
Chapter 5
Linear Transversely Isotropic Biphasic
Model for Articular Cartilage Layer

Abstract In Sect. 5.1, we develop a linear biphasic theory for the case of a trans-
versely isotropic elastic solid matrix with transverse isotropy of permeability. In
Sects. 5.2 and 5.3, we consider the linear biphasic models of confined and uncon-
fined compression, respectively, for the biphasic stress relaxation and the biphasic
creep tests. Finally, in Sect. 5.4we outline the biphasic poroviscoelasticmodel, which
accounts for the inherent viscoelasticity of the solid matrix.

5.1 Linear Biphasic Model

In this section we introduce the linear biphasic theory, which models articular carti-
lage as a binary mixture of an intrinsically incompressible elastic matrix (skeleton)
and an inviscid (i.e., dissipationless) incompressible fluid. We also present and dis-
cuss the formulation of the governing differential equations along with the different
types of boundary conditions.

5.1.1 Linear Biphasic Theory

According to the biphasic theory of Mow et al. [60], articular cartilage is modeled
as a biphasic mixture consisting of a solid phase (representing collagen, proteogly-
cans, chrondrocytes, and other quantitatively minor glycoproteins) and a fluid phase
(representing mobile interstitial fluid and dissolved electrolytes). The fluid phase
typically ranges between 65 and 90% of the articular cartilage tissue by weight [8].

Note also that various biphasic and poroelastic models were used to describe the
deformation behavior of bone [20], skin [62], polymeric and silk hydrogels [16, 42],
and arterial walls [40]. An overview of computational models for the mechanical
behavior of articular cartilage was given in [27, 49, 76].

Let the fluid volume fraction (porosity) be denoted by φf = Vf/V , and the solid
volume fraction be φs = Vs/V , where Vf + Vs = V , so that
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φf + φs = 1. (5.1)

The continuity equation for a biphasic medium is

∇ · (φfvf + φsvs) = 0, (5.2)

where vf and vs are solid and fluid velocities, ∇ is the gradient operator.
Under quasi-static conditions, and in the absence of body forces, the momentum

equations for each phase are given by

∇ · σ s − π f = 0,

∇ · σ f + π f = 0,
(5.3)

where π f is the momentum exchange between the phases due to frictional drag of
relative fluid flow through the porous-permeable solid matrix. In articular cartilage,
it has been shown [35] that this momentum exchange term creates a frictional drag
several orders ofmagnitude greater than the viscous shear stress within the interstitial
fluid due to the viscosity of the fluid. The internal fluid viscosity can usually be
neglected except for very small layers of very permeable materials [11].

Thus, neglecting the frictional dissipation between the fluid particles, the intersti-
tial water is assumed to be inviscid, and the fluid phase stress is given by

σ f = −φf pI. (5.4)

Here, p is the fluid pressure, I is the identity tensor.
The single pore-fluid flow is governed by the local interaction force per unit

volume defined as follows [12, 55, 65]:

π f = −K · (vf − vs). (5.5)

Here, K represents a hydraulic resistivity (or inverse permeability) tensor, which is
related to the permeability tensor, k, through

K = φ2
f k−1, (5.6)

and apparently depends on the deformable pore structure and the interstitial fluid
properties [58, 59, 67]. Note also that the permeability of the tissue decreases when
the pore volume decreases [24, 33].

Generally,k is a positive definite and symmetric tensor. For a transversely isotropic
skeleton, if x3 = 0 is the plane of isotropy, the matrix of the permeability tensor takes
the form

k =
⎛
⎝

k1 0 0
0 k1 0
0 0 k3

⎞
⎠ .
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As was shown in [25], the transverse isotropy of permeability in articular cartilage
is caused by its microstructural anisotropy. In particular, the permeability is greater
in the direction parallel to the collagen fibres than the orthogonal.

In the isotropic case [44], K = K I, where K is the diffusion coefficient and is
related to the permeability coefficient of the solid matrix, k, by k = φ2

f /K .
The stress-strain relation for the solid matrix is assumed to have the form

σ s = −φs pI + σ e, (5.7)

where σ e is the effective (or elastic) stress of the solid matrix. Note that the concept
of effective stress was originally formulated by Terzaghi [74] in a geotechnical con-
solidation problem, presuming that the effective soil stress is determined by the total
stress minus the excess pore pressure.

Thus, under these assumptions the total stress in the biphasic material, which is
defined as the sum

σ = σ s + σ f , (5.8)

in light of (5.4) and (5.7) is given by

σ = −pI + σ e, (5.9)

while from (5.3) it follows that

∇ · σ = 0. (5.10)

For an anisotropic linearly elastic material, the effective stress σ e is related to the
infinitesimal strain tensor of the solid matrix, ε, by Hooke’s law

σ e = C : ε,

where C is a fourth-order stiffness tensor, and the strain tensor is given by

ε = 1

2

(∇u + ∇uT), (5.11)

where u is the displacement vector of the solid phase. Note also that the solid veloc-
ity is

vs = ∂u
∂t

, (5.12)

where t is a time variable.
Following Cohen et al. [19], we assume that the solid-phase material is trans-

versely isotropic, so that
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⎛
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σ e
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22
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33

σ e
23
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⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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11 As

12 As
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12 As

11 As
13 0 0 0

As
13 As

13 As
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0 0 0 2As
44 0 0

0 0 0 0 2As
44 0

0 0 0 0 0 2As
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.13)

where As
11, As

12, As
13, As

33, and As
44 are five independent elastic constants of the solid

skeleton.
The substitution of (5.4), (5.5), and (5.7) into Eq. (5.3) yields

−φs∇ p + ∇ · σ e + K · (vf − vs) = 0, (5.14)

−φf∇ p − K · (vf − vs) = 0, (5.15)

whereas the substitution of (5.9) into Eq. (5.10) gives

−∇ p + ∇ · σ e = 0. (5.16)

Observe [55] that in the equations above, the vector vf −vs represents the seepage
velocity, describing the fluidmotion relative to the deforming solidmatrix.Moreover,
relating this vector only to the fluid part of the mixture, the so-called relative fluid
flux (or filter velocity), wf , can be defined by the formula

wf = φf(vf − vs). (5.17)

Then, introducing the relative fluid flux into Eq. (5.15) according to its definition
(5.17) and taking into account the relation (5.6) between the hydraulic resistivity
tensor K and the permeability tensor k, we arrive at the equation

wf = −k · ∇ p, (5.18)

which can be interpreted [10] asDarcy’s law relative to themotion of the solidmatrix.

As a result of (5.1) and (5.17), the continuity equation (5.2) can be recast as

∇ · (vs + wf) = 0,

which after the substitution of (5.12) and (5.18) is reduced to the equation

∂

∂t
∇ · u = ∇ · (k · ∇ p), (5.19)



5.1 Linear Biphasic Model 153

where∇ ·u is the dilatation of the solid matrix. It is important to note that Eqs. (5.16)
and (5.19) can be solved independently of Eq. (5.18).

Observe [19] that the linear transversely isotropic biphasic model requires alto-
gether seven constitutional parameters: five elastic constants (Young’s moduli and
Poisson’s ratios in the transverse plane and out-of-plane, E s

1, ν
s
12 and E s

3, ν
s
31, respec-

tively, and the out-of-plane shear modulus, Gs
13) and two permeability coefficients

k1 and k3, which are called the axial (in-plane) and transverse (out-of-plane) perme-
ability coefficients, respectively.

Finally, it should be emphasized [57] that in addition to its mechanical response,
articular cartilage also exhibits complex electrochemical phenomena due to the
charged nature of its solid phase and the electrolytes dissolved in the interstitial
water. A number of constitutive theories [31, 37, 45] for charged-hydrated soft tis-
sues like articular cartilage have been developed using the multiphasic approach
(see comprehensive review by Mow and Guo [57]), and a generalized correspon-
dence principle for the equilibrium deformational behavior in the framework of the
triphasic model was introduced [52, 53].

5.1.2 Boundary and Initial Conditions

Following Barry and Holmes [10], we consider the most common boundary con-
ditions applicable to thin fluid-saturated porous layers. We assume that a biphasic
layer is firmly attached to a rigid impermeable substrate, on the bottom of the layer,
x3 = h, in which case the boundary conditions become

u
∣∣
x3=h = 0, (5.20)

∂p

∂x3

∣∣∣∣
x3=h

= 0. (5.21)

On the upper surface, x3 = 0, a number of different boundary conditions may be
formulated depending on the problem setting. If the porous layer is in contact with
a porous filter, then the boundary condition

p
∣∣
x3=0 = 0 (5.22)

is imposed on the top surface.
If the layer is pressed against an impermeable punch, then

∂p

∂x3

∣∣∣∣
x3=0

= 0. (5.23)

Further, the normal stress balance under a rigid punch σ33
∣∣
x3=0 = −q gives
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−p + As
13

∂u1

∂x1
+ As

13
∂u2

∂x2
+ As

33
∂u3

∂x3

∣∣∣∣
x3=0

= −q, (5.24)

where q is the load distribution on the top surface transferred by the punch. Note that
the left-hand side of Eq. (5.24) represents the normal total stress σ33.

For the frictionless contact, the tangential stresses σ31 and σ32 are zero, so that

∂u1

∂x3
+ ∂u3

∂x1

∣∣∣∣
x3=0

= 0,
∂u2

∂x3
+ ∂u3

∂x2

∣∣∣∣
x3=0

= 0. (5.25)

In an idealized situation, the normal load q would be a known function of variables
t, x1, x2. However, if the surface load is transferred from a punch, then within the
contact area, ω, the contact condition is formulated as

u3
∣∣
x3=0 = δ0(t) − ϕ(x1, x2), (x1, x2) ∈ ω, (5.26)

where δ0(t) is the normal displacement of the punch, ϕ(x1, x2) is the punch shape
function (defining the initial gap between the contacting surfaces).

Before continuing, we observe that the punch equilibrium implies that

∫∫

ω

q(t, y) dy = F(t), (5.27)

where F(t) is an applied external force.
In the case of frictionless contact between two biphasic layers, based on the results

of Hou et al. [35] for porous layers saturated with inviscid interstitial fluids, Ateshian
et al. [6] formulated the following interface boundary conditions:

[[p]] = 0, [[u · n]] = 0, [[wf · n]] = 0, [[σ (n)
N ]] = 0, (5.28)

σ
(n)
T = 0. (5.29)

Here,n is the normal unit vector on the contact interface, [[ · ]] denotes the jump across
the interface of the quantity within the brackets (e.g., [[p]] = p+ − p−, where p+
and p− are the limit values of p at the two opposite sides of the interface), σ (n)

N and

σ
(n)
T are the normal and tangential components of the total stress vector σ (n) = σ · n,

such that σ (n)
N = σ (n) · n and σ

(n)
T = σ (n) − σ

(n)
N n.

Note that the interface boundary conditions (5.28) simply state that the fluid
pressure, p, the normal component of the solid displacement vector, u ·n, the normal
component of the relative fluid flow, wf · n, and the normal component of the total
stress vector, σ (n)

N , must be continuous across the interface.
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Finally, we consider the usual initial conditions that the displacement vector, u,
the relative fluid flux, wf , and the fluid pressure, p, are zero before the external load
is applied, i.e.,

u = 0, wf = 0, p = 0, −∞ < t < 0, (5.30)

throughout the biphasic medium.

