
Advanced Structured Materials

Ivan Argatov
Gennady Mishuris

Contact 
Mechanics 
of Articular 
Cartilage Layers
Asymptotic models



Advanced Structured Materials

Volume 50

Series editors

Andreas Öchsner, Southport Queensland, Australia
Lucas F.M. da Silva, Porto, Portugal
Holm Altenbach, Magdeburg, Germany



More information about this series at http://www.springer.com/series/8611

http://www.springer.com/series/8611


Ivan Argatov • Gennady Mishuris

Contact Mechanics
of Articular Cartilage
Layers
Asymptotic Models

123



Ivan Argatov
Department of Mathematics
Aberystwyth University
Aberystwyth, Ceredigion
UK

Gennady Mishuris
Department of Mathematics
Aberystwyth University
Aberystwyth, Ceredigion
UK

ISSN 1869-8433 ISSN 1869-8441 (electronic)
Advanced Structured Materials
ISBN 978-3-319-20082-8 ISBN 978-3-319-20083-5 (eBook)
DOI 10.1007/978-3-319-20083-5

Library of Congress Control Number: 2015941864

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



To Alina and Wiktoria



Preface

This book is based on research results developed during our Marie Curie project
devoted to asymptotic modeling of articular contact. Over the past two decades,
articular contact mechanics has developed significantly in response to the increasing
demand from orthopedics. While significant progress has been achieved in the
mathematical modeling of the contact interaction between articular cartilage layers,
we realized when writing the plan of the book that many of those results, obtained
in the isotropic case, could be generalized for the case of transverse isotropy. The
latter is of paramount importance in contact biomechanics, because many biological
tissues like articular cartilage should be modeled as transversely isotropic material.
Correspondingly, this plan required that many of the lacunae found in existing
theory be filled in and allowed us to correct some misprints and omissions. Overall,
our aim was to create a compendium of knowledge on asymptotic models for
contact interactions of thin elastic/viscoelastic/biphasic layers.

Generally speaking, this book is about mathematical models for unilateral
contact problems (with a priori unknown contact area) involving thin linearly
deformable layers bonded to rigid bodies (called substrates) which transfer an
externally applied compressive load. Particular attention is paid to analysis of the
contact pressure distribution between the layers as well as to the relation between
the contact force and the contact approach between the substrates.

From a methodological point of view, the book implements a unified asymptotic
approach focused on deriving approximate analytical solutions, which are presented
in the form of simplified mathematical models, called asymptotic models. Though
we make use of rigorous mathematical methods, we tried to avoid excessive
technical details of the asymptotic analysis in order to simplify the presentation
of the book’s material for a broader audience. With the same purpose we adopt
unified notation across the different chapters.

The asymptotic technique we employ to model the deformation response of thin
layers is generally known in the literature as a perturbation algorithm originally
credited to Gol’denveizer [1]. The development of asymptotic methods in contact
problems for thin elastic layers originates in the works of Aleksandrov [2], Koiter
[3], Alblas and Kuipers [4], and others, although the majority of research papers
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were devoted to the two-dimensional and axisymmetric cases. The application of
asymptotic methods in articular contact problems was initiated by Ateshian et al. [5]
and later developed by Wu et al. [6–8] and others.

In principle, analytical solutions are widely viewed as benchmark solutions for
numerical methods. At the same time, asymptotic models have an importance
of their own: they not only provide insights into the qualitative behavior of
numerical solutions to the multiparametric problem under consideration, but also
can expand our understanding of more realistic simulation models.

This book is organized into nine chapters. Each chapter is self-consistent, can
be read independently, and is supplied with a comprehensive reference list.
Chapters 1–4 present asymptotic analysis of the frictionless unilateral contact
problems for thin elastic and viscoelastic layers in a form accessible to a general
engineering audience. A specific character of deformation models for articular
cartilage is discussed in Chap. 5, where a linear biphasic theory is outlined in detail.
In Chap. 6, we generalize the asymptotic deformation model of Ateshian et al. [5]
for the case of transverse isotropy and study the contact problems for thin bonded
biphasic layers. Asymptotic modeling methodology for tibio-femoral contact is
presented in Chap. 7, based on the asymptotic models constructed in the previous
chapters. Some features reflecting the real structure of articular cartilage such as
inhomogeneity are considered in Chap. 8, again from a general point of view and
under a simplifying assumption of elastic deformation behavior. Finally, some
sensitivity analysis issues for the asymptotic models of articular contact are
addressed in Chap. 9.

This monograph is recommended for biomechanics researchers dealing with
different aspects of articular contact as well as for Ph.D. students enrolled in contact
mechanics and biomechanics courses.
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Chapter 1
Deformation of a Thin Bonded Transversely
Isotropic Elastic Layer

Abstract In this chapter we study frictionless contact problems for a thin trans-
versely isotropic elastic layer bonded to a rigid substrate and indented by a smooth
absolutely rigid punch under the assumption that the layer thickness is relatively
small compared to the characteristic size of the contact area. We apply a pertur-
bation technique to obtain asymptotic solutions of different degrees of accuracy
and formulate simple mathematical models (called asymptotic models) to describe
the deformational behavior of a bonded compressible elastic layer in the thin-layer
approximation. In particular, the effects of unilateral contact interaction (with a pri-
ori unknown contact area) and the tangential displacements at the contact interface
(taken into account in formulating the contact condition) are considered. It is shown
that the case of an incompressible layer requires special consideration.

1.1 Deformation Problem Formulation

The constitutive equations for a homogeneous transversely isotropic elastic mate-
rial, based in the Cartesian coordinate system (x1, x2, x3), where the Ox1x2 plane
coincides with the plane of elastic symmetry, has the following form [10, 23, 36]:

ε11 = 1

E1
(σ11 − ν12σ22) − ν31

E3
σ33, ε23 = 1

2G13
σ23,

ε22 = 1

E1
(−ν12σ11 + σ22) − ν31

E3
σ33, ε13 = 1

2G13
σ13,

ε33 = −ν31

E3
(σ11 + σ22) + 1

E3
σ33, ε12 = 1

2G12
σ12.

(1.1)

Here, E and E ′ are Young’s moduli in the plane of transverse isotropy and in the
direction normal to it, respectively, ν and ν′ are Poisson’s ratios characterizing the
lateral strain response in the plane of transverse isotropy to a stress acting parallel
or normal to it, respectively, G ′ is the shear elastic modulus in planes normal to the
plane of transverse isotropy, and G = E/[2(1 + ν)] is the in-plane shear modulus.
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2 1 Deformation of a Thin Bonded Transversely Isotropic Elastic Layer

By inverting the equations of Hooke’s law (1.1), the stress-strain relationships can
be written in the matrix form as follows [13]:

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.2)

For a transversely isotropic material, only five independent elastic constants A11,
A12, A13, A33, and A44 are needed to describe its deformational behavior, since
2A66 = A11−A12. Thesefive elasticmoduli are expressed in termsof the engineering
elastic constants (E , E ′, ν, ν′, and G ′) by the formulas

A11 =
E

(
1 − E

E ′ ν′2)

(1 + ν)
(
1 − ν − 2E

E ′ ν′2) , A12 =
E

(
ν + E

E ′ ν′2)

(1 + ν)
(
1 − ν − 2E

E ′ ν′2) ,

A13 = Eν′

1 − ν − 2E

E ′ ν′2
, A33 = E ′(1 − ν)

1 − ν − 2E

E ′ ν′2
, A44 = G ′. (1.3)

The equations of equilibrium for the elastic medium are

∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
= 0, i = 1, 2, 3. (1.4)

The components of strain are given in terms of the displacements as

εi j = 1

2

( ∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1, 2, 3. (1.5)

Equations (1.2), (1.4), and (1.5) constitute the governing equations of the classical
(linear) theory of elasticity [23, 29].

Let the in-plane (tangential or horizontal) displacement vector and the vertical
(normal or out of the plane of isotropy) displacement be denoted by v and w, respec-
tively, such that the overall displacement vector is represented as u = (v, w).

In what follows, we will denote the two-dimensional Cartesian coordinate system
(x1, x2) in the plane of the layer by y = (y1, y2) (called the in-plane coordinates),
while the normal coordinate will be denoted as z, such that x = (y, z).

The substitution of the strain-displacement relations (1.5) into the equations of
Hooke’s law (1.2) gives the stress-displacement relationships
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σ11 = A11
∂v1
∂y1

+ A12
∂v2
∂y2

+ A13
∂w

∂z
, σ23 = A44

( ∂w

∂y2
+ ∂v2

∂z

)
,

σ22 = A12
∂v1
∂y1

+ A11
∂v2
∂y2

+ A13
∂w

∂z
, σ13 = A44

( ∂w

∂y1
+ ∂v1

∂z

)
,

σ33 = A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z
, σ12 = A66

(∂v1
∂y2

+ ∂v2
∂y1

)
.

(1.6)

Thus, by substituting the above equations into the equilibrium equations (1.4),
one obtains the following Lamé equations:

A66Δyv + (A11 − A66)∇y∇y · v + A44
∂2v
∂z2

+ (A13 + A44)
∂

∂
∇yw = 0,

A44Δyw + A33
∂2w

∂z2
+ (A13 + A44)

∂

∂z
∇y · v = 0.

(1.7)

Here,∇y = (∂/∂y1, ∂/∂y2) andΔy = ∇y ·∇y are the in-plane Hamilton and Laplace
operators, respectively, while the scalar product is denoted by a dot.

Now, let us consider a thin elastic layer of uniform thickness, h, ideally bondedto a
rigid substrate (see Fig. 1.1). At the bottom surface of the layer, z = h, the following
boundary conditions hold:

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (1.8)

We assume that the layer is loaded by a normal load, p, with no tangential tractions
(see Fig. 1.1), so that the corresponding boundary conditions on the upper surface of
the layer are

σ13
∣∣
z=0 = σ23

∣∣
z=0 = 0, σ33

∣∣
z=0 = −p. (1.9)

In light of the stress-displacement relations (1.6), Eq. (1.9) can be rewritten as

∂w

∂y1
+ ∂v1

∂z

∣∣∣∣
z=0

= 0,
∂w

∂y2
+ ∂v2

∂z

∣∣∣∣
z=0

= 0, (1.10)

2b

p(y1,y2)

x1 y1
h

=

x3 z=

Fig. 1.1 An elastic layer of uniform thickness bonded to a rigid substrate and loaded by a normal
load. In contact problems, the load function p(y) has a finite support (with a characteristic length b)
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A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z

∣∣∣∣
z=0

= −p. (1.11)

We assume that p is a sufficiently smooth given function of the in-plane coordi-
nates (y1, y2), defined on the whole upper surface of the layer.

The problem (1.7)–(1.11) is seen often in mechanical applications and later will
be employed to model the contact interactions involving thin elastic layers.

1.2 Perturbation Analysis of the Deformation Problem

Assuming now that the elastic layer is relatively thin, we require that

h = εh∗, (1.12)

where ε is a small positive parameter, and h∗ is independent of ε, having the order
of magnitude of a characteristic length, b, of the external normal load distribution
(see Fig. 1.1). For example, in the case when the load p(y) is distributed over an
elliptical area with semi-axes a and b such that b ≤ a, the minor semi-axis can be
taken as the characteristic length.

To proceed, we first introduce the dimensionless in-plane coordinates

η = (η1, η2), ηi = yi

h∗
, i = 1, 2, (1.13)

and the so-called “stretched” dimensionless normal coordinate

ζ = 1

ε

z

h∗
. (1.14)

Substituting the coordinate changes (1.13) and (1.14) into the Lamé equations
(1.7), we introduce the small parameter into the problem equations:

ε2
(

A66Δηv + (A11 − A66)∇η∇η · v
) + ε(A13 + A44)∇η

∂w

∂ζ
+ A44

∂2v
∂ζ 2 = 0,

ε2A44Δηw + ε(A13 + A44)∇η · ∂v
∂ζ

+ A33
∂2w

∂ζ 2 = 0. (1.15)

Correspondingly, the boundary conditions (1.10) and (1.11) become

ε∇ηw + ∂v
∂ζ

∣∣∣∣
ζ=0

= 0, (1.16)



1.2 Perturbation Analysis of the Deformation Problem 5

A13∇η · v + ε−1A33
∂w

∂ζ

∣∣∣∣
ζ=0

= −h∗ p. (1.17)

Using the perturbation algorithm [16], we construct an approximate solution to
the system (1.15)–(1.17) in the form of asymptotic expansions

v = εv0(η, ζ ) + ε2v1(η, ζ ) + ε3v2(η, ζ ) + . . . , (1.18)

w = εw0(η, ζ ) + ε2w1(η, ζ ) + ε3w2(η, ζ ) + . . . , (1.19)

where the successive coefficients of the powers of ε are assumed to be independent of
ε. Note also that the absence of the zeroth-order terms in the above series is suggested
by the only non-homogeneous equation (1.17).

The substitution of the expansions (1.18) and (1.19) into Eqs. (1.15)–(1.17) results
in a set of equations that must be satisfied for arbitrary ε, and thus, the successive
powers must be zero. For more details we refer to [7, 26, 27]. Note also that the
perturbation technique [16] was widely used for deriving the transmission conditions
for thin elastic interfaces [9, 20, 22, 24, 25].

Consequently, we arrive at a series of problems that begins with the pair

A44
∂2v0

∂ζ 2 = 0, ζ ∈ (0, 1),
∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=1 = 0; (1.20)

A33
∂2w0

∂ζ 2 = 0, ζ ∈ (0, 1), A33
∂w0

∂ζ

∣∣∣∣
ζ=0

= −h∗ p, w0
∣∣
ζ=1 = 0. (1.21)

From (1.20), it immediately follows that v0(η, ζ ) ≡ 0, and therefore we get
w1(η, ζ ) ≡ 0. On the other hand, the problem (1.21) implies that

w0(η, ζ ) = h∗ p

A33
(1 − ζ ). (1.22)

Thus, for the first non-trivial term of the expansion (1.18), we have the problem

A44
∂2v1

∂ζ 2 = −(A13 + A44)∇η

∂w0

∂ζ
= A13 + A44

A33
h∗∇η p, ζ ∈ (0, 1),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇ηw0
∣∣
ζ=0 = − h∗

A33
∇η p, v1

∣∣
ζ=1 = 0.

From here, it follows after simple calculations that

v1(η, ζ ) = 1

A33

(
1

2

(
1 + A13

A44

)
(1 − ζ )2 − A13

A44
(1 − ζ )

)
h∗∇η p. (1.23)
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The second non-trivial term of the expansion (1.19) satisfies the problem

A33
∂2w2

∂ζ 2 = −(A13 + A44)∇η · ∂v1

∂ζ
− A44Δηw0, ζ ∈ (0, 1),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇η · v1
∣∣
ζ=0, w2

∣∣
ζ=1 = 0,

which, in light of (1.22), gives

w2(η, ζ ) = A13

A2
33

{
1

2
(1 − ζ ) − A13 + A44

2A44
(1 − ζ )2

+ A13 + 2A44

6A44
(1 − ζ )3

}
h∗Δη p. (1.24)

Wedonot consider the problem for v2(η, ζ ) (it can be easily shown that v2(η, ζ ) ≡
0), because the two-term asymptotic approximations for the stress components are
given by

h∗σ11 � A13
∂w0

∂ζ
+ ε2

(
A11

∂v11
∂η1

+ A12
∂v12
∂η2

+ A13
∂w2

∂ζ

)
,

h∗σ22 � A13
∂w0

∂ζ
+ ε2

(
A12

∂v11
∂η1

+ A11
∂v12
∂η2

+ A13
∂w2

∂ζ

)
,

h∗σ33 � A33
∂w0

∂ζ
+ ε2

(
A13∇η · v1 + A33

∂w2

∂ζ

)
, (1.25)

h∗(σ13e1 + σ23e2) � εA44

(
∇ηw0 + ∂v1

∂ζ

)
,

h∗σ12 � ε2

2
(A11 − A12)∇η · v1.

As can be seen from (1.25), the in-plane components of strain εi j (i, j = 1, 2) are
of the order O(ε2) while in the main asymptotic term, due to (1.22), the strain out
of the plane, ε33, is constant across the layer thickness. These findings are consistent
with the phenomenological hypotheses used for thin compressible elastic foundations
[18, 37].

According to (1.22) and (1.24), the normal (vertical) and tangential (horizontal)
displacements of the surface points of the elastic layer are given by

w
∣∣
ζ=0 � ε

h∗ p

A33
+ ε3

h∗ A13(A44 − A13)

3A2
33A44

Δη p, (1.26)
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v
∣∣
ζ=0 � ε2

h∗(A44 − A13)

2A33A44
∇η p. (1.27)

Recall that Δη p is the Laplacian of the load distribution. It can be shown that
the next term in the asymptotic expansion (1.26) will contain the second iteration
of the Laplace operator, i.e., Δ2

η p = ΔηΔη p. That is why the outlined perturbation
algorithm provides an approximate solution under the condition that p is a relatively
smooth function defined on the whole upper surface.

Finally, note that in the isotropic case formulas (1.26) and (1.27), as a consequence
of (1.12), (1.13), take the form

w
∣∣
z=0 � f0(ν)

E
hp(y) + f1(ν)

E
h3Δy p(y), (1.28)

v
∣∣
z=0 � f2(ν)

E
h2∇y p(y), (1.29)

where E and ν are Young’s modulus and Poisson’s ratio, respectively, while f0(ν),
f1(ν), and f2(ν) are given by

f0(ν) = (1 + ν)(1 − 2ν)

1 − ν
, f1(ν) = ν(1 + ν)(1 − 4ν)

3(1 − ν)2
,

f2(ν) = (1 + ν)(1 − 4ν)

2(1 − ν)
.

(1.30)

Observe (see also Fig. 1.2) that f0(0.5) = 0 in the incompressible case, wherein
the main asymptotic term in formula (1.28) vanishes.

Fig. 1.2 Variation of the
dimensionless coefficients
(1.30) in the asymptotic
formulas (1.28) and (1.29)
for the isotropic case
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1.3 Contact Problem Formulation for a Thin Elastic Layer

Let us consider the so-called unilateral contact problem for a thin bonded elastic layer
and a frictionless rigid punch (see Fig. 1.3). To frame our discussion, we assume that,
in the unloading configuration, the punch is bounded by the surface

z = −ϕ(y)

and has the shape of an elliptic paraboloid (parabolic punch)

ϕ(y) = y21
2R1

+ y22
2R2

. (1.31)

Here, R1 and R2 are the radii of curvature of the principal normal cross-sections of
the punch surface at its vertex, and ϕ(y) is called the shape function.

The contact interface is assumed to be frictionless so that

σ13(y, 0) = σ23(y, 0) = 0. (1.32)

If under the action of an external load, F , the punch receives some displacement,
δ0, then the punch surface becomes

z = δ0 − ϕ(y).

The Signorini boundary condition of unilateral contact [12, 34, 35], that the
surface points of the layer do not penetrate into the punch, reads as

w(y, 0) − δ0 + ϕ(y) ≥ 0, σ33(y, 0) ≤ 0,[
w(y, 0) − δ0 + ϕ(y)

]
σ33(y, 0) = 0,

(1.33)

which can be rewritten in the following form:

σ33(y, 0) ≤ 0,

σ33(y, 0) < 0 ⇒ w(y, 0) = δ0 − ϕ(y),

σ33(y, 0) = 0 ⇒ w(y, 0) ≥ δ0 − ϕ(y).

(1.34)

Fig. 1.3 Contact interaction
of an elastic layer with an
absolutely rigid punch in the
deformed configuration

z

h

y1

F

δ0 
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An important characteristic of the contact interaction is the contact pressure dis-
tribution beneath the punch

p(y) = −σ33(y, 0), y ∈ ω, (1.35)

where ω is the contact area, which is not known a priori.
According to the last two relations in (1.33), the contact pressure should be positive

inside ω and vanish on the contour Γ of the domain ω, so that

p(y) > 0, y ∈ ω, p(y) = 0, y ∈ Γ. (1.36)

The above requirement will be called the positiveness condition.
In addition to (1.36), the boundary condition (1.34) implies that

w(y, 0) = δ0 − ϕ(y), y ∈ ω. (1.37)

We emphasize that the contour Γ is unknown and should be determined in the
process of solving the contact problem.

The equilibrium equation for the punch-layer-substrate system is

∫∫

ω

p(y) d(y) = F, (1.38)

where F is the external load acting on the punch (contact force).
Further, it should be noted that the contact condition (1.37) simplifies the geo-

metrical aspects of the contact interaction since it does not take into account the
tangential displacements of the surface points of the elastic layer, which occur even
under the normal loading (see Fig. 1.4).

The refined unilateral contact condition can be obtained from (1.33) by replacing
the first inequality in (1.33) with the following [21]:

w(y, 0) − δ0 + ϕ
(
y1 + v1(y, 0), y2 + v2(y, 0)

) ≥ 0. (1.39)

Here, vi (i = 1, 2) are the tangential displacements of the surface point (y, 0).
According to (1.39), the following equation holds within the contact area:

w(y, 0) = δ0 − ϕ(y + v(y, 0)), y ∈ ω.

Fig. 1.4 Tangential
displacements of the surface
points under normal loading

p(y)
y1

h

z

δ 0 
w0 (y)

w0 (y))M'(y+v 0 (y), 
v0 (y)

M(y,0) 
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We assume that both the normal and tangential displacements are very small
compared to the characteristic size of the contact area. In this case, the abovenonlinear
equation can be replaced by the first-order linearized contact condition

w(y, 0) = δ0 − ϕ(y) − ∇yϕ(y) · v(y, 0), y ∈ ω. (1.40)

The refined contact condition (1.40) was used in a number of studies [3, 6, 14, 15].
To solve the contact problem (1.36), (1.40) requires that we find the contact

pressure distribution p(y), positive over the contact area ω and vanishing on its
contour Γ , such that the resulting normal and tangential displacements w(y, 0) and
v(y, 0) satisfy Eq. (1.40) within ω, while outside it the linearized inequality obtained
from the unilateral boundary condition (1.39) must hold.

1.4 Asymptotic Solution of the Contact Problem for a Thin
Bonded Compressible Elastic Layer

To study the asymptotic behavior of the solution to the contact problem (1.7), (1.8),
(1.32), and (1.33) when ε → 0, in addition to (1.12) we will assume that

δ0 = εδ∗
0 , R1 = ε−1R∗

1 , R2 = ε−1R∗
2 , (1.41)

where δ∗
0 , R∗

1 , and R∗
2 are independent of ε and comparable with h∗. Note that,

following [4], the geometric parameters of the problem having the dimension of
length (that is h, δ0, R1, and R2) are scaled in such a way that the elastic layer
thickness will be small compared to the characteristic length of the contact area.

In light of (1.41), the boundary contact condition (1.33) takes the form

w
∣∣
ζ=0 = ε

(
δ∗
0 − ϕ∗(η)

)
, η ∈ ω∗, (1.42)

where ω∗ is the contact area in the stretched coordinates (1.13), and we have intro-
duced the notation

ϕ∗(η) = h2∗
(
(2R∗

1)
−1η21 + (2R∗

2)
−1η22

)
. (1.43)

Following [4, 16], the so-called inner asymptotic expansion for the solution of
the contact problem is represented in the form of series (1.18) and (1.19). Applying
the perturbation algorithm described in Sect. 1.2, the displacement field under the
punch can be obtained in the following form:

v � −ε2∇ηϕ
∗(η)

(
1

2

(
1 + A13

A44

)
(1 − ζ )2 − A13

A44
(1 − ζ )

)
, (1.44)
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w � ε
(
δ∗
0 − ϕ∗(η)

)
(1 − ζ ) + ε3Δηϕ

∗(η)

{
A13(A13 + A44)

2A33A44
ζ(1 − ζ )

− A13(A13 + 2A44)

6A33A44
ζ(1 − ζ )(2 − ζ )

}
. (1.45)

Correspondingly, the contact pressure density is given by

p � A33

h∗
(
δ∗
0 − ϕ∗(η)

) − ε2
A13(A13 − A44)

3A44h∗
Δηϕ

∗(η). (1.46)

The higher-order terms of the asymptotic expansions (1.18) and (1.19) satisfy the
recurrence equations

A44
∂2vk

∂ζ 2 = −(A13 + A44)∇η

∂wk−1

∂ζ
− A66Δηvk−2

− (A11 − A66)∇η∇η · vk−2, (1.47)

A33
∂2wk

∂ζ 2 = −(A13 + A44)∇η · ∂vk−1

∂ζ
− A44Δηwk−2, k = 2, 3, . . . , (1.48)

with the boundary conditions

∂vk

∂ζ

∣∣∣∣
ζ=0

= −∇ηwk−1
∣∣
ζ=0, vk

∣∣
ζ=1 = 0, (1.49)

wk
∣∣
ζ=0 = 0, wk

∣∣
ζ=1 = 0. (1.50)

In the special case (1.43), when the punch shape function is quadratic, we have
Δηϕ

∗(η) ≡ const. Hence, the function w2(η, ζ ) does not depend on the in-plane
coordinates (η1, η2), while v1(η, ζ ) is a linear function of η1 and η2. In light of
(1.47)–(1.50), this implies that the other terms in the expansions (1.18) and (1.19)
do not contribute to the asymptotic solution (1.44) and (1.45).

The substitution of the approximations for the displacement field (1.44), (1.45)
into formulas (1.25) yields approximations for the stress components. In particular,
for the normal stress and the out-of-plane shear stresses, we obtain

h∗σ33 � −A33
(
δ∗
0 − ϕ∗(η)

)

+ε2Δηϕ
∗(η)

(
A13(2A13 + A44)

6A44
− A13

2
(1 − ζ 2)

)
, (1.51)

h∗(σ13e1 + σ23e2) � −εA13∇ηϕ
∗(η)ζ. (1.52)

Note that by substituting ζ = 0 into (1.51), we recover formula (1.46). In the case
of an isotropic material, formulas (1.51) and (1.52) were obtained in [4, 5].
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Thus, in light of the positiveness requirement (1.36), formula (1.46) implies that
the leading asymptotics of the contact pressure distribution should be written as

p � A33

h∗
(
δ∗
0 − ϕ∗(η)

)
+, (1.53)

where (t)+ = (t + |t |)/2 is the positive part function, and ϕ∗(η) is given by (1.43).
Furthermore, Eqs. (1.43) and (1.51) yield

−h∗σ33 � A33

(
δ∗
0 − h2∗η21

2R∗
1

− h2∗η22
2R∗

2

)
− ε2

h2∗(R∗
1 + R∗

2)

R∗
1 R∗

2

A13(A44 − A13)

3A44
.

Now, based on the above formula, we find that the second-order asymptotic
approximation for the contact pressure density is given by

p � A33

h

(
δε − y21

2R1
− y22

2R2

)

+
, (1.54)

where we have introduced the notation

δε = δ0 − h2(R1 + R2)

R1R2

A13(A44 − A13)

3A33A44
. (1.55)

Formula (1.54) implies that the contact area ω is bounded by an ellipse with the
semi-axes

a = √
2R1δε, b = √

2R2δε. (1.56)

In the case of an isotropic elastic layer, formulas (1.54)–(1.56) were obtained by
Alexandrov and Pozharskii [2] by another method.

1.5 Asymptotic Models for the Beformation Response
of a Thin Bonded Compressible Elastic Layer

In this section we generalize the results of asymptotic analysis by formulating sim-
ple mathematical models (called asymptotic models) to describe the deformational
behavior of a bonded compressible elastic layer in the thin-layer approximation.

1.5.1 Zeroth-Order Asymptotic Model for the Contact Problem

In contact problems, an important role is played by the normal displacement of the
surface points
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w0(y) = w(y, 0), (1.57)

which, following the terminology of Barber [8], will be called the local indentation.
In the case of a thin bonded transversally isotropic elastic layer, according to

(1.12), (1.13) and (1.26), we have

w0 � h

A33
p + h3A13(A44 − A13)

3A2
33A44

Δy p. (1.58)

By neglecting the second term on the right-hand side of the above equation and
substituting the obtained result into the contact condition (1.37), we obtain

h

A33
p(y) = δ0 − ϕ(y), y ∈ ω. (1.59)

Under the assumption of unilateral contact between the punch and the layer, the
contact area ω is determined by the positiveness condition (1.36) and depends on
the punch shape function ϕ(y). Formally, the leading-order (i.e., the zeroth-order)
asymptotic solution to the problem (1.36), (1.59) is given by Eq. (1.53), which after
recovering the original notation by (1.12), (1.41), and (1.42), takes the form

p(y) = A33

h

(
δ0 − ϕ(y)

)
+. (1.60)

In the case of a parabolic punch (1.31), the contact area is elliptical, with semi-axes
a and b such that a/b = √

R1/R2 and

a = √
2R1δ0, b = √

2R2δ0, (1.61)

so that formula (1.60) can be rewritten as

p(y) = p0

(
1 − y21

a2 − y22
b2

)

+
(1.62)

with the maximum contact pressure

p0 = A33
δ0

h
. (1.63)

Integrating the contact pressure density (1.62) over the contact area and taking
into account Eqs. (1.61) and (1.63), we obtain the force-displacement relationship

F = π

h

√
R1R2A33δ

2
0 . (1.64)
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Thus, for a thin compressible elastic layer, the contact pressure beneath the punch
in the leading asymptotic term is proportional to the local indentation [see Eqs. (1.37)
and (1.59)]. The fact that the deformation response of a thin compressible layer
resembles that of a Winkler elastic foundation with the modulus

k = A33

h
(1.65)

was first rigorously established by Aleksandrov [1] in the case of a thin bonded
isotropic layer, where formula (1.65) reduces to

k = E(1 − ν)

(1 + ν)(1 − 2ν)h
. (1.66)

Note that contact problems for a Winkler foundation were considered in [18, 31,
32]. In the framework of the zeroth-order asymptotic model, indentation problems
were studied in [8, 17] and [28], where formulas (1.66) and (1.65) were recovered
in the isotropic and transversely isotropic cases, respectively.

Note also that in the axisymmetric case (when R1 = R2) the obtained solution
(1.61)–(1.64) reduces to the result obtained by Ning et al. [28] for a spherical punch
based on Johnson’s simplifying hypothesis [18] that plane sections remain planar
after compression.

1.5.2 Asymptotic Model for the Pasternak Foundation

As the Winkler foundation model assumes that the contact pressure is merely pro-
portional to the local indentation, i.e.,

p(y) = kw0(y), (1.67)

it can be represented by the mechanical model of a layer of closely spaced, inde-
pendent, linear springs (see Fig. 1.5). At the same time, it is well-known that real
foundations may exhibit considerable interaction among their constitutive elements.
To overcome the inherent deficiency of theWinklermodel, several phenomenological
models of elastic foundations have been proposed [11, 37, 38].

p(y)

Fig. 1.5 Winkler’s foundation model, which for a discontinuous loading predicts the correspond-
ingdiscontinuous local indentation
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In particular, the two-parameter model for the deformational behavior of soils
proposed by Pasternak [30] assumes the existence of shear interaction between the
spring elements and is regarded [19] as mechanically the most logical extension of
the Winkler model (1.67), and analytically as the next higher approximation. The
response function for the Pasternak model is given by

p(y) = kP w0(y) − G PΔyw0(y), (1.68)

where kP and G P are the foundation constants.
The Pasternak foundation can be constructed by connecting a layer of theWinkler

spring elements to a surface layer of vertically incompressible elementswhich deform
in transverse shear only [33].

It is noteworthy that the phenomenological approach has a disadvantage in that
the parameters kP and G P are difficult to determine [38].

On the other hand, in the case of a thin bonded compressible elastic layer, the
asymptotic formula (1.46) yields the following response function:

p(y) � A33

h
w0(y) − A13(A44 − A13)

3A44
hΔyw0(y). (1.69)

Now, comparing Eqs. (1.68) and (1.69), we obtain the relations

kP = A33

h
, G P = A13(A44 − A13)

3A44
h. (1.70)

In the case of an isotropic material, we have

kP = E(1 − ν)

(1 + ν)(1 − 2ν)h
, G P = Eν(1 − 4ν)h

3(1 + ν)(1 − 2ν)2
. (1.71)

Observe that for ν ∈ (0.25, 0.5), formula (1.71)2 produces a negative value for
the parameter G P . Hence, formulas (1.71) can provide the foundation constants for
the Pasternak model (1.68) when the layer material is sufficiently compressible.

1.5.3 Refined Contact Model with Allowance for Tangential
Displacements on the Contact Interface

Let us consider the unilateral contact problem for a frictionless rigid punch in the
shape of an elliptic paraboloid (1.31), formulated by the refined contact condition
(1.40), which can be rewritten as

w0(y) + ∇yϕ(y) · v0(y) = δ0 − ϕ(y). (1.72)
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Here, w0 and v0 are the normal and tangential displacements of the surface points of
the elastic layer on the contact interface.

In the framework of the first-order asymptotic model, we have

w0 = h

A33
p, (1.73)

v0 = A44 − A13

2A33A44
h2∇y p. (1.74)

Recall that the above equations are obtained from formulas (1.26) and (1.27).
Substituting (1.73) and (1.74) into Eq. (1.72), we arrive at the equation

h

A33
p(y) + A44 − A13

2A33A44
h2∇yϕ(y) · ∇y p(y) = δ0 − ϕ(y), y ∈ ω. (1.75)

Here, ω is the contact area which should be determined with the help of the positive-
ness condition (1.35) imposed on the contact pressure p(y).

In the case of a parabolic punch (1.31), the solution ofEq. (1.75) can be represented
in the form

p(y) = p0

(
1 − y21

a2 − y22
b2

)
(1.76)

with unknown parameters p0, a, and b.
The substitution of (1.31) and (1.76) into Eq. (1.75) gives

h

A33
p0

(
1 − y21

a2 − y22
b2

)
− (A44 − A13)h2

A33A44

(
y21

R1a2 + y22
R2b2

)
= δ0 − y21

2R1
− y22

2R2
.

From here it immediately follows that

p0 = A33
δ0

h
,

a = √
2R1δ0

(
1 + (A44 − A13)

A44

h

R1

)1/2
, (1.77)

b = √
2R2δ0

(
1 + (A44 − A13)

A44

h

R2

)1/2
.

Finally, taking into account the relation F = (π/2)abp0 between the maximum
contact pressure p0 and the contact force F , we get

F � π

h

√
R1R2A33δ

2
0

(
1 + (A44 − A13)

A44

h

R

)
, (1.78)

where R = 2R1R2/(R1+ R2) is the harmonic mean of the curvature radii R1 and R2.
Note also that in writing Eq. (1.78), we have neglected the terms of order O((h/R)2).
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In the case of isotropic material, (A44 − A13)/A44 = (1 − 4ν)/(1 − 2ν), and,
as can be seen from Eqs. (1.77) and (1.78), the effect of tangential displacements
increases when the material becomes more incompressible.
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Chapter 2
Asymptotic Analysis of the Contact Problem
for Two Bonded Elastic Layers

Abstract The first part of the chapter deals with the distributional asymptotic analy-
sis of the contact problem of frictionless unilateral interaction of two bonded elastic
layers. The case of incompressible layer materials is thoroughly treated in the second
part of the chapter, beginning in Sect. 2.4.

2.1 Contact Problem Formulation

In this section we formulate the problem of frictionless unilateral contact between
two uniform transversely isotropic elastic layers bonded to rigid substrates. In the
case of substrates shaped like elliptic paraboloids, the general expression for the
gap function is derived. The boundary conditions of unilateral contact are consid-
ered in detail, including the refined contact condition with allowance for tangential
displacements on the contact interface. The contact problem is formulated as an
integral equation over the contact area, which in turn should be determined by the
positiveness condition imposed on the contact pressure.

2.1.1 Geometry of Surfaces in Contact

Let us consider two thin elastic layers (n = 1, 2), each of uniform thickness hn ,
ideally bonded to rigid substrates with slightly curved surfaces (see Fig. 2.1). Intro-
ducing the Cartesian coordinate system (y1, y2, z), we write out the equations of the
surfaces of the coating layers (n = 1, 2) in the form

z = (−1)nϕn(y), (2.1)

assuming that in the undeformed state the thin layer/substrate systems occupy
domains z ≤ −ϕ1(y) and z ≥ ϕ2(y).

In particular, it is of great practical interest to consider the case of substrates
shaped like paraboloids

© Springer International Publishing Switzerland 2015
I. Argatov and G. Mishuris, Contact Mechanics of Articular Cartilage Layers,
Advanced Structured Materials 50, DOI 10.1007/978-3-319-20083-5_2
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Fig. 2.1 Contact of two thin
elastic layers in the initial
undeformed configuration

y1

z

2

1

ϕn(y) = k(n)
11 y21 + 2k(n)

12 y1y2 + k(n)
22 y22 , (2.2)

where the coefficients k(n)
11 , k(n)

12 , and k(n)
22 have the dimension of reciprocal length.

The initial gap between the two surfaces is given by the gap function

ϕ(y) = ϕ1(y) + ϕ2(y). (2.3)

Correspondingly, in the case (2.2), we have

ϕ(y) = k11y21 + 2k12y1y2 + k22y22 , (2.4)

where

k11 = k(1)
11 + k(2)

11 , k12 = k(1)
12 + k(2)

12 , k22 = k(1)
22 + k(2)

22 .

Now, let R(n)
1 and R(n)

2 be the principal radii of curvature of the surface of the n-th
layer at its apex, such that the n-th layer surface can then be expressed as

ϕn(y) = (yn
1 )2

2R(n)
1

+ (yn
2 )2

2R(n)
2

, (2.5)

where the directions of the local coordinate axes yn
1 and yn

2 coincidewith the principal
curvature directions.

The transformation of the coordinates (yn
1 , yn

2 ) to the common set of axes (y1, y2)
inclined at the angle βn to the axis yn

1 is given by

yn
1 = y1 cosβn − y2 sin βn, yn

2 = y1 sin βn + y2 cosβn . (2.6)

Hence, in light of (2.5) and (2.6), the coefficients on the right-hand side of (2.2)
can be expressed as

2k(n)
11 = κ

(n)
1 cos2 βn + κ

(n)
2 sin2 βn, 2k(n)

22 = κ
(n)
1 sin2 βn + κ

(n)
2 cos2 βn,

2k(n)
12 = (

κ
(n)
2 − κ

(n)
1

)
sin βn cosβn,
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Fig. 2.2 Coordinate systems
involved in determining the
initial gap between the
contacting surfaces

y2

y2 y1

O

β2

β1β

1

y1
2

y1
1

y2
2

where κ
(n)
1 and κ

(n)
2 are the principal curvatures, i.e.,

κ
(n)
1 = 1

R(n)
1

, κ
(n)
2 = 1

R(n)
2

.

Now, by a suitable choice of the coordinate axes (y1, y2), we can make k12 zero
in (2.4). For instance, let us choose the angle β1 in such a way that

(
κ

(1)
2 − κ

(1)
1

)
sin 2β1 + (

κ
(2)
2 − κ

(2)
1

)
sin 2β2 = 0. (2.7)

Taking into account that (see Fig. 2.2)

β = β1 − β2, (2.8)

from Eq. (2.7), we readily find

tan 2β1 =
(
κ

(2)
2 − κ

(2)
1

)
sin 2β

κ
(1)
2 − κ

(1)
1 + (

κ
(2)
2 − κ

(2)
1

)
cos 2β

. (2.9)

Thus, the parabolic gap function (2.4) takes the simplest form

ϕ(y) = k1y21 + k2y22 , (2.10)

where the coefficients k1 and k2 are evaluated by the formulas

2k1 = κ
(1)
1 cos2 β1 + κ

(1)
2 sin2 β1 + κ

(2)
1 cos2 β2 + κ

(2)
2 sin2 β2,

2k2 = κ
(1)
1 sin2 β1 + κ

(1)
2 cos2 β1 + κ

(2)
1 sin2 β2 + κ

(2)
2 cos2 β2.

(2.11)

From the above equations, it follows that

2(k1 + k2) = κ
(1)
1 + κ

(1)
2 + κ

(2)
1 + κ

(2)
2 ,

2(k1 − k2) = (
κ

(1)
1 − κ

(1)
2

)
cos 2β1 + (

κ
(2)
1 − κ

(2)
2

)
cos 2β2.

(2.12)
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Note [19, 20] that by taking into account (2.12), Eq. (2.11) can be rewritten as

2k1 = (
κ

(1)
1 + κ

(1)
2 + κ

(2)
1 + κ

(2)
2

)
sin2

τ

2
,

2k2 = (
κ

(1)
1 + κ

(1)
2 + κ

(2)
1 + κ

(2)
2

)
cos2

τ

2
,

(2.13)

where τ is an auxiliary parameter given by cos τ = (k2 − k1)/(k2 + k1). From
Eq. (2.13), it follows that the coefficients k1 and k2 have the same sign, explaining
why the equidistant curves k1y21 + k2y22 = const are concentric ellipses.

Finally, it should be underlined that since the angle β, as well as the curvatures
κ

(n)
1 and κ

(n)
2 (n = 1, 2), are supposed to be known, we can evaluate the angle β1

from Eq. (2.9), and after that Eq. (2.8) will yield β2 = β1 − β. Equation (2.12) will
then give k1 and k2, the parameters of the gap function ϕ(y) (see Eq. (2.10)).

2.1.2 Unilateral Contact Conditions

We consider the contact interaction of the elastic layers as a normal load F is applied
to the substrates, producing their (vertical) contact approach δ0 (see Fig. 2.3).

Before deformation, the gap between the layer surfaces was given by Eq. (2.10),
which can be rewritten as

ϕ(y) = y21
2R1

+ y22
2R2

, (2.14)

where R1 = 1/(2k1) and R2 = 1/(2k2), for k1 and k2 given by (2.13). In what
follows, we may assume that R1 ≥ R2.

If the surface point M′(y′, z′) of the first layer (laying in the domain z ≤ −ϕ1(y))
and the surface pointM′′(y′′, z′′) of the second layer (laying in the domain z ≥ ϕ2(y))
coincide after deformation (see Fig. 2.4), the following relations hold true [20]:

δ0

F

2

y1

1

F

Fig. 2.3 Schematic diagram for the frictionless contact interaction of elastic layers 1 and 2 under
an external load F , which implies the corresponding contact approach δ0 along the axis of the force
direction
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Fig. 2.4 Schematic diagram
of the elastic contact
interaction with allowance
for tangential displacements
on the contact interface

M'(y',z')

M"(y",n z")

w0

v0(y')

1(y')

y′ + v(1)
0 (y′) = y′′ + v(2)

0 (y′′), (2.15)

ϕ2(y′′) + w(2)
0 (y′′) = −(

ϕ1(y′) + w(1)
0 (y′)

) + δ0. (2.16)

Here, wn
0(y) (n = 1, 2) are the absolute values of the vertical displacements of the

surface points of the n-th elastic layer (the normal displacements are assumed to be
measured positive into each layer), vn

0(y) (n = 1, 2) are the tangential displacements
of the surface points, and the relations z′ = −ϕ1(y′) and z′′ = ϕ2(y′′) were taken
into account in writing Eq. (2.16).

From Eq. (2.15), it follows that

y′′ = y′ + v(1)
0 (y′) − v(2)

0 (y′′). (2.17)

Now, identifying the coordinates y′ and y′′ when evaluating the displacements of
the contact points M′ and M′′, we reduce Eq. (2.16) to a more simple form

ϕ2
(
y + v(1)

0 − v(2)
0

) + w(2)
0 + ϕ1(y) + w(1)

0 = δ0, (2.18)

where y ∈ ω, and ω is the contact area. To simplify the notation, we dropped the
primes on the left-hand side of Eq. (2.18).

The next simplifying step consists of linearizing Eq. (2.18). In this way, by tak-
ing Eq. (2.3) into account, we replace the above nonlinear contact condition by the
linearized condition of frictionless contact

w(1)
0 (y) + w(2)

0 (y) = δ0 − ϕ(y) − ∇yϕ2(y) · (
v(1)
0 (y) − v(2)

0 (y)
)
, (2.19)

where y ∈ ω, and the dot denotes the scalar product.
We note here that the choice of numbering of the elastic layers should assume

that the modulus of the gradient |∇yϕ2(y)| is in a sense greater than |∇yϕ1(y)|, or in
other words, the surface of layer 1 (master surface) is assumed to be flatter than the
surface of layer 2.

Observe that the refined contact condition (2.19) reduces to (1.40) in the case of
a single elastic layer in contact with a punch, when ϕ1(y) ≡ 0 (the surface of the
layer is flat) and ϕ2(y) = ϕ(y), while w(2)

0 (y) ≡ 0 and v(2)
0 (y) ≡ 0 (the punch is

absolutely rigid).

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Finally, by neglecting the effect of tangential displacements, we reduce Eq. (2.19)
to the classical contact condition

w(1)
0 (y) + w(2)

0 (y) = δ0 − ϕ(y), y ∈ ω. (2.20)

As negative stresses are not allowed at the contact interface, the contour Γ of the
contact areaω is determined from the positiveness condition that the contact pressure
p(y) is positive inside ω and vanishes at its boundary, that is

p(y) > 0, y ∈ ω, p(y) = 0, y ∈ Γ. (2.21)

Consequently, according to Newton’s third law we have

p(y) = −σ
(1)
33 (y, 0) = −σ

(2)
33 (y, 0),

where σ
(n)
33 (n = 1, 2) is the normal stress in the n-th layer.

2.1.3 Governing Integral Equation

According to the principle of superposition, the contact problem (2.20), (2.21) can
be recast as a Fredholm integral equation of the first kind with the kernel being a
combination of the layer surface vertical displacements resulting from a normal point
force. The corresponding Green’s function problem for an elastic layer subjected to
a point force applied to its surface is convenietly treated by the two-dimensional
Fourier transform technique [6, 24].

By applying the standard Fourier transformation, the local indentation of the n-th
elastic layer (n = 1, 2) can be expressed in the form

w(n)
0 (y) = 1

2πθn

+∞∫∫

−∞
p̂(α1, α2)

Ln(αhn)

α
e−i(α1y1+α2 y2)dα1dα2, (2.22)

where θn is a dimensional elastic constant, hn is the thickness of the n-th layer,

α =
√

α2
1 + α2

2, and p̂(α1, α2) denotes the transform of the contact pressure, i.e.,

p̂(α1, α2) = 1

2π

+∞∫∫

−∞
p(y1, y2)e

i(α1y1+α2 y2)dy1dy2. (2.23)
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In the case of a transversely isotropic elastic layer bonded to a flat rigid substrate,
in accordance with the known solution [11], the kernel function is as follows:

θ = A11A33 − A2
13

(γ1 + γ2)A11
, (2.24)

L (λ) = 1 + 2
[
m+(γ1e−2λ1 + γ2e−2λ2) − γ−m−e−2λ1−2λ2 − 4γ1γ2e−λ1−λ2

]
8γ1γ2e−λ1−λ2 + γ−m−(1 + e−2λ1−2λ2) − γ+m+(e−2λ1 + e−2λ2)

.

(2.25)

Here, γ1 and γ2 are the roots of the bi-quadratic equation

γ 4A11A44 − γ 2[A11A33 − A13(A13 + 2A44)
] + A33A44 = 0, (2.26)

and we have employed the following notation:

λ1 = λ

γ1
, λ2 = λ

γ2
, γ+ = γ1 + γ2, γ− = γ1 − γ2, (2.27)

m+ = m2γ1 + m1γ2, m− = m2γ1 − m1γ2,

m1 = A11γ
2
1 − A44

A13 + A44
, m2 = A11γ

2
2 − A44

A13 + A44
.

Note that θn andLn(λ) are obtained from (2.24) and (2.25) by suitable selection
of the n-th layer elastic parameters.

In the case of a bonded isotropic layer, we have γ1 = γ2 = 1 and Eqs. (2.24),
(2.25) for the kernel function reduce as follows [25]:

θ = E

2(1 − ν2)
, (2.28)

L (λ) = 2κ sinh 2λ − 4λ

2κ cosh 2λ + 1 + κ2 + 4λ2
. (2.29)

Here, E is Young’s modulus, ν is Poisson’s ratio, κ = 3− 4ν is Kolosov’s constant.
The functionL (λ) defined by formula (2.29), being continuous and positive for

λ ∈ (0,+∞), satisfies the following asymptotic relations:

L (λ) = A λ + O(λ3), λ → 0;
L (λ) = 1 + O(λ2e−2λ), λ → ∞.

(2.30)

For the functionL (λ) given by (2.25), the first asymptotic relation (2.30) can be
checked directly, while the asymptotic remainder in the second relation can be easily
replaced with O(e−c1λ), where c1 is some positive constant. On the basis of these
properties for each function Ln(λ), it can be shown [25] that the kernel
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Kn(y) =
+∞∫∫

0

Ln(s)

s
cos

s1y1
hn

cos
s2y2
hn

ds1ds2, (2.31)

where s =
√

s21 + s22 , decreases at infinity as rapidly as e−c2h−1
n |y| for some c2 > 0.

Note also that by changing the integration variables in (2.31), we obtain

Kn(y) = hn

+∞∫∫

0

Ln(hnα)

α
cosα1y1 cosα2y2 dα1dα2, (2.32)

where α =
√

α2
1 + α2

2.
Now, using Eqs. (2.23) and (2.31), we rewrite Eq. (2.22) in the form

w(n)
0 (y) = 1

π2hnθn

∫∫

ω

p(y′)Kn(y1 − y′
1, y2 − y′

2) dy′, (2.33)

where the contact pressure density p(y) vanishing outside the contact area ω has
already been taken into account.

Thus, substituting the expressions (2.33) (n = 1, 2) into the contact condition
(2.20), and recalling (2.32), we arrive at the following integral equation:

1

π2hθ

∫∫

ω

p(y′)K (y1 − y′
1, y2 − y′

2) dy′ = δ0 − ϕ(y). (2.34)

Here we have introduced the notation

h = h1 + h2, θ = θ1θ2

θ1 + θ2
, (2.35)

K (y) =
+∞∫∫

0

L (s)

s
cos

s1y1
h

cos
s2y2

h
ds1ds2, (2.36)

L (s) = θ

θ1
L1

(h1

h
s
)

+ θ

θ2
L2

(h2

h
s
)
. (2.37)

Equation (2.34) represents the governing integral equation of the frictionless con-
tact problem for two elastic layers bonded to slightly curved rigid substrates, where
the substrate shapes are taken into account through the gap function ϕ(y), and the
curvature effect on the integral operator on the right-hand side is neglected.
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2.2 Distributional Asymptotic Analysis

In this section, we develop an alternative for the perturbation approach to the contact
problem in the thin-layer approximation considered inSects. 1.2 and1.4. It is assumed
that the joint layer thickness h is small compared to the characteristic length of the
contact area ω. Correspondingly, we require that

h = εh∗, δ0 = εδ∗
0 , R1 = ε−1R∗

1 , R2 = ε−1R∗
2 , (2.38)

where δ∗
0 , R∗

1 , and R∗
2 are comparable with h∗, all being independent of ε. Note that

we follow the same notation as in the previous chapter, wherever possible.

2.2.1 Moment Asymptotic Expansion for the Integral
Operator of the Frictionless Contact Problem
for a Thin Elastic Layer

A key point of the distributional asymptotic analysis is to make use of a large positive
dimensionless parameter

Λ = 1

ε
(2.39)

contained in the kernel (2.36) as a consequence of (2.37) and (2.38)1. For this purpose,
it is convenient to introduce dimensionless variables

η = (η1, η2), ηi = h−1∗ yi , i = 1, 2. (2.40)

Substituting expressions (2.38) and (2.40) into Eq. (2.34), we readily obtain

∫∫

ω∗

p∗(η′)k
(
Λ(η1 − η′

1),Λ(η2 − η′
2)

)
dη′ = π2θ

Λ2h∗
(
δ∗
0 − ϕ∗(η)

)
, (2.41)

where we have introduced the notation

p∗(η) = p(h∗η1, h∗η2), (2.42)

k(ξ) =
+∞∫∫

0

L (s)

s
cos s1ξ1 cos s2ξ2 ds1ds2, (2.43)

ϕ∗(η) = h2∗
(
(2R∗

1)
−1η21 + (2R∗

2)
−1η22

)
. (2.44)

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Following Argatov [7], we apply the so-called distributional asymptotic approach
developed by Estrada and Kanwal [10]. Before proceeding, let us clarify the notation
used. Let α = (α1, α2) be a multi-index of nonnegative integers and |α| = α1 + α2,
then for any η ∈ R

2 we put ηα = η
α1
1 η

α2
2 and define

Dα f (η) = ∂ |α| f (η1, η2)

∂η
α1
1 ∂η

α2
2

, D0 f (η) = f (η).

We also employ the standard notation α! = α1!α2! for the multi-index α, where α1!
denotes the factorial of α1.

The moment asymptotic expansion can be written as follows [10]:

k(Λη) ∼
∞∑

|α|=0

(−1)|α|μαDαδ(η)

α!Λ|α|+2 , Λ → ∞. (2.45)

Here, μα = μα1α2 are the moments of the generalized function k(ξ) given by

μα = 〈
k(ξ), ξα

〉 =
+∞∫∫

−∞
k(ξ)ξ

α1
1 ξ

α2
2 dξ1dξ2. (2.46)

The asymptotic expansion (2.45) is valid in several important spaces of distrib-
utions (see, e.g., [10, 26]). In particular, it holds for distributions of rapid decay at
infinity, and in particular, for the kernel (2.36).

