
Chapter 6
Contact of Thin Biphasic Layers

Abstract In Sect. 6.1, a three-dimensional deformation problem for an articular
cartilage layer is studied in the framework of the linear biphasic model. The articular
cartilage bonded to subchondral bone is modeled as a transversely isotropic biphasic
material consisting of a solid phase and a fluid phase. In Sect. 6.2, the same problem
is reconsidered with the effect of inherent viscoelasticity of the solid matrix taken
into account. The frictionless unilateral contact problem for the articular cartilage
layers is considered in Sect. 6.3. It is assumed that the subchondral bones are rigid and
shaped like elliptic paraboloids. The obtained short-time leading-order asymptotic
solution is valid for monotonically increasing loading conditions.

6.1 Deformation of a Thin Bonded Biphasic Layer

In this section, the short-time leading-order asymptotic solution of the deformation
problem for a thin transversely isotropic biphasic layer bonded to a rigid impermeable
substrate and subjected to a normal load is constructed. Also, the long-term response
of the biphasic layer under constant load is briefly discussed.

6.1.1 Deformation Problem Formulation

Let us consider a thin transversely isotropic biphasic layer of uniform thickness,
h, ideally bonded to a rigid impermeable substrate and loaded by a normal time
dependent load, q, (see Fig. 6.1). In the following, the two-dimensional Cartesian
coordinate system (x1, x2) in the plane of the biphasic layer will be denoted by y =
(y1, y2), so that x = (y, z), where z is the normal coordinate. Also, the displacement
vector of the solid matrix is represented as u = (v, w), where v and w are the in-plane
displacement vector and the normal displacement, respectively.

The system of governing differential equations (5.16)–(5.19) for a biphasic
medium can now be rewritten as
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Fig. 6.1 A biphasic layer
bonded to a rigid
impermeable substrate and
supporting a time-dependent
normal load
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∂

∂t

(
∇y · v + ∂w

∂z

)
= k1Δy p + k3

∂2 p

∂z2 , (6.2)

wf = −k1∇y p − k3
∂p

∂z
e3. (6.3)

Here, ∇y = (∂/∂y1)e1 + (∂/∂y2)e2 and Δy = ∇y·∇y are the in-plane Hamilton and
Laplace operators, respectively, while the scalar product is denoted by a dot.

At the bottom surface of the biphasic layer, z = h, the boundary conditions (5.20)
and (5.21) now take the form

v
∣∣
z=h = 0, w

∣∣
z=h = 0,

∂p

∂z

∣∣∣∣
z=h

= 0.

As on the upper surface, z = 0, the layer is assumed to be loaded only by a
variable distributed normal load q, the traction boundary conditions

σ33
∣∣
z=0 = −q, σ13

∣∣
z=0 = σ23

∣∣
z=0 = 0

can be rewritten as follows (see Eqs. (5.24) and (5.25)):

−p + As
13∇y · v + As

33
∂w

∂z

∣∣∣∣
z=0

= −q, (6.4)

∇yw + ∂v
∂z

∣∣∣∣
z=0

= 0.

Moreover, assuming that the normal load q is transferred from an impermeable
punch, we require that

∂p

∂z

∣∣∣∣
z=0

= 0,

that is no fluid flow takes place across the contact interface.
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Equations (6.1)–(6.3) along with the above boundary conditions and the zero
initial conditions (see Eq. (5.30))

v = 0, w = 0, p = 0, wf = 0, −∞ < t < 0,

constitute the deformation problem for a thin biphasic layer.

6.1.2 Perturbation Analysis of the Deformation Problem:
Short-Time Asymptotic Solution

Assuming that the biphasic layer is relatively thin, we set

h = εh∗, (6.5)

where ε is a small positive parameter, h∗ is independent of ε and has the order of
magnitude of a characteristic length in the plane of the layer.

Now, we introduce the dimensionless in-plane coordinates

η = (η1, η2), ηi = yi

h∗
, i = 1, 2, (6.6)

and the stretched dimensionless normal coordinate

ζ = ε−1 z

h∗
. (6.7)

Also, following Ateshian et al. [7], the governing equations are non-dimensiona-
lized using non-dimensional variables

τ = k3 As
33

h2 t, V = v
h

, W = w

h
, P = p

As
44

, Q = q

As
44

. (6.8)

Observe that as a consequence of (6.5), the first formula above can be simply
rewritten as τ = ε−2(k3 As

33/h2∗)t , so that a finite interval for the fast variable τ

corresponds to a very short interval for the time variable t . Correspondingly, the
approximate solution obtained below represents the short-time asymptotics.

Therefore, the system of differential equations (6.1)–(6.3) with the corresponding
boundary and initial conditions takes the form

∂2V
∂ζ 2 + ε

(
(1 + β13)∇η

∂W

∂ζ
− ∇η P

)

+ ε2(β66ΔηV + (β11 − β66)∇η∇η · V
) = 0,
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β33
∂2W

∂ζ 2 − ∂ P

∂ζ
+ ε(1 + β13)∇η · ∂V

∂ζ
+ ε2ΔηW = 0, (6.9)

β33
∂2W

∂τ∂ζ
− ∂2 P

∂ζ 2 + εβ33
∂

∂τ
∇η · V − ε2κ1Δη P = 0,

V
∣∣
ζ=1 = 0, W

∣∣
ζ=1 = 0,

∂ P

∂ζ

∣∣∣∣
ζ=1

= 0,

Q − P + εβ13∇η · V + β33
∂W

∂ζ

∣∣∣∣
ζ=0

= 0, (6.10)

∂V
∂ζ

+ ε∇ηW

∣∣∣∣
ζ=0

= 0,
∂ P

∂ζ

∣∣∣∣
ζ=0

= 0,

V = 0, W = 0, P = 0, −∞ < τ < 0.

Here we have introduced the notation

β11 = As
11

As
44

, β13 = As
13

As
44

, β33 = As
33

As
44

, β66 = As
66

As
44

, κ1 = k1

k3
. (6.11)

Following Ateshian et al. [7], the asymptotic ansatz for the solution to the system
(6.9) and (6.10) is represented in the form

P = P0 + ε2 P1 + · · · ,

V = εV0 + · · · , (6.12)

W = ε2W 0 + · · · ,

where only non-vanishing leading asymptotic terms are included. Note that this
asymptotic ansatz is particularly motivated by the only nonhomogeneous equation
(6.4) in the deformation problem under consideration.