5.1.3 Equivalent Elastic Material Properties of a Transversely
Isotropic Biphasic Material for the Instantaneous
Response

It is known [23] that during short-duration impact events, articular cartilage can be
considered as an elastic material. Moreover, it has been shown that the instantaneous
response of a biphasic material is equivalent to that of an incompressible elastic
material [5–7]. Following Garcia et al. [29], we introduce the elastic properties of
the equivalent transversely isotropic incompressible elastic material, which can be
used to model its instantaneous response.

In the biphasic model (see Eq. (5.8)), the total stresses in a biphasic material are
defined as

σi j = σ s
i j + σ f

i j , (5.31)

where σ s
i j are the stresses in the solid matrix, σ f

i j are the stresses in the fluid phase.
The stresses in the fluid phase are equal to the pressure in the fluid, p, averaged

over the whole volume, i.e.,

σ f
i j = −φf pδi j , (5.32)

where φf is the volume fraction of the fluid phase, δi j is the Kroneker delta.
At the same time, the stresses in the solid matrix are determined in terms of the

effective stresses, σ e
i j , as

σ s
i j = −φs pδi j + σ e

i j , (5.33)

where φs = 1 − φf is the volume fraction of the solid phase.
From (5.31)–(5.33), it follows that the total stresses in the biphasic tissue can be

decomposed as

σi j = −pδi j + σ e
i j . (5.34)

It should be emphasized that, since both the fluid and the material forming the
skeleton are assumed to be incompressible, the strains in the biphasic tissue are due
to the effective stresses. Thus, the strains in the tissue are given by
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ε11 = 1

E s
1
(σ e

11 − νs12σ
e
22) − νs31

E s
3
σ e
33, ε23 = 1

2Gs
13

σ e
23,

ε22 = 1

E s
1
(−νs12σ

e
11 + σ e

22) − νs31

E s
3
σ e
33, ε13 = 1

2Gs
13

σ e
13,

ε33 = −νs31

E s
3
(σ e

11 + σ e
22) + 1

E s
3
σ e
33, ε12 = 1

2Gs
12

σ e
12,

(5.35)

where E s
1 and E s

3 are Young’s moduli of the solid matrix in the plane of transverse
isotropy and in the orthogonal direction, respectively, νs12 and νs31 are Poisson’s ratios
characterizing the lateral strain response in the plane of transverse isotropy to a stress
acting parallel or normal to it, respectively, Gs

13 is the shearmodulus in planes normal
to the plane of transverse isotropy, and Gs

12 = E s
1/[2(1+ νs12)] is the in-plane shear

modulus.
For a transversely isotropic material, the incompressibility condition is attained

if its Poisson’s ratios are as follows [29, 39]:

ν31 = 1

2
, ν12 = 1 − E1

2E3
. (5.36)

Let the three independent constants of the equivalent incompressible elastic mate-
rial be denoted by E1, E3, and G13, while its Poisson’s ratios are given by (5.36).

Observe [7] that upon sudden loading of a biphasic tissue, the interstitial fluid
does not have sufficient time to leave the tissue, except at permeable boundaries. At
time t = 0+, the matrix pores change shape but not volume. Thus, it is assumed [29]
that the general stress field in a transversely isotropic biphasic material at time zero
can be decomposed into the pressure in the fluid and the effective stresses in the solid
skeleton according to Eq. (5.34), in such a way that the fluid pressure at time zero is

p = −ασkk . (5.37)

Here, σkk = σ11 + σ22 + σ33 is the trace of the total stress tensor, and α is a
dimensionless parameter, to be determined.

Thus, on one hand, the deformation of a biphasic material at time zero is given
by Eq. (5.35), where in light of the hypothesis (5.37) we have

σ e
i j = σi j − ασkkδi j . (5.38)

On the other hand, the same deformation must be equal to the deformation of the
equivalent incompressible tissue under the total stress field σi j . This means, first,
that the shear moduli Gs

12 and Gs
13 should be the same for the solid skeleton and the

equivalent incompressible elastic material, and in particular,

G13 = Gs
13, (5.39)
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since the inviscid interstitial fluid sustains only pressure.
Therefore, applying the decomposition (5.38) to normal stresses, one arrives at

a homogeneous system of linear algebraic equations with respect to σ11, σ22, and
σ33, with the coefficients depending on E1, E3, and α. As was shown in [29], this
system is satisfied for any combination of the normal stresses, if the equivalent elastic
moduli are given by

E1 = E s
1

[
1 − 4νs31 + 2(1 − νs12)(E s

3/E s
1)
]

1 + (
1 − νs212

)
(E s

3/E s
1) − 2νs31(1 + νs12) − νs231(E s

1/E s
3)

,

E3 = E s
3

[
1 − 4νs31 + 2(1 − νs12)(E s

3/E s
1)
]

2(1 − νs12)(E s
3/E s

1) − 4νs231
.

(5.40)

Note that the corresponding decomposition parameter α depends on the applied
stresses σ11, σ22, and σ33.

Thus, the instantaneous response of any transversely isotropic biphasic tissue is
equivalent to that of an incompressible transversely isotropic elastic material with
the material constants ν12, ν31, G13, E1, and E3, given by (5.36), (5.39), and (5.40).

We note that in the isotropic case, the equivalent elastic material will also be
isotropic, with Poisson’s ratio ν = 0.5 and the shear modulus G = Gs, where
Gs is the shear modulus of the elastic skeleton. As a consequence of the relations
E s
1 = E s

3 = 2(1 + νs)Gs and νs12 = νs31 = νs, Eq. (5.40) yield the same result
E1 = E3 = 3Gs, irrespective of the value of the Poisson’s ratio νs of the skeleton.

Note also that if the elastic constants of the elastic skeleton satisfy the incompress-
ibility condition (5.36), then Eq. (5.40) give E1 = E s

1 and E3 = E s
3, respectively,

when successively taking the limits νs31 → 0.5 (with νs12 fixed) and after that as
νs12 → 1 − E s

1/(2E s
3), and vice-versa.

5.1.4 Axisymmetric Biphasic Model

Let us consider a biphasic material with the axis of symmetry oriented along the
z axis of an (r, θ, z) cylindrical coordinate system. The constitutive equations (5.13)
for the effective stresses of the solid matrix are as follows:

σ e
rr = As

11εrr + As
12εθθ + As

13εzz,

σ e
θθ = As

12εrr + As
11εθθ + As

13εzz,

σ e
zz = As

13εrr + As
13εθθ + As

33εzz,

σ e
r z = 2As

44εr z .

(5.41)

The strain-displacement relations (5.11) become
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εrr = ∂ur

∂r
, εθθ = ur

r
, εzz = ∂uz

∂z
, εr z = 1

2

(∂ur

∂z
+ ∂uz

∂r

)
, (5.42)

where ur and uz denote the radial and axial displacements.
The equilibrium equations (5.10), which are written with respect to the total stress

σ = −pI + σ e,

now reduce to the following equations of equilibrium:

−∂p

∂r
+ 1

r

∂(rσ e
rr )

∂r
− σ e

θθ

r
+ ∂σ e

r z

∂z
= 0,

−∂p

∂z
+ 1

r

∂(rσ e
r z)

∂r
+ ∂σ e

zz

∂z
= 0.

(5.43)

Correspondingly, Eq. (5.19) takes the form

∂

∂t

(
∂ur

∂r
+ ur

r
+ ∂uz

∂z

)
= 1

r

∂

∂r

(
rk1

∂p

∂r

)
+ ∂

∂z

(
k3

∂p

∂z

)
, (5.44)

where k1 and k3 are the in-plane and out-of-plane permeability coefficients, while
the relative fluid flux can be expressed as

wf = −k1
∂p

∂r
er − k3

∂p

∂z
ez, (5.45)

with the radial and axial unit coordinate vectors er and ez , respectively.

5.2 Confined Compression of a Biphasic Material

In this section,we outline a linear confined compression biphasicmodel. In particular,
the biphasic stress relaxation and the biphasic creep tests in confined compression
are considered.

5.2.1 Confined Compression Problem

In the confined compression test, a cylindrical plug of biphasicmaterial is constrained
in a confining chamber with impermeable rigid walls, and is subjected to a compres-
sive load, F(t), via a porous loading plate (see Fig. 5.1). Observe that the non-linear
confined compression problem has been considered in a number of publications
[8, 9, 62].



5.2 Confined Compression of a Biphasic Material 159

Fig. 5.1 Schematic of the
confined compression
configuration [52]
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In the cylindrical coordinate system, the boundary conditions on the lateral surface
are

wf
r

∣∣
r=a = 0, σr z

∣∣
r=a = σrθ

∣∣
r=a = 0, ur

∣∣
r=a = 0, (5.46)

where wf
r is the transverse (in-plane) relative fluid flux, σr z and σrθ are out-of-plane

and in-plane total shear stresses, and ur is the radial displacement of the solid matrix.
The boundary conditions at the bottom surface, z = h, are as follows:

wf
z

∣∣
z=h = 0, σzr

∣∣
z=h = σzθ

∣∣
z=h = 0. uz

∣∣
z=h = 0, (5.47)

Here, wf
z and uz are the vertical relative fluid flux and the vertical displacement of

the solid matrix, respectively.
Meanwhile, the boundary conditions at the top surface, z = 0, have the form

p
∣∣
z=0 = 0, σzr

∣∣
z=0 = σzθ

∣∣
z=0 = 0, (5.48)

where p is the interstitial fluid pressure.
Observe that the boundary condition (5.48)1 describes the free-draining porous

interface, where no resistance to fluid movement is assumed at the interface between
the porous loading plate and the sample surface.

For the stress relaxation test, the additional boundary condition at the top is

uz
∣∣
z=0 = w(t), (5.49)

where w(t) is a specified displacement of the loading plate.
For example, the ramp displacement is defined as

w(t) =
{

V0t, 0 ≤ t ≤ t0,

V0t0, t0 ≤ t,
(5.50)

and V0, t0 are given constants.
On the other hand, for creep, the boundary condition is

σzz
∣∣
z=0 = − F(t)

A
, (5.51)



160 5 Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer

where F(t) is a specified external load acting on the porous loading plate, and A =
πa2 is the sample cross-sectional area.

For example, if the load is applied instantaneously, then

F(t) = F0H (t), (5.52)

where H (t) is the Heaviside step function.
The experimental setup of the confined compression test for articular cartilage

represents a one-dimensional problem in the axial direction, so that

ur = uθ = 0, εrr = εθθ = 0, wf
r = wf

θ = 0, (5.53)

while all non-trivial variables are dependent on t and z only.
Note that the assumptions (5.53)1 and (5.53)2 dictate that the rigid confining

chamber prevents any lateral deformation. Therefore, the axial total stress is

σzz = −p + HAεzz, (5.54)

where HA is the confined compression equilibrium modulus (aggregate elastic mod-
ulus) of the solid matrix given by

HA = As
33. (5.55)

Hence, taking into account the free-draining condition (5.48)1, the traction bound-
ary condition (5.51) can be reduced to the following:

HA
∂uz

∂z

∣∣∣
z=0

= − f (t). (5.56)

Here, f (t) is the applied compressive stress, i.e.,

f (t) = F(t)

A
. (5.57)

Finally, to complete the confined compression problem formulation, we assume
the usual initial conditions (5.30).

