
Chapter 9
Sensitivity Analysis of Articular Contact
Mechanics

Abstract Asymptoticmodels of articular contact developed in the previous chapters
assume, in particular, that the cartilage layers are of uniform thickness and are bonded
to rigid substrates shaped like elliptic paraboloids. In this final chapter, treating the
term “sensitivity” in a broad sense, we study the effects of deviation of the substrate’s
shape from the elliptic (Sect. 9.1) and of nonuniform thicknesses of the contacting
incompressible layers (Sect. 9.2). It is shown that these effects inmultibody dynamics
simulations can be minimized if the geometric parameters in question (in particular,
the layer thicknesses) are determined in a specificway tominimize the corresponding
error in the force-displacement relationship.

9.1 Non-elliptical Contact of Thin Incompressible
Viscoelastic Layers: Perturbation Solution

In this section, a more general three-dimensional unilateral contact problem for thin
incompressible transversely isotropic viscoelastic layers bonded to rigid substrates,
whose shapes are close to those of elliptic paraboloids, is considered and approxi-
mately solved by the perturbation technique.

9.1.1 Formulation of the Contact Problem

Consider the frictionless unilateral contact between two thin linear incompressible
transversely isotropic viscoelastic layers firmly attached to rigid substrates. Introduc-
ing the Cartesian coordinate system (y1, y2, z), we write the equations of the layer
surfaces (n = 1, 2) in the form z = (−1)nϕ

(n)
ε (y), where y = (y1, y2). In the unde-

formed state, the two layer/substrate systems occupy convex domains z ≤ −ϕ
(1)
ε (y)

and z ≥ ϕ
(2)
ε (y) in contact with the plane z = 0 at a single point chosen as the

coordinate origin. Let us assume that

ϕ(n)
ε (y) = ϕ

(n)
0 (y) + εφn(y), (9.1)
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where ϕ
(n)
0 (y) is an elliptic paraboloid, ε is a small positive dimensionless parameter,

and the function εφn(y) describes a small deviation of the nth substrate surface from
the paraboloid shape (n = 1, 2).

We denote the normal approach of the substrates by δε(t). The linearized unilateral
contact condition that the surface points of the viscoelastic layers do not penetrate
one into another can then be written as follows:

δε(t) − w(1)
0 (t, y) − w(2)

0 (t, y) ≤ ϕ(1)
ε (y) + ϕ(2)

ε (y). (9.2)

Here, w(n)
0 (t, y) is the local indentation (i.e., the normal displacement of the surface

points) of the nth layer (n = 1, 2).
According to the perturbation analysis performed in Sect. 2.5 (see, in particular,

formula (2.152)), the leading-order asymptotic solution for the local indentation of
an incompressible viscoelastic layer of thickness hn is given by

w(n)
0 (t, y) = −h3

n

3

t∫

0−
J ′(n)(t − τ)Δy

∂pε

∂τ
(τ, y) dτ. (9.3)

Here, J ′(n)(t) is the out-of-plane shear creep compliance of the nth layer (n = 1, 2),
pε(t, y) is the contact pressure, and Δy = ∂2/∂y21 + ∂2/∂y22 is the Laplace operator.

The equality in relation (9.2) determines the contact region ωε(t). In other words,
the following equation holds within the contact area

w(1)
0 (t, y) + w(2)

0 (t, y) = δε(t) − ϕε(y), y ∈ ωε(t), (9.4)

where we have introduced the notation ϕε(y) = ϕ
(1)
ε (y) + ϕ

(2)
ε (y).

According to (9.1), we have

ϕε(y) = ϕ0(y) + εφ(y), (9.5)

where ϕ0(y) = ϕ
(1)
0 (y) + ϕ

(2)
0 (y) and φ(y) = φ1(y) + φ2(y). The function εφ(y)

will be called the gap function variation.
Without any loss of generality we may assume that

ϕ0(y) = y21
2R1

+ y22
2R2

, (9.6)

where the parameters R1 and R2 are positive and can be related to the coefficients
of the paraboloids ϕ

(1)
0 (y) and ϕ

(2)
0 (y) by known formulas (see Sect. 2.1.1).

Substituting the expressions for displacements w(1)
0 (t, y) and w(2)

0 (t, y) given by
formula (9.3) into Eq. (9.4), we obtain the contact condition in the following form:
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−
2∑

n=1

h3
n

3

t∫

0−
J ′(n)(t − τ)Δy

∂pε

∂τ
(τ, y) dτ = δε(t) − ϕε(y)H (t). (9.7)

Here, we assume that y ∈ ωε(t), and H (t) is Heaviside’s function introduced in a
standard way, namely H (t) = 0 for t < 0 and H (t) = 1 for t ≥ 0.

Let G ′(n)
0 = 1/J ′(n)(0+) be the instantaneous out-of-plane shear elastic modulus

of the nth layer. Then, the normalized creep function Φ ′(n)(t) is introduced by

J ′(n)(t) = 1

G ′(n)
0

Φ ′(n)(t). (9.8)

Let us rewrite Eq. (9.7) in the form corresponding to one layer by introducing
the compound creep function, Φβ(t), and the equivalent instantaneous shear elastic
modulus, G ′

0, as follows:

Φβ(t) = β1Φ
′(1)(t) + β2Φ

′(2)(t), (9.9)

G ′
0 = (h1 + h2)

3G ′(1)
0 G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, (9.10)

β1 = h3
1G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, β2 = h3
2G ′(1)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

. (9.11)

Moreover, let us introduce an auxiliary notation

m = 3G ′
0

h3 , (9.12)

where h = h1 + h2 is the joint thickness. Recall that formula (9.10) determines the
equivalent modulus in such a way that β1 + β2 = 1 and thus, Φβ(0) = 1.

Thus, taking into account (9.8)–(9.12), we rewrite Eq. (9.7) as

t∫

0−
Φβ(t − τ)Δy

∂pε

∂τ
(τ, y) dτ = m

(
ϕε(y)H (t) − δε(t)

)
. (9.13)

Equation (9.13) will be used to find the contact pressure density pε(t, y). The
contour Γε(t) of the contact area ωε(t) is determined from the condition that the
contact pressure is positive and vanishes at the contour of the contact area:

pε(t, y) > 0, y ∈ ωε(t), (9.14)

pε(t, y) = 0, y ∈ Γε(t). (9.15)
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In the case of the contact problem for an incompressible layer (see, in particular,
Sect. 2.7.3), we additionally assume a smooth transition of the surface normal stresses
from the contact region y ∈ ωε(t) to the outside region y �∈ ωε(t). Hence, we impose
the following zero-pressure-gradient boundary condition [9, 10, 13, 17]:

∂pε

∂n
(t, y) = 0, y ∈ Γε(t). (9.16)

Here, ∂/∂n is the normal derivative directed outward from ωε(t).
We assume that the density pε(t, y) is defined on the entire plane such that

pε(t, y) = 0, y �∈ ωε(t). (9.17)

From the physical point of view, the contact pressure between the smooth surfaces
should satisfy the regularity condition, i.e., in the case (9.5), the function pε(t, y) is
assumed to be analytical in the domain ωε(t).

The equilibrium equation for the whole system is

∫∫

ωε(t)

pε(t, y) dy = F(t), (9.18)

where F(t) denotes the external load, which is assumed to be known a priori.
For non-decreasing loads, when d F(t)/dt ≥ 0, the contact zone should increase.

Thus, we assume that the following monotonicity condition holds:

ωε(t1) ⊂ ωε(t2), t1 ≤ t2. (9.19)

Following Argatov and Mishuris [8], we construct an asymptotic solution for the
three-dimensional contact problem formulated by Eq. (9.13), under the monotonic-
ity condition (9.19). We will first consider the problem in its general formulation
transforming it to a set of equations more suitable for further analysis.

9.1.2 Equation for the Contact Approach

Integrating Eq. (9.13) over the contact domain ωε(t), we find

∫∫

ωε(t)

t∫

0−
Φβ(t − τ)Δy

∂pε

∂τ
(τ, y) dτdy = m

∫∫

ωε(t)

(
ϕε(y)H (t) − δε(t)

)
dy. (9.20)

In light of (9.17) and (9.19), we have ωε(τ) ⊂ ωε(t) for τ ∈ (0, t), as well as
pε(τ, y) ≡ 0 for y �∈ ωε(τ). Therefore, the integral on the left-hand side of (9.20),

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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which is denoted by I (t), can be transformed into

I (t) =
∫∫

ωε(t)

t∫

0−
Φβ(t − τ)Δy

∂pε

∂τ
(τ, y) dτdy

=
t∫

0−
Φβ(t − τ)

∫∫

ωε(t)

Δy
∂pε

∂τ
(τ, y) dydτ

=
t∫

0−
Φβ(t − τ)

∂

∂τ

∫∫

ωε(t)

Δy pε(τ, y) dydτ. (9.21)

We note that, as a consequence of (9.15)–(9.17), the density pε(t, y) is a smooth
function of the variables y1 and y2 on the entire plane.

