
Chapter 8
Contact of Thin Inhomogeneous
Transversely Isotropic Elastic Layers

Abstract In this chapter we consider contact problems for thin bonded inhomo-
geneous transversely isotropic elastic layers. In particular, in Sects. 8.1 and 8.2, the
deformation problems are studied for the cases of elastic layers with the out-of-
plane and thickness-variable inhomogeneous properties, respectively. In Sect. 8.3, the
axisymmetric frictionless contact problems for thin incompressible inhomogeneous
elastic layers are studied in detail in the framework of the leading-order asymptotic
model. Finally, the deformation problem for a transversely isotropic elastic layer
bonded to a rigid substrate, and coated with a very thin elastic layer made of another
transversely isotropic material is analyzed in Sect. 8.4.

8.1 Deformation of an In-Plane Inhomogeneous Elastic
Layer

In the present section, the leading-order asymptotic models for the local indentation
of compressible and incompressible elastic layers developed in Chaps. 1 and 2 are
generalized for elastic layers with in-plane inhomogeneous material properties.

8.1.1 Deformation Problem Formulation

Recall that the constitutive relationship for a transversely isotropic media based in
the Cartesian coordinates (y1, y2, z), where the Oy1y2 plane coincides with the plane
of elastic symmetry, has the following form [9]:

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.1)
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In this section, we assume that the elastic constants Akl are functions of the
in-plane coordinates y = (y1, y2), so that the layer possesses an in-plane inhomo-
geneity.

By substituting the components of strain

εαβ = 1

2

(∂vα

∂yβ

+ ∂vβ

∂yα

)
, α, β = 1, 2,

ε3α = 1

2

( ∂w

∂yα

+ ∂vα

∂z

)
, ε33 = ∂w

∂z

into Hooke’s law (8.1), we obtain the stress-displacement relations

σ11 = A11
∂v1
∂y1

+ A12
∂v2
∂y2

+ A13
∂w

∂z
, σ23 = A44

( ∂w

∂y2
+ ∂v2

∂z

)
,

σ22 = A12
∂v1
∂y1

+ A11
∂v2
∂y2

+ A13
∂w

∂z
, σ13 = A44

( ∂w

∂y1
+ ∂v1

∂z

)
,

σ33 = A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z
, σ12 = A66

(∂v1
∂y2

+ ∂v2
∂y1

)
,

(8.2)

where A12 = A11 − 2A66 due to the in-plane symmetry properties.
The substitution of the above expressions into the equilibrium equations

∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
= 0, i = 1, 2, 3,

yields the system of Lamé equations

L(∇y)v + ∇y

(
A13

∂w

∂z

)
+ A44∇y

∂w

∂z
+ A44

∂2v
∂z2

= 0, (8.3)

∇y · (A44∇yw) + ∂

∂z
∇y · (A44v) + ∂

∂z
A13∇y · v + A33

∂2w

∂z2
= 0, (8.4)

where ∇y = (∂/∂y1, ∂/∂y2) is the in-plane Hamilton operator, the scalar product is
denoted by a dot, and L(∇y) is a 2 × 2 matrix differential operator such that

Lαα(∇y) = ∂

∂yα

(
A11

∂

∂yα

)
+ ∂

∂y3−α

(
A66

∂

∂y3−α

)
,

Lαβ(∇y) = ∂

∂yα

(
A12

∂

∂yβ

)
+ ∂

∂yβ

(
A66

∂

∂yα

)
, α, β = 1, 2, α �= β.

We consider the deformation of a thin in-plane inhomogeneous elastic layer (with
the elastic constants Akl(y)) of uniform thickness, h, ideally bonded to a rigid
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p(y1,n y2)

y1
h

z

Fig. 8.1 An in-plane inhomogeneous elastic layer of uniform thickness bonded to a rigid substrate
and supporting a distributed normal load

substrate (see Fig. 8.1). At the bottom surface of the layer, z = h, the following
boundary conditions are imposed:

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (8.5)

On the upper surface of the elastic layer, we impose the boundary conditions of
normal loading with no tangential tractions

σ13
∣∣
z=0 = σ23

∣∣
z=0 = 0, σ33

∣∣
z=0 = −p, (8.6)

where the normal load p(y) is a given (sufficiently smooth) function of the in-plane
coordinates y = (y1, y2).

The problem (8.3)–(8.6) generalizes the deformation problem studied in Chaps. 1
and2 for the case of transversely isotropic elastic layerswith in-plane inhomogeneous
properties.

8.1.2 Perturbation Analysis of the Deformation Problem

Assuming that the elastic layer is relatively thin, we require that

h = εh∗, (8.7)

where ε is a small positive parameter, and h∗ is a characteristic length, which is
assumed to be independent of ε.

By introducing the so-called “stretched” dimensional normal coordinate

ζ = z

ε
, (8.8)

we transform the Lamé equations (8.3), (8.4) into the following:

1

ε2
A44

∂2v
∂ζ 2 + 1

ε

∂

∂ζ

(∇y(A13w) + A44∇yw
) + L(∇y)v = 0, (8.9)

1

ε2
A33

∂2w

∂ζ 2 + 1

ε

∂

∂ζ

(∇y · (A44v) + A13∇y · v
) + ∇y · (A44∇yw) = 0. (8.10)
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Correspondingly, the boundary conditions (8.6) become

1

ε

∂v
∂ζ

+ ∇yw

∣∣∣∣
ζ=0

= 0, (8.11)

1

ε
A33

∂w

∂ζ
+ A13∇y · v

∣∣∣∣
ζ=0

= −p. (8.12)

As before, we apply the perturbation algorithm [14] to construct an approximate
solution to the system (8.5), (8.9)–(8.12) in the form of asymptotic expansions

v = εv0(y, ζ ) + ε2v1(y, ζ ) + · · · , (8.13)

w = εw0(y, ζ ) + ε2w1(y, ζ ) + · · · , (8.14)

where the successive coefficients of the powers of ε are independent of ε.
Following the standard procedure of the perturbation technique, we derive a set

of equations for the terms of expansions (8.13) and (8.14). In particular, the leading
terms of the asymptotic expansions are determined as solutions of the problems

A44
∂2v0

∂ζ 2 = 0, ζ ∈ (0, h∗),
∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=h∗ = 0; (8.15)

A33
∂2w0

∂ζ 2 = 0, ζ ∈ (0, h∗), A33
∂w0

∂ζ

∣∣∣∣
ζ=0

= −p, w0
∣∣
ζ=h∗ = 0, (8.16)

from here it follows that

v0(y, ζ ) ≡ 0, w0(y, ζ ) = p(y)

A33
(h∗ − ζ ). (8.17)

The next two terms of the asymptotic expansions (8.13) and (8.14) satisfy the
problems

A44
∂2v1

∂ζ 2 = −∇y

(
A13

∂w0

∂ζ

)
− A44∇y

∂w0

∂ζ
, ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇yw0
∣∣
ζ=0, v1

∣∣
ζ=h∗ = 0; (8.18)

A33
∂2w1

∂ζ 2 = − ∂

∂ζ
∇y · (A44v0) − A13

∂

∂ζ
∇y · v0, ζ ∈ (0, h∗),

A33
∂w1

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v0
∣∣
ζ=0, w1

∣∣
ζ=h∗ = 0. (8.19)
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In light of (8.17)1, from (8.19), it immediately follows that

w1(y, ζ ) ≡ 0, (8.20)

while the substitution of (8.17)2 into Eq. (8.18) leads to the problem

A44
∂2v1

∂ζ 2 = ∇y

( A13

A33
p
)

+ A44∇y

( p

A33

)
, ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −h∗∇y

( p

A33

)
, v1

∣∣
ζ=h∗ = 0.