5.2.2 Governing Equation of the Confined Compression Model

Under the assumptionsmade in the confinedcompressionmodel, the only equilibrium
differential equation (5.43)2 takes the form
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− ∂p

∂z
+ ∂σ e

zz

∂z
= 0, (5.58)

where, in light of (5.53) and (5.54), we have

σ e
zz = HAεzz . (5.59)

Integrating Eq. (5.59) with respect to the coordinate z, we arrive at the equation

−p + σ e
zz = σzz(t). (5.60)

Here, σzz(t) is the integration constant (being a function of the time variable t only).
Now, comparing Eqs. (5.54) and (5.60), we find that the total normal stress, σzz(t),

is uniform through the depth of the biphasic sample.
Further, since all non-trivial variables are dependent on t and z only, the equilib-

rium equation (5.44) for the fluid phase after integrationwith respect to the coordinate
z reduces to

∂uz

∂t
= k3

∂p

∂z
, (5.61)

where k3 is the axial permeability coefficient.
Now, collecting Eqs. (5.59)–(5.61), we arrive at the governing equation

∂uz

∂t
= k3

∂

∂z

(
HA

∂uz

∂z

)
, (5.62)

which for a homogeneous biphasic material simplifies to a Fourier equation

∂uz

∂t
= k3HA

∂2uz

∂z2
. (5.63)

Equation (5.63) is supplemented by the homogeneous initial condition

uz(0, z) = 0

and the boundary condition at the bottom surface

uz(t, h) = 0.

For stress relaxation, the general boundary condition at the top surface is

uz(t, 0) = w(t), (5.64)

where w(t) is the prescribed surface displacement as a function of time, while for
creep, in light of (5.56), we have
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∂uz

∂z
(t, 0) = − f (t)

HA
, (5.65)

where f (t) is the prescribed compressive stress as a function of time.
Note that the second-order parabolic partial differential equation (5.62)was solved

in [26] using a semi-analytical approach based on the finite difference and Laplace
transformmethods. The effect of the depth-dependent aggregatemodulus on articular
cartilage stress-relaxation in confined compression was studied in [75].

5.2.3 Biphasic Stress Relaxation in Confined Compression

The following formula [64] gives the general solution to the problem (5.63) and
(5.64):

uz(t, z) = w(t)
(
1 − z

h

)
−

∞∑
n=1

2

πn
sin

(
πn

z

h

)(
Knw

)
(t). (5.66)

Here we have introduced the notation

(
Knw

)
(t) =

t∫

0−
exp

(
−n2(t − τ)

τ ′
R

)
ẇ(τ ) dτ, (5.67)

where τ ′
R is the characteristic relaxation time in confined compression defined by

τ ′
R = h2

π2k3HA
. (5.68)

Recall that the lower integration limit 0− in the integral operator above indicates that
the integration in (5.67) starts at infinitesimally negative time so as to include the
displacement discontinuity at time zero.

The strain of the solid matrix can be simply obtained from the relationship

εzz = ∂uz

∂z
.

Then according to Eq. (5.60), we have

p = HAεzz − σzz(t), (5.69)

from which we can determine the total normal stress, in light of the free-draining
boundary condition (5.48)1, as follows:

σzz(t) = HAεzz
∣∣
z=0.
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The interstitial hydrostatic pressure can be expressed in the form

p(t, z) = 2HA

h

∞∑
n=1

[
1 − cos

(
πn

z

h

)](
Knw

)
(t). (5.70)

The corresponding stress relaxation response in confined compression is then
given by

σzz(t) = −HA
w(t)

h
− 2HA

h

∞∑
n=1

(
Knw

)
(t). (5.71)

In the case of constant strain rate compression in the loading phase t ∈ (0, t0),
followed by the hold period t ∈ (t0,+∞), formula (5.50) yields

ẇ(t) =
{

V0, 0 ≤ t ≤ t0,

0, t0 ≤ t.

Therefore, in the case of ramp displacement (5.50), the integral (5.67), which
appears on the right-hand sides of (5.66), (5.70), and (5.71), is evaluated as

(
Knw

)
(t) = V0τ

′
R

n2

(
1 − exp

(
−n2t

τ ′
R

))
, 0 ≤ t < t0,

(
Knw

)
(t) = V0τ

′
R

n2 exp
(
−n2t

τ ′
R

)(
exp

(n2t0
τ ′

R

)
− 1

)
, t0 ≤ t.

Now, taking into account the above formulas and the identity

∞∑
n=1

1

n2 = π2

6
,

we arrive at the following formulas [60]:

σzz(t) = −HA
V0t

h
− V0h

3k3
+ 2V0h

π2k3

∞∑
n=1

1

n2 exp
(
−n2t

τ ′
R

)
(5.72)

for 0 ≤ t < t0, and

σzz(t) = −HA
V0t0

h
+ 2V0h

π2k3

∞∑
n=1

1

n2

{
exp

(
−n2t

τ ′
R

)
− exp

(
−n2(t − t0)

τ ′
R

)}
(5.73)

for t ≥ t0.
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Fig. 5.2 The effect of t0/τ ′
R

on the stress-relaxation time
history in response to a
ramped displacement. (The
values taken by t0/τ ′

R are
indicated on the figure.) Note
the limit value 1 as t → ∞
in all cases due to the
normalization
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According to Eqs. (5.72) and (5.73), the effect of t0/τ ′
R on the dimensionless

stress-relaxation time history −σzz(t)/[HAε̇0t0], where ε̇0 = V0/h, is shown in
Fig. 5.2.

Equations (5.72) and (5.73) can be used for determining the aggregate modulus,
HA, and the constant axial permeability coefficient, k3, from the stress relaxation
experiment by fitting the theoretical solution on to the experimental curve for the
measured total normal stress [69].

5.2.4 Biphasic Creep in Confined Compression

The following formula [64] gives the general solution to the problem (5.63) and
(5.65):

uz(t, z) = 2k3
h

∞∑
n=1

cos
(π(2n − 1)z

2h

)(
Nn f

)
(t). (5.74)

Here we have introduced the notation

(
Nn f

)
(t) =

t∫

0

exp

(
−(2n − 1)2

(t − τ)

τ ′′
R

)
f (τ ) dτ, (5.75)

where τ ′
R is the characteristic time having the meaning of a retardation time in

confined compression defined as

τ ′′
R = 4h2

π2k3HA
. (5.76)
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Thus, the nominal sample-average strain (surface-to-surface strain), which is cal-
culated from the distance h − uz(t, 0) between the loading platens, is

uz(t, 0)

h
= 2k3

h2

∞∑
n=1

(
Nn f

)
(t). (5.77)

Taking into account the constitutive equation (5.60) and the boundary conditions
(5.48)1 and (5.56), we find that the total normal stress in the biphasic sample is

σzz(t) = − f (t).

Hence, Eq. (5.69) allows evaluation of the interstitial hydrostatic pressure via

p = HAεzz + f (t). (5.78)

Evaluating the strain of the solid matrix according to formula (5.74) and substi-
tuting the obtained result into Eq. (5.78), we find

p(t, z) = f (t) − πk3HA

h2

∞∑
n=1

(2n − 1) sin
(π(2n − 1)z

2h

)(
Nn f

)
(t). (5.79)

For a creep experiment, where a constant external load, F0, is applied instanta-
neously, the following loading law holds true (see Eq. (5.57)):

f (t) = f0H (t). (5.80)

Here, H (t) is the Heaviside step function, f0 = F0/A is the constant compressive
stress, and A is the cross-sectional area of the biphasic sample.

Correspondingly, formula (5.77) yields the following result [14]:

uz(t, 0)

h
= f0

HA

{
1 − 8

π2

∞∑
n=1

1

(2n − 1)2
exp

(
−(2n − 1)2

t

τ ′′
R

)}
. (5.81)

Note that in writing (5.81), we used the identity

∞∑
n=1

1

(2n − 1)2
= π2

8
.

In the same way, in the case (5.80), formula (5.79) is rearranged to obtain

p(t, z) = 4 f0
π

∞∑
n=1

1

2n − 1
sin

(π(2n − 1)z

2h

)
exp

(
−(2n − 1)2

t

τ ′′
R

)
. (5.82)
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In writing (5.82), the following identity was used (see, e.g., [30], formula (1.442.1)):

∞∑
n=1

sin(2n − 1)ζ

2n − 1
= π

4
, 0 < ζ < π. (5.83)

By substituting z = h into Eq. (5.82), we readily obtain

p(t, h) = 4 f0
π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2

t

τ ′′
R

)
. (5.84)

Note also [69] that the interstitial fluid pressure at the impermeable interface,
z = h, can be represented by the formula

p(t, h) = HA

(
εzz

∣∣
z=h − εzz

∣∣
z=0

)
,

where εzz is the strain of the solid matrix, εzz = ∂uz/∂z, while the displacement uz

is taken from (5.74) for creep and from (5.66) for stress relaxation.
Correspondingly, the so-called fluid load support

W p

W
= p(t, h)

f (t)

is evaluated as follows [63]:

W p

W
=
(

∂u

∂z

∣∣∣
z=0

− ∂u

∂z

∣∣∣
z=h

)/
∂u

∂z

∣∣∣
z=0

.

In the stepwise creep test, according to (5.80) and (5.84), we have

W p

W
= 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2

t

τ ′′
R

)
.

Therefore, as a consequence of (5.83), the above formula yields the maximum value

W p

W

∣∣∣
t=0

= 1.

It should be noted [63] that in real creep testing configurations, there exists a delay
in pressurization due to the impedance of the pressure transducer in measuring the
pressure p(t, h). Namely, the greater the compliance of the pressure transducer, the
greater the delay in the interstitial fluid pressurization achieving the peak value of
W p/W .
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Equation (5.81) is commonly used in determining the aggregatemodulus, HA, and
the constant axial permeability coefficient, k3, from the confined compression creep
experiment by fitting the theoretical solution on to the experimental curve for the
nominal sample-average strain. It should bementioned that for improvedmechanical
characterization of articular cartilage, testing experiments may involve multiple-step
ramp loading [50] as well as an alternating sequence of stress relaxation and creep
transients [17].

Finally, observe [13] that the presence of a gap between the loading plate and
the confining chamber walls, which is necessary to guarantee a correct plate move-
ment, allows flow exudation and tissue extrusion around the plate, thus leading to
underestimation of HA and overestimation of k3.

5.2.5 Dynamic Behavior of a Biphasic Material Under Cyclic
Compressive Loading in Confined Compression

Let us now consider the following loading history for cyclic compressive confined
compression [70, 73]:

f (t) = f0(1 − cosωt)H (t). (5.85)

Here, f0 is the median magnitude of the applied cyclic stress, and ω is the loading
angular frequency. Recall that ω/(2π) is the loading frequency measured in hertz.

First of all, using integration by parts and the identity (see, e.g., [30], formula
(1.444.6))

∞∑
n=1

cos(2n − 1)ζ

(2n − 1)2
= π

4

(π

2
− ζ

)
, 0 < ζ < π,

we transform formulas (5.74) and (5.79) as follows:

uz(t, z) = h

HA

{
f (t)

(
1 − z

h

)

− 8

π2

∞∑
n=1

1

(2n − 1)2
cos

(π(2n − 1)z

2h

)(
Mn f

)
(t)

}
, (5.86)

p(t, z) = 4

π

∞∑
n=1

1

2n − 1
sin

(π(2n − 1)z

2h

)(
Mn f

)
(t). (5.87)

Here we have introduced the notation

(
Mn f

)
(t) =

t∫

0−
exp

(
−(2n − 1)2

(t − τ)

τ ′′
R

)
ḟ (τ ) dτ. (5.88)
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As usual, the notation 0− in the lower limit of the integral above means that

t∫

0−
e−an(t−τ) ḟ (τ ) dτ = f (0+)e−ant +

t∫

0

e−an(t−τ) ḟ (τ ) dτ,

where f (0+) is the limit of the function f (t) when the independent variable t
approaches 0 from the right.