Substituting the asymptotic expressions (6.12) into Eq. (6.9) and the boundary
conditions (6.10), after collecting terms of like order, we obtain

P0 ≡ Q (6.13)

and arrive at the following problems:

∂2V0

∂ζ 2 = ∇η Q, ζ ∈ (0, 1),
∂V0

∂ζ

∣∣∣∣
ζ=0

= 0, V0
∣∣
ζ=1 = 0; (6.14)
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β33
∂2W 0

∂ζ 2 − ∂ P1

∂ζ
= −(1 + β13)∇η · ∂V0

∂ζ
, ζ ∈ (0, 1),

β33
∂2W 0

∂τ∂ζ
− ∂2 P1

∂ζ 2 = κ1Δη Q − β33
∂

∂τ
∇η · V0, ζ ∈ (0, 1),

(6.15)

W 0
∣∣
ζ=1 = 0,

∂ P1

∂ζ

∣∣∣∣
ζ=1

= 0,

−P1 + β33
∂W 0

∂ζ

∣∣∣∣
ζ=0

= −β13∇η · V0
∣∣
ζ=0,

∂ P1

∂ζ

∣∣∣∣
ζ=0

= 0.

(6.16)

By direct integration of the ordinary boundary-value problem (6.14), we find

V0 = −1

2
(1 − ζ 2)∇η Q. (6.17)

The substitution of (6.17) into (6.15) and (6.16) yields

β33
∂2W 0

∂ζ 2 − ∂ P1

∂ζ
= −(1 + β13)ζΔη Q, ζ ∈ (0, 1),

β33
∂2W 0

∂τ∂ζ
− ∂2 P1

∂ζ 2 = κ1Δη Q + β33

2
(1 − ζ 2)

∂

∂τ
Δη Q, ζ ∈ (0, 1),

(6.18)

W 0
∣∣
ζ=1 = 0,

∂ P1

∂ζ

∣∣∣∣
ζ=1

= 0,

β33
∂W 0

∂ζ
− P1

∣∣∣∣
ζ=0

= β13

2
Δη Q,

∂ P1

∂ζ

∣∣∣∣
ζ=0

= 0.

(6.19)

The exact solution of this resulting problem (6.18) and (6.19) can be determined
via the Laplace transform method (see, e.g., [19, 20]).

6.1.3 Solution of the Resulting Ordinary Boundary-Value
Problem

We proceed by first remarking that, along with the coordinate system (y, z) where
the coordinate center is placed at the contact interface and the z axis is directed into
the layer, another coordinate system is commonly used with its coordinate center
placed at the bottom surface of the layer (see Fig. 6.2). In this case we have

z̄ = h − z, ȳ = −y, (6.20)
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Fig. 6.2 A biphasic layer of
uniform thickness bonded to
a rigid impermeable
substrate: Two systems of
coordinates

z 0

h

=
z̄

z 0=z ¯

where z̄ and ȳ are the new normal and in-plane coordinates.
Moreover, since the normal axis has changed direction to its opposite, the normal

displacements should be related by

W̄ (t, ȳ, z̄) = −W (t, y, z). (6.21)

The coordinate transformation (6.20) and (6.21) must be taken into account when
comparing the obtained results with other studies.

Making use of (6.20) and (6.21), we transform the problem (6.18) and (6.19) to

β33
∂2W̄ 0

∂ζ̄ 2
− ∂ P1

∂ζ̄
= (1 + β13)(1 − ζ̄ )Δη Q, ζ̄ ∈ (0, 1),

β33
∂2W̄ 0

∂τ∂ζ̄
− ∂2 P1

∂ζ̄ 2
= κ1Δη Q + β33

2
ζ̄ (2 − ζ̄ )

∂

∂τ
Δη Q, ζ̄ ∈ (0, 1),

(6.22)

W̄ 0
∣∣
ζ̄=0 = 0,

∂ P1

∂ζ̄

∣∣∣∣
ζ̄=0

= 0,

β33
∂W̄ 0

∂ζ̄
− P1

∣∣∣∣
ζ̄=1

= β13

2
Δη Q,

∂ P1

∂ζ̄

∣∣∣∣
ζ̄=1

= 0.

(6.23)

Now, let ˜̄W 0, P̃1, and Q̃ denote the Laplace transforms of W̄ 0, P1, and Q,
respectively, with respect to the dimensionless time variable τ , and s be the Laplace
transform parameter.

Taking into account the zero initial conditions, the Laplace transformation of
Eqs. (6.22) and (6.23) leads to the system

β33
∂2 ˜̄W 0

∂ζ̄ 2
− ∂ P̃1

∂ζ̄
= (1 + β13)(1 − ζ̄ )Δη Q̃, ζ̄ ∈ (0, 1),

sβ33
∂ ˜̄W 0

∂ζ̄
− ∂2 P̃1

∂ζ̄ 2
= κ1Δη Q̃ + sβ33

ζ̄

2
(2 − ζ̄ )Δη Q̃, ζ̄ ∈ (0, 1),

(6.24)
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˜̄W 0
∣∣
ζ̄=0 = 0,

∂ P̃1

∂ζ̄

∣∣∣∣
ζ̄=0

= 0,

β33
∂ ˜̄W 0

∂ζ̄
− P̃1

∣∣∣∣
ζ̄=1

= β13

2
Δη Q̃,

∂ P̃1

∂ζ̄

∣∣∣∣
ζ̄=1

= 0.

(6.25)

The homogeneous differential system corresponding to Eq. (6.24) has the char-
acteristic equation λ4 − sλ2 = 0, with three roots λ1,2 = 0, λ3,4 = ±√

s, and its
general solution is given by

˜̄W 0
0 = C0 + C1 cosh

√
sζ̄ + C2 sinh

√
sζ̄ ,

P̃1
0 = C3 + β33

√
s
(
C1 sinh

√
sζ̄ + C2 cosh

√
sζ̄

)
,

where C0, . . . , C3 are arbitrary functions of the Laplace transform parameter s.
A particular solution of the system (6.24), which does not necessarily satisfy the

boundary conditions (6.25), can be found by the method of undetermined coefficients
in the form

˜̄W 0
1 =

(
1

sβ33

(
1 + κ1 + β13 − β33

)
ζ̄ + ζ̄ 2

2
− ζ̄ 3

6

)
Δη Q̃,

P̃1
1 = (β33 − 1 − β13)

(
ζ̄ − ζ̄ 2

2

)
Δη Q̃.