(8.21)

As the elastic constants and the normal load are functions of the in-plane coordi-
nates only, the right-hand side of Eq. (8.21)1 is independent of ζ . Thus, the double
integration of Eq. (8.21)1 with the boundary conditions (8.21)2 and (8.21)3 taken into
account yields

v1(y, ζ ) = − (h2∗ − ζ 2)

2A44
∇y

( A13

A33
p
)

+ (h∗ − ζ )2

2
∇y

( p

A33

)
. (8.22)

The second non-trivial term of the asymptotic expansion satisfies the problem

A33
∂2w2

∂ζ 2 = − ∂

∂ζ

[∇y · (A44v1) − A13∇y · v1
] − ∇y · (

A44∇yw0),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v1
∣∣
ζ=0, w2

∣∣
ζ=h∗ = 0.

In light of (8.17)2 and (8.22), the above equations take the form

A33
∂2w2

∂ζ 2 = −ζΔy

( A13

A33
p
)

− ζ A13∇y ·
(

1

A44
∇y

( A13

A33
p
))

+ (h∗ − ζ )A13Δy

( p

A33

)
, ζ ∈ (0, h∗), (8.23)

∂w2

∂ζ

∣∣∣∣
ζ=0

= h2∗ A13

2A33

[
∇y ·

(
1

A44
∇y

( A13

A33
p
))

− Δy

( p

A33

)]
, w2

∣∣
ζ=h∗ = 0.

Integrating Eq. (8.23)1 and taking into account the boundary condition (8.23)2 at
ζ = 0, we obtain

A33
∂w2

∂ζ
= −ζ 2

2
Δy

( A13

A33
p
)

+ (h2∗ − ζ 2)

2
A13∇y ·

(
1

A44
∇y

( A13

A33
p
))

+
(

h∗ζ − ζ 2

2
− h2∗

2

)
A13Δy

( p

A33

)
, ζ ∈ (0, h∗),
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By integrating the above equation and taking into account the boundary condition
(8.23)3 at ζ = h∗, we arrive at the formula

w2(y, ζ ) = 1

6A33
(h3∗ − ζ 3)Δy

( A13

A33
p
)

− A13

6A33
(h∗ − ζ )2(ζ + 2h∗)∇y ·

(
1

A44
∇y

( A13

A33
p
))

+ A13

6A33
(h∗ − ζ )3Δy

( p

A33

)
, (8.24)

where for brevity we do not show the argument y of the functions p(y), A13(y),
A33(y), and A44(y).

8.1.3 Local Indentation of the In-Plane Inhomogeneous
Layer: Leading-Order Asymptotics for the Compressible
and Incompressible Cases

Recall that the local indentation of an elastic layer is defined as

w0(y) ≡ w(y, 0),

where w(y, 0) is the normal displacement of the layer surface.
In the case of the compressible layer, Eqs. (8.7), (8.8), (8.14), and (8.17)2 yield

w0(y) � h

A33(y)
p(y), (8.25)

so that the deformation response of the elastic layer is analogous to that of a Winkler
elastic foundation with the variable modulus

k(y) = A33(y)

h
. (8.26)

We emphasize that formula (8.26) is valid for a thin bonded compressible transversely
isotropic elastic layer with in-plane inhomogeneous properties.

When the material approaches the incompressible limit, the right-hand side of
(8.26) increases unboundedly and the first term in the asymptotic expansion (8.14)
disappears. Consequently, the ratios A44/A33 and A13/A33 tend to 0 and 1, respec-
tively.

Therefore, in the limit situation, formula (8.24) reduces to

w2(y, ζ ) = −1

6
(h∗ − ζ )2(ζ + 2h∗)∇y ·

( 1

A44
∇y p

)
. (8.27)
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In the case of an incompressible bonded elastic layer, formulas (8.7), (8.8), (8.14),
and (8.27) give

w0(y) � −h3

3
∇y ·

(
1

a44(y)
∇y p(y)

)
, (8.28)

where a44 = A44 is the out-of-plane shear modulus.

8.2 Deformation of an Elastic Layer
with Thickness-Variable Inhomogeneous Properties

In the present section, the leading-order asymptotic models for the local indentation
of thin bonded compressible and incompressible elastic layers developed in Chaps. 1
and 2 are generalized for elastic layers with the so-called thickness-variable inho-
mogeneous material properties.

8.2.1 Deformation Problem Formulation

Let us consider the deformation of a thin transversely isotropic inhomogeneous elas-
tic layer of uniform thickness, h, with variable properties across the layer thickness
(see Fig. 8.2). If the plane of isotropy is parallel to the layer surface, the stress-
displacement relations take the form

σ11 = A11
∂v1
∂y1

+ A12
∂v2
∂y2

+ A13
∂w

∂z
, σ23 = A44

( ∂w

∂y2
+ ∂v2

∂z

)
,

σ22 = A12
∂v1
∂y1

+ A11
∂v2
∂y2

+ A13
∂w

∂z
, σ13 = A44

( ∂w

∂y1
+ ∂v1

∂z

)
,

σ33 = A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z
, σ12 = A66

(∂v1
∂y2

+ ∂v2
∂y1

)
.

(8.29)

Here, u = (u, w) is the displacement vector, v and w are the in-plane and out-of-
plane displacements, respectively, both of which are functions of three-dimensional
Cartesian coordinates (y, z).

p(y1,n y2)

y1
h

z

Fig. 8.2 A thickness-variable inhomogeneous elastic layer of uniform thickness bonded to a rigid
substrate and supporting a distributed normal load

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Let us assume that the elastic constants Akl are represented in the form

Akl = αkl

( z

h

)
, (8.30)

or, equivalently, the material properties are expressed as functions of the normal-
ized depth coordinate z/h. Note that according to the terminology introduced in
[11, 12], we consider a transversely isotropic, transversely homogeneous (TITH)
elastic model.

