whether similar ideas can be used
for other parameterized problems. Since the known lower bounds vs. polynomial
kernelization also rule out polynomial compression, this would only be applicable
to problems with known polynomial kernelization or, at least, with unknown
kernelization status.
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Abstract. Finding the shortest path in a directed graph is one of the
most important combinatorial optimization problems, having applica-
tions in a wide range of fields. In its basic version, however, the problem
fails to represent situations in which the value of the objective func-
tion is determined not only by the choice of each single arc, but also
by the combined presence of pairs of arcs in the solution. In this paper
we model these situations as a Quadratic Shortest Path Problem, which
calls for the minimization of a quadratic objective function subject to
shortest-path constraints. We prove strong NP-hardness of the problem
and analyze polynomially solvable special cases, obtained by restricting
the distance of arc pairs in the graph that appear jointly in a quadratic
monomial of the objective function. Based on this special case and prob-
lem structure, we devise fast lower bounding procedures for the general
problem and show computationally that they clearly outperform other
approaches proposed in the literature in terms of their strength.

Keywords: Shortest Path Problem · Quadratic 0–1 optimization ·
Lower bounds

1 Introduction

The Shortest Path Problem (SPP) is among the best studied combinatorial
optimization problems on graphs. It arises frequently in practice in a variety of
settings and often appears as a subproblem in algorithms for other combinatorial
optimization problems. In a directed network with arbitrary given lengths, the
SPP is the problem of finding a directed path from an origin node s to a target
node t with shortest total length. Many classical algorithms such as Dijkstra’s
labeling algorithm [7] and Bellman-Ford’s successive approximation algorithm [2]
have been developed to solve the problem.

The basic SPP fails to model situations in which the value of a linear objec-
tive function is not the only interesting parameter in the choice of the optimal
solution. Such problems include situations in which the choice of the shortest
path is constrained by parameters such as the variance of the cost of the path,
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-20086-6 29
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or cases in which the objective function takes into account not only the cost
of each selected arc but also the cost of the interactions among the arcs in the
solution. We call such a problem Quadratic Shortest Path Problem (QSPP).

The first variant of the SPP studied in the literature that is directly related to
QSPP is probably that of Variance Constrained Shortest Path [14]. The prob-
lem seeks to locate the path with the minimum expected cost subject to the
constraint that the variance of the cost is less than a specified threshold. The
problem arises for example in the transportation of hazardous materials. In such
cases a path must be short but it must also be subject to a constraint that the
variance of the risk associated with the route is less than a specified threshold.
Possible approaches to solving the Variance Constrained Shortest Path problem
involve a relaxation in which the quadratic variance constraint is incorporated
into the objective function, thus yielding a QSPP problem. In this case, the
quadratic part of the objective function is determined by the covariance matrix
of the coefficient’s probability distributions. In [13] the authors develop a multi-
objective model to minimize both the expected travel time of a path and its
variance. Then they solve the multi-objective optimization problem by combin-
ing the linear and quadratic objective functions into a single quadratic shortest
path problem. More generally, such problem may arise in all situations in which
the costs associated with each arc consist of stochastic variables. Different types
of cost functions on the stochastic shortest path problem have been studied in
the literature for which we refer the reader to [11].

A different type of applications arises from research on network protocols.
In [10], the authors study different restoration schemes for self-healing ATM
networks. In particular, the authors examine line and end-to-end restoration
schemes. In the former, link failures are addressed by routing traffic around the
failed link, in the latter, instead, traffic is rerouted by computing an alternative
path between source and target. Within their analysis, the authors point out the
need to solve a QSPP to address rerouting in the latter scheme. Nevertheless,
they do not provide details about the algorithm used to obtain a QSPP solution.

Recently, Amaldi et al. [1] introduced new combinatorial optimization prob-
lems called reload cost paths, tours, and flows which have several applications in
transportation networks, energy distribution networks, and telecommunication
networks. In the reload cost problems, one is given a graph whose every edge
is assigned a color and there is a reload cost when passing through a node on
two edges that have different colors. Therefore, the reload cost path problem is
a special case of the QSPP in which the objective function takes into account
only the reload cost of consecutive arcs with different colors. The authors proved
that the reload cost path problem is polynomially solvable.

All problems described above involve variants of the shortest-path problem in
which the cost associated with each arc is integrated by a contribution associated
with the presence of pairs of arcs in the solution. Such a contribution can be
expressed by a quadratic objective function on binary variables associated with
each arc, and leads to the definition of a QSPP. To best of our knowledge, there
is no previous research dealing directly with solution methods nor complexity
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studies of the QSPP. Buchheim and Traversi [4] proposed a generic framework for
solving binary quadratic programming problems by computing quadratic global
underestimators of the objective function that are separable but not necessarily
convex. In their computational experiments, they solve some special classes of
quadratic 0 − 1 problems including the QSPP.

In this paper we analyze the complexity of the QSPP and study different
special cases of the problem which can be solved in polynomial time. We then
develop efficient lower bounding schemes which build a classical SPP or a new
special QSPP from the original problem in order to obtain lower bounds. It turns
out that the new bounds outperform all lower bounding schemes proposed in the
literature so far [4].

2 Problem Formulation and Complexity

Given a directed graph G(V,A), a source node s ∈ V , a target node t ∈ V , a
cost function c : A → R

+, which maps every arc to a non-negative cost, and a
cost function q : A×A → R

+ that maps every pair of arcs to a non-negative real
cost, we denote by δ−(i) = {j ∈ V | (j, i) ∈ A} and δ+(i) = {j ∈ V | (i, j) ∈ A}
the set of predecessor and successor nodes for any given i ∈ V . Defining a binary
variable xij indicating the presence of arc (i, j) on the optimal path, the QSPP
is represented as:

QSPP: z∗ = min
∑

(i,j),(k,l)∈A

qijklxijxkl +
∑

(i,j)∈A

cijxij

s.t. x ∈ Xst, x binary.

(1)

Here the feasible region, Xst, is exactly the same as that associated with the
standard shortest-path problem, i.e.,

Xst = 0 ≤ x ≤ 1 :
∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xji = b(i) ∀i ∈ V .

Note that b(i) = 1 for i = s, b(i) = −1 for i = t, and b(i) = 0 for i ∈ V \ {s, t}.

Theorem 1. QSPP is strongly NP-hard.

Proof. Let us consider the general form of the Quadratic Assignment Problem
(QAP) on a complete bipartite graph G = (U, V,E) with nodes U∪V , undirected
arcs E, a linear cost c, and a quadratic cost q. We may assume that nodes in U
and V are both numbered 1, . . . , m. We show that this generic instance of the
QAP can be reduced to a corresponding instance of QSPP in polynomial time.
To this end, we define an QSPP instance on a graph G̃ = (Ṽ , Ã) and map each
feasible QAP assignment onto a feasible path in G̃, where Ṽ and Ã are defined
as follows:

Ṽ = (U × V ) ∪ {s, t}, and Ã = As ∪ A+ ∪ At,
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Fig. 1. Graph G and G̃. Bold lines in Graph G and G̃ illustrate a feasible assignment
for the QAP and its corresponding unique feasible path for QSPP, respectively.

where

As = {(s, (1, i)) : i ∈ V }, At = {((m, i), t) : i ∈ V }, and
A+ = {((i, j), (i + 1, k)) : i ∈ U \ {m}, j, k ∈ V, j �= k}.

Each node (i, j) ∈ U × V corresponds to an edge in the original QAP instance,
we will use the notation u((i, j)) := i and v((i, j)) := j in the following.