Now, substituting the expressions

˜̄W 0 = ˜̄W 0
0 + ˜̄W 0

1 , P̃1 = P̃1
0 + P̃1

1

into the system of boundary conditions (6.25), we derive a system of four linear
algebraic equations for determining C0, C1, C2, and C3 as follows:

C0 = −C1 = − 1

β33s

(
1 + β13 − β33

)
Δη Q̃, C2 = cosh

√
s

sinh
√

s
C0,

C3 =
(1

2
+ 1

s

(
1 + κ1 + β13 − β33

))
Δη Q̃.

Collecting the above formulas, we thus obtain

˜̄W 0 = Δη Q̃

{
δ1

β13s

(
1 − sinh

√
s(1 − ζ̄ )

sinh
√

s

)
+ ζ̄ 2

2

(
1 − ζ̄

3

)
+ δ0

β13s
ζ̄

}
,

P̃1 = Δη Q̃

{
δ1

(
cosh

√
s(1 − ζ̄ )√

s sinh
√

s
+ ζ̄

(
1 − ζ̄

2

))
+ 1

2
+ δ0

s

}
,
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where, for simplicity, we have introduced the auxiliary notation

δ0 = 1 + κ1 + β13 − β33, δ1 = β33 − 1 − β13. (6.26)

By performing the inverse Laplace transform using the residue theorem, we get

W̄ 0 = Δη Q(τ )
ζ̄ 2

2

(
1 − ζ̄

3

)
+ (δ1 + δ0ζ̄ )

β33

τ∫

0

Δη Q(τ ′) dτ ′

− δ1

β33

τ∫

0

Δη Q(τ ′)
{

1 − ζ̄

+ 2

π

∞∑
n=1

(−1)n sin πn(1 − ζ̄ )

n
e−π2n2(τ−τ ′)

}
dτ ′, (6.27)

P1 = Δη Q(τ )

(
1

2
+ δ1ζ̄

(
1 − ζ̄

2

))
+ δ0

τ∫

0

Δη Q(τ ′) dτ ′ (6.28)

+ δ1

τ∫

0

Δη Q(τ ′)
{

1 + 2
∞∑

n=1

(−1)n cos πn(1 − ζ̄ )e−π2n2(τ−τ ′)
}

dτ ′.

Note that in the isotropic case we have δ0 = 0 and δ1 = 1, i.e.,

1 + κ1 + β13 − β33 = 0, β33 − 1 − β13 = 1,

and formulas (6.27) and (6.28) agree with the leading-order asymptotic solution
originally obtained by Ateshian et al. [7].

6.1.4 Displacements of the Solid Matrix

By recovering the dimensional variables (see, in particular, Eqs. (6.6)–(6.8), (6.11),
(6.12), (6.17), (6.20), (6.21), and (6.27)), we arrive at the following leading-order
asymptotic approximations for the in-plane (tangential) and out-of-plane (normal)
displacements:

v 	 − h2

2As
44

(
1 − z2

h2

)
∇yq(t, y),
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w 	 − h3

3As
44

Δyq(t, y)
(

1 − z

h

)2(
1 + z

2h

)

− hk1

t∫

0

Δyq(t ′, y) dt ′
(

1 −
[
(k1 + k3)As

44 + k3
(

As
13 − As

33

)]

k1 As
44

z

h

)

+ hk3
(

As
33 − As

44 − As
13

)

As
44

{
z

h

t∫

0

Δyq(t ′, y) dt ′

+ 2

π

∞∑
n=1

(−1)n

n
sin πn

z

h

t∫

0

Δyq(t ′, y) exp
(
−π2n2 k3 As

33

h2 (t − t ′)
)

dt ′
}
.

According to the derived solution, the displacements of the surface points of the
bonded thin biphasic layer are

v
∣∣
z=0 	 − h2

2As
44

∇yq(t, y), (6.29)

w
∣∣
z=0 	 − h3

3As
44

Δyq(t, y) − hk1

t∫

0

Δyq(τ, y) dτ. (6.30)

The leading-order asymptotic relations (6.29) and (6.30) derived for the so-called
local indentation will be used to formulate asymptotic models for the unilateral
frictionless contact interaction between thin bonded biphasic layers.

6.1.5 Interstitial Fluid Pressure and Relative Fluid Flux

In light of (6.6)–(6.8), (6.12)1, (6.13), and (6.28), we obtain

p 	 q(t, y) + h2
(

As
44 + 2As

33 − 2As
13

)

6As
44

Δyq(t, y) + k1 As
33

t∫

0

Δyq(t ′, y) dt ′

− 2h2

π2

(
As

33 − As
44 − As

13

)

As
44

∞∑
n=1

(−1)n

n2 cos πn
z

h
(6.31)

×
t∫

0−
Δyq̇(t ′, y) exp

(
−π2n2 k3 As

33

h2 (t − t ′)
)

dt ′.
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Recall that the lower integration limit 0− in the last integral in (6.31) allows consid-
eration of the load discontinuity at time zero.

We now introduce the dimensionless variables (6.6)–(6.8) into Eq. (6.3), and
obtain

wf = −k1 As
44

h∗
∇η P − k3 As

44

εh∗
∂ P

∂ζ
e3.

As a result of (6.12)1, we state the following asymptotic formulas

wf
1e1 + wf

2e2 	 −k1 As
44

h∗
(∇η Q + ε2∇η P1),

wf
3 	 −ε

k3 As
44

h∗
∂ P1

∂ζ
.

The in-plane and out-of-plane components of the relative fluid flux can be evalu-
ated by differentiating the asymptotic expansion (6.31).