Since f (0) = 0 for the function defined by formula (5.85), we have

ḟ (τ ) = ω f0H (t) sinωt,

so that Eqs. (5.86) and (5.87) yield

uz(t, z) = f0h

HA

{
(1 − cosωt)

(
1 − z

h

)

− 8

π2 sinωt
∞∑

n=1

ωan

(2n − 1)2(a2
n + ω2)

cos
(π(2n − 1)z

2h

)

+ 8

π2 cosωt
∞∑

n=1

ω2

(2n − 1)2(a2
n + ω2)

cos
(π(2n − 1)z

2h

)

− 8

π2

∞∑
n=1

ω2

(2n − 1)2(a2
n + ω2)

exp(−ant) cos
(π(2n − 1)z

2h

)}
(5.89)

for the vertical displacement of the solid matrix and

p(t, z) = 4 f0
π

{
sinωt

∞∑
n=1

ωan

(2n − 1)(a2
n + ω2)

sin
(π(2n − 1)z

2h

)

− cosωt
∞∑

n=1

ω2

(2n − 1)(a2
n + ω2)

sin
(π(2n − 1)z

2h

)

+
∞∑

n=1

ω2

(2n − 1)(a2
n + ω2)

exp(−ant) sin
(π(2n − 1)z

2h

)}
(5.90)

for the interstitial fluid pressure, where we have introduced the notation

an = (2n − 1)2

τ ′′
R

.

It can be checked that Eqs. (5.89) and (5.90) coincide with the corresponding
results obtained by Suh et al. [73], apart from notation.
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5.3 Unconfined Compression of a Biphasic Material

In this section, the unconfined compression biphasic model is developed. In partic-
ular, the biphasic stress relaxation and the biphasic creep tests in unconfined com-
pression are studied.

5.3.1 Unconfined Compression Problem

In the axisymmetric unconfined compression test, a thin cylindrical disk of biphasic
material is compressed between two smooth (frictionless) and impermeable rigid
platens (see Fig. 5.3). Therefore, the material is free to expand radially, and free fluid
flow is enabled across the lateral cylindrical surface.

In the cylindrical coordinate system, the boundary conditions on the lateral surface
are

p
∣∣
r=a = 0, σr z

∣∣
r=a = σrθ

∣∣
r=a = σrr

∣∣
r=a = 0. (5.91)

Here, p is the interstitial fluid pressure, σr z and σrθ are shear stresses, σrr is the
radial normal stress.

The boundary conditions at the bottom surface, z = h, are

wf
z

∣∣
z=h = 0, σzr

∣∣
z=h = σzθ

∣∣
z=h = 0, uz

∣∣
z=h = 0, (5.92)

where wf
z and uz are the vertical relative fluid flux and the vertical displacement of

the solid matrix, respectively.
At the top surface, z = 0, we have the following boundary conditions:

wf
z

∣∣
z=0 = 0, σzr

∣∣
z=0 = σzθ

∣∣
z=0 = 0, uz

∣∣
z=0 = w(t). (5.93)

Here, w(t) is the vertical displacement of the upper platen.
Again, we can consider either the creep test (load-controlled) or the stress-

relaxation test (displacement-controlled) in unconfined compression. For the stress-
relaxation experiment, w(t) is a prescribed function of time.

z

f

h
Cartilage
sample

Bathing 
solution

Rigid, impermeable 
loading platen

Fig. 5.3 Schematic of the unconfined compression configuration [52]. The articular cartilage sam-
ple has to be stripped off from the subchondral bone and cut into a perfect cylinder
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Following Armstrong et al. [5] and Cohen et al. [19], we assume the radial dis-
placement of the solid skeleton, ur , the fluid relative radial velocity, wf

r , and the fluid
pressure, p, to be of the form

ur = ur (t, r), wf
r = wf

r (t, r), p = p(t, r). (5.94)

Moreover, the axial strain, εzz , is assumed to be uniform throughout the sample, i.e.,

εzz = ε(t), (5.95)

where ε(t) is a time-dependent function.
Hence, in light of the assumption (5.95), the integration of the equation

εzz = ∂uz

∂z

with the boundary conditions (5.92)3 and (5.93)3 taken into account yields

ε(t) = −w(t)

h
, (5.96)

uz(t, z) = −ε(t)(h − z). (5.97)

According to (5.94), (5.95), and (5.97), the only nonzero strain components are

εrr = ∂ur

∂r
, εθθ = ur

r
, εzz = ε,

and, correspondingly, Eq. (5.41) yield the following nonzero effective stresses:

σ e
rr = As

11
∂ur

∂r
+ As

12
ur

r
+ As

13ε,

σ e
θθ = As

12
∂ur

∂r
+ As

11
ur

r
+ As

13ε,

σ e
zz = As

13
∂ur

∂r
+ As

13
ur

r
+ As

33ε.

(5.98)

The substitution of (5.98) into the equilibrium equations for the solidmatrix (5.43)
results in the differential equation

−∂p

∂r
+ As

11

(
∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2

)
= 0, (5.99)

while Eq. (5.44) takes the form
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∂

∂t

(
∂ur

∂r
+ ur

r
+ ε

)
= 1

r

∂

∂r

(
rk1

∂p

∂r

)
, (5.100)

where k1 is the transverse (in-plane) permeability coefficient.
Finally, the relative fluid flux (5.45), in light of (5.94), is given by

wf = −k1
∂p

∂r
er , (5.101)

where er is the radial unit vector.
Equations (5.99)–(5.101), with the boundary conditions (5.91)–(5.93) and the

zero initial conditions, constitute the unconfined compression problem.
It has been established [57] that the incorporation of a transverse isotropy for

material properties into the linear biphasic theory improves its predictive power in
unconfined compression analysis [19].

5.3.2 Solution of the Unconfined Compression Problem

Let us first turn to Eq. (5.100). Taking into account that

∂ur

∂r
+ ur

r
= 1

r

∂

∂r
(rur ),

we can integrate Eq. (5.100) once with respect to the radial coordinate to get

∂p

∂r
= 1

k1

∂

∂t

(
ur + ε

2
r
)
, (5.102)

where the integration constant vanishes due to the regularity condition at the center
of the sample, r = 0.

Therefore, Eqs. (5.99) and (5.102) yield the following equation [19]:

∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2
= 1

As
11k1

∂

∂t

(
ur + ε

2
r
)
. (5.103)

Recall that the boundary conditions (5.91)2 are formulated in terms of the com-
ponents of the total stress tensor

σ = −pI + σ e. (5.104)

Hence, as a consequence of the constitutive equation (5.98), the boundary conditions
(5.91) become
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p
∣∣
r=a = 0, As

11
∂ur

∂r
+ As

12
ur

r
+ As

13ε

∣∣∣
r=a

= 0. (5.105)

To simplify our treatment of the problem, we introduce dimensionless variables

ρ = r

a
, U = ur

a
, τ = As

11k1
a2 t, P = p

As
11

. (5.106)

Then, Eqs. (5.102)–(5.105) take the form

∂ P

∂ρ
= ∂

∂τ

(
U + ε

2
ρ
)
, (5.107)

∂2U

∂ρ2 + 1

ρ

∂U

∂ρ
− U

ρ2 = ∂

∂τ

(
U + ε

2
ρ
)
, (5.108)

P
∣∣
ρ=1 = 0,

∂U

∂ρ
+ α12

U

ρ
+ α13ε

∣∣∣∣
ρ=1

= 0, (5.109)

where we have introduced the notation

α12 = As
12

As
11

, α13 = As
13

As
11

. (5.110)

Now, let P̃(s), Ũ (s), and ε̃(s) denote the Laplace transforms with respect to the
dimensionless time τ . Taking into account the zero initial conditions, the Laplace
transformation of Eqs. (5.107)–(5.109) leads to the system

∂ P̃

∂ρ
= s

(
Ũ + ε̃

2
ρ
)
, (5.111)

∂2Ũ

∂ρ2 + 1

ρ

∂Ũ

∂ρ
− Ũ

ρ2 = s
(

Ũ + ε̃

2
ρ
)
, (5.112)

P̃
∣∣
ρ=1 = 0,

∂Ũ

∂ρ
+ α12

Ũ

ρ
+ α13ε̃

∣∣∣∣
ρ=1

= 0. (5.113)

The general solution of Eq. (5.112) can be represented in the form

Ũ = − ε̃

2
ρ + Ũ0, (5.114)

where Ũ0 is the general solution of the homogeneous equation corresponding to
Eq. (5.112), i.e.,
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∂2Ũ0

∂ρ2 + 1

ρ

∂Ũ0

∂ρ
−
(

s + 1

ρ2

)
Ũ0 = 0. (5.115)

Making use of the change of the independent variable ρ = ρ′/
√

s, Eq. (5.115)
can be reduced to the modified Bessel’s equation. In this way, taking into account
the regularity condition at ρ = 0, we obtain

Ũ0 = C0 I1(
√

sρ), (5.116)

where C0 is an arbitrary function of the Laplace transform parameter s. This integra-
tion constant (with respect to the variable ρ) should be determined from the boundary
condition (5.113)2, which in light of (5.114) becomes

∂Ũ0

∂ρ
+ α12

Ũ0

ρ

∣∣∣∣
ρ=1

= ε̃

2
(1 + α12 − 2α13).

By substituting the expression (5.116) into the above equation and taking into
account the identity I ′

1(x) = I0(x) − (1/x)I1(x) for the modified Bessel functions
of the first kind, we find

C0 = (1 + α12 − 2α13)ε̃(s)

2
[√

s I0(
√

s) − (1 − α12)I1(
√

s)
] . (5.117)

Collecting formulas (5.114)–(5.117), we obtain

Ũ = − ε̃

2
ρ

⎛
⎜⎜⎝1 − (1 + α12 − 2α13)I1(

√
sρ)

√
sρ

(
I0(

√
s) − (1 − α12)

I1(
√

s)√
s

)

⎞
⎟⎟⎠ . (5.118)

We now calculate the Laplace transform of the dimensionalized pressure, P̃ , from
Eq. (5.111), which as a result of (5.114) can be rewritten as

∂ P̃

∂ρ
= sŨ0.