The substitution of the stress-displacement relations (8.29) into the equations of
equilibrium

∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
= 0, i = 1, 2, 3,

yields the Lamé equations

A66Δyv + (A11 − A66)∇y∇y · v + A13
∂

∂z
∇yw

+ ∂

∂z
(A44∇yw) + ∂

∂z

(
A44

∂v
∂z

)
= 0, (8.31)

∂

∂z
(A13∇y · v) + A44

∂

∂z
∇y · v + A44Δyw + ∂

∂z

(
A33

∂w

∂z

)
= 0, (8.32)

where∇y = (∂/∂y1, ∂/∂y2) andΔy = ∇y ·∇y are the in-planeHamilton andLaplace
operators, respectively, and the scalar product is denoted by a dot.

Let us assume that the elastic layer is loaded on the upper surface, z = 0, with a
normal load, p, without tangential tractions, and that it is perfectly attached to a rigid
substrate at the bottom surface, z = h, so that the following boundary conditions
take place:

σ13
∣∣
z=0 = σ23

∣∣
z=0 = 0, σ33

∣∣
z=0 = −p, (8.33)

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (8.34)

As before, we are interested in the case where the applied load p is specified on
the whole upper surface of the layer, and is a sufficiently smooth function of the
in-plane coordinates y = (y1, y2).

8.2.2 Perturbation Analysis of the Deformation Problem

We assume that the elastic layer is relatively thin and we set

h = εh∗, (8.35)
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where ε is a small positive parameter, and h∗ is a characteristic length, which is
assumed to be independent of ε.

Let us also introduce the dimensional stretched normal coordinate

ζ = z

ε
, (8.36)

so that in light of (8.30), (8.35), and (8.36), we obtain

Akl = αkl

( ζ

h∗

)
. (8.37)

The substitution of the coordinate change (8.36) into the Lamé equations (8.31),
(8.4) leads to the system

1

ε2

∂

∂ζ

(
A44

∂v
∂ζ

)
+ 1

ε

(
A13

∂

∂ζ
∇yw + ∂

∂ζ
(A44∇yw)

)

+ A66Δyv + (A11 − A66)∇y∇y · v = 0, (8.38)
1

ε2

∂

∂ζ

(
A33

∂w

∂ζ

)
+ 1

ε

( ∂

∂ζ
(A13∇y · v) + A44

∂

∂ζ
∇y · v)

)

+ A44Δyw = 0. (8.39)

Correspondingly, the boundary conditions (8.33) on the upper surface of the layer
become

1

ε

∂v
∂ζ

+ ∇yw

∣∣∣∣
ζ=0

= 0, (8.40)

1

ε
A33

∂w

∂ζ
+ A13∇y · v

∣∣∣∣
ζ=0

= −p. (8.41)

The boundary conditions (8.34) on the bottom surface then take the form

v
∣∣
ζ=h∗ = 0, w

∣∣
ζ=h∗ = 0. (8.42)

Using the perturbation algorithm [14], we construct an approximate solution to
the system (8.38)–(8.42) in the form of asymptotic expansions

v = εv0(y, ζ ) + ε2v1(y, ζ ) + · · · , (8.43)

w = εw0(y, ζ ) + ε2w1(y, ζ ) + · · · , (8.44)

where the successive coefficients of the powers of ε are assumed to be independent
of the small parameter ε.

The substitution of the asymptotic expansions (8.43) and (8.44) into Eqs. (8.38)–
(8.42) produces a set of differential equations that must be satisfied for arbitrary ε.
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In particular, the leading terms of the asymptotic expansions (8.43) and (8.44) are
determined as solutions of the following two problems:

∂

∂ζ

(
A44

∂v0

∂ζ

)
= 0, ζ ∈ (0, h∗),

∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=h∗ = 0; (8.45)

∂

∂ζ

(
A33

∂w0

∂ζ

)
= 0, ζ ∈ (0, h∗), A33

∂w0

∂ζ

∣∣∣∣
ζ=0

= −p, w0
∣∣
ζ=h∗ = 0. (8.46)

From (8.45), it immediately follows that

v0(y, ζ ) ≡ 0, (8.47)

while the non-trivial boundary-value problem (8.46) has the following solution:

w0(y, ζ ) = p(y)

h∗∫

ζ

dζ ′

A33(ζ ′)
. (8.48)

As a result of (8.47), it can be easily seen that the problem

∂

∂ζ

(
A33

∂w1

∂ζ

)
= − ∂

∂ζ
(A13∇y · v0) − A44

∂

∂ζ
∇y · v0, ζ ∈ (0, h∗),

A33
∂w1

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v0
∣∣
ζ=0, w1

∣∣
ζ=h∗ = 0

is homogeneous, and therefore its solution is trivial:

w1(y, ζ ) ≡ 0. (8.49)

Simultaneously, for the first non-trivial term of the asymptotic expansion (8.43),
we have the problem

∂

∂ζ

(
A44

∂v1

∂ζ

)
= ∂ A13

∂ζ
∇yw0 − ∂

∂ζ

(
(A13 + A44)∇yw0), ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇yw0
∣∣
ζ=0, v1

∣∣
ζ=h∗ = 0.

(8.50)

To solve the above problem, we first rewrite formula (8.48) in the form

w0(y, ζ ) = p(y)W 0(ζ ), (8.51)
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where we have introduced the notation

W 0(ζ ) =
h∗∫

ζ

dζ ′

A33(ζ ′)
. (8.52)

Observe that we employ the notation A33(ζ ) for brevity, and that as a result of
(8.37), Eq. (8.52) can be written as

W 0(ζ ) =
h∗∫

ζ

1

α33(ζ ′/h∗)
dζ ′.

Thus, according to (8.51), the solution of the system (8.50) can be represented in
the form

v1(y, ζ ) = ∇y p(y)V 1(ζ ), (8.53)

where V 1(ζ ) is a scalar function satisfying the problem

d

dζ

(
A44

dV 1

dζ

)
= −A13

dW 0

dζ
− d

dζ

(
A44W

0), ζ ∈ (0, h∗),

dV 1

dζ

∣∣∣∣
ζ=0

= −W 0(0), V 1
∣∣
ζ=h∗ = 0.

(8.54)

Integrating the differential equation (8.54)1, we obtain

dV 1

dζ
= 1

A44(ζ )

ζ∫

0

A13(ζ
′)

A33(ζ ′)
dζ ′ − W 0(ζ ) + C1

A44(ζ )
,

where C1 is an integration constant. In light of the first boundary condition (8.54),
we readily find that C1 = 0.

Upon integration of the above equation, we arrive at the formula

V 1(ζ ) = −
h∗∫

ζ

(
1

A44(ξ)

ξ∫

0

A13(ζ
′)

A33(ζ ′)
dζ ′ − W 0(ξ)

)
dξ,

which after recalling the definition of the function W 0(ζ ) (see Eq. (8.52)) can be
rewritten as
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V 1(ζ ) = −
h∗∫

ζ

1

A44(ξ)

ξ∫

0

A13(ζ
′)

A33(ζ ′)
dζ ′dξ +

h∗∫

ζ

ξ − ζ

A33(ξ)
dξ. (8.55)

We now return to the problem for the second non-trivial term of the asymptotic
expansion (8.44), that is

∂

∂ζ

(
A33

∂w2

∂ζ

)
= − ∂

∂ζ
(A13∇y · v1) − A44

∂

∂ζ
∇y · v1 − A44Δyw0,

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v1
∣∣
ζ=0, w2

∣∣
ζ=h∗ = 0.