The interpretation of the asymptotic relation (2.45) is in the distributional sense.
This means that the asymptotic formula

〈k(Λη), φ(η)〉 =
N∑

|α|=0

μαDαφ(0)

α!Λ|α|+2 + O(Λ−N−3), Λ → ∞, (2.47)

holds true for any φ(η) from the corresponding space of test functions.
For the kernel function (2.36), the application of (2.46) yields the moments

μα =
+∞∫∫

−∞
ξ

α1
1 ξ

α2
2

+∞∫∫

0

L (s)

s
cos s1ξ1 cos s2ξ2 ds1ds2dξ1dξ2

= 1

4

+∞∫∫

−∞

L (s)

s

2∏
j=1

+∞∫

−∞
ξ

α j
j cos s jξ j dξ j ds1ds2. (2.48)
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Using the well-known representation for Dirac’s delta function

δ(s j ) = 1

π

+∞∫

0

cos s jξ j dξ j , (2.49)

we find from Eq. (2.48), after integration by parts, that

μ2k,2n−2k = (−1)nπ2

+∞∫∫

−∞

L (s)

s
δ(2k)(s1)δ

(2n−2k)(s2) ds1ds2, (2.50)

where k = 0, 1, . . . , n and n ∈ N ∪ {0}, and

μα = 0, |α| = 2n − 1, n ∈ N;

μα = 0, α1 = 2k − 1, α2 = 2n − 2k + 1, |α| = 2n, k = 1, 2, . . . , n.

Now, by recalling the definition of the two-dimensional Dirac delta function
δ(s1, s2) = δ(s1)δ(s2) and substituting the expansion

L (s)

s
= A (1 + m1s2 + m2s4 + . . .) (2.51)

into Eq. (2.50), we find

μ2k,2n−2k = (−1)nπ2A mn

+∞∫∫

−∞
(s21 + s22 )δ

(2k)(s1)δ
(2n−2k)(s2) ds1ds2

= (−1)nπ2A mnCk
n2

nk!(n − k)!, (2.52)

where Ck
n are binomial coefficients given by

Ck
n = n!

k!(n − k)! .

Then, from relations (2.45) and (2.52), where we may set m0 = 1, we find

k(Λη) ∼
∞∑

n=0

(−1)nπ2A
mn

Λ2n+2

n∑
k=0

Ck
n

∂2nδ(η)

∂η2k
1 ∂η2n−2k

2

. (2.53)

Correspondingly, substituting the moment asymptotic expansion (2.53) into the
left-hand side of Eq. (2.41), we obtain
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∫∫

ω∗

p∗(ξ)k
(
Λ(η − ξ)

)
dξ ∼

∞∑
n=0

(−1)nπ2A
mn

Λ2n+2

n∑
k=0

Ck
n

∂2n p∗(η)

∂η2k
1 ∂η2n−2k

2

. (2.54)

To simplify the right-hand side of (2.54), we recall that

Δn
η ≡

(
∂2

∂η21
+ ∂2

∂η22

)n

=
n∑

k=0

Ck
n

∂2n

∂η2k
1 ∂η2n−2k

2

.

Hence, by the above formula, we have

Λ2h∗
π2θ

∫∫

ω∗

p∗(η′)k
(
Λ(η − η′)

)
dη′ ∼ A h∗

θ

∞∑
n=0

(−1)n mn

Λ2n
Δn

η p∗(η). (2.55)

Note that the above integral operator is normalized by the factor Λ2h∗/(π2θ),
such that the left-hand side of (2.55) represents the local indentation normalized by
Λ when stretching the normal coordinate (see, in particular, (2.38) and (2.41)).

2.2.2 Asymptotic Solution of the Contact Problem
for Slightly Curved Thin Compressible Elastic Layers

Using the notation (2.39) and the asymptotic expansions (2.55), we rewrite the gov-
erning integral equation (2.41) in the form

A h∗
θ

∞∑
n=0

(−1)nε2nmnΔ
n
η p∗(η) ∼ δ∗

0 − ϕ∗(η). (2.56)

The solution to Eq. (2.56) can be represented in the form of an asymptotic series
in powers of ε as follows:

p∗(η) ∼ p0∗(η) + ε2 p1∗(η) + ε4 p2∗(η) + . . . . (2.57)

The substitution of the asymptotic expansion (2.57) into Eq. (2.56) yields the
following system of equations for the successive evaluation of its coefficients:

A h∗
θ

m0 p0∗(η) = δ∗
0 − ϕ∗(η),

k∑
j=0

(−1)k− j mk− jΔ
k− j
η p j∗(η) = 0, k = 1, 2, . . . .



2.2 Distributional Asymptotic Analysis 31

It then follows that

p0∗(η) = θ

A h∗
(
δ∗
0 − ϕ∗(η)

)
, (2.58)

pk∗(η) = −
k−1∑
j=0

(−1)k− j mk− jΔ
k− j
η p j∗(η), k = 1, 2, . . . . (2.59)

We further note that formula (2.59) can be rewritten in the form

pk∗(η) = (−1)k θ

A h∗
MkΔ

k
η f∗(η), k = 0, 1, 2, . . . , (2.60)

where in light of (2.58) we have M0 = 1 and f∗(η) = δ∗
0 − ϕ∗(η).

To evaluate the coefficients Mk introduced in (2.60), we consider the expansion
reciprocal to (2.51), that is

s

L (s)
= 1

A
(1 + M1s2 + M2s4 + . . .). (2.61)

It is easily provedby induction that for anypositive integer k the recurrence relation
that facilitates the calculation of the coefficients Mk in (2.61) from the coefficients
of the the expansion (2.51) has the form

Mk = −
k−1∑
j=0

mk− j M j , k = 1, 2, . . . .

Alternatively, the above formula can be directly recovered from (2.59) and (2.60).
Thus, the constructed inner asymptotic expansion (2.57)–(2.59) is similar to the

solution obtained earlier by Vorovich et al. [25].
Finally, in the case of the parabolic punch (2.14), we get by simple calculation

p1∗(η) = θm1h∗
A

( 1

R∗
1

+ 1

R∗
2

)
, pk∗(η) ≡ 0, k = 2, 3, . . . . (2.62)

Upon substituting (2.58) and (2.62) into (2.57), our final result is

p∗(η) ∼ θ

A h∗

(
δ∗
0 + ε22m1

h2∗
R∗ − h2∗

( η21

2R∗
1

+ η22

2R∗
2

))
, (2.63)

where R∗ = 2R∗
1 R∗

2/(R∗
1 + R∗

2) is the harmonic mean of R∗
1 and R∗

2 .
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2.2.3 Comparison of the Results Obtained
by the Perturbation and Distributional Asymptotic
Methods

Let us consider the case of a single layer in contact with a rigid punch, so that
θ−1
2 = 0, θ = θ1, and h = h1. According to the asymptotic expansion (2.55) (see
also Eq. (2.56)), the local indentation of the elastic layer, i.e., the normal displacement
of the surface points, is expressed by

w0(y) ∼ A h

θ

∞∑
n=0

(−1)nmnh2nΔn
y p(y), (2.64)

where A and mn are dimensionless coefficients in the series expansion (2.51) for
the kernel function L (s)/s.

Formula (2.64) can be rewritten in the form

w0(y) ∼ h
∞∑

n=0

(−1)nMnh2nΔn
y p(y), (2.65)

where Mn are dimensional coefficients in the expansion

L (s)

θs
= A

θ
(1 + m1s2 + m2s4 + . . .)

= M0 + M1s2 + M2s4 + . . . . (2.66)

In particular, from (2.65), it follows that

w0(y) � M0hp(y) − M1h3Δy p(y). (2.67)

On the other hand, based on the perturbation algorithm [14] in Sect. 1.2 (see
formula (1.26)), we obtained the asymptotic expansion

w0(y) � h

A33
p(y) − h3A13(A13 − A44)

3A2
33A44

Δy p(y). (2.68)

By comparing (2.67) and (2.68), we arrive at the following relations, whose valid-
ity should be checked:

M0 = 1

A33
, M1 = A13(A13 − A44)

3A2
33A44

. (2.69)

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Expanding the function (2.25) into a Maclaurin series, we find

A = A44(γ1 − γ2)
2(γ1 + γ2)

γ 2
1 γ 2

2

[
A11(γ

2
1 + γ 2

2 ) − 2(A13 + 2A44)
] , (2.70)

where γ1 and γ2 are the roots of the characteristic equation (2.26).
In order to establish the equality between A−1

33 andM0 = θ−1A , where θ andA
are given by (2.24) and (2.70), we make use of Vieta’s theorem for the bi-quadratic
equation (2.26) and the formulas

γ 2
1 γ 2

2 = A33

A11
, γ 2

1 + γ 2
2 = A11A33 − A13(A13 + 2A44)

A11A44
,

(
γ 2
1 − γ 2

2

)2 = (A11A33 − A2
13)(A11A13 − 4A13A44 − 4A2

44 − A2
13)

A2
11A2

44

.

The check of the second equality in (2.69) is more tedious, because the expression
for m1, and correspondingly for M1, is much more cumbersome and is not written
here for brevity.

2.3 Boundary-Layer Problem in the Compressible Case

Both the perturbation technique and the distributional asymptotic method provide
approximate solutions, which are valid inside the contact area but do not describe the
true solution near its contour, where a special approximate solution of the boundary-
layer type should be constructed. In this section, the case of compressible layer
materials is considered.

2.3.1 Variation of the Contact Area

The leading-order asymptotic approximation (2.58) for the contact pressure distrib-
ution density, i.e.,

p0∗(η) = θ

A h∗
(
δ∗
0 − ϕ∗(η)

)
+, (2.71)

determines the main approximation ω0∗ to the sought-for contact area ω∗ (in the
dimensionless coordinates (2.40)).

It is obvious from Eq. (2.44) that the domain ω0∗, which corresponds to the density
(2.71), is elliptic. The major semiaxis and the eccentricity of the contour Γ 0∗ of the
domain ω0∗ will be denoted by a∗ and e. By simple calculations we find
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a∗ = 1

h∗

√
2δ∗

0 R∗
1 , e2 = 1 − R∗

2

R∗
1
. (2.72)

Following the asymptotic procedure introduced by Aleksandrov [2], we consider
the behavior of the integral (2.34) and its density in the neighborhood of the unknown
contour Γ∗ of the domain ω∗.

In light of (2.41), the integral equation (2.34) now takes the form

∫∫

ω∗

p∗(ξ)k
(
ε−1(η − ξ)

)
dξ = ε2

π2θ

h∗
(
δ∗
0 − ϕ∗(η)

)
. (2.73)

Suppose η1 = f ∗
1 (s), η2 = f ∗

2 (s) is a natural parametrization of the contour
Γ 0∗ . We will assume that when traveling along Γ 0∗ in the direction of increasing s-
coordinate, the region ω0∗ enclosed by Γ 0∗ remains on the left. Then, the unit vector
of the inward (with respect to the domain ω0∗) normal to the contour Γ 0∗ is

n0(s) = − f ∗′
2 (s)e1 + f ∗′

1 (s)e2, (2.74)

where the prime denotes differentiation with respect to s.
In a small neighborhood, Ξ∗

ε (s), of the contour Γ 0∗ , we introduce the local sys-
tem of coordinates (s, n), associated with the Cartesian coordinates (η1, η2) by the
formulas

η1 = f ∗
1 (s) + nn0

1(s), η2 = f ∗
2 (s) + nn0

2(s), (2.75)

where n0(s) = (
n0
1(s), n0

2(s)
)
is given by (2.74), and n is the distance (taking the

sign into account) along the inward normal to the contour Γ 0∗ .
Further, let us assume that the contour Γ∗ of the contact area ω∗ in the local

coordinates is described by the equation

n = Υ ∗
ε (s), (2.76)

where Υ ∗
ε (s) is a function to be determined. We set

Υ ∗
ε (s) = εΥ ∗(s). (2.77)

In the neighborhood Ξ∗
ε (s) of the point s, where |ξ − η(s)| = O(

√
ερ∗(s)) and

ρ∗(s) = [
f ∗′′
2 (s) f ∗′

1 (s) − f ∗′′
1 (s) f ∗′

2 (s)
]−1 is the radius of curvature of contour Γ 0∗

at the point s, we make in the integral (2.73) the following change of variables:

ξ1 = f ∗′
1 (s) + n′n0

1(s), ξ2 = f ∗′
2 (s) + n′n0

2(s).
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Next we introduce the so-called “fast” variables

ν = ε−1n, ν′ = ε−1n′, σ ′ = ε−1(s′ − s), (2.78)

keeping the scale for the s-coordinate alongΓ 0∗ unchanged. From now on, the “slow”
variable s is considered to be fixed.

Thus, in the neighborhood Ξ∗
ε (s), when ε → 0, the following relations hold:

f ∗
j (s′) = f ∗

j (s) + εσ ′ f ∗′
j (s) + O(ε2), n0

j (s
′) = n0

j (s) + O(ε), j = 1, 2,

|ξ − η(s)| = ε
√

(σ ′)2 + (ν − ν′)2 + O(ε2), ρ∗(s′) = ρ∗(s) + O(ε),

Υ ∗(s′) = Υ ∗(s) + O(ε),
D(ξ1, ξ2)

D(s′, n′)
= 1 − εν′

ρ∗(s + εσ ′)
= 1 + O(ε).

Note, finally, that the above formulas are valid for any smooth contour Γ∗.

2.3.2 Boundary-Layer Integral Equation

Separating the principal asymptotic terms according to the previous formulas, we
take the limit

lim
ε→0

k
(
ε−1(η − ξ)

) = k
(
σ ′ f ∗′

1 (s) + (ν − ν′)n0
1(s),

σ ′ f ∗′
2 (s) + (ν − ν′)n0

2(s)
)
. (2.79)

By invoking the formulas (see Eq. (2.74))

f ∗′
1 (s) = cosψ, f ∗′

2 (s) = sinψ, n0
1(s) = − sinψ, n0

2(s) = cosψ, (2.80)

where ψ provides an angular parameterization to the ellipse Γ 0∗ , it can be shown
directly that the right-hand side of the relation (2.79) is equal to k(σ ′, ν′ − ν).

Indeed, in light of (2.43), we have

k(ξ) = 1

4

+∞∫∫

−∞

L (s)

s
ei(s1ξ1+s2ξ2)ds1ds2, (2.81)

and by making the substitutions

s1 = t1 cosψ − t2 sinψ, s2 = t1 sinψ + t2 cosψ,
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D(s1, s2)

D(t1, t2)
= 1, s ≡

√
s21 + s22 =

√
t21 + t22 ≡ t,

we find that the representation (2.81) can be written in the form

k(ξ) = 1

4

+∞∫∫

−∞

L (t)

t
cos

[
ξ1(t1 cosψ − t2 sinψ) + ξ2(t1 sinψ + t2 cosψ)

]
dt1dt2,

(2.82)
provided that t−1L (t) is an even function for t ∈ (−∞,+∞).

Thus, from Eqs. (2.79), (2.80), and (2.82) it follows immediately that

lim
ε→0

k(ε−1(η − ξ)) = k(σ ′, ν′ − ν), (2.83)

while on the other hand, we see on the right-hand side of Eq. (2.73) that

δ∗
0 − ϕ∗(η) = h2∗

[
ενb∗

1(s) + ε2ν2b∗
2(s)

]
, (2.84)

where

b∗
1(s) = − f ∗

1 (s)n0
1(s)

R∗
1

− f ∗
2 (s)n0

2(s)

R∗
2

,

2b∗
2(s) = −n0

1(s)
2

R∗
1

− n0
2(s)

2

R∗
2

.

(2.85)

Hence, by approximating the contact pressure density as p∗
ε (ξ) ∼ q∗

ε (s, ν′) in the
neighborhood Ξ∗

ε (s) of the boundary of the contact area (see, for example, [3]) and
letting ε → 0 in light of Eqs. (2.73), (2.75)–(2.78), (2.83) and (2.84), we arrive at
the following integral equation:

+∞∫

Υ ∗(s)

q∗∗(s, ν′)M(ν′ − ν) dν′ = πθh∗b∗
1(s)ν. (2.86)

Here, q∗∗(s, ν) = ε−1q∗
ε (s, ν), and we have introduced the notation

M(t) = 1

π

+∞∫

−∞
k(σ ′, t) dσ ′.

Observe that the s-coordinate is present in Eq. (2.86) as a parameter.
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Making use of formula (2.49), we represent the above formula in the form

M(t) =
+∞∫

0

L (u)

u
cos ut du. (2.87)

Finally, in addition to Eq. (2.86), which the boundary-layer solution q∗∗(s, ν)

must satisfy, it is necessary to obey the contact pressure positivity condition (2.21).
Hence, the function Υ ∗(s) satisfies the equation

q∗∗(s, Υ ∗(s)) = 0. (2.88)

Otherwise, we would contradict the assumption that the contact must be made over
the whole domain ω∗.

2.3.3 Aleksandrov’s Approximation

We note that the integral equation (2.86) is of the Wiener–Hopf type [23] and can be
solved in closed form (see, in particular, [1, 5]). However, since a simple factorization
for the function w−1L (w) of the complex variable w = u + iv is not available, it
is not possible to obtain the exact solution of Eq. (2.86) in a simple form. Thus,
the approximate version of the Wiener–Hopf method has to be used. Confining our
considerations to the first-order approximation, we replace the functionL (u) by the
following simple algebraic approximation [3]:

L̃ (u) = u

√
u2 + B2

u2 + C
. (2.89)

It can easily be shown that the functions u−1L (u) and u−1L̃ (u) satisfy Koiter’s
conditions [18] that they should have the same limits for s tending to zero and infinity,
provided that the following relation holds:

B

C
= A . (2.90)

In addition, following Aleksandrov [3], we select the constants B and C in such
a manner that

lim
u→0

d2

du2

(
u

L (u)
− u

L̃ (u)

)
= 0.
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From here it immediately follows that

m1

A
= C

2B3 − 1

B
, (2.91)

where (see formula (2.51))

A = lim
u→0

L (u)

u
, m1 = 1

2A
lim
u→0

d2

du2

L (u)

u
. (2.92)

From (2.24), (2.66), and (2.70), we have

A = A11A33 − A2
13

(γ1 + γ2)A11A33
, m1 = A13(A13 − A44)

3A33A44
,

where γ1 and γ2 are the roots of the characteristic equation (2.26).
At the same time, Eqs. (2.90) and (2.91) yield the following formulas (cf. [12]):

B = 1

A + √
A 2 + 2m1

, C = 1

A
[
A + √

A 2 + 2m1
] .

Recall that A and m1 are defined by (2.92).
In the case of isotropic layer bonded to a rigid foundation (see formula (2.29)),

we have

A = 1 − 2ν

2(1 − ν)2
,

where ν is Poisson’s ratio of the layer material. From the above, it is readily seen
(see also Fig. 2.5) that the asymptotic constantA approaches zero when the material
becomes incompressible.

Fig. 2.5 Variation of the
approximation coefficients in
the isotropic case
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Let us consider a Wiener–Hopf integral equation of the first kind

+∞∫

0

ϕ(τ ′)M̃(τ ′ − τ) dτ ′ = ψ(τ), 0 ≤ τ < ∞, (2.93)

with the kernel

M̃(τ ) =
+∞∫

0

L̃ (u)

u
cos uτ du, (2.94)

where the kernel function L̃ (u) is given by (2.89).
It can be shown [5, 25] that for the right-hand sides of Eq. (2.93)

ψ0(τ ) = 1, ψ1(τ ) = τ, ψ2(τ ) = τ 2,

the corresponding special solutions are, respectively,

ϕ0(τ ) = 1

A
erf

√
Bτ + e−Bτ

√
πA τ

, (2.95)

ϕ1(τ ) = τ

A
erf

√
Bτ − e−Bτ

√
π Bτ

(
1 − τ

A
− 1

2
√
A B

)
, (2.96)

ϕ2(τ ) =
(

τ 2

A
+ 1

A B2 − 2

B

)
erf

√
Bτ

− e−Bτ

√
π Bτ

(
1

B
− 3

4B
√
A B

+ τ

2A B
− τ 2

A

)
. (2.97)

Here, erf(x) is the error function, which is defined as

erf(x) = 2√
π

x∫

0

e−t2dt.

The above solutions are illustrated in Fig. 2.6. Observe that after the normalization
these functions depend on the dimensionless elastic constants A and B via their
product A B, while the dependence on the coordinate τ comes as Bτ .
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Fig. 2.6 Aleksandrov’s
approximate boundary
layer-type solutions
(2.95)–(2.97)
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2.3.4 Boundary-Layer in the Compressible Case

We replaceL (s) in the integral (2.87) by L̃ (s), substitute the corresponding kernel
M̃(t) defined by (2.94) into Eq. (2.86), and implement in the resulting equation a
change of variables

ν = Υ ∗(s) + τ, ν′ = Υ ∗(s) + τ ′.

In this way the integral equation (2.86) can be transformed into the form

+∞∫

0

q̃∗∗(s, Υ ∗(s) + τ ′)Ñ (τ ′ − τ) dτ ′ = πθh∗b∗
1(s)(Υ

∗(s) + τ). (2.98)

In the case (2.89), make use of Aleksandrov’s results [3] (see, in particular, for-
mulas (2.95) and (2.96)), thus producing the solution to Eq. (2.98) in the form

q̃∗∗(s, Υ ∗(s) + τ)

θh∗b∗
1(s)

= τ

A
erf

√
Bτ − 1√

π Bτ
e−Bτ

(
1 −

√
C

2B
− τ

A

)

+ Υ ∗(s)
A

erf
√

Bτ + Υ ∗(s)√
πA τ

e−Bτ . (2.99)

Since, in light of (2.88), the function (2.99) must satisfy Eq. (2.88), the boundary
layer is found to be

q̃∗∗(s, ν) =θh∗b∗
1(s)

A

{
ν erf

√
B(ν − Υ ∗(s))
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+
√

ν − Υ ∗(s)
π B

exp
(−B[ν − Υ ∗(s)])

}
, (2.100)

provided that

Υ ∗(s) =
√
A

B
− 1

2B
. (2.101)

Note that in the axisymmetric case the obtained boundary layer (2.100) is essen-
tially similar to the leading term of the asymptotics for the contact pressure density
constructed in [25] (see formula (49.11)). The resultant of the contact pressure (with
the boundary layer taken into account) was evaluated in [8]. It is also worth noting
[3] that the relations (2.90) and (2.91) are necessary for the correct matching between
the boundary-layer solution (2.100) and the inner asymptotic solution (2.71).

2.4 Incompressible Transversely Isotropic Elastic Material

The generalized Hooke’s law (1.1), establishing a linear relationship between com-
ponents of the stress tensor σ , and components of the tensor of infinitesimal strains
ε, can be written in the tensor form

ε = S : σ (2.102)

or alternatively in the matrix form as follows [21]:

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S1111 S1221 S1331 0 0 0
S1221 S1111 S1331 0 0 0
S1331 S1331 S3333 0 0 0
0 0 0 2S2233 0 0
0 0 0 0 2S2233 0
0 0 0 0 0 2S1122

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.103)

Here, Si jkl are the components of the fourth-rank compliance tensor. For a trans-
versely isotropic material the compliance matrix involves only five independent
entries, so that 2S1122 = S1111 − S1221, while S1111, S1221, S1331, S3333, and S2233
are expressed in terms of engineering elastic constants by the formulas

S1111 = 1

E
, S1221 = − ν

E
, S1331 = − ν′

E ′ , S3333 = 1

E ′ , S2233 = 1

4G ′ ,
(2.104)

where E and E ′ are Young’s moduli in the plane of transverse isotropy and in the
direction normal to it, ν and ν′ are Poisson’s ratios characterizing the lateral strain
response in the plane of transverse isotropy to a stress acting parallel or normal to

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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it, G ′ is the shear modulus in planes normal to the plane of transverse isotropy. We
note also that the in-plane shear modulus is given by G = E/[2(1 + ν)].

2.4.1 Stress-Strain Relations for Incompressible Material

Recall that a solid’s resistance to all-round compression is characterized by the bulk
modulus, K . For a homogeneous anisotropic material occupying a volume V , the
bulk modulus is defined as the ratio of the small hydrostatic pressure increase, Δp,
to the resulting relative decrease of the volume, ΔV/V .

Since under the assumption of small deformations, ΔV/V = ε11 + ε22 + ε33, by
substituting σ11 = σ22 = σ33 = −Δp into Eq. (2.103), we readily obtain

1

K
= 2S1111 + 2S1221 + 4S1331 + S3333.

In terms of the stiffnesses, the bulk modulus is given by

K = A33(A11 + A12) − 2A2
13

A11 + A12 − 4A13 + 2A33
,

where Ai j are determined by formulas (1.3).
According to (2.104), the above formula can be recast in terms of the engineering

constants as

K =
(
2(1 − ν)

E
+ 1 − 4ν′

E ′

)−1

, (2.105)

which in the isotropic case reduces to

K = E

3(1 − 2ν)
.

If the material is incompressible, then the bulk modulus is infinite. At the same
time, the incompressibility condition

ε11 + ε22 + ε33 = 0 (2.106)

must be satisfied for arbitrary stress σ satisfying the equilibrium equations.
As was shown by Itskov and Aksel [15], the incompressibility condition (2.106)

written in the form I : ε = 0, where I is the second-order identity tensor, implies
that S : I = 0. The last tensor equation, in the general case, imposes 6 additional
constrains on the compliance tensor S. In the case of transverse isotropy, only two
of these incompressibility conditions are not identically satisfied.

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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For the compliance matrix to be positive definite, it is required that

E > 0, E ′ > 0, G ′ > 0, ν2 ≤ 1,

and

ν′2 ≤ E ′(1 − ν)

2E
. (2.107)

By considering the special case of a hydrostatic loading, when σ11 = σ22 =
σ33 = p and σ23 = σ13 = σ12 = 0, it can be easily verified that the incompressibility
condition (2.106) is achieved if

2

E
− 2ν

E
− 4ν′

E ′ + 1

E ′ = 0. (2.108)

Following [13], we eliminate the Poisson’s ratio ν between (2.107) and (2.108)
to get (ν′ − 0.5)2 ≤ 0, from which it immediately follows that ν′ = 0.5. Now,
substituting this value into Eq. (2.108), we obtain ν = 1 − 0.5(E/E ′).

Thus, for an incompressible transversely isotropic material only 3 material con-
stants remain independent and the following relations hold [13, 15]:

ν′ = 1

2
, ν = 1 − E

2E ′ . (2.109)

These relations determine the incompressibility limit. Consequently, the condition
of positive definiteness of the compliance tensor reduces to

E < 4E ′. (2.110)

It should be emphasized that whereas the stress-strain relations for compressible
materials can be obtained through the direct inversion ofHooke’s law (2.103), leading
to σ = C : ε with the stiffness tensor C = S−1, for incompressible materials the
constitutive relation is given by

σ = C : ε − pI, (2.111)

where evaluation of the super-symmetric fourth-order elasticity tensor C requires a
special procedure developed in [15].

In the matrix form, Eq. (2.111) can be rewritten as

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 0 0 0
a12 a11 a13 0 0 0
a13 a13 a33 0 0 0
0 0 0 2a44 0 0
0 0 0 0 2a44 0
0 0 0 0 0 2a66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

p
p
p
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.112)
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where, according to Itskov and Aksel [15], we have

a11 = 4E ′(2E + E ′)
9(4E ′ − E)

, a33 = 4

9
E ′, a12 = 2E ′(2E ′ − 5E)

9(4E ′ − E)
,

a13 = −2

9
E ′, a44 = G ′, a66 = G. (2.113)

As a consequence of (2.109)2, the in-plane shear modulus is given by

G = E E ′

4E ′ − E
. (2.114)

Thus, for an incompressible transversely isotropic material, the number of inde-
pendent material constants is equal to 3, and E , E ′, and G ′ can be taken, for instance.

Note also that according to (2.109)2 and (2.110), the in-plane Poisson’s ratio
satisfies the inequality ν > −1.

In the isotropic case, when E = E ′, G = G ′, and ν = ν′, Eqs. (2.109) and (2.114)
imply that ν = 0.5 and G = E/3. Consequently, Eq. (2.113) yield a11 = a33 =
4E/9 and a12 = a13 = −2E/9. Taking into account the incompressibility condition
(2.106), we represent the stress-strain relations as follows, where no summation is
implied by the repeated index:

σi i = 2Gεi i − p, σi j = 2Gεi j , i �= j, i, j = 1, 2, 3. (2.115)

Notice that Eq. (2.115) represent a usual formof the constitutive relations for isotropic
incompressible material [9, 28].

Finally, the unknown hydrostatic pressure parameter p in the constitutive law
(2.112) should be determined from the incompressibility condition (2.106).

2.4.2 Isotropically Compressible Transversely Isotropic
Materials

Note that for an incompressible material under a uniform hydrostatic pressure not
only the trace of the strain tensor is equal to zero, but also the deviatoric part of
the strain tensor vanishes. Following [15], we consider anisotropic materials which
under a uniform hydrostatic pressure exhibit strictly isotropic volumetric response.
In this case, the bulk modulus, K , of such an isotropically compressible material is
independent of the stress state and represents its intrinsic property.

For an isotropically compressible transversely isotropic material, the number of
independent material constants is equal to 4, while E , E ′, G ′, and K can be taken,
in this instance. As a result, the following relations hold [15]:
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ν′ = 1

2
− E ′

6K
, ν = 1 − E

2

( 1

E ′ + 1

3K

)
, G = E ′E

4E ′ − E − E ′E
3K

.

Correspondingly, the constitutive relations can be written in the form

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 2c44 0 0
0 0 0 0 2c44 0
0 0 0 0 0 2c66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

p
p
p
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.116)

p = −K (ε11 + ε22 + ε33), (2.117)

where, according to Itskov and Aksel [15], ci j are given by

c11 = 1

3D

( 2

E ′ + 1

E
− 1

3K

)
, c33 = 1

3D

( 4

E
− 1

E ′ − 1

3K

)
,

c12 = 1

6D

( 2

E
− 5

E ′ + 1

3K

)
, c13 = 1

6D

( 1

E ′ − 4

E
+ 1

3K

)
,

(2.118)

D = 3

4E ′
( 4

E
− 1

E ′
)

− 1

6K

( 1

E ′ + 2

E

)
+ 1

36K 2 .

Thus, for isotropically compressible materials, the case of weak compressibility
can be treated as the limit as E ′/K → 0.

2.5 Deformation of a Thin Incompressible Transversely
Isotropic Elastic Layer Bonded to a Rigid Substrate

Let us consider a thin transversely isotropic elastic layer of uniform thickness, h,
ideally bonded to a rigid substrate and loaded by a normal load, q, (see Fig. 2.7).

According to the perturbation analysis performed in Sect. 1.2, the leading-order
asymptotic approximation for the displacement field is given by the following for-
mulas (see Eqs. (1.18), (1.19), (1.22)–(1.24)):

Fig. 2.7 An elastic layer of
uniform thickness bonded to
a rigid substrate and carrying
a normal load

x1

x3

q(x1,n x 2)

h

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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v � ε2
(

A13 + A44

2A33
(1 − ζ )2 − A13

A33
(1 − ζ )

)
h∗
A44

∇ηq, (2.119)

w � ε
h∗q

A33
(1 − ζ ) + ε3

{
A13(A13 + 2A44)

6A2
33

(1 − ζ )3

− A13(A13 + A44)

2A2
33

(1 − ζ )2 + A13A44

2A2
33

(1 − ζ )

}
h∗
A44

Δηq. (2.120)

For any transversely isotropic material, we have

A13

A33
= Eν′

E ′(1 − ν)
.

When the material approaches the incompressible limit, the right-hand side of the
above relation tends to 1 (see Eq. (2.109)), while the ratio A44/A33 vanishes. Hence,
formulas (2.119) and (2.120) reduce to the following:

v � ε2
(
1

2
(1 − ζ )2 − (1 − ζ )

)
h∗
a44

∇ηq, (2.121)

w � ε3
{
1

6
(1 − ζ )3 − 1

2
(1 − ζ )2

}
h∗
a44

Δηq. (2.122)

Note that a44 = A44 is the out-of-plane shear modulus.

2.5.1 Perturbation Analysis of the Deformation Problem
for a Thin Incompressible Elastic Layer

Fromanother point of view, the problemunder consideration can be formulated based
on the constitutive relation (2.112). Indeed, the equilibrium equations yield

a66Δyv + (a11 − a66)∇y∇y · v + a44
∂2v
∂z2

+ (a13 + a44)
∂

∂z
∇yw − ∇y p = 0,

a44Δyw + a33
∂2w

∂z2
+ (a13 + a44)

∂

∂z
∇y · v − ∂p

∂z
= 0, (2.123)

and the incompressibility condition is

∇y · v + ∂w

∂z
= 0. (2.124)
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In the case of the elastic layer bonded to a rigid substrate, the boundary conditions
at the layer bottom surface are

v
∣∣
z=h = 0, w

∣∣
z=h = 0, (2.125)

while at the upper surface, under the assumption of normal loading, we have

σ13
∣∣
z=0 = σ23

∣∣
z=0 = 0, σ33

∣∣
z=0 = −q.

The last boundary conditions can be rewritten as

∇yw + ∂v
∂z

∣∣∣∣
z=0

= 0, (2.126)

a13∇y · v + a33
∂w

∂z
− p

∣∣∣∣
z=0

= −q. (2.127)

Assuming that the elastic layer is relatively thin and h = εh∗, we introduce the
stretched normal coordinate

ζ = ε−1h−1∗ z

and the dimensionless in-plane coordinates

η = (η1, η2), ηi = h−1∗ yi , i = 1, 2.

Correspondingly, the system of equations (2.123), (2.124) with the boundary
conditions (2.125)–(2.127) takes the form

ε−2a44
∂2v
∂ζ 2 + ε−1(a13 + a44)∇η

∂w

∂ζ

+ a66Δηv + (a11 − a66)∇η∇η · v − h∗∇η p = 0, (2.128)

ε−2a33
∂2w

∂ζ 2 + ε−1
(

(a13 + a44)∇η · ∂v
∂ζ

− h∗
∂p

∂ζ

)
+ a44Δηw = 0, (2.129)

ε−1 ∂w

∂ζ
+ ∇η · v = 0, (2.130)

v
∣∣
ζ=1 = 0, w

∣∣
ζ=1 = 0, (2.131)

ε−1 ∂v
∂ζ

+ ∇ηw

∣∣∣∣
ζ=0

= 0, (2.132)
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1

h∗

(
ε−1a33

∂w

∂ζ
+ a13∇η · v

)
− p

∣∣∣∣
ζ=0

= −q. (2.133)

In light of (2.119), (2.120), and (2.133), the asymptotic ansatz for the solution to
the system (2.128)–(2.133) is represented in the form

v � ε2v1(η, ζ ), (2.134)

w � ε3w2(η, ζ ), (2.135)

p � q + ε2 p2(η, ζ ). (2.136)

Substituting (2.134)–(2.136) into Eq. (2.128)–(2.133), we arrive at the problem

a44
∂2v1

∂ζ 2 = h∗∇ηq, ζ ∈ (0, 1), v1
∣∣
ζ=1 = 0,

∂v1

∂ζ

∣∣∣∣
ζ=0

= 0; (2.137)

a33
∂2w2

∂ζ 2 = −(a13 + a44)∇η · ∂v1

∂ζ
+ h∗

∂p2

∂ζ
, ζ ∈ (0, 1), (2.138)

w2
∣∣
ζ=1 = 0, a33

∂w2

∂ζ
+ a13∇η · v1 − h∗ p2

∣∣∣∣
ζ=0

= 0, (2.139)

∂w2

∂ζ
+ ∇η · v1 = 0, ζ ∈ (0, 1). (2.140)

From (2.137), it immediately follows that

v1(η, ζ ) = − h∗
2a44

(1 − ζ 2)∇ηq(η). (2.141)

Now, integrating Eq. (2.138), we get

a33
∂w2

∂ζ
= −(a13 + a44)∇η · v1 + h∗ p2 + C2, (2.142)

where C2 is an integration constant, which may depend on η1 and η2.
By taking into account (2.140) and (2.141), we rewrite Eq. (2.142) in the form

h∗ p2 = −C2 + (a13 + a44 − a33)∇η · v1

= −C2 − a13 + a44 − a33
2a44

(1 − ζ 2)h∗Δηq(η). (2.143)
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Again, making use of Eqs. (2.140) and (2.141), we transform the boundary con-
dition (2.139)2 into

h∗ p2
∣∣
ζ=0 = (a13 − a33)∇η · v1

∣∣
ζ=0

= −a13 − a33
2a44

h∗Δηq(η). (2.144)

From (2.143) and (2.144), it follows that

C2 = a44∇η · v1
∣∣
ζ=0 = −h∗

2
Δηq(η). (2.145)

Hence, the substitution of (2.145) into Eq. (2.143) yields

p2 = Δηq(η)

2a44

(
a44 − (a44 + a13 − a33)(1 − ζ 2)

)
. (2.146)

Finally, in light of (2.141), (2.145), and (2.146), Eq. (2.142) takes the form

∂w2

∂ζ
= h∗

2a44
(1 − ζ 2)Δηq(η), (2.147)

which after integration (with the boundary condition (2.139)1 at the bottom layer
surface taken into account) becomes

w2(η, ζ ) = − h∗
6a44

(1 − ζ )2(2 + ζ )Δηq(η). (2.148)

It is easy to see that formulas (2.141) and (2.148) completely agree with (2.121)
and (2.122), respectively, which are obtained from (2.119) and (2.120) for the com-
pressible layer by passing to the incompressible limit.

Thus, the displacements of the surface points of the bonded incompressible elastic
layer can be approximated by the following leading-order asymptotic formulas:

v
∣∣
ζ=0 � −ε2

h∗
2a44

∇ηq(η), (2.149)

w
∣∣
ζ=0 � −ε3

h∗
3a44

Δηq(η). (2.150)

After recovering the dimensional coordinates, these relations take the form

v
∣∣
z=0 � − h2

2a44
∇yq(y), (2.151)

w
∣∣
z=0 � − h3

3a44
Δyq(y). (2.152)
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We note that the two-term asymptotic approximation for the hydrostatic pressure
is given by formulas (2.136) and (2.146).

Finally, we observe that the case of a practically incompressible elastic layer
(weakly compressible layer) requires special consideration [22].

2.5.2 Local Indentation of a Thin Weakly Compressible
Elastic Layer

Following Mishuris [22], we briefly consider the case of a weakly compressible
material, where

G ′

K
� 1. (2.153)

Excluding the hydrostatic pressure p from Eqs. (2.116) and (2.117), we obtain

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.154)

where we have introduced the notation (with the coefficients ci j given by (2.118))

C1 j = c1 j + K , j = 1, 2, 3, C33 = c33 + K , C44 = G ′, C66 = G.

Observe that the form of constitutive equation (2.154) for isotropically compress-
ible materials is similar to that of Eq. (1.2) for compressible materials. Therefore, the
following asymptotic approximations hold (see Sect. 1.2):

v0 � −ε2
h∗(C13 − C44)

2C33C44
∇η p, (2.155)

w0 � ε
h∗ p

C33
− ε3

h∗C13(C13 − C44)

3C2
33C44

Δη p. (2.156)

Recall that the in-plane coordinates (η1, η2) are dimensionless (see Eq. (1.13)).
Thus, in light of (2.153), the elastic constants entering formulas (2.155), (2.156)

can be expanded as

C13 − C44

C33C44
= 1

G ′ − 2E ′ + 3G ′

3G ′K
+ O

(
E ′2

G ′K 2

)
,

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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1

C33
= 1

K
− 4E ′

9K 2 + O

(
E ′2

K 3

)
, (2.157)

C13(C13 − C44)

C2
33C44

= 1

G ′ − 4E ′ + 3G ′

3G ′K
+ O

(
E ′2

G ′K 2

)
. (2.158)

Let L be a characteristic length of the contact area, so that ε = h/L and h = εh∗.
Thus, following three cases can then occur:

(1) Compressible layer when (h/L)2 � G ′/K or, equivalently, K � G ′(L/h)2;
(2) Weakly compressible layer when G ′/K ∼ (h/L)2;
(3) Practically incompressible layer when G ′/K � (h/L)2.

In the first and third cases, respectively, the first or second term in the asymptotic
formula (2.156) becomes dominant. In the second case, both terms on the right-hand
side of (2.156) are equally important.

Finally, we would like to emphasize that in the case of a thin elastic layer, the
effect of incompressibility depends on the degree of its thinness.

2.6 Boundary-Layer Problem in the Incompressible Case

The case of incompressible materials requires a special consideration. In this section,
the Wiener–Hopf method will be applied to the corresponding boundary-layer inte-
gral equation with a polynomial right-hand side.

2.6.1 Transformation of the Governing Integral Equation

In light of (2.22), Eq. (2.34) can be rewritten in the form

h

π2θ

∫∫

ω

p(y′)K∗(y1 − y′
1, y2 − y′

2) dy′ = W0(y), (2.159)

where we have introduced the notation

K∗(y) =
+∞∫∫

0

L (s)

s3
cos

s1y1
h

cos
s2y2

h
ds1ds2,

W0(y) = 1

2π

+∞∫∫

−∞

1

α2

2∑
n=1

ŵ(n)
0 (α1, α2)e

−i(α1y1+α2 y2)dα1dα2. (2.160)
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Recall that the kernel functionL (s) is given by (2.37), and ŵ(n)
0 (α1, α2) denotes the

Fourier transform of the local indentation of the n-th elastic layer.
In the contact problem, the sum of the local indentation functions w(1)

0 (y) and

w(2)
0 (y), whose Fourier transforms appear in (2.160), is known only inside the contact

areaω according to the contact condition (2.20),whereas outsideω the normal surface
displacements w(n)

0 (y) are determined by the contact pressure density p(y), which
is not given a priori, even in the case of fixed contact area. Thus, the right-hand side
of Eq. (2.159) is also unknown.

By definition (see formula (2.160)), we can represent the right-hand side of the
governing integral equation (2.159) in the form

W0(y) = W 1
0 (y) + W 0

0 (y), (2.161)

where W 0
0 (y) is a harmonic function, and W 1

0 (y) satisfies the problem

− ΔyW
1
0 (y) = δ0 − ϕ(y), y ∈ ω; W 1

0 (y) = 0, y ∈ Γ. (2.162)

Denoting by C0(s) an arbitrary function of the arc length coordinate s along the
contour Γ∗, we have

ΔηW
0
0 (h∗η) = 0, η ∈ ω∗; W 0

0 (h∗η) = C0(s), s ∈ Γ∗, (2.163)

where ω∗ is the contact area in the dimensionless coordinates (2.40).
Note that as

−
+∞∫∫

−∞

(
∂2v

∂y21
+ ∂2v

∂y22

)
ei(α1y1+α2 y2)dy1dy2 = (α2

1 + α2)v̂(α1, α2),

Equation (2.159) can be regarded as the result of application of the inverse Laplace
operator −Δ−1

η to the original governing integral equation (2.34).

2.6.2 Boundary-Layer Integral Equation

Performing the same analysis as in Sects. 2.3.1 and 2.3.2, but differing in that the
local coordinates (s, n) are introduced in a small neighborhood of the contour Γ∗,
we arrive at the following integral equation:

+∞∫

0

q∗∗(s, ν′)M∗(ν′ − ν) dν′ = πθh∗C0(s). (2.164)
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Here, q∗∗(s, ν) = ε−1q∗
ε (s, ν), and the kernel is given by

M∗(t) =
+∞∫

0

L (u)

u3 cos ut du. (2.165)

Let us consider Eq. (2.164) with a special right-hand side

+∞∫

0

φ j (τ )M∗(τ − t) dt = t j , 0 < t < ∞, (2.166)

where j = 0, 1, 2, . . .
Recall (in particular, see formula (2.66)) that in the incompressible case, the

function L (u) satisfies the following asymptotic relationships:

L (u) = μ1u3 + μ2u5 + O(u7), u → 0, (2.167)

L (u) = 1 + O(e−c1u), u → ∞. (2.168)

The dimensionless coefficients μk are given by

μk = θMk, (2.169)

where the dimensional quantities Mk are introduced in (2.66).
Therefore, Eq. (2.166) possesses a solution such that

φ j (t) ∼ ω j t
−3/2, t → 0, (2.170)

φ j (t) = O(t j ), t → ∞. (2.171)

Let us reformulate the problem (2.166) into the distribution type formulation.
Specifically, by introducing a small parameter ε > 0, we consider the problem

∫ ∞

0
φε

j (τ )M∗(τ − t) dt = t j e−εt , 0 < t < ∞, (2.172)

and will pass to the limit ε → 0 later. We omit, where clarity permits, the subscript
and superscript in φε

j , using the common notation φ and clarifying where necessary.
Consequently„ we will look for a solution to Eq. (2.172) satisfying the following

assumption at infinity:

φ(t) = O(t j )e−εt , t → ∞. (2.173)
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Under the assumptions made, we extend by zero the definition of the function
φ(t) for t ∈ (−∞, 0) and apply the Fourier transformation to Eq. (2.173), obtaining
the following classical Wiener–Hopf type equation as a result:

φ+(s)M∗(s) = r−(s) + b j
1

(is − ε)1+ j
. (2.174)

Here an overbar denotes the Fourier transform, b0 = −1, b1 = 1, b2 = −2, and

φ+(s) =
∫ +∞

−∞
φ(t)eist dt =

∫ ∞

0
φ(t)eist dt

is the analytic function in the upper half plane behaving at infinity as

φ+(iξ) = O(ξ1/2), ξ → ∞, (2.175)

Note that, when writing (2.175), we take the condition (2.170) into account.
From (2.165), we directly compute

M∗(s) = π

s3
L (s), (2.176)

and thus M∗(s) is bounded at zero, while from (2.173), we only conclude that

φ+(s) = O

(
1

(s + iε)1+ j

)
, s → −iε. (2.177)

We now assume that ε → 0 and transform Eq. (2.174) into the equivalent form

φ+(s)L∗(s)N (s) = r−(s) + b̃ j

(s + i0)1+ j
, (2.178)

where b̃0 = i, b̃1 = −1, b̃2 = −2i, and

L∗(s) = π

(s2 + A2)
√

s2 + B2
, (2.179)

N (s) = L (s)(s2 + A2)
√

s2 + B2

s3
. (2.180)

It can easily be checked that N (s) is an even function, and is always positive along
the real axis, while for any positive values of A and B it satisfies the condition

N (s) = 1 + O(s−2), s → ±∞. (2.181)
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Thus, the function (2.180) allows for factorization along the real axis in the form

N (s) = N+(s)

N−(s)
,

where

N±(s) = exp

{
1

2π i

∫ ∞

−∞
log N (t)

t − s
dt

}
, ±�s > 0.

The functions N±(s) possess the following asymptotic representations:

N±(s) = 1 − 1

iπs

∫ ∞

0
log N (t)dt + o(s−1), ±is → ∞, (2.182)

N±(s) = exp

{
1

π

∫ ∞

0
arg N (t)

dt

t

}
+ O(s), s → 0. (2.183)

We now introduce the notation

L±∗ (s) =
√

π

(A ∓ is)
√

B ∓ is
, (2.184)

so that the Wiener–Hopf equation (2.178) can be rewritten in the equivalent form

φ+(s)L+∗ (s)N+(s) = F−(s)

(
r−(s) + b̃ j

(s + i0)1+ j

)
, (2.185)

where

F−(s) = N−(s)

L−∗ (s)
. (2.186)

In light of (2.182)–(2.184), we have

F−(s) = O(1), s → 0; F−(s) ∼ (is)3/2, s → −i∞. (2.187)

Note that the branch cuts in the respective square roots are taken along the imag-
inary axis from the points −i to +∞ and from +i to −∞ for the functions L+∗ (s)
and L−∗ (s), respectively. Thus, the function F−(s) is analytic in the neighbourhood
of the zero point and can be expanded in the Taylor series as follows:

F−(s) =
j∑

k=0

F (k)
− (0)

sk

k! + O(sk+1), s → 0. (2.188)
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Finally, we transform Eq. (2.185) to the form

φ+(s)L+∗ (s)N+(s) = F−(s)r−(s)

+ b̃ j

(s + i0)1+ j

(
F−(s) −

j∑
k=0

F (k)
− (0)

sk

k!
)

+ b̃ j

(s + i0)1+ j

j∑
k=0

F (k)
− (0)

sk

k! . (2.189)

The left-hand side of this equation is an analytic function in the upper half-plane
having a pole at the point s = 0. The right-hand side of (2.189) consists of three
terms where the first two are analytic functions in the lower half-plane. Finally, the
third term is a plus function having a pole at the point s = 0.

Taking into account the assumed behavior of the sought for solution, we can write
it in the form

φ+(s) = b̃ j

(s + i0)1+ j L+∗ (s)N+(s)

j∑
k=0

F (k)
− (0)

sk

k! , (2.190)

r−(s) = − b̃ j

(s + i0)1+ j F−(s)

(
F−(s) −

j∑
k=0

F (k)
− (0)

sk

k!
)

. (2.191)

Note that r−(s) is analytic in the lower half plane containing the real axis and the
common analyticity strip 0 < Im s < χ , for some positive χ .

2.6.3 Special Solutions of the Boundary-Layer Integral
Equation

For further analysis, it is crucial to consider an auxiliary function

Φ j (t) = 1

2π

+∞∫

−∞

e−ist ds

(s + i0) j+1L+∗ (s)N+(s)
. (2.192)

Here it is worth mentioning that the functions Φ j (t), j = 0, 1, 2, . . . , enjoy a
recurrent property

Φ ′
j (t) = −iΦ j−1(t), Φ j (t) = iΦ ′

j+1(t). (2.193)
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We continue by analyzing the asymptotic behavior of Φ j (t) at zero and infinity.
Note that the function 1/[L+∗ (s)N+(s)] is analytic near the zero point, and thus

1

L+∗ (s)N+(s)
=

j∑
k=0

C (0)
k sk + O(s j+1), s → 0.

This allows us to consider the following representation of the functionΦ j (t), suitable
for large values of the variable t :

Φ j (t) = 1

2π

∞∫

−∞

⎛
⎝ 1

L+∗ (s)N+(s)
−

j∑
k=0

C (0)
k sk

⎞
⎠ e−ist ds

(s + i0) j+1

+
j∑

k=0

C (0)
k Pj−k(t). (2.194)

The polynomials Pm(t) are given by the formula

Pm(t) = 1

2π

∫ ∞

−∞
e−ist ds

(s + i0)m+1 , m = 0, 1, 2, . . . . (2.195)

In particular, it immediately follows that

P0(t) = −i, P1(t) = −t, P2(t) = it2

2
,

and thus formula (2.194) yields

Φ j (t) =
j∑

k=0

C (0)
k Pj−k(t) + o(1), t → ∞. (2.196)

To investigate the asymptotic behavior of the function Φ j (t) near the point t = 0,
we observe that

1

L+∗ (s)N+(s)
= −is

(
C (∞)
0 (−is)1/2 + C (∞)

1 (−is)−1/2
)
+O

(
(−is)−1/2), (2.197)

as −is → +∞. Correspondingly, as t → 0, we arrive at the following estimate:

Φ j (t) = −i

2π

∞∫

−∞

(C (∞)
0 (−is)1/2 + C (∞)

1 (−is)−1/2)e−ist

(s + i0) j
ds + O(1). (2.198)
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Here the integration pass should be further deformed to impart a classical sense to
the Fourier transform.

As a result, we obtain the asymptotic relationships

Φ0(t) = i

2
√

π
C (∞)
0 t−3/2 − i√

π
C (∞)
1 t−1/2 + O(1), t → 0, (2.199)

Φ1(t) = − 1√
π

C (∞)
0 t−1/2 + O(1), t → 0, (2.200)

Φ2(t) = O(1), t → 0, (2.201)

where we have used the identity

1

2π

∫ ∞

−∞
(−is)−1/2e−ist ds = 1√

π
t−1/2. (2.202)

We are now ready to return to the general solution (2.190) and consider three
cases j = 0, 1, 2 separately.

The case j = 0. Due to the fact that b̃0 = i, the respective solution takes the form

φ0(t) = iF−(0)Φ0(t), (2.203)

and based on the results presented above for the asymptotic behavior of the function
Φ j (t) at infinity (see (2.194)), we conclude that

φ0(t) = F−(0)

N+(0)L+∗ (0)
+ o(1), t → ∞. (2.204)

In light of (2.167), (2.179), and (2.180), formula (2.204) can be recast as

φ0(t) = 1

μ1
+ o(1), t → ∞. (2.205)

Note that in the isotropic incompressible case (2.29), we have

L (u) = sinh 2u − 2u

cosh 2u + 1 + 2u2 (2.206)

and (see also formula (2.167))

L (u) = 2

3
u3 − 6

5
u5 + O(u7), u → 0.

Thus, μ1 = 2/3, and the asymptotic formula (2.205) agrees with the correspond-
ing result obtained by Aleksandrov [4].
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On the other hand, taking into account the asymptotic behavior (2.199) of the
function Φ0(t) at the zero point, we readily see that

φ0(t) ∼ − F−(0)

2
√

π
C (∞)
0 t−3/2, t → 0.

Considering (2.180), (2.186) and (2.197), the above formula takes the form

φ0(t) ∼ − A
√

B N−(0)

2π3/2 t−3/2, t → 0. (2.207)

The case j = 1. Now, since b̃1 = −1, Eq. (2.189) has the following solution:

φ+(s) = − F−(0) + s F ′−(0)

(s + i0)2L+∗ (s)N+(s)
. (2.208)

As a result, we obtain

φ1(t) = −F−(0)Φ1(t) − F ′−(0)Φ0(t). (2.209)

The case j = 2. Finally, we have b̃2 = −2i and the solution to the problem takes
the form

φ+(s) = −i
2F−(0) + 2s F ′−(0) + s2F ′′−(0)

(s + i0)3L+∗ (s)N+(s)
.

As a result, we see that

φ2(t) = −2iF−(0)Φ2(t) − 2iF ′−(0)Φ1(t) − iF ′′−(0)Φ0(t). (2.210)

Formulas (2.203), (2.209), and (2.210) provide solutions to Eq. (2.166) with spe-
cial right-hand sides ψ j (t) = t j for j = 0, 1, 2, respectively.