The integration of the above equation with respect to ρ, in light of the identity
I ′
0(x) = I1(x), yields

P̃ = C0
√

s I0(
√

sρ) + C1,

whereC1 is an arbitrary function of s. By satisfying the boundary condition (5.113)1,
we immediately get C1 = −C0

√
s I0(

√
s) and

P̃ = C0
√

s
(
I0(

√
sρ) − I0(

√
s)
)
, (5.119)
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where C0 is given by (5.117).
Finally, we consider the force response of the biphasic sample

F(t) = −2π

a∫

0

σzz(t, r)r dr, (5.120)

where, in light of (5.98) and (5.104), the out-of-plane normal total stress is given by

σzz = −p + As
13

∂ur

∂r
+ As

13
ur

r
+ As

33ε. (5.121)

In terms of the dimensionless variables (5.106), Eq. (5.120) takes the form

F (τ ) = −2

1∫

0

(
−P + α13

(∂U

∂ρ
+ U

ρ

)
+ α33ε

)
ρ dρ, (5.122)

where we have introduced the notation

F (τ ) = F(t)

πa2As
11

, (5.123)

α33 = As
33

As
11

. (5.124)

After application of the Laplace transform, Eq. (5.122) becomes

F̃ (s) = −2

1∫

0

(
−P̃ + α13

(∂Ũ

∂ρ
+ Ũ

ρ

)
+ α33ε̃

)
ρ dρ. (5.125)

Now, taking into account Eqs. (5.114), (5.117), (5.119) and formulas

I ′
0(x) = I1(x), x I ′

1(x) = x I0(x) − I1(x),

the integral (5.125) becomes

F̃ (s) = −
γ1 I0(

√
s) − γ2

I1(
√

s)√
s

I0(
√

s) − γ0
I1(

√
s)√

s

ε̃(s), (5.126)

where we have also introduced the notation
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γ0 = 1 − α12,

γ1 = 1

2
(1 + α12 + 2α33 − 4α13), (5.127)

γ2 = α33(1 − α12) + 1 + α12 − 4α13 + 2α2
13.

Formulas (5.126) and (5.127) coincide with the corresponding results given by
Cohen et al. [19], up to the notation. In the isotropic case, we have

α12 = α13 = λs

HA
, α33 = 1, γ0 = 2μs

HA
, γ1 = 3μs

HA
, γ2 = 8μ2

s

H2
A

,

whereλs,μs, and HA are theLaméelastic constants and the aggregate elasticmodulus
of the solid skeleton, respectively, and the original results of Armstrong et al. [5] are
immediately recovered.

5.3.3 Unconfined Compression Model

Following [3], we rewrite Eq. (5.126) in the form

F̃ (s) = −sε̃(s) ˜K (s), (5.128)

where we have introduced the notation

˜K (s) =
γ1 I0(

√
s) − γ2

I1(
√

s)√
s

s

(
I0(

√
s) − γ0

I1(
√

s)√
s

) . (5.129)

By applying the convolution theorem to Eq. (5.128), we obtain

F (τ ) = −
τ∫

0−

dε(τ ′)
dτ ′ K (τ − τ ′) dτ ′, (5.130)

where K (τ ) = L −1{ ˜K (s)} is the original function of ˜K (s), and τ = 0− is the
dimensionless time moment just preceding the initial moment of loading τ = 0. In
deriving Eq. (5.130), we have used the formula

L −1{sε̃(s)} = dε(τ )

dτ
+ ε(0+)δ(τ ),

where δ(τ ) is the Dirac function.
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Following [5], we calculate the inverse Laplace transform by using the residue
theorem (see, e.g., [46, 48]) to find

K (τ ) = 2γ1 − γ2

2 − γ0
+

∞∑
n=1

2(γ2 − γ0γ1)

α2
n − γ0(2 − γ0)

e−α2
nτ , (5.131)

where αn are the roots of the transcendental equation

J0(x) − γ0
J1(x)

x
= 0, (5.132)

in which J0(x) and J1(x) are Bessel functions of the first kind.
The inverse relation for Eq. (5.130) can be represented by

ε(τ ) = −
τ∫

0−

dF (τ ′)
dτ ′ M (τ − τ ′) dτ ′, (5.133)

where M (τ ) = L −1{M̃ (s)}, and M̃ (s) is defined by the formula

M̃ (s) =
I0(

√
s) − γ0

I1(
√

s)√
s

s

(
γ1 I0(

√
s) − γ2

I1(
√

s)√
s

) . (5.134)

Again making use of the residue theorem, we obtain

M (τ ) = 2 − γ0

2γ1 − γ2
−

∞∑
n=1

2(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)
e−β2

n τ , (5.135)

where βn are the roots of the transcendental equation

J0(x) − γ2

γ1

J1(x)

x
= 0. (5.136)

The short-time asymptotic approximation for the kernel K (τ ), as can also be
found for M (τ ), can be obtained by evaluating the Laplace inverse of ˜K (s) as
s → ∞. For this purpose, we apply the following well known asymptotic expansion
(see, e.g., [30], formula (8.451.5)):

In(z) = ez

√
2π z

{
1 + (1 − 4n2)

8z
+ O(z−2)

}
.
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By making use of the above asymptotic formula, we expand the right-hand sides
of (5.129) and (5.134) in terms of 1/

√
s. As a result, we arrive at the following

asymptotic expansions:

K (τ ) = γ1 − 2√
π

(γ2 − γ0γ1)
√

τ + O(τ ), τ → 0+, (5.137)

M (τ ) = 1

γ1
+ 2√

π

(γ2 − γ0γ1)

γ 2
1

√
τ + O(τ ), τ → 0+. (5.138)

The asymptotic approximations (5.137) and (5.138) can be used in evaluat-
ing unconfined impact compression tests where the impact duration is relatively
small compared to the so-called [5] gel diffusion time for the biphasic material
tg = a2/(HAk1), which is the time taken for a cylindrical biphasic sample of radius
a to reach equilibrium in unconfined stepwise compression.

Further, let us introduce the notation

K0 = K (0), M0 = M (0).

In light of (5.137) and (5.138), we have

K0 = γ1, M0 = 1

γ1
. (5.139)

Hence, the following identities hold true:

2γ1 − γ2

2 − γ0
+

∞∑
n=1

2(γ2 − γ0γ1)

α2
n − γ0(2 − γ0)

= γ1,

2 − γ0

2γ1 − γ2
−

∞∑
n=1

2(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)
= 1

γ1
.

(5.140)

Using Eq. (5.140), we can rewrite the kernel functions (5.131) and (5.135) as

K (τ ) = K0 −
∞∑

n=1

2(γ2 − γ0γ1)

α2
n − γ0(2 − γ0)

(
1 − e−α2

nτ
)
,

M (τ ) = M0 +
∞∑

n=1

2(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)

(
1 − e−β2

n τ
)
,

(5.141)

and then introduce the normalized kernel functions

K (t) = 1

K0
K

( As
11k1
a2 t

)
, M(t) = 1

M0
M

( As
11k1
a2 t

)
, (5.142)
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so that, in light of (5.106) and (5.139)–(5.142), we have

K (t) = 1 −
∞∑

n=1

An

(
1 − exp

(
− t

ρn

))
, (5.143)

M(t) = 1 +
∞∑

n=1

Bn

(
1 − exp

(
− t

τn

))
, (5.144)

where we have introduced the notation

An = 2(γ2 − γ0γ1)

γ1
[
α2

n − γ0(2 − γ0)
] , Bn = 2γ1(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)
, (5.145)

ρn = a2

α2
n As

11k1
, τn = a2

β2
n As

11k1
. (5.146)

Note that, by analogy with the viscoelastic model, the functions K (t) and M(t)
may be called the normalized biphasic relaxation function and the normalized bipha-
sic creep function for unconfined compression, respectively. Note also that the
sequences ρ1 > ρ2 > . . . and τ1 > τ2 > . . ., which are defined by formulas
(5.146), represent the discrete relaxation and retardation spectra, respectively.

In the dimensional form, Eqs. (5.130) and (5.133) can be recast as follows (see
formulas (5.96), (5.106), and (5.123)):

F(t) = πa2E3

h

t∫

0−
K (t − t ′)ẇ(t ′) dt ′, (5.147)

w(t) = h

πa2E3

t∫

0−
M(t − t ′)Ḟ(t ′) dt ′. (5.148)

Here we have introduced the notation

E3 = As
11K0 = As

11

M0
,

which according to Eqs. (5.110), (5.124), (5.127), and (5.139), has the form

E3 = 1

2

(
As
11 + As

12 + 2As
33 − 4As

13

)
. (5.149)
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Note that the elastic constant E3 defined by formula (5.149) coincideswith the out-
of-planeYoung’smodulus of the equivalent (for instantaneous response) transversely
isotropic incompressible elastic material given by formula (5.40)2.

In terms of the technical elastic constants, formulas (5.127) yield

γ0 = 1 − νs12 − 2νs231n1

1 − νs231n1
, (5.150)

γ2

γ1
= 2

{[
1 − 4νs31(1 − νs12ν

s
31)

]
n1 + (1 − νs12)

2 − νs231(1 − 4νs31)n
2
1

}
(
1 − n1ν

s2
31

)[
(1 − 4νs31)n1 + 2(1 − νs12)

] , (5.151)

where we have introduced the notation

n1 = E s
1

E s
3
.

Finally, we note that in light of (5.150), Eq. (5.132) coincides with the correspond-
ing equation derived in [19].

5.3.4 Biphasic Stress Relaxation in Unconfined Compression

For an imposed step displacement, i.e.,

w(t) = w0H (t),

where H (t) is the Heaviside step function, by formula (5.147) we have

F(t) = πa2E3
w0

h
K (t), (5.152)

for K (t) and E3 given by (5.143) and (5.149).
FollowingCohen et al. [19], we consider the ratio of the peak load intensity (Fpeak,

at t → 0+) to the one at equilibrium (Feq, at t → +∞), which in light of the relations
K (0) = 1 and K (+∞) = 1 − ∑∞

n=1An takes the form

Fpeak

Feq
= γ1(2 − γ0)

2γ1 − γ2
. (5.153)

We note that in writing the above equation we have used the first identity (5.140).
In the isotropic case, the right-hand side of (5.153) reduces to 3/[2(1 + νs)],

which is a strictly decreasing function of Poisson’s ratio νs and for positive νs attains
a maximum value of 1.5 at νs = 0, as shown by Armstrong et al. [5].
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Fig. 5.4 The effect of νs12
and E s

1/E s
3 on the peak to

equilibrium ratio of the load
intensity in the stress-
relaxation response to a step
displacement. (The values
taken by E s

1/E s
3 are

indicated on the figure)
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Taking into account formulas (5.110), (5.124), and (5.127), we rewrite Eq. (5.153)
in the following form [19]:

Fpeak

Feq
= 2(1 − νs12) + (1 − 4νs31)E s

1/E s
3

2
(
1 − νs12 − 2νs231E s

1/E s
3

) . (5.154)

For the particular case of νs31 = 0, the maximum values of the load intensity ratio
are depicted in Fig. 5.4 for different values of E s

1/E s
3 and νs12 ∈ (0, 1.0). Note the

high values that this ratio can attain (much greater than the maximum value 1.5 for
the ratio Fpeak/Feq = 3/[2(1 + ν)] in the isotropic case for ν = 0).