(8.56)

According to (8.51) and (8.53), the solution to the problem (8.56) can be repre-
sented in the form

w1(y, ζ ) = Δy p(y)W 2(ζ ), (8.57)

where W 2(ζ ) is a scalar function satisfying the problem

d

dζ

(
A33

dW 2

dζ

)
= − d

dζ
(A13V

1) − A44
dV 1

dζ
− A44W

0, ζ ∈ (0, h∗),

A33
dW 2

dζ

∣∣∣∣
ζ=0

= −A13V
1
∣∣
ζ=0, W 2

∣∣
ζ=h∗ = 0.

(8.58)

By integrating Eq. (8.58)1 with boundary condition (8.58)2 taken into account,
we find

dW 2

dζ
= − A13

A33
V 1 − 1

A33

ζ∫

0

(ζ − ζ ′) A13(ζ
′)

A33(ζ ′)
dζ ′.

A final integration reveals

W 2(ζ ) =
h∗∫

ζ

A13(η)

A33(η)
V 1(η) dη +

h∗∫

ζ

1

A33(ξ)

ξ∫

0

(ξ − ζ ′) A13(ζ
′)

A33(ζ ′)
dζ ′dξ. (8.59)

By collecting formulas (8.57) and (8.59), we can write out a closed-form repre-
sentation for the function w2(y, ζ ).
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8.2.3 Local Indentation of the Inhomogeneous Layer:
Leading-Order Asymptotics for the Compressible
and Incompressible Cases

In the case of the compressible layer, formulas (8.44), (8.51), and (8.52) yield for
the local indentation

w0(y) ≡ w(y, 0)

the following leading-order asymptotic approximation:

w0(y) � εp(y)

h∗∫

0

dζ

A33(ζ )
.

Following (8.30), (8.35)–(8.37), the above formula can be transformed to

w0(y) � p(y)

h∫

0

dz

A33(z)
. (8.60)

In other words, the deformation response of a thin bonded compressible inhomoge-
neous elastic layer resembles that of a Winkler elastic foundation with the modulus

k =
( h∫

0

dz

A33(z)

)−1

. (8.61)

It is clear that in the case of a thin compressible homogeneous elastic layer formula
(8.61) reduces to (1.65).

When the layer material approaches the incompressibility limit, the ratio A44/A33
vanishes,while the ratio A13/A33 tends to 1.At the same time, theWinkler foundation
modulus k defined by (8.61) tends to infinity. Thus, in the case of the incompressible
layer, formula (8.55) results in the following:

V 1(ζ ) = −
h∗∫

ζ

ξ dξ

a44(ξ)
. (8.62)

Here, a44 = A44 is the out-of-plane shear modulus.

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Correspondingly, Eq. (8.59) reduces to

W 2(ζ ) =
h∗∫

ζ

V 1(η) dη. (8.63)

The substitution of (8.62) into (8.63) reveals

W 2(0) = ζV 1(ζ )

∣∣∣h∗

0
−

h∗∫

0

ζ
dV 1

dζ
(ζ ) dζ

= −
h∗∫

0

ζ 2

a44(ζ )
dζ. (8.64)

Collecting formulas (8.44), (8.57), (8.64), and taking into account Eqs. (8.35)–
(8.37), we obtain

w0(y) � −Δy p(y)

h∫

0

z2dz

a44(z)
. (8.65)

We emphasize that formula (8.65) is derived for a thin bonded incompressible
transversely isotropic, transversely homogeneous elastic layer.

8.3 Contact of Thin Bonded Incompressible Inhomogeneous
Layers

In this section we briefly consider the axisymmetric frictionless contact problems for
thin inhomogeneous transversely isotropic elastic layers bonded to slightly curved
rigid substrates. The developed leading-order asymptotic models are validated by
comparison with available published results.

8.3.1 Contact Problem Formulation

We consider two thin uniform inhomogeneous elastic layers firmly attached to rigid
substrates. In the undeformed configuration the layers are in contact at a single point,
O , chosen as the center of the Cartesian coordinate system Oy2y2z (see Fig. 3.1).
We write the equations of the layer surfaces in the form z = (−1)nϕn(y) (n = 1, 2),
so that the gap between the contacting surfaces is

http://dx.doi.org/10.1007/978-3-319-20083-5_3
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ϕ(y) = ϕ1(y) + ϕ2(y). (8.66)

Denoting the vertical contact approach of the substrates—as usual—by δ0, we
formulate the linearized unilateral non-penetration condition as follows:

δ0 − (
w(1)
0 (y) + w(2)

0 (y)
) ≤ ϕ(y). (8.67)

Here, w(n)
0 (y) is the local indentation of the nth elastic layer.

Generalizing the results of the previous two sections, we arrive at the approximate
formula for the local indentation of the nth layer

w(n)
0 (y) = −∇y ·

( hn∫

0

z2dz

G ′
n(y, z)

∇y p(y)

)
, (8.68)

where p(y) is the contact pressure density, hn is the thickness of the nth layer, and
G ′

n(y, z) is the out-of-plane shear modulus as it measured from the layer surface.
The contour Γ of the contact area ω is determined from the condition that the

contact pressure is positive inside ω and vanishes at Γ , so that

p(y) > 0, y ∈ ω, p(y) = 0, y ∈ Γ. (8.69)

Moreover, in the case of incompressible layers, we additionally assume a smooth
transition of the pressure density p(y) from the contact region ω to the outside
region y �∈ ω, where p(y) ≡ 0. Thus, in addition to (8.69)2, we impose the following
zero-pressure-gradient boundary condition (see Sect. 2.7.3 and [5, 7, 8]):

∂p

∂n
(y) = 0, y ∈ Γ. (8.70)

Here, ∂/∂n is the normal derivative directed outward from ω.
By substituting the expressions for the local indentations w(1)

0 (y) and w(2)
0 (y)

provided by formula (8.68) into the contact condition (8.67) and taking into account
(8.69)1, we derive the governing differential equation

− ∇y · (
γ (y)∇y p(y)

) = δ0 − ϕ(y), y ∈ ω, (8.71)

where we have introduced the notation

γ (y) =
h1∫

0

z2dz

G ′
1(y, z)

+
h1∫

0

z2dz

G ′
1(y, z)

. (8.72)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Finally, the equilibrium equation for the whole system is

∫∫

ω

p(y) dy = F, (8.73)

where F is the external load compressing the elastic layers.
The boundary-value problem (8.69)–(8.71) will be used to find both the contact

area ω and the contact pressure p(y), while the equilibrium equation (8.73) will
allow determination of the contact approach δ0, provided that the contact force F is
given in advance.