Further, by employing the second Green’s formula

∫∫

ω

(
u(y)Δv(y) − v(y)Δu(y)

)
dy =

∫

Γ

(
u(y)

∂v

∂n
(y) − v(y)

∂u

∂n
(y)

)
ds, (9.22)

where ds is the element of the arc length, we obtain
∫∫

ωε(t)

Δy pε(τ, y) dy =
∫

Γε(t)

∂pε

∂n
(τ, y) ds. (9.23)

In light of the boundary condition (9.16) and the monotonicity condition (9.19), the
right-hand side of Eq. (9.23) vanishes for t > 0 and, therefore, Eq. (9.20) reduces to

∫∫

ωε(t)

(
ϕε(y)H (t) − δε(t)

)
dy = 0.

From here it immediately follows that

δε(t) = H (t)

Aε(t)

∫∫

ωε(t)

ϕε(y) dy, (9.24)

where Aε(t) is the area of ωε(t) given by the integral

Aε(t) =
∫∫

ωε(t)

dy. (9.25)

Equation (9.24) connects the unknown contact approach δε(t) with some integral
characteristics of the contact domain ωε(t).
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9.1.3 Equation for the Integral Characteristics
the Contact Area

Substituting the functions u(y) = pε(τ, y) and v(y) = (y21 + y22 )/4 into Green’s
formula (9.22) for the domain ωε(t), assuming that τ < t , and taking into account
the boundary conditions (9.15), (9.16) and the monotonicity condition (9.19), we
obtain the relation

1

4

∫∫

ωε(t)

|y|2Δpε(τ, y) dy =
∫∫

ωε(τ)

pε(τ, y) dy. (9.26)

Using formula (9.26), we can evaluate the contact load (9.18). Indeed, by mul-
tiplying both sides of (9.13) by (y21 + y22 )/4 and integrating the obtained equation
over the contact domain ωε(t), we obtain

t∫

0−
Φβ(t −τ)

∂

∂τ

∫∫

ωε(τ)

pε(τ, y) dydτ = m

4

∫∫

ωε(t)

|y|2(H (t)ϕε(y)−δε(t)
)

dy. (9.27)

Taking into account the notation (9.18) for the contact force, we rewrite (9.27) as

t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ = m

4
H (t)

∫∫

ωε(t)

|y|2ϕε(y) dy − δε(t)
m

4

∫∫

ωε(t)

|y|2dy, (9.28)

where the dot denotes the differentiation with respect to time, i.e., Ḟ(t) = d F(t)/dt .
Then, excluding the quantity δε(t) from (9.28) by means of Eq. (9.24), we arrive

at the following equation:

t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ = m

4
H (t)

∫∫

ωε(t)

(
|y|2 − Iε(t)

Aε(t)

)
ϕε(y) dy. (9.29)

Here, Iε(t) is the polar moment of inertia of ωε(t) given by the integral

Iε(t) =
∫∫

ωε(t)

|y|2dy. (9.30)

Equation (9.29) connects the known contact force F(t) with some integral char-
acteristics of the unknown contact area ωε(t).
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9.1.4 Equation for the Contact Pressure

Let us rewrite Eq. (9.13) in the form

Δy Pε(t, y) = m
(
ϕε(y) − δε(t)

)
, y ∈ ωε(t), (9.31)

where we have introduced the notation

Pε(t, y) =
t∫

0−
Φβ(t − τ)

∂pε

∂τ
(τ, y) dτ. (9.32)

By denoting the integral operator on the right-hand side of the previous equation
byK , we have

K y(τ ) =
t∫

0−
Φβ(t − τ)ẏ(τ ) dτ, (9.33)

so that formula (9.32) can be represented as

Pε(t, y) = K pε(τ, y). (9.34)

The inverse operator toK denoted byK −1 is defined by the formula

K −1Y (τ ) =
t∫

0−
Ψβ(t − τ)Ẏ (τ ) dτ, (9.35)

where Ψβ(t) is the compound relaxation function defined by its Laplace transform

Ψ̃β(s) = 1

s2Φ̃β(s)
. (9.36)

Note that since
Φ̃β(s) = β1Φ̃

′(1)(s) + β2Φ̃
′(2)(s),

and

Φ̃ ′(n)(s) = 1

s2Ψ̃ ′(n)(s)
,

where Ψ̃ ′(n)(s) is the Laplace transform of the relaxation function in out-of-plane
shear for the nth layer, formula (9.36) can be reduced to the following:

Ψ̃β(s) = Ψ̃ ′(1)(s)Ψ̃ ′(2)(s)
β1Ψ̃ ′(2)(s) + β2Ψ̃ ′(1)(s)

. (9.37)
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Recall also that the coefficients β1 and β2 are introduced by formulas (9.11) in such
a way that Ψβ(0) = 1.

As a result of the boundary conditions (9.15) and (9.16), the function Pε(t, y)

must satisfy the following boundary conditions:

Pε(t, y) = 0, y ∈ Γε(t), (9.38)

∂ Pε

∂n
(t, y) = 0, y ∈ Γε(t). (9.39)

Thus, in the case of monotonically increasing contact area ωε(t), the problem
(9.31), (9.38), (9.39) allows us to determine the domain ωε(t) based on the positivity
condition for the contact pressure (9.14). Then, from Eq. (9.24) we can determine the
contact approach δε(t). Finally, by applying the inverse operator (9.35), we obtain a
complete solution to the problem.

9.1.5 Limiting Case Problem: Elliptical Contact Area

We now consider the problem for the limiting case ε = 0, when the function ϕ0(y)

represents an elliptic paraboloid. In a special case of the integral operator K , the
solution to this problem has previously been presented in [6]. Here we adopt it in
the necessary form for the further asymptotic analysis, in order to construct a more
general solution to the problem with the slightly perturbed boundary of an arbitrary
shape.

In this case the right-hand side of (9.31) takes the form m
(
ϕ0(y) − δ0(t)

)
. This

suggests that we assume the domain ω0(t) to be elliptical and so we set

P0(t, y) = Q0(t)

(
1 − y21

a(t)2
− y22

b(t)2

)2

. (9.40)

In other words, the contourΓ0(t) is an ellipse with the semi-axises a(t) and b(t). It
is simple to verify that the function P0(t, y) satisfies the boundary conditions (9.38)
and (9.39) exactly.

Substituting (9.40) into Eq. (9.31), we obtain after some algebra the following
system of algebraic equations:

δ0(t) = 4Q0(t)

m

(
1

a(t)2
+ 1

b(t)2

)
, (9.41)

1

R1
= 8Q0(t)

ma(t)2

(
3

a(t)2
+ 1

b(t)2

)
,

1

R2
= 8Q0(t)

mb(t)2

(
1

a(t)2
+ 3

b(t)2

)
. (9.42)
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The form of the ellipse Γ0(t) can be characterized by its aspect ratio s defined as

s = b(t)

a(t)
, (9.43)

and from (9.42), it immediately follows that s is constant with time and is determined
as a positive root of the equation

R2

R1
= s2(3s2 + 1)

3 + s2
. (9.44)

In turn, Eq. (9.44) can be reduced to a quadratic equation for s2, so that

s2 =
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
. (9.45)

Recall that, along with Eqs. (9.41) and (9.42), we have Eqs. (9.24) and (9.29),
which connect the contact approach δε(t) and the known contact force F(t) with
some integral characteristics of the contact domain ωε(t).

By taking into account (9.45), we transform Eq. (9.24) into

δ0(t) = 1

8

(
1

R1
+ s2

R2

)
a(t)2. (9.46)

Then, by excluding the quantity δ0(t) from Eqs. (9.41) and (9.46), we obtain

Q0(t) = m

32

s2

(s2 + 1)

(
1

R1
+ s2

R2

)
a(t)4. (9.47)

By application of the same method, Eq. (9.29) becomes

K F(τ ) = πm

384

(
3s − s3

R1
+ 3s5 − s3

R2

)
a(t)6. (9.48)

This allows us to determine the major semi-axis a(t) of the contact area ω0(t) as
a function of time t in the form

a(t) =
[

πm

384

(
3s − s3

R1
+ 3s5 − s3

R2

)]−1/6(
K F(τ )

)1/6
. (9.49)

As a consequence of (9.49), formulas (9.46) and (9.47) determine the quantities
δ0(t) and Q0(t), respectively.

We now turn to evaluating the contact pressure in the case of elliptical contact. In
light of (9.33) and (9.40), we obtain the following operator equation for the contact



302 9 Sensitivity Analysis of Articular Contact Mechanics

pressure density p0(t, y):

K p0(τ, y) = Q0(t)

(
1 − y21

a(t)2
− y22

b(t)2

)2

, y ∈ ω0(t). (9.50)

By inverting Eq. (9.50) with the help of (9.35), we obtain

p0(t, y) = K −1
{

Q0(τ )

(
1− y21

a(τ )2
− y22

b(τ )2

)2

H

(
1− y21

a(τ )2
− y22

b(τ )2

)}
, (9.51)

where the Heaviside factor indicates the contact domain ω0(τ ).
Following the notation (9.35), Eq. (9.51) can be transformed into

p0(t, y) =
t∫

0−
Ψβ(t − τ)Q0(τ )

(
1 − y21

a(τ )2
− y22

b(τ )2

)2

+
dτ. (9.52)

Here the positive part function (x)+ = (x + |x |)/2 is used as an indicator of the
current contact area ω0(τ ).