For an imposed ramp displacement, i.e.,

w(t) =
{

V0t, 0 ≤ t ≤ t0,

V0t0, t0 ≤ t,

when a constant strain rate −V0/h is maintained until time t0, the general solution
(3.49) yields

F(t) = πa2E3
V0

h

{
(2γ1 − γ2)

γ1(2 − γ0)
t +

∞∑
n=1

Anρn
(
1 − e−t/ρn

)}
(5.155)

for 0 ≤ t ≤ t0, and for t ≥ t0 gives

F(t) = πa2E3
V0

h

{
(2γ1 − γ2)

γ1(2 − γ0)
t0 +

∞∑
n=1

Anρn
(
e−(t−t0)/ρn − e−t/ρn

))}
. (5.156)

Note that at equilibrium (as t → ∞), the load intensity will be
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Fig. 5.5 The effect of νs12 on
the stress-relaxation time
history in response to a
ramped displacement, when
E s
1/E s

3 = 5 and t0/tg = 1
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h

,

which in light of (5.110), (5.124), and (5.127), reduces to

Feq = πa2E s
3

V0t0
h

. (5.157)

The characteristic relaxation time in unconfined compression can be defined by

τ ′
R = a2

α2
1 As

11k1
, (5.158)

where α1 is the first root of the transcendental equation (5.132).
For the special case in which νs31 = 0, E s

1/E s
3 = 5, and the ratio of the ramp

time to the gel diffusion time, tg = a2/(As
11k1) (cf. formula (5.158)), is t0/tg = 1,

the effect of νs12 on the dimensionless stress-relaxation time history f (t)/[E s
3ε̇0t0],

where f (t) = F(t)/[πa2] and ε̇0 = V0/h, is shown in Fig. 5.5. Also, according to
Cohen et al. [19], Fig. 5.6 illustrates the effect of the ratio t0/tg on the stress relaxation
time history for the special case of νs12 = 0.3, νs31 = 0, and E s

1/E s
3 = 5.

We also note an alternative representation for F(t) in the loading stage, similar
to the one obtained in [19], which follows from the direct inverse Laplace transform
of Eq. (5.128) for ε̃(s) = −(V0tg/h)s−2. Then, for 0 ≤ t ≤ t0 we have

F(t) = πa2E3
V0

h

{
(2γ1 − γ2)

γ1(2 − γ0)
t + γ2 − γ0γ1

4γ1(2 − γ0)2
−

∞∑
n=1

Anρne−t/ρn

}
.
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Fig. 5.6 The effect of t0/tg
on the stress-relaxation time
history in response to a
ramped displacement, when
νs12 = 0.3, νs31 = 0.0, and
E s
1/E s

3 = 5. (The values
taken by t0/tg are indicated
on the figure)
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Equations (5.155) and (5.156) can be used in determining the material properties
from the unconfined stress relaxation experiment, by fitting the theoretical solution
on to the experimental curve for the total normal stress [19, 32].

5.3.5 Biphasic Creep in Unconfined Compression

For an imposed step loading, F(t) = F0H (t), we obtain from formula (5.148) that

w(t) = hF0

πa2E3
M(t), (5.159)

where M(t) and E3 are given by (5.144) and (5.149).
Taking into account Eqs. (5.140)2 and (5.145)2, we find

M(t) = γ2 + 2γ 2
1 − γ1(γ0 + γ2)

γ1(2γ1 − γ2)
−

∞∑
n=1

Bn exp
(
− t

τn

)
, (5.160)

where γ0, γ1, γ2 andBn , τn are given by (5.127) and (5.145)2, (5.146)2, respectively.
The characteristic retardation time in unconfined compression can be defined by

τ ′′
R = a2

β2
1 As

11k1
,

where β1 is the first root of the transcendental equation (5.136).
In the isotropic case, formulas (5.159) and (5.160) reduce to the solution originally

obtained by Armstrong et al. [5].
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Equations (5.159) and (5.160) are used in determining the biphasicmaterials prop-
erties from the unconfined compression creep experiment by fitting the theoretical
solution with the experimental curve for the nominal strain [5, 47].

Observe that the deformation response is characterized by an instantaneous jump

w(0+) = hF0

πa2E3

followed by a decreasing slope until equilibrium is reached, where

w(+∞) = hF0

πa2E s
3
.

Note that the identity

E3 = γ1(2γ1 − γ2)

γ2 + 2γ 2
1 − γ1(γ0 + γ2)

E s
3

can be directly proved using the expressions (5.110), (5.124), (5.127), and (5.149).
In the isotropic case,when the deformation behavior of the solid phase is described

by two elastic constants Es and νs, the equilibrium response of biphasic material in
unconfined and confined compression allows us to evaluate the Young’s modulus Es
and the aggregate modulus HA. Thus, taking into account that

HA = 1 − νs

(1 + νs)(1 − 2νs)
Es,

the following formula for Poisson’s ratio can be derived [43]:

νs = 1

4

(
Es

HA
− 1 +

√( Es

HA
− 1

)( Es

HA
− 9

))
.

Finally, note that platen/specimen friction influences the mechanical response
of articular cartilage in unconfined compression [5, 71, 77]. In particular, the peak
reaction forces in unconfined stress-relaxation experiments exceed the corresponding
maximum values predicted analytically. Consequently, the frictional effect becomes
more significant for specimens with large aspect (diameter/height) ratios.

5.3.6 Cyclic Compressive Loading in Unconfined Compression

It is well known that the long-term creep and relaxation tests, typically used for
determining viscoelastic and biphasic/poroelastic properties, are not appropriate for
rapidly assessing the dynamic biomechanical properties of biological tissues like
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articular cartilage. For in vivo measurements of tissue viability, Appleyard et al. [1]
developed a dynamic indentation instrument, which employs a single-frequency
(20 Hz) sinusoidal oscillatory waveform superimposed on a carrier load.

Following Li et al. [51], we assume that a biphasic tissue sample is subjected to
a cyclic displacement input

w(t) = [w0(1 − cosωt) + w1]H (t), (5.161)

where w1/h is the prestrain resulting from the initial deformation applied to the
sample to create the desired preload, w0 is the displacement amplitude, i.e., w0/h is
equal to one-half the peak-to-peak cyclic strain input superimposed on the prestrain,
and ω = 2π f is the angular frequency, f being the loading frequency.

Differentiating (5.161), we obtain

dw(t)

dt
= H (t)w0ω sinωt + w1δ(t). (5.162)

Substituting expression (5.162) into Eq. (5.147), we arrive, after some algebra, at the
following stress output:

F(t)

πa2 = E3

h

{
w1K (t) + w0

(
2γ1 − γ2

γ1(2 − γ0)
+

∞∑
n=1

ρ2
nω2An

1 + ρ2
nω2 exp

(
− t

ρn

))

− w0
[
K1(ω) cosωt − K2(ω) sinωt

]}
. (5.163)

Here we have introduced the notation

K1(ω) = 1 −
∞∑

n=1

An

1 + ρ2
nω2 , (5.164)

K2(ω) =
∞∑

n=1

ρnωAn

1 + ρ2
nω2 . (5.165)

To assign a physical meaning to the introduced functions K1(ω) and K2(ω),
let us compare the oscillating part of the input strain, that is −(w0/h) cosωt ,
with the corresponding oscillating part of the compressive stress, which is equal to
−E3(w0/h)

[
K1(ω) cosωt − K2(ω) sinωt

]
. By analogy with the viscoelastic model,

we obtain that K1(ω) and K2(ω) represent, respectively, the apparent relative storage
and loss moduli. Correspondingly, the apparent loss angle, δ(ω), can be introduced
by the formula

tan δ(ω) = K2(ω)

K1(ω)
. (5.166)
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The apparent loss angle δ(ω)describes the phase difference between the displacement
input and force output.

In the case of load-controlled compression, following Suh et al. [73], we will
assume that the tissue sample is subjected to a cyclic compressive loading

F(t) = [F0(1 − cosωt) + F1]H (t), (5.167)

where F0 is the force amplitude, and F1 is the initial preload.
After substitution of the expression (5.167) into Eq. (5.148), we finally obtain the

following resulting strain output:

w(t)

h
= 1

πa2E3

{
F1M(t) + F0

(
γ1(2 − γ0)

2γ1 − γ2
−

∞∑
n=1

τ 2n ω2Bn

1 + τ 2n ω2 exp
(
− t

τn

))

− F0
[
M1(ω) cosωt + M2(ω) sinωt

]}
, (5.168)

where we have introduced the notation

M1(ω) = 1 +
∞∑

n=1

Bn

1 + τ 2n ω2 , (5.169)

M2(ω) =
∞∑

n=1

τnωBn

1 + τ 2n ω2 . (5.170)

Note that M1(ω) and M2(ω) have physical meanings of the apparent relative storage
and loss compliances, respectively.

5.3.7 Displacement-Controlled Unconfined Compression Test

Following Argatov [3], we consider an unconfined compression test with the upper
plate displacement specified according to the equation

w(t) = w0 sinωt, t ∈ (0, π/ω). (5.171)

The maximum displacement, w0, will be achieved at the time moment tm = π/(2ω).
The moment of time t = t̃ ′M , when the contact force F(t) vanishes, determines
the duration of the contact. The contact force itself can be evaluated according to
Eqs. (5.147) and (5.171) as follows:
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F(t) = πa2E3

h
w0ω

t∫

0

K (t − τ) cosωτ dτ. (5.172)

According to Eq. (5.172), the contact force at the moment of maximum displace-
ment is given by

F(tm) = πa2E3

h
w0 K̃1(ω), (5.173)

where we have introduced the notation

K̃1(ω) = ω

π/(2ω)∫

0

K (τ ) sinωτ dτ. (5.174)

By analogy with the viscoelastic case [2, 4], the quantity K̃1(ω) will be called the
reduced incomplete apparent storage modulus.

Substituting the expression (5.143) into the right-hand side of Eq. (5.174), we
obtain

K̃1(ω) = 1 −
∞∑

n=1

An

1 + ρ2
nω2 −

∞∑
n=1

ρnωAn

1 + ρ2
nω2 exp

(
− π

2ωρn

)
. (5.175)

Now, taking into consideration Eqs. (5.164) and (5.175), we may conclude that
the difference between the reduced apparent storage modulus K1(ω) and the reduced
incomplete apparent storage modulus K̃1(ω) is relatively small at low frequen-
cies. To be more precise, the difference K1(ω) − K̃1(ω) is positive and of order
O
(
ωρ1 exp(−π/(2ωρ1))

)
as ω → 0, where ρ1 is the maximum relaxation time.

In the high frequency limit, the upper limit of the integral (5.174) tends to zero
asω increases. Thus, the behavior of K̃1(ω) asω → +∞will depend on the behavior
of K (t) as t → 0. According to (5.137), as ω → ∞, we have

K̃1(ω) = 1 − 2s1/2√
π

(γ2 − γ0γ1)

γ1

√
As
11k1
a2

1√
ω

+ O(ω−1), (5.176)

where s1/2 = ∫ π/2
0

√
x sin x dx .

On the other hand, due to the asymptotic formula (5.176), the following limit
relation holds true: lim K1(ω) = 1 as ω → ∞. Thus, we conclude that K̃1(ω) 

K1(ω) forω → ∞ aswell as K̃1(ω) 
 K1(ω) forω → 0. In otherwords, the reduced
incomplete apparent storage modulus K̃1(ω) obeys both asymptotic behaviors of the
reduced apparent storage modulus K1(ω).
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5.3.8 Force-Controlled Unconfined Compression Test

Consider now an unconfined compression test where the external force is as specified
by the equation

F(t) = F0 sinωt, t ∈ (0, π/ω). (5.177)

The maximum contact force, F0, will be achieved at the time moment tM = π/(2ω).
The moment of time t ′M = π/ω, when the contact force F(t) vanishes, determines
the duration of the compression test. According to Eqs. (5.148) and (5.177), the upper
plate displacement can be evaluated as follows:

w(t) = h

πa2E3
F0ω

t∫

0

M(t − τ) cosωτ dτ. (5.178)

Due to Eq. (5.178), the displacement at the moment of maximum contact force is
given by

w(tM ) = h

πa2E3
F0M̃1(ω), (5.179)

where we have introduced the notation

M̃1(ω) = ω

π/(2ω)∫

0

M(τ ) sinωτ dτ. (5.180)

By analogy with the viscoelastic case [2, 4], the quantity M̃1(ω) will be called the
reduced incomplete apparent storage compliance.