2.6.4 Solution of the Boundary-Layer Integral Equation with
a Polynomial Right-Hand Side

We now consider Eq. (2.164), where the right-hand side is a linear combination of
the polynomials t0, t1, and t2. That is

+∞∫

0

φ(τ)M∗(τ − t) dt =
2∑

k=0

cktk, 0 < t < ∞. (2.211)
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According to (2.190), a solution to Eq. (2.211) can be represented in the form

φ(t) = Ω(t)t−3/2, 0 < t < ∞. (2.212)

Formula (2.212) will give a finite-energy solution, if Ω(0) = 0 and Ω(t) has
a local derivative (near zero) belonging to the Holder class. In other words, Ω ∼
ω0t1+α as t → 0, where 0 < α < 1 defines the Holder class, or equivalently

φ(t) ∼ ω0tα−1/2, t → 0. (2.213)

Therefore, in order to satisfy the asymptotic condition (2.213), one of the constants
c0, c1, and c2 in (2.211) should be a linear combination of the other two. In light of
(2.211), the regularity condition (2.213) takes form

c0φ0(t) + c1φ1(t) + c2φ2(t) = O(t−1/2), t → 0. (2.214)

Now taking into account Eqs. (2.203), (2.209), and (2.210), we conclude that the
asymptotic condition (2.214) is equivalent to the following:

c0F−(0) + ic1F ′−(0) − c2F ′′−(0) = 0. (2.215)

Here, F−(0), F ′−(0) and F ′′−(0) are the values of the function (2.186) and its two
successive derivatives at zero (see formula (2.188)).

Thus, it is clear that Eq. (2.164) has a finite-energy solution if

C0(s) ≡ 0, (2.216)

where s is the arc length coordinate along the contour Γ∗.

2.6.5 Approximate Solution of the Boundary-Layer Integral
Equation

Following Aleksandrov [4], we look for a solution in its approximate form, assuming
N (s) ≡ 1. The function Φ j (t) simplifies as follows:

Φ j (t) = 1

2π
√

π

∫ ∞

−∞
(A − is)

√
B − is

(s + i0) j+1 e−ist ds. (2.217)

Note that it is enough to construct the function Φ2(t), while Φ0(t) and Φ1(t)
could be evaluated using the recurrence relationships between them (2.193).
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We apply Cauchy’s residue theorem to evaluate the Bromwich contour integral of
(2.217). It is readily seen that the integrand function has a pole at s = 0 of the order
j + 1 and a branch point at s = −iB. In this way, we find

i
√

πΦ0(t) = A
√

B + e−Bt

π

(
Aψ1(t) − ψ0(t)

)
,

−√
πΦ1(t) = √

B + A

2
√

B
+ A

√
Bt − e−Bt

π

(
Aψ2(t) − ψ1(t)

)
,

i
√

πΦ2(t) = √
B

(
A − 4B

8B2 −
(
1 + A

2B

)
t − At2

2

)
− e−Bt

π

(
Aψ3(t) − ψ2(t)

)
,

(2.218)

where we have introduced the notation

ψn(t) =
∞∫

0

e−tξ√ξ

(ξ + B)n
dξ.

In particular, we have

ψ0(t) =
√

π

2t3/2
,

ψ1(t) =
√

π√
t

− π
√

BeBt erfc (
√

Bt),

ψ2(t) = −√
π

√
t + π(1 + 2Bt)

2
√

B
eBt erfc (

√
Bt),

ψ3(t) =
√

π
√

t(2Bt + 1)

4B
− π

8B3/2 eBt (4B2t2 + 4Bt − 1) erfc (
√

Bt).

(2.219)

Furthermore, in light of (2.184), the formula

F−(s) = 1

L−∗ (s)

simplifies to

F−(s) = 1√
π

(A + is)
√

B + is.
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It now follows that

F−(0) = 1√
π

A
√

B,

F ′−(0) = i

2
√

π
√

B
(A + 2B),

F ′′−(0) = 1

4
√

π B
√

B
(A − 4B), (2.220)

while correspondingly, the regularity condition (2.215) takes the form

Ac0 − c1
A + 2B

2B
+ c2

4B − A

4B2 = 0. (2.221)

Further, taking into account formulas (2.203), (2.209), (2.210) and (2.218)–
(2.220), we obtain

φ0(t) = A2B

π
erf (

√
Bt) + A

√
Be−Bt

2π3/2t3/2
(2At − 1),

φ1(t) = A2Bt

π
erf (

√
Bt) + e−Bt

4π3/2
√

Bt3/2
(4A2Bt2 − 2A2t + A + 2B),

φ2(t) = (A2B2t − A2 − 2B2)

π B
erf (

√
Bt)

+ e−Bt

8π3/2B3/2t3/2
(
8A2B2t3 − 4A2Bt2 − 2A2t + A − 16B2t − 4B

)
.

(2.222)

Observe that following Aleksandrov [4], we can select the coefficients A and B
in the approximate kernel function

L̃ (s) = s3

(s2 + A2)
√

s2 + B2
(2.223)

in such a way that (cf. formula (2.167))

L̃ (s) = μ1s3 + μ2s5 + O(s7), s → 0. (2.224)

By simple calculations, we find

A2 = 1

μ1B
, (2.225)
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where the coefficient B is determined as a positive root of the cubic equation

2μ2
1B3 + 2μ2B2 + μ1 = 0. (2.226)

Therefore, in light of (2.223) and (2.224), for the function N (s) defined by (2.180),
the following asymptotic formula holds true:

N (s) = 1 + O(s4), s → 0. (2.227)

Note that in the isotropic incompressible case (2.206), Eq. (2.226) is equivalent
to 20B3 − 54B2 + 15 = 0, which has one negative and two positive roots B1 =
0.597219 and B2 = 2.588024. By formula (2.225), we calculate A1 = 1.584816 and
A2 = 0.761310.The errors of the corresponding approximations (2.223) to the kernel
function (2.206) do not exceed 14% and 20%, respectively, for all 0 ≤ s < +∞.

2.7 Leading-Order Asymptotic Solution of the Contact
Problem for Incompressible Layers

In the incompressible case, the process of solving the contact problem by asymptotic
methods reduces to that of solving the so-called resulting problem for the leading-
order asymptotic solution. In this section, the resulting boundary value problem (later
called asymptoticmodel) is formulated, including the governing differential equation
and the corresponding boundary condition.

2.7.1 Governing Differential Equation

According to (2.67) and (2.152), the local indentation of a thin bonded incompressible
elastic layer can be approximated by

w(n)
0 (y) � −M (n)

1 h3
nΔy p(y), (2.228)

where

M (n)
1 = 1

3a(n)
44

and a(n)
44 = G ′

n is the out-of-plane shear modulus of the n-th elastic layer.
Substituting the asymptotic representations (2.228), n = 1, 2, into the contact

condition (2.20), we arrive at the equation

− (
M (1)

1 h3
1 + M (2)

1 h3
2

)
Δy p(y) = δ0 − ϕ(y), y ∈ ω. (2.229)



64 2 Asymptotic Analysis of the Contact Problem …

Let us introduce the notation

M1 = M (1)
1

h3
1

h3 + M (2)
1

h3
2

h3 , (2.230)

where h = h1+h2 is the joint thickness. Then, we can rewrite Eq. (2.229) as follows:

− M1h3Δy p(y) = δ0 − ϕ(y), y ∈ ω. (2.231)

Recall that the elastic constant M (n)
1 is introduced by the expansion

Ln(s)

θns
= M (n)

1 s2 + O(s4), s → 0,

where Ln(s) is the kernel function of the n-th layer. From here it follows that

θ

θn
Ln

(hn

h
s
)

= θM (n)
1

h3
n

h3 s3 + O(s5), s → 0.

By substituting the above expansion into formula (2.37), we derive the following
asymptotic expansion for the compound kernel function:

L (s)

θs
=

(
M (1)

1
h3
1

h3 + M (2)
1

h3
2

h3

)
s2 + O(s4), s → 0.

It is readily seen that the latter formula is consistent with the definition (2.230) of
the compound elastic constant M1.

The governing equation (2.231) should be supplemented by the appropriate
boundary conditions at the contour Γ of the contact area ω.

2.7.2 Boundary Condition in the Case of Fixed Contact Area

By introducing the dimensionless coordinates (2.40) into the governing integral equa-
tion (2.159), and recollecting the notation Λ = ε−1, we have

h3∗
π2θΛ

∫∫

ω∗

p∗(ξ)k∗
(
Λ(η − ξ)

)
dξ = W ∗

0 (η), (2.232)

where p∗(η) = p(h∗η) and W ∗
0 (η) = W0(h∗η).

Applying the distributional asymptotic analysis (see Sect. 2.2.1), in light of the
asymptotic expansion (2.167) for the kernel function L (s), we find that
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k∗(Λη) ∼ π2μ1

Λ2 δ(η) − π2μ2

Λ4 Δηδ(η) + . . . , Λ → ∞, (2.233)

where μk = θMk , and δ(η) is the two-dimensional Dirac delta function.
Therefore, substituting the asymptotic approximation (2.233) into Eq. (2.232), we

obtain

h3M1 p(y) − h5M2Δy p(y) + . . . = W0(y). (2.234)

To leading asymptotic order we have

h3M1 p(y) � W0(y). (2.235)

We are now in a position to derive the leading order asymptotic model in the case
of fixed contact area. Taking into account relations (2.161)–(2.163) and (2.216), we
conclude that the function W0(y) should satisfy the problem

−ΔyW0(y) = δ0 − ϕ(y), y ∈ ω; W0(y) = 0, y ∈ Γ. (2.236)

On the other hand, by substituting the representationW0(y) � h3M1 p(y), which
is none other than (2.235), into Eq. (2.236), we arrive at the following problem:

−h3M1Δy p(y) = δ0 − ϕ(y), y ∈ ω, (2.237)

p(y) = 0, y ∈ Γ. (2.238)

It is readily seen that Eq. (2.237) is identical to the governing differential equation
(2.231), while Eq. (2.238) represents the sought for boundary condition.

It is interesting to note that the leading order asymptotic model (2.237), (2.238)
provides the so-called [4] degenerate solution, which vanishes at the boundary of the
contact area even for a punch with a sharp edge, whereas, generally speaking, the
original solution has a square root singularity.

2.7.3 Boundary Conditions in the Case of Unilateral Contact

We now revisit the boundary-layer problem considered in Sect. 2.6.2, taking into
account the fact that in light of (2.216), the right-hand side of the governing integral
equation (2.159) now satisfies the boundary-value problem (2.236).

Considering the behavior of the function W0(y) near the contour Γ in the fast
dimensionless coordinates (see, in particular, Eqs. (2.40) and (2.78)), we have

W0(h∗η) = ενB∗
1 (s) + ε2ν2B∗

2 (s) + . . . , ν → 0+, s ∈ Γ, (2.239)
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where we have introduced the notation

B∗
1 (s) = h∗

∂W0

∂n
(y), B∗

2 (s) = h2∗
2

∂2W0

∂n2 (y), y ∈ Γ.

Taking into account only the leading term in (2.239), we arrive at the boundary-
layer integral equation

+∞∫

0

q∗∗(s, ν′)M∗(ν′ − ν) dν′ = πθh∗B∗
1 (s)ν. (2.240)

In the unilateral contact problem (see (2.21)), the solution of Eq. (2.240) should
vanish at the contact area contour, i.e.,

q∗∗(s, 0) = 0, s ∈ Γ.

On the other hand, according to (2.166), we have q∗∗(s, ν) = πθh∗B∗
1 (s)φ1(ν),

while, due to (2.200) and (2.209), this function possesses a singularity at ν = 0
unless B∗

1 (s) = 0 for all s ∈ Γ . In other words, as a consequence of (2.235) and
(2.239), the obtained result represents the second boundary condition

∂p

∂n
(y) = 0, y ∈ Γ, (2.241)

that should be added to the problem (2.237), (2.238) in the case of unilateral contact
with unknown contact area ω. Note that Eq. (2.241) is called [17, 27] the zero-
pressure-gradient condition.
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Chapter 3
Unilateral Frictionless Contact of Thin
Bonded Incompressible Elastic Layers

Abstract This chapter is devoted to solving contact problems for thin bonded incom-
pressible transversely isotropic elastic layers in the thin-layer approximation, based
on the leading-order asymptotic model developed in Chap.2.

3.1 Asymptotic Model for the Frictionless Contact
of Thin Bonded Incompressible Layers

In this section we summarize the results of the asymptotic analysis performed in
Sects. 2.5 and2.7, by formulating a leading-order asymptoticmodel to describe (in the
thin-layer approximation) the frictionless contact interaction of two incompressible
elastic layers bonded to rigid substrates.

3.1.1 Leading-Order Asymptotic Model for the Unilateral
Contact

We will continue use of previous notation, wherever possible, and consider two thin
transversally isotropic elastic layers of uniform thicknesses h1 and h2 ideally bonded
to rigid substrates (see Fig. 3.1). Let ϕ(y) and δ0 denote the gap between the layer
surfaces before deformation and the contact approach of the rigid substrates under
the external normal load, respectively.

According to the asymptotic analysis performed in the previous chapter in the
incompressible case (see, in particular, Sect. 2.7), the contact pressure density, p(y),
which is assumed to be positive, should satisfy the differential equation
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y1

z

2

1

(y)

Fig. 3.1 Contact of two thin elastic layers in the initial undeformed configuration, with the variable
gap function ϕ(y) measured along the common normal axis z

−
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)
Δy p(y) = δ0 − ϕ(y), y ∈ ω. (3.1)

Here, Δy = ∂2/∂y21 + ∂2/∂y22 is the Laplace operator, G ′
n is the out-of-plane shear

modulus of the nth layer (n = 1, 2), y = (y1, y2) are the in-plane Cartesian coordi-
nates, and ω is the contact area, which is not given a priori.

In the case of unilateral contact, the contact area should be determined in the
process of solving Eq. (3.1) with respect to the following boundary conditions:

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ. (3.2)

Here, ∂/∂n is the normal derivative at the contour Γ of the domain ω.
For simplicity, we introduce the following notation:

m =
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)−1

. (3.3)

Finally, denoting by F the total external load applied to the substrates, which
produces the contact approach δ0, we write out the equilibrium equation

∫∫

ω

p(y) dy = F. (3.4)

Equations (3.1), (3.2), and (3.4) constitute the leading-order asymptotic model of
the unilateral contact for thin bonded incompressible elastic layers. We should note
that, as was shown in [16], the error of the leading-order asymptotic model based
on the zero-pressure-gradient condition for the contact pressure across the contact
contour, which was used in [7, 8, 17, 18], increases as the ratio of the diameter of
the contact area to the layer thickness decreases.
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3.1.2 Elliptical Contact of Thin Bonded Incompressible
Elastic Layers

Let the gap function be represented by an elliptic paraboloid

ϕ(y) = y21
2R1

+ y22
2R2

. (3.5)

In this case, the exact solution to the boundary-value problem (3.1) and (3.2) can be
obtained in the following form [8]:

p(y) = p0

(
1 − y21

a2 − y22
b2

)2

. (3.6)

Here, p0 is the maximum contact pressure, while a and b are the semi-axes of the
elliptical contact area ω.

By substituting (3.6) into Eq. (3.1), and taking into account relations (3.3) and
(3.5), one arrives at the following system of algebraic equations [8]:

δ0 = 4p0
m

(
1

a2 + 1

b2

)
, (3.7)

1

2R1
= 4p0

ma2

(
3

a2 + 1

b2

)
,

1

2R2
= 4p0

mb2

(
1

a2 + 3

b2

)
. (3.8)

Let s denote the aspect ratio of the contact area, i.e.,

s = b

a
, (3.9)

then, from Eq. (3.8) it immediately follows that

s2 =
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
. (3.10)

Now, Eqs. (3.7) and (3.8)1 yield

a2 = 2(3s2 + 1)

s2 + 1
R1δ0, (3.11)

p0 = s2(3s2 + 1)

2(s2 + 1)2
m R1δ

2
0 . (3.12)
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Then, substitution of the contact pressure distribution (3.6) into the equilibrium
equation (3.4) gives F = (π/3)p0ab, where, as a result of (3.9), (3.11), and (3.12),
we obtain the following equation [4]:

F = πm

3

s3(3s2 + 1)2

(s2 + 1)3
R2
1δ

3
0 . (3.13)

Observe that the force-displacement relationship (3.13) depends on both radii R1
and R2 (see Eq. (3.10)). A compound geometric characteristic of the gap between
the contact surfaces can be introduced, for instance, through the arithmetic mean
(R1 + R2)/2 or the geometric mean

√
R1R2 as well as through the harmonic mean

2R1R2/(R1 + R2). As, with regard to the articular contact, the radii R1 and R2 do
not differ much, the corresponding scaling dimensionless factor should not deviate
overly from a constant value for s ≈ 1. It can be checked that the geometric mean√

R1R2, as a geometric characteristic of the initial gap, provides the best result among
the mentioned variants. Thus, we rewrite Eq. (3.13) in the form

F = 2π

3
cF (s)m R1R2δ

3
0, (3.14)

where m is given by (3.3), and we have introduced the notation

cF (s) = s(3s2 + 1)(s2 + 3)

2(s2 + 1)3
. (3.15)

Note that the coefficient cF (s) is normalized to be cF (1) = 1 (see Fig. 3.2).
We finally note that another approximate solution was obtained by Hlaváček [16],

using the averaging method originally developed by Matthewson [21].

Fig. 3.2 The dimensionless
quantities s and cF (s) as
functions of the curvature
radii ratio R1/R2, based on
Eqs. (3.10) and (3.15)
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3.1.3 Similarity Analysis of the Contact Problem for Thin
Bonded Incompressible Elastic Layers

Let the gap between contacting layers before deformation be described by a homo-
geneous function, ϕd(y), of degree d, which for any rational variable λ > 0 has the
property

ϕd(λy) = λdϕd(y). (3.16)

Following Borodich [9, 10], we introduce a similarity transformation of one solu-
tion to the problem into another.We assume that for a value of the contact force F the
solution of the contact problem (3.1), (3.2), and (3.4) under the similarity condition
(3.16) is given by the contact pressure function p(y), the contact approach quantity
δ0, and the contact region ω bounded by the contour Γ .

Then, for any positive contact force F ′, the solution of the boundary value contact
problem is given by

p′(y) = λ−(2+d) p(λy),

δ′
0 = λ−dδ0, (3.17)

F ′ = λ−(4+d)F, (3.18)

where λ = (F/F ′)1/(4+d), and the contact regions ω and ω′ change according to the
homothetic transformation

[
(y1, y2) ∈ ω′] ⇐⇒ [

(λy1, λy2) ∈ ω
]
.

From (3.17) and (3.18), it follows that

F

F ′ =
(

δ0

δ′
0

)(4+d)/d

. (3.19)

For the parabolic gap function (3.5), i.e., for d = 2, we find that (4 + d)/d = 3
and formula (3.19) agrees with Eq. (3.14).

3.2 Axisymmetric Refined Contact Problem for Thin
Bonded Incompressible Elastic Layers, with Allowance
for Tangential Displacements on the Contact Interface

As was shown in Sect. 1.5.3, in the contact problem for a compressible elastic layer,
the effect of tangential displacements increases when the material becomes more
incompressible. Our emphasis here will be on the issues involved in the analytical
modeling.

http://dx.doi.org/10.1007/978-3-319-20083-5_1


74 3 Unilateral Frictionless Contact of Thin Bonded …

2

1
r

zR2 R1||

Fig. 3.3 Thin incompressible elastic layers bonded to rigid substrates shaped like bodies of revo-
lution in the unloading configuration. The surface of layer 1 is concave and R1 < 0

3.2.1 Refined Formulation of the Axisymmetric Contact
Problem

We consider two thin incompressible linear elastic layers attached to rigid substrates
shaped like bodies of revolution (see Fig. 3.3). Introducing the cylindrical coordinate
system, we write the equations of the layer surfaces (before loading) in the form

z = (−1)nϕn(r).

In the particular case of the contacting surfaces shaped like paraboloids of revolution,
we have

ϕn(r) = r2

2Rn
, n = 1, 2, (3.20)

where Rn is the curvature radius of the nth layer surface at its apex.
The initial gap between the layer surfaces, ϕ(r) = ϕ1(r) + ϕ2(r), is given by

ϕ(r) = r2

2R
, (3.21)

where we have introduced the notation R−1 = R−1
1 + R−1

2 .
We denote the axial approach of the contacting bodies by δ0. Then the linearized

refined contact condition, which takes into account the tangential displacements at
the contact interface, can be written as follows (see Eq. (2.19)):

w(1)
0 (r) + w(2)

0 (r) = δ0 − ϕ(r) − dϕ2(r)

dr

(
v(1)
0 (r) − v(2)

0 (r)
)
, r ≤ a. (3.22)

Here, w(n)
0 (r) and v(n)

0 (r) are the normal (vertical) and the tangential (horizontal in
the radial direction) displacements of the surface points of the nth layer, a is the
radius of the contact area, and it is assumed that |R2| ≤ |R1|, i.e., the surface of
layer 1 is assumed to be flatter than the surface of layer 2.

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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According to the perturbation analysis presented in Sect. 2.5, the displacements
w(n)
0 (r) and v(n)

0 (r) can be approximated by the leading-order asymptotic formulas
written in the cylindrical coordinates as follows:

w(n)
0 (r) = − h3

n

3G ′
n

1

r

d

dr

(
r

dp(r)

dr

)
, (3.23)

v(n)
0 (r) = − h2

n

2G ′
n

dp(r)

dr
. (3.24)

Here, p(r) is the contact pressure, hn and G ′
n are the thickness and the out-of-plane

shear modulus of the nth layer, respectively.
In light of formulas (3.20) and (3.21), Eq. (3.22) takes the form

w(1)
0 (r) + w(2)

0 (r) + r

R2

(
v(1)
0 (r) − v(2)

0 (r)
) = δ0 − ϕ(r), r ≤ a. (3.25)

Now, substituting the expressions (3.23) and (3.24) into the above relation, we
arrive at the following governing differential equation:

1

r

d

dr

(
r

dp(r)

dr

)
+ κ2r

dp(r)

dr
= m(Cr2 − δ0). (3.26)

Here we have introduced the auxiliary notation

m =
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)−1

, C = 1

2R
, (3.27)

κ2 = m

R2

(
h2
1

2G ′
1

− h2
2

2G ′
2

)
. (3.28)

The radius, a, of the circular contact area is determined from the condition that
the contact pressure is positive

p(r) > 0, r < a,

and vanishes at the contour of the contact area, i.e.,

p(a) = 0. (3.29)

Moreover, in the case of the contact problem for incompressible elastic layers, a
smooth transition of the surface normal stresses from the contact region r < a to the
outside region r > a is additionally assumed, and the following boundary condition
is imposed (see, in particular, Sect. 2.7.3 and [8, 11, 17]):

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_2
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dp(r)

dr

∣∣∣∣
r=a

= 0. (3.30)

From the physical point of view, the contact pressure at the center of the circular
contact area must satisfy the regularity condition

dp(r)

dr

∣∣∣∣
r=0

= 0. (3.31)

The equilibrium equation for the whole system is

2π

a∫

0

p(ρ)ρ dρ = F, (3.32)

where F denotes the external load applied to the substrates.
In the case where κ2 = 0, the contact problem under consideration coincides

with that studied by Barber [8] and Jaffar [17]. Here we address the question of
when accounting for the additional term in Eq. (3.26) is important for applications.

3.2.2 Equation for the Contact Approach

Integrating Eq. (3.26) with respect to r , we obtain

r
dp(r)

dr
+ κ2

r∫

0

ρ2 dp(ρ)

dρ
dρ = m

(
C

r4

4
− δ0

r2

2

)
+ D1. (3.33)

The constant of integration D1 vanishes in accordance with the regularization con-
dition (3.31) at the center of the contact area.

To simplify the above equation, we transform the second integral using integration
by parts as follows:

r∫

0

ρ2 dp(ρ)

dρ
dρ = r2 p(r) − 2

r∫

0

p(ρ)ρ dρ.

Therefore, Eq. (3.33) takes the form

dp(r)

dr
+ κ2

(
r p(r) − 2

r

r∫

0

p(ρ)ρ dρ

)
= m

(
C

r3

4
− δ0

r

2

)
. (3.34)
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Now, substituting the value r = a into the above equation and taking into account
the boundary conditions (3.29), (3.30) at the contour of the contact area, we obtain

−2κ2

a

a∫

0

p(ρ)ρ dρ = m

(
C

a3

4
− δ0

a

2

)
.

Finally, in light of formula (3.32), the above equation takes the form

δ0 = C
a2

2
+ 2κ2

m

F

πa2 . (3.35)

We underline that either δ0 or F is known a priori, but not both simultaneously,
while in the unilateral contact problem the contact radius a is also unknown.

3.2.3 Equation for the Contact Radius

We now return to Eq. (3.34), which after integration with respect to variable r takes
the following form:

p(r) + κ2

{ r∫

0

p(ρ)ρ dρ − 2

r∫

0

1

ρ

ρ∫

0

p(ξ)ξ dξdρ

}

= m

(
C

r4

16
− δ0

r2

4

)
+ D2. (3.36)

Changing the order of integration in the second integral, we see that

r∫

0

1

ρ

ρ∫

0

p(ξ)ξ dξdρ =
r∫

0

p(ρ)ρ ln
r

ρ
dρ. (3.37)

Then, taking into account the above formula, we rewrite Eq. (3.36) in the form

p(r) + κ2

{ r∫

0

p(ρ)ρ dρ − 2

r∫

0

p(ρ)ρ ln
r

ρ
dρ

}

= m

(
C

r4

16
− δ0

r2

4

)
+ D2. (3.38)

By using the boundary condition (3.29) at r = a, the constant of integration can
be evaluated as a function of the contact radius a as follows:
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D2 = m

4
δ0a2 − m

16
Ca4 + κ2

2π
F − 2κ2

a∫

0

p(ρ)ρ ln
a

ρ
dρ. (3.39)

Further, multiplying both sides of Eq. (3.38) by r and integrating over the contact
interval, we obtain

F

2π
+ κ2

{ a∫

0

ρ

ρ∫

0

p(ξ)ξ dξdρ − 2

a∫

0

ρ

ρ∫

0

p(ξ)ξ ln
ρ

ξ
dξdρ

}

= m

(
C

a6

96
− δ0

a4

16

)
+ a2

2
D2,

and proceed by changing the order of integration to find

F

2π
+ κ2

{
1

2

a∫

0

p(ξ)ξ
(
a2 − ξ2

)
dξ

−
a∫

0

p(ξ)ξ

(
a2 ln

a

ξ
− 1

2

(
a2 − ξ2

))
dξ

}
= m

(
C

a6

96
− δ0

a4

16

)
+ a2

2
D2.

Now, taking into account formulas (3.32) and (3.39),we rewrite the above equation
as

F + κ2

(
a2

2
F − 2π

a∫

0

p(ρ)ρ3 dρ

)
= πm

(
δ0

a4

8
− C

a6

24

)
,

and employ Eq. (3.35) to exclude δ0 and obtain

πm

48
Ca6 = F + κ2

(
a2

4
F − 2π

a∫

0

p(ρ)ρ3 dρ

)
. (3.40)

For further convenience we rewrite Eq. (3.40) in the equivalent form

πm

48
Ca6 = F + κ2

(
a2

4
F + π

2

a∫

0

ρ4 dp(ρ)

dρ
dρ

)
. (3.41)

Note that Eq. (3.41) was obtained by integrating by parts the integral in Eq. (3.40),
while taking into account the boundary condition (3.29).
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3.2.4 Contact Pressure

We return to Eq. (3.26) to consider the contact pressure p(r), and introduce a new
dependent variable y(r) via the formula

y(r) = r
dp(r)

dr
. (3.42)

Using the substitution (3.42), we represent Eq. (3.26) in the form

1

r

dy(r)

dr
+ κ2y(r) = m(Cr2 − δ0). (3.43)

The general solution of the homogeneous equation

dy0(r)

dr
+ κ2r y0(r) = 0,

corresponding to Eq. (3.43), has the form

y0(r) = C0 exp
(
−κ2

2
r2

)
.

By applying Lagrange’s method of variation of parameters, and taking into
account the contact pressure regularity condition (3.31), we obtain the corresponding
particular solution of Eq. (3.43) in the form

y(r) = m exp
(
−κ2

2
r2

) r∫

0

exp
(

κ2

2
ξ2

)
ξ(Cξ2 − δ0) dξ. (3.44)

Now, recalling Eq. (3.44), the sought-for contact pressure distribution can be
obtained by integration of Eq. (3.42), with respect to the boundary condition (3.29).
In this way, we derive the formula

p(r) = m

κ2

{
C

2
(r2 − a2) +

(
2C

κ2
+ δ0

)
g
(

a2
κ2; r

a

)}
, (3.45)

where we have introduced the notation

g(ε2; ρ) =
1∫

ρ

1

x

(
1 − exp

(ε2

2
ξ2

))
dx . (3.46)

Note that, according to (3.27) and (3.28), the quantity ε2 = a2
κ2 is dimensionless.
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3.2.5 Approximate Equation for the Radius
of the Contact Area

In the case where the parameter κ2, having the dimension L−2 (with L being the
dimension of length), in its dimensionless form ε2 (i.e., being multiplied by the
contact radius squared), is reasonably small, an approximate solution to the problem
can be obtained in the following way.

Let us introduce the generalized polar moments of inertia of the contact pressure
by means of the formula

Fn = 2π

a∫

0

p(ρ)ρ2n+1dρ. (3.47)

Thus, Eq. (3.40) can be rewritten as

πm

48
Ca6 = F0 + κ2

(
a2

4
F0 − F1

)
. (3.48)

By taking into account formula (3.39), we can represent Eq. (3.38) in the form

p(r) + 2κ2

{ a∫

0

p(ρ)ρ ln
a

ρ
dρ −

r∫

0

p(ρ)ρ ln
r

ρ
dρ − 1

2

a∫

r

p(ρ)ρ dρ

}

= mC

16
(a2 − r2)2 + (a2 − r2)

κ2F0

2πa2 . (3.49)

The following formulas can be verified by direct calculations using obvious
changes of the integration variable:

2π

a∫

0

ρ2n+1

a∫

r

p(ρ)ρ dρdr = Fn+1

2(n + 1)
, (3.50)

2π

a∫

0

r2n+1

r∫

0

p(ρ)ρ ln
r

ρ
dρdr = 2πa2n+2

2(n + 1)

a∫

0

p(ρ)ρ ln
a

ρ
dρ

− a2n+2

4(n + 1)2
F0 + 1

4(n + 1)2
Fn+1, (3.51)
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2π

a∫

0

r2n+1

a∫

0

p(ρ)ρ ln
a

ρ
dρdr = 2πa2n+2

2(n + 1)

a∫

0

p(ρ)ρ ln
a

ρ
dρ. (3.52)

Wenowmultiply the both sides ofEq. (3.49) by2πr2n+1 and integrate the obtained
relation with respect to r . Following, taking into account formulas (3.50)–(3.52), we
arrive at the following equation:

Fn = πmCa2n+6

8(n + 1)(n + 2)(n + 3)

− κ2

{
a2n+2

2(n + 1)2(n + 2)
F0 − (n + 2)

2(n + 1)2
Fn+1

}
. (3.53)

In particular, for n = 1, the above formula takes the form

F1 = πmCa8

192
− κ2

{
a4

24
F0 − 3

8
F2

}
. (3.54)

Neglecting the last termon the right-hand side of (3.54),we derive the zeroth-order
approximate relation

F1 	 πmCa8

192
, (3.55)

and by substituting the expression (3.55) into the right-hand side of Eq. (3.48), we
obtain the following approximate equation for the radius of the contact area:

πm

48
C

(
a6 + κ2

4
a8

)
	 F

(
1 + κ2a2

4

)
. (3.56)

By perturbation analysis, we find that

a 	
( 48F

πmC

)1/6(
1 − κ2

8

( 48F

πmC

)1/3)
. (3.57)

Itmust be emphasized that Eqs. (3.56) and (3.57) take into account only the first-order
correction to the effect of tangential displacements on the contact area.

In principle, the approximate equation fora canbemademore accurate by employ-
ing the iterative process based upon formula (3.53). For example, by making use of
formulas (3.54) and (3.53), for n = 2, we derive

F1 	 πmC

192
a8 − κ2

24

{
a4F + 3πmC

160
a10

}
. (3.58)
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It is readily seen that formula (3.58) refines the first-order approximation (3.55),
by means of the second order terms, and leads to

πm

48
C

(
a6 + κ2

4
a8 + 3κ2

2

80
a10

)
	 F + κ2

4
a2F + κ

2
2

24
a4F.

This equation effectively allows us to incorporate the second-order term into the
first-order asymptotic formula (3.57).

3.2.6 Approximate Solution

Let us introduce a dimensionless parameter

ε2 = a2
κ2, (3.59)

then Eq. (3.35) can be rewritten as

D0 = ε2 + 1

12ε2
F , (3.60)

where D0 and F are the dimensionless contact approach and force defined by

D0 = 2κ2δ0

C
, F = 48κ3

2 F

πmC
. (3.61)

Further, by substituting the exact solution for the contact pressure (3.45) into
Eq. (3.41), we arrive at the equation

F = 12
[
(4 + D0)

(
2 exp(−ε2/2) + ε2 − 2

) − ε2
]
,

which can, by virtue of Eq. (3.60), be transformed as follows:

F = 12ε2
[
(4 + ε2) exp(−ε2/2) − 4 + ε2

]
1 − exp(−ε2/2)

. (3.62)

Finally, using (3.62), we exclude F from Eq. (3.60) to get

D0 = 2
(
2 exp(−ε2/2) + ε2 − 2

)
1 − exp(−ε2/2)

. (3.63)

It is interesting that there are simple but yet quite accurate approximations for the
right-hand side of Eqs. (3.62) and (3.63). Namely, we replace those equations with
the following:
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Fig. 3.4 The relative errors
of the approximations
provided by formulas (3.64)
and (3.65) for Eqs. (3.62) and
(3.63), respectively

0 0.5 2.5 3
Dimensionless parameter

1 21.5
0

1

3

4

E
rr

or
 o

f 
ap

pr
ox

im
at

io
n

2

0.5

1.5

2.5

3.5

F 	 ε32, (3.64)

D0 	 ε2 + ε22

12
. (3.65)

Note that formula (3.64) represents the zeroth-order approximation, while formula
(3.65) was obtained from (3.60) after the substitution of the approximation (3.64).

From (3.64) and (3.65), it immediately follows that

D0 	 F 1/3 + F 2/3

12
. (3.66)

The accuracy of these simple approximations is illustrated by Fig. 3.4. Note that
the accuracy of the approximate displacement-force relation (3.66) is the same as
that of formula (3.65). It is also noteworthy that for the zeroth-order approximation

D0 	 ε2, the relative error
ε2 − D0

D0
·100% increases almost linearly with increasing

ε2 reaching the value of−8% at ε2 = 1, for example. Finally, note that the first-order
approximation

F 	 ε32 − ε52

240
,

which is obtained by expanding the right-hand side of Eq. (3.62) in a Maclaurin
series, has a negligible error (for instance, only −0.2% at ε2 = 3).

The problem of the approximation of the contact pressure density ismore difficult.
First, we rewrite the exact solution (3.45) as

κ
2
2

mC
p(r) = ε2

2
(ρ2 − 1) +

(
2 + D0

2

)
g(ε2; ρ), (3.67)

where the function g(ε2; ρ) is defined by formula (3.46).
In the limit case, when the effect of tangential displacements is completely

neglected, Eq. (3.67) reduces to the formula
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κ
2
2

mC
p0(ρ) = ε22

16
(1 − ρ2)2, (3.68)

or equivalently

p0(r) = mC

16
(a2 − r2)2. (3.69)

Observe that formula (3.68), considered as an approximation for the exact solution
(3.67), has some error (negative) in the center of the contact area (see Fig. 3.5) as
well as near the contour of the contact area (where the relative error is positive).

By expanding the right-hand side of Eq. (3.67) in a Maclaurin series, we derive
the following first-order approximation:

κ
2
2

mC
p1(ρ) = ε22

16
(1 − ρ2)2

(
1 + ε2

36
(1 − −4ρ2)

)
. (3.70)

The accuracy of this approximation is illustrated by Fig. 3.6 for three values of
the parameter ε2.

Fig. 3.5 Functions p(ρ)

(exact solution (3.67)), p0(ρ)

(zeroth-order approximation
(3.68)), and p1(ρ)

(first-order approximation
(3.70)) normalized by the
multiplier 16ε−2

2 κ
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Fig. 3.6 The relative error
of the first-order
approximation (3.70) for the
contact pressure. Lines 1, 2,
and 3 correspond to ε2 = 1,
2, and 3, respectively
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3.3 Refined Contact Model for a Thin Bonded
Incompressible Elastic Layer with the Effect
of Tangential Displacements

In this sectionwe consider a generalization of the contact problem studied in Sect. 3.2
by relaxing the constraint of axisymmetry. In order to simplify this study, we consider
the problem of contact interaction between a thin incompressible layer and a rigid
punch, the case, where the effect of tangential displacements is strongest.

3.3.1 Refined Formulation of the Contact Problem

Let us consider the unilateral contact problem (see Fig. 3.7) for a thin bonded incom-
pressible elastic layer and a frictionless rigid punch in the shape of an elliptic
paraboloid

ϕ(y) = y21
2R1

+ y22
2R2

. (3.71)

According to the analysis performed in Sect. 2.1.2 (see also [3, 13, 15]), the
linearized contact condition takes the form

w0(y) = δ0 − ϕ(y) − ∇yϕ(y) · v0(y). (3.72)

Here, w0(y) is the normal displacement of the surface points of the elastic layer on
the contact interface (which is called the local indentation of the elastic layer), v0(y)

is the corresponding tangential displacement vector, and δ0 is the punch’s normal
displacement (contact approach to the substrate).

Based on the perturbation analysis presented in Sect. 2.5, the displacements v0(y)

and w0(y) can be approximated by the leading-order asymptotic formulas

w0(y) = − h3

3G ′ Δy p(y), (3.73)

v0(y) = − h2

2G ′ ∇y p(y), (3.74)

Fig. 3.7 A thin
incompressible viscoelastic
layer indented by a rigid
punch

F

δ0 

z

h

y1

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_2
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where p(y) is the contact pressure, h and G ′ are the thickness and the out-of-plane
shear modulus of the transversely isotropic elastic layer.

The contact area, ω, is determined by the condition that the contact pressure is
positive

p(y) > 0, y ∈ ω, (3.75)

and vanishes at the contour of the contact area, i.e.,

p(y) = 0, y ∈ Γ. (3.76)

In addition to the boundary condition above, following [8, 11, 17] (see also
Sect. 2.7.3), we assume a smooth transition of the contact pressure p(y) as the point
of observation y approaches the contour Γ , i.e.,

∂p

∂n
(y) = 0, y ∈ Γ. (3.77)

Here, ∂/∂n is the normal derivative directed outward from ω.
Denoting by F the external load applied to the punch, wewrite out the equilibrium

equation ∫∫

ω

p(y) dy = F. (3.78)

By substituting the expressions (3.73) and (3.74) for the elastic displacements into
the refined contact condition (3.72), we derive the governing differential equation

Δy p(y) = m
(
ϕ(y) − δ0

) − χ∇yϕ(y) · ∇y p(y), (3.79)

where we have introduced the notation

m = 3G ′

h3 , χ = 3

2h
. (3.80)

The refined contact problem consists in finding δ0, p(y), and ω which satisfy
Eqs. (3.75)–(3.79) for given ϕ(y) and F .

3.3.2 Approximate Solution for the Contact Pressure

In the case χ = 0, the problemwe are considering was studied in Sect. 3.1.2 (see also
[5, 8]) and a closed-form solution was obtained with elliptical contact area. Based on
this solution, we construct an approximation for the solution of Eq. (3.79), assuming
that the dimensional parameter χ is relatively small.

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Regarding the contour Γ as a perturbation of an ellipse, we look for the contact
pressure in the following form:

p(y) = p0
(
Ξ(y) + χξ(y)

)2
. (3.81)

Here, p0 is a constant coefficient representing the maximum contact pressure, Ξ(y)

and ξ(y) are polynomials defined as

Ξ(y) = 1 − B1y21 − B2y22 , ξ(y) = A11y41 + A12y21 y22 + A22y42 . (3.82)

Observe that thefirst term in parentheses on the right-hand side of (3.81) represents
the closed-form solution for the limit problem (χ = 0), while the second term is
introduced to account for the effect of tangential displacements introduced by the
last term on the right-hand side of Eq. (3.79).

It is important to emphasize that, in light of the boundary condition (3.76), the
solution (3.81) assumes that the contact area ω is close to the ellipse Ξ(y) = 0, and
the contour Γ is determined by the equation

Ξ(y) + χξ(y) = 0. (3.83)

At the same time, as∇yψ(y)2 = 2ψ(y)∇yψ(y) for any differentiable scalar func-
tion ψ(y), the contact pressure density (3.81) also satisfies the boundary condition
(3.77) on the ellipse (3.83).

Furthermore, by straightforward calculations, we find

1

p0
∇y p(y) = 2

(
Ξ(y) + χξ(y)

)(∇yΞ(y) + χ∇yξ(y)
)
,

1

2p0
Δy p(y) = Ξ(y)ΔyΞ(y) + |∇yΞ(y)|2

+ χ
[
ξ(y)ΔyΞ(y) + Ξ(y)Δyξ(y) + 2∇yΞ(y) · ∇yξ(y)

]

+ χ2(ξ(y)Δyξ(y) + |∇yξ(y)|2), (3.84)

where
∇yΞ(y) = −2(B1y1, B2y2), ΔyΞ(y) = −2(B1 + B2), (3.85)

∇yξ(y) = 2(2A11y31 + A12y1y22 , A12y21 y2 + 2A22y32),

Δyξ(y) = 2(6A11 + A12)y21 + 2(A12 + 6A22)y22 .

Now, substituting the above relations into (3.84) and neglecting the terms of order
χ2, we obtain
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1

2p0
Δy p(y) 	 P0 + P1y21 + P2y22 + P11y41 + P12y21 y22 + P22y42 , (3.86)

where

P0 = −4(B1 + B2),

P1 = 4
[
B1(3B1 + B2) + χ(6A11 + A12)

]
,

P2 = 4
[
B2(B1 + 3B2) + χ(A12 + 6A12)

]
,

P11 = −4χ
[
(15B1 + B2)A11 + B1A12

]
,

P12 = −24χ
[
B2A11 + (B1 + B2)A12 + A22B1

]
,

P22 = −4χ
[
(B1 + 15B2)A22 + B2A12

]
.

Formula (3.86) allows us to calculate the result of the substitution of the approx-
imation (3.81) into the left-hand side of Eq. (3.79). Alternatively, when substituting
the approximation (3.81) into the right-hand side of Eq. (3.79), under the assumption
that χ is relatively small, we make use of the following approximate relation:

χ∇yϕ(y) · ∇y p(y) 	 2χp0Ξ(y)∇yϕ(y) · ∇yΞ(y). (3.87)

Hence, in light of (3.71), (3.85), and (3.87), we obtain

m
(
ϕ(y) − δ0

) − χ∇yϕ(y) · ∇y p(y) = Q0 + Q1y21 + Q2y22

+ Q11y41 + Q12y21 y22 + Q22y42 , (3.88)

where

Q0 = −mδ0, Q1 = m

2R1
+ 4χp0

R1
B1, Q2 = m

2R2
+ 4χp0

R2
B2,

Q11 = −4χp0
R1

B2
1 , Q12 = −4χp0B1B2

( 1

R1
+ 1

R2

)
, Q22 = −4χp0

R2
B2
2 .

The right-hand sides of Eqs. (3.86) and (3.88) are represented by fourth-order
polynomials with 6 coefficients that lead to the following system:

4p0(B1 + B2) = mδ0,

4p0
[
B1(3B1 + B2) + χ(6A11 + A12)

] = m

2R1
+ 4χp0

R1
B1, (3.89)

4p0
[
B2(B1 + 3B2) + χ(A12 + 6A22)

] = m

2R2
+ 4χp0

R2
B2,
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and

(15B1 + B2)A11 + B1A12 = B2
1

R1
,

B2A11 + (B1 + B2)A12 + A22B1 = 1

6

( 1

R1
+ 1

R2

)
B1B2, (3.90)

(B1 + 15B2)A22 + B2A12 = B2
2

R2
.

Thus, the contact pressure density (3.81) satisfies Eq. (3.79) up to terms of order
χ2, provided its coefficients p0, B1, B2, A11, A12, and A22 are determined as a
solution of the system of algebraic equations (3.89) and (3.90).

3.3.3 Asymptotic Solution of the Resulting Algebraic Problem

The subsystem (3.90), regarded as a system of three linear algebraic equations with
respect to A11, A12, and A22, yields

A11 = B2
1
Δ1(B1, B2)

Δ(B1, B2)
, A12 = Δ12(B1, B2)

Δ(B1, B2)
, A22 = B2

2
Δ2(B1, B2)

Δ(B1, B2)
, (3.91)

where

Δ = 90R1R2(B1 + B2)(B2
1 + 14B1B2 + B2

2 ),

Δ1 = 6B2
1 R2 + B2

2 (75R2 − 9R1) + B1B2(89R2 − R1),

Δ12 = B1B2
[
3B2

1 (5R1 + 3R2) + 3B2
2 (3R1 + 5R2) + 136B1B2(R1 + R2)

]
,

Δ2 = B2
1 (75R1 − 9R2) + 6B2

2 R1 + B1B2(89R1 − R2).

Now, substituting (3.91) into Eq. (3.89), we arrive at the following system of
nonlinear algebraic equations with respect to p0, B1, and B2:

4p0(B1 + B2) = mδ0,

B1(3B1 + B2) = m

8R1 p0
+ χ f1(B1, B2), (3.92)

B2(B1 + 3B2) = m

8R2 p0
+ χ f2(B1, B2).

The new quantities f1(B1, B2) and f2(B1, B2) are given by

f1(B1, B2) = B1(9B1 + B2)
Δ1(B1, B2)

Δ(B1, B2)
,

f2(B1, B2) = B2(B1 + 9B2)
Δ2(B1, B2)

Δ(B1, B2)
.
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To solve the system (3.92), we first convert it to the form

p0 = mδ0

4(B1 + B2)
,

3B2
1 + B1B2 = B1 + B2

2R1δ0
+ χ f1(B1, B2), (3.93)

B1B2 + 3B2
2 = B1 + B2

2R2δ0
+ χ f2(B1, B2).

We will consider the last two equations in (3.93) independently of the first one
and set

Bi 	 B0
i + χ B1

i , i = 1, 2, (3.94)

where B0
1 and B0

2 represent the solution to the limit problem such that

B0
1 = R1 − R2

6(β2
0 − 1)R1R2δ0

, B0
2 = β2

0 B0
1 ,

β2
0 (1 + 3β2

0 )

3 + β2
0

= R1

R2
. (3.95)

Thus, substituting the approximations (3.94) into Eq. (3.93) and neglecting the
terms of order χ2, we arrive at the following linear algebraic system with respect to
the asymptotic corrections B1

1 and B1
2 :

(
6B0

1 + B0
2 − 1

2R1δ0

)
B1
1 +

(
B0
1 − 1

2R1δ0

)
B1
2 = f1(B0

1 , B0
2 ),

(
B0
2 − 1

2R2δ0

)
B1
1 +

(
B0
1 + 6B0

2 − 1

2R2δ0

)
B1
2 = f2(B0

1 , B0
2 ).

From here it immediately follows that

B1
i = Δ1

i (B0
1 , B0

2 )

Δ1(B0
1 , B0

2 )
, i = 1, 2, (3.96)

where

Δ1
1 =

(
B0
1 + 6B0

2 − 1

2R2δ0

)
f1(B0

1 , B0
2 ) −

(
B0
1 − 1

2R1δ0

)
f2(B0

1 , B0
2 ),

Δ1
2 =

(
6B0

1 + B0
2 − 1

2R1δ0

)
f2(B0

1 , B0
2 ) −

(
B0
2 − 1

2R2δ0

)
f1(B0

1 , B0
2 ),

Δ1 = 6(B0
1 + B0

2 )
2 + 24B0

1 B0
2 − B0

1

2δ0

( 5

R2
+ 1

R1

)
− B0

2

2δ0

( 5

R1
+ 1

R2

)
.
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Formulas (3.94) and (3.96) give the first-order asymptotic approximations for the
coefficients B1 and B2, provided the contact displacement δ0 is known. After that,
formulas (3.91) allow evaluation of the coefficients A11, A12, and A22, while the first
equation (3.93) yields the maximum contact pressure p0.

3.3.4 Approximation for the Contact Area

Recall that the contour Γ of the contact area ω is defined by (3.83), which as a
consequence of (3.82) can be rewritten as

χ A22y42 − (
B2 − χ A12y21

)
y22 + 1 − B1y21 + χ A11y41 = 0. (3.97)

It is clear that the domain ω is symmetric with respect to the coordinate axes, and
the upper arc of Γ is described by the equation

y2 = Y (y1), |y1| ≤ d1
2

, (3.98)

where Y (y1) and d1 are given by

Y (y1) =
√

2
(
1 − B1y21 + χ A11y41

)

B2 − χ A12y21 + √
D2(y1)

, d1 = 2
√
2√

B1 +
√

B2
1 − 4χ A11

,

D2(y1) = (
B2 − χ A12y21

)2 − 4χ A22
(
1 − B1y21 + χ A11y41

)
.

Observe that d1 has a geometrical meaning as the diameter of the contact area ω

in the direction of the y1-axis.
The obtained formulas allow us to calculate the double integral (3.78) as follows:

F = p0

∫∫

ω

(
Ξ(y) + χξ(y)

)2
dy

= 4p0

d1/2∫

0

dy1

Y (y1)∫

0

(
Ξ(y) + χξ(y)

)2
dy2,

thus implicitly connecting the contact force F and the contact displacement δ0.
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3.3.5 Equation for the Contact Force

We now return to the governing differential equation (3.79). Following [19], we
multiply both sides by ϕ(y) and integrate over the contact domain ω. In this way, we
obtain

∫∫

ω

ϕ(y)Δy p(y) dy = m
∫∫

ω

(
ϕ(y) − δ0

)
ϕ(y) dy

− χ

∫∫

ω

ϕ(y)∇yϕ(y) · ∇y p(y) dy. (3.99)

Second, making use of the second Green’s formula

∫∫

ω

(
u(y)Δyv(y) − v(y)Δyu(y)

)
dy =

∫

Γ

(
u(y)

∂v

∂n
(y) − v(y)

∂u

∂n
(y)

)
dsy,

we transform the left-hand side of Eq. (3.99) to the form

∫∫

ω

ϕ(y)Δy p(y) dy =
∫∫

ω

p(y)Δyϕ(y) dy

+
∫

Γ

(
ϕ(y)

∂p

∂n
(y) − p(y)

∂ϕ

∂n
(y)

)
dsy .

Thus, taking into account the homogeneous boundary conditions (3.76) and (3.77),
we find ∫∫

ω

ϕ(y)Δy p(y) dy =
( 1

R1
+ 1

R2

)
F, (3.100)

irrespective of the shape of ω.
Third, the first integral on the right-hand side of Eq. (3.99) can be calculated

directly:

∫∫

ω

ϕ(y)2dy − δ0

∫∫

ω

ϕ(y) dy = 1

4

(
I40(ω)

R2
1

+ 2I22(ω)

R1R2
+ I04(ω)

R2
2

)

− δ0

2

(
I20(ω)

R1
+ I02(ω)

R2

)
. (3.101)

Here we have introduced the notation

Ikl(ω) =
∫∫

ω

yk
1 yl

2dy. (3.102)
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Fourth, the last term on the right-hand side of Eq. (3.99) can be evaluated with the
help of the first Green’s formula

∫∫

ω

∇yu(y) · ∇yv(y) dy = −
∫∫

ω

u(y)Δyv(y) dy +
∫

Γ

u(y)
∂v

∂n
(y) dsy

and the differential identity

ϕ(y)∇yϕ(y)2 = 1

2
∇yϕ(y)2.

Taking into account the boundary condition (3.76), we obtain

∫∫

ω

ϕ(y)∇yϕ(y) · ∇y p(y) dy = −1

2

∫∫

ω

p(y)Δyϕ(y)2dy, (3.103)

where

Δyϕ(y)2 = 1

R1

( 3

R1
+ 1

R2

)
y21 + 1

R2

( 1

R1
+ 3

R2

)
y22 .

Now, collecting formulas (3.99)–(3.101) and (3.103), we arrive at the relation

R1 + R2

R1R2
F = m

4

(
I40(ω)

R2
1

+ 2I22(ω)

R1R2
+ I04(ω)

R2
2

)

− mδ0

2

(
I20(ω)

R1
+ I02(ω)

R2

)

+ χ

2

∫∫

ω

p(y)Δyϕ(y)2dy. (3.104)

We emphasize that this equation is an exact consequence of the governing dif-
ferential equation (3.79). In order to derive from it the force-displacement relation
we still need to calculate the last integral in (3.104). However, as we are considering
the first-order asymptotic model, it will be sufficient to solve this problem with an
accuracy of the order O(χ2).

Again following [19], we multiply both sides of Eq. (3.79) by ϕ(y)2 and integrate
them over the contact domain ω. Using once more the second Green’s formula and
taking into account the homogeneous boundary conditions (3.76) and (3.77), we find

∫∫

ω

p(y)Δyϕ(y)2dy = m
∫∫

ω

(
ϕ(y) − δ0

)
ϕ(y)2dy + O(χ). (3.105)
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Finally, from (3.104) and (3.105), it follows that

4(R1 + R2)

m R1R2
F 	 I40(ω)

R2
1

+ 2I22(ω)

R1R2
+ I04(ω)

R2
2

+ χ

4

(
I60(ω)

R3
1

+ 3I42(ω)

R2
1 R2

+ 3I24(ω)

R1R2
2

+ I06(ω)

R3
2

)

− δ0

{
2

(
I20(ω)

R1
+ I02(ω)

R2

)

+ χ

2

(
I40(ω)

R2
1

+ 2I22(ω)

R1R2
+ I04(ω)

R2
2

)}
, (3.106)

where Ikl(ω) are the moments of the contact area ω defined by formula (3.102).