9.1.6 Slightly Perturbed Elliptical Contact Area

We now consider the gap function ϕε(y), given in a general form (9.5) with small
ε > 0. The solution corresponding to the limiting case ε = 0 was defined above and
is denoted by p0(t, y) and δ0(t), where the contact domain ω0(t) is bounded by an
ellipse Γ0(t). Then, the function P0(t, y) = K p0(τ, y) satisfies the problem

Δy p0(t, y) = m
(
ϕ0(y) − δ0(t)

)
, y ∈ ω0(t), (9.53)

p0(t, y) = 0,
∂p0
∂n

(t, y) = 0, y ∈ Γ0(t). (9.54)

Recall also that in accordance with (9.24), the contact approach δ0(t) is given by

δ0(t) = 1

A0(t)

∫∫

ω0(t)

ϕ0(y) dy, (9.55)

where A0(t) is the area of ω0(t). Moreover, in light of (9.29), we have

K F(τ ) = m

4

∫∫

ω0(t)

B0(t, y)ϕ0(y) dy, (9.56)
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where, with I0(t) being the polar moment of inertia of ω0(t),

B0(t, y) = |y|2 − I0(t)

A0(t)
. (9.57)

We represent the solution to the perturbed auxiliary contact problem (9.31), (9.38),
(9.39) as

Pε(t, y) = P0(t, y) + εP1(t, y) + O(ε2), (9.58)

δε(t) = δ0(t) + εδ1(t) + O(ε2), (9.59)

and recall that the contact load F(t) is assumed to be specified, while the contact
approach δε(t) is unknown a priori.

By substituting (9.58) and (9.59) into Eq. (9.31), we arrive at the equation

Δy P1(t, y) = m
(
ϕ(y) − δ1(t)

)
, y ∈ ω0(t). (9.60)

Let us assume that the unknown boundary Γε(t) of the contact area ωε(t) (see
Fig. 9.1) is described by the equation

n = hε(t, σ ), s ∈ Γ0(t). (9.61)

Here, σ is the arc length along Γ0(t), and n is the distance (taking the sign into
account) measured along the outward (with respect to the domain ω0(t)) normal to
the curve Γ0(t). The function hε(t, σ ) describes the variation of the contact area and
should be determined by considering the boundary conditions for Eq. (9.60).

In light of (9.58) and (9.59), we set

hε(t, σ ) = εh(t, σ ), (9.62)

where the function h(t, σ ) is assumed to be independent of ε.
Applying the perturbation technique (see, for example, [20]), we have

Pε

∣∣
Γ

= Pε

∣∣
Γ0

+ hε

∂ Pε

∂n

∣∣∣
Γ0

+ O(ε2). (9.63)

Fig. 9.1 Schematic
representation of the contact
domain ωε(t) with the
boundary Γε(t), and the limit
domain ω0(t) with the
boundary Γ0(t)

ω 0(t) 

ωε(t) 

y1 

Γε(t)

Γ0(t)

y2 

hε(σ,t)
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Let nε be the unit outward normal vector to the curve Γε(t). Then, the following
formula holds:

nε =
(
1 − κ(t, σ )hε(t, σ )

)
n0 − h′

ε(t, σ )t0√(
1 − κ(t, σ )hε(t, σ )

)2 + h′
ε(t, σ )2

. (9.64)

Here, t0 and n0 are the unit tangential and outward normal vectors to the curve Γ0(t),
κ(t, σ ) is the curvature of Γ0(t), and the prime denotes the derivative with respect
to the arc length σ .

Taking into account formula (9.64), we obtain

∂pε

∂n

∣∣∣
Γ

= ∂pε

∂n

∣∣∣
Γ0

− h′
ε

∂pε

∂σ

∣∣∣
Γ0

+ O(ε2), (9.65)

and by substituting the expansion (9.58) into Eqs. (9.63), (9.65) and taking into
account the boundary conditions (9.54) for the function P0(t, y), we derive the fol-
lowing boundary conditions at the unperturbed contact boundary:

P1(t, y) = 0, y ∈ Γ0(t), (9.66)

∂ P1

∂n
(t, y) = −h(t, σ )

∂2P0

∂n2 (t, y), y ∈ Γ0(t). (9.67)

Here, in accordance with Eq. (9.53), we have

∂2P0

∂n2 (t, y) = m
(
ϕ0(y) − δ0(t)

)
, y ∈ Γ0(t). (9.68)

Note that the right-hand side of (9.68) is strictly positive. This can be verified by
employing the explicit formula obtained in Sect. 9.1.5, or proved by using the max-
imum principle for harmonic functions.

Finally, Eqs. (9.24) and (9.29) yield

A0(t)δ1(t) =
∫∫

ω0(t)

φ(y) dy +
∫

Γ0(t)

ϕ0(y)h(t, σ ) dσy − A1(t)δ0(t), (9.69)

from which it follows that, for B0(t, y) defined by (9.56),

0 =
∫∫

ω0(t)

B0(t, y)φ(y) dy − δ0(t)

(
I1(t) − I0(t)

A0(t)
A1(t)

)

+
∫

Γ0(t)

B0(t, y)ϕ0(y)h(t, σ ) dσy . (9.70)
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Here, A1(t) and I1(t) are the first-order perturbation coefficients of Aε(t) and Iε(t),
respectively, given by

A1(t) =
∫

Γ0(t)

h(t, σ ) dσy, (9.71)

I1(t) =
∫

Γ0(t)

|y|2h(t, σ ) dσy . (9.72)

Equations (9.60), (9.66), (9.67), (9.69) and (9.70) constitute the first-order pertur-
bation problem. By employing the relations (9.68) and (9.71), it is not hard to check
that Eq. (9.69) coincides with the solvability condition (see, for instance, (9.23)) of
the boundary-value problem (9.60), (9.66), (9.67).

9.1.7 Determination of the Contour of the Contact Area

First, let us express the solution to Eq. (9.60) in the form

P1(t, y) = m
(
P [0]
1 (t, y) + P [1]

1 (t, y)
)
, (9.73)

where we have introduced the notation

P [0]
1 (t, y) = Y [0]

φ (y) − δ1(t)Y
[0]
1 (y), (9.74)

Y [0]
φ (y) = 1

2π

∫∫

ω0(t)

φ(y) ln |y − y| dy, Y [0]
1 (y) = 1

2π

∫∫

ω0(t)

ln |y − y| dy. (9.75)

Substituting the form (9.73) into Eqs. (9.60), (9.66) and (9.67), we obtain the
following boundary value problem for the function P [1]

1 (t, y):

Δy P [1]
1 (t, y) = 0, y ∈ ω0(t), (9.76)

P [1]
1 (t, y) = −Y [0]

φ (y) + δ1(t)Y
[0]
1 (y), y ∈ Γ0(t), (9.77)

∂ P [1]
1

∂n
(t, y) = −h(t, σ )

(
ϕ0(y) − δ0(t)

)

− ∂Y [0]
φ

∂n
(t, y) + δ1(t)

∂Y [0]
1

∂n
(t, y), y ∈ Γ0(t). (9.78)

Here we have used relations (9.68) and (9.74).
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Let us denote the first term on the right-hand side of (9.78) by −ĥ(t, σ ), so that

h(t, σ ) = ĥ(t, σ )

ϕ0(y) − δ0(t)
, y ∈ Γ0(t). (9.79)

As a result of (9.71), (9.72) and (9.79), Eqs. (9.69), (9.70) and (9.78) respectively
take the forms

δ1(t) = 1

A0(t)

∫∫

ω0(t)

φ(y) dy + 1

A0(t)

∫

Γ0(t)

ĥ(t, σ ) dσy, (9.80)

0 =
∫∫

ω0(t)

B0(t, y)φ(y) dy +
∫

Γ0(t)

B0(t, y)ĥ(t, σ ) dσy . (9.81)

∂ P [1]
1

∂n
(t, y) = −ĥ(t, σ ) − ∂Y [0]

φ

∂n
(t, y) + δ1(t)

∂Y [0]
1

∂n
(t, y), y ∈ Γ0(t). (9.82)

Second, to proceed further with the computation of the contour of the contact
area, we now define the Steklov—Poincaré (Dirichlet-to-Neumann) operator S :
H1/2(Γ0(t)) → H−1/2(Γ0(t)) by

(
Sg

)
(y) = ∂w

∂n
(y), y ∈ Γ0(t), (9.83)

where w(y) is the unique solution of the Dirichlet problem

Δyw(y) = 0, y ∈ ω0(t); w(y) = g(y), y ∈ Γ0(t). (9.84)

The operator S for a circular domain is well known, and we will use the above
form later in Sect. 9.1.9. To the authors’ best knowledge there is no closed form
representation for S in the case of an elliptic domain. However, the finite element
Steklov—Poincaré operator can be computed by standard FEM packages (see for
details [15]). In [8], an alternative approach for constructing the operator numerically
in terms of conformal mappings was presented.