Substituting the expression (5.138) into the right-hand side of Eq. (5.180), we
obtain

M̃1(ω) = 1 +
∞∑

n=1

Bn

1 + τ 2n ω2 +
∞∑

n=1

τnωBn

1 + τ 2n ω2 exp
(
− π

2ωτn

)
. (5.181)

Using the samemethod as for K̃1(ω), it can be shown that the incomplete apparent
storage compliance M̃1(ω) obeys both asymptotic behaviors of the apparent storage
compliance M1(ω), that is M̃1(ω) 
 M1(ω) for ω → 0 along with M̃1(ω) 
 M1(ω)

for ω → ∞.

5.4 Biphasic Poroviscoelastic (BPVE) Model

In this section, the biphasic poroviscoelastic model is briefly outlined. The confined
and unconfined compression tests as well as the torsion test are considered.
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5.4.1 Linear Biphasic Poroviscoelastic Theory

The biphasic theory was extended byMak [54] to account for the inherent viscoelas-
ticity of the solid matrix, by replacing the effective stresses (5.13) in the constitutive
equation (5.7) with viscoelastic constitutive relations in the hereditary integral form.
Therefore, for a transversely isotropic material, we have

σVE
11 = Bs

11∗ ε11 + Bs
12∗ ε22 + Bs

13∗ ε33, σVE
23 = 2Bs

44∗ ε23,

σVE
22 = Bs

12∗ ε11 + Bs
11∗ ε22 + Bs

13∗ ε33, σVE
13 = 2Bs

44∗ ε13,

σVE
33 = Bs

13∗ ε11 + Bs
13∗ ε22 + Bs

33∗ ε33, σVE
12 = 2Bs

66∗ ε12,

(5.182)

where the ∗ sign denotes the Stieltjes integral, i.e.,

Bs
kl ∗ εi j =

t∫

−∞
Bs

kl(t − τ) dεi j (τ ). (5.183)

For simplicity’s sake, following [68], we assume that the deformation behavior
of the solid phase is governed by a single reduced stress-relaxation function, ψ(t),
which is usually assumed to be in the following form proposed by Fung [28]:

ψ(t) = 1 +
∞∫

0

S(τ )e−t/τ dτ, (5.184)

where

S(τ ) =
⎧⎨
⎩

c

τ
, τ1 ≤ τ ≤ τ2,

0, τ < τ1, τ > τ2.

(5.185)

We note (see, e.g., [38, 49]) that the relaxation spectrum (5.185) with constant ampli-
tude over a range of frequencies τ ∈ (τ1, τ2), which was originally introduced by
Neubert [61], has least sensitivity to strain rate, which has been believed to be the
case for some biological tissues [28].

The function S(τ ) defines a continuous relaxation spectrum, where the parameter
c is a proportionality constant for the amplitude of the spectrum S(τ ). The width of
the spectrum is defined by the time constants τ1 and τ2, which govern the fast and
slow relaxation phenomena, respectively.

Note that at initial times after loading and at equilibrium, respectively, we have

ψ(0) = 1 + c ln
τ2

τ1
, ψ(+∞) = 1. (5.186)
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Therefore, under the above assumptions, the relaxation functions Bs
kl(t) can be

represented as

Bs
kl(t) = Bs∞

kl ψ(t), (5.187)

where Bs∞
kl = Bs

kl(+∞) are the equilibrium elastic moduli, while the instantaneous
elastic moduli, Bs0

kl = Bs
kl(0), are given by

Bs0
kl = Bs∞

kl

(
1 + c ln

τ2

τ1

)
. (5.188)

The viscoelastic parameters c, τ1, τ2 are material properties of the solid skeleton
that need to be determined from experimental data. The confined and unconfined
compression problems for a BPVE material were considered in [34, 36, 54, 68].

Thus, the constitutive equations for the solid matrix in the biphasic poroviscoelas-
tic (BPVE) theory have the form

σ s = −φs pI + σVE, (5.189)

where p is the pressure of the fluid phase, I is the identity tensor, and the components
of the stress tensor σVE are given by (5.182).

The reduced stress-relaxation function (5.184) and (5.185) can be represented by

ψ(t) = 1 + c
[

E1

( t

τ2

)
− E1

( t

τ1

)]
, (5.190)

where E1(x) is the exponential integral function, i.e.,

E1(x) =
1∫

0

1

ξ
exp

(
− x

ξ

)
dξ.

Observe [68] that, if the width of the relaxation spectrum reduces to zero, i.e.,
τ1 → τ2, the reduced relaxation function (5.190) becomesψ(t) = 1. It is also readily
seen that the intrinsic viscoelastic effect diminishes as c → 0. Thus, for the limiting
cases c → 0 or τ1 → τ2, and the BPVE theory reduces to the linear biphasic theory.

Note also that for the sake of numerical efficiency the discrete form of the relax-
ation function

ψ(t) = 1 +
∑

i

Ci exp
(
− t

τi

)

has also been used for articular cartilage [21, 72]. Multiple discrete spectrums (dif-
ferent sets of Ci and τi ) can be used to fit the experimental data for the short-term,
mid-term and long-term responses [49].
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Wefinally note [57] that the inclusion of intrinsicmatrix viscoelastic properties for
the solid matrix in the biphasic theory [54] improved the prediction in the unconfined
compression case [68] as well as the material property determination [36, 66].

5.4.2 Confined Compression of a Biphasic
Poroviscoelastic Material

Under the idealized conditions of the confined compression experiment described in
Sect. 5.2.1, the displacement of the solid matrix and the fluid movement occur only
in the axial direction, and the governing differential equation (5.63) of the biphasic
model should be replaced with the following [54, 68]:

t∫

−∞
Bs
33(t − τ)

∂

∂τ

(∂2uz

∂z2

)
dτ = 1

k3

∂uz

∂t
. (5.191)

Here, uz(t, z) is the axial displacement of the solid phase, k3 is the axial permeability,
and Bs

33(t) is the axial aggregate relaxation modulus of the solid phase.
For creep, the initial and boundary conditions are

uz(t, z) = 0, −∞ < t < 0, (5.192)

t∫

−∞
Bs
33(t − τ)

∂

∂τ

(∂uz

∂z

)
dτ

∣∣∣∣
z=0

= −σ(t)H (t), (5.193)

uz
∣∣
z=h = 0, (5.194)

where σ(t) is the applied compressive stress (see Eq. (5.63)).
Following [54, 68], we put

Bs
33(t) = HAψ(t), (5.195)

where HA = Bs∞
33 is the equilibrium aggregate elastic modulus, and ψ(t) is the

reduced stress-relaxation function given by (5.184) and (5.185).
To solve the problem (5.191)–(5.194), we introduce dimensionless quantities

ζ = z

h
, τ = α1t, τ ′

i = α1τi , i = 1, 2, α1 = HAk3
h2 (5.196)

and apply the Laplace transform to Eqs. (5.191), (5.193), and (5.194) with respect
to the dimensionless time variable τ . In this way, remembering that the Laplace
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transform of the function ψ(τ/α1) (see Eqs. (5.184) and (5.185)) is given by

ψ̃(s) = 1

s

(
1 + c ln

1 + sτ ′
2

1 + sτ ′
1

)
, (5.197)

we arrive at the problem

∂2ũz

∂ζ 2 − f (s)ũz = 0, ζ ∈ (0, 1),

∂ ũz

∂ζ

∣∣∣
ζ=0

= − h

HA

f (s)σ̃ (s)

s
, ũz

∣∣
ζ=1 = 0,

(5.198)

where we have introduced the notation

f (s) = 1

ψ̃(s)
. (5.199)

From (5.198), we readily obtain

ũz = hσ̃ (s)
√

f (s)

HAs

sinh
[√

f (s)(1 − ζ )
]

cosh
√

f (s)
. (5.200)

In the case where a constant external load, F0, is applied instantaneously, we have
σ(t) = σ0H (t), where σ0 = F0/A with A being the sample cross-sectional area,
and σ̃ (s) = σ0/s, so that formula (5.200) reduces to the fallowing [54, 68]:

ũz = hσ0

HA

√
f (s) sinh

[√
f (s)(1 − ζ )

]

s2 cosh
√

f (s)
.

An asymptotic approximation of the surface displacement uz |z=0 for small times
after loading can be obtained by evaluating the inverse Laplace transform as s → ∞,
when f (s) ∼ s/α2, for a constant α2. Taking into account (5.197), (5.199) and the
relation τ ′

2/τ
′
1 = τ2/τ1 (see Eq. (5.196)3), we get

α2 = 1 + c ln
τ2

τ1
.

Thus, the short-time asymptotic approximation for the nominal sample-average
strain is given by the following formula [54, 68]:

uz(t, 0)

h

 2σ0

HA

√
α1

πα2
t .

Note thatα2 = ψ(0) (see Eqs. (5.184) and (5.185)). This dimensionless parameter
characterizes the intrinsic solid matrix viscoelastic effects. Observe also [68] that
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larger values of α2, reflecting increased effects of matrix viscoelasticity, or lower
values of α1, and reflecting a low value of the solid matrix permeability, will have
the same effect in reducing the early creep response.

5.4.3 Unconfined Compression of a BPVE Material

In the framework of the BPVE theory, the unconfined compression problem (consid-
ered previously in Sect. 5.3.1) differs in essence via the constitutive equations (5.98),
which now take the form

σVE
rr = Bs

11∗
∂ur

∂r
+ Bs

12∗
ur

r
+ Bs

13∗ ε,

σVE
θθ = Bs

12∗
∂ur

∂r
+ Bs

11∗
ur

r
+ Bs

13∗ ε,

σVE
zz = Bs

13∗
∂ur

∂r
+ Bs

13∗
ur

r
+ Bs

33∗ ε.

(5.201)

The equilibrium equation of the solid matrix (5.99) now has the form

−∂p

∂r
+ Bs

11∗
(

∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2

)
= 0.

We recall that the boundary conditions (5.91)–(5.93) are formulated in terms of
the components of the total stress tensor

σ = −pI + σVE. (5.202)

To solve this problem, let us first introduce the dimensionless variables

ρ = r

a
, U = ur

a
,

where we have refrained from using the variables t and p in the non-dimensionali-
zation. Secondly, we apply the Laplace transform with respect to the time variable t ,
denoting by a tilde the transformed quantities. We then introduce auxiliary notation

P̃ = p̃

B̄s
11(s)

, α12 = B̄s
12(s)

B̄s
11(s)

, α13 = B̄s
13(s)

B̄s
11(s)

, α33 = B̄s
33(s)

B̄s
11(s)

, (5.203)

f (s) = a2s

k1 B̄s
11(s)

, B̄s
kl(s) = s B̃s

kl(s). (5.204)
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In this case, the biphasic unconfined compression problem (5.111)–(5.113) is
replaced with the following:

∂ P̃

∂ρ
= f (s)

(
Ũ + ε̃

2
ρ
)
,

∂2Ũ

∂ρ2 + 1

ρ

∂Ũ

∂ρ
− Ũ

ρ2 = f (s)
(

Ũ + ε̃

2
ρ
)
,

P̃
∣∣
ρ=1 = 0,

∂Ũ

∂ρ
+ α12(s)

Ũ

ρ
+ α13(s)ε̃

∣∣∣∣
ρ=1

= 0.