8.3.2 Axisymmetric Unilateral Contact Problem

Introducing the cylindrical coordinate system (r, θ, z), we can write equations of the
undeformed layer surfaces in the form z = (−1)nϕn(r) (n = 1, 2), so that the gap
function (8.66) becomes (see Fig. 8.3)

ϕ(r) = ϕ1(r) + ϕ2(r). (8.74)

For the sake of simplicity, we assume that the gap ϕ(r) is a smooth increasing
function and thus that the contact area ω is a circle of some radius a.

Due to the chain rule of differentiation, we have

∂

∂y1
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y2
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ
,

so that the in-plane Hamilton operator is

∇y =
(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
e1 +

(
sin θ

∂

∂r
+ cos θ

r

∂

∂θ

)
e2,

where e1 and e2 are the basis vectors of the Cartesian coordinate system.

Fig. 8.3 Two
inhomogeneous
incompressible elastic layers
bonded to axisymmetric
rigid substrates in the
undeformed configuration
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z
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h
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For an axisymmetric density p(r), we have

∇y p(r) = cos θ
dp

dr
(r) e1 + sin θ

dp

dr
(r) e2

and correspondingly

∇y · (
γ (r)∇y p(r)

) = d

dr

(
γ (r)

dp

dr
(r)

)
+ 1

r
γ (r)

dp

dr
(r)

= 1

r

d

dr

(
rγ (r)

dp

dr
(r)

)
, (8.75)

while, as a result of (8.72), the function γ (r) is given by

γ (r) =
h1∫

0

z2dz

G ′
1(r, z)

+
h1∫

0

z2dz

G ′
1(r, z)

.

Further, Eq. (8.71) takes the form

− 1

r

d

dr

(
rγ (r)

dp

dr
(r)

)
= δ0 − ϕ(r), r ∈ (0, a), (8.76)

whereas the boundary conditions (8.69)2 and (8.70) become

p(a) = 0,
dp

dr
(a) = 0. (8.77)

Integrating Eq. (8.76), we find

dp

dr
(r) = −δ0

2

r

γ (r)
+ 1

rγ (r)

r∫

0

ϕ(ρ)ρ dρ, (8.78)

where the integration constant vanishes due to the regularity condition for the solution
of the problem (8.76), (8.77) at the center of the contact area r = 0.

By substituting r = a into the above equation and taking into account the boundary
condition (8.77)2, we derive the following equation:

δ0 = 2

a2

r∫

0

ϕ(ρ)ρ dρ. (8.79)
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By integratingEq. (8.78) and employing the boundary condition (8.77)1,weobtain

p(r) = δ0

2

a∫

r

ρ dρ

γ (ρ)
−

a∫

r

1

ργ (ρ)

ρ∫

0

ϕ(ξ)ξ dξdρ. (8.80)

Formula (8.80) presents the contact pressure in terms of the gap function ϕ(r),
given by (8.74), the elastic compliance function γ (r), defined by (8.72), and two
a priori unknown parameters δ0 and a, which are related by Eq. (8.79).

An additional equation for determining the contact approach δ0 and the contact
radius a is provided by the equilibrium equation (8.73). Specifically, the substitution
of (8.80) into Eq. (8.73) yields

F = π

2
δ0

a∫

0

ρ3dρ

γ (ρ)
− π

a∫

0

r

γ (r)

r∫

0

ϕ(ρ)ρ dρdr. (8.81)

In the case of in-plane homogeneous elastic layers, where γ (r) is constant,
formulas (8.80) and (8.81) reduce to the following:

p(r) = δ0

4γ
(a2 − r2) − 1

γ
Θ(a, r), (8.82)

F = π

4γ

a∫

0

ϕ(ρ)(2ρ2 − a2)ρ dρ. (8.83)

Here we have introduced the notation

Θ(a, r) =
a∫

r

ϕ(ρ)ρ ln
a

ρ
dρ −

r∫

0

ϕ(ρ)ρ ln
r

ρ
dρ. (8.84)

Observe that in writing formula (8.83) we have taken into account Eq. (8.79). We
also note that the contact radius is determined as a solution of Eq. (8.79).

8.3.3 Contact Problem for a Thin Bonded Non-homogeneous
Incompressible Elastic Layer with Fixed Contact Area

Let us now consider contact interaction between a thin elastic layer bonded to a rigid
substrate and a punch, under the assumption that the contact area,ω, does not change
if the contact load, F , varies. In this case, the contact condition is
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w0(y) = δ0 − ϕ(y), y ∈ ω, (8.85)

where δ0 andϕ(y) are the punch’s normal displacement and the punch shape function,
and w0(y) is the local indentation of the elastic layer.

For a thin incompressible elastic layer, according to the asymptotic analysis per-
formed in Sects. 8.1 and 8.2, we have

w0(y) = −∇y ·
( h∫

0

z2dz

G ′(y, z)
∇y p(y)

)
, (8.86)

where p(y) is the contact pressure distribution, hn and G ′(y, z) are the elastic layer’s
thickness and out-of-plane shear modulus measured in the z-direction from the layer
surface, respectively.

Substituting (8.86) into Eq. (8.85), we arrive at the equation

− ∇y · (
γ (y)∇y p(y)

) = δ0 − ϕ(y), y ∈ ω, (8.87)

where we have introduced the notation

γ (y) =
h∫

0

z2dz

G ′(y, z)
. (8.88)

The second-order differential equation (8.87) requires some boundary conditions
at the contour Γ of the domain ω. As was shown by Aleksandrov [1] (see also
Sect. 2.7.2) in the axisymmetric contact problem for a thin incompressible isotropic
elastic layer, in order to construct the leading-order inner asymptotic solution for the
contact pressure under a flat-ended punch, the differential equation (8.87) should be
supplemented with the following boundary condition:

p(y) = 0, y ∈ Γ. (8.89)

In the case of a thin bonded homogeneous incompressible elastic layer (when
γ (y) ≡ const), Barber [7] has shown that the problem (8.87), (8.89) is formally
equivalent to the Saint-Venant torsion problem (see, e.g., [19], Chap.10), and hence
the analytical solutions to many contact problems can be written down.

We emphasize that in the case of an elastic layer indented by a rigid punch with
a sharp edge, the contact pressure has a square-root singularity at the contour Γ

(see, e.g., [3, 13, 15]). For a thin elastic layer this effect is taken into account by the
additional asymptotic solution of the boundary-layer type (see, in particular, [1]).

Finally, the punch’s displacement δ0 and the contact force F are related through
the equilibrium equation

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_10
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∫∫

ω

p(y) dy = F. (8.90)

Observe that, from a physical point of view, there exists a constant γ0 such that
the function (8.88) satisfies the condition

γ (y) ≥ γ0, y ∈ ω̄ = ω ∪ Γ.