Figure 1 shows the graphs G and G̃ with m = 4. With reference to this figure,
u((i, j)) represents the column of node (i, j) when the graph G̃ is arranged on
a grid as shown. Moreover, it represents the index of the first of the two QAP
nodes corresponding to (i, j) in the bipartite graph on the left. Analogously,
v((i, j)) represents the row in the grid and the index of the second QAP node
in the bipartite graph.

The graph structure resulting from the above transformation has a number
of nodes equal to m2 + 2 and a number of arcs equal to m3 − 2m2 + 3m, which
makes the reduction polynomial.

Moreover, this construction maps each feasible assignment π : U → V in G
to a unique feasible path in G̃ as follows: the first arc of the path is (s, (1, π(1))),
the next arcs are ((i, π(i)), (i+1, π(i+1))) for i = 1, . . . , m−1, and the final arc
is ((m,π(m)), t). By construction and since π(i) �= π(i+1) for all i = 1, . . . , m−1,
all arcs in this path exist in G̃. Vice versa, every path in G̃ uniquely determines
a function π : U → V by setting π(u(w)) = v(w) for all w ∈ U × V belonging to
the path. However, this function is not necessarily a feasible QAP assignment,
as different nodes of U may be mapped to the same node of V . This problem is
easily addressed by appropriately generating the cost matrix as we show next.

The linear cost vector is defined in Equation (2). The cost for any arc pointing
to node e is given by the cost of the arc from u(e) to v(e) in the QAP.

c̃fe =

{
cu(e)v(e) e �= t

0 e = t.
(2)

The assignment of quadratic costs to pairs of arcs in G̃ is defined accord-
ing to Equation (3). In general, the cost q̃fehw corresponding to the pair
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(f, e), (h,w) ∈ Ã is equal to the cost qu(e)v(e)u(w)v(w) in the original problem.
However, Equation (3) includes an additional constraint to prevent the creation
of paths corresponding to infeasible QAP solutions, where two distinct nodes in
U are assigned to the same node in V .

q̃fehw =

⎧
⎪⎨

⎪⎩

qu(e)v(e)u(w)v(w) e �= t ∧ w �= t ∧ v(e) �= v(w)
0 e = t ∨ w = t

∞ otherwise.
(3)

The last case in Equation (3) thus makes sure that any optimal solution of
QSPP in graph G̃ defines a feasible assignment π in graph G, so that there
is a one-to-one correspondence between the feasible assignments in G and the
directed paths in G̃ with finite weight, as explained above. It is easy to verify
that by construction the cost remains the same under this transformation.

As the QAP problem is strongly NP-hard [12] and the numbers defined in
the transformation all have polynomial values (infinite costs can be replaced by
an appropriate polynomial value M), the result follows. ��

3 The Adjacent Quadratic Shortest Path Problem

In this section, we consider special cases of the QSPP where the quadratic part
of the cost function has a local structure, meaning that each pair of variables
appearing jointly in a quadratic term in the objective function corresponds to
a pair of arcs lying close to each other. We start with the Adjacent QSPP
(AQSPP), where interaction costs of all non-adjacent pair of arcs are assumed
to be zero. Therefore, only the quadratic terms of the form xijxkl with j = k and
i �= l or with j �= k and i = l have nonzero objective function coefficients. The
AQSPP can be viewed as a generalization of the Reload Cost path introduced
by Amaldi et al. [1].

In order to solve the AQSPP, we propose a polynomial-time algorithm based
on a transformation that reduces the original problem on graph G = (V,A) to
the classical shortest path problem in an auxiliary directed graph G′ = (V ′, A′).
For this, we may assume w.l.o.g. that there is no direct arc from s to t in G.
Now define

V ′ = {〈s, s〉} ∪ {〈i, j〉 : (i, j) ∈ A} ∪ {〈t, t〉},

A′ = {(〈i, j〉, 〈j, k〉) : 〈i, j〉, 〈j, k〉 ∈ V ′},

where 〈s, s〉 and 〈t, t〉 represent nodes s and t, respectively, while all the other
nodes in G′ correspond to the arcs in the original graph G. Next, we associate
each arc (〈i, j〉, 〈j, k〉) ∈ A′ with a weight w defined as:

w(i, j, k) =

⎧
⎪⎨

⎪⎩

cjk + qijjk 〈i, j〉 �= 〈s, s〉 ∧ 〈j, k〉 �= 〈t, t〉
cjk 〈i, j〉 = 〈s, s〉
0 〈j, k〉 = 〈t, t〉
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Fig. 2. Graph G = (V,A) and its auxiliary graph G′ = (V ′, A′)

Since G′ contains |A| + 2 nodes and δ+(s) + δ−(t) +
∑

i�=s,t(δ
−(i)δ+(i)) arcs, it

can be constructed in polynomial time. In Figure 2 we present an example of a
graph G and the corresponding auxiliary graph G′.

Let c(P ) =
∑

(i,j)∈P cij +
∑

(i,j),(j,k)∈P qijjk be the cost of any s − t path P

in G, and w(P ′) =
∑

e∈P ′ we be the cost of any 〈s, s〉 − 〈t, t〉 path P ′ in G′. The
following lemma is a straightforward result implied by the construction of G′.

Lemma 1. For any s− t path P in G there exists an 〈s, s〉−〈t, t〉 path P ′ in G′

with c(P ) = w(P ′), and vice versa.

Proof. For a given s− t path P ⊆ A in G, the path P ′ ⊆ A′ is defined as follows:
an arc (〈i, j〉, 〈j, k〉) belongs to P ′ if and only if (i, j), (j, k) ∈ P ∪ {(s, s), (t, t)}.
The path P can be computed from P ′ accordingly. ��
This immediately implies the following

Theorem 2. An optimal solution for AQSPP in graph G can be obtained by
solving a classical shortest path over G′.

Corollary 1. For any given source node s and target node t, the AQSPP on
graph G can be solved in O(min{|A|2, |V |3} + |A| log |A|) time.

Proof. Using Dijkstra’s algorithm, the running time is O(|A′| + |V ′| log |V ′|),
where |A′| can be both restricted by |A|2, as each edge in G′ corresponds to a
pair of edges in G, and by |V |3, as it is defined by three nodes in G. ��
If the vertex degrees in G are bounded by Δ, a bound of O(Δ2|V | + |A| log |A|)
on the running time can be obtained.

These results hold for the case of a fixed source s and target t. Let us now
consider the single-source AQSPP which finds the minimum AQSPP from a
given source s to each vertex v ∈ V . To solve the problem we again consider the
graph G′, but since t is not specified, we do not add node 〈t, t〉, nodes 〈k, t〉∀k,
and the arcs incident to these nodes. Then we use Dijkstra’s algorithm to find
the shortest path P ∗

〈s,s〉〈i,j〉 from the source node 〈s, s〉 to all the other nodes
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〈i, j〉 of G′. For any target node t ∈ V , the solution of AQSPP can then be
obtained by computing

min{w(P ∗
〈s,s〉〈i,t〉) : 〈i, t〉 ∈ A′}. (4)

The total running time for solving the single-source AQSPP is thus again given
by O((min{|A|2, |V |3} + |A| log |A|)), since the additional total running time
needed to solve (4) for all t ∈ V is O(|A′|) and thus dominated but the running
time of the first phase.

Motivated by the results of Theorem 2, we can generalize the Adjacent QSPP
to an r-Adjacent QSPP by defining the concept of r-adjacency.

Definition 1. Given a fixed positive integer r, the graph G = (V,A) and two
arcs (i, j) and (k, l) in A, we say that (i, j) and (k, l) are r-adjacent in G if there
exists a directed path of length at most r containing both arcs.