3.3.6 Variation of the Contact Area

We now recast Eq. (3.97) for the contour Γ of the contact area ω in the form

1 − B1y21 − B2y22 + χ
(

A11y41 + A12y21 y22 + A22y42
) = 0, (3.107)

and consider the contour Γ as a variation of the ellipse γ defined by the equation

1 − B1y21 − B2y22 = 0, (3.108)

which can also be parameterized by the equations

y1 = b1 cos τ, y2 = b2 sin τ.

Here, τ ∈ (0, 2π ] is a parameter, b1 and b2 are the semi-axes of the ellipse (3.108)
such that

b21 = 1

B1
, b22 = 1

B2
.

In the neighborhood of γ we introduce a local coordinate system (τ, n), where n
is the signed distance to the ellipse (3.108) measured along the outward normal

n(τ ) = 1√
b21 sin

2 τ + b22 cos
2 τ

(b2 cos τ, b1 sin τ).

Thus, the unknown boundary Γ of the contact domain ω can be described in the
local coordinates by a parametric equation (see Fig. 3.8)
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Fig. 3.8 Schematic
representation of the contact
domain ω with the contour
Γ , which is considered as a
variation of the elliptic
contour γ ω

y1 

Γ

γ

y2 

χH*(τ)

n = χ H∗(τ ), (3.109)

so that the parametrization in the Cartesian coordinate system is as follows:

y1 = b1 cos τ + χ H∗(τ )
b2 cos τ√

b21 sin
2 τ + b22 cos

2 τ

,

y2 = b2 sin τ + χ H∗(τ )
b1 sin τ√

b21 sin
2 τ + b22 cos

2 τ

.

Substituting the above equations into Eq. (3.107) and neglecting the terms of the
order O(χ2), we obtain

H∗(τ ) = b1b2
(

A11b41 cos
4 τ + A12b21b22 cos

2 τ sin2 τ + A22b42 sin
4 τ

)

2
√

b21 sin
2 τ + b22 cos

2 τ

. (3.110)

This obtained result allows us to approximately calculate the integral character-
istics (3.102) of the contact area ω as follows:

Ikl(ω) 	
∫∫

B1y21+B2 y22<1

yk
1 yl

2dy + χ

2π∫

0

y1(τ )k y2(τ )l H∗(τ ) dsτ .

Here, y1(τ ) and y2(τ ) are the coordinates of the point τ on the ellipse (3.108), that
is y1(τ ) = b1 cos τ and y2(τ ) = b2 sin τ , while the differential of the arc length is

given by dsτ =
√

b21 sin
2 τ + b22 cos

2 τ dτ .
In this way, we obtain

I20(ω) 	 π

4
b31b2

(
1 + χ

4

(
5A11b41 + A12b21b22 + A22b42

))
,

I02(ω) 	 π

4
b1b32

(
1 + χ

4

(
A11b41 + A12b21b22 + 5A22b42

)) (3.111)
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for the second-order moments and

I40(ω) 	 π

8
b51b2

(
1 + χ

16

(
35A11b41 + 5A12b21b22 + 3A22b42

))
,

I22(ω) 	 π

24
b31b32

(
1 + 3χ

16

(
5A11b41 + 3A12b21b22 + 5A22b42

))
,

I04(ω) 	 π

8
b1b52

(
1 + χ

16

(
3A11b41 + 5A12b21b22 + 35A22b42

))
.

(3.112)

for the fourth-order moments of the contact domain ω.
Finally, as the sixth-order moments of ω enter Eq. (3.106) along with the factor χ ,

we can make use of the zeroth-order approximations

⎧⎪⎪⎨
⎪⎪⎩

I60(ω)

I42(ω)

I24(ω)

I06(ω)

⎫⎪⎪⎬
⎪⎪⎭

	 πb1b2
64

⎧⎪⎪⎨
⎪⎪⎩

5b61
b41b22
b21b42
5b62

⎫⎪⎪⎬
⎪⎪⎭

. (3.113)

Note that in numerically solving the moments of the contact area Ikl(ω) can be
evaluated directly based on the definition (3.102).

3.3.7 Comparison with the Solution of the Axisymmetric
Problem

In the axisymmetric case (see Fig. 3.9), formula (3.81) simplifies to

p(y) = p0
(
1 − B1r2 + χ A11r4

)2
, (3.114)

where r =
√

y21 + y22 is the polar radius.
Correspondingly, Eqs. (3.89) and (3.90) take the form

8p0B1 = mδ0, 16p0(B2
1 + 2χ A11) = m

2R
+ 4χp0

R
B1,

Fig. 3.9 Axisymmetric
contact of a parabolic punch
with a bonded
incompressible elastic layer

z

r

h a

F

δ0 
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A11 = B1

18R
. (3.115)

From here it immediately follows that

B1 = 1

4δ0R
+ 5χ

36R
. (3.116)

Note that, because formula (3.95)1 does not allow a direct passage to the limit
R2 = R1 and β0 = 1, it should be transformedwith the help of Eq. (3.95)3 as follows:

B0
1 = β2

0 + 1

2R1δ0(β
2
0 + 3)

.

Further, formula (3.114) assumes that the contact area is circular with radius a
determined from the equation

χ A11a4 − B1a2 + 1 = 0.

In light of (3.115) and (3.116), this equation yields

a2 	 4Rδ0 − 4χ

3
Rδ20 .

The same results can be obtained from the asymptotic formula (3.65) as a conse-
quence of (3.59) and (3.61)1, provided the relation κ2 = χ/R is taken into account.

We note that the established asymptotic method can be used for solving the two-
dimensional refined unilateral contact problem for a thin orthotropic incompressible
elastic strip, thus generalizing the asymptotic solutions obtained in [1, 2, 12, 20].

Finally, observe that the asymptotic models developed in this section can be
applied not only for articular contact, but also, for example, in studying the heel
resting problem [14] and other bone-soft tissue contact problems [22].
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12. Erbaş, B., Yusufoğlu, E., Kaplunov, J.: A plane contact problem for an elastic orthotropic strip.

J. Eng. Math. 70, 399–409 (2011)
13. Galanov, B.A.: Approximate solution to some problems of elastic contact of two bodies. Mech.

Solids 16, 61–67 (1981)
14. Gefen, A.: The biomechanics of heel ulcers. J. Tissue Viabil. 19, 124–131 (2010)
15. Georgiadis, L.M.: Tangential-displacement effects in the wedge indentation of an elastic half-

space—an integral-equation approach. Comput. Mech. 21, 347–352 (1998)
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Chapter 4
Frictionless Contact of Thin Viscoelastic
Layers

Abstract The chapter begins with an introduction to linear viscoelastic theory, and
then proceeds to a generalization of the elastic leading-order asymptotic models
for the viscoelastic case, based on the correspondence principle. In Sect. 4.2, we
consider the main features of the analytical technique for solving unilateral contact
problems for a viscoelastic foundation. The axisymmetric contact problem for a thin
bonded incompressible viscoelastic layer is analyzed in Sect. 4.3 and in the refined
formulation accounting for tangential displacements in Sect. 4.4. Finally, in Sect. 4.5
we solve the problem of frictionless contact for thin incompressible viscoelastic
layers bonded to rigid substrates shaped like elliptic paraboloids.

4.1 Deformation of a Thin Viscoelastic Layer

In this section we consider a general correspondence principle for quasi-static defor-
mation of viscoelasticmaterials and apply it in the case of a thin transversely isotropic
layer based on the developed leading-order asymptotic solution.

4.1.1 Viscoelastic Constitutive Laws

Various mathematical models have been developed to describe the deformational
material properties of time-dependent materials [17, 24]. Recall that according to
theBoltzmann superposition principle [11], the constitutive relation for a viscoelastic
anisotropic material can be written in the form of the Stieltjes integral

σi j (t) =
∞∫

0

εkl(t − s) dGi jkl(s). (4.1)

Here,Gi jkl(t) are components of a fourth order tensor, which are called the relaxation
functions. It is assumed that Gi jkl(t) = 0 for −∞ < t < 0, and thus the constitutive
law (4.1) is invariant with respect to arbitrary shifts in the time scale.
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From the symmetry of the stress and strain tensors, it immediately follows that
Gi jkl(t) = G jikl(t) = Gi jlk(t). The relaxation functions are presumably positive
and decreasing at positive times, being discontinuous at time zero [22]. In particu-
lar, transversely isotropic materials are describable by five independent relaxation
functions, which can have different time dependence.

Usually it is assumed that strains εi j (t) are continuous for t ≥ 0 and may have a
step discontinuity at t = 0, while εi j (t) = 0 for t < 0. Assuming additionally the
continuity of the first derivatives of the relaxation functions Gi jkl(t) for 0 ≤ t < ∞,
we can rewrite Eq. (4.1) in the form

σi j (t) = Gi jkl(0)εkl(t) +
t∫

0

εkl(t − s)
dGi jkl

ds
(s) ds. (4.2)

The above form of the constitutive law exposes the instantaneous elastic reaction of
the viscoelastic material with the instantaneous elastic moduli Gi jkl(0).

After integration by parts, Eq. (4.2) takes the form

σi j (t) = Gi jkl(t)εkl(0) +
t∫

0

Gi jkl(t − τ)ε̇kl(τ ) dτ, (4.3)

where the differentiation with respect to the time variable t is denoted by a dot.
Further, the above relation can be generalized for the whole history, provided that

εi j (t) → 0 as t → −∞, as follows:

σi j (t) =
t∫

−∞
Gi jkl(t − τ)ε̇kl(τ ) dτ. (4.4)

The inverse constitutive law has the form

εi j (t) =
t∫

−∞
Ji jkl(t − τ)σ̇kl(τ ) dτ, (4.5)

where Ji jkl(t) are the creep functions such that Ji jkl(t) = 0 for −∞ < t < 0, and
Ji jkl(t) = J jikl(t) = Ji jlk(t). It is assumed that the creep functions are continuous
and possess continuous first derivatives on the interval 0 ≤ t < ∞.

Now, taking the Fourier transform of (4.4), we find

σ̂i j (ω) = G∗
i jkl(ω)ε̂kl(ω), (4.6)
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where the circumflex refers to the corresponding Fourier transformed quantity, which
is a complex-valued function of the angular frequency ω. In particular, by definition,
we have

Ĝi jkl(ω) =
∞∫

−∞
Gi jkl(t) exp(−iωt) dt, (4.7)

where i is the imaginary unit such that i2 = −1.
Since the Fourier transform of the derivative dεkl(t)/dt is given by iωε̂kl(ω), the

application of the convolution property yields the following representation for the
complex elastic moduli:

G∗
i jkl(ω) = iωĜi jkl(ω). (4.8)

In the same way, the Fourier transform of Eq. (4.5) results in the relation

ε̂i j (ω) = J ∗
i jkl(ω)σ̂kl(ω), (4.9)

where J ∗
i jkl(ω) are the complex elastic compliances such that

J ∗
i jkl(ω) = iω Ĵi jkl(ω). (4.10)

Note that Eqs. (4.4) and (4.5) represent the stress-strain relations in the relax-
ation and creep integral forms, respectively, while Eqs. (4.6) and (4.9) represent the
constitutive relations in the frequency domain.

4.1.2 Correspondence Principle for a Viscoelastic Layer

To set up the following analysis, we consider the quasi-static deformation of a linear
anisotropic viscoelastic layer bonded to a rigid substrate (see Fig. 4.1).

The stress-strain relationship is given by either (4.4) or (4.5), while the linearized
strain-displacement relations are

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (4.11)

Fig. 4.1 A viscoelastic layer
bonded to a rigid substrate
and loaded by a normal load
variable in time

x1

x3

q(t,n x1,n x2)

h
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where u1, u2, and u3 denote the Cartesian components of the displacement vector u.
The equations of equilibrium in the absence of body forces take the form

∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
= 0, i = 1, 2, 3. (4.12)

In the case of the viscoelastic layer bonded to a rigid base, the following displace-
ment boundary conditions hold:

ui
∣∣
x3=h = 0, i = 1, 2, 3. (4.13)

Assuming that the layer is loaded by a normal distributed load, q(t, x1, x2), we
impose the following traction boundary conditions on the upper layer surface:

σ13
∣∣
x3=0 = σ23

∣∣
x3=0 = 0, σ33

∣∣
x3=0 = −q(t, x1, x2). (4.14)

Moreover, the following initial conditions must be met:

ui (t, x) = εi j (t, x) = σi j (t, x) = 0, −∞ < t < 0. (4.15)

Thus, the deformation problem consists in finding field histories for the displace-
ment vector u, the strain tensor ε, and the stress tensor σ which for the known
relaxation tensor G (or the creep tensor J) and the prescribed surface load density
q(t, x1, x2) satisfy Eqs. (4.4) (or (4.5)), (4.11)–(4.15).

Among the above equations, only the viscoelastic constitutive equations (4.4) and
(4.5) contain products of time-dependent quantities. Therefore, applying the Fourier
transform to Eqs. (4.11)–(4.15), the obtained relations in the frequency domain will
not differ from their elastic counterparts. Correspondingly, the Fourier transform of
Eqs. (4.4) and (4.5) leads to Eqs. (4.6) and (4.9), respectively, which relate the Fourier
transforms of stresses and strains and are analogous to the generalized Hooke’s law
σi j = Ci jklεkl , where Ci jkl are elastic moduli.

Thus, the transforms û, ε̂, and σ̂ satisfywhat is formally an elasticity problem. The
correspondence principle [17, 22] states that if a solution to some linear elasticity
problem for an elastic solid characterized by elastic moduli Ci jkl is known, then
the solution to the corresponding deformation problem for a linearly viscoelastic
material, characterized by relaxation functions Gi jkl(t), can be obtained by replacing
the real elastic moduli Ci jkl in the elastic solution with the complex moduli G∗

i jkl(ω)

of the viscoelastic material, and then employing an inverse Fourier transform back
to the time domain from the frequency domain.

We emphasize that usually the correspondence principle involving Laplace trans-
form is usually used to solve boundary-value problems for viscoelastic materials. In
this case, for example, Eq. (4.4) is transformed to the Laplace domain as follows:

σ̃i j (s) = sG̃i jkl(s)ε̃kl(s). (4.16)
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Here, s is the transformation variable, and tildes denote Laplace transforms, i.e.,

G̃i jkl(s) =
∞∫

0

Gi jkl(t) exp(−st) dt.

Observe that, in contrast to Eq. (4.6), on the right-hand side of Eq. (4.16) there
is an extra multiplier of the transformed variable, which was previously absorbed
into the definition of the complex elastic moduli G∗

i jkl(ω) (see Eq. (4.8)). Hence, if
an elastic solution is known, according to the correspondence principle, the corre-
sponding viscoelastic solution may be obtained by replacing each elastic material
characteristics appearing in the elastic solution by its s-multiplied Laplace transform,
and transforming back to the time domain.

It is also worth noting [17] that the Fourier transform of a transient viscoelastic
response function represents a dynamic response function (in a harmonic loading)
which is itself measurable experimentally.

4.1.3 Deformation of a Thin Compressible Transversely
Isotropic Viscoelastic Layer Bonded to a Rigid Base

According to the perturbation analysis performed in Sect. 1.2 (see, for example, for-
mula (1.58)), the leading-order asymptotic solution for the quasi-static local inden-
tation of a compressible elastic layer of thickness h is given by

w0(t, y) ≡ u3(t, y1, y2, 0)

� h

A33
q(t, y). (4.17)

In the isotropic case the elastic constant A33 is equal to λ + 2μ (with λ and μ

being Lamé’s constants) and is called the aggregate elastic modulus [1, 15]. Recall
that while Young’s modulus, E ′, is determined from a uniaxial loading testing in
the x3-direction, the aggregate elastic modulus A33 is determined under a uniaxial
confined strain testing condition with the only non-zero strain component ε33. In
the case of transversely isotropic materials, we call A33 the longitudinal aggregate
elastic modulus and introduce a new notation

E ′
A = A33. (4.18)

For a transversely isotropic viscoelastic material, we can introduce the longi-
tudinal (axial) aggregate relaxation modulus, E ′

A(t). This function can be experi-
mentally measured in the confined compression test (see Fig. 4.2), which models a
one-dimensional deformation problem in the x3-direction, where the normal strains
ε11, ε22, and all shear strains vanish.

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Sample
Tight fitting 

ring

Loading platen F

Fig. 4.2 Confined compression testing configuration for measuring the aggregate creep modulus
of a viscoelastic material using a cylindrical sample placed in a confining chamber of ring form

In the displacement-controlled confined compression test [13], where the axis of
material symmetry coincides with the axis of geometrical symmetry, the stress-strain
relation (with the convention of positive compressive stress) has the form

σ33(t) = ε33(0)E ′
A(t) +

t∫

0

E ′
A(t − τ)ε̇33(τ ) dτ

=
t∫

0−
E ′

A(t − τ)ε̇33(τ ) dτ, (4.19)

where the lower integration limit 0− indicates that the integration starts at infinites-
imally negative time in order to include the strain discontinuity at time zero.

Thus, the introduced above material characteristic E ′
A(t) represents the material

response for unit-step deformation loading ε33(t) = H (t), where H (t) is the
Heaviside step function such that H (t) = 0 for t < 0 and H (t) = 1 for t ≥ 0.

In the load-controlled testing configuration for the confined compression test, the
inverse relation can be written as

ε33(t) =
t∫

0−
J ′

A(t − τ)σ̇33(τ ) dτ

= σ33(0)J ′
A(t) +

t∫

0

J ′
A(t − τ)σ̇33(τ ) dτ, (4.20)

where the function J ′
A(t) represents the creep response of the viscoelastic material

in confined compression under application of a step normal stress of unit magnitude.
In what follows, the material characteristics J ′

A(t) will be called the longitudinal
(axial) aggregate creep compliance. Since the creep compliance represents the strain
history resulting from a step stress σ33(t) = H (t) (see, e.g., formula (4.20)), by
substituting the function J ′

A(t) into Eq. (4.19), we obtain
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H (t) = J ′
A(0)E ′

A(t) +
t∫

0

E ′
A(t − τ)

d J ′
A(τ )

dτ
dτ. (4.21)

From (4.21), it immediately follows that

J ′
A(0) = 1

E ′
A(0)

. (4.22)

Note also that Eq. (4.21) can be recast equivalently as

t∫

0

E ′
A(t − τ)J ′

A(τ ) dτ = t. (4.23)

In the Laplace domain, the interrelation between the relaxation and creep func-
tions, which is represented by Eq. (4.23), results in the relation

s2 Ẽ ′
A(s) J̃ ′

A(s) = 1. (4.24)

Thus, by applying the viscoelastic correspondence principle, in light of the nota-
tion (4.18), Eq. (4.17) yields

w̃0(s, y) = h

s Ẽ ′
A(s)

q̃(s, y),

where tildes denote Laplace transforms.
Taking into account (4.24), we rewrite the above equation in the form

w̃0(s, y) = hs J̃ ′
A(s)q̃(s, y). (4.25)

Finally, performing the inverse transform, we find

w0(t, y) = h

t∫

0−
J ′

A(t − τ)
∂q

∂τ
(τ, y) dτ. (4.26)

Equation (4.26) represents the leading-order asymptotic model for a thin bonded
compressible transversely isotropic viscoelastic layer.
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4.1.4 Deformation of a Thin Bonded Incompressible
Transversely Isotropic Viscoelastic Layer

According to the perturbation analysis performed in Sect. 2.5 (see, in particular,
formula (2.152)), the leading-order asymptotic solution for the quasi-static local
indentation of an incompressible elastic layer of thickness h is given by

w0(t, y) ≡ u3(t, y1, y2, 0)

� − h3

3a44
Δyq(t, y), (4.27)

where the elastic constant a44 coincides with the out-of-plane shear modulus G ′, i.e.,

a44 = G ′. (4.28)

For a transversely isotropic viscoelastic material, we introduce the out-of-plane
relaxation modulus in shear, G ′(t). This material characteristic represents the mate-
rial response for unit-step deformation loading ε31(t) = H (t) (or ε32(t) = H (t)),
and thus the corresponding stress-strain relations are as follows:

σ3i (t) = 2ε3i (0)G
′(t) + 2

t∫

0

G ′(t − τ)ε̇3i (τ ) dτ

= 2

t∫

0−
G ′(t − τ)ε̇3i (τ ) dτ, i = 1, 2. (4.29)

The inverse relations are given by

2ε3i (t) =
t∫

0−
J ′(t − τ)σ̇3i (τ ) dτ

= σ3i (0)J ′(t) +
t∫

0

J ′(t − τ)σ̇3i (τ ) dτ. (4.30)

Here, J ′(t) is the out-of-plane creep compliance in shear, which represents the defor-
mation response of the viscoelastic material under application of a step out-of-plane
shear stress of unit magnitude.

For the relaxationmodulus G ′(t) and the creep compliance J ′(t), relations similar
to (4.21)–(4.24) hold true. In particular, for their Laplace transforms we have

s2G̃ ′(s) J̃ ′(s) = 1, (4.31)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_2
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while, analogously to (4.22), their instantaneous values are inversely reciprocal

J ′(0) = 1

G ′(0)
, (4.32)

so that at zero-plus time an elastic material response prevails.
Thus, by applying the viscoelastic correspondence principle, in light of (4.28),

Eq. (4.27) yields

w̃0(s, y) = − h3

3sG̃ ′(s)
Δyq̃(s, y).

Taking into account (4.31), we rewrite the above equation in the form

w̃0(s, y) = −h3

3
s J̃ ′(s)Δyq̃(s, y), (4.33)

which after performing the inverse transform takes the final form

w0(t, y) = −h3

3

t∫

0−
J ′(t − τ)Δy

∂q

∂τ
(τ, y) dτ. (4.34)

Equation (4.34) represents the leading-order asymptotic model for a thin incom-
pressible isotropic viscoelastic layer bonded to a rigid base.

4.2 Axisymmetric Contact of Thin Compressible
Viscoelastic Layers

This section presents closed-form solutions for the contact pressure induced by the
frictionless contact interaction of two thin compressible transversely isotropic vis-
coelastic layers bonded to rigid substrates. It is assumed that inertial effects are
negligible, and the contact interaction is quasi-static.

4.2.1 Contact Problem Formulation

Consider axisymmetric frictionless contact interaction between two thin compress-
ible viscoelastic layers of thicknesses h1 and h2 bonded to rigid substrates shaped
like bodies of revolution. Introducing the cylindrical coordinate system, we write the
equations of the layer surfaces (in the undeformed state) in the form

z = (−1)nϕn(r), n = 1, 2.
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Denoting the contact approach of the substrates by δ0(t), we write the unilateral
contact non-penetration condition (see Sect. 2.1.2) as follows:

δ0(t) − (
w(1)
0 (t, r) + w(2)

0 (t, r)
) ≤ ϕ(r). (4.35)

Here, w(n)
0 (t, r) is the vertical displacement (local indentation) of the surface points

of the nth layer, and ϕ(r) is the initial gap function defined by

ϕ(r) = ϕ1(r) + ϕ2(r).

According to Eq. (4.26), the local indentation of a thin bonded compressible trans-
versely isotropic viscoelastic layer can be approximated as

w(n)
0 (t, r) = hn

t∫

0−
J ′(n)

A (t − τ)
∂p

∂τ
(τ, r) dτ. (4.36)

Here, p(t, r) is the contact pressure distribution, J ′(n)
A (t) is the axial aggregate creep

compliance of the nth layer, t = 0 is the initial time of contact, while the lower
integration limit 0− denotes the infinitesimally negative time moment to account for
the pressure discontinuity at zero.

Under the assumption, for example, that the gap function ϕ(r) is positive and
convex, the contact area ω(t) will be a circle of radius a(t). The contact area is
determined by the condition that the contact pressure is positive inside ω(t) and
vanishes at the contour of the contact area, that is

p(t, r) > 0, r < a(t), p(t, a(t)) = 0. (4.37)

Outside the contact area (for r > a(t)), in light of the unilateral contact condition
(4.35), the following inequality must be satisfied:

δ0(t) − ϕ(r) < w(1)
0 (t, r) + w(2)

0 (t, r).

In the thin-layer approximation, the in-plane deformational interaction in a thin
compressible elastic layer is neglected (as in the Winkler foundation model), the
above condition reduces to

δ0(t) − ϕ(r) < 0, r > a(t). (4.38)

The equilibrium equation for the whole system is

2π

a(t)∫

0

p(t, ρ)ρ dρ = F(t), (4.39)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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F(t)

2

r

1

h1+h2 δ0(t)

F(t)

Fig. 4.3 Schematic diagram for the contact interaction of bonded viscoelastic layers under variable
external load F(t) in the current deformed configuration corresponding to the time moment t

where F(t) denotes the external load (see Fig. 4.3).
By substituting the asymptotic approximations (4.36) into (4.35), we arrive at the

following equation for the contact pressure:

2∑
n=1

hn

t∫

0−
J ′(n)

A (t − τ)
∂p

∂τ
(τ, r) dτ = δ0(t) − ϕ(r)H (t), r ≤ a(t). (4.40)

Observe that, by introducing theHeaviside function factorH (t), Eq. (4.40) takes into
account the zero initial conditions for t < 0 and assumes that contact deformation
is applied in a step manner at time t = 0.

The contact problem thus consists in finding histories δ0(t), a(t), p(t, r) which,
for given ϕ(r), known J ′(n)

A (t), n = 1, 2, and prescribed F(t), satisfy (4.35)–(4.40).

4.2.2 Axial Aggregate Relaxation and Creep Functions

Let E ′
A0 be the instantaneous axial (longitudinal) aggregate elastic modulus of a

transversely isotropic viscoelastic layer, i.e., E ′
A0 = E ′

A(0). By letting

E ′
A(t) = E ′

A0Ψ
′
A(t), (4.41)

we introduce the corresponding normalized relaxation function Ψ ′(t) such that

Ψ ′
A(0) = 1. (4.42)

Now, taking into account the relation between the relaxation and creep functions
in the Laplace domain (4.24), we may introduce the associated creep functionΦ ′

A(t)
of the viscoelastic layer material as

J ′
A(t) = 1

E ′
A0

Φ ′
A(t), (4.43)
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so that the following relation holds true:

s2Ψ̃ ′
A(s)Φ̃ ′

A(s) = 1. (4.44)

The above equation allows one to determine Φ ′
A(t), given Ψ ′

A(t), or vice versa.
Further, consider an integral operator

t∫

0−
Φ ′

A(t − τ)
∂u

∂τ
(τ ) dτ = v(t), (4.45)

where u(t) = 0 for t < 0, so that u(0−) = 0.
In light of (4.44), Eq. (4.45) can be inverted to yield

u(t) =
t∫

0−
Ψ ′

A(t − τ)
∂v

∂τ
(τ ) dτ. (4.46)

Hence, for any function u(t), we have

u(t) =
t∫

0−
Φ ′

A(t − τ)
∂

∂τ

τ∫

0−
Ψ ′

A(τ − θ)
∂u

∂θ
(θ) dθdτ. (4.47)

Note also that for any time moment τ1 ∈ (0,+∞), the identity (4.47) can be
generalized as follows [9, 23]:

u(t) = u(τ1) +
t∫

τ1

Ψ ′
A(t − τ)

∂

∂τ

τ∫

τ1

Φ ′
A(τ − θ)

∂u

∂θ
(θ) dθdτ. (4.48)

Formulas (4.47) and (4.48) also hold true in the case when Φ ′
A(t) and Ψ ′

A(t) are
exchanged as well as for τ1(t) being a function of time.

4.2.3 Instantaneous Contact

Following [7], we transform the governing equation (4.40) into the form

h

E ′
A0

t∫

0−
Φα(t − τ)

∂p

∂τ
(τ, r) dτ = δ0(t) − ϕ(r)H (t), r ≤ a(t), (4.49)
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where h = h1+h2 is the joint thickness, E ′
A0 andΦα(t) are the equivalent aggregate

instantaneous axial elastic modulus and the compound creep function, respectively,
given by

Φα(t) = α1Φ
′(1)
A (t) + α2Φ

′(2)
A (t), (4.50)

α1 = h1E ′(2)
A0

h1E ′(2)
A0 + h2E ′(1)

A0

, α2 = h2E ′(1)
A0

h1E ′(2)
A0 + h2E ′(1)

A0

, (4.51)

E ′
A0 = (h1 + h2)E ′(1)

A0 E ′(2)
A0

h1E ′(2)
A0 + h2E ′(1)

A0

, (4.52)

whereΦ
′(n)
A (t) is the normalized axial aggregate creep function and E ′(n)

A0 = E ′(n)
A (0)

is the instantaneous axial aggregate elastic modulus of the nth layer.
Observe that formula (4.52) determines the equivalent modulus in such a way that

α1 + α2 = 1 (see Eq. (4.51)), and so Φα(0) = 1.
We consider the compressive loading histories which are discontinuous at the

initial time t = 0, such that F(t) = 0 for t < 0 with F(0+) > 0, where

F(0+) = lim
t→0+ F(t).

We emphasize that the asymptotic model (4.49) assumes that the contacting vis-
coelastic layers are relatively thin, meaning that the radius a(0+) of the instantaneous
contact area ω(0+), corresponding to the instantaneous value of the contact force
F(0+), is much larger than the thicknesses of the contacting layers h1 and h2, so that
the underlying assumption of the asymptotic analysis holds true.

Now, considering an infinitesimally positive time t in Eq. (4.49), we arrive at the
equation of instantaneous contact

h

E ′
A0

p(0+, r) = δ0(0
+) − ϕ(r), (4.53)

where we have taken into account the normalization condition Φα(0) = 1.
According to (4.37), the contact area ω(0+) coincides with the domain where the

right-hand side of Eq. (4.53) is positive, and so

p(0+, r) = E ′
A0

h

(
δ0(0

+) − ϕ(r)
)
+, (4.54)

where (x)+ = (x + |x |)/2 is the positive part function.
As a result, the instantaneous contact radius is determined from the equation

δ0(0
+) = ϕ(a(0+)), (4.55)



112 4 Frictionless Contact of Thin Viscoelastic Layers

whereas, in turn, the instantaneous contact approach, δ0(0+), is determined by the
instantaneous contact force F(0+) from the equilibrium equation

h

π E ′
A0

F(0+) = a(0+)2δ0(0
+) − 2

a(0+)∫

0

ϕ(ρ)ρ dρ. (4.56)

Note also that Eq. (4.54) can be rewritten as

p(0+, r) = E ′
A0

h

(
δ0(0

+) − ϕ(r)
)
H

(
a(0+) − r

)
. (4.57)

Based on physical considerations for non-conforming contact, it is reasonable to
assume that ϕ(r), r ∈ (0,+∞), is a positive, continuous and differentiable function
with a piecewise continuous second derivative ϕ′′(r) such that ϕ(0+) = 0 (normal-
ization condition for the contact approach), ϕ′(0+) = 0 (condition of smoothness of
the contact surfaces), and ϕ′(r) > 0 for r > 0 (condition that the gap is an increasing
function). In such a case, Eqs. (4.55) and (4.56) will have unique solutions.

4.2.4 Monotonically Increasing Contact Area

Let us first consider the case when ω(τ) ⊂ ω(t) for any time moments τ, t ∈ (0, tm)

such that τ < t (see Fig. 4.4). In other words, the contact radius a(t) is assumed to
be a monotonically increasing function of the time-like variable t .

In light of (4.20), Eq. (4.49) can be rewritten as

p(0+, r)Φα(t) +
t∫

0

Φα(t − τ) ṗ(τ, r) dτ = E ′
A0

h

(
δ0(t) − ϕ(r)H (t)

)
. (4.58)

Now, integrating by parts, we reduce Eq. (4.58) to the following form:

Φα(0)p(t, r) +
t∫

0

Φ̇α(t − τ)p(τ, r) dτ = E ′
A0

h

(
δ0(t) − ϕ(r)H (t)

)
. (4.59)

Fig. 4.4 Variation in time of
the contact area in the case of
monotonically increasing
contact radius (0+< τ < t),
where ω(0+) is the
instantaneous contact area

ω(0+) ω(τ) 

ω(t) 
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Recall [11] that the relaxation moduli J ′(1)
A (t) and J ′(2)

A (t) must be strictly
monotonically increasing functions. This implies that the derivative Φ̇α(t) is strictly
positive for t ∈ (0,+∞). Thus, in the case of monotonically increasing contact
area, according to (4.37) and (4.38), the contact area ω(t) coincides with the domain
where the right-hand side of Eq. (4.59) is positive.

Indeed, since negative pressure is not allowed due to (4.37), the left-hand side of
Eq. (4.59) is positive inside the contact areaω(t). This implies thatω(t) is a subset of
the domain, where the right-hand side Eq. (4.59) is positive. However, due to (4.38),
the intersection of this last set with the absolute complement of ω(t) is empty.
Hence, in the case when the viscoelastic layers are not initially deformed outside
the monotonically increasing contact area ω(t) (i.e., the gap between the layers is
determined by the function ϕ(r) defined according to the undeformed configuration),
the positiveness condition of the right-hand side of Eq. (4.59) determines the location
of the contact area ω(t).

Thus, the governing integral equation (4.49) can be rewritten in the form

h

E ′
A0

t∫

0−
Φα(t − τ)

∂p

∂τ
(τ, r) dτ = (

δ0(t) − ϕ(r)H (t)
)
+, (4.60)

or as follows:

h

E ′
A0

t∫

0−
Φα(t − τ)

∂p

∂τ
(τ, r) dτ = (

δ0(t) − ϕ(r)H (t)
)
H

(
a(t) − r

)
. (4.61)

Under the assumptions imposed upon the gap function ϕ(r) in Sect. 4.2.3, we find
that the contact area is circular, and the contact radius a(t) is related to the contact
approach δ0(t) by the formula

a(t) = ϕ−1(δ0(t)
)
, (4.62)

where ϕ−1(x) is the inverse function for x = ϕ(r).
Integrating both sides ofEq. (4.60) over the contact domain and taking into account

(4.39), we obtain

h

E ′
A0

t∫

0−
Φα(t − τ)Ḟ(τ ) dτ = πa(t)2δ0(t) − 2πH (t)

a(t)∫

0

ϕ(ρ)ρ dρ.

Note that, formally speaking, δ0(t) and a(t) are histories such that δ0(t) = 0 and
a(t) = 0 for t < 0. That is why the above equation can be simplified as follows:



114 4 Frictionless Contact of Thin Viscoelastic Layers

h

E ′
A0

t∫

0−
Φα(t − τ)Ḟ(τ ) dτ = πa(t)2δ0(t) − 2π

a(t)∫

0

ϕ(ρ)ρ dρ. (4.63)

As a result of (4.62), the right-hand side of Eq. (4.63) can be represented by

g
(
δ0(t)

) = πδ0(t)ϕ
−1(δ0(t)

)2 − 2π

ϕ−1(δ0(t))∫

0

ϕ(ρ)ρ dρ. (4.64)

Therefore, from (4.63) and (4.64), it follows that

δ0(t) = g−1
(

h

E ′
A0

t∫

0−
Φα(t − τ)Ḟ(τ ) dτ

)
, (4.65)

where g−1(y) is the inverse function for y = g(x) given by

g(x) = πxϕ−1(x)2 − 2π

ϕ−1(x)∫

0

ϕ(ρ)ρ dρ.

Further, by inverting Eq. (4.63), we obtain the force-displacement relationship

F(t) = E ′
A0

h

t∫

0−
Ψα(t − τ)

dg
(
δ0(τ )

)

dτ
dτ. (4.66)

Here, Ψα(t) is the compound relaxation function defined by

Ψ̃α(s) = Ψ̃
′(1)
A (s)Ψ̃ ′(2)

A (s)

α1Ψ̃
′(2)
A (s) + α2Ψ̃

′(1)
A (s)

, (4.67)

while Ψ̃
′(1)
A (s) and Ψ̃

′(2)
A (s) are the Laplace transforms of the relaxation functions

Ψ
′(1)
A (t) and Ψ

′(2)
A (t) for the viscoelastic layers. Observe that by normalization,

Ψα(0) = 1, (4.68)

and that, according to the initial value theorem for Laplace transforms, we have

Ψα(0+) = lim
s→∞ sΨ̃α(s).
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Now, taking into account (4.67), we obtain

Ψα(0+) = lim
s→∞

sΨ̃ ′(1)
A (s)sΨ̃ ′(2)

A (s)

α1sΨ̃ ′(2)
A (s) + α2sΨ̃ ′(1)

A (s)

= Ψ
′(1)
A (0+)Ψ

′(2)
A (0+)

α1Ψ
′(2)
A (0+) + α2Ψ

′(1)
A (0+)

.

The normalization condition (4.68) for the compound relaxation function is readily
established by making use of Eqs. (4.42) and (4.51).

In the case of a parabolic gap function, when

ϕ(r) = r2

2R
, (4.69)

we have ϕ−1(x) = √
2Rx and g−1(y) = √

(π R)−1y, and

g(x) = 2π Rx2 − 2π

√
2Rx∫

0

ρ2

2R
ρ dρ

= π Rx2.

Therefore, Eqs. (4.62), (4.65)–(4.73) can be concretized, respectively, as follows:

a(t) = √
2Rδ0(t), (4.70)

δ0(t) =
(

h

π RE ′
A0

t∫

0−
Φα(t − τ)Ḟ(τ ) dτ

)1/2

, (4.71)

F(t) = π RE ′
A0

h

t∫

0−
Ψα(t − τ)

d

dτ
δ0(τ )2 dτ. (4.72)

Observe that, in the case of the increasing contact area, the relation between the
contact radius a(t) and the contact approach δ0(t) has the form of the corresponding
elastic solution (see Eq. (4.70)), and is general in nature [12, 18, 23].
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4.2.5 Monotonically Increasing Contact Area: Contact
Pressure

As the right-hand side of the integral equation (4.61) makes sense for all r ≥ 0, we
can write out its solution in the form

p(t, r) = E ′
A0

h

t∫

0−
Ψα(t − τ)

∂

∂τ

{[
δ0(τ ) − ϕ(r)H (τ )

]
H

(
a(τ ) − r

)}
dτ, (4.73)

where δ0(t) anda(t) are known functions, since they are determined from the function
F(t) by formulas (4.62) and (4.65).

In the case of the parabolic gap (4.69) and as a result of (4.70), Eq. (4.73) reduces to

p(t, r) = E ′
A0

2Rh

t∫

0−
Ψα(t − τ)

∂

∂τ

{(
a(τ )2 − r2H (τ )

)
H

(
a(τ ) − r

)}
dτ, (4.74)

where according to (4.70) and (4.71), we have

a(t) =
(

4h R

π E ′
A0

t∫

0−
Φα(t − τ)Ḟ(τ ) dτ

)1/4

.

Note that Eq. (4.73) can be further simplified by integration by parts. Alternatively,
the obtained result can be explained as follows. If the point of observation r belongs
to the instantaneous contact area ω(0+), then it is clear that r < a(τ ) for any
τ ∈ (0, tm), and formula (4.73) reduces to

p(t, r) = E ′
A0

h

t∫

0−
Ψα(t − τ)

∂

∂τ

[
δ0(τ ) − ϕ(r)H (τ )

]
dτ, r ≤ a(0+),

which is equivalent to

p(t, r) = E ′
A0

h
Ψα(t)

(
δ0(0

+) − ϕ(r)
)

+ E ′
A0

h

t∫

0

Ψα(t − τ)δ̇0(τ ) dτ, r ≤ a(0+). (4.75)

Now, if the point r lies outside of ω(0+), then it is known a priori that p(τ, r) ≡ 0
for τ ∈ (0, t∗(r)), where t∗(r) is the time when the contour of the contact area first
reaches the point r . The quantity is determined by the equation
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δ0(t∗) = ϕ(r), (4.76)

so that
t∗(r) = δ−1

0 (ϕ(r)), r > a(0+).

Thus, sinceH (a(τ ) − r) = 0 for τ ∈ (0, t∗(r)), formula (4.73) can be recast as

p(t, r) = E ′
A0

h

t∫

t∗(r)

Ψα(t − τ)
∂

∂τ

[
δ0(τ ) − ϕ(r)H (τ )

]
dτ

= E ′
A0

h

t∫

t∗(r)

Ψα(t − τ)δ̇0(τ ) dτ, r > a(0+). (4.77)

Finally, extending the definition of the function t∗(r) to the whole contact area by
assuming that t∗(r) = 0 for 0 ≤ r ≤ a(0+), we combine the two formulas (4.75)
and (4.77) into one as follows:

p(t, r) = E ′
A0

h
Ψα(t)

(
δ0(0

+) − ϕ(r)
)
H

(
a(0+) − r

)

+ E ′
A0

h

t∫

t∗(r)

Ψα(t − τ)δ̇0(τ ) dτ. (4.78)

Here, in light of (4.76), we have

t∗(r) =
{
0, r ≤ a(0+),

δ−1
0 (ϕ(r)), r > a(0+).

The first term on the right-hand side of (4.78) is caused by the instantaneous
indentation, while the second term reflects the subsequent creep effect.

4.2.6 Case of Stepwise Loading

Let us now assume that
F(t) = F0H (t). (4.79)

Then, in the case of a parabolic gap function (4.69), Eq. (4.71) yields

δ0(t) =
(

hF0

π RE ′
A0

Φα(t)

)1/2

H (t), (4.80)
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where the Heaviside function factor may be dropped, as Φα(t) = 0 for t < 0, by
definition of the compound creep function.

It is clear that for a monotonically increasing function Φα(t), the function δ0(t)
determined by the above equation will also be monotonically increasing. Hence, as
the contact approach δ0(t) and the contact radius a(t) are related by a monotonic
function (see Eq. (4.70)), the circular contact domain ω(t) will be monotonically
increasing as well.

Further, if the point of observation r belongs to the instantaneous contact domain
ω(0+), then Eq. (4.75) for t > 0 and r ≤ a(0+) yields

h

E ′
A0

p(t, r) = Ψα(t)
(
δ0(0

+) − ϕ(r)
) +

t∫

0

Ψα(t − τ)δ̇0(τ ) dτ, (4.81)

where, in light of (4.80), we have

δ0(0
+) =

(
hF0Φα(0)

π RE ′
A0

)1/2

, (4.82)

δ̇(τ ) = hF0

2π RE ′
A0

1

δ0(τ )

dΦα(τ)

dτ
. (4.83)

Now, if the point r lies outside of the instantaneous contact area ω(0+), i.e.,
r > a(0+), then by formula (4.77) we obtain

h

E ′
A0

p(t, r) =
t∫

t∗(r)

Ψα(t − τ)δ̇0(τ ) dτ. (4.84)

Here, t∗(r) is the time moment when the contour of the contact zone first reaches the
point r and is determined by Eq. (4.76), which in the case of a parabolic gap takes
the form

δ0(t∗) = r2

2R
. (4.85)

Finally, according to (4.80), Eq. (4.85) is reduced to the following equation:

Φα(t∗) = π E ′
A0

4F0

r4

h R
.

From here it follows that

t∗(r) = Φ−1
α

(
π E ′

A0r4

4F0h R

)
,
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where Φ−1
α (x) = t is the inverse function with respect to Φα(t) = x .

Now, in light of (4.82), Eqs. (4.80) and (4.70) can be rewritten in the form

δ0(t) = δ0(0
+)

(
Φα(t)

Φα(0)

)1/2

, (4.86)

a(t) = a(0+)

(
Φα(t)

Φα(0)

)1/4

, (4.87)

where δ0(0+) is given by (4.82), and

a(0+) =
(
4RhF0

π E ′
A0

Φα(0)

)1/4

.

Observe that the solution (4.86), (4.87) agrees with the solution obtained by
Naghieh et al. [20] in the axisymmetric isotropic case.

We underline that formulas (4.80), (4.82), (4.83), (4.85)–(4.87) are valid for the
case of the parabolic gap function (4.69), while Eqs. (4.81) and (4.84) have a more
general character.

4.2.7 Monotonically Decreasing Contact Area

Following [9], we consider the case when t > tm (see Fig. 4.5) and the contact radius
a(t) is monotonically decreasing.

Let us rewrite (4.49) in the form

h

E ′
A0

t∫

0−
Φα(t − τ)

∂p

∂τ
(τ, r) dτ = w0(t, r), (4.88)

where
w0(t, r) = δ0(t) − ϕ(r)H (t), r ≤ a(t). (4.89)

Fig. 4.5 A stepwise
non-monotonic history of the
contact radius variation

ttnt'tmt0

a(0+)
a(t)

a(t)

0
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Nowwe can invert the relation (4.88) and write out the obtained result in the form

p(t, r) = E ′
A0

h

tm∫

0−
Ψα(t − τ)

∂w0

∂τ
(τ, r) dτ

+ E ′
A0

h

t∫

tm

Ψα(t − τ)
∂w0

∂τ
(τ, r) dτ. (4.90)

Since the contact pressure is already known on the interval t ∈ (0, tm), the first
term on the right-hand side of Eq. (4.90) is known, and

w0(t, r) = h

E ′
A0

t∫

0−
Φα(t − τ)

∂p

∂τ
(τ, r) dτ, t ∈ (0, tm),

where the contact pressure density p(t, r) is given by formula (4.73). Thus, by
substituting (4.73) into the above equation and making use of the identity (4.47),
which is valid also for the compound relaxation and creep functions, we obtain

w0(t, r) = [
δ0(t) − ϕ(r)H (t)

]
H

(
a(t) − r

)
,

= [
δ0(t) − ϕ(r)H (t)

]
H

(
δ0(t) − ϕ(r)

)
,

= (
δ0(t) − ϕ(r)H (t)

)
+, t ∈ (0−, tm), (4.91)

where (x)+ = (x + |x |)/2 is the positive part function.
On the other hand, the second term on the right-hand side of Eq. (4.90) inside the

contact area is determined by the gap function according to (4.89).
Thus, in light of (4.89) and (4.91), Eq. (4.90) can be further transformed into

p(t, r) = E ′
A0

h

tm∫

0−
Ψα(t − τ)

∂

∂τ

(
δ0(τ ) − ϕ(r)H (τ )

)
+ dτ

+ E ′
A0

h

t∫

tm

Ψα(t − τ)δ̇0(τ ) dτ, r < a(t). (4.92)

Note that the function δ0(τ ), τ ∈ (tm, t), in the second integral on the right-hand
side of (4.92), is not known and should be determined together with the function
a(τ ), τ ∈ (tm, t). We recall that during the process of contact interaction, the contact
approach δ0(t) and the contact radius a(t) are related by Eq. (4.63), which is insuffi-
cient to determine the two functions. The missing equation is obtained by satisfying
the positiveness condition of the right-hand side of Eq. (4.92), that in fact determines
the location of the contact area ω(t).



4.2 Axisymmetric Contact of Thin Compressible Viscoelastic Layers 121

At the time moment t = t ′0 (see Fig. 4.5), the decreasing contact area enters the
instantaneous contact area r < a(0+), which is formed as the result of instantaneous
elastic deformation. Hence, on the time interval t ∈ (t ′0, tn), the right-hand side of
Eq. (4.88) can first be solved by the application of the inverse transform in time [9].
In this way, we calculate the contact pressure

p(t, r) = E ′
A0

h

( t∫

0−
Ψα(t − τ)

∂

∂τ

[
δ0(τ ) − ϕ(r)H (τ )

]
dτ

)

+
, (4.93)

and, correspondingly, the contact radius is given by

a(t) = ϕ−1
(

δ0(0
+) + 1

Ψα(t)

t∫

0−
Ψα(t − τ)δ̇0(τ ) dτ

)

+
. (4.94)

Finally, we emphasize that formulas (4.93) and (4.94) hold true only on the time
interval t ∈ (t ′0, tn), where tn is the extremum of the contact radius a(t) (see Fig. 4.5).

4.2.8 Case of Stepwise Displacement-Controlled Loading

We now consider the situation where the contact approach is applied in a stepwise
manner at the initial moment and then held constant for the rest of the contact
interaction, i.e., δ0(t) = δ0H (t), where δ0 is constant over time.

According to the governing integral equation (4.49), we have

h

E ′
A0

t∫

0−
Φα(t − τ)

∂p

∂τ
(τ, r) dτ = (δ0 − ϕ(r))H (t), r ≤ a(t). (4.95)

By the same argument as that in Sect. 4.2.3, it can be easily shown that the contact
radius a(t) = const, and is determined by the equation ϕ(a) = δ0.

Hence, Eq. (4.95) yields

p(t, r) = E ′
A0

h

t∫

0−
Ψα(t − τ)

∂

∂τ

[(
δ0 − ϕ(r)

)
+H (τ )

]
dτ,

from which it immediately follows that

p(t, r) = E ′
A0

h
Ψα(t)

(
δ0 − ϕ(r)

)
+.
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Thus, in the case of stepwise displacement-controlled loading, the contact area
remains constant, while the contact pressure relaxes as a function of time.

4.3 Axisymmetric Contact of Thin Incompressible
Viscoelastic Layers: Monotonically Increasing Contact
Area

In this section, we obtain closed-form solutions for the contact pressure induced by
the frictionless contact interaction of two thin incompressible transversely isotropic
viscoelastic layers bonded to rigid substrates.

4.3.1 Formulation of the Contact Problem

Wenow consider an axisymmetric contact between two thin linear viscoelastic layers
firmly attached to rigid substrates shaped like bodies of revolution. Introducing the
cylindrical coordinate system, we write the equations of the layer surfaces (before
loading) in the form z = (−1)nϕn(r) (n = 1, 2). The gap function is defined in the
undeformed configuration (see Fig. 4.6) as follows:

ϕ(r) = ϕ1(r) + ϕ2(r).

Denoting the contact approach of the substrates by δ0(t), we write out the lin-
earized unilateral non-penetration condition in the form

δ0(t) − (
w(1)
0 (t, r) + w(2)

0 (t, r)
) ≤ ϕ1(r) + ϕ2(r). (4.96)

According to Eq. (4.34), the vertical displacement of the boundary points of the nth
thin layer, w(n)

0 (t, r), is expressed through the contact pressure p(t, r) as follows:

Fig. 4.6 Two viscoelastic
layers bonded to
axisymmetric rigid
substrates in the undeformed
configuration
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h
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w(n)
0 (t, r) = −h3

n

3

t∫

0−
J ′(n)(t − τ)Δ

∂p

∂τ
(τ, r) dτ. (4.97)

Here, hn is the thickness of the nth layer, J ′(n)(t) is the out-of-plane shear creep
compliance, and Δ is the Laplace operator, which in the axisymmetric case is given
by the following formula:

Δp = 1

r

∂

∂r

(
r
∂p

∂r

)
. (4.98)

The equality in the contact condition (4.96) determines the contact radius a(t). In
other words, the following equation holds within the contact area:

w(1)
0 (t, r) + w(2)

0 (t, r) = δ0(t) − ϕ(r), r ≤ a(t). (4.99)

Substituting the expressions for the displacements w(1)
0 (t, r) and w(2)

0 (t, r) given
by formula (4.97) into Eq. (4.99), and taking into account (4.98), we represent the
contact condition in the form

−
2∑

n=1

h3
n

3

t∫

0−
J ′(n)(t − τ)

1

r

∂

∂r

(
r

∂2 p

∂r∂τ
(τ, r)

)
dτ = δ0(t) − ϕ(r)H (t), (4.100)

where H (t) is the Heaviside function introduced in the usual way, H (t) = 0 for
t < 0 and H (t) = 1 for t ≥ 0.

By letting

J ′(n)(t) = 1

G ′(n)
0

Φ ′(n)(t), (4.101)

where G ′(n)
0 = 1/J ′(n)(0+) is the instantaneous out-of-plane shear elastic modulus

of the nth layer, we introduce the corresponding normalized creep function Φ ′(n)(t).
Furthermore, the compound creep function, Φβ(t), and the equivalent instanta-

neous shear elastic modulus, G ′
0, can be defined as follows:

Φβ(t) = β1Φ
′(1)(t) + β2Φ

′(2)(t), (4.102)

G ′
0 = (h1 + h2)

3G ′(1)
0 G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, (4.103)

β1 = h3
1G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, β2 = h3
2G ′(1)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

. (4.104)
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Observe that formula (4.103) determines the equivalent modulus in such a way that
β1 + β2 = 1 (see Eq. (4.104)) and thus, Φβ(0) = 1.

We proceed by introducing an auxiliary notation

m = 3G ′
0

h3 , (4.105)

where h = h1 + h2 is the joint thickness.
Then, taking into account (4.101)–(4.105), we rewrite Eq. (4.100) as

t∫

0−
Φβ(t − τ)

1

r

∂

∂r

(
r

∂2 p

∂r∂τ
(τ, r)

)
dτ = m

(
ϕ(r)H (t) − δ0(t)

)
. (4.106)

The above equation is used to find the contact pressure p(t, r), while the contact
radius a(t) is determined from the condition that the contact pressure is positive and
vanishes at the contour of the contact area, i.e.,

p(t, r) > 0, r < a(t), p(t, a(t)) = 0. (4.107)

In the case of contact problems for thin incompressible layers (see Sect. 2.7.3 and
[8, 10, 14]), we additionally assume a smooth transition of the contact stresses from
the contact region r < a(t) to the outside region r > a(t) that is

∂p

∂r
(t, r)

∣∣∣∣
r=a(t)

= 0. (4.108)

Furthermore, from the physical point of view, the contact pressure between the
contacting smoothly curved surfaces should satisfy the regularity condition at the
center of the contact area that the even extension p(t, x), x ∈ (−a(t), a(t)), of the
contact pressure density is continuously differentiable. Thus, the following boundary
condition is additionally imposed:

∂p

∂r
p(t, r)

∣∣∣∣
r=0

= 0. (4.109)

Finally, the equilibrium equation for the whole system is given by

2π

a(t)∫

0

p(t, ρ)ρ dρ = F(t), (4.110)

where F(t) denotes the external axial load. We consider the loading histories which
are discontinuous at the initial time t = 0 such that F(t) = 0 for t < 0 and F(t) > 0

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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for t ≥ 0, as the asymptotic model is not capable of describing the contact interaction
when the contact radius is smaller or comparable with the layer thicknesses.