In terms of the Steklov—Poincaré operator, Eqs. (9.77) and (9.82) yield

ĥ(t, σ ) = (
SY [0]

φ

)
(y) − ∂Y [0]

φ

∂n
(t, y)

− δ1(t)

((
SY [0]

1

)
(y) − ∂Y [0]

1

∂n
(t, y)

)
, y ∈ Γ0(t). (9.85)

Note that the substitution of (9.85) into (9.80) results in an identity, which we
check by verifying the following properties:
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∫

Γ0(t)

(
Sg

)
(y) dσy = 0, ∀g ∈ H1/2(Γ0(t)),

∫∫

ω0(t)

φ(y) dy =
∫

Γ0(t)

∂Y [0]
φ

∂n
(t, y) dσy, ∀ϕ ∈ L2(ω0(t)).

Now, excluding the variable δ1(t) from (9.85) by means of (9.80), we obtain

ĥ(t, σ ) = −
(

1

A0(t)

∫∫

ω0(t)

φ(y) dy + Ĥ0(t)

)((
SY [0]

1

)
(y) − ∂Y [0]

1

∂n
(t, y)

)

+ (
SY [0]

φ

)
(y) − ∂Y [0]

φ

∂n
(t, y), y ∈ Γ0(t), (9.86)

where Ĥ0(t) is the relative weighted increment of the contact area defined as

Ĥ0(t) = 1

A0(t)

∫

Γ0(t)

ĥ(t, σ ) dσ. (9.87)

At this point, the function ĥ(t, σ ) is determined by Eq. (9.86) with an accuracy
up to its integral characteristics Ĥ0(t).

By substitution of the expression (9.86) into Eq. (9.81), we arrive at the following
simple equation to determine Ĥ0(t):

Ξ
[0]
1 (t)Ĥ0(t) = Ξ

[0]
φ (t) +

∫∫

ω0(t)

(
B0(t, y) − Ξ

[0]
1 (t)

A0(t)

)
φ(y) dy. (9.88)

Here, both functions Ξ
[0]
1 (t) nd Ξ

[0]
φ (t) are determined by the formula

Ξ
[0]
φ;1(t) =

∫

Γ0(t)

B0(t, y)

((
SY [0]

φ;1
)
(y) − ∂Y [0]

φ;1
∂n

(t, y)

)
dy. (9.89)

It is clear that the solvability of Eq. (9.86) depends crucially on the property of
having fixed sign for Ξ

[0]
1 (t). In [8], it was proven that Ξ [0]

1 (t) < 0.

Thus, determining the function Ĥ0(t) by dividing both sides of (9.88) by Ξ
[0]
1 (t)

and substituting the obtained result into Eq. (9.86), we find ĥ(t, σ ) and, as a con-
sequence of (9.79), uniquely determine the function h(t, σ ), which describes the
variation of the contact domain ω0(t).
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9.1.8 Asymptotics of the Contact Pressure

In accordance with (9.34), the contact pressure is given by

pε(t, y) = K −1(Pε(y, τ )Iωε(τ)(y)
)
, (9.90)

where the integral operator K −1 is defined by formula (9.35), and Iωε(t)(y) is the
indicator function of the domain ωε(t) defined by

Iωε(t)(y) =
{
1, y ∈ ωε(t),

0, y �∈ ωε(t).

In the interior of the contact areaωε(t), Eqs. (9.58) and (9.90) yield the asymptotic
representation

pε(t, y) = p0(t, y) + εp1(t, y) + O(ε2), (9.91)

where
pi (t, y) = K −1(Pi (t, y)Iω0(t)(y)

)
, i = 0, 1. (9.92)

In the boundary-layer region near the contourΓε(t), the so-called outer asymptotic
representation (9.91) does notwork, and the so-called inner asymptotic representation
should be constructed. Here we employ the terminology from the method of matched
asymptotic expansions [20].

The inner asymptotic representation

pε(t, y) = ε2K −1P(τ, s, ν) + O(ε3) (9.93)

will be constructed by making use of the stretched coordinate

ν = ε−1n. (9.94)

In light of (9.73)–(9.75), the function P1(t, y) will be determined completely
as soon as we know the function P [1]

1 (t, y) which satisfies the following Dirichlet
problem (see (9.76) and (9.77)):

ΔP [1]
1 (t, y) = 0, y ∈ ω0(t); P [1]

1 (t, y) = g[0]
φ (t, y), y ∈ Γ0(t).

Here we have introduced the following notation (see Eqs. (9.80), (9.87) and (9.88)):

g[0]
φ (t, y) = −Y [0]

φ (y) + δ1(t)Y
[0]
1 (y), (9.95)

and as a consequence of said relations, we have

δ1(t) = Ξ
[0]
φ (t)

Ξ
[0]
1 (t)

+ 1

Ξ
[0]
1 (t)

∫∫

ω0(t)

B0(t, y)φ(y) dy. (9.96)
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Near the boundary of the domain ω0(t), we may use the Taylor expansions

P0(t, y) = m

2

[
ϕ0(y0(σ )) − δ0(t)

]
n2 + O(n3), (9.97)

P1(t, y) = m

2

[
φ(y0(σ )) − δ1(t)

]
n2 − mĥ(t, σ )n + O(n3), (9.98)

where y0(σ ) is the point of the curve Γ0(t) with the natural coordinate σ .
Applying the perturbation method developed by Nazarov [18], we construct the

auxiliary function of the inner asymptotic representation (9.93) in the form

P(t, σ, ν) = m

2

[
ϕ0(y0(σ )) − δ0(t)

]
(ν − h(t, σ ))2. (9.99)

The function (9.99) exactly satisfies the relations (9.15),while the boundary condition
(9.16) is satisfied asymptotically. We note that the normals n0 and nε to the contours
Γ0(t) and Γε(t) are, generally speaking, different (see formula (9.64)).

Finally, taking account of the relations (9.79), (9.94), (9.97)–(9.99), it is not hard
to verify verify that the matching asymptotic condition for the outer (9.91) and inner
(9.93) asymptotic representations is fulfilled.

9.1.9 Slightly Perturbed Circular Contact Area

Let us assume that a circular domain can be taken as a zero approximation in the
form (9.5), where the function ϕ(y) defining the perturbed boundary is given by the
polynomials

ϕ0(y) = 1

2R
(y21 + y22 ), φ(y) =

N∑
n=0

n∑
j=0

cnj y j
1 yn− j

2 , (9.100)

where cnj are given dimensional coefficients.
In this case, the limit (ε = 0) auxiliary contact problem (9.31), (9.38), (9.39) has

the following solution:

P0(t, y) = Q0(t)

(
1 − y21 + y22

a0(t)2

)2

.

Correspondingly, Eqs. (9.46), (9.47) and (9.49) take the form

δ0(t) = a0(t)2

4R
, Q0(t) = m

32

a0(t)4

R
, (9.101)
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a0(t) =
( mπ

96R

)−1/6
( t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ

)1/6

. (9.102)

The first-oder perturbation problem (9.60), (9.66), (9.67), (9.69) and (9.70) now
can be written as follows:

Δy P1(t, y) = m

( N∑
n=0

n∑
j=0

cnj y j
1 yn− j

2 − δ1(t)

)
, y ∈ ω0(t), (9.103)

P1(t, y) = 0, y ∈ Γ0(t), (9.104)

∂ P1

∂n
(t, y) = −mh(t, σ )

a0(t)2

4R
, y ∈ Γ0(t), (9.105)

πa0(t)
2δ1(t) =

N∑
n=0

a0(t)n+2

n + 2

n∑
j=0

cnj Knj + a0(t)3

4R
H0(t), (9.106)

0 = a0(t)5

8R
H0(t) +

N∑
n=0

na0(t)n+4

2(n + 2)(n + 4)

n∑
j=0

cnj Knj . (9.107)

Here, ω0(t) and Γ0(t) are the disc and the circle of the radius a0(t), Knj = 0 for odd
n and j , while Knj = 2B

(
(n + 1− j)/2, ( j + 1)/2

)
for even values of n and j , and

B(ζ, ξ) is the Beta function defined by

B(ζ, ξ) =
1∫

0

tζ−1(1 − t)ξ−1dt.

Moreover, H0(t) is an integral characteristics of the contour variation h(t, σ )

which can be described by the contour variation in polar coordinates as

H0(t) =
2π∫

0

h(θ, t) dθ.