We can now define the r-Adjacent QSPP (r-AQSPP) as a more general case of
the AQSPP where objective function coefficients of the quadratic terms xijxkl of
non-r-adjacent arcs (i, j), (k, l) ∈ A are assumed to be zero. With this definition,
the AQSPP agrees with the 2-Adjacent QSPP.

Therefore, for any fixed positive integer number r ≥ 2, we can apply the
aforementioned graph construction to transform an r-AQSPP to an (r − 1)-
AQSPP, where the 1-AQSPP is equivalent to the classical shortest path problem.
For fixed r, this leads to a polynomial time algorithm for the r-AQSPP. However,
the running time increases exponentially with r. Clearly, for large enough r, the
r-AQSPP agrees with the general QSPP and is thus NP-hard by Theorem 1.

4 Lower Bounding Schemes

In this section, we propose lower bounding schemes for the general case of QSPP
based on a simple observation on the structure of the problem combined with the
polynomial solvability of the AQSPP. The methods are based on the Gilmore-
Lawler (GL) procedure. The GL procedure is one of the most popular approaches
to find a lower bound for the QAP proposed by Gilmore [8] and Lawler [9] and
has been adapted to many other quadratic 0–1 problems in the meantime [5].

For each arc e = (i, j) ∈ A, potentially in the solution, we consider the
minimum interaction cost of e in a path from s to t. In other words, we compute
the shortest among the paths from s to t which contain arc e, using the ij-
th column of the quadratic cost matrix as the cost vector. Let Pe be such a
subproblem for a given arc e ∈ A:

Pe : ze = min
{ ∑

f∈A

qefxf : x ∈ Xst, xe = 1
}

∀e ∈ A. (5)

The value ze is the best quadratic contribution to the QSPP objective function
where arc e is in the solution. One possible way to solve Pe is to consider it as
a minimum cost flow problem with two origins s and j and two destinations i
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Fig. 3. Possible solutions to Pe when e = (3, 5), s = 1 and t = 9

and t in a network without arc e. Thus a solution to Pe can be found by solving
a minimum-cost-flow problem with two units of cost to be transferred between
two sources s and j and two destinations i and t in a graph Ḡ = (V,A \ {e}).
However, this represents a relaxation of Pe: in particular, it admits solutions
that consist of the union of a path from s to t that does not contain arc e and a
cycle containing e. The resulting solution will then have either of the two forms
depicted in Figure 3.

To avoid the situations presented in Figure 3, one can modify the shortest
path algorithms to include any given fixed arc e = (i, j). The main idea is to
compute the shortest path from s to i, add arc e to the path, and compute the
shortest path from j to t. In addition we set to infinity the weights of all the
arcs incident to t when computing the path from s to i. This prevents node t
from being included in this path.

Once ze has been computed for each e ∈ A, the GL bound is given by the
solution to the following shortest path problem:

LBGLT = min

{
∑

e∈A

(ze + ce)xe : x ∈ Xst

}

.

The popularity of the GL approach for computing lower bounds stems from
its low computational cost. However, for some quadratic 0–1 problems the
obtained bounds deteriorate quickly as the size of the problem increases [6].
In the following subsections we propose two novel approaches to improve the
GL lower bound for the QSPP.

4.1 A Generalized Gilmore-Lawler Type Bound

We consider a generalization of the GL (GGL) procedure which considers the
minimum interaction cost not only of one arc but of two consecutive arcs. More
precisely, for each two consecutive arcs e = (i, j), f = (j, k) ∈ A, potentially in
the solution, we consider a subproblem Pef to compute the shortest among the
paths from s to t which contains these two arcs, i.e.,
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Pef : zef = min
∑

h∈A

q̂h
efxh : x ∈ Xst, xe = xf = 1 ∀e, f ∈ S2A,

where S2A is the set of all 2-adjacent arcs in G, and q̂ is defined as follows:

q̂h
ef =

⎧
⎪⎨

⎪⎩

1
2 (qeh + qfh) i �= s, k �= t

qeh + 1
2qfh i = s, k �= t

1
2qeh + qfh i �= s, k = t.

Similar to problem Pe, the solution to Pef can be easily found by either solving a
minimum-cost-flow problem or applying a modified version of the shortest path
algorithms. Then the GGL bound is defined to be the solution of the following
AQSPP:

LBGGL = min

⎧
⎨

⎩

∑

e∈A

cexe +
∑

e,f∈S2A

zefxexf : x ∈ Xst

⎫
⎬

⎭
.

By the results of Section 3, the value of LBGGL can be computed in polynomial
time. It is now easy to show

Theorem 3. LBGGL is a lower bound for QSPP; that is LBGGL ≤ z∗.

Proof. Let P be any s − t path in G, consisting of edges e1, . . . , ek. Then the
cost of P is

c(P ) =
k∑

i=1

cei
+

k∑

i,j=1

qeiej
=

k∑

i=1

cei
+

k−1∑

i=1

k∑

j=1

q̂ej
eiei+1

≥
k∑

i=1

cei
+

k−1∑

i=1

zeiei+1 .

By definition, the latter expression is bounded from below by LBGGL. ��
Note that this approach can be easily generalized by using the r-Adjacent QSPP
in order to obtain lower bounds. Clearly, as r is increased, the resulting bound
will converge towards the optimal solution. However, the running time for com-
puting the bound grows exponentially in r. Parameter r can thus be used to
balance running time and quality of the bound.

4.2 An Iterated Gilmore-Lawler Type Bound

Next, we present Iterated GL (IGL), an iterative bounding procedure inspired
by the one proposed in [6] for the QAP. We start by defining a new cost matrix
using the reduced costs associated with the dual problem of Pe.

qef = qef + (λe)k − (λe)l − (μe)f ∀f = (k, l) ∈ A (6)

where λe is the optimal dual-solution vector associated with Xst, and μe is the
one associated with constraint x ≤ 1. Using this matrix, and (5), we reformulate
the QSPP by shifting some of the quadratic costs to the linear part.
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RQSPP: z∗ = min
∑

e,f∈A

qefxexf +
∑

e∈A

(ce + ze)xe

s.t. x ∈ Xst, x binary.

(7)

The use of the reduced costs as the quadratic-cost matrix balances the increased
linear costs making RQSPP equivalent to QSPP as shown by the following
theorem. The proof is omitted due to space restrictions.

Theorem 4. Problems QSPP and RQSPP are equivalent. ��
The theorem allows us to iterate the procedure by applying (6) to the

reformulated problem. This results in a sequence of equivalent QSPP instances
(Q0, Q1, . . . , Qk with Q0 = QSPP), each characterized by a stronger impact of
linear costs than the previous ones, and thus providing a better bound. Note
that the GLT bound is obtained by considering only the linear portion of the
objective function in the first iteration.