Note also that for non-decreasing loads when d F(t)/dt ≥ 0, the contact radius
is expected to increase monotonously, that is da(t)/dt > 0. This condition must be
checked a posteriori.

Following [3], we derive a general solution for the axisymmetric contact problem
for thin incompressible viscoelastic layers formulated by Eq. (4.106), in the case of
an arbitrary joint geometry and under the assumption of increasing loading.

4.3.2 Equation for the Contact Approach

Integrating Eq. (4.106) with respect to r , we find

t∫

0−
Φβ(t − τ)

∂2 p

∂r∂τ
(τ, r) dτ = m

(
H (t)

r

r∫

0

ϕ(ρ)ρ dρ − r

2
δ0(t)

)
, (4.111)

where the constant of integration vanishes due to the regularity condition (4.109).
After substituting the value r = a(t) into the above equation and taking into

account the boundary conditions (4.107) and (4.108), we transform this equation
into the following:

δ0(t) = 2

a(t)2

a(t)∫

0

ϕ(ρ)ρ dρ. (4.112)

Equation (4.112) connects the contact approach δ0(t) and the unknown contact
radius a(t) of the circular contact area.

4.3.3 Equation for the Radius of the Contact Area

Upon integration with respect to r and changing the order of integration, Eq. (4.111)
takes the form

t∫

0−
Φβ(t − τ)

∂p

∂τ
(τ, r) dτ = m

(
H (t)

r∫

0

ϕ(ρ)ρ ln
r

ρ
dρ − r2

4
δ0(t)

)
+ D2(t).

(4.113)
By using the boundary condition (4.107), the constant of integration D2(t) can

be obtained as a function of the contact radius a(t) in the form
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D2(t) = m

4
δ0(t)a(t)2 − mH (t)

a(t)∫

0

ϕ(ρ)ρ ln
a(t)

ρ
dρ. (4.114)

We now multiply both sides of Eq. (4.113) by r and integrate over the contact
interval (0, a(t)). After changing the order of integration and taking account of
(4.110) and (4.114), we obtain

1

πm

t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ = δ0(t)

a(t)4

8

− H (t)

2

a(t)∫

0

ϕ(ρ)ρ(a(t)2 − ρ2) dρ. (4.115)

Finally, in light of (4.112), the above equation can be simplified to

πm

4
H (t)

a(t)∫

0

ϕ(ρ)ρ
(
2ρ2 − a(t)2

)
dρ =

t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ. (4.116)

Equation (4.116) connects the unknown radius of the contact area a(t) and the
prescribed contact load F(t).

4.3.4 Example: General Paraboloid of Revolution

Let us assume that the gap between the layer surfaces is described by the formula

ϕ(r) = Crλ, (4.117)

where C and λ are constants.
Then, Eqs. (4.112) and (4.116) take the form

δ0(t) = 2C

λ + 2
a(t)λ, (4.118)

πmλCa(t)λ+4

4(λ + 2)(λ + 4)
= f (t), (4.119)
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where we have introduced the notation

f (t) =
t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ. (4.120)

It is readily seen that Eq. (4.119) allows us to determine the contact radius a(t) as
follows:

a(t) =
(4(λ + 2)(λ + 4)

πmλC
f (t)

)1/(λ+4)
. (4.121)

By substituting the obtained solution (4.121) into Eq. (4.118), we derive the fol-
lowing formula for the contact approach:

δ0(t) = 2C

λ + 2

(4(λ + 2)(λ + 4)

πmλC
f (t)

)λ/(λ+4)
. (4.122)

We recall that formula (4.120) can be rewritten as

f (t) = Φβ(t)F(0+) +
t∫

0

Φβ(t − τ)Ḟ(τ ) dτ. (4.123)

Since we consider monotonic loading (i.e., the contact force function F(t) does
not decrease with time), the utilized mathematical model of contact shows (see,
in particular, Eqs. (4.121) and (4.123)) that the contact radius a(t) will also be
increasing.

4.3.5 Contact Pressure Distribution

By taking formula (4.114) into account, we can rewrite Eq. (4.113) as follows:

t∫

0−
Φβ(t − τ)

∂p

∂τ
(τ, r) dτ = m

4
δ0(t)

(
a(t)2 − r2

)

− mH (τ )Θ
(
a(t), r

)
, r ≤ a(t). (4.124)

The new notation Θ(a, r) is given by

Θ(a, r) =
a∫

0

ϕ(ρ)ρ ln
a

ρ
dρ −

r∫

0

ϕ(ρ)ρ ln
r

ρ
dρ,
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and in the special case (4.117), we have

Θ(a, r) = C

(λ + 2)2
(
aλ+2 − rλ+2).

For an arbitrary r > 0, formula (4.124) can be generalized to

t∫

0−
Φβ(t − τ)

∂p

∂τ
(τ, r) dτ = m

4
δ0(t)

(
a(t)2 − r2

)
+

− mH (τ )Θ
(
a(t), r

)
H

(
a(t) − r

)
. (4.125)

Therefore, by inverting Eq. (4.125), we obtain

p(t, r) = m

t∫

0−
Ψβ(t − τ)

∂

∂τ

{[
1

4
δ0(τ )

(
a(τ )2 − r2

)

−H (τ )Θ
(
a(τ ), r

)]
H

(
a(τ ) − r

)}
dτ. (4.126)

Here, Ψβ(t) is the corresponding compound relaxation function determined by its
Laplace transform

Ψ̃β(s) = 1

s2Φ̃β(s)
. (4.127)

Formula (4.126) is the sought-for general solution of Eq. (4.124). Note also that,
since

Φ̃β(s) = β1Φ̃
′(1)(s) + β2Φ̃

′(2)(s)

and

Φ̃ ′(n)(s) = 1

s2Ψ̃ ′(n)(s)
,

where Ψ̃ ′(n)(s) is the Laplace transform of the normalized relaxation function in
out-of-plane shear Ψ ′(n)(t) for the nth layer, formula (4.127) can be rewritten as

Ψ̃β(s) = Ψ̃ ′(1)(s)Ψ̃ ′(2)(s)
β1Ψ̃ ′(2)(s) + β2Ψ̃ ′(1)(s)

(4.128)

while the coefficients β1 and β2 are given by (4.104).
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4.3.6 Example: Paraboloid of Revolution

This is a special case of the more general situation considered in Sect. 4.3.4, where

ϕ(r) = r2

2R

and R is a positive constant.
So, making use of the substitution C = (2R)−1 and λ = 2, we have reduced

Eqs. (4.118), (4.121), and (4.122) respectively to the following relations:

δ0(t) = a(t)2

4R
, (4.129)

a(t) =
(96R

πm
f (t)

)1/6
, (4.130)

δ0(t) = 1

2R

(12R

πm
f (t)

)1/3
. (4.131)

where the quantity f (t) is related to the contact load F(t) through Eq. (4.120).
Furthermore, in light of (4.126) and (4.129), the contact pressure is given by

p(t, r) = m

32R

t∫

0−
Ψβ(t − τ)

∂

∂τ

{(
a(τ )2 − r2

)2
+H (τ )

}
dτ. (4.132)

Observe that, as we are considering the case of a stepwise loading, the function
δ0(τ ) can be replaced with δ0(τ )H (τ ) in (4.126) in order to simplify the integrand
in (4.132). Note also that the effect of the multiplier H

(
a(τ ) − r

)
is introduced

through the the positive part function (x)+ = (x + |x |)/2.

4.4 Axisymmetric Refined Contact Problem for a Thin
Bonded Incompressible Viscoelastic Layer with
Allowance for Tangential Displacements on the Contact
Surface

In this section, the frictionless unilateral axisymmetric contact problem for a thin
incompressible viscoelastic layer indented by a rigid punch is considered. The refined
linearized contact condition, which takes into account both the radial and tangential
displacements of the boundary points of the viscoelastic layer, is imposed and an
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approximate analytical solution is constructed under the assumption that the contact
area increases with time under a non-decreasing external loading.

4.4.1 Refined Formulation of the Contact Problem

We consider a thin incompressible transversely isotropic linear viscoelastic layer
indented by a punch shaped like a body of revolution. Introducing the cylindrical
coordinate system, we write the equation of the punch surface (before loading) in the
form z = −ϕ(r), so that the punch occupies a convex domain z ≤ −ϕ(r) whereas
it is in contact with the plane z = 0 at a single point chosen as the origin of the
coordinate system (r, z).

In the case of the punch shaped like a paraboloid of revolution, we have

ϕ(r) = r2

2R
, (4.133)

where R is the curvature radius of the punch surface at its apex.
We denote the vertical displacement of the punch by δ0(t) (see Fig. 4.7). The

refined unilateral contact condition that the surface points of the viscoelastic layer
(under loading) do not penetrate into the punch can be written as follows [16]:

w0(t, r) ≥ δ0(t) − ϕ
(
r + v0(t, r)

)
. (4.134)

According to the perturbation analysis carried out in Sect. 2.5 and the elastic-
viscoelastic correspondence principle formulated in Sect. 4.1.2, the leading-order
asymptotic approximations for the vertical and the radial horizontal displacements
of the boundary points of the viscoelastic layer,w0(t, r) and v0(t, r), in the cylindrical
coordinates can be expressed as follows:

w0(t, r) = −h3

3

t∫

0−
J ′(t − τ)Δ

∂p

∂τ
(τ, r) dτ, (4.135)

v0(t, r) = −h2

2

t∫

0−
J ′(t − τ)

∂2 p

∂r∂τ
(τ, r) dτ. (4.136)

Fig. 4.7 A thin
incompressible viscoelastic
layer indented by a rigid
punch

z

r

a

F(t)

δ0 (t)
(t)h

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Here, h is the thickness of the viscoelastic layer, J ′(t) is the out-of-plane shear creep
compliance, and Δ is the Laplacian, which in the axisymmetric case is defined by

Δp = 1

r

∂

∂r

(
r
∂p

∂r

)
.

The equality in relation (4.134) determines the contact area, and the following
equation holds within the contact interval:

w0(t, r) − δ0(t) + ϕ
(
r + v0(t, r)

) = 0, r ≤ a(t). (4.137)

We assume that the tangential displacement v0(t, r) is small compared to the
contact radius a(t). In this case, the nonlinear equation (4.137) can be replaced by
the following linearized contact condition (see also Sect. 1.3):

w0(t, r) − δ0(t) + ϕ(r) + dϕ(r)

dr
v0(t, r) = 0, r ≤ a(t).

In light of formula (4.133), the above equation takes the form

w0(t, r) + r

R
v0(t, r) = δ0(t) − r2

2R
, r ≤ a(t). (4.138)

Substituting the expressions (4.135) and (4.136) into Eq. (4.138), we write the
governing integral equation in the following form (r ≤ a(t)):

h3

3

t∫

0−
J ′(t − τ)

∂

∂τ

{
1

r

∂

∂r

(
r
∂p

∂r
(τ, r)

)
+ 3r

2h R

∂p

∂r
(τ, r)

}
dτ = ϕ(r)H (t) − δ0(t).

(4.139)
Here, H (t) is the Heaviside function introduced in the standard way such that
H (t) = 0 for t < 0 and H (t) = 1 for t ≥ 0.

By letting

J ′(t) = 1

G ′
0
Φ(t), (4.140)

where G ′
0 = 1/J ′(0+) is the instantaneous out-of-plane shear elastic modulus of the

viscoelastic layer, we introduce the corresponding normalized creep function Φ(t).
To simplify our formulas, for any function of time and position, q(t, r), we intro-

duce the notation

K q(τ, r) =
t∫

0−
Φ(t − τ)

∂q

∂τ
(τ, r) dτ. (4.141)

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Therefore, the operator equation K q(τ, r) = Q(t, r) can be inverted to obtain
q(t, r) = K −1Q(τ, r), where

K −1Q(τ, r) =
t∫

0−
Ψ (t − τ)

∂ Q

∂τ
(τ, r) dτ (4.142)

and Ψ (t) denotes the normalized relaxation function in out-of-plane shear.
Thus, in light of (4.133) and (4.141), Eq. (4.139) can be written in the form

K

{
1

r

∂

∂r

(
r
∂p

∂r
(τ, r)

)
+ κr

∂p

∂r
(τ, r)

}
= m

(
Cr2H (t) − δ0(t)

)
, (4.143)

where κ, m, and C are dimensional constants given by

κ = 3

2h R
, m = 3G ′

0

h3 , C = 1

2R
. (4.144)

Equation (4.143) is used to find the contact pressure density p(t, r), 0 ≤ r ≤ a(t).
The radius of the contact area a(t) is determined from the condition that the contact
pressure is positive and vanishes at the contour of the contact area, that is

p(t, r) > 0, r < a(t); p(t, a(t)) = 0. (4.145)

In the case of a thin incompressible layer, we additionally assume a smooth tran-
sition of the contact pressure from the contact region r < a(t) to the outside region
r > a(t), i.e., the following zero-pressure-gradient boundary condition is imposed
(see Sect. 2.7.3 and [1, 10]):

∂p(t, r)

∂r

∣∣∣∣
r=a(t)

= 0. (4.146)

Moreover, from the physical point of view, the contact pressure under an axisym-
metric blunt punch should satisfy the regularity condition

∂p(t, r)

∂r

∣∣∣∣
r=0

= 0. (4.147)

Finally, the equilibrium equation for the whole system is

2π

a(t)∫

0

p(t, ρ)ρ dρ = F(t), (4.148)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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where F(t) denotes the external load such that F(t) = 0 for t < 0 and F(t) > 0 for
t ≥ 0 with F(0+) > 0.

For non-decreasing loads, when d F(t)/dt ≥ 0, the contact area increases
monotonically, i.e., the following monotonicity condition holds [25]:

da(t)

dt
> 0, t ∈ (0,+∞). (4.149)

This condition must be checked a posteriori.
It can be seen from formulas (4.135) and (4.136) that the tangential displacement

v0(t, r) is an order of magnitude greater than the normal displacement w0(t, r),
due to the multipliers h2 and h3, respectively. Thus, the formulation of the contact
problemwithout the tangential displacement contradictswith the notion of neglecting
terms that could contribute significantly in certain configurations. This begs the
question of whether and how the tangential displacements influence the parameters
of the contact pressure distribution. It is clear that the inclusion of the tangential
displacements makes the contact problem formulation more precise, at the cost of
increased difficulty in solving, and requires a much more elaborate approach in
finding an analytical solution.

4.4.2 Equation for the Punch Displacement

Integrating Eq. (4.143) with respect to r , we obtain

K

{
r
∂p(τ, r)

∂r
+ κ

r∫

0

ρ2 ∂p(τ, ρ)

∂ρ
dρ

}
= m

4

(
Cr4 − 2δ0(t)r

2), (4.150)

where the constant of integration D1(t)vanishes in accordancewith the regularization
condition (4.147) at r = 0.

We transform the second integral in (4.150) by integration by parts

r∫

0

ρ2 ∂p(τ, ρ)

∂ρ
dρ = r2 p(τ, r) − 2

r∫

0

p(τ, ρ)ρ dρ.

Thus, Eq. (4.150) becomes

K

{
∂p(τ, r)

∂r
+ κ

(
r p(τ, r) − 2

r

r∫

0

p(τ, ρ)ρ dρ

)}
= m

4

(
Cr3 − 2δ0(t)r

)
. (4.151)
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Substituting the value r = a(t) into the above equation and taking into account
the corresponding boundary conditions (4.145) and (4.146), we obtain

− 2κ

a(t)
K

a(t)∫

0

p(τ, ρ)ρ dρ = m

4

(
Ca(t)3 − 2δ0(t)a(t)

)
. (4.152)

Further, by definition (4.141), we have

K

a(t)∫

0

p(τ, ρ)ρ dρ =
t∫

0−
Φ(t − τ)

∂

∂τ

a(t)∫

0

p(τ, ρ)ρ dρdτ

=
t∫

0−
Φ(t − τ)

∂

∂τ

a(τ )∫

0

p(τ, ρ)ρ dρdτ,

where the monotonicity condition (4.149) was taken into account.
Thus, Eq. (4.152) reduces to

− 2κ

a(t)
K

a(τ )∫

0

p(τ, ρ)ρ dρ = m

4

(
Ca(t)3 − 2δ0(t)a(t)

)
, (4.153)

and, as a consequence of (4.148), takes the form

δ0(t) = C
a(t)2

2
+ 2κ

m

1

πa(t)2
K F(τ ). (4.154)

Equation (4.154) connects the unknown contact radius, the unknown punch dis-
placement δ0(t), and the contact load F(t).

4.4.3 Equation for the Radius of Contact Area

We now return to Eq. (4.151) and integrate with respect to r to obtain

K

{
p(τ, r) + κ

( r∫

0

p(τ, ρ)ρ dρ − 2

r∫

0

1

ρ

ρ∫

0

p(τ, ξ)ξ dξdρ

)}

= m

16

(
Cr4 − 4δ0(t)r

2) + D2(t). (4.155)



4.4 Axisymmetric Refined Contact Problem … 135

Changing the order of integration in the second integral, we arrive at the formula

r∫

0

1

ρ

ρ∫

0

p(τ, ξ)ξ dξdρ =
r∫

0

p(τ, ρ)ρ ln
r

ρ
dρ.

Then, taking into account the above formula, we rewrite Eq. (4.155) in the form

K

{
p(τ, r) + κ

( r∫

0

p(τ, ρ)ρ dρ − 2

r∫

0

p(τ, ρ)ρ ln
r

ρ
dρ

)}

= m

16

(
Cr4 − 4δ0(t)r

2) + D2(t). (4.156)

By using the boundary condition (4.145), the constant of integration in the above
equation can be evaluated as follows:

D2(t) = m

4
δ0(t)a(t)2 − m

16
Ca(t)4 + κ

2π
K F(τ )

− 2κK

a(τ )∫

0

p(τ, ρ)ρ ln
a(t)

ρ
dρ. (4.157)

Further, by multiplying both sides of Eq. (4.156) by r and integrating over the
current contact interval (0, a(t)), we obtain

1

2π
K F(τ ) + κK

{ a(t)∫

0

ρ

ρ∫

0

p(τ, ξ)ξ dξdρ

− 2

a(t)∫

0

ρ

ρ∫

0

p(τ, ξ)ξ ln
ρ

ξ
dξdρ

}

= m

(
C

a(t)6

96
− δ0(t)

a(t)4

16

)
+ a(t)2

2
D2(t), (4.158)

and by changing the order of integration, we obtain

1

2π
K F(τ ) + κK

{
1

2

a(τ )∫

0

p(τ, ξ)ξ
(
a(t)2 − ξ2

)
dξ

−
a(τ )∫

0

p(τ, ξ)ξ

(
a(t)2 ln

a(t)

ξ
− 1

2

(
a(t)2 − ξ2

))
dξ

}
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= m

(
C

a(t)6

96
− δ0(t)

a(t)4

16

)
+ a(t)2

2
D2(t).

In light of (4.148) and (4.157), we reduce the above equation to the form

K F(τ ) + κK

(
a(t)2

2
F(τ ) − 2π

a(τ )∫

0

p(τ, ρ)ρ3 dρ

)

= πm

(
δ0(t)

a(t)4

8
− C

a(t)6

24

)
.

Finally, taking into account Eq. (4.154), we obtain

πm

48
Ca(t)6 = K F(τ )

+ κK

(
a(t)2

4
F(τ ) − 2π

a(τ )∫

0

p(τ, ρ)ρ3 dρ

)
. (4.159)

Since we consider a monotonic loading (the function F(t) does not decrease with
time), the function a(t) will also be increasing.

4.4.4 Contact Pressure

Returning to Eq. (4.143), we introduce a new dependent variable y(t, r) such that

y(t, r) = r
∂p(t, r)

∂r
. (4.160)

Using the substitution (4.160), we can represent Eq. (4.143) in the form

K

(
1

r

∂y(τ, r)

∂r
+ κy(t, r)

)
= m f (t, r), (4.161)

where
f (t, r) = (

Cr2 − δ0(t)
)
H

(
a(t) − r

)
. (4.162)

By applying the Laplace transform to both sides of Eq. (4.161), we obtain

sΦ̃(s)

(
1

r

d ỹ

dr
+ κ ỹ

)
= m f̃ (s, r), (4.163)
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where the tilde denotes the time Laplace transform and s is the Laplace transform
variable. Note that all these functions should be analytic in the half-plane 
s > 0.

The general solution to the homogeneous equation corresponding to Eq. (4.163)
has the form

ỹ0(s, r) = C0(s) exp
(
−κ

2
r2

)
, (4.164)

where C0(s) is an integration variable.
Now, applying Lagrange’s method of variation of parameters, and taking into

account the regularity condition (4.147), now given by

ỹ(s, r) = O(r2), r → 0, (4.165)

we obtain the following particular solution of Eq. (4.163), which is valid for arbitrary
r ≥ 0:

ỹ(s, r) = m exp
(
−κ

2
r2

) r∫

0

exp
(

κ

2
ξ2

)ξ f̃ (s, ξ)

sΦ̃(s)
dξ. (4.166)

Under the assumption of monotonic loading and as a result of increasing contact
radius a(t), we compute the Laplace transform of the right hand-side of Eq. (4.161)
as follows:

f̃ (s, r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cr2
s − δ̃0(s), 0 ≤ r ≤ a0,

Cr2

s
exp

(−st∗(r)
) −

∞∫

t∗(r)

exp(−st)δ0(t) dt, r ≥ a0.
(4.167)

Here, a0 = a(0+) is the radius of the instantaneous contact area, and t∗(r) is the
time when the contour of the contact area first reaches the point r .

If we denote by t = a−1(r) the inverse to the function r = a(t), then we have

t∗(r) =
{
0, 0 ≤ r ≤ a0,
a−1(r), a0 ≤ r.

(4.168)

We note that the solution to Eq. (4.161) is different from zero only in the domain
Ω0

⋃
Ω+, as illustrated on Fig. 4.8. This problem must be considered separately for

Fig. 4.8 Support domain of
the solution to Eq. (4.161)

t

+_

r

r=a(t)

a0
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each domain. We finally note that when the parameter κ in its dimensionless form
is reasonably small, an approximate equation for the contact radius can be derived
from Eq. (4.159). For more details we refer to [5, 19].

4.5 Elliptical Contact of Thin Bonded Incompressible
Viscoelastic Layers: Monotonically Increasing
Contact Area

In this section, an exact solution for the frictionless unilateral contact problem for
two thin incompressible transversely isotropic viscoelastic layers bonded to rigid
substrates is obtained in the framework of the leading-order asymptotic model, under
the assumption of a monotonically increasing contact area.

4.5.1 Formulation of the Contact Problem

Consider two thin viscoelastic layers of uniform thicknesses h1 and h2, ideally
bonded to rigid substrates, and touching at a single point in the undeformed con-
figuration (see Fig. 4.9). Let ϕ(y) denote the gap between the layer surfaces before
deformation. Here, following Argatov and Mishuris [6, 7], we consider a special
case, where the gap function is represented by an elliptic paraboloid

ϕ(y) = y21
2R1

+ y22
2R2

, (4.169)

and R1 and R2 are positive constants having dimensions of length.
Let δ0(t) and w(n)

0 (t, y) denote, respectively, the contact approach of the rigid
substrates under external loading and the corresponding local indentation of the nth
layer. Then, inside the contact area, ω(t), which is assumed to be a function of the
time variable t , we impose the contact condition

w(1)
0 (t, y) + w(2)

0 (t, y) = δ0(t) − ϕ(y), y ∈ ω(t). (4.170)

y1

z

2

1

(y)

Fig. 4.9 Contact of two thin viscoelastic layers in the initial undeformed configuration, with the
variable initial gap function ϕ(y) measured along the common normal axis z
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In the case of unilateral contact, the contact pressure between the viscoelastic
layers, p(y), is assumed to be positive inside the contact area ω(t) and to satisfy the
following boundary conditions (see Sect. 2.7.3 and [1, 10, 14]):

p(t, y) = 0,
∂p

∂n
(t, y) = 0, y ∈ Γ (t). (4.171)

Here, ∂/∂n is the normal derivative at the contour Γ (t) of the domain ω(t).
According to Eq. (4.34), the vertical displacement of the surface points of the nth

layer of a thin bonded incompressible transversely isotropic viscoelastic layer can
be approximated by

w(n)
0 (t, r) = −h3

n

3

t∫

0−
J ′(n)(t − τ)Δy

∂p

∂τ
(τ, y) dτ, (4.172)

where J ′(n)(t) is the out-of-plane creep compliance in shear of the nth layer.
By substituting the asymptotic approximations (4.172) into (4.170), we arrive at

the governing integro-differential equation

−
2∑

n=1

h3
n

3

t∫

0−
J ′(n)(t − τ)Δy

∂p

∂τ
(τ, y) dτ = δ0(t) − ϕ(y)H (t), (4.173)

where y ∈ ω(t), and the Heaviside function factorH (t) takes into account the zero
initial conditions for t < 0.

Finally, denoting the external load applied to the substrates by F(t), we write out
the equilibrium equation

F(t) =
∫∫

ω(t)

p(t, y) dy. (4.174)

The unilateral contact problem under consideration thus consists in finding his-
tories δ0(t), ω(t), p(t, y) which, for given ϕ(y), known J ′(n)(t), n = 1, 2, and
prescribed F(t), satisfy (4.171), (4.173), and (4.174).

We retain the notation used in Sect. 4.3 and rewrite Eq. (4.173) as

−
t∫

0−
Φβ(t − τ)Δy

∂p

∂τ
(τ, y) dτ = m

(
δ0(t) − ϕ(y)H (t)

)
. (4.175)

Here, Φβ(t) is the normalized (Φβ(0) = 1) compound creep function and m is a
dimensional constant given by (4.102)–(4.105).

Following [6, 7], we derive an exact solution of the contact problem for thin
bonded incompressible viscoelastic layers, which is formulated by Eqs. (4.171) and

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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(4.175) in the case of an elliptic gap (4.169), under the monotonicity condition for
the contact area, that is ω(t1) ⊂ ω(t2) for t1 ≤ t2.

4.5.2 General Solution for the Case of Elliptical Contact

Let us rewrite Eq. (4.175) in the form

ΔyP(t, y) = m
(
ϕ(y)H (t) − δ0(t)

)
, y ∈ ω(t), (4.176)

where we have introduced the notation

P(t, y) =
t∫

0−
Φβ(t − τ)

∂p

∂τ
(τ, y) dτ. (4.177)

As a consequence of (4.171), the function P(t, y) must satisfy the following
boundary conditions:

P(t, y) = 0, y ∈ Γ (t),
∂P

∂n
(t, y) = 0, y ∈ Γ (t). (4.178)

In the case (4.169), the right-hand side of Eq. (4.176) is a quadratic polynomial
in the variables y1 and y2, and we set

P(t, y) = P0(t)

(
1 − y21

a(t)2
− y22

b(t)2

)2

, y ∈ ω(t). (4.179)

It is simple to verify that the function (4.179) satisfies the boundary conditions (4.178)
exactly.

The representation (4.179) assumes that the contour Γ (t) is an ellipse with the
semi-axes a(t) and b(t). Moreover, for y �∈ ω(t), we should have P(t, y) = 0.
Thus, the function P(t, y) determined by (4.179) for y ∈ ω(t) can be extended on
the entire plane of variable y = (y1, y2) by the multiplication of the right-hand side
of (4.179) by the factor H

(
1 − y21/a(t)2 − y22/b(t)2

)
, that is

P(t, y) = P0(t)Ξ(t, y)2H
(
Ξ(t, y)

)
, y ∈ R

2, (4.180)

where we have introduced the notation

Ξ(t, y) = 1 − y21
a(t)2

− y22
b(t)2

. (4.181)
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Substituting (4.180) into Eq. (4.176), we obtain after some calculation the follow-
ing system of algebraic equations:

δ0(t) = 4P0(t)

m

(
1

a(t)2
+ 1

b(t)2

)
, (4.182)

1

2R1
= 4P0(t)

ma(t)2

(
3

a(t)2
+ 1

b(t)2

)
, (4.183)

1

2R2
= 4P0(t)

mb(t)2

(
1

a(t)2
+ 3

b(t)2

)
. (4.184)

The form of the ellipse Γ (t) can be characterized by its aspect ratio s, defined as
follows:

s = b(t)

a(t)
. (4.185)

From Eqs. (4.183) and (4.184), it immediately follows that

R2

R1
= s2(3s2 + 1)

3 + s2
, (4.186)

and it is readily seen that Eq. (4.186) can be reduced to a quadratic equation for s2

3s4 +
(
1 − R2

R1

)
s2 − 3R2

R1
= 0.

In this way we immediately obtain

s2 =
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
. (4.187)

Further, in light of (4.183)–(4.185), Eq. (4.182) takes the form

δ0(t) = a(t)2

2R1

(s2 + 1)

(3s2 + 1)
. (4.188)

From Eq. (4.183) it follows that

P0(t) = ma(t)4

8R1

s2

(3s2 + 1)
. (4.189)
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As a consequence of (4.177), the contact force F(t) satisfies the equation

t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ = πm

24R1

s3

(3s2 + 1)
a(t)6. (4.190)

Thus, the major semi-axis a(t) of the contact domain ω(t) can be determined as
a function of time t in the following way:

a(t) =
[
24R1

πm

(3s2 + 1)

s3

]1/6( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)1/6

. (4.191)

Then, formulas (4.188) and (4.189) allow us to determine the quantities δ0(t) and
P0(t), respectively.

Let us denote by Ψβ(t) the normalized compound relaxation function for the
viscoelastic incompressible layers defined by formula (4.127) or, equivalently, by
formula (4.128).

Then, according to Eqs. (4.177) and (4.180), the contact pressure distribution is
given by

p(t, y) =
t∫

0−
Ψβ(t − τ)

∂

∂τ

{
P0(τ )Ξ(τ, y)2H

(
Ξ(τ, y)

)}
dτ. (4.192)

The application of integration by parts to (4.192) yields

p(t, y) = P0(t)Ξ(t, y)2

−
t∫

0+

∂Ψβ

∂τ
(t − τ)P0(τ )Ξ(τ, y)2H

(
Ξ(τ, y)

)
dτ. (4.193)

Recall that Ψβ(0) = 1, and formula (4.193) assumes that p(t, y) = 0 for y �∈ ω(t).
Denoting by t∗(y) the time when the contour of the contact zone first reaches the

point y, we rewrite formula (4.193) as follows:

p(t, y) = P0(t)Ξ(t, y)2 −
t∫

t∗(y)

∂Ψβ

∂τ
(t − τ)P0(τ )Ξ(τ, y)2dτ. (4.194)

The quantity t∗(y) is determined by the equation

a(t∗)2 = y21 + s−2y22 . (4.195)
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Substituting the expression (4.191) into Eq. (4.195), we arrive at the equation

t∗∫

0−
Φβ(t∗ − τ)

d F(τ )

dτ
dτ = πm

24R1

s3

(3s2 + 1)

(
y21 + y22

s2

)3
. (4.196)

We note that formula (4.194) assumes that t∗(y) = 0 for the points of the instan-
taneous contact area ω(0+). In the following, the quantity t∗(y) will be called the
time-to-contact for the point y.

4.5.3 Case of Stepwise Loading

Assuming that
F(t) = F0H (t), (4.197)

and using Eqs. (4.188) and (4.191), we find that

δ0(t) = δ0(0
+)

(
Φα(t)

Φα(0)

)1/3

H (t), (4.198)

a(t) = a(0+)

(
Φα(t)

Φα(0)

)1/6

H (t), (4.199)

P0(t) = P0(0
+)

(
Φα(t)

Φα(0)

)2/3

H (t), (4.200)

where

δ0(0
+) =

( 3

πm R2
1

)1/3 (s2 + 1)

s(3s2 + 1)2/3
(
F0Φβ(0)

)1/3
, (4.201)

a(0+) =
[

πm

24R1

s3

(3s2 + 1)

]−1/6(
F0Φβ(0)

)1/6
, (4.202)

P0(0
+) =

( 9m

π2R1

)1/3 s2

s2(3s2 + 1)1/3
(
F0Φβ(0)

)2/3
. (4.203)

Equation (4.202) determines the major semi-axis of the instantaneous contact
domain ω(0+). For y lying outside ω(0+), the quantity t∗(y) satisfies Eq. (4.195).
From Eqs. (4.202) and (4.195), it follows that
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t∗(y) = Φ−1
β

(
Φβ(0)

a6(0+)

(
y1 + y22

s2

)2)
, (4.204)

where Φ−1
β (x) = t is the inverse function with respect to Φβ(t) = x .

4.5.4 Axisymmetric Contact Problem for Incompressible
Coatings: Case of Stepwise Loading

Axisymmetric indentation problems for a viscoelastic layer have been considered
in papers [20, 21] for the special cases of the Maxwell model and the standard
viscoelastic solid model. Now, let us set R1 = R2 = R. Consequently, we obtain
s = 1, and Eqs. (4.201)–(4.203), respectively, take the form

δ0(0
+) =

( 3

2πm R2
1

)1/3(
F0Φβ(0)

)1/3
, (4.205)

a(0+) =
( πm

96R1

)−1/6(
F0Φβ(0)

)1/6
, (4.206)

P0(0
+) =

( 18m

π2R1

)1/3(
F0Φβ(0)

)2/3
. (4.207)

According to (4.194), the axisymmetric contact pressure distribution is given by
the following formula (cf. Sect. 4.3.6):

p(r, t) = Ψβ(0)P0(t)
(
1 − r2

a(t)2

)2 −
t∫

t∗(r)

∂Ψβ

∂τ
(t − τ)P0(τ )

(
1 − r2

a(τ )2

)2
dτ.

(4.208)

Here, r =
√

y21 + y22 is the radial coordinate, and in light of (4.204), the time-to-

contact for all points on the circle of radius r > a(0+) is given by

t∗(r) = Φ−1
β

( Φβ(0)

a(0+)6
r6

)
. (4.209)

Formulas (4.205)–(4.209) are valid for the stepwise loading (4.197). In the general
case of the axisymmetric contact problem, the solution can be easily derived using
formulas (4.188), (4.191), (4.194), and (4.196) with s = 1 and y21 + y22 = r2.
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4.5.5 Case of Incompressible Layers Following the Maxwell
Model

Recall that the Maxwell model is represented by the series combination of an elastic
spring and a dashpot, and can be characterized by the following normalized creep
and relaxation functions:

Φ ′(n)(t) = 1 + t

τ
(n)
0

, Ψ ′(n)(t) = exp
(
− t

τ
(n)
0

)
, (4.210)

where τ
(n)
0 is the relaxation time of the viscoelastic material of the nth layer. Note

that the concept of the relaxed state for the Maxwell model is not applicable.
According to (4.102), the normalized compound creep function is given by

Φβ(t) = 1 + t

τ0
,

where τ0 is defined by the formula

1

τ0
= β1

τ
(1)
0

+ β2

τ
(2)
0

for β1 and β2 given by (4.104).
Correspondingly, in light of (4.210), the normalized compound relaxation function

is simply

Ψβ(t) = exp
(
− t

τ0

)
,

which agrees with formula (4.128).
Taking into account that p(t, y) = 0 for t < 0, we can rewrite Eq. (4.175) as

Δy p(t, y) + 1

τ0

t∫

0

Δy p(τ, y) dτ = m
(
ϕ(y)H (t) − δ0(t)

)
. (4.211)

Weobserve that Eq. (4.211) coincideswith the governing integral equation derived
as a result of asymptotic analysis in [1] for describing the short-time contact of thin
biphasic cartilage layers.

In light of (4.210), formula (4.194) takes the form

p(t, y) = P0(t)Ξ(t, y)2 − 1

τ0

t∫

t∗(y)

P0(τ )Ξ(τ, y)2 exp
(
− t − τ

τ0

)
dτ, (4.212)
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where the factor Ξ(t, y) is given by formula (4.181), and where P0(t), a(t), and
b(t) satisfy Eqs. (4.182)–(4.184). Apart from the notation, formula (4.212) coincides
with the solution obtained in [6].

4.5.6 Force-Displacement Relationship

Excluding a(t) from (4.190) and (4.188), we arrive at the following equation [4]:

F(t) = 2π

3
cF (s)m R1R2

t∫

0−
Ψβ(t − τ)

d

dτ

(
δ0(τ )3

)
dτ. (4.213)

Here, cF (s) is dimensionless factor, which depends on the aspect ratio of the contact
area s = b/a (see formula (4.187)) and is given by

cF (s) = s(3s2 + 1)(s2 + 3)

2(s2 + 1)3
.

We note that Eq. (4.213) is valid for the contact interaction that consists of a
monotonic loading phase. Thus, it can be applied to modeling contact forces in
impact situations, whereas the case of repetitive loading requires a special further
consideration.
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Chapter 5
Linear Transversely Isotropic Biphasic
Model for Articular Cartilage Layer

Abstract In Sect. 5.1, we develop a linear biphasic theory for the case of a trans-
versely isotropic elastic solid matrix with transverse isotropy of permeability. In
Sects. 5.2 and 5.3, we consider the linear biphasic models of confined and uncon-
fined compression, respectively, for the biphasic stress relaxation and the biphasic
creep tests. Finally, in Sect. 5.4we outline the biphasic poroviscoelasticmodel, which
accounts for the inherent viscoelasticity of the solid matrix.

5.1 Linear Biphasic Model

In this section we introduce the linear biphasic theory, which models articular carti-
lage as a binary mixture of an intrinsically incompressible elastic matrix (skeleton)
and an inviscid (i.e., dissipationless) incompressible fluid. We also present and dis-
cuss the formulation of the governing differential equations along with the different
types of boundary conditions.

5.1.1 Linear Biphasic Theory

According to the biphasic theory of Mow et al. [60], articular cartilage is modeled
as a biphasic mixture consisting of a solid phase (representing collagen, proteogly-
cans, chrondrocytes, and other quantitatively minor glycoproteins) and a fluid phase
(representing mobile interstitial fluid and dissolved electrolytes). The fluid phase
typically ranges between 65 and 90% of the articular cartilage tissue by weight [8].

Note also that various biphasic and poroelastic models were used to describe the
deformation behavior of bone [20], skin [62], polymeric and silk hydrogels [16, 42],
and arterial walls [40]. An overview of computational models for the mechanical
behavior of articular cartilage was given in [27, 49, 76].

Let the fluid volume fraction (porosity) be denoted by φf = Vf/V , and the solid
volume fraction be φs = Vs/V , where Vf + Vs = V , so that

© Springer International Publishing Switzerland 2015
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φf + φs = 1. (5.1)

The continuity equation for a biphasic medium is

∇ · (φfvf + φsvs) = 0, (5.2)

where vf and vs are solid and fluid velocities, ∇ is the gradient operator.
Under quasi-static conditions, and in the absence of body forces, the momentum

equations for each phase are given by

∇ · σ s − π f = 0,

∇ · σ f + π f = 0,
(5.3)

where π f is the momentum exchange between the phases due to frictional drag of
relative fluid flow through the porous-permeable solid matrix. In articular cartilage,
it has been shown [35] that this momentum exchange term creates a frictional drag
several orders ofmagnitude greater than the viscous shear stress within the interstitial
fluid due to the viscosity of the fluid. The internal fluid viscosity can usually be
neglected except for very small layers of very permeable materials [11].

Thus, neglecting the frictional dissipation between the fluid particles, the intersti-
tial water is assumed to be inviscid, and the fluid phase stress is given by

σ f = −φf pI. (5.4)

Here, p is the fluid pressure, I is the identity tensor.
The single pore-fluid flow is governed by the local interaction force per unit

volume defined as follows [12, 55, 65]:

π f = −K · (vf − vs). (5.5)

Here, K represents a hydraulic resistivity (or inverse permeability) tensor, which is
related to the permeability tensor, k, through

K = φ2
f k−1, (5.6)

and apparently depends on the deformable pore structure and the interstitial fluid
properties [58, 59, 67]. Note also that the permeability of the tissue decreases when
the pore volume decreases [24, 33].

Generally,k is a positive definite and symmetric tensor. For a transversely isotropic
skeleton, if x3 = 0 is the plane of isotropy, the matrix of the permeability tensor takes
the form

k =
⎛
⎝

k1 0 0
0 k1 0
0 0 k3

⎞
⎠ .



5.1 Linear Biphasic Model 151

As was shown in [25], the transverse isotropy of permeability in articular cartilage
is caused by its microstructural anisotropy. In particular, the permeability is greater
in the direction parallel to the collagen fibres than the orthogonal.

In the isotropic case [44], K = K I, where K is the diffusion coefficient and is
related to the permeability coefficient of the solid matrix, k, by k = φ2

f /K .
The stress-strain relation for the solid matrix is assumed to have the form

σ s = −φs pI + σ e, (5.7)

where σ e is the effective (or elastic) stress of the solid matrix. Note that the concept
of effective stress was originally formulated by Terzaghi [74] in a geotechnical con-
solidation problem, presuming that the effective soil stress is determined by the total
stress minus the excess pore pressure.

Thus, under these assumptions the total stress in the biphasic material, which is
defined as the sum

σ = σ s + σ f , (5.8)

in light of (5.4) and (5.7) is given by

σ = −pI + σ e, (5.9)

while from (5.3) it follows that

∇ · σ = 0. (5.10)

For an anisotropic linearly elastic material, the effective stress σ e is related to the
infinitesimal strain tensor of the solid matrix, ε, by Hooke’s law

σ e = C : ε,

where C is a fourth-order stiffness tensor, and the strain tensor is given by

ε = 1

2

(∇u + ∇uT), (5.11)

where u is the displacement vector of the solid phase. Note also that the solid veloc-
ity is

vs = ∂u
∂t

, (5.12)

where t is a time variable.
Following Cohen et al. [19], we assume that the solid-phase material is trans-

versely isotropic, so that



152 5 Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer

⎛
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σ e
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σ e
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σ e
23

σ e
13
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⎞
⎟⎟⎟⎟⎟⎟⎠
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12 As
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12 As

11 As
13 0 0 0

As
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0 0 0 2As
44 0 0
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⎤
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⎛
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ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.13)

where As
11, As

12, As
13, As

33, and As
44 are five independent elastic constants of the solid

skeleton.
The substitution of (5.4), (5.5), and (5.7) into Eq. (5.3) yields

−φs∇ p + ∇ · σ e + K · (vf − vs) = 0, (5.14)

−φf∇ p − K · (vf − vs) = 0, (5.15)

whereas the substitution of (5.9) into Eq. (5.10) gives

−∇ p + ∇ · σ e = 0. (5.16)

Observe [55] that in the equations above, the vector vf −vs represents the seepage
velocity, describing the fluidmotion relative to the deforming solidmatrix.Moreover,
relating this vector only to the fluid part of the mixture, the so-called relative fluid
flux (or filter velocity), wf , can be defined by the formula

wf = φf(vf − vs). (5.17)

Then, introducing the relative fluid flux into Eq. (5.15) according to its definition
(5.17) and taking into account the relation (5.6) between the hydraulic resistivity
tensor K and the permeability tensor k, we arrive at the equation

wf = −k · ∇ p, (5.18)

which can be interpreted [10] asDarcy’s law relative to themotion of the solidmatrix.

As a result of (5.1) and (5.17), the continuity equation (5.2) can be recast as

∇ · (vs + wf) = 0,

which after the substitution of (5.12) and (5.18) is reduced to the equation

∂

∂t
∇ · u = ∇ · (k · ∇ p), (5.19)
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where∇ ·u is the dilatation of the solid matrix. It is important to note that Eqs. (5.16)
and (5.19) can be solved independently of Eq. (5.18).

Observe [19] that the linear transversely isotropic biphasic model requires alto-
gether seven constitutional parameters: five elastic constants (Young’s moduli and
Poisson’s ratios in the transverse plane and out-of-plane, E s

1, ν
s
12 and E s

3, ν
s
31, respec-

tively, and the out-of-plane shear modulus, Gs
13) and two permeability coefficients

k1 and k3, which are called the axial (in-plane) and transverse (out-of-plane) perme-
ability coefficients, respectively.

Finally, it should be emphasized [57] that in addition to its mechanical response,
articular cartilage also exhibits complex electrochemical phenomena due to the
charged nature of its solid phase and the electrolytes dissolved in the interstitial
water. A number of constitutive theories [31, 37, 45] for charged-hydrated soft tis-
sues like articular cartilage have been developed using the multiphasic approach
(see comprehensive review by Mow and Guo [57]), and a generalized correspon-
dence principle for the equilibrium deformational behavior in the framework of the
triphasic model was introduced [52, 53].

5.1.2 Boundary and Initial Conditions

Following Barry and Holmes [10], we consider the most common boundary con-
ditions applicable to thin fluid-saturated porous layers. We assume that a biphasic
layer is firmly attached to a rigid impermeable substrate, on the bottom of the layer,
x3 = h, in which case the boundary conditions become

u
∣∣
x3=h = 0, (5.20)

∂p

∂x3

∣∣∣∣
x3=h

= 0. (5.21)

On the upper surface, x3 = 0, a number of different boundary conditions may be
formulated depending on the problem setting. If the porous layer is in contact with
a porous filter, then the boundary condition

p
∣∣
x3=0 = 0 (5.22)

is imposed on the top surface.
If the layer is pressed against an impermeable punch, then

∂p

∂x3

∣∣∣∣
x3=0

= 0. (5.23)

Further, the normal stress balance under a rigid punch σ33
∣∣
x3=0 = −q gives
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−p + As
13

∂u1

∂x1
+ As

13
∂u2

∂x2
+ As

33
∂u3

∂x3

∣∣∣∣
x3=0

= −q, (5.24)

where q is the load distribution on the top surface transferred by the punch. Note that
the left-hand side of Eq. (5.24) represents the normal total stress σ33.

For the frictionless contact, the tangential stresses σ31 and σ32 are zero, so that

∂u1

∂x3
+ ∂u3

∂x1

∣∣∣∣
x3=0

= 0,
∂u2

∂x3
+ ∂u3

∂x2

∣∣∣∣
x3=0

= 0. (5.25)

In an idealized situation, the normal load q would be a known function of variables
t, x1, x2. However, if the surface load is transferred from a punch, then within the
contact area, ω, the contact condition is formulated as

u3
∣∣
x3=0 = δ0(t) − ϕ(x1, x2), (x1, x2) ∈ ω, (5.26)

where δ0(t) is the normal displacement of the punch, ϕ(x1, x2) is the punch shape
function (defining the initial gap between the contacting surfaces).

Before continuing, we observe that the punch equilibrium implies that

∫∫

ω

q(t, y) dy = F(t), (5.27)

where F(t) is an applied external force.
In the case of frictionless contact between two biphasic layers, based on the results

of Hou et al. [35] for porous layers saturated with inviscid interstitial fluids, Ateshian
et al. [6] formulated the following interface boundary conditions:

[[p]] = 0, [[u · n]] = 0, [[wf · n]] = 0, [[σ (n)
N ]] = 0, (5.28)

σ
(n)
T = 0. (5.29)

Here,n is the normal unit vector on the contact interface, [[ · ]] denotes the jump across
the interface of the quantity within the brackets (e.g., [[p]] = p+ − p−, where p+
and p− are the limit values of p at the two opposite sides of the interface), σ (n)

N and

σ
(n)
T are the normal and tangential components of the total stress vector σ (n) = σ · n,

such that σ (n)
N = σ (n) · n and σ

(n)
T = σ (n) − σ

(n)
N n.

Note that the interface boundary conditions (5.28) simply state that the fluid
pressure, p, the normal component of the solid displacement vector, u ·n, the normal
component of the relative fluid flow, wf · n, and the normal component of the total
stress vector, σ (n)

N , must be continuous across the interface.
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Finally, we consider the usual initial conditions that the displacement vector, u,
the relative fluid flux, wf , and the fluid pressure, p, are zero before the external load
is applied, i.e.,

u = 0, wf = 0, p = 0, −∞ < t < 0, (5.30)

throughout the biphasic medium.

5.1.3 Equivalent Elastic Material Properties of a Transversely
Isotropic Biphasic Material for the Instantaneous
Response

It is known [23] that during short-duration impact events, articular cartilage can be
considered as an elastic material. Moreover, it has been shown that the instantaneous
response of a biphasic material is equivalent to that of an incompressible elastic
material [5–7]. Following Garcia et al. [29], we introduce the elastic properties of
the equivalent transversely isotropic incompressible elastic material, which can be
used to model its instantaneous response.

In the biphasic model (see Eq. (5.8)), the total stresses in a biphasic material are
defined as

σi j = σ s
i j + σ f

i j , (5.31)

where σ s
i j are the stresses in the solid matrix, σ f

i j are the stresses in the fluid phase.
The stresses in the fluid phase are equal to the pressure in the fluid, p, averaged

over the whole volume, i.e.,

σ f
i j = −φf pδi j , (5.32)

where φf is the volume fraction of the fluid phase, δi j is the Kroneker delta.
At the same time, the stresses in the solid matrix are determined in terms of the

effective stresses, σ e
i j , as

σ s
i j = −φs pδi j + σ e

i j , (5.33)

where φs = 1 − φf is the volume fraction of the solid phase.
From (5.31)–(5.33), it follows that the total stresses in the biphasic tissue can be

decomposed as

σi j = −pδi j + σ e
i j . (5.34)

It should be emphasized that, since both the fluid and the material forming the
skeleton are assumed to be incompressible, the strains in the biphasic tissue are due
to the effective stresses. Thus, the strains in the tissue are given by
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ε11 = 1

E s
1
(σ e

11 − νs12σ
e
22) − νs31

E s
3
σ e
33, ε23 = 1

2Gs
13

σ e
23,

ε22 = 1

E s
1
(−νs12σ

e
11 + σ e

22) − νs31

E s
3
σ e
33, ε13 = 1

2Gs
13

σ e
13,

ε33 = −νs31

E s
3
(σ e

11 + σ e
22) + 1

E s
3
σ e
33, ε12 = 1

2Gs
12

σ e
12,

(5.35)

where E s
1 and E s

3 are Young’s moduli of the solid matrix in the plane of transverse
isotropy and in the orthogonal direction, respectively, νs12 and νs31 are Poisson’s ratios
characterizing the lateral strain response in the plane of transverse isotropy to a stress
acting parallel or normal to it, respectively, Gs

13 is the shearmodulus in planes normal
to the plane of transverse isotropy, and Gs

12 = E s
1/[2(1+ νs12)] is the in-plane shear

modulus.
For a transversely isotropic material, the incompressibility condition is attained

if its Poisson’s ratios are as follows [29, 39]:

ν31 = 1

2
, ν12 = 1 − E1

2E3
. (5.36)

Let the three independent constants of the equivalent incompressible elastic mate-
rial be denoted by E1, E3, and G13, while its Poisson’s ratios are given by (5.36).

Observe [7] that upon sudden loading of a biphasic tissue, the interstitial fluid
does not have sufficient time to leave the tissue, except at permeable boundaries. At
time t = 0+, the matrix pores change shape but not volume. Thus, it is assumed [29]
that the general stress field in a transversely isotropic biphasic material at time zero
can be decomposed into the pressure in the fluid and the effective stresses in the solid
skeleton according to Eq. (5.34), in such a way that the fluid pressure at time zero is

p = −ασkk . (5.37)

Here, σkk = σ11 + σ22 + σ33 is the trace of the total stress tensor, and α is a
dimensionless parameter, to be determined.

Thus, on one hand, the deformation of a biphasic material at time zero is given
by Eq. (5.35), where in light of the hypothesis (5.37) we have

σ e
i j = σi j − ασkkδi j . (5.38)

On the other hand, the same deformation must be equal to the deformation of the
equivalent incompressible tissue under the total stress field σi j . This means, first,
that the shear moduli Gs

12 and Gs
13 should be the same for the solid skeleton and the

equivalent incompressible elastic material, and in particular,

G13 = Gs
13, (5.39)
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since the inviscid interstitial fluid sustains only pressure.
Therefore, applying the decomposition (5.38) to normal stresses, one arrives at

a homogeneous system of linear algebraic equations with respect to σ11, σ22, and
σ33, with the coefficients depending on E1, E3, and α. As was shown in [29], this
system is satisfied for any combination of the normal stresses, if the equivalent elastic
moduli are given by

E1 = E s
1

[
1 − 4νs31 + 2(1 − νs12)(E s

3/E s
1)
]

1 + (
1 − νs212

)
(E s

3/E s
1) − 2νs31(1 + νs12) − νs231(E s

1/E s
3)

,

E3 = E s
3

[
1 − 4νs31 + 2(1 − νs12)(E s

3/E s
1)
]

2(1 − νs12)(E s
3/E s

1) − 4νs231
.

(5.40)

Note that the corresponding decomposition parameter α depends on the applied
stresses σ11, σ22, and σ33.

Thus, the instantaneous response of any transversely isotropic biphasic tissue is
equivalent to that of an incompressible transversely isotropic elastic material with
the material constants ν12, ν31, G13, E1, and E3, given by (5.36), (5.39), and (5.40).

We note that in the isotropic case, the equivalent elastic material will also be
isotropic, with Poisson’s ratio ν = 0.5 and the shear modulus G = Gs, where
Gs is the shear modulus of the elastic skeleton. As a consequence of the relations
E s
1 = E s

3 = 2(1 + νs)Gs and νs12 = νs31 = νs, Eq. (5.40) yield the same result
E1 = E3 = 3Gs, irrespective of the value of the Poisson’s ratio νs of the skeleton.