According to the weak maximum principle (see, e.g., [10]), if the right-hand side
of Eq. (8.87) satisfies the condition

δ0 − ϕ(y) ≥ 0, y ∈ ω, (8.91)

then the minimum of the contact pressure p(y) in ω̄ is achieved on Γ , i.e.,

min
y∈ω̄

p(y) = min
y∈Γ

p(y). (8.92)

Hence, from (8.89) and (8.92), it follows that in the case (8.91), we have throughout
the contact area

p(y) ≥ 0, y ∈ ω. (8.93)

We note that under some assumptions on the domain ω (e.g., for a simply con-
nected domain ω bounded by a smooth contour Γ of class C2), the strict inequality
in (8.91) implies the strict inequality in (8.93). Equivalently, if the local indentation
of a thin incompressible elastic layer is positive over the whole contact area, then the
contact pressure under the punch is positive, which is generally not the case.

8.3.4 Axisymmetric Contact Problem with Fixed Contact Area

We now consider the following linear contact problem (see Fig. 8.4):

− 1

r

d

dr

(
rγ (r)

dp

dr
(r)

)
= δ0 − ϕ(r), r ∈ (0, a), (8.94)

p(a) = 0, (8.95)

2π

a∫

0

p(r)r dr = F. (8.96)
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Fig. 8.4 An inhomogeneous
incompressible elastic layer
bonded to a rigid substrate in
full contact with an
axisymmetric rigid punch

δ0 

z

r

a

F

h

As a result of (8.88), we have

γ (r) =
h∫

0

z2dz

G ′(r, z)
.

The solution to Eqs. (8.94)–(8.96) is given by the formulas (see Sect. 8.3.2):

p(r) = δ0

2

a∫

r

ρ dρ

γ (ρ)
−

a∫

r

1

ργ (ρ)

ρ∫

0

ϕ(ξ)ξ dξdρ, (8.97)

F = π

2
δ0

a∫

0

ρ3dρ

γ (ρ)
− π

a∫

0

r

γ (r)

r∫

0

ϕ(ρ)ρ dρdr. (8.98)

In the case of the in-plane homogeneous elastic layer, where the shear modulus
G ′ does not depend on r and γ (r) is constant, Eqs. (8.97) and (8.98) yield simply

p(r) = δ0

4γ
(a2 − r2) − 1

γ
Θ(a, r), (8.99)

F = π

8γ
δ0a4 − π

2γ

a∫

0

ϕ(ρ)(a2 − ρ2)ρ dρ, (8.100)

where the factor Θ(a, r) is given by formula (8.84).
The obtained solution and, in particular, formula (8.99) agree with the so-called

degenerate asymptotic solution obtained by Aleksandrov [1] in the isotropic and
homogeneous case. The contact problem for an incompressible inhomogeneous
isotropic elastic layer bonded to a rigid substrate, and indented without friction by a
rigid punch, was studied by Malits [16], who, in particular, constructed the leading-
order asymptotic solution in the case of a circular punch of three-dimensional profile,
where formula (8.100) takes the following form:
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F = π

8γ
δ0a4 − 1

4γ

2π∫

0

dθ

a∫

0

ϕ(ρ, θ)(a2 − ρ2)ρ dρ.

For the flat-ended punch, when ϕ(r) ≡ 0, Eqs. (8.99) and (8.100) further sim-
plify to

p(r) = δ0

4γ
(a2 − r2), (8.101)

F = π

8γ
δ0a4. (8.102)

In the case of the homogeneous isotropic incompressible elastic layer, we have

γ = h3

3G
, (8.103)

where G is the shear modulus, and formula (8.101) coincides with the solution
obtained by Aleksandrov [1], while Eq. (8.102), apart from notation, coincides with
the corresponding equation obtained by Malits [16].

8.4 Deformation of a Thin Elastic Layer Coated
with an Elastic Membrane

In this sectionweconsider the deformationproblem for a transversely isotropic elastic
layer bonded to a rigid substrate and coated with a very thin elastic layer made of
another transversely isotropic material. The leading-order asymptotic model is based
on the simplifying assumptions that the generalized plane stress conditions apply to
the coating layer, and the flexural stiffness of the coating layer is negligible compared
to its tensile stiffness.

8.4.1 Boundary Conditions for a Coated Elastic Layer

We consider a very thin transversely isotropic elastic coating layer (of uniform thick-
ness ĥ) bonded to an elastic layer (of thickness h) made of another transversely
isotropic material (see Fig. 8.5).

Let the five independent elastic constants of the elastic layer and its coating are
denoted by A11, A12, A13, A33, A44 and Â11, Â12, Â13, Â33, Â44, respectively.

Under the assumption that the two layers are in perfect contact with one another
along their common interface, z = 0, the following boundary conditions of continuity
(interface conditions of perfect bonding) should be satisfied:
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Fig. 8.5 A two-layer elastic
system (coated layer and
coating layer in perfect
bonding) bonded to a rigid
substrate and loaded by a
normal load

2b

p(y1,n y2)

y1

h

z

h

v̂(y, 0) = v(y, 0), ŵ(y, 0) = w(y, 0), (8.104)

σ̂3 j (y, 0) = σ3 j (y, 0), j = 1, 2, 3. (8.105)

Here, (v̂, ŵ) is the displacement vector of the elastic coating layer, and σ̂i j are the
corresponding components of stress.

On the upper surface of the two-layer system, z = −ĥ, we impose the boundary
conditions of normal loading with no tangential tractions

σ̂31(y,−ĥ) = σ32(y,−ĥ) = 0, σ̂33(y,−ĥ) = −p(y), (8.106)

where p(y) is a specified function.
Following Rahman and Newaz [18], we simplify the deformation analysis of the

elastic coating layer based on the following two assumptions: (1) the coating layer is
assumed to be very thin, so that the generalized plane stress conditions apply; (2) the
flexural stiffness of the coating layer in the z-direction is negligible compared to its
tensile stiffness.

In the absence of body forces, the equilibrium equations for an infinitesimal
element of the coating layer are

∂σ̂11

∂y1
+ ∂σ̂12

∂y2
+ ∂σ̂13

∂z
= 0,

∂σ̂21

∂y1
+ ∂σ̂22

∂y2
+ ∂σ̂23

∂z
= 0, (8.107)

∂σ̂31

∂y1
+ ∂σ̂32

∂y2
+ ∂σ̂33

∂z
= 0. (8.108)

The stress-strain relationship for the transversely isotropic elastic coating layer is
given by

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̂11
σ̂22
σ̂33
σ̂23
σ̂13
σ̂12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â13 0 0 0
Â12 Â11 Â13 0 0 0
Â13 Â13 Â33 0 0 0
0 0 0 2 Â44 0 0
0 0 0 0 2 Â44 0
0 0 0 0 0 2 Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε̂11
ε̂22
ε̂33
ε̂23
ε̂13
ε̂12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8.109)

where 2 Â66 = Â11 − Â12.
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Integrating Eqs. (8.107), (8.108) through the thickness of the coating layer and
taking into account the interface and boundary conditions (8.105) and (8.106), we
find

ĥ

(
∂ ˆ̄σ11
∂y1

+ ∂ ˆ̄σ12
∂y2

)
= −σ13

∣∣
z=0, ĥ

(
∂ ˆ̄σ12
∂y1

+ ∂ ˆ̄σ22
∂y2

)
= −σ23

∣∣
z=0, (8.110)

ĥ

(
∂ ˆ̄σ13
∂y1

+ ∂ ˆ̄σ23
∂y2

)
= −σ33

∣∣
z=0 − p. (8.111)

Here, ˆ̄σi j are the averaged stresses, i.e.,

ˆ̄σi j (y) = 1

ĥ

0∫

−ĥ

σ̂i j (y, z) dz.