5 Computational Results

In this section, we present our computational experiments to evaluate the
strength of the lower bounds for the QSPP presented in Section 4. We com-
pare the results of the GLT, GGL, and IGL procedures with three other meth-
ods considered in [4]: the first is the root bound calculated by Cplex 12.4 when
applied to the problem formulation (1). The other approaches, called QCR and
OSU, are general approaches for solving quadratic 0-1 programming problems.
The QCR (quadratic convex relaxation) method reformulates quadratic 0-1 pro-
gramming with linear constraints into an equivalent 0-1 program with a con-
vex quadratic objective function, where the reformulation is chosen such that
the resulting lower bound is maximized. For this, an appropriate semidefinite
program is solved [3]. The OSU (optimal separable underestimators) approach
computes quadratic global underestimators of the objective function that are
separable but not necessarily convex [4]. To evaluate and compare all meth-
ods, we use the random instances with |V | = 100, 121, 144, 169, 196, 225 on grid
graphs generated in [4]. The linear and quadratic costs are generated uniformly
at random in {1, . . . , 10}. Given a pair of arcs (i, j) and (k, l), their associated
quadratic costs is equal to q = qijkl +qklij . Since in each subproblem of our lower
bounding schemes, each of these two values are processed separately, we consider
a redistribution of the quadratic cost qijkl = qklij = q/2. Table 1 presents the
results. The first two columns give the problem sizes and the optimal objective
values. Columns three to eight give the lower bound values obtained by Cplex,
QCR, OSU, GLT, GGL, and IGL respectively. The last five columns of the table
present the percentage gap closed by QCR, OSU, GLT, GGL, and IGL over
Cplex with respect to the optimum. The formula we used to compute the rel-
ative gap closed by a lower bound LB over the lower bound of Cplex (LBc) is
100 × (LB − LBc)/(OPT − LBc).
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Table 1. Lower bound comparison for QSPP. The best results are in boldface.

Instance Lower bound Impv. vs. Cplex (%)

n Opt. Cplex QCR OSU GLT GGL IGL QCR OSU GLT GGL IGL

100 621 200 489 357 434 528 511 68.8 37.2 55.5 77.9 73.8
100 635 211 501 323 419 511 512 68.3 26.4 49.1 70.7 70.9
100 636 217 498 367 449 532 530 56.4 35.7 55.3 75.1 74.7
100 661 209 491 359 447 537 534 62.3 33.1 52.6 72.5 71.9
100 665 233 504 367 453 549 545 62.7 31.1 50.9 73.1 73.2
Ave. 63.7 32.7 52.7 73.9 72.7

121 813 253 609 420 531 658 663 63.5 29.8 49.6 72.3 73.2
121 788 251 593 417 518 630 631 63.6 30.9 49.7 70.5 70.7
121 795 225 592 384 530 643 645 64.3 27.8 53.5 73.4 73.6
121 782 236 619 402 518 629 648 70.1 30.4 51.6 71.9 75.4
121 767 228 582 404 536 650 644 65.6 32.6 57.1 78.2 77.1
Ave. 65.4 30.3 52.3 73.2 74.0

144 959 271 714 479 623 767 775 64.3 30.2 51.1 72.1 73.2
144 963 282 707 524 627 768 764 62.4 35.3 50.6 71.3 70.7
144 900 259 687 491 592 730 735 66.7 36.1 51.9 73.4 74.2
144 960 236 698 481 625 758 766 63.8 33.8 53.7 72.1 73.2
144 976 289 701 479 632 773 772 59.9 27.6 49.9 70.4 70.3
Ave. 63.4 32.6 51.4 71.9 72.3

169 1159 335 805 586 730 899 891 57.0 30.4 47.9 68.4 67.4
169 1178 333 821 590 759 940 920 57.7 30.4 50.4 71.8 69.4
169 1164 325 822 558 733 883 876 59.2 27.7 48.6 66.5 65.6
169 1110 301 805 568 729 887 875 62.2 33.0 52.9 72.4 70.9
169 1115 322 842 567 737 918 897 65.5 30.8 52.3 75.1 72.5
Ave. 60.3 30.5 50.4 70.1 69.2

196 1363 364 959 680 841 1055 1064 59.5 31.6 47.7 69.1 70.1
196 1367 357 963 669 859 1058 1056 60.0 30.8 49.7 69.4 69.2
196 1320 334 934 651 820 1040 1009 60.8 32.1 50.0 72.6 69.4
196 1347 348 982 661 862 1058 1062 63.4 31.3 51.4 71.1 71.4
196 1344 354 949 704 868 1070 1043 60.1 35.3 51.9 72.3 69.5
Ave. 60.8 32.2 50.1 70.9 69.9

225 1551 367 1094 729 965 1199 1200 61.4 30.5 50.5 70.2 70.3
225 1588 412 1099 806 987 1223 1211 58.4 33.5 48.8 68.9 67.9
225 1561 419 1067 762 937 1169 1168 56.7 30.0 45.3 65.6 65.5
225 1569 386 1061 744 938 1173 1146 57.1 30.2 46.6 66.5 64.2
225 1582 389 1084 791 978 1223 1203 58.2 33.6 49.3 69.9 68.2
Ave. 58.4 31.6 48.1 68.2 67.2

The results show that Cplex provides by far the worst lower bounds. The
GLT lower bound is better than the OUS bound, but both are outperformed by
QCR, GGL, and IGL. GGL and IGL provide very similar bounds and clearly
outperform QCR. Moreover, our purely combinatorial approach allows us to
compute the GLT, GGL, and IGL bounds quickly, while the QCR bound requires
solving a semidefinite program, which is often time-consuming in practice even
if theoretically possible in polynomial time. Moreover, allowing a longer running
time for our GGL approach, we could also improve our bounds by using the
3-Adjacent QSPP.
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6 Conclusion

In this paper, we have investigated the quadratic variant of the shortest path
problem. We have analyzed its complexity and studied polynomially solvable
cases of the problem obtained by allowing only products of adjacent arcs in the
objective function. We have proposed efficient procedures to compute strong
lower bounds that are based on the well-known Gilmore-Lawler approach com-
bined with the polynomial solvability of the SPP and AQSPP. Our future
research will concentrate on combining the GGL procedure with some differ-
ent reformulation techniques to improve the lower bounds, and an integration of
these lower bounds into a branch-and-bound scheme.

Acknowledgments. The first author has been supported by the German Research
Foundation (DFG) under grant BU 2313/2.
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Abstract. Fixed parameter tractable algorithms for bounded treewidth
are known to exist for a wide class of graph optimization problems. While
most research in this area has been focused on exact algorithms, it is hard
to find decompositions of treewidth sufficiently small to make these algo-
rithms fast enough for practical use. Consequently, tree decomposition
based algorithms have limited applicability to large scale optimization.
However, by first reducing the input graph so that a small width tree
decomposition can be found, we can harness the power of tree decomposi-
tion based techniques in a heuristic algorithm, usable on graphs of much
larger treewidth than would be tractable to solve exactly. We propose
a solution merging heuristic to the Steiner Tree Problem that applies
this idea. Standard local search heuristics provide a natural way to gen-
erate subgraphs with lower treewidth than the original instance, and
subsequently we extract an improved solution by solving the instance
induced by this subgraph. As such the fixed parameter tractable algo-
rithm becomes an efficient tool for our solution merging heuristic. For a
large class of sparse benchmark instances the algorithm is able to find
small width tree decompositions on the union of generated solutions.
Subsequently it can often improve on the generated solutions fast.

Keywords: Combinatorial optimization · Steiner Tree Problem · Tree
decomposition

1 Introduction

Treewidth, tree decomposition and related graph decomposition concepts have
been studied extensively as a means for finding theoretically efficient algorithms
for optimization problems in graphs. For graphs of bounded treewidth, polyno-
mial time algorithms can be found for a large number of graph optimization
problems. However, due to large constants hidden in the time complexity as well
as (super)exponential dependency on the treewidth, in practice these algorithms
are often too slow to solve optimization problems. Though heuristic methods for
finding tree decompositions of small width have been developed, most applica-
tions of tree decompositions are in speeding up exact algorithms. Little work has
been done in using tree decompositions as a tool for high performance heuristic
optimization algorithms.
c© Springer International Publishing Switzerland 2015
E. Bampis (Ed.): SEA 2015, LNCS 9125, pp. 391–402, 2015.
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To the best of our knowledge the only work in combinatorial optimization
exploring this avenue is the tour merging algorithm for the Traveling Salesman
Problem (TSP) by Cook and Seymour [3], using the related concept of branch
decomposition. In their paper they describe an algorithm that first generates
a pool of high quality solutions to the TSP using a local search heuristic with
different starting points. In the merging phase, the graph union of these solutions
is then taken to produce a sparse subgraph of the original graph. This makes
the computation of a low width branch decomposition feasible, which they then
use to quickly find the optimal solution to the TSP instance induced by this
sparse subgraph. Experimental results showed a fair improvement over the best
solution found, in a small amount of additional time.