Note also that if the elastic constants of the elastic skeleton satisfy the incompress-
ibility condition (5.36), then Eq. (5.40) give E1 = E s

1 and E3 = E s
3, respectively,

when successively taking the limits νs31 → 0.5 (with νs12 fixed) and after that as
νs12 → 1 − E s

1/(2E s
3), and vice-versa.

5.1.4 Axisymmetric Biphasic Model

Let us consider a biphasic material with the axis of symmetry oriented along the
z axis of an (r, θ, z) cylindrical coordinate system. The constitutive equations (5.13)
for the effective stresses of the solid matrix are as follows:

σ e
rr = As

11εrr + As
12εθθ + As

13εzz,

σ e
θθ = As

12εrr + As
11εθθ + As

13εzz,

σ e
zz = As

13εrr + As
13εθθ + As

33εzz,

σ e
r z = 2As

44εr z .

(5.41)

The strain-displacement relations (5.11) become
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εrr = ∂ur

∂r
, εθθ = ur

r
, εzz = ∂uz

∂z
, εr z = 1

2

(∂ur

∂z
+ ∂uz

∂r

)
, (5.42)

where ur and uz denote the radial and axial displacements.
The equilibrium equations (5.10), which are written with respect to the total stress

σ = −pI + σ e,

now reduce to the following equations of equilibrium:

−∂p

∂r
+ 1

r

∂(rσ e
rr )

∂r
− σ e

θθ

r
+ ∂σ e

r z

∂z
= 0,

−∂p

∂z
+ 1

r

∂(rσ e
r z)

∂r
+ ∂σ e

zz

∂z
= 0.

(5.43)

Correspondingly, Eq. (5.19) takes the form

∂

∂t

(
∂ur

∂r
+ ur

r
+ ∂uz

∂z

)
= 1

r

∂

∂r

(
rk1

∂p

∂r

)
+ ∂

∂z

(
k3

∂p

∂z

)
, (5.44)

where k1 and k3 are the in-plane and out-of-plane permeability coefficients, while
the relative fluid flux can be expressed as

wf = −k1
∂p

∂r
er − k3

∂p

∂z
ez, (5.45)

with the radial and axial unit coordinate vectors er and ez , respectively.

5.2 Confined Compression of a Biphasic Material

In this section,we outline a linear confined compression biphasicmodel. In particular,
the biphasic stress relaxation and the biphasic creep tests in confined compression
are considered.

5.2.1 Confined Compression Problem

In the confined compression test, a cylindrical plug of biphasicmaterial is constrained
in a confining chamber with impermeable rigid walls, and is subjected to a compres-
sive load, F(t), via a porous loading plate (see Fig. 5.1). Observe that the non-linear
confined compression problem has been considered in a number of publications
[8, 9, 62].
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Fig. 5.1 Schematic of the
confined compression
configuration [52]
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In the cylindrical coordinate system, the boundary conditions on the lateral surface
are

wf
r

∣∣
r=a = 0, σr z

∣∣
r=a = σrθ

∣∣
r=a = 0, ur

∣∣
r=a = 0, (5.46)

where wf
r is the transverse (in-plane) relative fluid flux, σr z and σrθ are out-of-plane

and in-plane total shear stresses, and ur is the radial displacement of the solid matrix.
The boundary conditions at the bottom surface, z = h, are as follows:

wf
z

∣∣
z=h = 0, σzr

∣∣
z=h = σzθ

∣∣
z=h = 0. uz

∣∣
z=h = 0, (5.47)

Here, wf
z and uz are the vertical relative fluid flux and the vertical displacement of

the solid matrix, respectively.
Meanwhile, the boundary conditions at the top surface, z = 0, have the form

p
∣∣
z=0 = 0, σzr

∣∣
z=0 = σzθ

∣∣
z=0 = 0, (5.48)

where p is the interstitial fluid pressure.
Observe that the boundary condition (5.48)1 describes the free-draining porous

interface, where no resistance to fluid movement is assumed at the interface between
the porous loading plate and the sample surface.

For the stress relaxation test, the additional boundary condition at the top is

uz
∣∣
z=0 = w(t), (5.49)

where w(t) is a specified displacement of the loading plate.
For example, the ramp displacement is defined as

w(t) =
{

V0t, 0 ≤ t ≤ t0,

V0t0, t0 ≤ t,
(5.50)

and V0, t0 are given constants.
On the other hand, for creep, the boundary condition is

σzz
∣∣
z=0 = − F(t)

A
, (5.51)
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where F(t) is a specified external load acting on the porous loading plate, and A =
πa2 is the sample cross-sectional area.

For example, if the load is applied instantaneously, then

F(t) = F0H (t), (5.52)

where H (t) is the Heaviside step function.
The experimental setup of the confined compression test for articular cartilage

represents a one-dimensional problem in the axial direction, so that

ur = uθ = 0, εrr = εθθ = 0, wf
r = wf

θ = 0, (5.53)

while all non-trivial variables are dependent on t and z only.
Note that the assumptions (5.53)1 and (5.53)2 dictate that the rigid confining

chamber prevents any lateral deformation. Therefore, the axial total stress is

σzz = −p + HAεzz, (5.54)

where HA is the confined compression equilibrium modulus (aggregate elastic mod-
ulus) of the solid matrix given by

HA = As
33. (5.55)

Hence, taking into account the free-draining condition (5.48)1, the traction bound-
ary condition (5.51) can be reduced to the following:

HA
∂uz

∂z

∣∣∣
z=0

= − f (t). (5.56)

Here, f (t) is the applied compressive stress, i.e.,

f (t) = F(t)

A
. (5.57)

Finally, to complete the confined compression problem formulation, we assume
the usual initial conditions (5.30).

5.2.2 Governing Equation of the Confined Compression Model

Under the assumptionsmade in the confinedcompressionmodel, the only equilibrium
differential equation (5.43)2 takes the form



5.2 Confined Compression of a Biphasic Material 161

− ∂p

∂z
+ ∂σ e

zz

∂z
= 0, (5.58)

where, in light of (5.53) and (5.54), we have

σ e
zz = HAεzz . (5.59)

Integrating Eq. (5.59) with respect to the coordinate z, we arrive at the equation

−p + σ e
zz = σzz(t). (5.60)

Here, σzz(t) is the integration constant (being a function of the time variable t only).
Now, comparing Eqs. (5.54) and (5.60), we find that the total normal stress, σzz(t),

is uniform through the depth of the biphasic sample.
Further, since all non-trivial variables are dependent on t and z only, the equilib-

rium equation (5.44) for the fluid phase after integrationwith respect to the coordinate
z reduces to

∂uz

∂t
= k3

∂p

∂z
, (5.61)

where k3 is the axial permeability coefficient.
Now, collecting Eqs. (5.59)–(5.61), we arrive at the governing equation

∂uz

∂t
= k3

∂

∂z

(
HA

∂uz

∂z

)
, (5.62)

which for a homogeneous biphasic material simplifies to a Fourier equation

∂uz

∂t
= k3HA

∂2uz

∂z2
. (5.63)

Equation (5.63) is supplemented by the homogeneous initial condition

uz(0, z) = 0

and the boundary condition at the bottom surface

uz(t, h) = 0.

For stress relaxation, the general boundary condition at the top surface is

uz(t, 0) = w(t), (5.64)

where w(t) is the prescribed surface displacement as a function of time, while for
creep, in light of (5.56), we have
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∂uz

∂z
(t, 0) = − f (t)

HA
, (5.65)

where f (t) is the prescribed compressive stress as a function of time.
Note that the second-order parabolic partial differential equation (5.62)was solved

in [26] using a semi-analytical approach based on the finite difference and Laplace
transformmethods. The effect of the depth-dependent aggregatemodulus on articular
cartilage stress-relaxation in confined compression was studied in [75].

5.2.3 Biphasic Stress Relaxation in Confined Compression

The following formula [64] gives the general solution to the problem (5.63) and
(5.64):

uz(t, z) = w(t)
(
1 − z

h

)
−

∞∑
n=1

2

πn
sin

(
πn

z

h

)(
Knw

)
(t). (5.66)

Here we have introduced the notation

(
Knw

)
(t) =

t∫

0−
exp

(
−n2(t − τ)

τ ′
R

)
ẇ(τ ) dτ, (5.67)

where τ ′
R is the characteristic relaxation time in confined compression defined by

τ ′
R = h2

π2k3HA
. (5.68)

Recall that the lower integration limit 0− in the integral operator above indicates that
the integration in (5.67) starts at infinitesimally negative time so as to include the
displacement discontinuity at time zero.

The strain of the solid matrix can be simply obtained from the relationship

εzz = ∂uz

∂z
.

Then according to Eq. (5.60), we have

p = HAεzz − σzz(t), (5.69)

from which we can determine the total normal stress, in light of the free-draining
boundary condition (5.48)1, as follows:

σzz(t) = HAεzz
∣∣
z=0.
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The interstitial hydrostatic pressure can be expressed in the form

p(t, z) = 2HA

h

∞∑
n=1

[
1 − cos

(
πn

z

h

)](
Knw

)
(t). (5.70)

The corresponding stress relaxation response in confined compression is then
given by

σzz(t) = −HA
w(t)

h
− 2HA

h

∞∑
n=1

(
Knw

)
(t). (5.71)

In the case of constant strain rate compression in the loading phase t ∈ (0, t0),
followed by the hold period t ∈ (t0,+∞), formula (5.50) yields

ẇ(t) =
{

V0, 0 ≤ t ≤ t0,

0, t0 ≤ t.

Therefore, in the case of ramp displacement (5.50), the integral (5.67), which
appears on the right-hand sides of (5.66), (5.70), and (5.71), is evaluated as

(
Knw

)
(t) = V0τ

′
R

n2

(
1 − exp

(
−n2t

τ ′
R

))
, 0 ≤ t < t0,

(
Knw

)
(t) = V0τ

′
R

n2 exp
(
−n2t

τ ′
R

)(
exp

(n2t0
τ ′

R

)
− 1

)
, t0 ≤ t.

Now, taking into account the above formulas and the identity

∞∑
n=1

1

n2 = π2

6
,

we arrive at the following formulas [60]:

σzz(t) = −HA
V0t

h
− V0h

3k3
+ 2V0h

π2k3

∞∑
n=1

1

n2 exp
(
−n2t

τ ′
R

)
(5.72)

for 0 ≤ t < t0, and

σzz(t) = −HA
V0t0

h
+ 2V0h

π2k3

∞∑
n=1

1

n2

{
exp

(
−n2t

τ ′
R

)
− exp

(
−n2(t − t0)

τ ′
R

)}
(5.73)

for t ≥ t0.
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Fig. 5.2 The effect of t0/τ ′
R

on the stress-relaxation time
history in response to a
ramped displacement. (The
values taken by t0/τ ′

R are
indicated on the figure.) Note
the limit value 1 as t → ∞
in all cases due to the
normalization
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According to Eqs. (5.72) and (5.73), the effect of t0/τ ′
R on the dimensionless

stress-relaxation time history −σzz(t)/[HAε̇0t0], where ε̇0 = V0/h, is shown in
Fig. 5.2.

Equations (5.72) and (5.73) can be used for determining the aggregate modulus,
HA, and the constant axial permeability coefficient, k3, from the stress relaxation
experiment by fitting the theoretical solution on to the experimental curve for the
measured total normal stress [69].

5.2.4 Biphasic Creep in Confined Compression

The following formula [64] gives the general solution to the problem (5.63) and
(5.65):

uz(t, z) = 2k3
h

∞∑
n=1

cos
(π(2n − 1)z

2h

)(
Nn f

)
(t). (5.74)

Here we have introduced the notation

(
Nn f

)
(t) =

t∫

0

exp

(
−(2n − 1)2

(t − τ)

τ ′′
R

)
f (τ ) dτ, (5.75)

where τ ′
R is the characteristic time having the meaning of a retardation time in

confined compression defined as

τ ′′
R = 4h2

π2k3HA
. (5.76)
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Thus, the nominal sample-average strain (surface-to-surface strain), which is cal-
culated from the distance h − uz(t, 0) between the loading platens, is

uz(t, 0)

h
= 2k3

h2

∞∑
n=1

(
Nn f

)
(t). (5.77)

Taking into account the constitutive equation (5.60) and the boundary conditions
(5.48)1 and (5.56), we find that the total normal stress in the biphasic sample is

σzz(t) = − f (t).

Hence, Eq. (5.69) allows evaluation of the interstitial hydrostatic pressure via

p = HAεzz + f (t). (5.78)

Evaluating the strain of the solid matrix according to formula (5.74) and substi-
tuting the obtained result into Eq. (5.78), we find

p(t, z) = f (t) − πk3HA

h2

∞∑
n=1

(2n − 1) sin
(π(2n − 1)z

2h

)(
Nn f

)
(t). (5.79)

For a creep experiment, where a constant external load, F0, is applied instanta-
neously, the following loading law holds true (see Eq. (5.57)):

f (t) = f0H (t). (5.80)

Here, H (t) is the Heaviside step function, f0 = F0/A is the constant compressive
stress, and A is the cross-sectional area of the biphasic sample.

Correspondingly, formula (5.77) yields the following result [14]:

uz(t, 0)

h
= f0

HA

{
1 − 8

π2

∞∑
n=1

1

(2n − 1)2
exp

(
−(2n − 1)2

t

τ ′′
R

)}
. (5.81)

Note that in writing (5.81), we used the identity

∞∑
n=1

1

(2n − 1)2
= π2

8
.

In the same way, in the case (5.80), formula (5.79) is rearranged to obtain

p(t, z) = 4 f0
π

∞∑
n=1

1

2n − 1
sin

(π(2n − 1)z

2h

)
exp

(
−(2n − 1)2

t

τ ′′
R

)
. (5.82)
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In writing (5.82), the following identity was used (see, e.g., [30], formula (1.442.1)):

∞∑
n=1

sin(2n − 1)ζ

2n − 1
= π

4
, 0 < ζ < π. (5.83)

By substituting z = h into Eq. (5.82), we readily obtain

p(t, h) = 4 f0
π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2

t

τ ′′
R

)
. (5.84)

Note also [69] that the interstitial fluid pressure at the impermeable interface,
z = h, can be represented by the formula

p(t, h) = HA

(
εzz

∣∣
z=h − εzz

∣∣
z=0

)
,

where εzz is the strain of the solid matrix, εzz = ∂uz/∂z, while the displacement uz

is taken from (5.74) for creep and from (5.66) for stress relaxation.
Correspondingly, the so-called fluid load support

W p

W
= p(t, h)

f (t)

is evaluated as follows [63]:

W p

W
=
(

∂u

∂z

∣∣∣
z=0

− ∂u

∂z

∣∣∣
z=h

)/
∂u

∂z

∣∣∣
z=0

.

In the stepwise creep test, according to (5.80) and (5.84), we have

W p

W
= 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2

t

τ ′′
R

)
.

Therefore, as a consequence of (5.83), the above formula yields the maximum value

W p

W

∣∣∣
t=0

= 1.

It should be noted [63] that in real creep testing configurations, there exists a delay
in pressurization due to the impedance of the pressure transducer in measuring the
pressure p(t, h). Namely, the greater the compliance of the pressure transducer, the
greater the delay in the interstitial fluid pressurization achieving the peak value of
W p/W .
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Equation (5.81) is commonly used in determining the aggregatemodulus, HA, and
the constant axial permeability coefficient, k3, from the confined compression creep
experiment by fitting the theoretical solution on to the experimental curve for the
nominal sample-average strain. It should bementioned that for improvedmechanical
characterization of articular cartilage, testing experiments may involve multiple-step
ramp loading [50] as well as an alternating sequence of stress relaxation and creep
transients [17].

Finally, observe [13] that the presence of a gap between the loading plate and
the confining chamber walls, which is necessary to guarantee a correct plate move-
ment, allows flow exudation and tissue extrusion around the plate, thus leading to
underestimation of HA and overestimation of k3.

5.2.5 Dynamic Behavior of a Biphasic Material Under Cyclic
Compressive Loading in Confined Compression

Let us now consider the following loading history for cyclic compressive confined
compression [70, 73]:

f (t) = f0(1 − cosωt)H (t). (5.85)

Here, f0 is the median magnitude of the applied cyclic stress, and ω is the loading
angular frequency. Recall that ω/(2π) is the loading frequency measured in hertz.

First of all, using integration by parts and the identity (see, e.g., [30], formula
(1.444.6))

∞∑
n=1

cos(2n − 1)ζ

(2n − 1)2
= π

4

(π

2
− ζ

)
, 0 < ζ < π,

we transform formulas (5.74) and (5.79) as follows:

uz(t, z) = h

HA

{
f (t)

(
1 − z

h

)

− 8

π2

∞∑
n=1

1

(2n − 1)2
cos

(π(2n − 1)z

2h

)(
Mn f

)
(t)

}
, (5.86)

p(t, z) = 4

π

∞∑
n=1

1

2n − 1
sin

(π(2n − 1)z

2h

)(
Mn f

)
(t). (5.87)

Here we have introduced the notation

(
Mn f

)
(t) =

t∫

0−
exp

(
−(2n − 1)2

(t − τ)

τ ′′
R

)
ḟ (τ ) dτ. (5.88)
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As usual, the notation 0− in the lower limit of the integral above means that

t∫

0−
e−an(t−τ) ḟ (τ ) dτ = f (0+)e−ant +

t∫

0

e−an(t−τ) ḟ (τ ) dτ,

where f (0+) is the limit of the function f (t) when the independent variable t
approaches 0 from the right.

Since f (0) = 0 for the function defined by formula (5.85), we have

ḟ (τ ) = ω f0H (t) sinωt,

so that Eqs. (5.86) and (5.87) yield

uz(t, z) = f0h

HA

{
(1 − cosωt)

(
1 − z

h

)

− 8

π2 sinωt
∞∑

n=1

ωan

(2n − 1)2(a2
n + ω2)

cos
(π(2n − 1)z

2h

)

+ 8

π2 cosωt
∞∑

n=1

ω2

(2n − 1)2(a2
n + ω2)

cos
(π(2n − 1)z

2h

)

− 8

π2

∞∑
n=1

ω2

(2n − 1)2(a2
n + ω2)

exp(−ant) cos
(π(2n − 1)z

2h

)}
(5.89)

for the vertical displacement of the solid matrix and

p(t, z) = 4 f0
π

{
sinωt

∞∑
n=1

ωan

(2n − 1)(a2
n + ω2)

sin
(π(2n − 1)z

2h

)

− cosωt
∞∑

n=1

ω2

(2n − 1)(a2
n + ω2)

sin
(π(2n − 1)z

2h

)

+
∞∑

n=1

ω2

(2n − 1)(a2
n + ω2)

exp(−ant) sin
(π(2n − 1)z

2h

)}
(5.90)

for the interstitial fluid pressure, where we have introduced the notation

an = (2n − 1)2

τ ′′
R

.

It can be checked that Eqs. (5.89) and (5.90) coincide with the corresponding
results obtained by Suh et al. [73], apart from notation.
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5.3 Unconfined Compression of a Biphasic Material

In this section, the unconfined compression biphasic model is developed. In partic-
ular, the biphasic stress relaxation and the biphasic creep tests in unconfined com-
pression are studied.

5.3.1 Unconfined Compression Problem

In the axisymmetric unconfined compression test, a thin cylindrical disk of biphasic
material is compressed between two smooth (frictionless) and impermeable rigid
platens (see Fig. 5.3). Therefore, the material is free to expand radially, and free fluid
flow is enabled across the lateral cylindrical surface.

In the cylindrical coordinate system, the boundary conditions on the lateral surface
are

p
∣∣
r=a = 0, σr z

∣∣
r=a = σrθ

∣∣
r=a = σrr

∣∣
r=a = 0. (5.91)

Here, p is the interstitial fluid pressure, σr z and σrθ are shear stresses, σrr is the
radial normal stress.

The boundary conditions at the bottom surface, z = h, are

wf
z

∣∣
z=h = 0, σzr

∣∣
z=h = σzθ

∣∣
z=h = 0, uz

∣∣
z=h = 0, (5.92)

where wf
z and uz are the vertical relative fluid flux and the vertical displacement of

the solid matrix, respectively.
At the top surface, z = 0, we have the following boundary conditions:

wf
z

∣∣
z=0 = 0, σzr

∣∣
z=0 = σzθ

∣∣
z=0 = 0, uz

∣∣
z=0 = w(t). (5.93)

Here, w(t) is the vertical displacement of the upper platen.
Again, we can consider either the creep test (load-controlled) or the stress-

relaxation test (displacement-controlled) in unconfined compression. For the stress-
relaxation experiment, w(t) is a prescribed function of time.

z

f

h
Cartilage
sample

Bathing 
solution

Rigid, impermeable 
loading platen

Fig. 5.3 Schematic of the unconfined compression configuration [52]. The articular cartilage sam-
ple has to be stripped off from the subchondral bone and cut into a perfect cylinder
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Following Armstrong et al. [5] and Cohen et al. [19], we assume the radial dis-
placement of the solid skeleton, ur , the fluid relative radial velocity, wf

r , and the fluid
pressure, p, to be of the form

ur = ur (t, r), wf
r = wf

r (t, r), p = p(t, r). (5.94)

Moreover, the axial strain, εzz , is assumed to be uniform throughout the sample, i.e.,

εzz = ε(t), (5.95)

where ε(t) is a time-dependent function.
Hence, in light of the assumption (5.95), the integration of the equation

εzz = ∂uz

∂z

with the boundary conditions (5.92)3 and (5.93)3 taken into account yields

ε(t) = −w(t)

h
, (5.96)

uz(t, z) = −ε(t)(h − z). (5.97)

According to (5.94), (5.95), and (5.97), the only nonzero strain components are

εrr = ∂ur

∂r
, εθθ = ur

r
, εzz = ε,

and, correspondingly, Eq. (5.41) yield the following nonzero effective stresses:

σ e
rr = As

11
∂ur

∂r
+ As

12
ur

r
+ As

13ε,

σ e
θθ = As

12
∂ur

∂r
+ As

11
ur

r
+ As

13ε,

σ e
zz = As

13
∂ur

∂r
+ As

13
ur

r
+ As

33ε.

(5.98)

The substitution of (5.98) into the equilibrium equations for the solidmatrix (5.43)
results in the differential equation

−∂p

∂r
+ As

11

(
∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2

)
= 0, (5.99)

while Eq. (5.44) takes the form
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∂

∂t

(
∂ur

∂r
+ ur

r
+ ε

)
= 1

r

∂

∂r

(
rk1

∂p

∂r

)
, (5.100)

where k1 is the transverse (in-plane) permeability coefficient.
Finally, the relative fluid flux (5.45), in light of (5.94), is given by

wf = −k1
∂p

∂r
er , (5.101)

where er is the radial unit vector.
Equations (5.99)–(5.101), with the boundary conditions (5.91)–(5.93) and the

zero initial conditions, constitute the unconfined compression problem.
It has been established [57] that the incorporation of a transverse isotropy for

material properties into the linear biphasic theory improves its predictive power in
unconfined compression analysis [19].

5.3.2 Solution of the Unconfined Compression Problem

Let us first turn to Eq. (5.100). Taking into account that

∂ur

∂r
+ ur

r
= 1

r

∂

∂r
(rur ),

we can integrate Eq. (5.100) once with respect to the radial coordinate to get

∂p

∂r
= 1

k1

∂

∂t

(
ur + ε

2
r
)
, (5.102)

where the integration constant vanishes due to the regularity condition at the center
of the sample, r = 0.

Therefore, Eqs. (5.99) and (5.102) yield the following equation [19]:

∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2
= 1

As
11k1

∂

∂t

(
ur + ε

2
r
)
. (5.103)

Recall that the boundary conditions (5.91)2 are formulated in terms of the com-
ponents of the total stress tensor

σ = −pI + σ e. (5.104)

Hence, as a consequence of the constitutive equation (5.98), the boundary conditions
(5.91) become
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p
∣∣
r=a = 0, As

11
∂ur

∂r
+ As

12
ur

r
+ As

13ε

∣∣∣
r=a

= 0. (5.105)

To simplify our treatment of the problem, we introduce dimensionless variables

ρ = r

a
, U = ur

a
, τ = As

11k1
a2 t, P = p

As
11

. (5.106)

Then, Eqs. (5.102)–(5.105) take the form

∂ P

∂ρ
= ∂

∂τ

(
U + ε

2
ρ
)
, (5.107)

∂2U

∂ρ2 + 1

ρ

∂U

∂ρ
− U

ρ2 = ∂

∂τ

(
U + ε

2
ρ
)
, (5.108)

P
∣∣
ρ=1 = 0,

∂U

∂ρ
+ α12

U

ρ
+ α13ε

∣∣∣∣
ρ=1

= 0, (5.109)

where we have introduced the notation

α12 = As
12

As
11

, α13 = As
13

As
11

. (5.110)

Now, let P̃(s), Ũ (s), and ε̃(s) denote the Laplace transforms with respect to the
dimensionless time τ . Taking into account the zero initial conditions, the Laplace
transformation of Eqs. (5.107)–(5.109) leads to the system

∂ P̃

∂ρ
= s

(
Ũ + ε̃

2
ρ
)
, (5.111)

∂2Ũ

∂ρ2 + 1

ρ

∂Ũ

∂ρ
− Ũ

ρ2 = s
(

Ũ + ε̃

2
ρ
)
, (5.112)

P̃
∣∣
ρ=1 = 0,

∂Ũ

∂ρ
+ α12

Ũ

ρ
+ α13ε̃

∣∣∣∣
ρ=1

= 0. (5.113)

The general solution of Eq. (5.112) can be represented in the form

Ũ = − ε̃

2
ρ + Ũ0, (5.114)

where Ũ0 is the general solution of the homogeneous equation corresponding to
Eq. (5.112), i.e.,
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∂2Ũ0

∂ρ2 + 1

ρ

∂Ũ0

∂ρ
−
(

s + 1

ρ2

)
Ũ0 = 0. (5.115)

Making use of the change of the independent variable ρ = ρ′/
√

s, Eq. (5.115)
can be reduced to the modified Bessel’s equation. In this way, taking into account
the regularity condition at ρ = 0, we obtain

Ũ0 = C0 I1(
√

sρ), (5.116)

where C0 is an arbitrary function of the Laplace transform parameter s. This integra-
tion constant (with respect to the variable ρ) should be determined from the boundary
condition (5.113)2, which in light of (5.114) becomes

∂Ũ0

∂ρ
+ α12

Ũ0

ρ

∣∣∣∣
ρ=1

= ε̃

2
(1 + α12 − 2α13).

By substituting the expression (5.116) into the above equation and taking into
account the identity I ′

1(x) = I0(x) − (1/x)I1(x) for the modified Bessel functions
of the first kind, we find

C0 = (1 + α12 − 2α13)ε̃(s)

2
[√

s I0(
√

s) − (1 − α12)I1(
√

s)
] . (5.117)

Collecting formulas (5.114)–(5.117), we obtain

Ũ = − ε̃

2
ρ

⎛
⎜⎜⎝1 − (1 + α12 − 2α13)I1(

√
sρ)

√
sρ

(
I0(

√
s) − (1 − α12)

I1(
√

s)√
s

)

⎞
⎟⎟⎠ . (5.118)

We now calculate the Laplace transform of the dimensionalized pressure, P̃ , from
Eq. (5.111), which as a result of (5.114) can be rewritten as

∂ P̃

∂ρ
= sŨ0.

The integration of the above equation with respect to ρ, in light of the identity
I ′
0(x) = I1(x), yields

P̃ = C0
√

s I0(
√

sρ) + C1,

whereC1 is an arbitrary function of s. By satisfying the boundary condition (5.113)1,
we immediately get C1 = −C0

√
s I0(

√
s) and

P̃ = C0
√

s
(
I0(

√
sρ) − I0(

√
s)
)
, (5.119)



174 5 Linear Transversely Isotropic Biphasic Model for Articular Cartilage Layer

where C0 is given by (5.117).
Finally, we consider the force response of the biphasic sample

F(t) = −2π

a∫

0

σzz(t, r)r dr, (5.120)

where, in light of (5.98) and (5.104), the out-of-plane normal total stress is given by

σzz = −p + As
13

∂ur

∂r
+ As

13
ur

r
+ As

33ε. (5.121)

In terms of the dimensionless variables (5.106), Eq. (5.120) takes the form

F (τ ) = −2

1∫

0

(
−P + α13

(∂U

∂ρ
+ U

ρ

)
+ α33ε

)
ρ dρ, (5.122)

where we have introduced the notation

F (τ ) = F(t)

πa2As
11

, (5.123)

α33 = As
33

As
11

. (5.124)

After application of the Laplace transform, Eq. (5.122) becomes

F̃ (s) = −2

1∫

0

(
−P̃ + α13

(∂Ũ

∂ρ
+ Ũ

ρ

)
+ α33ε̃

)
ρ dρ. (5.125)

Now, taking into account Eqs. (5.114), (5.117), (5.119) and formulas

I ′
0(x) = I1(x), x I ′

1(x) = x I0(x) − I1(x),

the integral (5.125) becomes

F̃ (s) = −
γ1 I0(

√
s) − γ2

I1(
√

s)√
s

I0(
√

s) − γ0
I1(

√
s)√

s

ε̃(s), (5.126)

where we have also introduced the notation
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γ0 = 1 − α12,

γ1 = 1

2
(1 + α12 + 2α33 − 4α13), (5.127)

γ2 = α33(1 − α12) + 1 + α12 − 4α13 + 2α2
13.

Formulas (5.126) and (5.127) coincide with the corresponding results given by
Cohen et al. [19], up to the notation. In the isotropic case, we have

α12 = α13 = λs

HA
, α33 = 1, γ0 = 2μs

HA
, γ1 = 3μs

HA
, γ2 = 8μ2

s

H2
A

,

whereλs,μs, and HA are theLaméelastic constants and the aggregate elasticmodulus
of the solid skeleton, respectively, and the original results of Armstrong et al. [5] are
immediately recovered.

5.3.3 Unconfined Compression Model

Following [3], we rewrite Eq. (5.126) in the form

F̃ (s) = −sε̃(s) ˜K (s), (5.128)

where we have introduced the notation

˜K (s) =
γ1 I0(

√
s) − γ2

I1(
√

s)√
s

s

(
I0(

√
s) − γ0

I1(
√

s)√
s

) . (5.129)

By applying the convolution theorem to Eq. (5.128), we obtain

F (τ ) = −
τ∫

0−

dε(τ ′)
dτ ′ K (τ − τ ′) dτ ′, (5.130)

where K (τ ) = L −1{ ˜K (s)} is the original function of ˜K (s), and τ = 0− is the
dimensionless time moment just preceding the initial moment of loading τ = 0. In
deriving Eq. (5.130), we have used the formula

L −1{sε̃(s)} = dε(τ )

dτ
+ ε(0+)δ(τ ),

where δ(τ ) is the Dirac function.
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Following [5], we calculate the inverse Laplace transform by using the residue
theorem (see, e.g., [46, 48]) to find

K (τ ) = 2γ1 − γ2

2 − γ0
+

∞∑
n=1

2(γ2 − γ0γ1)

α2
n − γ0(2 − γ0)

e−α2
nτ , (5.131)

where αn are the roots of the transcendental equation

J0(x) − γ0
J1(x)

x
= 0, (5.132)

in which J0(x) and J1(x) are Bessel functions of the first kind.
The inverse relation for Eq. (5.130) can be represented by

ε(τ ) = −
τ∫

0−

dF (τ ′)
dτ ′ M (τ − τ ′) dτ ′, (5.133)

where M (τ ) = L −1{M̃ (s)}, and M̃ (s) is defined by the formula

M̃ (s) =
I0(

√
s) − γ0

I1(
√

s)√
s

s

(
γ1 I0(

√
s) − γ2

I1(
√

s)√
s

) . (5.134)

Again making use of the residue theorem, we obtain

M (τ ) = 2 − γ0

2γ1 − γ2
−

∞∑
n=1

2(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)
e−β2

n τ , (5.135)

where βn are the roots of the transcendental equation

J0(x) − γ2

γ1

J1(x)

x
= 0. (5.136)

The short-time asymptotic approximation for the kernel K (τ ), as can also be
found for M (τ ), can be obtained by evaluating the Laplace inverse of ˜K (s) as
s → ∞. For this purpose, we apply the following well known asymptotic expansion
(see, e.g., [30], formula (8.451.5)):

In(z) = ez

√
2π z

{
1 + (1 − 4n2)

8z
+ O(z−2)

}
.
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By making use of the above asymptotic formula, we expand the right-hand sides
of (5.129) and (5.134) in terms of 1/

√
s. As a result, we arrive at the following

asymptotic expansions:

K (τ ) = γ1 − 2√
π

(γ2 − γ0γ1)
√

τ + O(τ ), τ → 0+, (5.137)

M (τ ) = 1

γ1
+ 2√

π

(γ2 − γ0γ1)

γ 2
1

√
τ + O(τ ), τ → 0+. (5.138)

The asymptotic approximations (5.137) and (5.138) can be used in evaluat-
ing unconfined impact compression tests where the impact duration is relatively
small compared to the so-called [5] gel diffusion time for the biphasic material
tg = a2/(HAk1), which is the time taken for a cylindrical biphasic sample of radius
a to reach equilibrium in unconfined stepwise compression.

Further, let us introduce the notation

K0 = K (0), M0 = M (0).

In light of (5.137) and (5.138), we have

K0 = γ1, M0 = 1

γ1
. (5.139)

Hence, the following identities hold true:

2γ1 − γ2

2 − γ0
+

∞∑
n=1

2(γ2 − γ0γ1)

α2
n − γ0(2 − γ0)

= γ1,

2 − γ0

2γ1 − γ2
−

∞∑
n=1

2(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)
= 1

γ1
.

(5.140)

Using Eq. (5.140), we can rewrite the kernel functions (5.131) and (5.135) as

K (τ ) = K0 −
∞∑

n=1

2(γ2 − γ0γ1)

α2
n − γ0(2 − γ0)

(
1 − e−α2

nτ
)
,

M (τ ) = M0 +
∞∑

n=1

2(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)

(
1 − e−β2

n τ
)
,

(5.141)

and then introduce the normalized kernel functions

K (t) = 1

K0
K

( As
11k1
a2 t

)
, M(t) = 1

M0
M

( As
11k1
a2 t

)
, (5.142)
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so that, in light of (5.106) and (5.139)–(5.142), we have

K (t) = 1 −
∞∑

n=1

An

(
1 − exp

(
− t

ρn

))
, (5.143)

M(t) = 1 +
∞∑

n=1

Bn

(
1 − exp

(
− t

τn

))
, (5.144)

where we have introduced the notation

An = 2(γ2 − γ0γ1)

γ1
[
α2

n − γ0(2 − γ0)
] , Bn = 2γ1(γ2 − γ0γ1)

γ 2
1 β2

n + γ2(γ2 − 2γ1)
, (5.145)

ρn = a2

α2
n As

11k1
, τn = a2

β2
n As

11k1
. (5.146)

Note that, by analogy with the viscoelastic model, the functions K (t) and M(t)
may be called the normalized biphasic relaxation function and the normalized bipha-
sic creep function for unconfined compression, respectively. Note also that the
sequences ρ1 > ρ2 > . . . and τ1 > τ2 > . . ., which are defined by formulas
(5.146), represent the discrete relaxation and retardation spectra, respectively.

In the dimensional form, Eqs. (5.130) and (5.133) can be recast as follows (see
formulas (5.96), (5.106), and (5.123)):

F(t) = πa2E3

h

t∫

0−
K (t − t ′)ẇ(t ′) dt ′, (5.147)

w(t) = h

πa2E3

t∫

0−
M(t − t ′)Ḟ(t ′) dt ′. (5.148)

Here we have introduced the notation

E3 = As
11K0 = As

11

M0
,

which according to Eqs. (5.110), (5.124), (5.127), and (5.139), has the form

E3 = 1

2

(
As
11 + As

12 + 2As
33 − 4As

13

)
. (5.149)
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Note that the elastic constant E3 defined by formula (5.149) coincideswith the out-
of-planeYoung’smodulus of the equivalent (for instantaneous response) transversely
isotropic incompressible elastic material given by formula (5.40)2.

In terms of the technical elastic constants, formulas (5.127) yield

γ0 = 1 − νs12 − 2νs231n1

1 − νs231n1
, (5.150)

γ2

γ1
= 2

{[
1 − 4νs31(1 − νs12ν

s
31)

]
n1 + (1 − νs12)

2 − νs231(1 − 4νs31)n
2
1

}
(
1 − n1ν

s2
31

)[
(1 − 4νs31)n1 + 2(1 − νs12)

] , (5.151)

where we have introduced the notation

n1 = E s
1

E s
3
.

Finally, we note that in light of (5.150), Eq. (5.132) coincides with the correspond-
ing equation derived in [19].

5.3.4 Biphasic Stress Relaxation in Unconfined Compression

For an imposed step displacement, i.e.,

w(t) = w0H (t),

where H (t) is the Heaviside step function, by formula (5.147) we have

F(t) = πa2E3
w0

h
K (t), (5.152)

for K (t) and E3 given by (5.143) and (5.149).
FollowingCohen et al. [19], we consider the ratio of the peak load intensity (Fpeak,

at t → 0+) to the one at equilibrium (Feq, at t → +∞), which in light of the relations
K (0) = 1 and K (+∞) = 1 − ∑∞

n=1An takes the form

Fpeak

Feq
= γ1(2 − γ0)

2γ1 − γ2
. (5.153)

We note that in writing the above equation we have used the first identity (5.140).
In the isotropic case, the right-hand side of (5.153) reduces to 3/[2(1 + νs)],

which is a strictly decreasing function of Poisson’s ratio νs and for positive νs attains
a maximum value of 1.5 at νs = 0, as shown by Armstrong et al. [5].
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Fig. 5.4 The effect of νs12
and E s

1/E s
3 on the peak to

equilibrium ratio of the load
intensity in the stress-
relaxation response to a step
displacement. (The values
taken by E s

1/E s
3 are

indicated on the figure)
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Taking into account formulas (5.110), (5.124), and (5.127), we rewrite Eq. (5.153)
in the following form [19]:

Fpeak

Feq
= 2(1 − νs12) + (1 − 4νs31)E s

1/E s
3

2
(
1 − νs12 − 2νs231E s

1/E s
3

) . (5.154)

For the particular case of νs31 = 0, the maximum values of the load intensity ratio
are depicted in Fig. 5.4 for different values of E s

1/E s
3 and νs12 ∈ (0, 1.0). Note the

high values that this ratio can attain (much greater than the maximum value 1.5 for
the ratio Fpeak/Feq = 3/[2(1 + ν)] in the isotropic case for ν = 0).

For an imposed ramp displacement, i.e.,

w(t) =
{

V0t, 0 ≤ t ≤ t0,

V0t0, t0 ≤ t,

when a constant strain rate −V0/h is maintained until time t0, the general solution
(3.49) yields

F(t) = πa2E3
V0

h

{
(2γ1 − γ2)

γ1(2 − γ0)
t +

∞∑
n=1

Anρn
(
1 − e−t/ρn

)}
(5.155)

for 0 ≤ t ≤ t0, and for t ≥ t0 gives

F(t) = πa2E3
V0

h

{
(2γ1 − γ2)

γ1(2 − γ0)
t0 +

∞∑
n=1

Anρn
(
e−(t−t0)/ρn − e−t/ρn

))}
. (5.156)

Note that at equilibrium (as t → ∞), the load intensity will be
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Fig. 5.5 The effect of νs12 on
the stress-relaxation time
history in response to a
ramped displacement, when
E s
1/E s

3 = 5 and t0/tg = 1
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,

which in light of (5.110), (5.124), and (5.127), reduces to

Feq = πa2E s
3

V0t0
h

. (5.157)

The characteristic relaxation time in unconfined compression can be defined by

τ ′
R = a2

α2
1 As

11k1
, (5.158)

where α1 is the first root of the transcendental equation (5.132).
For the special case in which νs31 = 0, E s

1/E s
3 = 5, and the ratio of the ramp

time to the gel diffusion time, tg = a2/(As
11k1) (cf. formula (5.158)), is t0/tg = 1,

the effect of νs12 on the dimensionless stress-relaxation time history f (t)/[E s
3ε̇0t0],

where f (t) = F(t)/[πa2] and ε̇0 = V0/h, is shown in Fig. 5.5. Also, according to
Cohen et al. [19], Fig. 5.6 illustrates the effect of the ratio t0/tg on the stress relaxation
time history for the special case of νs12 = 0.3, νs31 = 0, and E s

1/E s
3 = 5.

We also note an alternative representation for F(t) in the loading stage, similar
to the one obtained in [19], which follows from the direct inverse Laplace transform
of Eq. (5.128) for ε̃(s) = −(V0tg/h)s−2. Then, for 0 ≤ t ≤ t0 we have

F(t) = πa2E3
V0

h

{
(2γ1 − γ2)

γ1(2 − γ0)
t + γ2 − γ0γ1

4γ1(2 − γ0)2
−

∞∑
n=1

Anρne−t/ρn

}
.
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Fig. 5.6 The effect of t0/tg
on the stress-relaxation time
history in response to a
ramped displacement, when
νs12 = 0.3, νs31 = 0.0, and
E s
1/E s

3 = 5. (The values
taken by t0/tg are indicated
on the figure)
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Equations (5.155) and (5.156) can be used in determining the material properties
from the unconfined stress relaxation experiment, by fitting the theoretical solution
on to the experimental curve for the total normal stress [19, 32].

5.3.5 Biphasic Creep in Unconfined Compression

For an imposed step loading, F(t) = F0H (t), we obtain from formula (5.148) that

w(t) = hF0

πa2E3
M(t), (5.159)

where M(t) and E3 are given by (5.144) and (5.149).
Taking into account Eqs. (5.140)2 and (5.145)2, we find

M(t) = γ2 + 2γ 2
1 − γ1(γ0 + γ2)

γ1(2γ1 − γ2)
−

∞∑
n=1

Bn exp
(
− t

τn

)
, (5.160)

where γ0, γ1, γ2 andBn , τn are given by (5.127) and (5.145)2, (5.146)2, respectively.
The characteristic retardation time in unconfined compression can be defined by

τ ′′
R = a2

β2
1 As

11k1
,

where β1 is the first root of the transcendental equation (5.136).
In the isotropic case, formulas (5.159) and (5.160) reduce to the solution originally

obtained by Armstrong et al. [5].
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Equations (5.159) and (5.160) are used in determining the biphasicmaterials prop-
erties from the unconfined compression creep experiment by fitting the theoretical
solution with the experimental curve for the nominal strain [5, 47].

Observe that the deformation response is characterized by an instantaneous jump

w(0+) = hF0

πa2E3

followed by a decreasing slope until equilibrium is reached, where

w(+∞) = hF0

πa2E s
3
.

Note that the identity

E3 = γ1(2γ1 − γ2)

γ2 + 2γ 2
1 − γ1(γ0 + γ2)

E s
3

can be directly proved using the expressions (5.110), (5.124), (5.127), and (5.149).
In the isotropic case,when the deformation behavior of the solid phase is described

by two elastic constants Es and νs, the equilibrium response of biphasic material in
unconfined and confined compression allows us to evaluate the Young’s modulus Es
and the aggregate modulus HA. Thus, taking into account that

HA = 1 − νs

(1 + νs)(1 − 2νs)
Es,

the following formula for Poisson’s ratio can be derived [43]:

νs = 1

4

(
Es

HA
− 1 +

√( Es

HA
− 1

)( Es

HA
− 9

))
.

Finally, note that platen/specimen friction influences the mechanical response
of articular cartilage in unconfined compression [5, 71, 77]. In particular, the peak
reaction forces in unconfined stress-relaxation experiments exceed the corresponding
maximum values predicted analytically. Consequently, the frictional effect becomes
more significant for specimens with large aspect (diameter/height) ratios.

5.3.6 Cyclic Compressive Loading in Unconfined Compression

It is well known that the long-term creep and relaxation tests, typically used for
determining viscoelastic and biphasic/poroelastic properties, are not appropriate for
rapidly assessing the dynamic biomechanical properties of biological tissues like
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articular cartilage. For in vivo measurements of tissue viability, Appleyard et al. [1]
developed a dynamic indentation instrument, which employs a single-frequency
(20 Hz) sinusoidal oscillatory waveform superimposed on a carrier load.

Following Li et al. [51], we assume that a biphasic tissue sample is subjected to
a cyclic displacement input

w(t) = [w0(1 − cosωt) + w1]H (t), (5.161)

where w1/h is the prestrain resulting from the initial deformation applied to the
sample to create the desired preload, w0 is the displacement amplitude, i.e., w0/h is
equal to one-half the peak-to-peak cyclic strain input superimposed on the prestrain,
and ω = 2π f is the angular frequency, f being the loading frequency.

Differentiating (5.161), we obtain

dw(t)

dt
= H (t)w0ω sinωt + w1δ(t). (5.162)

Substituting expression (5.162) into Eq. (5.147), we arrive, after some algebra, at the
following stress output:

F(t)

πa2 = E3

h

{
w1K (t) + w0

(
2γ1 − γ2

γ1(2 − γ0)
+

∞∑
n=1

ρ2
nω2An

1 + ρ2
nω2 exp

(
− t

ρn

))

− w0
[
K1(ω) cosωt − K2(ω) sinωt

]}
. (5.163)

Here we have introduced the notation

K1(ω) = 1 −
∞∑

n=1

An

1 + ρ2
nω2 , (5.164)

K2(ω) =
∞∑

n=1

ρnωAn

1 + ρ2
nω2 . (5.165)

To assign a physical meaning to the introduced functions K1(ω) and K2(ω),
let us compare the oscillating part of the input strain, that is −(w0/h) cosωt ,
with the corresponding oscillating part of the compressive stress, which is equal to
−E3(w0/h)

[
K1(ω) cosωt − K2(ω) sinωt

]
. By analogy with the viscoelastic model,

we obtain that K1(ω) and K2(ω) represent, respectively, the apparent relative storage
and loss moduli. Correspondingly, the apparent loss angle, δ(ω), can be introduced
by the formula

tan δ(ω) = K2(ω)

K1(ω)
. (5.166)
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The apparent loss angle δ(ω)describes the phase difference between the displacement
input and force output.

In the case of load-controlled compression, following Suh et al. [73], we will
assume that the tissue sample is subjected to a cyclic compressive loading

F(t) = [F0(1 − cosωt) + F1]H (t), (5.167)

where F0 is the force amplitude, and F1 is the initial preload.
After substitution of the expression (5.167) into Eq. (5.148), we finally obtain the

following resulting strain output:

w(t)

h
= 1

πa2E3

{
F1M(t) + F0

(
γ1(2 − γ0)

2γ1 − γ2
−

∞∑
n=1

τ 2n ω2Bn

1 + τ 2n ω2 exp
(
− t

τn

))

− F0
[
M1(ω) cosωt + M2(ω) sinωt

]}
, (5.168)

where we have introduced the notation

M1(ω) = 1 +
∞∑

n=1

Bn

1 + τ 2n ω2 , (5.169)

M2(ω) =
∞∑

n=1

τnωBn

1 + τ 2n ω2 . (5.170)

Note that M1(ω) and M2(ω) have physical meanings of the apparent relative storage
and loss compliances, respectively.

5.3.7 Displacement-Controlled Unconfined Compression Test

Following Argatov [3], we consider an unconfined compression test with the upper
plate displacement specified according to the equation

w(t) = w0 sinωt, t ∈ (0, π/ω). (5.171)

The maximum displacement, w0, will be achieved at the time moment tm = π/(2ω).
The moment of time t = t̃ ′M , when the contact force F(t) vanishes, determines
the duration of the contact. The contact force itself can be evaluated according to
Eqs. (5.147) and (5.171) as follows:
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F(t) = πa2E3

h
w0ω

t∫

0

K (t − τ) cosωτ dτ. (5.172)

According to Eq. (5.172), the contact force at the moment of maximum displace-
ment is given by

F(tm) = πa2E3

h
w0 K̃1(ω), (5.173)

where we have introduced the notation

K̃1(ω) = ω

π/(2ω)∫

0

K (τ ) sinωτ dτ. (5.174)

By analogy with the viscoelastic case [2, 4], the quantity K̃1(ω) will be called the
reduced incomplete apparent storage modulus.

Substituting the expression (5.143) into the right-hand side of Eq. (5.174), we
obtain

K̃1(ω) = 1 −
∞∑

n=1

An

1 + ρ2
nω2 −

∞∑
n=1

ρnωAn

1 + ρ2
nω2 exp

(
− π

2ωρn

)
. (5.175)

Now, taking into consideration Eqs. (5.164) and (5.175), we may conclude that
the difference between the reduced apparent storage modulus K1(ω) and the reduced
incomplete apparent storage modulus K̃1(ω) is relatively small at low frequen-
cies. To be more precise, the difference K1(ω) − K̃1(ω) is positive and of order
O
(
ωρ1 exp(−π/(2ωρ1))

)
as ω → 0, where ρ1 is the maximum relaxation time.

In the high frequency limit, the upper limit of the integral (5.174) tends to zero
asω increases. Thus, the behavior of K̃1(ω) asω → +∞will depend on the behavior
of K (t) as t → 0. According to (5.137), as ω → ∞, we have

K̃1(ω) = 1 − 2s1/2√
π

(γ2 − γ0γ1)

γ1

√
As
11k1
a2

1√
ω

+ O(ω−1), (5.176)

where s1/2 = ∫ π/2
0

√
x sin x dx .

On the other hand, due to the asymptotic formula (5.176), the following limit
relation holds true: lim K1(ω) = 1 as ω → ∞. Thus, we conclude that K̃1(ω) 

K1(ω) forω → ∞ aswell as K̃1(ω) 
 K1(ω) forω → 0. In otherwords, the reduced
incomplete apparent storage modulus K̃1(ω) obeys both asymptotic behaviors of the
reduced apparent storage modulus K1(ω).
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5.3.8 Force-Controlled Unconfined Compression Test

Consider now an unconfined compression test where the external force is as specified
by the equation

F(t) = F0 sinωt, t ∈ (0, π/ω). (5.177)

The maximum contact force, F0, will be achieved at the time moment tM = π/(2ω).
The moment of time t ′M = π/ω, when the contact force F(t) vanishes, determines
the duration of the compression test. According to Eqs. (5.148) and (5.177), the upper
plate displacement can be evaluated as follows:

w(t) = h

πa2E3
F0ω

t∫

0

M(t − τ) cosωτ dτ. (5.178)

Due to Eq. (5.178), the displacement at the moment of maximum contact force is
given by

w(tM ) = h

πa2E3
F0M̃1(ω), (5.179)

where we have introduced the notation

M̃1(ω) = ω

π/(2ω)∫

0

M(τ ) sinωτ dτ. (5.180)

By analogy with the viscoelastic case [2, 4], the quantity M̃1(ω) will be called the
reduced incomplete apparent storage compliance.

Substituting the expression (5.138) into the right-hand side of Eq. (5.180), we
obtain

M̃1(ω) = 1 +
∞∑

n=1

Bn

1 + τ 2n ω2 +
∞∑

n=1

τnωBn

1 + τ 2n ω2 exp
(
− π

2ωτn

)
. (5.181)

Using the samemethod as for K̃1(ω), it can be shown that the incomplete apparent
storage compliance M̃1(ω) obeys both asymptotic behaviors of the apparent storage
compliance M1(ω), that is M̃1(ω) 
 M1(ω) for ω → 0 along with M̃1(ω) 
 M1(ω)

for ω → ∞.

5.4 Biphasic Poroviscoelastic (BPVE) Model

In this section, the biphasic poroviscoelastic model is briefly outlined. The confined
and unconfined compression tests as well as the torsion test are considered.
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5.4.1 Linear Biphasic Poroviscoelastic Theory

The biphasic theory was extended byMak [54] to account for the inherent viscoelas-
ticity of the solid matrix, by replacing the effective stresses (5.13) in the constitutive
equation (5.7) with viscoelastic constitutive relations in the hereditary integral form.
Therefore, for a transversely isotropic material, we have

σVE
11 = Bs

11∗ ε11 + Bs
12∗ ε22 + Bs

13∗ ε33, σVE
23 = 2Bs

44∗ ε23,

σVE
22 = Bs

12∗ ε11 + Bs
11∗ ε22 + Bs

13∗ ε33, σVE
13 = 2Bs

44∗ ε13,

σVE
33 = Bs

13∗ ε11 + Bs
13∗ ε22 + Bs

33∗ ε33, σVE
12 = 2Bs

66∗ ε12,

(5.182)

where the ∗ sign denotes the Stieltjes integral, i.e.,

Bs
kl ∗ εi j =

t∫

−∞
Bs

kl(t − τ) dεi j (τ ). (5.183)

For simplicity’s sake, following [68], we assume that the deformation behavior
of the solid phase is governed by a single reduced stress-relaxation function, ψ(t),
which is usually assumed to be in the following form proposed by Fung [28]:

ψ(t) = 1 +
∞∫

0

S(τ )e−t/τ dτ, (5.184)

where

S(τ ) =
⎧⎨
⎩

c

τ
, τ1 ≤ τ ≤ τ2,

0, τ < τ1, τ > τ2.

(5.185)

We note (see, e.g., [38, 49]) that the relaxation spectrum (5.185) with constant ampli-
tude over a range of frequencies τ ∈ (τ1, τ2), which was originally introduced by
Neubert [61], has least sensitivity to strain rate, which has been believed to be the
case for some biological tissues [28].

The function S(τ ) defines a continuous relaxation spectrum, where the parameter
c is a proportionality constant for the amplitude of the spectrum S(τ ). The width of
the spectrum is defined by the time constants τ1 and τ2, which govern the fast and
slow relaxation phenomena, respectively.