6.1.6 Stresses in the Solid and Fluid Phases

As a consequence of (6.8) and (6.12), the above asymptotic analysis yields the fol-
lowing leading-order asymptotic formulas for the solid matrix strains:

ε11 	 ε2 ∂V 0
1

∂η1
, ε22 	 ε2 ∂V 0

2

∂η2
, ε33 	 ε2 ∂W 0

∂ζ
,

ε12 	 ε2

2

(
∂V 0

1

∂η2
+ ∂V 0

2

∂η1

)
, ε13 	 ε

2

∂V 0
1

∂ζ
, ε23 	 ε

2

∂V 0
2

∂ζ
.

(6.32)

Substituting these asymptotic approximations into Eq. (5.13), we can evaluate the
effective stresses σ e

i j in the solid matrix. After that, in light of (5.1) and (5.7), the
stresses in the solid matrix can be approximately evaluated by the formula

σ s = −(1 − φf)pI + σ e,

where φf is the porosity of the solid matrix (fluid volume fraction), and the stresses
in the fluid phase are defined by the following formula (see Eq. (5.4)):

σ f = −φf pI.

In particular, according to (5.13), (6.17), and (6.32), we obtain

σ e
31e1 + σ e

32e2 	 z∇yq(t, y), (6.33)

http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
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from which it follows that the maximum shear stress in a thin bonded biphasic layer
under distributed normal loading is achieved at the bonding interface, z = h, at the
location of maximum gradient |q(t, y)|.

Observe [7] that, as the dominant terms in the deformations and stresses are the
lowest-order quantities, the normal strains and effective stresses as well as the in-
plane shear strain and effective stress, ε12 and σ e

12, are O(ε2), while the out-of-plane
strains and effective shear stresses are O(ε) (see Eq. (6.32)).

In light of (6.12)1, the hydrostatic pressure is O(1) and is significantly larger than
the effective normal stresses. Also, as its lowest-order term is O(ε), the shear stresses
σ s

3i (i = 1, 2) in the solid phase, which are equal to the effective shear stresses σ e
3i

(i = 1, 2), are one order of magnitude greater than the effective normal stresses.
We emphasize (see, e.g., [7]) that this order of magnitude analysis has major

implications on how a thin layer of biphasic tissue (e.g., articular cartilage) supports
distributed compressive load under the bonding condition.

Finally, let us now introduce the in-plane typical length scale, L , such that ε =
h/L . (Note that, as a consequence of (6.5), we simply have L = h∗.) In contact
problem [7], L refers to the characteristic length of the contact area. Then, the first
formula (6.8) can be rewritten as

τ = t

T3
,

where T3 = h2/(k3 As
33) is the typical vertical diffusion time within the biphasic

layer [8]. On the other hand, formula (6.8)1 can be rewritten as

τ = ε−2 k3 As
33

L2 t,

which shows that the dimensionless time variable τ is introduced by stretching the
dimensionless time variable (k3 As

33/L2)t .
We thus underline that formulas (6.29) and (6.30) present the leading-order as-

ymptotic solution, which is valid for short times only.

6.1.7 Long-Term (Equilibrium) Response of a Thin Bonded
Biphasic Layer Under Constant Loading

To begin, we assume that the normal load distribution q has a finite support and
does not depend on the time variable t . Following [7], we consider the equilibrium
(long-term, when t/T3 
 1) response of a thin bonded layer of biphasic material
after the relative motion of the interstitial fluid has ceased and the fluid pressure has
vanished. In this case the system of governing differential equations (6.1) and (6.2)
reduces to that for a single phase compressible elastic layer with material properties
coinciding with those of the solid matrix.
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The corresponding asymptotic solution was derived in Sect. 1.2 and the leading
asymptotic terms are summarized below (see Eqs. (1.22) and (1.23))

v 	 h2

As
33

{
1

2

(
1 + As

13

As
44

)(
1 − z

h

)2 − As
13

As
44

(
1 − z

h

)}
∇yq(y),

w 	 h

As
33

(
1 − z

h

)
q(y).

Finally, we observe [7] that during the biphasic creep process, the short-time
asymptotic solution gradually evolves into the equilibrium (long-term) asymptotic
solution, which has drastically different characteristics.

6.2 Deformation of a Thin Transversely Isotropic Biphasic
Poroelastic Layer Bonded to a Rigid Impermeable
Substrate

In this section, the short-time leading-order asymptotic solution of the deformation
problem for a thin biphasic poroelastic (BPVE) layer is constructed. The main result
of the section (see Sect. 6.2.3) is an approximate formula for the local indentation of
a thin bonded BPVE layer.

6.2.1 Deformation Problem Formulation

In this section, we follow the problem formulation given in detail in Sect. 6.1, with
the sole difference being that the total stresses within a thin biphasic poroviscoelastic
(BPVE) layer are determined by the constitutive relations

σ11 = −p + Bs
11 ∗ ε11 + Bs

12 ∗ ε22 + Bs
13 ∗ ε33, σ23 = 2Bs

44 ∗ ε23,

σ22 = −p + Bs
12 ∗ ε11 + Bs

11 ∗ ε22 + Bs
13 ∗ ε33, σ13 = 2Bs

44 ∗ ε13,

σ33 = −p + Bs
13 ∗ ε11 + Bs

13 ∗ ε22 + Bs
33 ∗ ε33, σ12 = 2Bs

66 ∗ ε12,

(6.34)

where p is the pressure in the fluid phase, Bs
11(t), Bs

12(t), Bs
13(t), Bs

33(t), and Bs
44(t)

are independent stress-relaxation functions of the solid phase, Bs
66(t) = (

Bs
11(t) −

Bs
12(t)

)
/2, and the symbol ∗ denotes the Stieltjes integral, i.e.,

Bs
kl ∗ εi j =

t∫

−∞
Bs

kl(t − τ) dεi j (τ ).

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Correspondingly, the equilibrium equations of the solid matrix take the form

Bs
66 ∗ Δyv + (Bs

11 − Bs
66)∗ ∇y∇y · v + Bs

44∗ ∂2v
∂z2

+ (Bs
13 + Bs

44)∗
∂

∂z
∇yw = ∇y p, (6.35)

Bs
44∗ Δyw + Bs

33∗ ∂2w

∂z2 + (Bs
13 + Bs

44)∗
∂

∂z
∇y · v = ∂p

∂z
, (6.36)

where v and w are the in-plane displacement vector and the normal displacement of
the solid matrix, respectively.