In this paper we report experimental results applying the same paradigm
described in [3] on the Steiner Tree Problem in Graphs (STP). A set of locally
optimal solutions is generated to create a sparse subgraph, and subsequently
tree decomposition is used to quickly solve the restricted instance to optimality.
The main difference with the technique by Cook and Seymour is that we allow
the algorithm to discard some of the generated solutions, if it helps finding a tree
decomposition of sufficiently small width on the graph union of the remaining
solutions. Though this hurts solution quality in some cases, the improvement in
running time warrants this trade off.

For generating solutions we use a multistart heuristic by Ribeiro et al. [6]
available under the name Bossa. The instances induced by the generated solu-
tions are solved using dynamic programming (DP), for which we use a fairly
recent tree decomposition based implementation by Fafianie et al. [4]. We com-
pare the performance of our algorithm to the path relinking solution merging
strategy proposed in [6] which is part of the Bossa implementation.

Experimental results show that our method is very promising. Test runs
on sparse benchmark sets showed up to an average 6-fold improvement of the
optimality gap provided by the best generated solution, within only one or two
percent of the running time of the solution generating phase. On the other hand
for dense graphs it often wasn’t possible to find a combination of local solutions
within our predefined treewidth limit. By using a fast greedy heuristic for finding
tree decompositions however, it takes little time to identify this, and therefore
the overhead of running the merging algorithm is negligible in such situations.

It should be noted that Bossa is no longer competitive in terms of perfor-
mance. As pointed out by an anonymous reviewer, a heuristic by Polzin and
Daneshmand [8, Chapter 4] was shown to give similar or better solutions com-
pared to Bossa in a fraction of the time on established benchmarks.

However, a very recent advancement by Pajor et al. [9] indicates that our
results are still highly relevant. They present an improved multistart heuris-
tic and experimental results indicate that this implementation outperforms the
heuristic by Polzin and Daneshmand again. The proposed heuristic has a strong
similarity to Bossa. Though some structural changes yield better quality solution
pools in the same number of iterations, most of the performance gain is actually
achieved by faster implementations of the same local search techniques. Since the
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improved implementation could be directly plugged in as a solution generator
for our method, we expect the positive results to carry over when replacing the
multistart heuristic with the improved version of Pajor et al., though further
experiments are need to confirm this.

The rest of this article is organized as follows. In Section 2 basic notation
is introduced, we give a formal definition of treewidth and we discuss a greedy
algorithm for treewidth that plays an important part in the performance of our
algorithm. In Section 3 we describe the heuristic for selecting solutions for merg-
ing and briefly discuss the algorithms used for generating solutions and solving
the instance induced by those solutions. In Section 4 we report experimental
results on a variety of benchmark instances.

2 Preliminaries

We denote an undirected graph G with vertex set V (G) and edge set E(G), or V
and E when no confusion is possible. Together with a weight function w : E → R

we have a weighted graph. In this paper we assume graphs to be simple: no loops
or parallel edges are allowed. A graph union G ∪G′ is equal to the graph found
by taking the union of both the vertex and the edge sets of the operands. The
neighbours of v in G are denoted NG(v) = {u ∈ V (G)|(u, v) ∈ E(G)}.

The subject of this paper is the classical Steiner Tree Problem. This famous
NP-Complete graph optimization problem should need no introduction to the
reader but we include a formal definition for completeness:

Problem 1 (Steiner Tree Problem).
Given a connected weighted graph G = (V,E,w) with non-negative weights and
a set of terminal vertices Q ⊆ V , find a minimum weight subgraph T of G such
that all terminal vertices are pairwise connected.

Treewidth. The concept of treewidth is a graph invariant that indicates how
tree-like a graph is. It is derived from the tree decomposition, a transformation
that projects a general graph onto a tree. The formal definition is as follows:

Definition 1 (Tree decomposition). A tree decomposition of a graph G =
(V,E) is a tree T̄ = (I, F ), where each node i ∈ I is labelled with a vertex set
Xi ⊂ V , called a bag, satisfying the following conditions:

1.
⋃

i∈I Xi = V
2. for all (v, w) ∈ E there is an Xi such that {v, w} ⊂ Xi

3. if v ∈ Xi and v ∈ Xj then v ∈ Xk for all k on the path between i and j in
the tree T̄

The width w(T̄ ) of a tree decomposition is equal to the size of the largest bag
minus one. The treewidth of a graph tw(G) is the smallest width over all possible
tree decompositions of G. As finding the treewidth of a graph is NP-complete
no polynomial time exact algorithms exists unless P = NP [2].
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Algorithm 1. GreedyDegree(Graph G)
while |V (G)| ≥ 0 do

v ← a minimum degree vertex in G
πi ← v
add edges to G such that NG(v) is a clique
remove v from G

return π = (π1, ..., πn)

Heuristic approaches come in many shapes, including local search techniques
and heuristics derived from exact algorithms, see Bodlaender and Koster [1]. We
will use a simple but very effective greedy heuristic described in [1].

Algorithm 1, GreedyDegree, constructs an elimination order, which is a
permutation of vertices of the graph. It does so by iteratively choosing the mini-
mum degree vertex, adding edges between all its neighbours, and then removing
it from the graph. These last two steps are called vertex elimination.

Any elimination order can be used to construct a (unique) tree decomposition
in linear time (see [1, pg.5]). For convenience we will directly treat the output
of Algorithm 1 as a tree decomposition. The width of the tree decomposition
produced by Algorithm 1 is equal to the highest degree of any vertex at the
moment it is eliminated from the graph [1].

In this paper we often abuse language by referring to the width found by
GreedyDegree(G) as the treewidth of G, especially when G is a graph induced
by a set of solutions. Of course this is just an upper bound, but since we never
solve for exact treewidth in our algorithm, it is not necessary to make the dis-
tinction when from context it is clear that we mean the width of the tree decom-
position found.

3 The Algorithm

The basic outline of our approach consists of three steps. Let an instance of the
STP be denoted by STP(G,Q).

1. Generate as set S of locally optimal solutions for STP(G,Q).
2. Pick a subset U ⊆ S such that T̄ = GreedyDegree(GU ) has width(T̄ ) ≤ m,

where GU =
⋃

T∈U T .
3. Solve STP(GU , Q) using DP guided by the decomposition T̄ found in 2.

The DP implementation we used for the last step, more on that in Section 3.2,
has running time linear in |V |, but exponential in the treewidth. The multistart
heuristic used to generate locally optimal solution is an implementation of a
hybrid greedy randomized adaptive search procedure (GRASP) for the STP
(see section 3.3). As the first and last steps are basically black box routines with
respect to the solution merging heuristic, we will first explain how we construct
a suitable subset of solutions.
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3.1 Selecting Solutions

In the implementation of tour merging for the TSP in [3] a fixed number of
solutions is generated, and quite some time is spent on finding a good branch
decomposition. If the algorithm can not find a decomposition of sufficiently small
width, the merging heuristic is deemed intractable and returns no solution.