From (9.106) and (9.107), it immediately follows that

H0(t) = −
N∑

n=0

4Ra0(t)n−1

(n + 2)(n + 4)

n∑
j=0

cnj Knj ,
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δ1(t) =
N∑

n=0

(n + 3)a0(t)n

π(n + 2)(n + 4)

n∑
j=0

cnj Knj . (9.108)

Using Green’s function G (t, y, y′) of the Dirichlet problem for the domain ω0(t),
we express the solution to the Dirichlet problem (9.103), (9.104) in the form

P1(t, y) = m
∫∫

ω0(t)

φ(y′)G (t, y, y′) dy′ − m

4
δ1(t)(|y|2 − a0(t)

2). (9.109)

Recall that for a circular domain ω0(t) of radius a0(t), Green’s function is

G (t, y, y′) = 1

2π
ln

a0(t)|y′||y − y′|∣∣ |y′|y − a0(t)2x′∣∣ ,

whereas, in polar coordinates, we have

G (t, y, y′) = 1

4π
ln

a0(t)2
(
r2 + r ′2 − 2r ′r cos(θ − θ ′)

)
a0(t)4 + r ′2r2 − 2r ′ra0(t)2 cos(θ − θ ′)

.

Calculating the normal derivative of the function (9.109), we obtain

∂ P1

∂n
(t, y) = m

∫∫

ω0(t)

φ(y′)∂G
∂n

(t, y, y′) dy′ − m

2
δ1(t)|y|, (9.110)

where

∂

∂n
G (t, y, y′) = 1

2π

a0(t)2 − r ′2

a0(t)
(
a0(t)2 + r ′2 − 2r ′a0(t) cos(θ − θ ′)

) .

By substitution of the expression (9.110) into the boundary condition (9.105) and
taking into account (9.108), we obtain the function h(t, θ) describing variation of
the contact domain in the following form:

h(t, θ) = 2R

πa0(t)

N∑
n=0

(n + 3)a0(t)n

(n + 2)(n + 4)

n∑
j=0

cnj Knj

− 2R

πa0(t)3

2π∫

0

dθ ′
a0(t)∫

0

( N∑
n=0

r ′n
n∑

j=0

cnj cos
j θ ′ sinn− j θ ′

)

× a0(t)2 − r ′2

a0(t)2 + r ′2 − 2r ′a0(t) cos(θ − θ ′)
r ′ dr ′. (9.111)
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Note that the integral with respect to θ ′ on the right-hand side of (9.111) can be
evaluated with the help of the following relation (see, e.g., [14]):

π∫

0

cos nxdx

1 − 2ρ cos x + ρ2 = πρn

1 − ρ2 , ρ2 < 1.

It was shown [8] that formula (9.111) asymptotically coincides with the exact
solution for the ellipse presented in Sect. 9.1.5 in the case of small eccentricity.

9.2 Contact of Two Bonded Thin Transversely Isotropic
Elastic Layers with Variable Thicknesses

In this section, a three-dimensional unilateral contact problem for a thin transversely
isotropic elastic layerwith variable thickness bonded to a rigid substrate is considered.
Two cases are studied sequentially: (a) the layermaterial is compressible; (b) the layer
material is incompressible. It is well known that the asymptotic solution for a thin
isotropic elastic layer undergoes a dramatic change in the limit as Poisson’s ratio ν

tends to 0.5, so that the formulas obtained in the case (a) are not applicable when
the layer material approaches the incompressible limit. After developing a refined
asymptotic model for the deformation of one elastic layer of variable thickness,
we apply sensitivity analysis to determine how “sensitive” the mathematical model
for contact interactions of two thin uniform layers of thicknesses h1 and h2 is to
variations in the layer thicknesses. We will consider the term “sensitivity” in a broad
sense by allowing variable layer thicknesses H1(y) and H2(y), whereas the original
model deals with the scalar parameters h1 and h2.

9.2.1 Unperturbed Asymptotic Model

As a rule, analytical models of articular contact assume rigid bones and represent
cartilage as a thin elastic layer of constant thickness resisting deformation like a
Winkler foundation consisting of a series of discrete springs with constant length and
stiffness [12]. However, a subject-specific approach to articular contact mechanics
requires developing patient-specific models for accurate predictions. A sensitivity
analysis of finite element models of hip cartilage mechanics with respect to varying
degrees of simplified geometry was performed in [2].

Based on the asymptotic analysis of the frictionless contact problem for a thin
elastic layer bonded to a rigid substrate in the thin-layer limit (see Chap.2), the
following asymptotic model for contact interaction of two thin incompressible trans-
versely isotropic layers was established:

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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−
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)
Δy p(y) = δ0 − ϕ(y), y ∈ ω, (9.112)

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ. (9.113)

Here, p(y) is the contact pressure density, hn and G ′
n are the thickness and out-

of-plane shear modulus of the nth layer material, respectively, n = 1, 2, Δy =
∂2/∂y21 + ∂2/∂y22 is the Laplace differential operator, δ0 is the vertical approach of
the rigid substrates to which the layers are bonded, ϕ(y) is the initial gap function
defined as the distance between the layer surfaces in the vertical direction, ω is the
contact area, and Γ is the contour of ω, ∂/∂n is the normal derivative.

In the isotropic case, the asymptotic model (9.112), (9.113) was developed in
[4, 10]. It was shown [6, 9, 11] that this model describes the instantaneous response
of thin biphasic layers to dynamic and impact loading. In [7], the isotropic elastic
model (9.112), (9.113) was generalized for a general viscoelastic case.

With respect to articular contact, a case of special interest is when the subchondral
bones are approximated by elliptic paraboloids, so that the gap function is given by

ϕ(y) = y21
2R1

+ y22
2R2

(9.114)

with positive curvature radii R1 and R2.
In the case (9.114), the exact solution to the problem (9.112), (9.113) has the

following form [6, 10]:

p(y) = p0

(
1 − y21

a2
1

− y22
a2
2

)2

. (9.115)

Integration of the contact pressure distribution (9.115) over the elliptical contact
area ω with the semi-axes a1 and a2 results in the following force-displacement
relationship [4]:

F = 2π

3
cF (s)m R1R2δ

3
0 . (9.116)

Here, cF (s) is a dimensionless factor depending on the aspect ratio s = a2/a1 (see
Sect. 4.5.6), and the coefficient m is given by

m = 3

(
h3
1

G ′
1

+ h3
2

G ′
2

)−1

. (9.117)

The asymptotic model (9.112)–(9.114) assumes that the cartilage layers have
constant thicknesses, whereas it is well known [1] that articular cartilage has a vari-
able thickness and that the surface of subchondral bone deviates from the ellip-
soid shape [19]. A sensitivity analysis of the model (9.112), (9.113) with respect

http://dx.doi.org/10.1007/978-3-319-20083-5_4
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to small perturbations of the gap function (9.114) was performed in [8]. In partic-
ular, it has been shown [4] that the influence of the gap function variation on the
force-displacement relationship will be negligible if the effective geometrical char-
acteristics R1 and R2 are determined by a least square method.

The two-dimensional contact problem for a thin isotropic elastic strip of variable
thickness was solved by Vorovich and Peninin [21] using an asymptotic method,
under the assumption that the Poisson’s ratio of the strip material is not very close to
0.5. A three-dimensional unilateral contact problem for a thin isotropic elastic layer
of variable thickness bonded to a rigid substrate was studied in [5]. Here, the results
obtained in [5] are generalized for the transversely isotropic case.

9.2.2 Contact Problem for a Thin Transversely Isotropic
Elastic Layer with Variable Thickness

We consider (see Fig. 9.2) a homogeneous, isotropic, linearly elastic layer with a
planar contact interface, x3 = 0, and a variable thickness, H(x1, x2), firmly attached
to an uneven rigid surface

x3 = H(x1, x2). (9.118)

In the absence of body forces, the equilibrium equations and the strain-displace-
ment relations governing small deformations of the elastic layer are

∂σ1 j

∂x1
+ ∂σ2 j

∂x2
+ ∂σ3 j

∂x3
= 0, j = 1, 2, 3, (9.119)

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1, 2, 3, (9.120)

where σi j is the Cauchy stress tensor, εi j is the infinitesimal strain tensor, and u j is
the displacement component along the x j -axis. Here the Cartesian coordinate system
(y1, y2, z) will be used such that y1 = x1, y2 = x2, and z = x3.

Moreover, a transversely isotropic elastic body is characterized by the following
stress-strain relationships:

Fig. 9.2 Elastic layer with a
variable thickness

h

x3 z=

x1 y1=

H(y)
~~
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⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9.121)

Recall that 2A66 = A11−A12,while A11, A12, A13, A33, and A44 are five independent
elastic constants.