The continuity equation for the BPVE medium has the same form as for biphasic
mixtures, i.e.,

∂

∂t

(
∇y · v + ∂w

∂z

)
= k1Δy p + k3

∂2 p

∂z2 . (6.37)

The boundary conditions at the bottom surface of the layer, z = h, and at the top
surface, z = 0, can be written as follows:

v
∣∣
z=h = 0, w

∣∣
z=h = 0,

∂p

∂z

∣∣∣∣
z=h

= 0;

−p + Bs
13∗ ∇y · v + Bs

33∗ ∂w

∂z

∣∣∣∣
z=0

= −q, (6.38)

Bs
44∗

(
∇yw + ∂v

∂z

)∣∣∣∣
z=0

= 0,
∂p

∂z

∣∣∣∣
z=0

= 0.

Equations (6.35)–(6.37) with the given above boundary conditions and the initial
conditions

v = 0, w = 0, p = 0, −∞ < t < 0,

constitute the deformation problem for a bonded BPVE layer.
Here, following Argatov and Mishuris [4], we construct a leading-order asymp-

totic solution to the deformation problem (6.35)–(6.37).

6.2.2 Short-Time Asymptotic Analysis of the Deformation
Problem

Introducing a characteristic length, h∗, and a small parameter, ε, we require that

h = εh∗.
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Moreover, as usual, we introduce the dimensionless in-plane coordinates

η = (η1, η2), ηi = yi

h∗
, i = 1, 2,

and stretch the normal coordinate as follows:

ζ = ε−1 z

h∗
.

The governing equations will be non-dimensionalized using the following non-
dimensional variables (cf. Eq. (6.8)):

τ = k3 Bs0
44

h2 t, V = v
h

, W = w

h
, P = p

Bs0
44

, Q = q

Bs0
44

. (6.39)

Here, Bs0
44 = Bs

44(0) is the instantaneous shear modulus.
Following non-dimensionalisation, we apply the Laplace transformation to the

obtained system and arrive at the following problem:

b̄s
44

∂2Ṽ
∂ζ 2 + ε(b̄s

13 + b̄s
44)∇η

∂W̃

∂ζ

+ ε2(b̄s
66ΔηṼ + (b̄s

11 − b̄s
66)∇η∇η · Ṽ

) = ε∇η P̃, (6.40)

b̄s
33

∂2W̃

∂ζ 2 + ε(b̄s
13 + b̄s

44)∇η · ∂Ṽ
∂ζ

+ ε2b̄s
44ΔηW̃ = ∂ P̃

∂ζ
, (6.41)

s
(∂W̃

∂ζ
+ ε∇η · Ṽ

)
= ∂2 P̃

∂ζ 2 + ε2κ1Δη P̃, (6.42)

Ṽ
∣∣
ζ=1 = 0, W̃

∣∣
ζ=1 = 0,

∂ P̃

∂ζ

∣∣∣∣
ζ=1

= 0,

−P̃ + b̄s
13∇η · Ṽ + b̄s

33
∂W̃

∂ζ

∣∣∣∣
ζ=0

= −Q̃, (6.43)

∇ηW̃ + ∂Ṽ
∂ζ

∣∣∣∣
ζ=0

= 0,
∂ P̃

∂ζ

∣∣∣∣
ζ=0

= 0.

The Laplace transforms are denoted by a tilde, κ1 = k1/k3, and b̄s
kl = s B̃s

kl/Bs0
44,

where B̃s
kl is the Laplace transform of Bs

kl

(
h2τ/(Bs0

44k3)
)

with respect to the dimen-
sionless time variable τ .

Following Ateshian et al. [7], we represent the asymptotic ansatz for the solution
to the system (6.40)–(6.43) in the form
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P̃ 	 Q̃ + ε2 P̃1, Ṽ 	 εṼ0, W̃ 	 ε2W̃ 0. (6.44)

Substituting the asymptotic expressions into Eqs. (6.40)–(6.42) and the boundary
conditions (6.43), we find after some simple calculations

Ṽ0 = − 1

2b̄s
44

(1 − ζ 2)∇η Q̃, (6.45)

where the pair W̃ 0 and P̃1 should be determined as the solution of the problem

b̄s
33

∂2W̃ 0

∂ζ 2 − ∂ P̃1

∂ζ
= −(b̄s

44 + b̄s
13)∇η · ∂Ṽ0

∂ζ
,

s
∂W̃ 0

∂ζ
− ∂2 P̃1

∂ζ 2 = κ1Δη Q̃ − s∇η · Ṽ0,

(6.46)

W̃ 0
∣∣
ζ=1 = 0,

∂ P̃1

∂ζ

∣∣∣∣
ζ=1

= 0,

−P̃1 + b̄s
33

∂W̃ 0

∂ζ

∣∣∣∣
ζ=0

= −b̄s
13∇η · Ṽ0

∣∣
ζ=0,

∂ P̃1

∂ζ

∣∣∣∣
ζ=0

= 0.

(6.47)

The general solution of the homogeneous differential system corresponding to
Eq. (6.46) is given by

W̃ 0
0 = C0 + C1 cosh

√
f (s)ζ + C2 sinh

√
f (s)ζ,

P̃1
0 = C3 + s√

f (s)

(
C1 sinh

√
f (s)ζ + C2 cosh

√
f (s)ζ

)
,

where we have introduced the notation

f (s) = s

b̄s
33

.

It can be shown that, in light of (6.45), the following pair represents a particular
solution of the system (6.46):

W̃ 0
1 =

(
2

s

[
b̄s

44 + b̄s
13 − b̄s

33 + κ1b̄s
44

] + 1 − ζ 2

6

)
ζ

2b̄s
44

Δη Q̃,

P̃1
1 = (b̄s

44 + b̄s
13 − b̄s

33)

2b̄s
44

ζ 2Δη Q̃.