Our method is a little different. We also generate a fixed number of heuristic
solutions, and limit the width of the tree decomposition deemed acceptable to
proceed with the DP step. However we allow more flexibility by accepting a
subset of solutions such that GreedyDegree finds a decomposition of width
at most m on their graph union.

An initial approach to finding a good subset of solutions is motivated by the
idea that if we cannot use all solutions, we give priority to those with the highest
quality. Let S be the set of solutions generated in step 1 and f(T ) : S → R their
weights. Initially we sort the solutions in ascending order of f(T ) and apply
Algorithm 2. This keeps iteratively adding solutions to the graph union as long
as the limit m is not violated by the decomposition found by GreedyDegree.
In a sense the algorithm finds a maximal subset of solutions, that is, no solution
can be added without breaching the width limit.

Algorithm 2. GreedySteinerUnion(S,m)
Input:

S: List of Solutions, ordered
m: Maximum treewidth

Output:
U : List of solutions, such that tw

(⋃
T∈U T

) ≤ m
procedure GreedySteinerUnion(S, m)

U ← {S(1)}
for i = 2 to |S| do

U ′ ← U ∪ {S(i)}
� ← GreedyDegreeWidthMaxM(

⋃
T∈U′ T, m)

if � ≤ m then
U ← U ′

return U
procedure GreedyDegreeWidthMaxM(G, m)

� ← 0
while � ≤ m ∧ |V (G)| ≥ 0 do

v ← a minimum degree vertex in G
� ← max{degree(v), �}
add edges to G such that NG(v) is a clique
remove v from G

return �

This procedure usually gives reasonably good improvements in the DP step
if the number of solutions rejected by Algorithm 2 is low.
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However, if only small sets of solutions stay within width limit m, and there
are consequently many possible maximal solution sets, the chance of the greedy
procedure finding a good set from the possible alternatives is small. Specifically,
experiments showed that increasing the width limit m may often result in a
decrease in the eventual solution quality, a highly undesirable result.

To improve the robustness of the solution picking step we introduce the
randomized ranking procedure described in Algorithm 3. This procedure is akin
to a simulation of step 2 and step 3 of the solution merging algorithm with a
lower width limit k, where we shuffle the solutions instead of sorting them by
f(T ). We use the value of the solution found in each iteration to adjust the rank
of all solutions that were picked by Algorithm 2 in that iteration.

Algorithm 3. RankingProcedure(S, f(T ), k, r)
Input:

S: List of Solutions
f(T ): Map giving the weigth of every Steiner Tree T in S
k: Maximum treewidth
r: Number of random ranking iterations

Output:
fA(T ): Map assigning an adjusted value to every solution in S
procedure RankingProcedure(S, f(T ), k, r)

ZT ← {f(T )}, ∀T ∈ S
for r iterations do

Shuffle the order of S at random
U ← GreedySteinerUnion(S, k)
ẑ ← weight of Steiner Tree T found by DP on the graph G =

⋃
T∈U T

add ẑ to all sets ZT for which T ∈ U
return fA(T ) ←∑z′∈ZT

z′
|ZT | , ∀T ∈ S

The adjusted values fA(T ) can be interpreted as a metric for how promising
the inclusion of a solution T is in terms of the improvement found in step 3. These
values are then used to sort the solutions before a final run of Algorithm 2 with
maximum width m. This yields a much more robust algorithm as in experiments
we never observed an increase in m resulting in a decrease in solution quality.

Experimental results indicate that the execution time of the DP grows
roughly with 10m where m is the width of the tree decomposition. Therefore
if we run Algorithm 3, for example, with k = m − 2 for 10 iterations, its exe-
cution time is still expected to be an order of magnitude smaller than directly
running the DP once on a graph with decomposition of width m. A byproduct
is that we can check more combinations of solutions for improvement. In fact,
sometimes the best solution found during the execution of Algorithm 3 is better
than the final solution found on the graph union with maximum width m, even
after ranking according to the adjusted values. However, this does not happen
too often and in general it pays off to execute a last iteration with the higher
limit m.
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Taking it all together the steps for picking the set of solutions are:

– find fA(T ) = RankingProcedure(S, f(T ), k, r)
– sort the solutions S ascending according to fA(T )
– find U = GreedySteinerUnion(S,m)

The graph union of U and its tree decomposition are then used as input for
the final DP run in step 3.

3.2 Dynamic Programming

A recent implementation of dynamic programming for the STP was introduced
in [4]. It uses the GreedyDegree algorithm to find a decent tree decomposi-
tion of the input graph, and then proceeds with a novel dynamic programming
algorithm that reduces the search space in every stage by removing entries that
cannot affect optimality. We will not reproduce the formal dynamic program
here, for which we refer to the paper.

However, the idea is that the DP is guided by a tree decomposition, such
that the size of the state space is governed by the number of partitions of the
vertex sets in each bag. In the paper multiple methods for reducing the size of
the search space are proposed and implemented in the corresponding software.
We use the default classic DP however, as the relative speed ups are not large
enough to make a significant contribution in our implementation.

3.3 Greedy Randomized Adaptive Search Procedure

A Hybrid for the STP was introduced in [6] for which the code is publicly
available under the name Bossa [7].

Using a simple multistart approach, in which a construction heuristic is
started from different nodes to produce a solutions that is then improved to
a local optimum, does not work particularly well for the STP. For reasons that
seem to be inherent to the problem most construction heuristics usually produce
the same or a few different solutions even for widely different starting points.

To still be able to improve on deterministic heuristics, the Hybrid GRASP
algorithm in Bossa employs a variety of techniques to force the algorithm to
explore different areas of the search space. These include multiple different con-
struction heuristics, randomization in the local search procedure and weight per-
turbations. This makes the Hybrid GRASP particularly useful for our algorithm,
as it can generate a set of good but disjoint solutions. For a full explanation of
these techniques please see the paper.

The Bossa code also includes a solution merging heuristic called Path Relink-
ing, which can be used in combination with GRASP. We use it to compare the
performance of our algorithm.
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4 Results

The algorithm was implemented in JAVA integrating the existing JAVA code
from [4] for the merging part and using system calls and text files to interface with
the binary executable of Bossa, to generate the solutions pool. Though working
with text files gave some overhead, this effect was insignificant as the time spent
on read/write operations was usually small compared to the computation time.

All experiments were run in a single thread on 16 core Intel Xeon E5-2650
v2 @ 2.6 GHz and 64GB of ram. At any time no more than 15 processes were
running to make sure one core was free for background processes. The maximum
heap space for the JAVA Virtual Machine was set to 1GB for all instances.

For all experiments, in the solution generation phase 16 solutions were gen-
erated with GRASP, where each run of the GRASP was set to 8 iterations and
with a different random seed. We set the maximum treewidth for the final DP to
10 and the maximum treewidth for the ranking procedure to 8, with 20 iterations
of random shuffling. In all experiments where GRASP alone solved an instance
to optimality, the instance was dropped from the test set.