Under the simplifying assumptions made above, we have

ˆ̄σ13 = ˆ̄σ23 = ˆ̄σ33 = 0. (8.112)

Hence, Eq. (8.111) immediately implies that

σ33
∣∣
z=0 = −p. (8.113)

Moreover, in light of (8.112), the averaged strain ˆ̄ε33 must satisfy the equation

Â13 ˆ̄ε11 + Â13 ˆ̄ε22 + Â33 ˆ̄ε33 = 0,

and, therefore, the in-plane averaged stress-strain relationship takes the form

⎛
⎝

ˆ̄σ11
ˆ̄σ22
ˆ̄σ12

⎞
⎠ =

⎡
⎢⎣

ˆ̄A11
ˆ̄A12 0

ˆ̄A12
ˆ̄A11 0

0 0 2 ˆ̄A66

⎤
⎥⎦

⎛
⎝

ˆ̄ε11
ˆ̄ε22
ˆ̄ε12

⎞
⎠ , (8.114)

where we have introduced the notation

ˆ̄A11 = Â11 − Â2
13

Â33
, ˆ̄A12 = Â12 − Â2

13

Â33
, 2 ˆ̄A66 = ˆ̄A11 − ˆ̄A12. (8.115)

On the other hand, in light of the interface conditions (8.104), we have

ˆ̄ε11 = ε11
∣∣
z=0,

ˆ̄ε22 = ε22
∣∣
z=0,

ˆ̄ε12 = ε12
∣∣
z=0, (8.116)
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where ε11, ε22, and ε12 are the in-plane strains in the coated elastic layer z ∈ (0, h).
Taking Eqs. (8.114) and (8.116) into account, we transform the boundary condi-

tions (8.110) into the following:

−1

ĥ
σ31

∣∣
z=0 = ∂

∂y1

(
ˆ̄A11

∂v1
∂y1

+ ˆ̄A12
∂v2
∂y2

)
+ ˆ̄A66

∂

∂y2

(
∂v1
∂y2

+ ∂v2
∂y1

)
,

−1

ĥ
σ32

∣∣
z=0 = ˆ̄A66

∂

∂y1

(
∂v1
∂y2

+ ∂v2
∂y1

)
+ ∂

∂y2

(
ˆ̄A12

∂v1
∂y1

+ ˆ̄A11
∂v2
∂y2

)
.

The above boundary conditions can be rewritten in the matrix form as

σ31e1 + σ32e2
∣∣
z=0 = −L̂(∇y)v

∣∣
z=0, (8.117)

where L̂(∇y) is a 2 × 2 matrix differential operator such that

L̂αα(∇y) = ĥ ˆ̄A11
∂2

∂y2α
+ ĥ ˆ̄A66

∂2

∂y23−α

L̂αβ(∇y) = ĥ
( ˆ̄A12 + ˆ̄A66

) ∂2

∂yα∂yβ

, α, β = 1, 2, α �= β.

(8.118)

Thus, the deformation problem for an elastic layer coated with a very thin flexible
elastic layer is reduced to that for the elastic layer without coating, but subjected to
a different set of boundary conditions (8.113) and (8.117) on the surface z = 0.

Observe that in the axisymmetric case, as a result of (8.116), we have

ˆ̄σrr = ˆ̄A11εrr + ˆ̄A12εθθ , ˆ̄σθθ = ˆ̄A12εrr + ˆ̄A11εθθ , ˆ̄σrθ = 0,

where

εrr = ∂vr

∂r
, εθθ = vr

r
,

and Eqs. (8.110) should be replaced with the following:

ĥ

r

(
∂(r ˆ̄σrr )

∂r
− ˆ̄σθθ

)
= −σzr

∣∣
z=0.

Correspondingly, the boundary condition (8.117) takes the following form:

σzr
∣∣
z=0 = −ĥ ˆ̄A11

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2

)
. (8.119)

We note here that the axisymmetric boundary condition (8.119) was previously
derived in a number of papers [2, 6, 17, 18].
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8.4.2 Deformation Problem Formulation

We now consider a relatively thin transversely isotropic elastic layer of uniform
thickness, h, coated with an infinitesimally thin elastic membrane and bonded to a
rigid substrate (see Fig. 8.6), so that

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (8.120)

In the absence of body forces, the vector (v, w) of displacements in the elastic
layer satisfies the Lamé system

A66Δyv + (A11 − A66)∇y∇y · v + A44
∂2v
∂z2

+ (A13 + A44)
∂

∂z
∇yw = 0,

A44Δyw + A33
∂2w

∂z2
+ (A13 + A44)

∂

∂z
∇y · v = 0.

(8.121)

Assuming that the coated layer is supporting a normal load and denoting the load
density by p, we require that

σ33
∣∣
z=0 = −p. (8.122)

Based on the analysis performed in Sect. 8.4.1, the influence of the elastic mem-
brane is represented by the boundary condition

σ31e1 + σ32e2
∣∣
z=0 = −L̂(∇y)v

∣∣
z=0, (8.123)

where L̂(∇y) is the matrix differential operator defined by formulas (8.118).
Taking into account the stress-strain relationship

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Fig. 8.6 A coated elastic
layer of uniform thickness
bonded to a rigid substrate
and loaded by a normal load

2b

p(y1,n y2)

h
y1

z
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we rewrite Eqs. (8.122), (8.123) as follows:

A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z

∣∣∣∣
z=0

= −p, (8.124)

A44

(
∇yw + ∂v

∂z

)∣∣∣
z=0

= −L̂(∇y)v
∣∣
z=0. (8.125)

Equations (8.120), (8.121), (8.124), and (8.125) comprise the deformation prob-
lem for the coated transversely isotropic elastic layer.

Here, following Argatov and Mishuris [4], we construct a leading-order asymp-
totic solution to the deformation problem (8.120)–(8.125).

8.4.3 Asymptotic Analysis of the Deformation Problem

Let h∗ be a characteristic length of the external load distribution. Denoting by ε a
small positive parameter, we require that

h = εh∗ (8.126)

and introduce the stretched dimensionless normal coordinate

ζ = z

εh∗
.