Substituting the expressions
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W̃ 0 = W̃ 0
0 + W̃ 0

1 , P̃1 = P̃1
0 + P̃1

1 (6.48)

into the system of boundary conditions (6.47) and taking into account Eq. (6.45), we
evaluate the integration constants C0, C1, C2, and C3 as follows:

C0 = −
( 1

3b̄s
44

+ κ1

s

)
Δη Q̃, C1 = 0, C2 = − (b̄s

44 + b̄s
13 − b̄s

33)

sb̄s
44

Δη Q̃

sinh
√

f (s)
,

C3 = b̄s
33

2b̄s
44

(
2

s
(b̄s

44 + b̄s
13 − b̄s

33 + κ1b̄s
44) + 1 − b̄s

13

b̄s
33

)
Δη Q̃.

The functions W , V, and P can thus be obtained by performing the inverse Laplace
transform.

6.2.3 Local Indentation of a Thin BPVE Layer

Recall that Bs
44(t) represents the out-of-plane relaxation modulus in shear so that, in

light of the zero initial conditions, Eqs. (6.34)2 and (6.34)4 take the form

σ3i (t) = 2

t∫

0−
Bs

44(t − τ)ε̇3i (τ ) dτ, i = 1, 2. (6.49)

Let us introduce the out-of-plane creep compliance in shear of the solid matrix,
J s

44(t), which governs the deformation response of the solid phase under application
of a step out-of-plane shear stress of unit magnitude. Hence, the inverse relations for
(6.49) are given by

2ε3i (t) =
t∫

0−
J s

44(t − τ)σ̇3i (τ ) dτ, i = 1, 2.

For a given relaxation modulus Bs
44(t) and its Laplace transform B̃s

44(s) (with
respect to the time variable t), the corresponding creep compliance can be evaluated
through its Laplace transform

J̃ s
44(s) = 1

s2 B̃s
44(s)

. (6.50)

Thus, collecting formulas (6.39), (6.44), (6.45), (6.48) and taking account of
(6.50), we obtain the following asymptotic representations for the displacements of
the surface points of the thin bonded BPVE layer:
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v
∣∣
z=0 	 −h2

2

t∫

0−
J s

44(t − τ)
∂

∂τ
∇yq(τ, y) dτ, (6.51)

w
∣∣
z=0 	 −h3

3

t∫

0−
J s

44(t − τ)
∂

∂τ
Δyq(τ, y) dτ − hk1

t∫

0

Δyq(τ, y) dτ. (6.52)

Observe that the derived asymptotic formula (6.52) reflects two types of mech-
anisms, which are responsible for time-dependent effects in articular cartilage: the
flow independent and the flow dependent, characterized by the first and second terms
on the right-hand side of (6.52), respectively.

The asymptotic relations (6.51) and (6.52) will be used to formulate asymptotic
models for the frictionless contact interaction between thin bonded BPVE layers.

6.2.4 Reduced Relaxation and Creep Function for the Fung
Model

Recall (see Sect. 5.4.1) that the so-called reduced stress-relaxation function, ψ(t), is
defined by

Bs
44(t) = Bs∞

44 ψ(t),

where Bs∞
44 = Bs

44(+∞) is the equilibrium modulus.
Let us now consider the reduced creep function, ϕ(t), defined by the formula

J s
44(t) = J s∞

44 ϕ(t).

Here, J s∞
44 = J s

44(+∞) is the equilibrium compliance such that J s∞
44 = 1/Bs∞

44 .
The following normalization conditions then hold:

ψ(+∞) = 1, ϕ(+∞) = 1.

The reduced relaxation function can be represented in terms of a relaxation spec-
trum S(τ ) as follows:

ψ(t) = 1 +
∞∫

0

S(τ )e−t/τ dτ.

According to Fung [13], in order to account for the weakly frequency dependent
behavior of soft biological tissues, the relaxation spectrum is taken in the form

http://dx.doi.org/10.1007/978-3-319-20083-5_5
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S(τ ) =
⎧⎨
⎩

c

τ
, τ1 ≤ τ ≤ τ2,

0, τ < τ1, τ > τ2,

where τ1 and τ2 have the dimension of time, and c is dimensionless.
The Fung reduced relaxation function can be evaluated as

ψ(t) = 1 + c
[

E1

( t

τ2

)
− E1

( t

τ1

)]
, (6.53)

where E1(x) = ∫ ∞
x e−ξ /ξ dξ is the exponential integral function.

The Fung reduced creep function ϕ(t) corresponding to the reduced relaxation
function ψ(t) given by Eq. (6.53) can be obtained by employment of the Laplace
transform and Eq. (6.50), that is

ψ̃(s)ϕ̃(s) = 1

s2 ,

where the Laplace transform ψ̃(s) is given by formula (5.197). Note also that the
above relation immediately implies that

t∫

0

ψ(t − τ)ϕ(τ) dτ = t.

According to Dortmans et al. [10], the following formula holds:

ϕ(t) = 1 − (τc − τ2)(τc − τ1)

cτc(τ2 − τ1)
e−t/τc

− c

τ2∫

τ1

e−t/τ 1

τ

1(
1 + c ln

τ2 − τ

τ − τ1

)2 + π2c2
dτ, (6.54)

where we have used the notation

τc = τ2e1/c − τ1

e1/c − 1
.

From (6.53) and (6.54), we find

ψ(0) = 1 + c ln
τ2

τ1
,

http://dx.doi.org/10.1007/978-3-319-20083-5_5
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ϕ(0) = 1 − (τc − τ2)(τc − τ1)

cτc(τ2 − τ1)
− c

τ2∫

τ1

1

τ

1(
1 + c ln

τ2 − τ

τ − τ1

)2 + π2c2
dτ.

It can be numerically verified that ψ(0)ϕ(0) = 1. We conclude this case by noting
that the creep spectrum corresponding to (6.54) was discussed in [10].

6.3 Contact of Thin Bonded Transversely Isotropic BPVE
Layers

In this section, the leading-order asymptotic models have been developed for the
short-time frictionless contact interaction between thin biphasic poroviscoelastic
layers bonded to rigid impermeable substrates shaped like elliptic paraboloids.