We assume that the elastic layer is indented by a smooth rigid punch in the form
of an elliptic paraboloid

z = −ϕ(y1, y2),

where

ϕ(y) = y21
2R1

+ y22
2R2

. (9.122)

Under the assumption of frictionless contact, we have

σ31(y, 0) = 0, σ32(y, 0) = 0, y = (y1, y2) ∈ R
2. (9.123)

Denoting by δ0 the indenter’s displacement, we formulate the boundary condition
on the contact interface as

u3(y, 0) ≥ δ0 − ϕ(y), σ33(y, 0) ≤ 0,(
u3(y, 0) − δ0 + ϕ(y)

)
σ33(y, 0) = 0, y ∈ R

2,
(9.124)

while on the rigid substrate surface defined by Eq. (9.118) we have

u j (y, H(y)) = 0, y ∈ R
2 ( j = 1, 2, 3). (9.125)

Assuming that the layer is relatively thin in comparison to the characteristic dimen-
sions of ω, we introduce a small dimensionless parameter ε and require that

δ0 = εδ∗
0 , R1 = ε−1R∗

1 , R2 = ε−1R∗
2 , (9.126)

H(y) = εh∗(1 + εψ∗(y)), (9.127)

where δ∗
0 , R∗

1 , and R∗
2 are assumed to be comparable with h∗. Without loss of gen-

erality we can assume that |ψ∗(y)| ≤ h∗ for any y ∈ R
2.

The problem is to calculate the contact pressure distribution

p(x1, x2) = −σ33(x1, x2, 0), (x1, x2) ∈ ω, (9.128)
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and the contact force required to indent the punch into the elastic layer

F =
∫∫

ω

p(y) dy. (9.129)

We introduce the notation

h = εh∗, H̃(y) = ε2 H̃∗(y), (9.130)

where
H̃∗(y) = h∗ψ∗(y). (9.131)

Hence, the following relation is evident:

H(y) = h + H̃(y), (9.132)

where h is an average thickness, and H̃(y) is a small variation such that H̃(y) � h.
We note that as a consequence of (9.128), the unilateral contact condition (9.124)

can be rewritten as follows:

p(y) ≥ 0, y ∈ R
2,

p(y) > 0 ⇒ u3(y, 0) = δ0 − ϕ(y),

p(y) = 0 ⇒ u3(y, 0) ≥ δ0 − ϕ(y).

We pose the following frictionless unilateral contact problem: for a given value
of the punch displacement δ0, find the contact pressure p(y) such that the Signorini
boundary condition (9.124) is satisfied both inside the contact area ω and outside
(that is p(y) = 0 for y ∈ R

2 \ ω̄).

9.2.3 Perturbation Solution

First, we introduce the so-called stretched coordinate

ζ = ε−1z. (9.133)

Substituting (9.121) and (9.120) into Eqs. (9.119) and taking into account the
variable transformation (9.133), we arrive at the following Lamé system for the
displacement vector u = (v, w):

ε−2A44
∂2v
∂ζ 2+ ε−1(A13 + A44)∇y

∂w

∂ζ

+A66Δyv + (A11 − A66)∇y∇y · v = 0, (9.134)
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ε−2A33
∂2w

∂ζ 2 + ε−1(A13 + A44)∇y · ∂v
∂ζ

+ A44Δyw = 0. (9.135)

Here,∇y = (∂/∂y1, ∂/∂y2) is the Hamilton differential operator, and the dot denotes
the scalar product, so that ∇y · ∇y = Δy is the Laplace operator.

Correspondingly, the boundary condition (9.123) takes the form

ε−1 ∂v
∂ζ

+ ∇yw

∣∣∣∣
ζ=0

= 0. (9.136)

In light of (9.124) and (9.126), we have

w(y, 0) = ε(δ∗
0 − ϕ∗(y)), y ∈ ω, (9.137)

where we have introduced the notation (see Eqs. (9.122) and (9.126))

ϕ∗(y) = y21
2R∗

1
+ y22

2R∗
2
. (9.138)

Furthermore, by stretching the normal coordinate, Eq. (9.128) is reduced to

− p(y) = ε−1A33
∂w

∂ζ
+ A13∇y · v

∣∣∣∣
ζ=0

, y ∈ ω. (9.139)

The boundary conditions (9.125) on the substrate surface (see Eqs. (9.118) and
(9.127))

ζ = h∗(1 + εψ∗(y)) (9.140)

take the following form:

v
(
y, h∗ + εh∗ψ∗(y)

) = 0, w
(
y, h∗ + εh∗ψ∗(y)

) = 0. (9.141)

Observe that among Eqs. (9.134)–(9.137), (9.139) and (9.141), there are only two
inhomogeneous equations, namely (9.137) and (9.139). The form of (9.137) suggests
the asymptotic expansion

w(y, ζ ) = εw0(y, ζ ) + ε2w1(y, ζ ) + · · · . (9.142)

In light of (9.139) and (9.142), we suggest that p(y) = O(1) as ε → 0. Taking
into account the homogeneous conditions (9.136), (9.141), we set

v(y, ζ ) = εv0(y, ζ ) + ε2v1(y, ζ ) + · · · . (9.143)
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We emphasize that the asymptotic ansatz (9.142), (9.143) is valid only inside the
contact region ω. In other words, a plane boundary layer should be constructed near
the edge of the contact area. We refer to [3, 13] for more details.

9.2.4 Derivation of Asymptotic Expansions

Substituting (9.142) and (9.143) into Eqs. (9.134) and (9.135), we obtain

ε−2A44
∂2v0

∂ζ 2 + ε−1
(

(A13 + A44)∇y
∂w0

∂ζ
+ A44

∂2v1

∂ζ 2

)

+ ε0
{

A66Δyv0 + (A11 + A66)∇y∇y · v0

+ (A13 + A44)∇y
∂w1

∂ζ
+ A44

∂2v2

∂ζ 2

}
+ · · · = 0, (9.144)

ε−2A33
∂2w0

∂ζ 2 + ε−1
(

A33
∂2w1

∂ζ 2 + (A13 + A44)∇y · ∂v0

∂ζ

)
+ ε0

{
A33

∂2w2

∂ζ 2

+ (A13 + A44)∇y · ∂v1

∂ζ
+ A44Δyw0

}
+ · · · = 0. (9.145)

Further, by substituting (9.142) and (9.143) into the boundary conditions (9.136)
and (9.139) at the contact region, we find

ε−1 ∂v0

∂ζ
+ ε0

(
∇yw0 + ∂v1

∂ζ

)
+ ε

(
∇yw1 + ∂v2

∂ζ

)
+ · · ·

∣∣∣∣
ζ=0

= 0, (9.146)

A33
∂w0

∂ζ
+ ε

(
A13∇y · v0 + A33

∂w1

∂ζ

)

+ ε2
(

A13∇y · v1 + A33
∂w2

∂ζ

)
+ · · ·

∣∣∣∣
ζ=0

= −p(y). (9.147)

The substitution of (9.142), (9.143) into Eqs. (9.141) then yields

v0 + ε

(
v1 + H̃∗

∂v0

∂ζ

)
+ ε2

(
v2 + H̃∗

∂v1

∂ζ
+ H̃2∗

2

∂2v0

∂ζ 2

)
+ · · ·

∣∣∣∣
ζ=h∗

= 0, (9.148)
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w0+ε

(
w1+ H̃∗

∂w0

∂ζ

)
+ε2

(
w2+ H̃∗

∂w1

∂ζ
+ H̃2∗

2

∂2w0

∂ζ 2

)
+· · ·

∣∣∣∣
ζ=h∗

= 0, (9.149)

where we have used notation (9.131).
Thus, on the basis of Eqs. (9.144)–(9.149), we have arrived at a recurrence system

of boundary-value problems for the functions vk and wk (k = 0, 1, . . .). Let us
construct the first several terms of the asymptotic series (9.142) and (9.143).

9.2.5 Asymptotic Solution for a Thin Compressible Layer

According to (9.144)–(9.149), the first-order problem takes the form

∂2w0

∂ζ 2 = 0, ζ ∈ (0, h∗), A33
∂w0

∂ζ

∣∣∣∣
ζ=0

= −p(y), w0
∣∣
ζ=h∗ = 0; (9.150)

∂2v0

∂ζ 2 = 0, ζ ∈ (0, h∗),
∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=h∗ = 0. (9.151)

From (9.150) and (9.151), it immediately follows that

w0(y, ζ ) = p(y)

A33
(h∗ − ζ ), (9.152)

v0(y, ζ ) ≡ 0. (9.153)

As a consequence of (9.153), the second-order problem, derived from (9.144)–
(9.149) is

∂2w1

∂ζ 2 = 0, ζ ∈ (0, h∗),

∂w1

∂ζ

∣∣∣∣
ζ=0

= 0, w1
∣∣
ζ=h∗ = −H̃∗(y)

∂w0

∂ζ

∣∣∣∣
ζ=h∗

; (9.154)

A44
∂2v1

∂ζ 2 = −(A13 + A44)∇y
∂w0

∂ζ
, ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇yw0
∣∣
ζ=0, v1

∣∣
ζ=h∗ = 0. (9.155)
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It is readily seen that the solution of the problem (9.154) is given by

w1(y, ζ ) = p(y)

A33
H̃∗(y). (9.156)

On the other hand, the solution of the problem (9.155) is

v1(y, ζ ) = Ψ (ζ )∇y p(y), (9.157)

where we have introduced the notation

Ψ (ζ ) = (A13 + A44)