In the same way as was done in Sect. 5.3.2, we find

Ũ = − ε̃(s)

2
ρ

⎛
⎜⎜⎜⎝1 −

(1 + α12(s) − 2α13(s))
I1(

√
f (s)ρ)√

f (s)ρ

I0(
√

f (s)) − (1 − α12(s))
I1(

√
f (s))√

f (s)

⎞
⎟⎟⎟⎠ , (5.205)

p̃ = (1 + α12(s) − 2α13(s))ε̃(s)
[
I0(

√
f (s)ρ) − I0(

√
f (s))

]

2

(
I0(

√
f (s)) − (1 − α12(s))

I1(
√

f (s))√
f (s)

) . (5.206)

We now consider the force response of the BPVE sample

F(t) = −2π

a∫

0

σzz(t, r)r dr, (5.207)

where, as a result of (5.201) and (5.202), the normal total stress is given by

σzz(t, r) = −p + Bs
13∗

(∂ur

∂r
+ ur

r

)
+ Bs

33∗ ε.

Upon application of the Laplace transform to Eq. (5.207), rewritten in terms of
the dimensionless variables (5.203), we obtain

F̃(s)

πa2 B̄s
11(s)

= −2

1∫

0

(
−P̃ + α13(s)

(∂Ũ

∂ρ
+ Ũ

ρ

)
+ α33(s)ε̃

)
ρ dρ.
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Taking into account formulas (5.205) and (5.206), and performing the integration
in the above equation, we arrive at formula (5.126), where the coefficients γ0, γ1,
and γ2 are evaluated by Eq. (5.127), where α12, α13, and α33 are as given by (5.203).

Finally, note that the instantaneous axial modulus E3, in light of (5.149), is

E3 = 1

2

(
Bs0
11 + Bs0

12 + 2Bs0
33 − 4Bs0

13

)
,

where Bs0
kl = Bs

kl(0) are the instantaneous elastic moduli of the solid matrix.
We can thus hypothesize that the instantaneous response of a transversely isotropic

biphasic poroviscoelastic tissue is equivalent to that of an incompressible transversely
isotropic elasticmaterial with thematerial constants given by formulas (5.36), (5.39),
and (5.40), where νs12, νs31, Gs

13, E s
1, and E s

3 are regarded as instantaneous elastic
material properties of the poroviscoelastic matrix.

Observe that the deformation response of a biphasic or BPVE sample depends on
how it is tested. In particular, while only the aggregate relaxation modulus Bs

33(t)
governs the behavior of a sample tested in confined compression, all four relax-
ation moduli Bs

11(t), Bs
12(t), Bs

13(t), and Bs
33(t) have significant influence on the

deformation behavior of a BPVE sample tested in unconfined compression.
Finally, we note [34] that the failure to account for either anisotropy or viscoelas-

ticity of the articular cartilage matrix could result in flawed predictions of the tissue
deformation under general external loading.

5.4.4 Torsion of a Biphasic Poroviscoelastic Material

We consider a cylindrical sample of a BPVE material of radius a and height h sub-
jected to a torque T (see Fig. 5.7). Let θ denotes the angle of torsional displacement
imposed on the upper surface of the sample to achieve a specified shear strain, γ .
Between these geometrical parameters, the following relation takes place:

γ = ϑa. (5.208)

Here, ϑ = θ/h is the so-called twist, defined as the angle of rotation per unit length
along the axis of the sample.

Fig. 5.7 Schematic of the
pure torsional shear testing
configuration

transducer

h

T a

γ
θ

Torque



5.4 Biphasic Poroviscoelastic (BPVE) Model 195

The components of the in-plane displacement vector are ur = 0 and uθ = ϑr z,
and so the only nonzero component of strain is

εzθ = 1

2
ϑr. (5.209)

The torque is given by

T = 2π

a∫

0

r2σzθ dr, (5.210)

where according to (5.182) and (5.202) the total shear stress σzθ is related to the
shear strain component εzθ as follows:

σzθ = 2

t∫

−∞
Bs
44(t − τ)

∂εzθ

∂τ
(τ ) dτ. (5.211)

Therefore, the substitution of (5.209) and (5.211) into Eq. (5.210) yields

T (t) = Ip

t∫

−∞
Bs
44(t − τ)

∂ϑ

∂τ
(τ ) dτ, (5.212)

where Ip = πa4/2 is the polar moment of inertia of the sample’s cross section area.
Furthermore, introducing the so-called shear stress

τ = aT

Ip
,

which is defined as maximum shear stress in the sample, and taking into account
(5.208), we can rewrite Eq. (5.212) in terms of the shear strain as follows:

τ(t) =
t∫

−∞
Bs
44(t − t ′)∂γ

∂t ′
(t ′) dt ′. (5.213)

Now, assuming that the employed herein viscoelastic material of the solid phase
is described by the Fung model [28], we represent the above equation in the form

τ(t) = Bs∞
44

t∫

−∞
ψ(t − t ′)∂γ

∂t ′
(t ′) dt ′, (5.214)
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where Bs∞
44 is the equilibrium out-of-plane shear modulus, and ψ(t) is the reduced

relaxation function given by (5.184) and (5.185), i.e.,

ψ(t) = 1 + c

τ2∫

τ1

1

τ
exp

(
− t

τ

)
dτ. (5.215)

Following Iatridis et al. [38], we now outline the main shear testing protocols.
Stress-relaxation behavior. In the stress-relaxation experiments, the sample is

subjected to a ramping phase, where the strain increases linearly at a constant strain
rate, followed by a relaxation phase, where the shear strain is held constant, i.e.,

γ (t) =
⎧⎨
⎩

γ0

t0
t, 0 ≤ t ≤ t0,

γ0, t0 ≤ t,

where γ0 and t0 are given constants.
For the ramping phase (0 ≤ t ≤ t0), we have

τ(t) = Bs∞
44 γ0

t0

[
t + c1F1(t, τ1, τ2)

]
,

where (with Ei(x) being the exponential integral)

F1(t, τ1, τ2) = τ2
(
1 − e−t/τ2

) − τ1
(
1 − e−t/τ1

) − t
[
Ei(t/τ1) − Ei(t/τ2)

]
,

Ei(x) =
∞∫

x

exp(−ξ)

ξ
dξ.

For the stress-relaxation phase, the solution is given in terms of the shifted time
parameter t̂ = t − t0 in the following form [38]:

τ(t) = Bs∞
44 γ0

t0

[
t0 + c1G1(t, t̂, τ1, τ2)

]
,

where

G1(t, t̂, τ1, τ2) = τ2
(
e−t̂/τ2 − e−t/τ2

) − τ1
(
e−t̂/τ1 − e−t/τ1

)

− {
t̂
[
Ei(t̂/τ2) − Ei(t̂/τ1)

] − t
[
Ei(t/τ2) − Ei(t/τ1)

]}
.

Creep behavior. Let us introduce the out-of-plane creep compliance in shear of
the solid matrix, J s

44(t), which governs the deformation response of the solid phase
under application of a step out-of-plane shear stress of unit magnitude. Hence, the
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inverse relation for (5.213) is given by

γ (t) =
t∫

0−
J s
44(t − t ′) ∂τ

∂t ′
(t ′) dt ′. (5.216)

For a given relaxation modulus Bs
44(t), the corresponding creep compliance can

be evaluated via its Laplace transform

J̃ s
44(s) = 1

s2 B̃s
44(s)

. (5.217)

Let us now introduce the reduced creep function, ϕ(t), by the formula

J s
44(t) = J s∞

44 ϕ(t), (5.218)

where J s∞
44 = J s

44(+∞) is the equilibrium compliance. Since the reduced stress-
relaxation function is defined byψ(t) = Bs

44(t)/Bs∞
44 , where Bs∞

44 is the equilibrium
modulus such that Bs∞

44 = 1/J s∞
44 , the following normalization conditions hold:

ψ(+∞) = 1, ϕ(+∞) = 1.

The Fung reduced creep function ϕ(t) corresponding to the reduced relaxation
function ψ(t) given by Eq. (5.218) can be obtained by employment of the Laplace
transform and Eq. (5.217), that is

ψ̃(s)ϕ̃(s) = 1

s2
,

where the Laplace transform ψ̃(s) is given by formula (5.197).
According to Dortmans et al. [22], the following formula holds:

ϕ(t) = 1 − (τc − τ2)(τc − τ1)

cτc(τ2 − τ1)
e−t/τc

− c

τ2∫

τ1

e−t/τ 1

τ

1(
1 + c ln

τ2 − τ

τ − τ1

)2 + π2c2
dτ, (5.219)

where we have used the notation

τc = τ2e1/c − τ1

e1/c − 1
.
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In the creep experiment, a constant torque, T0, is applied instantaneously, i.e.,
T (t) = T0H (t) and τ(t) = τ0H (t), where τ0 = aT0/Ip. Therefore, by formulas
(5.216) and (5.218), we obtain

γ (t) = τ0 J s∞
44 ϕ(t),

where ϕ(t) is given by (5.219).
Steady sinusoidal behavior. If the sample is subjected to a dynamic frequency

sweep, the sinusoidal shear strain input is given by

γ = γ0eiωt ,

where γ0 (rad) is the peak shear strain, ω (rad/s) is the angular frequency, and i is
the imaginary unit equal to the square root of −1.

In the absence of inertial forces, the corresponding shear stress output will be

τ = τ0eiωt ,

where τ0 is a complex quantity.
The ratio of the amplitudes τ0 and γ0 determines the reduced complex elastic

shear modulus, ψ∗, such that

τ0 = Bs∞
44 ψ∗γ0.

The reduced complex modulus ψ∗ is comprised of real and imaginary parts, i.e.,

ψ∗ = ψ1 + iψ2,

which defines as the reduced storage, ψ1, and loss, ψ2, modulus, respectively.
The reduced storage and loss moduli as functions of angular frequency are eval-

uated as follows [38]:

ψ1(ω) = 1 + c

2
ln

1 + (ωτ2)
2

1 + (ωτ1)2
,

ψ2(ω) = c
{
tan−1(ωτ2) − tan−1(ωτ1)

}
.

The torsional shear configuration shown in Fig. 5.7 has been used to study equilib-
rium and dynamic shearmoduli aswell as the characterization of the stress-relaxation
behavior of articular cartilage. Note also [15] that other types of shear testing (for
instance, single-lap test) may be important in determining the capacity of cartilage
to repair.

It is also noteworthy that under a small shear strain no volumetric changes or
pressure gradients occur in a cylindrical sample of BPVE material, and therefore no
interstitial fluid flow is induced. Thus, shear tests under infinitesimal strain enable
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evaluation of the intrinsic viscoelastic, flow-independent properties of the collagen-
proteoglycan solid matrix [18, 41].

Finally, we note that a finite element formulation for describing the large defor-
mation response of biphasicmaterials in torsionwas presented in [56], with a specific
focus on the consideration of nonlinear coupling between torsional deformation and
fluid pressurization in articular cartilage.
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