In addition, we non-dimensionalize the in-plane coordinates by the formulas

ηi = yi

h∗
, i = 1, 2, η = (η1, η2),

so that
∂

∂z
= 1

εh∗
∂

∂ζ
, ∇y = 1

h∗
∇η.

Moreover, we assume that the tensile stiffness of the coating layer is relatively

high, i.e., ˆ̄A11 >> A11, and so on. Continuing, we consider the situation when

L̂(∇y) = ε−1L̂∗(∇y), (8.127)

so that, in particular, the ratio A11/
ˆ̄A11 is of the order of ε.

Following the perturbation algorithm [14], the solution to the deformationproblem
(8.120), (8.121), (8.124), (8.125) is represented as follows:

v = ε2v1(η, ζ ) + · · · , (8.128)



288 8 Contact of Thin Inhomogeneous Transversely Isotropic Elastic Layers

w = εw0(η, ζ ) + ε3w2(η, ζ ) + · · · . (8.129)

For the sake of brevity, we include here only the non-vanishing terms (for details see
Sect. 1.2).

It can be shown that the leading-order term in (8.129) is given by

w0(η, ζ ) = h∗ p

A33
(1 − ζ ), (8.130)

whereas the first non-trivial term of the expansion (8.128) satisfies the problem

A44
∂2v1

∂ζ 2 = −(A13 + A44)∇η

∂w0

∂ζ
, ζ ∈ (0, 1),

A44
∂v1

∂ζ
+ 1

h∗
L̂∗(∇η)v1

∣∣∣∣
ζ=0

= −A44∇ηw0
∣∣
ζ=0, v1

∣∣
ζ=1 = 0.

Substituting the expansion (8.130) for w0 into the above equations, we obtain

A44
∂2v1

∂ζ 2 = A13 + A44

A33
h∗∇η p, ζ ∈ (0, 1),

A44
∂v1

∂ζ
+ 1

h∗
L̂∗(∇η)v1

∣∣∣∣
ζ=0

= − A44

A33
h∗∇η p, v1

∣∣
ζ=1 = 0.

(8.131)

The solution to the boundary-value problem (8.131) is represented in the form

v1 = − A13 + A44

2A33A44
ζ(1 − ζ )h∗∇η p + (1 − ζ )V1(η), (8.132)

where V1(η) satisfies the equation

1

h∗
L̂∗(∇η)V1 − A44V1 = A13 − A44

2A33
h∗∇η p (8.133)

on the entire plane ζ = 0.
For the second non-trivial term of the expansion (8.129), we derive the problem

A33
∂2w2

∂ζ 2 = −(A13 + A44)∇η · ∂v1

∂ζ
− A44Δηw0, ζ ∈ (0, 1),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇η · v1
∣∣
ζ=0, w2

∣∣
ζ=1 = 0.

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Substituting the expressions (8.130) and (8.132) for w0 and v1, respectively, into
the above equations, we arrive at the problem

∂2w2

∂ζ 2 = − [
(A13 + A44)

2(2ζ − 1) + 2A2
44(1 − ζ )

] h∗Δη p

2A2
33A44

+ A13 + A44

A33
∇η · V1, ζ ∈ (0, 1), (8.134)

∂w2

∂ζ

∣∣∣∣
ζ=0

= − A13

A33
∇η · V1, w2

∣∣
ζ=1 = 0. (8.135)

Integrating Eq. (8.134) twice with respect to ζ and taking into account the bound-
ary condition (8.135)2, we obtain

w2 = − [
(A13 + A44)

2(2ζ 3 − 3ζ 2 + 1
) + 2A2

44(1 − ζ )3
] h∗Δη p

12A2
33A44

+ A13 + A44

2A33
(1 − ζ )2∇η · V1(η) + C2(η)(1 − ζ ), (8.136)

where C2(η) is an arbitrary function.
The substitution of (8.136) into the boundary condition (8.135)1 yields

C2 = A44

2A2
33

h∗Δη p − A44

A33
∇η · V1,

and thus, in light of this relation, formula (8.136) implies

w2
∣∣
ζ=0 = −[

(A13 + A44)
2 − 4A2

44

] h∗Δη p

12A2
33A44

+ A13 − A44

2A33
∇η · V1, (8.137)

where V1 is the solution of Eq. (8.133).

8.4.4 Local Indentation of the Coated Elastic Layer:
Leading-Order Asymptotics for the Compressible
and Incompressible Cases

In the case of the compressible layer, Eqs. (8.129) and (8.130) yield

w0(y) � h

A33
p(y), (8.138)
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so that the deformation response of the coated elastic layer is analogous to that of
a Winkler elastic foundation with the foundation modulus k = A33/h. In other
words, the deformation of the elastic coating does not contribute substantially to the
deformation of a thin compressible layer.

When the material approaches the incompressible limit, the right-hand side of
(8.138) decreases to zero and the first term in the asymptotic expansion (8.129)
disappears. Hence, the ratios A13/A33 and A44/A33 tend to 1 and 0, respectively.

Therefore, in the limit situation formula (8.137) reduces to

w2
∣∣
ζ=0 = − h∗

12a44
Δη p(η) + 1

2
∇η · V1(η), (8.139)

where a44 = A44 is the out-of-plane shear modulus of the elastic layer, and V1(η)

satisfies the equation

1

h∗
L̂∗(∇η)V1(η) − a44V1(η) = h∗

2
∇η p(η), η ∈ R

2. (8.140)

Thus, in the case of the incompressible bonded elastic layer, formulas (8.127)–
(8.129), (8.139), and (8.140) produce

w0(y) � − h3

12a44
Δy p(y) + h

2
∇y · v0(y), (8.141)

where the vector v0(y) satisfies the equation

hL̂(∇y)v0(y) − a44v0(y) = h2

2
∇y p(y), y ∈ R

2. (8.142)

Here, L̂(∇y) is the matrix differential operator defined by formulas (8.118).
Observe that, as a consequence of (8.132), the vector-function v0(y) can be inter-

preted as the tangential displacement of the surface point (y, 0) of the elastic layer.
Finally, let us consider two opposite limit situations. First, when the coating is

absent and L̂(∇y) ≡ 0, Eq. (8.142) implies

v0(y) = − h2

2a44
∇y p(y).

The substitution of this expression into formula (8.141) leads to

w0(y) � − h3

3a44
Δy p(y), (8.143)

which agrees completely with the asymptotic model developed in Sect. 2.7.1.

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Second, in the case of a very stiff coating we have v0(y) ≡ 0, and formula (8.141)
reduces to

w0(y) � − h3

12a44
Δy p(y). (8.144)

In other words, comparing (8.143) and (8.144), we conclude that the inextensible
membrane coating attached to the surface of a thin bonded incompressible elastic
layer reduces the out-of-plane shear compliance of the layer by a factor of four.
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