2A33A44
(h∗ − ζ )2 − h∗ A13

A33A44
(h∗ − ζ ). (9.158)

Collecting Eqs. (9.142), (9.152) and (9.156), we arrive at the two-term asymptotic
approximation for the normal displacement

w(y, ζ ) � ε
p(y)

A33
(h∗ − ζ ) + ε2

p(y)

A33
H̃∗(y). (9.159)

By taking into account the scaling relations (9.130), we rewrite (9.159) in the form

u3(y, z) � p(y)

A33

(
h + H̃(y) − z

)
. (9.160)

By substituting the expression (9.160) into the contact condition

u3(y, 0) = δ0 − ϕ(y), y ∈ ω, (9.161)

we derive the following equation for the contact pressure density:

h + H̃(y)

A33
p(y) = δ0 − ϕ(y), y ∈ ω. (9.162)

In light of the condition p(y) > 0 for y ∈ ω, we obtain

p(y) = A33

h + H̃(y)

(
δ0 − ϕ(y)

)
+, (9.163)

where (x)+ = max{x, 0} is the positive-part function.
Invoking the notation (9.132) for the variable thickness of the elastic layer, we

rewrite formula (9.163) as

p(y) = A33

H(y)

(
δ0 − ϕ(y)

)
+. (9.164)
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Formula (9.164) shows that a thin compressible elastic layer deforms like a
Winkler foundation with the variable foundation modulus

k(y) = A33

H(y)
. (9.165)

Let us recall that the elastic parameter A33 is related to Young’s moduli, E and
E ′, and Poisson’s ratios, ν and ν′, by the formulas

A33 = E ′(1 − ν)

1 − ν − 2E

E ′ ν′2
, (9.166)

Finally, according to [16] (see also Sect. 2.4), the denominator of (9.166) would
approach zero if the layer material became more incompressible. It is readily seen
from (9.165) that k(y) → ∞ in the incompressibility limit, implying that the case
of an incompressible elastic layer requires special consideration.

9.2.6 Asymptotic Solution for a Thin Incompressible Layer

Let us continue the process of constructing terms of the asymptotic expansions
(9.142) and (9.143). In light of (9.156), Eqs. (9.144)–(9.149) yield the following
third-order problem:

A33
∂2w2

∂ζ 2 = −(A13 + A44)∇y · ∂v1

∂ζ
− A44Δyw0, ζ ∈ (0, h∗),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v1
∣∣
ζ=0, w2

∣∣
ζ=h∗ = 0; (9.167)

∂2v2

∂ζ 2 = 0, ζ ∈ (0, h∗),

∂v2

∂ζ

∣∣∣∣
ζ=0

= −∇yw1
∣∣
ζ=0, v2

∣∣
ζ=h∗ = −H̃∗(y)

∂v1

∂ζ

∣∣∣∣
ζ=h∗

. (9.168)

Substituting (9.152) and (9.157) into Eqs. (9.167), we derive the problem

∂2w2

∂ζ 2 = A13Δy p(y)

A2
33A44

[
(A13 + 2A44)(h∗ − ζ ) − (A13 + A44)h∗

]
, ζ ∈ (0, h∗),

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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∂w2

∂ζ

∣∣∣∣
ζ=0

= − A13(A44 − A13)h2∗
2A2

33A44
Δy p(y), w2

∣∣
ζ=h∗ = 0. (9.169)

It can be verified that the solution to (9.169) condenses into the form

w2(y, ζ ) = A13Δy p(y)

A2
33

{
A13 + 2A44

6A44
(h∗ − ζ )3

− (A13 + A44)h∗
2A44

(h∗ − ζ )2 + h2∗
2

(h∗ − ζ )

}
. (9.170)

Further, in light of (9.156) and (9.157), the problem (9.168) takes the form

∂2v2

∂ζ 2 = 0, ζ ∈ (0, h∗),

∂v2

∂ζ

∣∣∣∣
ζ=0

= −∇y(pH̃∗)
A33

, v2
∣∣
ζ=h∗ = − A13h∗

A33A44
H̃∗∇y p, (9.171)

where we have omitted the arguments of functions p(y) and H̃∗(y) for clarity.
It can be easily verified that the solution to (9.171) has the form

v2(y, ζ ) = h∗ − ζ

A33
∇y(pH̃∗) − A13h∗

A33A44
H̃∗∇y p. (9.172)

We emphasize that in contrast to the two-term approximation (9.159), the third
term (9.170) does not vanish at the contact interface in the limit as ν → 0.5. Indeed,
formula (9.170) yields

w2(y, 0) = −h3∗ A13(A13 − A44)

3A2
33A44

Δy p(y). (9.173)

In the incompressibility limit, we have

A13(A13 − A44)

A2
33A44

→ 1

a44
, (9.174)

where a44 = A44 = G ′ is the out-of-plane shear modulus.
In order to construct a correction for the leading asymptotic term (9.170), we

consider the following problem:

A33
∂2w3

∂ζ 2 = −(A13 + A44)∇y · ∂v2

∂ζ
− A44Δyw1, ζ ∈ (0, h∗),
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A33
∂w3

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v2
∣∣
ζ=0, w3

∣∣
ζ=h∗ = −H̃∗(y)

∂w2

∂ζ

∣∣∣∣
ζ=h∗

. (9.175)

By substituting (9.156), (9.170) and (9.172) into Eqs. (9.175), we find

∂2w3

∂ζ 2 = A13

A2
33

Δy(pH̃∗), ζ ∈ (0, h∗), (9.176)

∂w3

∂ζ

∣∣∣∣
ζ=0

= A13h∗
A2
33A44

(
A13∇y · (H̃∗∇y p) − A44Δy(pH̃∗)

)
, (9.177)

w3
∣∣
ζ=h∗ = A13h2∗

2A2
33

H̃∗Δy p. (9.178)

Integrating Eq. (9.176), we obtain

w3(y, 0) = A13

2A2
33

Δy(pH̃∗)ζ 2 + C1(y)ζ + C0(y), (9.179)

where the integration functions C1(y) and C0(y) are determined by the boundary
conditions (9.177) and (9.178). It can be checked that

C1(y) = A13h∗
A2
33A44

(
A13∇y · (H̃∗∇y p) − A44Δy(pH̃∗)

)
, (9.180)

C0(y) = A13h2∗
2A2

33

[H̃∗Δy p + Δy(pH̃∗)] − A2
13h2∗

A2
33A44

∇y · (H̃∗∇y p). (9.181)

From (9.179), it immediately follows that

w3(y, 0) = C0(y), (9.182)

and it can be shown that in the incompressibility limit (when A13/A33 → 1 and
A44/A33 → 0), we arrive at the following result:

C0(y) = − h2∗
a44

∇y · (H̃∗∇y p). (9.183)

Thus, collecting Eqs. (9.142), (9.173), (9.182) and (9.183), we obtain the follow-
ing two-term asymptotic approximation for the normal displacement at the contact
interface in the case of the incompressible elastic layer:

w(y, 0) � −ε3
h3∗
3a44

Δy p(y) − ε4
h2∗
a44

∇y · (H̃∗(y)∇y p(y)). (9.184)
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Recalling the scaling relations (9.130) and the notation a44 = G ′, we rewrite (9.184)
in the form

u3(y, 0) � − h3

3G ′ Δy p(y) − h2

G ′ ∇y · (H̃(y)∇y p(y)). (9.185)

Now, substituting the expression (9.185) into the contact condition (9.161), we
arrive at a partial differential equation in the domain ω with respect to the func-
tion p(y). According to the asymptotic analysis [13] (see also Sect. 2.7.3), at the
contour Γ of ω, we impose the following boundary conditions:

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ. (9.186)

Here, ∂/∂n is the normal derivative. We underline that the location of the contour Γ

must be determined as part of the solution. For analytical evaluation of the contourΓ ,
a perturbation-based method was developed in [8].

9.2.7 Perturbation of the Contact Pressure
in the Compressible Case

Collecting Eqs. (9.142), (9.152), (9.156), (9.170) and (9.179), we obtain

w(y, 0) � ε
h∗
A33

p(y) + ε2
H̃∗(y)

A33
p(y) − ε3

h3∗ A13(A13 − A44)

3A2
33A44

Δy p(y)

+ ε4
{

h2∗ A13

2A2
33

[
H̃∗(y)Δy p(y) + Δy

(
p(y)H̃∗(y)

)]

− h2∗ A2
13

A2
33A44

∇y · (H̃∗(y)∇y p(y)
)}

. (9.187)

By substitution of the asymptotic expansion (9.187) into the contact condition
(9.137) and using the notation (9.131), we arrive at the equation

p(y) + εψ∗(y)p(y) − ε2
h3∗ A13(A13 − A44)

3A33A44
Δy p(y)

+ ε3
A13h2∗

2A33A44

{
A44

[
ψ∗(y)Δy p(y) + Δy

(
p(y)ψ∗(y)

)]

− 2A13∇y · (ψ∗(y)∇y p(y)
)} = A33

h∗
f ∗(y), (9.188)

where we have introduced the shorthand notation

f ∗(y) = δ∗
0 − ϕ∗(y). (9.189)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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It should be noted that Eq. (9.188) is applied in the case of compressible materials
when its right-hand side makes sense.