4.1 Benchmarks

Table 1. Results for I640
Gap % Time (s)

Instance |Q| |E| GRASP SMH Impr. % GRASP SMH Rel. #Trees

201 50 960 0.28 0.28 0.0 9.4 2.1 0.2 13
204 50 960 0.44 0.00 100.0 8.8 0.4 0.1 5
205 50 960 0.02 0.02 0.0 8.0 4.0 0.5 11
211 50 4135 3.00 2.99 0.6 11.2 1.3 0.1 2
212 50 4135 3.23 2.95 8.7 11.2 3.0 0.3 2
213 50 4135 1.69 1.49 11.9 11.6 2.3 0.2 2
214 50 4135 2.22 2.22 0.0 9.2 5.1 0.6 2
215 50 4135 1.72 1.60 7.2 8.6 2.2 0.3 2
231 50 1280 0.09 0.01 92.3 5.1 6.7 1.3 6
232 50 1280 1.04 0.04 96.1 4.6 5.6 1.2 7
233 50 1280 0.62 0.00 100.0 5.0 6.2 1.2 6
234 50 1280 1.22 0.32 73.7 5.0 2.8 0.6 9
235 50 1280 0.74 0.39 46.8 4.5 4.7 1.1 3
241 50 40896 2.25 2.25 0.0 31.9 5.3 0.2 2
242 50 40896 1.79 1.79 0.0 31.6 4.5 0.1 2
243 50 40896 2.02 2.02 0.0 37.0 5.0 0.1 2
244 50 40896 1.62 1.62 0.0 30.8 5.1 0.2 2
245 50 40896 1.54 1.54 0.0 32.3 5.1 0.2 2
301 160 960 0.14 0.00 100.0 6.3 5.5 0.9 7
302 160 960 0.27 0.20 26.2 6.4 7.3 1.1 10
303 160 960 0.25 0.15 39.6 6.9 4.9 0.7 9
304 160 960 0.62 0.39 36.1 7.3 2.9 0.4 9
305 160 960 0.66 0.29 55.5 7.5 2.4 0.3 3
311 160 4135 1.49 1.49 0.0 12.6 1.7 0.1 1
312 160 4135 1.91 1.91 0.0 11.9 1.9 0.2 1
313 160 4135 1.49 1.49 0.0 12.0 1.9 0.2 1
314 160 4135 1.52 1.52 0.0 11.6 1.8 0.2 1
315 160 4135 1.63 1.63 0.0 12.0 1.3 0.1 1
331 160 1280 0.53 0.49 8.3 7.2 3.1 0.4 2
332 160 1280 0.84 0.84 0.0 8.1 2.0 0.2 2
333 160 1280 0.87 0.86 1.1 7.9 2.2 0.3 2
334 160 1280 1.00 1.00 0.0 6.7 1.5 0.2 1
335 160 1280 0.82 0.50 38.6 8.2 11.1 1.4 2
341 160 40896 0.70 0.70 0.0 68.3 3.0 0.0 1
342 160 40896 0.62 0.62 0.0 65.3 2.9 0.0 1
343 160 40896 0.53 0.53 0.0 60.2 2.7 0.0 1
344 160 40896 0.53 0.53 0.0 56.4 2.9 0.1 1
345 160 40896 0.60 0.60 0.0 58.8 1.9 0.0 1

I640. An initial test was
run on the last 50 instances
of the classic I640 bench-
mark set available through
the SteinLib [5] repository.
All instances are randomly
generated. This benchmark
is a little outdated in that
nowadays most instances can
quickly be solved to opti-
mality, but the clear distinc-
tion in parameters with which
the instances were generated
facilitates an easy analysis of
the results.

All instances in the bench-
mark set have 640 vertices,
but differ in edge densities
and number of terminals. For
most instances the optimal
value is known, in the other
cases we used the best known
upper bound as an approximation to find the optimality gap. This is only the
case for instances I640-311−I640-315.

The results are in Table 1. Next to the instance name the number of terminals
and edges is shown. The optimality gaps of GRASP and our solution merging
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heuristic (SMH) are given as a percentage of the optimal value. The column
Impr.% gives the percentage improvement of the optimality gap by SMH com-
pared to GRASP. The running time for SMH does not include GRASP. The
column Rel. gives the time spent on SMH relative to the time spent on GRASP.
The last column, #Trees is the number of local solutions that were eventually
accepted after the sorting procedure(see Algorithm 3) in the solution union for
the SMH.

The table clearly reveals the difference in performance between sparse and
denser graphs. For instances with less than 1280 edges SMH usually gives a
good improvement, even solving the instances to optimality in three instances,
yet for none of the most dense instances an improvement was found. This is
also reflected in the number of solutions that were used by the algorithm in
the final run of the merging phase. There is a clear inverse relation between
the density and the number of solutions the algorithm can merge while keeping
treewidth within limits. As results e.g. instance 201 and 205 show, a high number
of solutions merged does not guarantee improvement, although apparently it is a
good indicator. Also the running time of the SMH relative to GRASP is usually
lower when no improvement can be found.

As stated before most of the instances in the I640 are not particularly hard
to solve with todays hardware. To get a better view of the power of the SMH
algorithm we wanted to apply it to some bigger instances. The most notouriously
hard test set in Steinlib is the PUC testset, of which most instances have no
known optimal solution after more than 13 years in the field. No results are
plotted but for completeness that SMH gave poor results on these instances:
for all but the smallest instances we were not able to find any combination of
solutions within width limit. We don’t know if this is because our greedy tree
decomposition works particularly bad for these graphs, or because high treewidth
is an inherent property of the graph. In any case most instances from PUC are
denser than the second highest density instances from I640, for which SMH was
already hardly able to show improvement.

Fortunately there are some other test sets in the Steinlib repository that are
big enough to justify the use of our merging heuristic but not so dense as to
make it run into trouble because of the treewidth limit. Results on these test
sets are discussed in the rest of this section.

To compare performance we also ran the path relinking algorithm (PR) from
Bossa. The path relinking algorithm is itself a solution merging heuristic which
comes in two flavours. On standard settings it first tries these different flavours
and then picks the one that seems to perform best. For our experiments we forced
it to use the random relink heuristic, as this turned out to perform best on all
tested instances, and the initial run that determines the best settings takes a
considerable amount of time. This makes for a more fair comparison. For more
information see [6].

ES1000(0)FST. The ES1000FST test set contains 15 instances of randomly
generated points on a grid, with L1 distances as edge weights. Each instance
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has 1000 terminal vertices and between 2500 and 2900 vertices in total. Due to
preprocessing techniques applied to the graphs these instances only have between
3600 and 4500 edges, making them very sparse.

The results for GRASP, GRASP+SMH and GRASP+PR are shown in
Table 2. Again, for SMH and PR the time does not include the initial GRASP
iterations. Results are averaged over all instances. The number of instances for
which the algorithms produced the best solution among all produced solutions
for that instance is given by the row #best.

Table 2. Results on ES1000FST

GRASP SMH PR

Opt Gap % 0.392 0.061 0.109
Time (s) 402 6 493
#Best 0 14 1

Table 3. Results on ES10000FST

GRASP SMH

Opt Gap % 0.441 0.189
Total CPU Time(s) 194485 310
Wall Clock Time(s) 12155 310

Overall the SMH seems to perform better on these instances. Its also nice to
note that on average 15.4 solutions were used in the final DP run of the merg-
ing phase. This is probably caused by the inherently low treewidth of the
instances. However, the treewidth of these instances is not so low that direct
use of DP would be feasible. As the treewidth found by GreedyDegree for the
ES1000FST instances had a minimum of 14 and an average of 22, running the
tree decomposition based DP on the original instances would take ages.