Note that at initial times after loading and at equilibrium, respectively, we have

ψ(0) = 1 + c ln
τ2

τ1
, ψ(+∞) = 1. (5.186)
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Therefore, under the above assumptions, the relaxation functions Bs
kl(t) can be

represented as

Bs
kl(t) = Bs∞

kl ψ(t), (5.187)

where Bs∞
kl = Bs

kl(+∞) are the equilibrium elastic moduli, while the instantaneous
elastic moduli, Bs0

kl = Bs
kl(0), are given by

Bs0
kl = Bs∞

kl

(
1 + c ln

τ2

τ1

)
. (5.188)

The viscoelastic parameters c, τ1, τ2 are material properties of the solid skeleton
that need to be determined from experimental data. The confined and unconfined
compression problems for a BPVE material were considered in [34, 36, 54, 68].

Thus, the constitutive equations for the solid matrix in the biphasic poroviscoelas-
tic (BPVE) theory have the form

σ s = −φs pI + σVE, (5.189)

where p is the pressure of the fluid phase, I is the identity tensor, and the components
of the stress tensor σVE are given by (5.182).

The reduced stress-relaxation function (5.184) and (5.185) can be represented by

ψ(t) = 1 + c
[

E1

( t

τ2

)
− E1

( t

τ1

)]
, (5.190)

where E1(x) is the exponential integral function, i.e.,

E1(x) =
1∫

0

1

ξ
exp

(
− x

ξ

)
dξ.

Observe [68] that, if the width of the relaxation spectrum reduces to zero, i.e.,
τ1 → τ2, the reduced relaxation function (5.190) becomesψ(t) = 1. It is also readily
seen that the intrinsic viscoelastic effect diminishes as c → 0. Thus, for the limiting
cases c → 0 or τ1 → τ2, and the BPVE theory reduces to the linear biphasic theory.

Note also that for the sake of numerical efficiency the discrete form of the relax-
ation function

ψ(t) = 1 +
∑

i

Ci exp
(
− t

τi

)

has also been used for articular cartilage [21, 72]. Multiple discrete spectrums (dif-
ferent sets of Ci and τi ) can be used to fit the experimental data for the short-term,
mid-term and long-term responses [49].
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Wefinally note [57] that the inclusion of intrinsicmatrix viscoelastic properties for
the solid matrix in the biphasic theory [54] improved the prediction in the unconfined
compression case [68] as well as the material property determination [36, 66].

5.4.2 Confined Compression of a Biphasic
Poroviscoelastic Material

Under the idealized conditions of the confined compression experiment described in
Sect. 5.2.1, the displacement of the solid matrix and the fluid movement occur only
in the axial direction, and the governing differential equation (5.63) of the biphasic
model should be replaced with the following [54, 68]:

t∫

−∞
Bs
33(t − τ)

∂

∂τ

(∂2uz

∂z2

)
dτ = 1

k3

∂uz

∂t
. (5.191)

Here, uz(t, z) is the axial displacement of the solid phase, k3 is the axial permeability,
and Bs

33(t) is the axial aggregate relaxation modulus of the solid phase.
For creep, the initial and boundary conditions are

uz(t, z) = 0, −∞ < t < 0, (5.192)

t∫

−∞
Bs
33(t − τ)

∂

∂τ

(∂uz

∂z

)
dτ

∣∣∣∣
z=0

= −σ(t)H (t), (5.193)

uz
∣∣
z=h = 0, (5.194)

where σ(t) is the applied compressive stress (see Eq. (5.63)).
Following [54, 68], we put

Bs
33(t) = HAψ(t), (5.195)

where HA = Bs∞
33 is the equilibrium aggregate elastic modulus, and ψ(t) is the

reduced stress-relaxation function given by (5.184) and (5.185).
To solve the problem (5.191)–(5.194), we introduce dimensionless quantities

ζ = z

h
, τ = α1t, τ ′

i = α1τi , i = 1, 2, α1 = HAk3
h2 (5.196)

and apply the Laplace transform to Eqs. (5.191), (5.193), and (5.194) with respect
to the dimensionless time variable τ . In this way, remembering that the Laplace
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transform of the function ψ(τ/α1) (see Eqs. (5.184) and (5.185)) is given by

ψ̃(s) = 1

s

(
1 + c ln

1 + sτ ′
2

1 + sτ ′
1

)
, (5.197)

we arrive at the problem

∂2ũz

∂ζ 2 − f (s)ũz = 0, ζ ∈ (0, 1),

∂ ũz

∂ζ

∣∣∣
ζ=0

= − h

HA

f (s)σ̃ (s)

s
, ũz

∣∣
ζ=1 = 0,

(5.198)

where we have introduced the notation

f (s) = 1

ψ̃(s)
. (5.199)

From (5.198), we readily obtain

ũz = hσ̃ (s)
√

f (s)

HAs

sinh
[√

f (s)(1 − ζ )
]

cosh
√

f (s)
. (5.200)

In the case where a constant external load, F0, is applied instantaneously, we have
σ(t) = σ0H (t), where σ0 = F0/A with A being the sample cross-sectional area,
and σ̃ (s) = σ0/s, so that formula (5.200) reduces to the fallowing [54, 68]:

ũz = hσ0

HA

√
f (s) sinh

[√
f (s)(1 − ζ )

]

s2 cosh
√

f (s)
.

An asymptotic approximation of the surface displacement uz |z=0 for small times
after loading can be obtained by evaluating the inverse Laplace transform as s → ∞,
when f (s) ∼ s/α2, for a constant α2. Taking into account (5.197), (5.199) and the
relation τ ′

2/τ
′
1 = τ2/τ1 (see Eq. (5.196)3), we get

α2 = 1 + c ln
τ2

τ1
.

Thus, the short-time asymptotic approximation for the nominal sample-average
strain is given by the following formula [54, 68]:

uz(t, 0)

h

 2σ0

HA

√
α1

πα2
t .

Note thatα2 = ψ(0) (see Eqs. (5.184) and (5.185)). This dimensionless parameter
characterizes the intrinsic solid matrix viscoelastic effects. Observe also [68] that
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larger values of α2, reflecting increased effects of matrix viscoelasticity, or lower
values of α1, and reflecting a low value of the solid matrix permeability, will have
the same effect in reducing the early creep response.

5.4.3 Unconfined Compression of a BPVE Material

In the framework of the BPVE theory, the unconfined compression problem (consid-
ered previously in Sect. 5.3.1) differs in essence via the constitutive equations (5.98),
which now take the form

σVE
rr = Bs

11∗
∂ur

∂r
+ Bs

12∗
ur

r
+ Bs

13∗ ε,

σVE
θθ = Bs

12∗
∂ur

∂r
+ Bs

11∗
ur

r
+ Bs

13∗ ε,

σVE
zz = Bs

13∗
∂ur

∂r
+ Bs

13∗
ur

r
+ Bs

33∗ ε.

(5.201)

The equilibrium equation of the solid matrix (5.99) now has the form

−∂p

∂r
+ Bs

11∗
(

∂2ur

∂r2
+ 1

r

∂ur

∂r
− ur

r2

)
= 0.

We recall that the boundary conditions (5.91)–(5.93) are formulated in terms of
the components of the total stress tensor

σ = −pI + σVE. (5.202)

To solve this problem, let us first introduce the dimensionless variables

ρ = r

a
, U = ur

a
,

where we have refrained from using the variables t and p in the non-dimensionali-
zation. Secondly, we apply the Laplace transform with respect to the time variable t ,
denoting by a tilde the transformed quantities. We then introduce auxiliary notation

P̃ = p̃

B̄s
11(s)

, α12 = B̄s
12(s)

B̄s
11(s)

, α13 = B̄s
13(s)

B̄s
11(s)

, α33 = B̄s
33(s)

B̄s
11(s)

, (5.203)

f (s) = a2s

k1 B̄s
11(s)

, B̄s
kl(s) = s B̃s

kl(s). (5.204)
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In this case, the biphasic unconfined compression problem (5.111)–(5.113) is
replaced with the following:

∂ P̃

∂ρ
= f (s)

(
Ũ + ε̃

2
ρ
)
,

∂2Ũ

∂ρ2 + 1

ρ

∂Ũ

∂ρ
− Ũ

ρ2 = f (s)
(

Ũ + ε̃

2
ρ
)
,

P̃
∣∣
ρ=1 = 0,

∂Ũ

∂ρ
+ α12(s)

Ũ

ρ
+ α13(s)ε̃

∣∣∣∣
ρ=1

= 0.

In the same way as was done in Sect. 5.3.2, we find

Ũ = − ε̃(s)

2
ρ

⎛
⎜⎜⎜⎝1 −

(1 + α12(s) − 2α13(s))
I1(

√
f (s)ρ)√

f (s)ρ

I0(
√

f (s)) − (1 − α12(s))
I1(

√
f (s))√

f (s)

⎞
⎟⎟⎟⎠ , (5.205)

p̃ = (1 + α12(s) − 2α13(s))ε̃(s)
[
I0(

√
f (s)ρ) − I0(

√
f (s))

]

2

(
I0(

√
f (s)) − (1 − α12(s))

I1(
√

f (s))√
f (s)

) . (5.206)

We now consider the force response of the BPVE sample

F(t) = −2π

a∫

0

σzz(t, r)r dr, (5.207)

where, as a result of (5.201) and (5.202), the normal total stress is given by

σzz(t, r) = −p + Bs
13∗

(∂ur

∂r
+ ur

r

)
+ Bs

33∗ ε.

Upon application of the Laplace transform to Eq. (5.207), rewritten in terms of
the dimensionless variables (5.203), we obtain

F̃(s)

πa2 B̄s
11(s)

= −2

1∫

0

(
−P̃ + α13(s)

(∂Ũ

∂ρ
+ Ũ

ρ

)
+ α33(s)ε̃

)
ρ dρ.
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Taking into account formulas (5.205) and (5.206), and performing the integration
in the above equation, we arrive at formula (5.126), where the coefficients γ0, γ1,
and γ2 are evaluated by Eq. (5.127), where α12, α13, and α33 are as given by (5.203).

Finally, note that the instantaneous axial modulus E3, in light of (5.149), is

E3 = 1

2

(
Bs0
11 + Bs0

12 + 2Bs0
33 − 4Bs0

13

)
,

where Bs0
kl = Bs

kl(0) are the instantaneous elastic moduli of the solid matrix.
We can thus hypothesize that the instantaneous response of a transversely isotropic

biphasic poroviscoelastic tissue is equivalent to that of an incompressible transversely
isotropic elasticmaterial with thematerial constants given by formulas (5.36), (5.39),
and (5.40), where νs12, νs31, Gs

13, E s
1, and E s

3 are regarded as instantaneous elastic
material properties of the poroviscoelastic matrix.

Observe that the deformation response of a biphasic or BPVE sample depends on
how it is tested. In particular, while only the aggregate relaxation modulus Bs

33(t)
governs the behavior of a sample tested in confined compression, all four relax-
ation moduli Bs

11(t), Bs
12(t), Bs

13(t), and Bs
33(t) have significant influence on the

deformation behavior of a BPVE sample tested in unconfined compression.
Finally, we note [34] that the failure to account for either anisotropy or viscoelas-

ticity of the articular cartilage matrix could result in flawed predictions of the tissue
deformation under general external loading.

5.4.4 Torsion of a Biphasic Poroviscoelastic Material

We consider a cylindrical sample of a BPVE material of radius a and height h sub-
jected to a torque T (see Fig. 5.7). Let θ denotes the angle of torsional displacement
imposed on the upper surface of the sample to achieve a specified shear strain, γ .
Between these geometrical parameters, the following relation takes place:

γ = ϑa. (5.208)

Here, ϑ = θ/h is the so-called twist, defined as the angle of rotation per unit length
along the axis of the sample.

Fig. 5.7 Schematic of the
pure torsional shear testing
configuration

transducer

h

T a

γ
θ

Torque
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The components of the in-plane displacement vector are ur = 0 and uθ = ϑr z,
and so the only nonzero component of strain is

εzθ = 1

2
ϑr. (5.209)

The torque is given by

T = 2π

a∫

0

r2σzθ dr, (5.210)

where according to (5.182) and (5.202) the total shear stress σzθ is related to the
shear strain component εzθ as follows:

σzθ = 2

t∫

−∞
Bs
44(t − τ)

∂εzθ

∂τ
(τ ) dτ. (5.211)

Therefore, the substitution of (5.209) and (5.211) into Eq. (5.210) yields

T (t) = Ip

t∫

−∞
Bs
44(t − τ)

∂ϑ

∂τ
(τ ) dτ, (5.212)

where Ip = πa4/2 is the polar moment of inertia of the sample’s cross section area.
Furthermore, introducing the so-called shear stress

τ = aT

Ip
,

which is defined as maximum shear stress in the sample, and taking into account
(5.208), we can rewrite Eq. (5.212) in terms of the shear strain as follows:

τ(t) =
t∫

−∞
Bs
44(t − t ′)∂γ

∂t ′
(t ′) dt ′. (5.213)

Now, assuming that the employed herein viscoelastic material of the solid phase
is described by the Fung model [28], we represent the above equation in the form

τ(t) = Bs∞
44

t∫

−∞
ψ(t − t ′)∂γ

∂t ′
(t ′) dt ′, (5.214)
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where Bs∞
44 is the equilibrium out-of-plane shear modulus, and ψ(t) is the reduced

relaxation function given by (5.184) and (5.185), i.e.,

ψ(t) = 1 + c

τ2∫

τ1

1

τ
exp

(
− t

τ

)
dτ. (5.215)

Following Iatridis et al. [38], we now outline the main shear testing protocols.
Stress-relaxation behavior. In the stress-relaxation experiments, the sample is

subjected to a ramping phase, where the strain increases linearly at a constant strain
rate, followed by a relaxation phase, where the shear strain is held constant, i.e.,

γ (t) =
⎧⎨
⎩

γ0

t0
t, 0 ≤ t ≤ t0,

γ0, t0 ≤ t,

where γ0 and t0 are given constants.
For the ramping phase (0 ≤ t ≤ t0), we have

τ(t) = Bs∞
44 γ0

t0

[
t + c1F1(t, τ1, τ2)

]
,

where (with Ei(x) being the exponential integral)

F1(t, τ1, τ2) = τ2
(
1 − e−t/τ2

) − τ1
(
1 − e−t/τ1

) − t
[
Ei(t/τ1) − Ei(t/τ2)

]
,

Ei(x) =
∞∫

x

exp(−ξ)

ξ
dξ.

For the stress-relaxation phase, the solution is given in terms of the shifted time
parameter t̂ = t − t0 in the following form [38]:

τ(t) = Bs∞
44 γ0

t0

[
t0 + c1G1(t, t̂, τ1, τ2)

]
,

where

G1(t, t̂, τ1, τ2) = τ2
(
e−t̂/τ2 − e−t/τ2

) − τ1
(
e−t̂/τ1 − e−t/τ1

)

− {
t̂
[
Ei(t̂/τ2) − Ei(t̂/τ1)

] − t
[
Ei(t/τ2) − Ei(t/τ1)

]}
.

Creep behavior. Let us introduce the out-of-plane creep compliance in shear of
the solid matrix, J s

44(t), which governs the deformation response of the solid phase
under application of a step out-of-plane shear stress of unit magnitude. Hence, the
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inverse relation for (5.213) is given by

γ (t) =
t∫

0−
J s
44(t − t ′) ∂τ

∂t ′
(t ′) dt ′. (5.216)

For a given relaxation modulus Bs
44(t), the corresponding creep compliance can

be evaluated via its Laplace transform

J̃ s
44(s) = 1

s2 B̃s
44(s)

. (5.217)

Let us now introduce the reduced creep function, ϕ(t), by the formula

J s
44(t) = J s∞

44 ϕ(t), (5.218)

where J s∞
44 = J s

44(+∞) is the equilibrium compliance. Since the reduced stress-
relaxation function is defined byψ(t) = Bs

44(t)/Bs∞
44 , where Bs∞

44 is the equilibrium
modulus such that Bs∞

44 = 1/J s∞
44 , the following normalization conditions hold:

ψ(+∞) = 1, ϕ(+∞) = 1.

The Fung reduced creep function ϕ(t) corresponding to the reduced relaxation
function ψ(t) given by Eq. (5.218) can be obtained by employment of the Laplace
transform and Eq. (5.217), that is

ψ̃(s)ϕ̃(s) = 1

s2
,

where the Laplace transform ψ̃(s) is given by formula (5.197).
According to Dortmans et al. [22], the following formula holds:

ϕ(t) = 1 − (τc − τ2)(τc − τ1)

cτc(τ2 − τ1)
e−t/τc

− c

τ2∫

τ1

e−t/τ 1

τ

1(
1 + c ln

τ2 − τ

τ − τ1

)2 + π2c2
dτ, (5.219)

where we have used the notation

τc = τ2e1/c − τ1

e1/c − 1
.
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In the creep experiment, a constant torque, T0, is applied instantaneously, i.e.,
T (t) = T0H (t) and τ(t) = τ0H (t), where τ0 = aT0/Ip. Therefore, by formulas
(5.216) and (5.218), we obtain

γ (t) = τ0 J s∞
44 ϕ(t),

where ϕ(t) is given by (5.219).
Steady sinusoidal behavior. If the sample is subjected to a dynamic frequency

sweep, the sinusoidal shear strain input is given by

γ = γ0eiωt ,

where γ0 (rad) is the peak shear strain, ω (rad/s) is the angular frequency, and i is
the imaginary unit equal to the square root of −1.

In the absence of inertial forces, the corresponding shear stress output will be

τ = τ0eiωt ,

where τ0 is a complex quantity.
The ratio of the amplitudes τ0 and γ0 determines the reduced complex elastic

shear modulus, ψ∗, such that

τ0 = Bs∞
44 ψ∗γ0.

The reduced complex modulus ψ∗ is comprised of real and imaginary parts, i.e.,

ψ∗ = ψ1 + iψ2,

which defines as the reduced storage, ψ1, and loss, ψ2, modulus, respectively.
The reduced storage and loss moduli as functions of angular frequency are eval-

uated as follows [38]:

ψ1(ω) = 1 + c

2
ln

1 + (ωτ2)
2

1 + (ωτ1)2
,

ψ2(ω) = c
{
tan−1(ωτ2) − tan−1(ωτ1)

}
.

The torsional shear configuration shown in Fig. 5.7 has been used to study equilib-
rium and dynamic shearmoduli aswell as the characterization of the stress-relaxation
behavior of articular cartilage. Note also [15] that other types of shear testing (for
instance, single-lap test) may be important in determining the capacity of cartilage
to repair.

It is also noteworthy that under a small shear strain no volumetric changes or
pressure gradients occur in a cylindrical sample of BPVE material, and therefore no
interstitial fluid flow is induced. Thus, shear tests under infinitesimal strain enable
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evaluation of the intrinsic viscoelastic, flow-independent properties of the collagen-
proteoglycan solid matrix [18, 41].

Finally, we note that a finite element formulation for describing the large defor-
mation response of biphasicmaterials in torsionwas presented in [56], with a specific
focus on the consideration of nonlinear coupling between torsional deformation and
fluid pressurization in articular cartilage.
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Chapter 6
Contact of Thin Biphasic Layers

Abstract In Sect. 6.1, a three-dimensional deformation problem for an articular
cartilage layer is studied in the framework of the linear biphasic model. The articular
cartilage bonded to subchondral bone is modeled as a transversely isotropic biphasic
material consisting of a solid phase and a fluid phase. In Sect. 6.2, the same problem
is reconsidered with the effect of inherent viscoelasticity of the solid matrix taken
into account. The frictionless unilateral contact problem for the articular cartilage
layers is considered in Sect. 6.3. It is assumed that the subchondral bones are rigid and
shaped like elliptic paraboloids. The obtained short-time leading-order asymptotic
solution is valid for monotonically increasing loading conditions.

6.1 Deformation of a Thin Bonded Biphasic Layer

In this section, the short-time leading-order asymptotic solution of the deformation
problem for a thin transversely isotropic biphasic layer bonded to a rigid impermeable
substrate and subjected to a normal load is constructed. Also, the long-term response
of the biphasic layer under constant load is briefly discussed.

6.1.1 Deformation Problem Formulation

Let us consider a thin transversely isotropic biphasic layer of uniform thickness,
h, ideally bonded to a rigid impermeable substrate and loaded by a normal time
dependent load, q, (see Fig. 6.1). In the following, the two-dimensional Cartesian
coordinate system (x1, x2) in the plane of the biphasic layer will be denoted by y =
(y1, y2), so that x = (y, z), where z is the normal coordinate. Also, the displacement
vector of the solid matrix is represented as u = (v, w), where v and w are the in-plane
displacement vector and the normal displacement, respectively.

The system of governing differential equations (5.16)–(5.19) for a biphasic
medium can now be rewritten as

© Springer International Publishing Switzerland 2015
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Fig. 6.1 A biphasic layer
bonded to a rigid
impermeable substrate and
supporting a time-dependent
normal load

x1

x3

q(t,n x1,n x2)

h

As
66Δyv + (As

11 − As
66)∇y∇y · v + As

44
∂2v
∂z2 + (As

13 + As
44)

∂

∂z
∇yw = ∇y p,

As
44Δyw + As

33
∂2w

∂z2 + (As
13 + As

44)
∂

∂z
∇y · v = ∂p

∂z
, (6.1)

∂

∂t

(
∇y · v + ∂w

∂z

)
= k1Δy p + k3

∂2 p

∂z2 , (6.2)

wf = −k1∇y p − k3
∂p

∂z
e3. (6.3)

Here, ∇y = (∂/∂y1)e1 + (∂/∂y2)e2 and Δy = ∇y·∇y are the in-plane Hamilton and
Laplace operators, respectively, while the scalar product is denoted by a dot.

At the bottom surface of the biphasic layer, z = h, the boundary conditions (5.20)
and (5.21) now take the form

v
∣∣
z=h = 0, w

∣∣
z=h = 0,

∂p

∂z

∣∣∣∣
z=h

= 0.

As on the upper surface, z = 0, the layer is assumed to be loaded only by a
variable distributed normal load q, the traction boundary conditions

σ33
∣∣
z=0 = −q, σ13

∣∣
z=0 = σ23

∣∣
z=0 = 0

can be rewritten as follows (see Eqs. (5.24) and (5.25)):

−p + As
13∇y · v + As

33
∂w

∂z

∣∣∣∣
z=0

= −q, (6.4)

∇yw + ∂v
∂z

∣∣∣∣
z=0

= 0.

Moreover, assuming that the normal load q is transferred from an impermeable
punch, we require that

∂p

∂z

∣∣∣∣
z=0

= 0,

that is no fluid flow takes place across the contact interface.

http://dx.doi.org/10.1007/978-3-319-20083-5_5
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Equations (6.1)–(6.3) along with the above boundary conditions and the zero
initial conditions (see Eq. (5.30))

v = 0, w = 0, p = 0, wf = 0, −∞ < t < 0,

constitute the deformation problem for a thin biphasic layer.

6.1.2 Perturbation Analysis of the Deformation Problem:
Short-Time Asymptotic Solution

Assuming that the biphasic layer is relatively thin, we set

h = εh∗, (6.5)

where ε is a small positive parameter, h∗ is independent of ε and has the order of
magnitude of a characteristic length in the plane of the layer.

Now, we introduce the dimensionless in-plane coordinates

η = (η1, η2), ηi = yi

h∗
, i = 1, 2, (6.6)

and the stretched dimensionless normal coordinate

ζ = ε−1 z

h∗
. (6.7)

Also, following Ateshian et al. [7], the governing equations are non-dimensiona-
lized using non-dimensional variables

τ = k3 As
33

h2 t, V = v
h

, W = w

h
, P = p

As
44

, Q = q

As
44

. (6.8)

Observe that as a consequence of (6.5), the first formula above can be simply
rewritten as τ = ε−2(k3 As

33/h2∗)t , so that a finite interval for the fast variable τ

corresponds to a very short interval for the time variable t . Correspondingly, the
approximate solution obtained below represents the short-time asymptotics.

Therefore, the system of differential equations (6.1)–(6.3) with the corresponding
boundary and initial conditions takes the form

∂2V
∂ζ 2 + ε

(
(1 + β13)∇η

∂W

∂ζ
− ∇η P

)

+ ε2(β66ΔηV + (β11 − β66)∇η∇η · V
) = 0,
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β33
∂2W

∂ζ 2 − ∂ P

∂ζ
+ ε(1 + β13)∇η · ∂V

∂ζ
+ ε2ΔηW = 0, (6.9)

β33
∂2W

∂τ∂ζ
− ∂2 P

∂ζ 2 + εβ33
∂

∂τ
∇η · V − ε2κ1Δη P = 0,

V
∣∣
ζ=1 = 0, W

∣∣
ζ=1 = 0,

∂ P

∂ζ

∣∣∣∣
ζ=1

= 0,

Q − P + εβ13∇η · V + β33
∂W

∂ζ

∣∣∣∣
ζ=0

= 0, (6.10)

∂V
∂ζ

+ ε∇ηW

∣∣∣∣
ζ=0

= 0,
∂ P

∂ζ

∣∣∣∣
ζ=0

= 0,

V = 0, W = 0, P = 0, −∞ < τ < 0.

Here we have introduced the notation

β11 = As
11

As
44

, β13 = As
13

As
44

, β33 = As
33

As
44

, β66 = As
66

As
44

, κ1 = k1

k3
. (6.11)

Following Ateshian et al. [7], the asymptotic ansatz for the solution to the system
(6.9) and (6.10) is represented in the form

P = P0 + ε2 P1 + · · · ,

V = εV0 + · · · , (6.12)

W = ε2W 0 + · · · ,

where only non-vanishing leading asymptotic terms are included. Note that this
asymptotic ansatz is particularly motivated by the only nonhomogeneous equation
(6.4) in the deformation problem under consideration.

Substituting the asymptotic expressions (6.12) into Eq. (6.9) and the boundary
conditions (6.10), after collecting terms of like order, we obtain

P0 ≡ Q (6.13)

and arrive at the following problems:

∂2V0

∂ζ 2 = ∇η Q, ζ ∈ (0, 1),
∂V0

∂ζ

∣∣∣∣
ζ=0

= 0, V0
∣∣
ζ=1 = 0; (6.14)
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β33
∂2W 0

∂ζ 2 − ∂ P1

∂ζ
= −(1 + β13)∇η · ∂V0

∂ζ
, ζ ∈ (0, 1),

β33
∂2W 0

∂τ∂ζ
− ∂2 P1

∂ζ 2 = κ1Δη Q − β33
∂

∂τ
∇η · V0, ζ ∈ (0, 1),

(6.15)

W 0
∣∣
ζ=1 = 0,

∂ P1

∂ζ

∣∣∣∣
ζ=1

= 0,

−P1 + β33
∂W 0

∂ζ

∣∣∣∣
ζ=0

= −β13∇η · V0
∣∣
ζ=0,

∂ P1

∂ζ

∣∣∣∣
ζ=0

= 0.

(6.16)

By direct integration of the ordinary boundary-value problem (6.14), we find

V0 = −1

2
(1 − ζ 2)∇η Q. (6.17)

The substitution of (6.17) into (6.15) and (6.16) yields

β33
∂2W 0

∂ζ 2 − ∂ P1

∂ζ
= −(1 + β13)ζΔη Q, ζ ∈ (0, 1),

β33
∂2W 0

∂τ∂ζ
− ∂2 P1

∂ζ 2 = κ1Δη Q + β33

2
(1 − ζ 2)

∂

∂τ
Δη Q, ζ ∈ (0, 1),

(6.18)

W 0
∣∣
ζ=1 = 0,

∂ P1

∂ζ

∣∣∣∣
ζ=1

= 0,

β33
∂W 0

∂ζ
− P1
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ζ=0

= β13

2
Δη Q,

∂ P1

∂ζ

∣∣∣∣
ζ=0

= 0.

(6.19)

The exact solution of this resulting problem (6.18) and (6.19) can be determined
via the Laplace transform method (see, e.g., [19, 20]).

6.1.3 Solution of the Resulting Ordinary Boundary-Value
Problem

We proceed by first remarking that, along with the coordinate system (y, z) where
the coordinate center is placed at the contact interface and the z axis is directed into
the layer, another coordinate system is commonly used with its coordinate center
placed at the bottom surface of the layer (see Fig. 6.2). In this case we have

z̄ = h − z, ȳ = −y, (6.20)
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Fig. 6.2 A biphasic layer of
uniform thickness bonded to
a rigid impermeable
substrate: Two systems of
coordinates

z 0

h

=
z̄

z 0=z ¯

where z̄ and ȳ are the new normal and in-plane coordinates.
Moreover, since the normal axis has changed direction to its opposite, the normal

displacements should be related by

W̄ (t, ȳ, z̄) = −W (t, y, z). (6.21)

The coordinate transformation (6.20) and (6.21) must be taken into account when
comparing the obtained results with other studies.

Making use of (6.20) and (6.21), we transform the problem (6.18) and (6.19) to

β33
∂2W̄ 0

∂ζ̄ 2
− ∂ P1

∂ζ̄
= (1 + β13)(1 − ζ̄ )Δη Q, ζ̄ ∈ (0, 1),

β33
∂2W̄ 0

∂τ∂ζ̄
− ∂2 P1

∂ζ̄ 2
= κ1Δη Q + β33

2
ζ̄ (2 − ζ̄ )

∂

∂τ
Δη Q, ζ̄ ∈ (0, 1),

(6.22)

W̄ 0
∣∣
ζ̄=0 = 0,

∂ P1

∂ζ̄

∣∣∣∣
ζ̄=0

= 0,

β33
∂W̄ 0

∂ζ̄
− P1

∣∣∣∣
ζ̄=1

= β13

2
Δη Q,

∂ P1

∂ζ̄

∣∣∣∣
ζ̄=1

= 0.

(6.23)

Now, let ˜̄W 0, P̃1, and Q̃ denote the Laplace transforms of W̄ 0, P1, and Q,
respectively, with respect to the dimensionless time variable τ , and s be the Laplace
transform parameter.

Taking into account the zero initial conditions, the Laplace transformation of
Eqs. (6.22) and (6.23) leads to the system

β33
∂2 ˜̄W 0

∂ζ̄ 2
− ∂ P̃1

∂ζ̄
= (1 + β13)(1 − ζ̄ )Δη Q̃, ζ̄ ∈ (0, 1),

sβ33
∂ ˜̄W 0

∂ζ̄
− ∂2 P̃1

∂ζ̄ 2
= κ1Δη Q̃ + sβ33

ζ̄

2
(2 − ζ̄ )Δη Q̃, ζ̄ ∈ (0, 1),

(6.24)
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˜̄W 0
∣∣
ζ̄=0 = 0,

∂ P̃1

∂ζ̄

∣∣∣∣
ζ̄=0

= 0,

β33
∂ ˜̄W 0

∂ζ̄
− P̃1

∣∣∣∣
ζ̄=1

= β13

2
Δη Q̃,

∂ P̃1

∂ζ̄

∣∣∣∣
ζ̄=1

= 0.

(6.25)

The homogeneous differential system corresponding to Eq. (6.24) has the char-
acteristic equation λ4 − sλ2 = 0, with three roots λ1,2 = 0, λ3,4 = ±√

s, and its
general solution is given by

˜̄W 0
0 = C0 + C1 cosh

√
sζ̄ + C2 sinh

√
sζ̄ ,

P̃1
0 = C3 + β33

√
s
(
C1 sinh

√
sζ̄ + C2 cosh

√
sζ̄

)
,

where C0, . . . , C3 are arbitrary functions of the Laplace transform parameter s.
A particular solution of the system (6.24), which does not necessarily satisfy the

boundary conditions (6.25), can be found by the method of undetermined coefficients
in the form

˜̄W 0
1 =

(
1

sβ33

(
1 + κ1 + β13 − β33

)
ζ̄ + ζ̄ 2

2
− ζ̄ 3

6

)
Δη Q̃,

P̃1
1 = (β33 − 1 − β13)

(
ζ̄ − ζ̄ 2

2

)
Δη Q̃.

Now, substituting the expressions

˜̄W 0 = ˜̄W 0
0 + ˜̄W 0

1 , P̃1 = P̃1
0 + P̃1

1

into the system of boundary conditions (6.25), we derive a system of four linear
algebraic equations for determining C0, C1, C2, and C3 as follows:

C0 = −C1 = − 1

β33s

(
1 + β13 − β33

)
Δη Q̃, C2 = cosh

√
s

sinh
√

s
C0,

C3 =
(1

2
+ 1

s

(
1 + κ1 + β13 − β33

))
Δη Q̃.

Collecting the above formulas, we thus obtain

˜̄W 0 = Δη Q̃

{
δ1

β13s

(
1 − sinh

√
s(1 − ζ̄ )

sinh
√

s

)
+ ζ̄ 2

2

(
1 − ζ̄

3

)
+ δ0

β13s
ζ̄

}
,

P̃1 = Δη Q̃

{
δ1

(
cosh

√
s(1 − ζ̄ )√

s sinh
√

s
+ ζ̄

(
1 − ζ̄

2

))
+ 1

2
+ δ0

s

}
,
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where, for simplicity, we have introduced the auxiliary notation

δ0 = 1 + κ1 + β13 − β33, δ1 = β33 − 1 − β13. (6.26)

By performing the inverse Laplace transform using the residue theorem, we get

W̄ 0 = Δη Q(τ )
ζ̄ 2

2

(
1 − ζ̄

3

)
+ (δ1 + δ0ζ̄ )

β33

τ∫

0

Δη Q(τ ′) dτ ′

− δ1

β33

τ∫

0

Δη Q(τ ′)
{

1 − ζ̄

+ 2

π

∞∑
n=1

(−1)n sin πn(1 − ζ̄ )

n
e−π2n2(τ−τ ′)

}
dτ ′, (6.27)

P1 = Δη Q(τ )

(
1

2
+ δ1ζ̄

(
1 − ζ̄

2

))
+ δ0

τ∫

0

Δη Q(τ ′) dτ ′ (6.28)

+ δ1

τ∫

0

Δη Q(τ ′)
{

1 + 2
∞∑

n=1

(−1)n cos πn(1 − ζ̄ )e−π2n2(τ−τ ′)
}

dτ ′.

Note that in the isotropic case we have δ0 = 0 and δ1 = 1, i.e.,

1 + κ1 + β13 − β33 = 0, β33 − 1 − β13 = 1,

and formulas (6.27) and (6.28) agree with the leading-order asymptotic solution
originally obtained by Ateshian et al. [7].

6.1.4 Displacements of the Solid Matrix

By recovering the dimensional variables (see, in particular, Eqs. (6.6)–(6.8), (6.11),
(6.12), (6.17), (6.20), (6.21), and (6.27)), we arrive at the following leading-order
asymptotic approximations for the in-plane (tangential) and out-of-plane (normal)
displacements:

v 	 − h2

2As
44

(
1 − z2

h2

)
∇yq(t, y),
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w 	 − h3

3As
44

Δyq(t, y)
(

1 − z

h

)2(
1 + z

2h

)

− hk1

t∫

0

Δyq(t ′, y) dt ′
(

1 −
[
(k1 + k3)As

44 + k3
(

As
13 − As

33

)]
k1 As

44

z

h

)

+ hk3
(

As
33 − As

44 − As
13

)
As

44

{
z

h

t∫

0

Δyq(t ′, y) dt ′

+ 2

π

∞∑
n=1

(−1)n

n
sin πn

z

h

t∫

0

Δyq(t ′, y) exp
(
−π2n2 k3 As

33

h2 (t − t ′)
)

dt ′
}
.

According to the derived solution, the displacements of the surface points of the
bonded thin biphasic layer are

v
∣∣
z=0 	 − h2

2As
44

∇yq(t, y), (6.29)

w
∣∣
z=0 	 − h3

3As
44

Δyq(t, y) − hk1

t∫

0

Δyq(τ, y) dτ. (6.30)

The leading-order asymptotic relations (6.29) and (6.30) derived for the so-called
local indentation will be used to formulate asymptotic models for the unilateral
frictionless contact interaction between thin bonded biphasic layers.

6.1.5 Interstitial Fluid Pressure and Relative Fluid Flux

In light of (6.6)–(6.8), (6.12)1, (6.13), and (6.28), we obtain

p 	 q(t, y) + h2
(

As
44 + 2As

33 − 2As
13

)
6As

44
Δyq(t, y) + k1 As

33

t∫

0

Δyq(t ′, y) dt ′

− 2h2

π2

(
As

33 − As
44 − As

13

)
As

44

∞∑
n=1

(−1)n

n2 cos πn
z

h
(6.31)

×
t∫

0−
Δyq̇(t ′, y) exp

(
−π2n2 k3 As

33

h2 (t − t ′)
)

dt ′.
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Recall that the lower integration limit 0− in the last integral in (6.31) allows consid-
eration of the load discontinuity at time zero.

We now introduce the dimensionless variables (6.6)–(6.8) into Eq. (6.3), and
obtain

wf = −k1 As
44

h∗
∇η P − k3 As

44

εh∗
∂ P

∂ζ
e3.

As a result of (6.12)1, we state the following asymptotic formulas

wf
1e1 + wf

2e2 	 −k1 As
44

h∗
(∇η Q + ε2∇η P1),

wf
3 	 −ε

k3 As
44

h∗
∂ P1

∂ζ
.

The in-plane and out-of-plane components of the relative fluid flux can be evalu-
ated by differentiating the asymptotic expansion (6.31).

6.1.6 Stresses in the Solid and Fluid Phases

As a consequence of (6.8) and (6.12), the above asymptotic analysis yields the fol-
lowing leading-order asymptotic formulas for the solid matrix strains:

ε11 	 ε2 ∂V 0
1

∂η1
, ε22 	 ε2 ∂V 0

2

∂η2
, ε33 	 ε2 ∂W 0

∂ζ
,

ε12 	 ε2

2

(
∂V 0

1

∂η2
+ ∂V 0

2

∂η1

)
, ε13 	 ε

2

∂V 0
1

∂ζ
, ε23 	 ε

2

∂V 0
2

∂ζ
.

(6.32)

Substituting these asymptotic approximations into Eq. (5.13), we can evaluate the
effective stresses σ e

i j in the solid matrix. After that, in light of (5.1) and (5.7), the
stresses in the solid matrix can be approximately evaluated by the formula

σ s = −(1 − φf)pI + σ e,

where φf is the porosity of the solid matrix (fluid volume fraction), and the stresses
in the fluid phase are defined by the following formula (see Eq. (5.4)):

σ f = −φf pI.

In particular, according to (5.13), (6.17), and (6.32), we obtain

σ e
31e1 + σ e

32e2 	 z∇yq(t, y), (6.33)

http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
http://dx.doi.org/10.1007/978-3-319-20083-5_5
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from which it follows that the maximum shear stress in a thin bonded biphasic layer
under distributed normal loading is achieved at the bonding interface, z = h, at the
location of maximum gradient |q(t, y)|.

Observe [7] that, as the dominant terms in the deformations and stresses are the
lowest-order quantities, the normal strains and effective stresses as well as the in-
plane shear strain and effective stress, ε12 and σ e

12, are O(ε2), while the out-of-plane
strains and effective shear stresses are O(ε) (see Eq. (6.32)).

In light of (6.12)1, the hydrostatic pressure is O(1) and is significantly larger than
the effective normal stresses. Also, as its lowest-order term is O(ε), the shear stresses
σ s

3i (i = 1, 2) in the solid phase, which are equal to the effective shear stresses σ e
3i

(i = 1, 2), are one order of magnitude greater than the effective normal stresses.
We emphasize (see, e.g., [7]) that this order of magnitude analysis has major

implications on how a thin layer of biphasic tissue (e.g., articular cartilage) supports
distributed compressive load under the bonding condition.

Finally, let us now introduce the in-plane typical length scale, L , such that ε =
h/L . (Note that, as a consequence of (6.5), we simply have L = h∗.) In contact
problem [7], L refers to the characteristic length of the contact area. Then, the first
formula (6.8) can be rewritten as

τ = t

T3
,

where T3 = h2/(k3 As
33) is the typical vertical diffusion time within the biphasic

layer [8]. On the other hand, formula (6.8)1 can be rewritten as

τ = ε−2 k3 As
33

L2 t,

which shows that the dimensionless time variable τ is introduced by stretching the
dimensionless time variable (k3 As

33/L2)t .
We thus underline that formulas (6.29) and (6.30) present the leading-order as-

ymptotic solution, which is valid for short times only.

6.1.7 Long-Term (Equilibrium) Response of a Thin Bonded
Biphasic Layer Under Constant Loading

To begin, we assume that the normal load distribution q has a finite support and
does not depend on the time variable t . Following [7], we consider the equilibrium
(long-term, when t/T3 
 1) response of a thin bonded layer of biphasic material
after the relative motion of the interstitial fluid has ceased and the fluid pressure has
vanished. In this case the system of governing differential equations (6.1) and (6.2)
reduces to that for a single phase compressible elastic layer with material properties
coinciding with those of the solid matrix.
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The corresponding asymptotic solution was derived in Sect. 1.2 and the leading
asymptotic terms are summarized below (see Eqs. (1.22) and (1.23))

v 	 h2

As
33

{
1

2

(
1 + As

13

As
44

)(
1 − z

h

)2 − As
13

As
44

(
1 − z

h

)}
∇yq(y),

w 	 h

As
33

(
1 − z

h

)
q(y).

Finally, we observe [7] that during the biphasic creep process, the short-time
asymptotic solution gradually evolves into the equilibrium (long-term) asymptotic
solution, which has drastically different characteristics.

6.2 Deformation of a Thin Transversely Isotropic Biphasic
Poroelastic Layer Bonded to a Rigid Impermeable
Substrate

In this section, the short-time leading-order asymptotic solution of the deformation
problem for a thin biphasic poroelastic (BPVE) layer is constructed. The main result
of the section (see Sect. 6.2.3) is an approximate formula for the local indentation of
a thin bonded BPVE layer.

6.2.1 Deformation Problem Formulation

In this section, we follow the problem formulation given in detail in Sect. 6.1, with
the sole difference being that the total stresses within a thin biphasic poroviscoelastic
(BPVE) layer are determined by the constitutive relations

σ11 = −p + Bs
11 ∗ ε11 + Bs

12 ∗ ε22 + Bs
13 ∗ ε33, σ23 = 2Bs

44 ∗ ε23,

σ22 = −p + Bs
12 ∗ ε11 + Bs

11 ∗ ε22 + Bs
13 ∗ ε33, σ13 = 2Bs

44 ∗ ε13,

σ33 = −p + Bs
13 ∗ ε11 + Bs

13 ∗ ε22 + Bs
33 ∗ ε33, σ12 = 2Bs

66 ∗ ε12,

(6.34)

where p is the pressure in the fluid phase, Bs
11(t), Bs

12(t), Bs
13(t), Bs

33(t), and Bs
44(t)

are independent stress-relaxation functions of the solid phase, Bs
66(t) = (

Bs
11(t) −

Bs
12(t)

)
/2, and the symbol ∗ denotes the Stieltjes integral, i.e.,

Bs
kl ∗ εi j =

t∫

−∞
Bs

kl(t − τ) dεi j (τ ).

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Correspondingly, the equilibrium equations of the solid matrix take the form

Bs
66 ∗ Δyv + (Bs

11 − Bs
66)∗ ∇y∇y · v + Bs

44∗ ∂2v
∂z2

+ (Bs
13 + Bs

44)∗
∂

∂z
∇yw = ∇y p, (6.35)

Bs
44∗ Δyw + Bs

33∗ ∂2w

∂z2 + (Bs
13 + Bs

44)∗
∂

∂z
∇y · v = ∂p

∂z
, (6.36)

where v and w are the in-plane displacement vector and the normal displacement of
the solid matrix, respectively.

The continuity equation for the BPVE medium has the same form as for biphasic
mixtures, i.e.,

∂

∂t

(
∇y · v + ∂w

∂z

)
= k1Δy p + k3

∂2 p

∂z2 . (6.37)

The boundary conditions at the bottom surface of the layer, z = h, and at the top
surface, z = 0, can be written as follows:

v
∣∣
z=h = 0, w

∣∣
z=h = 0,

∂p

∂z

∣∣∣∣
z=h

= 0;

−p + Bs
13∗ ∇y · v + Bs

33∗ ∂w

∂z

∣∣∣∣
z=0

= −q, (6.38)

Bs
44∗

(
∇yw + ∂v

∂z

)∣∣∣∣
z=0

= 0,
∂p

∂z

∣∣∣∣
z=0

= 0.

Equations (6.35)–(6.37) with the given above boundary conditions and the initial
conditions

v = 0, w = 0, p = 0, −∞ < t < 0,

constitute the deformation problem for a bonded BPVE layer.
Here, following Argatov and Mishuris [4], we construct a leading-order asymp-

totic solution to the deformation problem (6.35)–(6.37).

6.2.2 Short-Time Asymptotic Analysis of the Deformation
Problem

Introducing a characteristic length, h∗, and a small parameter, ε, we require that

h = εh∗.
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Moreover, as usual, we introduce the dimensionless in-plane coordinates

η = (η1, η2), ηi = yi

h∗
, i = 1, 2,

and stretch the normal coordinate as follows:

ζ = ε−1 z

h∗
.

The governing equations will be non-dimensionalized using the following non-
dimensional variables (cf. Eq. (6.8)):

τ = k3 Bs0
44

h2 t, V = v
h

, W = w

h
, P = p

Bs0
44

, Q = q

Bs0
44

. (6.39)

Here, Bs0
44 = Bs

44(0) is the instantaneous shear modulus.
Following non-dimensionalisation, we apply the Laplace transformation to the

obtained system and arrive at the following problem:

b̄s
44

∂2Ṽ
∂ζ 2 + ε(b̄s

13 + b̄s
44)∇η

∂W̃

∂ζ

+ ε2(b̄s
66ΔηṼ + (b̄s

11 − b̄s
66)∇η∇η · Ṽ

) = ε∇η P̃, (6.40)

b̄s
33

∂2W̃

∂ζ 2 + ε(b̄s
13 + b̄s

44)∇η · ∂Ṽ
∂ζ

+ ε2b̄s
44ΔηW̃ = ∂ P̃

∂ζ
, (6.41)

s
(∂W̃

∂ζ
+ ε∇η · Ṽ

)
= ∂2 P̃

∂ζ 2 + ε2κ1Δη P̃, (6.42)

Ṽ
∣∣
ζ=1 = 0, W̃

∣∣
ζ=1 = 0,

∂ P̃

∂ζ

∣∣∣∣
ζ=1

= 0,

−P̃ + b̄s
13∇η · Ṽ + b̄s

33
∂W̃

∂ζ

∣∣∣∣
ζ=0

= −Q̃, (6.43)

∇ηW̃ + ∂Ṽ
∂ζ

∣∣∣∣
ζ=0

= 0,
∂ P̃

∂ζ

∣∣∣∣
ζ=0

= 0.

The Laplace transforms are denoted by a tilde, κ1 = k1/k3, and b̄s
kl = s B̃s

kl/Bs0
44,

where B̃s
kl is the Laplace transform of Bs

kl

(
h2τ/(Bs0

44k3)
)

with respect to the dimen-
sionless time variable τ .

Following Ateshian et al. [7], we represent the asymptotic ansatz for the solution
to the system (6.40)–(6.43) in the form
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P̃ 	 Q̃ + ε2 P̃1, Ṽ 	 εṼ0, W̃ 	 ε2W̃ 0. (6.44)

Substituting the asymptotic expressions into Eqs. (6.40)–(6.42) and the boundary
conditions (6.43), we find after some simple calculations

Ṽ0 = − 1

2b̄s
44

(1 − ζ 2)∇η Q̃, (6.45)

where the pair W̃ 0 and P̃1 should be determined as the solution of the problem

b̄s
33

∂2W̃ 0

∂ζ 2 − ∂ P̃1

∂ζ
= −(b̄s

44 + b̄s
13)∇η · ∂Ṽ0

∂ζ
,

s
∂W̃ 0

∂ζ
− ∂2 P̃1

∂ζ 2 = κ1Δη Q̃ − s∇η · Ṽ0,

(6.46)

W̃ 0
∣∣
ζ=1 = 0,

∂ P̃1

∂ζ

∣∣∣∣
ζ=1

= 0,

−P̃1 + b̄s
33

∂W̃ 0

∂ζ

∣∣∣∣
ζ=0

= −b̄s
13∇η · Ṽ0

∣∣
ζ=0,

∂ P̃1

∂ζ

∣∣∣∣
ζ=0

= 0.

(6.47)

The general solution of the homogeneous differential system corresponding to
Eq. (6.46) is given by

W̃ 0
0 = C0 + C1 cosh

√
f (s)ζ + C2 sinh

√
f (s)ζ,

P̃1
0 = C3 + s√

f (s)

(
C1 sinh

√
f (s)ζ + C2 cosh

√
f (s)ζ

)
,

where we have introduced the notation

f (s) = s

b̄s
33

.

It can be shown that, in light of (6.45), the following pair represents a particular
solution of the system (6.46):

W̃ 0
1 =

(
2

s

[
b̄s

44 + b̄s
13 − b̄s

33 + κ1b̄s
44

] + 1 − ζ 2

6

)
ζ

2b̄s
44

Δη Q̃,

P̃1
1 = (b̄s

44 + b̄s
13 − b̄s

33)

2b̄s
44

ζ 2Δη Q̃.

Substituting the expressions
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W̃ 0 = W̃ 0
0 + W̃ 0

1 , P̃1 = P̃1
0 + P̃1

1 (6.48)

into the system of boundary conditions (6.47) and taking into account Eq. (6.45), we
evaluate the integration constants C0, C1, C2, and C3 as follows:

C0 = −
( 1

3b̄s
44

+ κ1

s

)
Δη Q̃, C1 = 0, C2 = − (b̄s

44 + b̄s
13 − b̄s

33)

sb̄s
44

Δη Q̃

sinh
√

f (s)
,

C3 = b̄s
33

2b̄s
44

(
2

s
(b̄s

44 + b̄s
13 − b̄s

33 + κ1b̄s
44) + 1 − b̄s

13

b̄s
33

)
Δη Q̃.

The functions W , V, and P can thus be obtained by performing the inverse Laplace
transform.

6.2.3 Local Indentation of a Thin BPVE Layer

Recall that Bs
44(t) represents the out-of-plane relaxation modulus in shear so that, in

light of the zero initial conditions, Eqs. (6.34)2 and (6.34)4 take the form

σ3i (t) = 2

t∫

0−
Bs

44(t − τ)ε̇3i (τ ) dτ, i = 1, 2. (6.49)

Let us introduce the out-of-plane creep compliance in shear of the solid matrix,
J s

44(t), which governs the deformation response of the solid phase under application
of a step out-of-plane shear stress of unit magnitude. Hence, the inverse relations for
(6.49) are given by

2ε3i (t) =
t∫

0−
J s

44(t − τ)σ̇3i (τ ) dτ, i = 1, 2.

For a given relaxation modulus Bs
44(t) and its Laplace transform B̃s

44(s) (with
respect to the time variable t), the corresponding creep compliance can be evaluated
through its Laplace transform

J̃ s
44(s) = 1

s2 B̃s
44(s)

. (6.50)

Thus, collecting formulas (6.39), (6.44), (6.45), (6.48) and taking account of
(6.50), we obtain the following asymptotic representations for the displacements of
the surface points of the thin bonded BPVE layer:
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v
∣∣
z=0 	 −h2

2

t∫

0−
J s

44(t − τ)
∂

∂τ
∇yq(τ, y) dτ, (6.51)

w
∣∣
z=0 	 −h3

3

t∫

0−
J s

44(t − τ)
∂

∂τ
Δyq(τ, y) dτ − hk1

t∫

0

Δyq(τ, y) dτ. (6.52)

Observe that the derived asymptotic formula (6.52) reflects two types of mech-
anisms, which are responsible for time-dependent effects in articular cartilage: the
flow independent and the flow dependent, characterized by the first and second terms
on the right-hand side of (6.52), respectively.

The asymptotic relations (6.51) and (6.52) will be used to formulate asymptotic
models for the frictionless contact interaction between thin bonded BPVE layers.

6.2.4 Reduced Relaxation and Creep Function for the Fung
Model

Recall (see Sect. 5.4.1) that the so-called reduced stress-relaxation function, ψ(t), is
defined by

Bs
44(t) = Bs∞

44 ψ(t),

where Bs∞
44 = Bs

44(+∞) is the equilibrium modulus.
Let us now consider the reduced creep function, ϕ(t), defined by the formula

J s
44(t) = J s∞

44 ϕ(t).

Here, J s∞
44 = J s

44(+∞) is the equilibrium compliance such that J s∞
44 = 1/Bs∞

44 .
The following normalization conditions then hold:

ψ(+∞) = 1, ϕ(+∞) = 1.

The reduced relaxation function can be represented in terms of a relaxation spec-
trum S(τ ) as follows:

ψ(t) = 1 +
∞∫

0

S(τ )e−t/τ dτ.

According to Fung [13], in order to account for the weakly frequency dependent
behavior of soft biological tissues, the relaxation spectrum is taken in the form

http://dx.doi.org/10.1007/978-3-319-20083-5_5
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S(τ ) =
⎧⎨
⎩

c

τ
, τ1 ≤ τ ≤ τ2,

0, τ < τ1, τ > τ2,

where τ1 and τ2 have the dimension of time, and c is dimensionless.
The Fung reduced relaxation function can be evaluated as

ψ(t) = 1 + c
[

E1

( t

τ2

)
− E1

( t

τ1

)]
, (6.53)

where E1(x) = ∫ ∞
x e−ξ /ξ dξ is the exponential integral function.

The Fung reduced creep function ϕ(t) corresponding to the reduced relaxation
function ψ(t) given by Eq. (6.53) can be obtained by employment of the Laplace
transform and Eq. (6.50), that is

ψ̃(s)ϕ̃(s) = 1

s2 ,

where the Laplace transform ψ̃(s) is given by formula (5.197). Note also that the
above relation immediately implies that

t∫

0

ψ(t − τ)ϕ(τ) dτ = t.