6.3.1 Contact Problem Formulation for BPVE Cartilage
Layers

When studying contact problems for real joint geometries, a numerical analysis, such
as the finite element method, is necessary [6, 14, 27], since exact analytical solutions
were obtained only for two-dimensional [5, 16], or axisymmetric and simple geome-
tries [11, 12, 21]. In particular, the two-dimensional contact creep problem between
two cylindrical biphasic layers bonded to rigid impermeable substrates was solved
by Kelkar and Ateshian [18] for all times and arbitrary layer thicknesses using the
integral transform method. The frictionless rolling contact problem for cylindrical
biphasic layers was analytically studied by Ateshian and Wang [5].

An asymptotic solution for the contact problem of two identical isotropic biphasic
cartilage layers attached to two rigid impermeable spherical bones of equal radii
modeled as elliptic paraboloids was obtained by Ateshian et al. [7]. This solution
was extended by Wu et al. [24] to a more general model by combining the assumption
of the kinetic relationship from classical contact mechanics [17] with the joint contact
model for the contact of two biphasic cartilage layers [7]. An improved solution for the
contact of two biphasic cartilage layers which can be used for dynamic loading was
obtained by Wu et al. [25]. These solutions have been widely used as the theoretical
background in modeling articular contact mechanics.

Later, Mishuris and Argatov [1, 22] refined the analysis of [7, 24] by formulating
the contact condition which takes into account the tangential displacements at the
contact interface. Finally, the axisymmetric model of articular contact mechanics
originally developed in [7, 24] was generalized in [2] in the case of elliptical contact.

In this section, the asymptotic model of articular contact for isotropic biphasic
layers [2, 7, 24] is extended for the transversely isotropic BPVE case.
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Fig. 6.3 Schematic diagram
of the contact of articular
cartilage surfaces 1 and 2
under the external load F(t).
The dashed lines imply the
surfaces’ profiles in the
undeformed state

δ0(t)w1

w2

a(t)

F(t)

F(t)

2

1

x1

Consider two thin articular cartilage layers of uniform thicknesses h1 and h2 firmly
attached to subchondral bones. Let w(1)

0 (t, y) and w(2)
0 (t, y) be the absolute values of

the vertical displacements of the boundary points of the cartilage layers (see Fig. 6.3).
Let also δ0(t) denote the contact (vertical) approach of the rigid subchondral bones
under a specified external vertical load, F(t), which is assumed to be a function of
the time variable t .

Further, let ϕ(y) denote the gap between the layer surfaces before deformation.
Here, following Argatov and Mishuris [2, 3], we consider a special case of the gap
function represented by an elliptic paraboloid

ϕ(y) = y2
1

2R1
+ y2

2

2R2
, (6.55)

where R1 and R2 are positive constants having dimensions of length.
Then, the linearized contact condition in the contact area ω(t) can be written as

w(1)
0 (t, y) + w(2)

0 (t, y) = δ0(t) − ϕ(y), y ∈ ω(t). (6.56)

In the case of unilateral contact, the contact pressure between the cartilage layers,
p(y), is assumed to be positive inside the contact area ω(t) and satisfies the following
boundary conditions [7] (see also [15, 23]):

p(t, y) = 0,
∂p

∂n
(t, y) = 0, y ∈ �(t).

Here, ∂/∂n is the normal derivative at the contour �(t) of the domain ω(t).
Moreover, the following equilibrium equation holds:

F(t) =
∫∫

ω(t)

p(t, y) dy.

Applying the leading-order asymptotic model (6.52) for the short-time deforma-
tion of a thin bonded biphasic poroviscoelastic (BPVE) layer, we approximate the
vertical displacement of the surface points of the nth cartilage layer by the formula
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w(n)
0 (t, y) = −h3

n

3

t∫

0−
J s(n)

44 (t − τ)
∂

∂τ
Δy p(τ, y) dτ − hnk(n)

1

t∫

0

Δy p(τ, y) dτ,

(6.57)
where J s(n)

44 (t) and k(n)
1 are the out-of-plane creep compliance in shear of the solid

matrix and the transverse (in-plane) permeability coefficient of the nth cartilage layer,
respectively.

Let us simplify the mathematical formalism. First, by letting

G ′s(n)
0 = 1

J s(n)
44 (0+)

we introduce the instantaneous out-of-plane shear elastic modulus of the solid matrix
of the nth layer.

Second, using the integration by parts formula, we represent the second integral
in (6.57) as follows:

t∫

0

Δy p(τ, y) dτ =
t∫

0−
(t − τ)

∂

∂τ
Δy p(τ, y) dτ.

Third, combining the fluid flow-independent viscoelasticity and the fluid flow-
dependent viscous effects in articular cartilage, we introduce the following general-
ized normalized creep function of the nth thin BPVE layer:

Φ(n)(t) = G ′s(n)
0 J s(n)

44 (t) + 3G ′s(n)
0

h2
n

k(n)
1 t. (6.58)

Finally, the compound creep function, Φβ(t), and the equivalent instantaneous
shear elastic modulus, G ′

0, can be defined as follows (cf. Eqs. (4.102)–(4.105)):

Φβ(t) = β1Φ
′(1)(t) + β2Φ

′(2)(t),

G ′
0 = (h1 + h2)

3G ′s(1)
0 G ′s(2)

0

h3
1G ′s(2)

0 + h3
2G ′s(1)

0

, (6.59)

β1 = h3
1G ′s(2)

0

h3
1G ′s(2)

0 + h3
2G ′s(1)

0

, β2 = h3
2G ′s(1)

0

h3
1G ′s(2)

0 + h3
2G ′s(1)

0

.

Thus, following the above relations, and after the substitution of the asymptotic
approximations (6.57) into Eq. (6.56), we arrive at the governing integro-differential
equation

http://dx.doi.org/10.1007/978-3-319-20083-5_4
http://dx.doi.org/10.1007/978-3-319-20083-5_4
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−
t∫

0−
Φβ(t − τ)Δy

∂p

∂τ
(τ, y) dτ = m

(
δ0(t) − ϕ(y)H (t)

)
, y ∈ ω(t). (6.60)

where the Heaviside function factor H (t) takes into account the zero initial condi-
tions for t < 0, and m is given by (with h = h1 + h2 being the joint thickness)

m = 3G ′
0

h3 .