We also tested on the single instance in the ES10000FST set. This graph
is created in a similar way but with a factor 10 more terminals and vertices.
Because this instance is so large that only running the 128 GRASP iterations
needed for the SMH takes more than two cpu days, we did not compare it with
path relinking in a sequential run. Instead grasp was run on 16 cores in parallel
and the solution merging heuristic was run on a single core thereafter. Results
are in Table 3. Both the wallclock time (time untill all threads where finished)
and the total computation time summed over all threads are shown. Though not
the most spectacular improvement in optimality gap it shows the good scaling
properties of SMH. The relative time spent on SMH compared to GRASP has
about the same ratio as seen in the ES1000FST instances when we compare
wallclock time, yet it is an order of magnitude smaller when we compare the
total CPU time. We need to notice however that for this instance SMH was only
able to use 3 solutions, as the treewidth of the entire solution pool combined
was rather high at 22.

LIN. The LIN test set from Steinlib has very similar properties as the
ES1000FST set. These instances are generated from placing rectangles of dif-
ferent sizes in a plane, such that their corners become vertices and there edges
graph edges. Though no preprocessing is done on these instances, it still makes
for a very sparse graph, with no vertex having a degree more than 4. After
dropping instances that were solved to optimality by GRASP, only the last 13
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Table 4. Results on LIN

GRASP SMH PR

Opt Gap % 0.33 0.09 0.13
Time(s) 336 2 157
#Best 1 10 6

Table 5. Results on ALUT/ALUE

GRASP SMH PR

Opt Gap % 0.27 0.07 0.11
Time(s) 1386 7 1057
#Best 1 8 4

instances remained. The number of vertices of these instances are in the range
3700-39000.

Results are in Table 4. Again the SMH performs very good compared to
PR, in smaller amount of time. In all cases the merging phase could use all 16
solutions, often producing a union well below the treewidth limit.

ALUT/ALUE. The last test sets we ran experiments on are the ALUT and
ALUE sets from Steinlib, which we combined because of their strong similar-
ities. The structural properties of these instances are very much like the LIN
test set. However, these come from very-large-scale-circuit (VLSI) applications.
The results is a grid graph with rectangular holes in it. This graph again has a
maximum degree of 4. After dropping instances which GRASP solved to opti-
mality, 10 instances remained ranging in number of vertices between 3500 and
37000 and a number of terminals between 68 and 2344. Because of the fairly
large size of some of these instances, we put a maximum on the running time
for the combination of GRASP and merging heuristic of 3.5 hours. This gave a
timeout for PR on the largest instance, so we took the best found solution up
to that point. To compare, SMH only took 40 seconds to run for this instance,
while GRASP took about 2 hours.

One of the nice properties of using the tree decomposition based approach is
that for graphs with a regular structure such as with the last two sets we tested
on, the size of the graph does not seem to matter much for the treewidth of
the union of solutions, while the DP runs linear in the number of vertices. In
the experiment run on the ALUT/ALUE sets, for all but two of the remaining
instances the merging phase was able to use all 16 generated solutions. The two
exceptions, where only 15 solutions were used, were the largest instance, and
surprisingly, the smallest instance. This illustrates that observation quite well.

5 Conclusions and Suggestions for Further Research

Experimental results showed that a tree decomposition based exact algorithm
can be employed as an efficient means to merge local heuristic solutions to
the STP on sufficiently sparse graphs. As we have seen in results on the
ALUT/ALUE test set, the sparse structure natural to VLSI derived graphs is
exactly that at which our heuristic performs well. As VLSI is one of the major
applications of the STP, this makes the heuristic practically relevant.

As mentioned in the introduction the algorithm we used to generate solutions
is no longer state of the art. In theory any algorithm capable of generating
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distinct locally optimal solutions could be employed with our algorithm. We
plan to investigate the competitiveness of our solution merging heuristic when
combined with a faster implementation such as [9] for generating solutions in
preparation of a journal version of this paper.

That fixed parameter tractable algorithms can be used as a heuristic solution
merging technique for the TSP had been shown in [3], while we established results
for the STP. It seems likely that there are more optimization problems where
this technique can be used. A minimal requirement seems to be that any feasible
solution has low value for the chosen parameter. However, whether a low width
decomposition can be found on a combination of local solutions depends on the
instance, and in the case of the STP the density of the input graph seems a
good indicator for that. It would be interesting to see if such a characterization
is possible for other optimization problems that have low width solutions.

As a final remark, in our algorithm we managed the treewidth of the solution
union by discarding solutions. A simple extension would be to use an iterative
scheme to reduce treewidth of the solution pool: first run the solution merging
heuristic on (small) subsets of the generated solutions to generate a new solution
pool with less solutions, and repeat until all solutions are within the treewidth
limit. It seems likely this could further improve the performance.

Acknowledgments. I would like to thank N. Olver and L. Stougie for their feedback
and an anonymous reviewer for helpful comments.

References

1. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds,
Information and Computation 208, 259–275 (2010)

2. Bodlaender, H.L., Fomin, F.V., Kratsch, D., Koster, A.M.C.A., Thilikos, D.M.: On
exact algorithms for treewidth. ACM Trans. Algor. 9(1), 12 (2012)

3. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal
on Computing 15(3), 233–248 (2003)

4. Fafianie, S., Bodlaender, H.L., Nederlof, J.: Speeding Up Dynamic Programming
with Representative Sets. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol.
8246, pp. 321–334. Springer, Heidelberg (2013)

5. Koch, T., Martin, A., Voß, S.: Steinlib, an updated library on Steiner tree problems
in graphs. Technical Report ZIB-Report 00–37, Konrad-Zuse Zentrum fur Informa-
tionstechnik Berlin (2000). http://steinlib.zib.de/

6. Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for
the Steiner problem in graphs. INFORMS Journal on Computing 14(3), 228–246
(2002)

7. Uchoa, E., de Aragao, M.P., Werneck, R., Ribeiro, C.C.: Bossa (2002). http://www.
cs.princeton.edu/rwerneck/bossa/

8. Polzin, T.: Algorithms for the Steiner problem in Networks. Ph.d. Thesis, Univer-
sität des Saarlandes (2003)

9. Pajor, T., Uchoa, E., Werneck, R.F.: A Robust and Scalable Algorithm for the
Steiner Problem in Graphs arXiv preprint (2014). arXiv:1412.2787

http://steinlib.zib.de/
http://www.cs.princeton.edu/rwerneck/bossa/
http://www.cs.princeton.edu/rwerneck/bossa/
http://arxiv.org/abs/1412.2787


Author Index

Adas�, Boran 315
Akiba, Takuya 56

Barth, Dominique 235
Barton, Carl 247
Bayraktar, Ersin 315
Bekos, Michael A. 352
Bingmann, Timo 28
Bosman, Thomas 391
Buchheim, Christoph 379

Castelli Aleardi, Luca 219
Coniglio, Stefano 97
Crescenzi, Pierluigi 43

D’Ambrosio, Claudia 122
D’Angelo, Gianlorenzo 43
David, Olivier 235
Delling, Daniel 273
Dibbelt, Julian 273
Diodati, Daniele 165

Efentakis, Alexandros 298

Fafianie, Stefan 367
Fampa, Marcia 122
Fearnley, John 339
Ferres, Leo 3
Fotakis, Dimitris 137
Frey, Davide 379
Fuentes-Sepúlveda, José 3

Gamrath, Gerald 181

He, Meng 3
Hiller, Benjamin 181
Hoske, Daniel 205
Hübschle-Schneider, Lorenz 15

Igwe, Tobenna Peter 339
Iliopoulos, Costas S. 247
Iwata, Yoichi 56

Kappmeier, Jan-Philipp W. 259
Kaufmann, Michael 352
Kawata, Yuki 56
Keh, Thomas 28
Komusiewicz, Christian 82
Kratsch, Stefan 367
Krug, Robert 352
Külekci, M. Oğuzhan 315
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