By employing a perturbation method, the third-order asymptotic solution to
Eq. (9.188) is expressed in the form

p(y) � A33

h∗
(
σ0(y) + εσ1(y) + ε2σ2(y) + ε3σ3(y)

)
. (9.190)

Upon substitution of (9.195) into (9.188), we straightforwardly obtain

σ0 = f ∗, σ1 = −ψ∗ f ∗, σ2 = ψ2∗ f ∗ + h2∗ A13(A13 − A44)

3A33A44
Δy f ∗, (9.191)

σ3 = −ψ3∗ f ∗ − h2∗ A13(A13 − A44)

3A33A44

(
ψ∗Δy f ∗ + Δy(ψ∗ f ∗)

)

− h2∗ A13

2A33A44

{
A44

[
ψ∗Δy f ∗ + Δy( f ∗ψ∗)

] − 2A13∇y · (ψ∗∇y f ∗)
}
, (9.192)

where, for the sake of brevity, the argument y is omitted.
Further, by making use of the differential identities

∇ · (ψ∇ f ) = ∇ψ · ∇ f + ψΔ f,

Δ( f ψ) = ψΔ f + f Δψ + 2∇ f · ∇ψ,

we simplify formula (9.192) as follows:

σ3 = −ψ3∗ f ∗ − h2∗ A13(2A13 + A44)

6A33A44
f ∗Δyψ∗

+ h2∗ A13(A13 − A44)

3A33A44

(∇y f ∗ · ∇yψ∗ + ψ∗Δy f ∗). (9.193)

Observe also that formula (9.181) can be transformed to

C0(y) = −h2∗ A13(A13 − A44)

A2
33A44

[∇y H̃∗ ·∇y p + H̃∗Δy p
]+ h2∗ A13

2A2
33

pΔy H̃∗, (9.194)

where the expression in the brackets in (9.194) is equal to ∇y · (H̃∗∇y p).
In the isotropic case, Eqs. (9.190)–(9.193) reduce to the following [5]:

p(y) � 2μ + λ

h∗
(
σ0(y) + εσ1(y) + ε2σ2(y) + ε3σ3(y)

)
, (9.195)
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σ0 = f ∗, σ1 = −ψ∗ f ∗, σ2 = ψ2∗ f ∗ + h2∗λ(λ − μ)

3μ(2μ + λ)
Δy f ∗, (9.196)

σ3 = −ψ3∗ f ∗ − h2∗λ(2λ + μ)

6μ(2μ + λ)
f ∗Δyψ∗

+ h2∗λ(λ − μ)

3μ(2μ + λ)

(∇y f ∗ · ∇yψ∗ + ψ∗Δy f ∗). (9.197)

It can be easily checked that the four-term asymptotic expansion (9.195), with the
coefficients given by (9.196) and (9.197) in the 2D case, recovers the corresponding
solution obtained in [21], where the next asymptotic term for the contact pressure in
(9.195) was given explicitly.

9.2.8 Application to Sensitivity Analysis of the Contact
Interaction Between Two Thin Incompressible Layers

According to (9.185) and (9.186), the refined asymptoticmodel for contact interaction
of thin incompressible layers bonded to rigid substrates takes the form

− m−1Δy p(y) −
2∑

n=1

h2
n

G ′
n
∇y · (H̃n(y)∇y p(y)) = δ0 − ϕ(y), y ∈ ω̃, (9.198)

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ̃ , (9.199)

where Γ̃ is the contour of the contact region ω̃, and m is given in (9.117).
Let us define

p(y) = p̄(y) + p̃(y), (9.200)

where p̄(y) is the solution to the original asymptotic model (9.112), (9.113), and
p̃(y) represents a perturbation due to the variability of the layer thickness.

Then, under the assumption that the thickness variation functions H̃1(y) and H̃2(y)

introduce a small variation into the elliptical contact region ω corresponding to the
density p̄(y), we derive from (9.198)–(9.200) the following limit problem for the
variation of the contact pressure density:

− m−1Δy p̃(y) =
2∑

n=1

h2
n

G ′
n
∇y · (H̃n(y)∇y p̄(y)), y ∈ ω, (9.201)

p̃(y) = 0, y ∈ Γ. (9.202)
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Here, Γ is the contour corresponding to the contact pressure (9.115).
Moreover, the thickness variation functions H̃1(y) and H̃2(y) will not greatly

influence the resulting force-displacement relationship, if

∫∫

ω

p̃(y) dy = 0. (9.203)

In this case, the contact force P is related to the displacement δ0 by the same relation
as that derived in framework of the original asymptotic model (9.112), (9.113).

Let us derive the conditions for H̃1(y) and H̃2(y) under which the equality (9.203)
holds true. With this aim we consider an auxiliary problem

ΔyΘ(y) = 1, y ∈ ω, Θ(y) = 0, y ∈ Γ (9.204)

with the solution

Θ(y) = − a2
1a2

2

2(a2
1 + a2

2)
θ(y),

where

θ(y) = 1 − y21
a2
1

− y22
a2
2

. (9.205)

As a result of (9.204), we rewrite Eq. (9.203) as

∫∫

ω

p̃(y)ΔyΘ(y) dy = 0. (9.206)

Applying the secondGreen’s formula and taking into accountEqs. (9.201), (9.202)
and (9.204), we reduce Eq. (9.206) to

∫∫

ω

θ(y)

2∑
n=1

h2
n

G ′
n
∇y · (H̃n(y)∇y p̄(y)) dy = 0. (9.207)

After rewriting Eq. (9.207) in the form

∫∫

ω

θ(y)

2∑
k=1

∂

∂yk

(
∂ p̄

∂yk
(y)

2∑
n=1

h2
n

G ′
n

H̃n(y)

)
dy = 0



328 9 Sensitivity Analysis of Articular Contact Mechanics

and integrating by parts with (9.205) taken into account, we find

−
∫∫

ω

2∑
k=1

2yk

a2
k

∂ p̄

∂yk
(y)

2∑
n=1

h2
n

G ′
n

H̃n(y) dy

+
∫

Γ

θ(y)

2∑
k=1

cos(n, yk)
∂ p̄

∂yk
(y)

2∑
n=1

h2
n

G ′
n

H̃n(y) dsy = 0. (9.208)

It is clear that the line integral in (9.208) vanishes due to the boundary condition
(9.205). Hence, taking into account the exact expression (9.115) for p̄(y), we finally
transform Eq. (9.208) into

2∑
n=1

h2
n

G ′
n

∫∫

ω

H̃n(y)ρ(y) dy = 0, (9.209)

where we have introduced the notation

ρ(y) =
(

sy21
a2
1

+ y22
sa2

2

)(
1 − y21

a2
1

− y22
a2
2

)
. (9.210)

Based on the derived Eq. (9.209), we suggest the following optimization criterion
for determining the average thicknesses h1 and h2:

min
hn

∫∫

ω∗

(Hn(y) − hn)
2ρ∗(y) dy. (9.211)

Here, ω∗ is a characteristic elliptic domain with semi-axes a∗
1 and a∗

2 . In particular,
in the capacity of ω∗ we can take the average elliptic contact area for a class of
admissible contact loadings, while ρ∗(y) is given by

ρ∗(y) =
(

s∗y21
a∗
1
2 + y22

s∗a∗
2
2

)(
1 − y21

a∗
1
2 − y22

a∗
2
2

)
, (9.212)

where s∗ = a∗
2/a∗

1 is the aspect ratio of ω∗.
It is clear that the necessary optimality condition for (9.211) has the form

∫∫

ω∗

(Hn(y) − hn)ρ∗(y) dy = 0, (9.213)
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from which it follows that

hn = 1

R∗

∫∫

ω∗

Hn(y)ρ∗(y) dy, (9.214)

where

R∗ =
∫∫

ω∗

ρ∗(y) dy = π

12

(
a∗2
1 + a∗2

2

)
.

It remains to show that Eq. (9.209) follows from (9.213) if ω∗ coincides with ω.
Indeed, as a consequence of (9.132), Eq. (9.213) is equivalent to the following:

∫∫

ω∗

H̃n(y)ρ∗(y) dy = 0, n = 1, 2. (9.215)

By adding the two equations above, multiplied by h2
n/G ′

n , n = 1, 2, respectively, we
arrive at Eq. (9.209).

It is interesting to observe that Eq. (9.214) indicates that, in order to obtain the
optimal average thickness hn , the corresponding variable thickness Hn(y) has been
averaged with the weight function ρ∗(y) given by (9.212).

To conclude, we note that in the case of compressible layers, the optimal value of
the average thickness hn coincides with the simple average of Hn(y).
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