Equation (6.60) can be used to determine the contact pressure distribution p(t, y)

between BPVE cartilage layers under the monotonicity condition ω(t1) ⊂ ω(t2)
for t1 ≤ t2. The monotonicity condition that the contact zone increases for non-
decreasing loads, when d F(t)/dt ≥ 0, should be checked a posteriori.

6.3.2 Exact Solution for Monotonic Loading

As in the Hertz theory of elliptic contact between two elastic bodies, the contact area
ω(t) between the cartilage layers with the initial gap determined by Eq. (6.55) is
elliptic with the semi-axes a(t) and b(t) changing with time. The form of the ellipse
�(t) can be characterized by its aspect ratio s = b(t)/a(t). Assuming, as usual, that
R1 ≥ R2, we obtain a(t) ≥ b(t), and, generally, 0 < s ≤ 1 where the value s = 1
corresponds to a circular contact area. We emphasize that the parameter s is constant
during loading and depends only on the ratio R2/R1 via the following relation (see
Sect. 4.5):

s =

√√√√
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
.

The evolution of the major semi-axis of the contact area is governed by formula

a(t) =
(

96
√

R1 R2

πm

)1/6

ca(s)

( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)1/6

. (6.61)

Here,
√

R1 R2 is a geometric mean of the radii R1 and R2, while ca(s) is a dimen-
sionless factor given by (see Fig. 6.4)

ca(s) =
(√

(3s2 + 1)(s2 + 3)

4s4

)1/6

.

http://dx.doi.org/10.1007/978-3-319-20083-5_4
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Fig. 6.4 Dimensionless scaling factors: a Coefficients ca and cδ ; b Coefficients cP and cF . It is
interesting that this behavior for the different scaling factors is overall substantially similar.

The contact approach between the subchondral bones is given by

δ0(t) =
(

3

2πm R1 R2

)1/3

cδ(s)

( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)1/3

, (6.62)

where we have introduced the notation

cδ(s) =
(

2(s2 + 1)3

s(3s2 + 1)(s2 + 3)

)1/3

.

Now, if the contact load F(t) is known, then Eqs. (6.61) and (6.62) allow us to
determine the quantities a(t) and δ0(t), respectively.

The contact pressure is calculated by means of the formula

p(t, y) = P0(t)

(
1 − y2

1

a(t)2 − y2
2

s2a(t)2

)2

−
t∫

t∗(y)

∂Ψβ

∂τ
(t − τ)P0(τ )

(
1 − y2

1

a(τ )2 − y2
2

s2a(τ )2

)2

dτ. (6.63)

Here, Ψβ(t) is the corresponding generalized normalized relaxation function deter-
mined by its Laplace transform Ψ̃β(s) = 1/[s2Φ̃β(s)], s is the Laplace transform
parameter, and P0(t) is an auxiliary function given by

P0(t) =
(

27m

96π2
√

R1 R2

)1/3

cP (s)

( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)2/3

,
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where we have introduced the notation

cP (s) =
(

4s√
(3s2 + 1)(s2 + 3)

)1/3

.

The quantity t∗(y), which enters the lower limit in the integral (6.63), is the time
when the contour of the contact area ω(t) first reaches the point y. If, however, the
point under consideration lies inside the instantaneous contact area, i.e., y ∈ ω(0+),
then t∗(y) ≡ 0. The quantity t∗(y) is called the time-to-contact for the point y. When
the point y is located outside of ω(0+), the nonzero quantity of t∗(y) is determined by
the equation a(t∗)2 = y2

1 + y2
2/s2, or in accordance with Eq. (6.61) by the following:

t∗∫

0−
Φβ(t∗ − τ)

d F(τ )

dτ
dτ = πm

96
√

R1 R2ca(s)6

(
y2

1 + y2
2

s2

)3

.

In the case of a stepwise loading, we have F(t) = F0H (t), and the above equation
reduces to

Φβ(t∗) = 1

a6
0

(
y2

1 + y2
2

s2

)3

, (6.64)

where a0 = a(0+) is the instantaneous value of the major semi-axis, which is given
by

a0 =
(

96
√

R1 R2

πm

)1/6

ca(s)F1/6
0 .

We note that the asymptotic model (6.57), n = 1, 2, holds true only when the
cartilage thicknesses are small compared with the characteristic size of the contact
area, i.e., max{h1, h2} << a0. For this reason the contact force F0, and F(0+)

generally, should not take too small values.

Table 6.1 Isotropic and transversely isotropic biphasic material properties of human articular
cartilage. The highlighted values are used in the asymptotic models [9]

Transversely isotropicIsotropicMaterial property

Young’s modulus Es
3 64.096.0)aPM(

Young’s modulus Es
1 8.596.0)aPM(

Poisson’s ratio ν s
12 0.0 0.0

Poisson’s ratio ν s
31 0.0 0.0

Shear modulus Gs
13 (MPa) 0.345 0.37

Shear modulus Gs
12 = Es

1/[2(1+ν s
12)] (MPa) 0.345 0.23

Permeability k1 = k3 (×10−15m4/Ns) 3.0 5.1
Solid volume fraction φ s 0.25 0.25
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Thus, in the case of a stepwise loading, formula (6.63), where quantity t∗(y) is
determined by Eq. (6.64), represents the sought for solution of Eq. (6.60). Note that
in the case of the biphasic layers the derived expression for the contact pressure
coincides with the result obtained previously in [2].

Table 6.1 shows some typical values for biphasic material properties of human
articular cartilage in the isotropic and transversely isotropic cases. It is known that the
mechanical properties of cartilage may change with disease. In particular, the early
stages of osteoarthritis are characterized [26] by increased permeability, increased
thickness of the cartilage layers, reduced shear modulus, increased Poisson’s ratio,
and/or a combination of these effects.

To conclude, we emphasize (see, e.g., [7, 25]) that specifically in regard to artic-
ular cartilage, the constructed asymptotic model, which is based on the short-time
asymptotic solution of the deformation problem for a thin BPVE layer and assumes
that most of the contact load is carried by the interstitial fluid, can be used for time
periods of several thousand seconds, when the articular joint is biologically func-
tional, and becomes invalid for time t → ∞, when the interstitial fluid is pushed
out of the cartilage layer underlying the contact area and the total contact pressure
is carried only by the solid phase of the cartilage.
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