According to Dortmans et al. [10], the following formula holds:

ϕ(t) = 1 − (τc − τ2)(τc − τ1)

cτc(τ2 − τ1)
e−t/τc

− c

τ2∫

τ1

e−t/τ 1

τ

1(
1 + c ln

τ2 − τ

τ − τ1

)2 + π2c2
dτ, (6.54)

where we have used the notation

τc = τ2e1/c − τ1

e1/c − 1
.

From (6.53) and (6.54), we find

ψ(0) = 1 + c ln
τ2

τ1
,

http://dx.doi.org/10.1007/978-3-319-20083-5_5
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ϕ(0) = 1 − (τc − τ2)(τc − τ1)

cτc(τ2 − τ1)
− c

τ2∫

τ1

1

τ

1(
1 + c ln

τ2 − τ

τ − τ1

)2 + π2c2
dτ.

It can be numerically verified that ψ(0)ϕ(0) = 1. We conclude this case by noting
that the creep spectrum corresponding to (6.54) was discussed in [10].

6.3 Contact of Thin Bonded Transversely Isotropic BPVE
Layers

In this section, the leading-order asymptotic models have been developed for the
short-time frictionless contact interaction between thin biphasic poroviscoelastic
layers bonded to rigid impermeable substrates shaped like elliptic paraboloids.

6.3.1 Contact Problem Formulation for BPVE Cartilage
Layers

When studying contact problems for real joint geometries, a numerical analysis, such
as the finite element method, is necessary [6, 14, 27], since exact analytical solutions
were obtained only for two-dimensional [5, 16], or axisymmetric and simple geome-
tries [11, 12, 21]. In particular, the two-dimensional contact creep problem between
two cylindrical biphasic layers bonded to rigid impermeable substrates was solved
by Kelkar and Ateshian [18] for all times and arbitrary layer thicknesses using the
integral transform method. The frictionless rolling contact problem for cylindrical
biphasic layers was analytically studied by Ateshian and Wang [5].

An asymptotic solution for the contact problem of two identical isotropic biphasic
cartilage layers attached to two rigid impermeable spherical bones of equal radii
modeled as elliptic paraboloids was obtained by Ateshian et al. [7]. This solution
was extended by Wu et al. [24] to a more general model by combining the assumption
of the kinetic relationship from classical contact mechanics [17] with the joint contact
model for the contact of two biphasic cartilage layers [7]. An improved solution for the
contact of two biphasic cartilage layers which can be used for dynamic loading was
obtained by Wu et al. [25]. These solutions have been widely used as the theoretical
background in modeling articular contact mechanics.

Later, Mishuris and Argatov [1, 22] refined the analysis of [7, 24] by formulating
the contact condition which takes into account the tangential displacements at the
contact interface. Finally, the axisymmetric model of articular contact mechanics
originally developed in [7, 24] was generalized in [2] in the case of elliptical contact.

In this section, the asymptotic model of articular contact for isotropic biphasic
layers [2, 7, 24] is extended for the transversely isotropic BPVE case.
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Fig. 6.3 Schematic diagram
of the contact of articular
cartilage surfaces 1 and 2
under the external load F(t).
The dashed lines imply the
surfaces’ profiles in the
undeformed state

δ0(t)w1

w2

a(t)

F(t)

F(t)

2

1

x1

Consider two thin articular cartilage layers of uniform thicknesses h1 and h2 firmly
attached to subchondral bones. Let w(1)

0 (t, y) and w(2)
0 (t, y) be the absolute values of

the vertical displacements of the boundary points of the cartilage layers (see Fig. 6.3).
Let also δ0(t) denote the contact (vertical) approach of the rigid subchondral bones
under a specified external vertical load, F(t), which is assumed to be a function of
the time variable t .

Further, let ϕ(y) denote the gap between the layer surfaces before deformation.
Here, following Argatov and Mishuris [2, 3], we consider a special case of the gap
function represented by an elliptic paraboloid

ϕ(y) = y2
1

2R1
+ y2

2

2R2
, (6.55)

where R1 and R2 are positive constants having dimensions of length.
Then, the linearized contact condition in the contact area ω(t) can be written as

w(1)
0 (t, y) + w(2)

0 (t, y) = δ0(t) − ϕ(y), y ∈ ω(t). (6.56)

In the case of unilateral contact, the contact pressure between the cartilage layers,
p(y), is assumed to be positive inside the contact area ω(t) and satisfies the following
boundary conditions [7] (see also [15, 23]):

p(t, y) = 0,
∂p

∂n
(t, y) = 0, y ∈ �(t).

Here, ∂/∂n is the normal derivative at the contour �(t) of the domain ω(t).
Moreover, the following equilibrium equation holds:

F(t) =
∫∫

ω(t)

p(t, y) dy.

Applying the leading-order asymptotic model (6.52) for the short-time deforma-
tion of a thin bonded biphasic poroviscoelastic (BPVE) layer, we approximate the
vertical displacement of the surface points of the nth cartilage layer by the formula
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w(n)
0 (t, y) = −h3

n

3

t∫

0−
J s(n)

44 (t − τ)
∂

∂τ
Δy p(τ, y) dτ − hnk(n)

1

t∫

0

Δy p(τ, y) dτ,

(6.57)
where J s(n)

44 (t) and k(n)
1 are the out-of-plane creep compliance in shear of the solid

matrix and the transverse (in-plane) permeability coefficient of the nth cartilage layer,
respectively.

Let us simplify the mathematical formalism. First, by letting

G ′s(n)
0 = 1

J s(n)
44 (0+)

we introduce the instantaneous out-of-plane shear elastic modulus of the solid matrix
of the nth layer.

Second, using the integration by parts formula, we represent the second integral
in (6.57) as follows:

t∫

0

Δy p(τ, y) dτ =
t∫

0−
(t − τ)

∂

∂τ
Δy p(τ, y) dτ.

Third, combining the fluid flow-independent viscoelasticity and the fluid flow-
dependent viscous effects in articular cartilage, we introduce the following general-
ized normalized creep function of the nth thin BPVE layer:

Φ(n)(t) = G ′s(n)
0 J s(n)

44 (t) + 3G ′s(n)
0

h2
n

k(n)
1 t. (6.58)

Finally, the compound creep function, Φβ(t), and the equivalent instantaneous
shear elastic modulus, G ′

0, can be defined as follows (cf. Eqs. (4.102)–(4.105)):

Φβ(t) = β1Φ
′(1)(t) + β2Φ

′(2)(t),

G ′
0 = (h1 + h2)

3G ′s(1)
0 G ′s(2)

0

h3
1G ′s(2)

0 + h3
2G ′s(1)

0

, (6.59)

β1 = h3
1G ′s(2)

0

h3
1G ′s(2)

0 + h3
2G ′s(1)

0

, β2 = h3
2G ′s(1)

0

h3
1G ′s(2)

0 + h3
2G ′s(1)

0

.

Thus, following the above relations, and after the substitution of the asymptotic
approximations (6.57) into Eq. (6.56), we arrive at the governing integro-differential
equation

http://dx.doi.org/10.1007/978-3-319-20083-5_4
http://dx.doi.org/10.1007/978-3-319-20083-5_4
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−
t∫

0−
Φβ(t − τ)Δy

∂p

∂τ
(τ, y) dτ = m

(
δ0(t) − ϕ(y)H (t)

)
, y ∈ ω(t). (6.60)

where the Heaviside function factor H (t) takes into account the zero initial condi-
tions for t < 0, and m is given by (with h = h1 + h2 being the joint thickness)

m = 3G ′
0

h3 .

Equation (6.60) can be used to determine the contact pressure distribution p(t, y)

between BPVE cartilage layers under the monotonicity condition ω(t1) ⊂ ω(t2)
for t1 ≤ t2. The monotonicity condition that the contact zone increases for non-
decreasing loads, when d F(t)/dt ≥ 0, should be checked a posteriori.

6.3.2 Exact Solution for Monotonic Loading

As in the Hertz theory of elliptic contact between two elastic bodies, the contact area
ω(t) between the cartilage layers with the initial gap determined by Eq. (6.55) is
elliptic with the semi-axes a(t) and b(t) changing with time. The form of the ellipse
�(t) can be characterized by its aspect ratio s = b(t)/a(t). Assuming, as usual, that
R1 ≥ R2, we obtain a(t) ≥ b(t), and, generally, 0 < s ≤ 1 where the value s = 1
corresponds to a circular contact area. We emphasize that the parameter s is constant
during loading and depends only on the ratio R2/R1 via the following relation (see
Sect. 4.5):

s =

√√√√
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
.

The evolution of the major semi-axis of the contact area is governed by formula

a(t) =
(

96
√

R1 R2

πm

)1/6

ca(s)

( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)1/6

. (6.61)

Here,
√

R1 R2 is a geometric mean of the radii R1 and R2, while ca(s) is a dimen-
sionless factor given by (see Fig. 6.4)

ca(s) =
(√

(3s2 + 1)(s2 + 3)

4s4

)1/6

.

http://dx.doi.org/10.1007/978-3-319-20083-5_4
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Fig. 6.4 Dimensionless scaling factors: a Coefficients ca and cδ ; b Coefficients cP and cF . It is
interesting that this behavior for the different scaling factors is overall substantially similar.

The contact approach between the subchondral bones is given by

δ0(t) =
(

3

2πm R1 R2

)1/3

cδ(s)

( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)1/3

, (6.62)

where we have introduced the notation

cδ(s) =
(

2(s2 + 1)3

s(3s2 + 1)(s2 + 3)

)1/3

.

Now, if the contact load F(t) is known, then Eqs. (6.61) and (6.62) allow us to
determine the quantities a(t) and δ0(t), respectively.

The contact pressure is calculated by means of the formula

p(t, y) = P0(t)

(
1 − y2

1

a(t)2 − y2
2

s2a(t)2

)2

−
t∫

t∗(y)

∂Ψβ

∂τ
(t − τ)P0(τ )

(
1 − y2

1

a(τ )2 − y2
2

s2a(τ )2

)2

dτ. (6.63)

Here, Ψβ(t) is the corresponding generalized normalized relaxation function deter-
mined by its Laplace transform Ψ̃β(s) = 1/[s2Φ̃β(s)], s is the Laplace transform
parameter, and P0(t) is an auxiliary function given by

P0(t) =
(

27m

96π2
√

R1 R2

)1/3

cP (s)

( t∫

0−
Φβ(t − τ)

d F(τ )

dτ
dτ

)2/3

,
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where we have introduced the notation

cP (s) =
(

4s√
(3s2 + 1)(s2 + 3)

)1/3

.

The quantity t∗(y), which enters the lower limit in the integral (6.63), is the time
when the contour of the contact area ω(t) first reaches the point y. If, however, the
point under consideration lies inside the instantaneous contact area, i.e., y ∈ ω(0+),
then t∗(y) ≡ 0. The quantity t∗(y) is called the time-to-contact for the point y. When
the point y is located outside of ω(0+), the nonzero quantity of t∗(y) is determined by
the equation a(t∗)2 = y2

1 + y2
2/s2, or in accordance with Eq. (6.61) by the following:

t∗∫

0−
Φβ(t∗ − τ)

d F(τ )

dτ
dτ = πm

96
√

R1 R2ca(s)6

(
y2

1 + y2
2

s2

)3

.

In the case of a stepwise loading, we have F(t) = F0H (t), and the above equation
reduces to

Φβ(t∗) = 1

a6
0

(
y2

1 + y2
2

s2

)3

, (6.64)

where a0 = a(0+) is the instantaneous value of the major semi-axis, which is given
by

a0 =
(

96
√

R1 R2

πm

)1/6

ca(s)F1/6
0 .

We note that the asymptotic model (6.57), n = 1, 2, holds true only when the
cartilage thicknesses are small compared with the characteristic size of the contact
area, i.e., max{h1, h2} << a0. For this reason the contact force F0, and F(0+)

generally, should not take too small values.

Table 6.1 Isotropic and transversely isotropic biphasic material properties of human articular
cartilage. The highlighted values are used in the asymptotic models [9]

Transversely isotropicIsotropicMaterial property

Young’s modulus Es
3 64.096.0)aPM(

Young’s modulus Es
1 8.596.0)aPM(

Poisson’s ratio ν s
12 0.0 0.0

Poisson’s ratio ν s
31 0.0 0.0

Shear modulus Gs
13 (MPa) 0.345 0.37

Shear modulus Gs
12 = Es

1/[2(1+ν s
12)] (MPa) 0.345 0.23

Permeability k1 = k3 (×10−15m4/Ns) 3.0 5.1
Solid volume fraction φ s 0.25 0.25
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Thus, in the case of a stepwise loading, formula (6.63), where quantity t∗(y) is
determined by Eq. (6.64), represents the sought for solution of Eq. (6.60). Note that
in the case of the biphasic layers the derived expression for the contact pressure
coincides with the result obtained previously in [2].

Table 6.1 shows some typical values for biphasic material properties of human
articular cartilage in the isotropic and transversely isotropic cases. It is known that the
mechanical properties of cartilage may change with disease. In particular, the early
stages of osteoarthritis are characterized [26] by increased permeability, increased
thickness of the cartilage layers, reduced shear modulus, increased Poisson’s ratio,
and/or a combination of these effects.

To conclude, we emphasize (see, e.g., [7, 25]) that specifically in regard to artic-
ular cartilage, the constructed asymptotic model, which is based on the short-time
asymptotic solution of the deformation problem for a thin BPVE layer and assumes
that most of the contact load is carried by the interstitial fluid, can be used for time
periods of several thousand seconds, when the articular joint is biologically func-
tional, and becomes invalid for time t → ∞, when the interstitial fluid is pushed
out of the cartilage layer underlying the contact area and the total contact pressure
is carried only by the solid phase of the cartilage.
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Chapter 7
Articular Contact Mechanics

Abstract In this chapter, an asymptotic modeling methodology for tibio-femoral
contact is developed, based on the asymptotic models of frictionless unilateral con-
tact interaction between thin cartilage layers. In Sect. 7.1, the normal contact forces,
which are needed for multibody dynamics simulations, are determined analytically
based on the exact solution for elliptical contact between thin cartilage layers gener-
ally modeled as viscoelastic incompressible layers. In Sect. 7.2, the equivalent Hunt–
Crossley model for articular contact is developed in the framework of the short-time
contact model for thin bonded biphasic layers.

7.1 Asymptotic Modeling Methodology for Tibio-Femoral
Contact

In Sects. 7.1.1 and 7.1.2, we present a brief overview of the principal models used in
multibody dynamics simulations of human-body locomotion. The asymptotic mod-
eling approach outlined in Sects. 7.1.3–7.1.5 requires use of the smooth contact sur-
face geometry and efficient contact points detectionmethods, while in Sect. 7.1.6, the
articulating femur and tibia geometries are approximated by elliptic paraboloids. In
Sect. 7.1.7, the effective geometric characteristics of articular surfaces are introduced
for use in the developed asymptotic models of elliptical contact between articular
surfaces.

7.1.1 Articular Contact in Multibody Dynamics

Mathematical modeling of the distributed forces generated by articular contact in
joints is required for multibody dynamic simulations of physical exercise of a human
skeleton based on the rigid multibody approach [34] as well as on the flexible multi-
body approach [59]. It is believed that dynamic and impact patterns of the contact
pressures play an important role in the development and progression of knee joint
osteoarthritis [46]. Therefore, multibody dynamic models of the knee joint capable
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of predicting contact pressures between the articular cartilage layers would be also
useful for studying the mechanical aspects of this degenerative disease.

In a number of multibody dynamic models for the tibio-femoral joint [2, 69, 86],
the problem of articular contact is resolved under the assumption of a rigid con-
tact formulation, where the contact interaction between the surface of each femoral
condyle and the surface of the tibia is realized at a single point and no deformation is
considered in the articular cartilage layers due to the contact loading. In contrast to the
rigid contact model, the deformable contact models, which take into account defor-
mation of the articular cartilage layers, require not only a description of the articular
surface geometry, but also additional information about the deformation behavior of
articular cartilage. As was pointed out [24], the advantage of the deformable articular
contact models over the rigid contact model is two-fold: firstly, they are not restricted
to contraform contact and conforming surfaces can also be considered, and secondly
the knee multibody dynamic models with deformable contact have higher numerical
stability.

We observe (see, e.g., [22, 70]) that a multibody knee contact modeling method-
ology based on the deformable contact model should include the implementation of
an efficient mathematical model for calculating contact pressures and the resulting
contact forces. A number of models of the knee joint employ different forms of the
elastic Winkler foundation model [24]. We recall (see Sect. 1.5.1) that the defor-
mation response of a thin transversely isotropic compressible layer of thickness h
resembles that of a Winkler elastic foundation with the modulus

k = h

A33
,

where, with E , ν and E ′, ν′ being respectively the in-plane and out-of-plane Young’s
modulus and Poisson’s ratio,

A33 = E ′(1 − ν)

(
1 − ν − 2E

E ′ ν′2
)−1

.

For two thin compressible layers in contact, the jointWinkler foundation modulus
is defined as k = (k−1

1 + k−1
2 )−1, and in the isotropic case is given by

k =
(

(1 + ν1)(1 − 2ν1)h1

(1 − ν1)E1
+ (1 + ν2)(1 − 2ν2)h2

(1 − ν2)E2

)−1

. (7.1)

Furthermore, if the layers’ materials are similar (i.e., E1 = E2 = E and ν1 =
ν2 = ν), formula (7.1) simplifies to

k = (1 − ν)E

(1 + ν)(1 − 2ν)h
, (7.2)

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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where h = h1 + h2 is the joint thickness. It is readily seen that the denominator in
formula (7.2) vanishes in the incompressibility limit as ν → 0.5, and consequently
the Winkler foundation modulus k tends to infinity.

The fact that a thin isotropic elastic layer, with a Poisson’s ratio sufficiently differ-
ent to 0.5, behaves like a Winkler elastic foundation was first rigorously established
in [3]. The case of elliptical contact in the framework of Winkler’s foundation model
was considered in detail in [54]. The elastic foundation model based on Eq. (7.2)
was used for multibody dynamic simulation of knee contact mechanics in a number
of papers [24, 77]. Formula (7.1) was considered in [79] within a discussion of the
analytical models employed for describing articular contact.

It is known [21] that the Winkler elastic foundation model is appropriate for
describing the stress-deformation behavior of thin compressible elastic coating lay-
ers, and that it fails to represent the contact interaction of incompressible layers. At
the same time, it has been shown [19] that the instantaneous response of a bipha-
sic cartilage layer under distributed normal forces is in perfect agreement with the
corresponding solution for a bonded thin incompressible elastic layer.

In recent years, finite-element (FE) models have been increasingly developed to
simulate articular contact [85, 88]. In particular, a mathematical model of distributed
contact using a number of contacting patches was employed in [27] with a uniform
stress distribution assumed over each contact patch. The advantage of FE models
over the elastic foundation model is based on their ability to evaluate the sub-surface
stresses.Moreover, FEmodels are not confined to simple geometrical configurations,
which are necessary for deriving analytical solutions like those used in the rigid
contact model. However, in comparison [79] with simple deformable contact models,
FE models are expensive in time and resources for the simulation of the knee joint
dynamics in real activities such as the gait cycle.

To lower the high computational cost of repeated contact analysis within multi-
body dynamic simulation, the so-called surrogate modeling approach for perform-
ing computationally efficient three-dimensional elastic contact with general surface
geometry was proposed [68]. The surrogate modeling method [68] fits a computa-
tionally cheap surrogate contactmodel to data points sampled froma computationally
expensive FE elastic contact model.

7.1.2 Articular Cartilage Structure and Models

Articular cartilage is typically 2–4mm thick and is composed of a dense extracellular
matrix (ECM) with a sparse distribution of cells called chondrocytes. The ECM
primarily consists of water, collagen, and proteoglycans. It is estimated [35] that the
average pore size within the ECM is approximately 6.0 mm.

The structure of articular cartilage is often described in terms of the following four
zones between the articular surface and the subchondral bone [35, 51, 72, 75]: the
surface (or superficial/tangential) zone, the transitional (or middle) zone, the deep
zone, and the calcified zone.
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Tangential/superficial zone. The thin superficial zone protects deeper layers from
shear stresses andmakes up approximately 10 to 20%of articular cartilage thickness.
This zone is characterised by the tight parallel alignment of both the collagen fibers
and the chondrocytes to the articular surface.

Middle/transitional zone. The middle zone represents 40 to 60% of the total
cartilage volume. In the transitional zone, the ECM and cells arch over from the
perpendicular alignment with respect to the articular surface, seen in the deep zone,
to the parallel alignment of the superficial zone, whereas the collagen fibrils are
isotropically arranged.

Deep zone. The deep zone represents approximately 30% of the articular car-
tilage volume. The chondrocytes are typically arranged in a columnar orientation
perpendicular to the articular surface, this alignment being replicated in fibrils of the
collagen matrix. It was experimentally observed [4, 5] that the commonly described
deep zone longitudinal fibres were found to be tubular structures filled with fluid.
We also note that in the deformation analysis of articular cartilage, this phenomenon
can be described by microstructural models [25].

Calcified zone. The calcified layer plays an integral role in securing the cartilage
to subchondral bone. The tide mark, the calcification front, is used to distinguish the
deep zone from the calcified zone. The calcification of the collagen fibrils is found
at the base of the deep zone.

We observe (see, e.g., [26]) that articular cartilage tissue in vivo is exposed to
extremely complicated loading histories throughout life and even the period of a
day. It is the cumulative influence of these loading histories that governs the biology
of the tissue. At the same time articular cartilage is avascular and the movement
of fluid into and out of cartilage (by ‘pumping’ solutes through the matrix under
cyclic loading) aids nutrition and removal of the by-products of metabolism [76].
It is known [58] that mechanical forces can modulate synthesis and degradation of
articular cartilage matrix, and can influence structural and functional adaptation of
the tissue [55]. It is also known [57] that due to its avascular nature, articular cartilage
has a very limited capacity to regenerate or repair. Phenomenological damagemodels
for fibrous tissues like articular cartilage were developed in [53, 63].

A number of elastic analytical models for articular contact were developed by
Eberhardt et al. [33]. It was shown that in conditions where the load times are short
(i.e., running, jumping, or impact) it should often be sufficient to consider only elastic
response.At the same time, the instantaneous response of the articular cartilage layers
to impulsive compressive loads (see Fig. 7.1) corresponds to that of an incompressible
elastic material [18, 36].

The effect of energy dissipation due to internal damping in articular cartilage
can be taken into account in the framework of the theory of viscoelasticity. However,
viscoelasticmodels [67, 75] have limited capabilities in describing the knownviscous
effects associatedwith the interstitial fluid flow. Previous studies have shown [17] that
interstitial fluid pressurization plays an important role in the load support mechanics
of articular cartilage.

It has been long known that articular cartilage is anisotropic and inhomogeneous,
although it has been difficult to incorporate these complexities into engineering
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Fig. 7.1 Schematic of the
articular cartilage
deformation under impulsive
compressive loads. The
cartilage experiences a
relatively large lateral
displacement due to its high
Poisson’s ratio. This
expansion is restrained by the
subchondral bone, causing a
high shear stress at the
cartilage bone interface [72]
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analysis [31]. Finite element models incorporating the inhomogeneity of articular
cartilage were developed in [23]. The combined role of menisci and ligaments in load
transmission and stability of the human knee was analyzed by a three-dimensional
FE model [78]. Note also [20] that articular cartilage exhibits remarkable frictional
properties, and pressurization of its interstitial fluid may contribute predominantly
to reducing the friction coefficient at the contact interface [17].

An asymptotic modeling methodology for simulating tibio-femoral contact [8],
which is further developed in this study, is based on the asymptotic models of fric-
tionless unilateral contact interaction between thin biphasic [13] and viscoelastic
[14] layers. The approach requires use of the smooth contact surface geometry and
efficient contact points detection methods. While the subchondral bone is assumed
to be rigid, the articular cartilage is considered to be a thin layer of transversely
isotropic linear-elastic or viscoelastic incompressible material. The normal contact
forces are determined analytically based on the exact solution for elliptical contact
between thin viscoelastic incompressible cartilage layers bonded to rigid substrates.

7.1.3 Articular Surface Geometry

Observe [27] that an anatomically-based multibody dynamics model requires an
accurate description of the articular surfaces in order to solve the articular contact
problem. In this section, following [8], we present a generalization of themethod [84]
for approximating articular surfaces from the unstructured experimental surface data,
which can be used for regularization of noisy surface data.

Let us assume that the geometrical data of the tibia and femur are given in the
Cartesian coordinate systems (x1, x2, x3) and (x̂1, x̂2, x̂3), respectively. Following
[24], the positive x1-axis is directed anteriorly, the positive x2-axis is pointed medi-
ally, and the positive x3-axis is directed proximally (see Fig. 7.2). To describe the
relative position of the femur with respect to the tibia, we assume that the tibia is con-
sidered to be rigidly fixed. In such a case, the coordinates x and x̂ can be referred to
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Fig. 7.2 Knee joint
Cartesian coordinate
systems: “space-fixed”
Ox1x2x3 and “body-fixed”
Ô x̂1 x̂2 x̂3. The tibia is
considered to be rigidly fixed
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as the “space-fixed” and “body-fixed” [50]. It is assumed that in the fully extended
position of the joint, the directions of the corresponding coordinate axes of both
coordinate systems coincide.

Let the position of an arbitrary point P̂ on the femoral surface be represented
by the vector r̂(P̂) in the body-fixed coordinate system. To describe the position
vector r(P̂) of the same point in the space-fixed system (x1, x2, x3), one needs to
determine the transition vector r(Ô) from the origin of the tibial coordinate system
(point O) to the origin of the femoral coordinate system (point Ô) as well as the
rotation transformation matrix R (for its description, we refer to [24]). According
to these definitions, the following relation holds [24, 50]:

r(P̂) = r(Ô) + Rr̂(P̂). (7.3)

Consider now an arbitrary point P on the tibial surface and a distance vector
between the points P and P̂ (see Fig. 7.2), i.e.,

d(P, P̂) = r(P̂) − r(P). (7.4)

Following [38, 70], we introduce the normal contact distance vector, d0, between
the articular surfaces in such a way that it is parallel to each of the surface normals.
The corresponding points P0 and P̂0 are called the potential contact points. As a
result, we have d0 = d(P0, P̂0).

The length of vector d0 with the proper sign taken into account will be called the
pseudo-penetration and will be denoted as follows:

δ0 = −d0 · n0. (7.5)

Here, n0 is the outer normal to the tibial surface at the point P0, and the dot denotes
the scalar product of vectors.

In the following, we will assume that for any admissible position of the femur
relative to the tibia, there is only a pair of potential contact points P0 and P̂0 for
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(a) (b)
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Fig. 7.3 Pseudo-penetration of the contacting bodies: a there is no contact interaction between the
articular surfaces; b the contact between the articular surfaces exists

each pair of femoral and tibial condyles. Note that this assumption is in agreement
with the geometric compatibility of rigid bodies condition used in [2, 69, 86].

Therefore, if δ0 = 0, then the articular surfaces contact each other at a single
point. In this case a single tangent plane exists to both femoral and tibial surfaces. If
d0 · n0 > 0 (andd0 · n̂0 < 0, where n̂0 is the outer normal to the femoral surface at the
point P̂0), then there is no contact between the surfaces and δ0 < 0 (see, Fig. 7.3a).
Finally, the penetration condition states that if d0 · n0 < 0 (and d0 · n̂0 > 0), then
the contact between the articular surfaces exists and δ0 > 0 (see, Fig. 7.3b).

Let us now introduce a local Cartesian coordinate system (ξ1, ξ2, ζ )with its center
at the point P0, in such a way that the positive ζ -axis is directed along the normal
vector n0. Thus, in the vicinity of points P0 and P̂0, the equations of both articular
surfaces can be written as follows:

ζ = −φ0(ξ), ζ = −δ0 + φ̂0(ξ). (7.6)

It is assumed that locally the tibia and femur occupy the domains ζ ≤ −φ0(ξ) and
ζ ≥ −δ0 + φ̂0(ξ), respectively.

In light of Eq. (7.6), we define the local gap function as follows:

φ(ξ) = φ0(ξ) + φ̂0(ξ). (7.7)

In the next section, following [86], we may assume that the functions φ0(ξ) and
φ̂0(ξ) can be approximated by polynomials in ξ1 and ξ2 of degrees n and n̂ as

φ0(ξ) =
n∑

p=2

p∑
q=0

apqξ
p−q
1 ξ

q
2 , φ̂0(ξ) =

n̂∑
p=2

p∑
q=0

âpqξ
p−q
1 ξ

q
2 . (7.8)

The coefficients apq and âpq are calculated by minimizing the functions

N∑
j=1

(
ζ j −

n∑
p=2

p∑
q=0

apq(ξ
j
1 )p−q(ξ

j
2 )q

)2
,

N̂∑
j=1

(
ζ̂ j −

n̂∑
p=2

p∑
q=0

âpq(ξ̂
j
1 )p−q(ξ̂

j
2 )q

)2
,

(7.9)
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where N and N̂ are the numbers of measured surface points, and (ξ
j
1 , ξ

j
2 , ζ j ) and

(ξ̂
j
1 , ξ̂

j
2 , ζ̂ j ) are the measured coordinates of the j th point on the tibial surface ( j =

1, . . . , N ) and on the femoral surface ( j = 1, . . . , N̂ ), respectively.

7.1.4 Contact Constitutive Relation. Elliptical Contact of Thin
Incompressible Elastic Layers

We now consider analytical models of deformable tibio-femoral contact under
the assumption that the local gap function can be approximated by an elliptical
paraboloid. The articular cartilages are modeled as thin incompressible elastic or
viscoelastic layers.

Consider the frictionless contact between two thin linear elastic layers of constant
thicknesses, h1 and h2, firmly attached to rigid substrates with continuously varying
curvatures. Let us assume that in the undeformed state, the surfaces of the layers touch
at a single point denotedby P0. Introducing aCartesian coordinate system (η1, η2, ζ ),
with the center at the point P0 such that the coordinate plane ζ = 0 coincideswith the
common tangent plane to the layer surfaces,wemay assumewithout loss of generality
that with accuracy up to terms of order |η|3 the gap function, ϕ(η), defined as the
distance between the layer surfaces along the ζ -axis, is represented by an elliptic
paraboloid

ϕ(η) = η21

2R1
+ η22

2R2
. (7.10)

Now, let −w0(η) and ŵ0(η) be the vertical displacement functions for the surface
points of the layers representing the tibial and femoral articular cartilages, respec-
tively, due to the action of the surface pressures with the density p(η). Given that
the materials of the layers are elastic, incompressible and transversely isotropic with
out-of-plane shear moduli G ′

1 and G ′
2, and based on the asymptotic analysis of the

frictionless contact problem for a thin elastic layer bonded to a rigid substrate in
the thin-layer limit (see Sect. 2.5), the following contact constitutive relation for thin
incompressible layers can be established:

w0(η) = − h3
1

3G ′
1
Δη p(η), ŵ0(η) = − h3

2

3G ′
2
Δη p(η). (7.11)

Here, Δη = ∂2/∂η21 + ∂2/∂η22 is the Laplace differential operator, and the index “1”
refers to the tibia, while “2” refers to the femur.

Let δ0 be the normal approach of the rigid substrates, whichmodel the subchondral
bones. Then, the following equation should hold in the contact region, ω, where the
contact pressure is positive:

ŵ0(η) + w0(η) = δ0 − ϕ(η), η ∈ ω. (7.12)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Substituting the expressions (7.11) into Eq. (7.12), we obtain the contact condition
in the form of a differential equation

−
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)
Δη p(η) = δ0 − ϕ(η), η ∈ ω. (7.13)

Weemphasize thatEq. (7.13) shouldholdover thewhole contact regionω,which is
not given a priori. As this differential equation is of the second order, it is necessary to
formulate appropriate boundary conditions on the contour Γ of the contact region ω.
According to [21, 28] (see also Sect. 2.7.3), we impose the two boundary conditions

p(η) = 0,
∂p

∂n
(η) = 0, η ∈ Γ, (7.14)

where ∂/∂n is the normal derivative.
In the case of the parabolic gap function (7.10), the exact solution to the problem

(7.13), (7.14) was obtained in [21] in the form

p(η) = p0

(
1 − η21

a2 − η22

b2

)2

. (7.15)

The maximum contact pressure p0 and the semi-axes a and b of the elliptical contact
area ω satisfy the following system of algebraic equation [21]:

δ0 = 4p0
ma2

(
1 + 1

s2

)
, (7.16)

1

2R1
= 4p0

ma4

(
3 + 1

s2

)
,

1

2R2
= 4p0

ma4s2

(
1 + 3

s2

)
. (7.17)

Here, s = b/a is the aspect ratio of the contact area, and

m =
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)−1

.

Integrating the contact pressure distribution (7.15) over the contact area and taking
into account (7.16) and (7.17), we obtain

F = 2πcF (s)
G ′

1G ′
2

h3
1G ′

2 + h3
2G ′

1

R1R2δ
3
0, (7.18)

where cF (s) is a dimensionless factor given by (see also Sect. 3.1.2)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_3
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s2 =
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
, (7.19)

cF (s) = s(3s2 + 1)(s2 + 3)

2(s2 + 1)3
. (7.20)

Equation (7.18) represents the force-displacement relationship for the case of
elliptical contact of thin incompressible coatings.

7.1.5 Asymptotic Model for Elliptical Contact of Thin
Incompressible Viscoelastic Layers

Applying the viscoelastic correspondence principle to the elastic equation (7.13) (see
Sect. 3.1.2), we arrive at the governing integro-differential equation

−
2∑

n=1

h3
n

3

t∫

0−
J ′(n)(t − τ)Δη

∂p

∂τ
(η, τ ) dτ = δ0(t) − ϕ(η)H (t). (7.21)

Here, J ′(n)(t) is the out-of-plane creep compliance in shear for the nth viscoelastic
layer, t is a time variable, δ0(t) is the variable normal contact approach of the rigid
substrates, H (t) is the Heaviside step function such that H (t) = 1 for t ≥ 0 and
H (t) = 0 for t < 0.

Let us introduce the normalized creep function Φ ′(n)(t) of the nth layer by letting

Φ ′(n)(t) = G ′(n)
0 J ′(n)(t), (7.22)

where G ′(n)
0 = 1/J ′(n)(0+) is the instantaneous out-of-plane shear elastic modulus

of the nth layer, so that Φ ′(n)(0) = 1.
Then, Eq. (7.21) can be represented in the form

− h3

3G ′
0

t∫

0−
Φβ(t − τ)Δη

∂p

∂τ
(η, τ ) dτ = δ0(t) − ϕ(η)H (t), (7.23)

where Φβ(t) = β1Φ
′(1)(t) + β2Φ

′(2)(t) is the compound creep function, β1 and β2
are weighted coefficients such that β1 + β2 = 1,

β1 = h3
1G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, β2 = h3
2G ′(1)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, (7.24)
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whereas h and G ′
0 are the joint thickness and the equivalent instantaneous out-of-

plane shear elastic modulus given by

G ′
0 = h3G ′(1)

0 G ′(2)
0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, h = h1 + h2. (7.25)

As before, following [19], we require that the contact pressure distribution p(η, t)
should satisfy the boundary conditions (7.14).

The general solution of Eq. (7.23) in the case of the parabolic gap function (7.10)
was derived in [14]. Integrating the obtained contact pressures over the elliptical
contact area, we arrive at the following force-displacement relationship:

F(t) = 2πcF (s)
G ′(1)

0 G ′(2)
0

h3
1G ′(2)

0 + h3
2G ′(1)

0

R1R2

t∫

0−
Ψβ(t − τ)

d

dτ

(
δ0(τ )3

)
dτ. (7.26)

Here, cF (s) is the factor introduced by formula (7.20), and Ψβ(t) is the correspond-
ing normalized compound relaxation function determined by its Laplace transform
Ψ̃β(s) = (s2Φ̃β(s))−1, where Φ̃β(s) is the Laplace transform of Φβ(t).

It is noteworthy that Eq. (7.26) is valid for the case of contact interaction under
monotonic loading and can be applied for modeling contact forces in impact situa-
tions, and underline that the case of repetitive loading requires a special treatment.

We also emphasize that Eqs. (7.18) and (7.26) do not exactly describe the initial
short time interval of contact interaction, while the contact zone does not exceed
the joint thickness of the layers. However, if the maximum characteristic size of the
contact zone achieved during the loading phase is much greater than each thickness
of the layers, then the overall error introduced by this initial interval will be relatively
small, just as was shown in [7] with respect to the influence of the superseismic stage
of contact on the Hertzian impact theory.

7.1.6 Approximation of the Articular Femur and Tibia
Geometries by Elliptic Paraboloids

To model the articular contact, one needs to describe the articular surface geometry
in the framework of a mathematical model. A number of surface-fitting methods for
representing the three-dimensional topography of articular surfaces, in particular the
B-spline method [16, 30], use a structured data set and provide a limited continu-
ity of the fitted articular surface. Methods to represent articular surfaces from the
unstructured data were suggested in [44, 83] and are based on a parametric poly-
nomial representation. In order to effectively deal with non-ordered data points, a
method for the representation of articular surfaces was introduced in [84], based on
the influence surface theory of elastic plates.
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Since experimental measurements of surface data always contain a degree of
measurement uncertainty, it was observed in [16] that a surface-fitting method which
consists of interpolating the measured surface data may result in some degree of
surface roughness. It was also noted that one limitation of the fitting method [84]
is that it requires the fitting surface to pass through all measured surface points.
This means that the fitting accuracy of the method [84] is partially controlled by
the accuracy of the measurement instrument. Consequently, due to the noisy nature
of measured data, forcing the fitting surface to pass through all measured surface
data points may not produce an optimal fitting surface [84]. A regularization of the
method [84] was proposed in [8], and spline smoothing methods for regularization
of noisy data were considered in [16].

Due to the complexity of human knee joint geometry, it is difficult to obtain
analytical solutions for the contact pressure distribution in the knee joint under phys-
iological loading conditions, even under simplifying assumptions about the articular
cartilage mechanical behavior. In [66], different analytical models for articular con-
tact were compared with a finite element method solution in the case of an axisym-
metric articular joint idealized as a system of a rigid ball covered with a cartilage
layer in frictionless contact with a hemispherical layer of cartilage attached to a rigid
base. Note that spherical surfaces were used for representing the medial and lateral
femoral condyles in a number of papers [2, 62]. Also, in two-dimensional models
[1, 62], the tibia surface is generally represented as a parabolic profile. In [79], a
toroidal geometrywas selected to represent the geometry of themedial (or the lateral)
femoral and tibial components in a total knee replacement.

Elliptic paraboloids are widely used in contact mechanics for approximating the
interacting non-axisymmetric surfaces. Based on high-resolution MRI (Magnetic
resonance imaging), it was shown [47] that all articular surfaces of the knee joints
of healthy volunteers displayed predominantly convex ovoid shapes, except for the
central aspect of the medial tibia (with the highest degree of concavity), while none
of the articulating surfaces displayed saddle-like properties.

In [60], the principal curvature radii of the femoral and tibial cartilage surfaces
were measured in the weight-bearing regions of the medial and lateral compartments
of three-dimensional models from the MP images obtained from 11 young healthy
male individuals (age 30.5 ± 5.1 years). In particular, in the lateral condyle of the
femur, the average radii were 22 ± 4 and 25 ± 4 mm in AP and ML directions,
respectively. In the medial condyle of the femur, the average radii were 34 ± 5 and
21 ± 3 mm in AP and ML directions, respectively. In the lateral (medial) plateau
of the tibia, the average radii were 37 ± 10 and −43 ± 11 mm (−95 ± 38 and
−29± 7 mm), respectively. Here, positive and negative values represent convex and
concave surfaces, respectively.

According to the measured data from [60], the shape functions φ0(ξ) and φ̂0(ξ)

in Eq. (7.6) are specified as follows:

φL
0 (ξ) = −

(
ξ21

37
− ξ22

43

)
, φM

0 (ξ) = −
(−ξ21

95
− ξ22

29

)
, (7.27)
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φ̂L
0 (ξ) = ξ21

22
+ ξ22

25
, φ̂M

0 (ξ) = ξ21

34
+ ξ22

21
. (7.28)

The coordinates ξ1 and ξ2 are assumed to be measured in millimeters, whereas
the indexes “L” and “M” denote the quantities referring to the lateral and medial
compartments, respectively.

Substituting (7.27) and (7.28) into Eq. (7.7), we obtain

φL(ξ) =
( 1

22
+ 1

37

)
ξ21 +

( 1

25
− 1

43

)
ξ22 ,

φM(ξ) =
( 1

34
− 1

95

)
ξ21 +

( 1

21
− 1

29

)
ξ22 .

From here it immediately follows that RL
1 = 30 mm, RL

2 = 7 mm, RM
1 = 38 mm,

and RM
2 = 26 mm (recall that the inequality R1 ≥ R2 is assumed in the choice of

the radii R1 and R2). Therefore, we have

L
ϕ(η) = η21

60
+ η22

14
,

M
ϕ(η) = η21

76
+ η22

53
.

Further, formula (7.19) yields sL = 0.61 and sM = 0.89. Now, substituting these
values into formula (7.20), we obtain cF (sL) = 0.84, cF (sM) = 0.99.

Thus, as a first approximation, the actual articulating surfaces in tibio-femoral
contact can be represented by elliptic paraboloids. The parameters of such an approx-
imation (i.e., the principal radii of curvature) generally depend on the position of the
central contact point (point P0 in Fig. 7.3).

The difference between the actual articulating surfaces and the idealized elliptic
paraboloid surfaces influences the articular contact and especially the distribution of
contact pressures. This question is explored in [12], where a perturbation solution
is obtained under the assumption that the subchondral bones are rigid and shaped
closely to elliptic paraboloids.

7.1.7 Determining the Effective Geometrical Characteristics
from Experimental Surface Data

In order to apply the force displacement relationship (7.18) or (7.26), one needs to
evaluate the geometric parameters R1 and R2 appearing in the paraboloid approxi-
mation (7.10) of the local gap function (7.7). In other words, the local gap function
(7.7) must be approximated as follows:

φ(ξ) = ϕ(ξ) + ϕ̃(ξ). (7.29)
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Here, ϕ̃(ξ) can be interpreted as a small discrepancy, while ϕ(ξ), according to (7.10),
should be taken in the form of an elliptic paraboloid

ϕ(ξ) = ξ21

(
cos2 θ

2R1
+ sin2 θ

2R2

)
+ ξ22

(
sin2 θ

2R1
+ cos2 θ

2R2

)

+ ξ1ξ2 sin 2θ

(
1

2R1
− 1

2R2

)
. (7.30)

Observe that the parameter θ introduced in (7.30) represents the angle between the
positive ξ1-axis and the positive η1-axis.

Under the assumption that the gap variation ϕ̃(ξ) introduces a small perturba-
tion into the contact region ω and the contact force F , we arrive at the following
optimization criterion [8, 10]:

min
R1,R2,θ

∫∫

ω∗

|φ(ξ) − ϕ(ξ)|2ρ∗(ξ) dξ . (7.31)

Here, ω∗ is an characteristic elliptic domain with the semi-axes a∗ and b∗, while
ρ∗(ξ) = 1 − a−2∗ ξ21 − b−2∗ ξ22 is a weight function.

The optimization criterion (7.31) requires a continuous representation of the gap
function φ(ξ), whereas originally only the coordinates of experimental surface data
points (ξ

j
1 , ξ

j
2 , ζ j ) ( j = 1, . . . , N ) and (ξ̂

j
1 , ξ̂

j
2 , ζ̂ j ) ( j = 1, . . . , N̂ ) were provided

from the measurement experiment (see, Eq. (7.9)). It would be useful, however, to
determine the parameters R1 and R2 directly from the experimental surface data.
Consequently, the following discrete variant of the optimization criterion (7.31) is
relevant and useful.

Given the measured surface data points (ξ
j
1 , ξ

j
2 , ζ j ) ( j = 1, . . . , N ) and (ξ̂

j
1 ,

ξ̂
j
2 , ζ̂ j ) ( j = 1, . . . , N̂ ), the two sets of effective geometrical parameters R0

1, R0
2, θ0

and R̂0
1, R̂0

2, θ̂0 must satisfy the criteria

min
R0
1 ,R0

2 ,θ0

∑

ξ j ∈ω∗

|ζ j − 0
ϕ(ξ j )|2ρ∗(ξ j ), (7.32)

min
R̂0
1 ,R̂0

2 ,θ̂0

∑

ξ̂
j ∈ω∗

|ζ̂ j − ϕ̂0
(ξ̂

j
)|2ρ∗(ξ̂

j
), (7.33)

where ϕ0(ξ) and ϕ̂0
(ξ) are given by

0
ϕ(ξ) = ξ21

(
cos2 θ0

2R0
1

+ sin2 θ0

2R0
2

)
+ ξ22

(
sin2 θ0

2R0
1

+ cos2 θ0

2R0
2

)

+ ξ1ξ2 sin 2θ0

(
1

2R0
1

− 1

2R0
2

)
, (7.34)
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ϕ̂0
(ξ) = ξ21

(
cos2 θ̂0

2R̂0
1

+ sin2 θ̂0

2R̂0
2

)
+ ξ22

(
sin2 θ̂0

2R̂0
1

+ cos2 θ̂0

2R̂0
2

)

+ ξ1ξ2 sin 2θ̂0

(
1

2R̂0
1

− 1

2R̂0
2

)
. (7.35)

According to (7.32) and (7.33), the tibial and femoral surfaces are represented
locally by the effective elliptic paraboloids (7.34) and (7.35), whose orientations
with respect to the positive ξ1-axis are determined by the angles θ0 and θ̂0, respec-
tively. The effective geometrical parameters R1 and R2 appearing in the elliptic
paraboloidal approximation (7.10) can now be determined from R0

1, R0
2 , θ0 and R̂0

1,
R̂0
2, θ̂0 following a standard procedure used in Hertzian contact mechanics [54].
It is interesting to observe that, following [24] where the effects of different

mathematical descriptions of articular contact and articular surface geometry on the
kinematic characteristics of the knee model were investigated, close approximations
of the articular surfaces by polynomials are not necessary, since the motion charac-
teristics were not influenced greatly by the degree of the polynomial approximations
for the curved tibial surfaces. This was a result of the size of the contact area, which
covered small surface irregularities andmade the contribution of the contact pressure
distribution to the net contact force less dependent on the irregularities. This observa-
tion supports the necessity of operating with the effective geometrical characteristics
of articular surfaces.

We also emphasize that the analytical models for the contact force using the
local geometrical characteristics (principal radii of curvature of the articular surfaces
at the potential contact points P0 and P̂0) in contrast to the effective geometrical
characteristics are restricted to simple geometries, and therefore their applicability
to real articular contact geometries is limited.

7.1.8 Generalization of the Contact Constitutive Relation

The asymptotic methodology for tibio-femoral articular contact developed in [8]
and outlined above is based on the leading-order asymptotic theory for a thin incom-
pressible viscoelastic layer attached to a rigid substrate. As was shown in [14], the
viscoelastic contact model for incompressible layers incorporates the asymptotic
model [13, 19, 87] for short-time response of biphasic layers as a special case,
corresponding to the Maxwell model of viscoelastic material.

In the elastic case, the force-displacement relationship for incompressible layers
(7.18) can be generalized as

F = E Mn Rlδn
0 . (7.36)

Here, E is a characteristic elastic modulus, R = √
R1R2 is a geometric mean of

the curvature radii R1 and R2, the factor Mn is a function of the thicknesses of the
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layers (h1 and h2) and the aspect ratio s of the elliptical contact region, which in
turn depends on the ratio R2/R1. For incompressible layers, n = 3 and l = 2, while
for compressible layers, n = 2 and l = 1. Note that the dimension of M is L2−n−l ,
where L is the dimension of length.

We point out that Eq. (7.36) incorporates the Hertzian force-displacement rela-
tionship with n = 3/2 and l = 1/2. The contact constitutive relation in the form
(7.36) was used in a number of publications on multibody simulations [37].

From Eq. (7.36), it is readily seen that in the case of incompressible layers, the
contact force, F , is inversely proportional to the joint thickness cubed, h3, while in the
case of thin compressible coatings, the contact force is simply inversely proportional
to the joint thickness h. This obvious implication is very important from the viewpoint
of the articular contact modeling of osteoarthritic joints, as the change of the articular
cartilage thickness has been widely used as an indicator of its degenerative status
[15, 56].

In the case of viscoelastic layers, according to Eqs. (7.26) and (7.36), the contact
constitutive relations can be represented as follows:

F(t) = E0Mn Rl

t∫

0−
Ψ (t − τ)

d

dτ

(
δ0(τ )n)

dτ. (7.37)

Here, E0 is a characteristic instantaneous elastic modulus, Ψ (t) is the normalized
compound relaxation function, and Mn is the same factor as shown in Eq. (7.36),
with the dimension L2−n−l .

Alternatively, in order to take into account the effect of energy dissipation during
the elasto-plastic contact interaction, the following general Hunt–Crossley model
[52] has been widely employed for modeling impact situations:

F(t) = bδ0(t)
p δ̇0(t)

q + kδ0(t)
n . (7.38)

The stiffness parameter k and the damping parameter b depend on material and
geometric properties of colliding bodies. As was observed in [37], an important
aspect of Eq. (7.38) is that damping depends on the indentation, which is physically
sound in the impact of metal balls, since the contact area increases with deformation
and a plastic region is more likely to develop for larger contact displacements.

For biomechanical applications, the general Hunt–Crossley model (7.38) was
used in a number of papers [42, 70, 81]. Note also that the consideration of viscous
effects in quasistatic or dynamic simulations could be important, in particular, in the
simulation of total knee replacement [79].

Additionally, Eq. (7.38) incorporates the so-called Lankarani–Nikravesh contact-
impact force model (with p = n and the coefficient b inversely proportional to
the initial impact velocity). In biomechanical applications, the Lankarani–Nikravesh
model was used in [74] for describing articular contact between intervertebral discs
in the study of cervical spine dynamics.
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We observe that in contrast to Eq. (7.38), the force-displacement relationship
(7.37) introduces the viscous mechanism of energy dissipation and is likely to be
more physically sound in view of the biphasic nature of articular cartilage.

7.1.9 Modified Incomplete Storage Shear Modulus
and Loss Angle

Let D′
β(t) be the equivalent out-of-plane shear relaxation modulus defined as

D′
β(t) = G ′

0Ψβ(t), (7.39)

where G ′
0 andΨβ(t) are the equivalent instantaneous out-of-plane shear elastic mod-

ulus and the corresponding normalized compound relaxation function.
Then, in light of (7.25) and (7.37), Eq. (7.26) can be rewritten in the form

F(t) = Mn Rl

t∫

0−
D′

β(t − τ)
d

dτ

(
δ0(τ )n)

dτ, (7.40)

where (with cF (s) and h being defined by formulas (7.20) and (7.25)2)

n = 3, l = 2, R = √
R1R2, M3 = 2πcF (s)

h3 . (7.41)

Let us now consider a sinusoidal loading with a prescribed contact approach
according to the law

δ0(t) = δm sinωt, t ∈ (0, tm). (7.42)

Here, δm is the maximum contact approach, and ω is a given quantity having the
dimension of reciprocal time. The quantity

tm = π

2ω
(7.43)

has a physical interpretation as the time moment when the contact approach δ0(t)
reaches its maximum δm . We emphasize that one may use Eq. (7.40) in the time
interval (0, tm), that is up to the moment when the monotonically increasing contact
area attains its maximum.

Following [11], we consider the quantity

1

Mn Rl

F(tm)

δn
m

=
tm∫

0

D′
β(tm − τ)

d

dτ

(
δ0(τ )

δm

)n

dτ, (7.44)
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and note that the quantity on the right-hand side of Eq. (7.44) was previously con-
sidered in a number of studies on indentation of viscoelastic materials [49, 61].

Substituting the expression (7.42) into the right-hand side of Eq. (7.44), we arrive
at the following integral:

G̃ ′
n(ω) =

π/(2ω)∫

0

D′
β

( π

2ω
− τ

) d

dτ
(sinωτ)ndτ. (7.45)

As shown in [11], the notation G̃ ′
n(ω) has distinct interpretations for different values

of the subscript n.
By changing the integration variable, the integral (7.45) may be recast in the form

G̃ ′
n(ω) = ω

π/(2ω)∫

0

D′
β(s)n cosn−1 ωs sinωs ds. (7.46)

Comparing the above integral with the storage shear modulus (see, [80])

G ′
1(ω) = ω

∞∫

0

D′
β(s) sinωs ds, (7.47)

we see that in the case n = 1, formulas (7.46) and (7.47) coincide up to the upper
limits of integration. This explainswhy the quantity G̃ ′

n(ω)will be called themodified
incomplete storage shear modulus.

We now let t̃M be the time moment when the contact force (7.40) reaches its
maximum, i.e., Ḟ(t̃M ) = 0, for the loading protocol (7.42). Then, by analogy with
the case of linear harmonic vibrations, we set

δ̃n(ω) = π

2
− ωt̃M . (7.48)

As a consequence of (7.43), formula (7.48) can be rewritten in the form

δ̃n(ω) = π

2

(tm − t̃M )

tm
,

where we call the quantity δ̃n(ω) the modified incomplete loss angle.
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7.2 Hunt–Crossley Contact Model

In this section, we study the Hunt–Crossley model of nonlinear impact, which
is widely employed in biomechanical applications. The equivalent Hunt–Crossley
model for articular contact is introduced based on the coincidence of the corre-
sponding modified incomplete storage moduli, in one instance, and of the so-called
modified incomplete loss angle of viscoelastic (short-time biphasic) model with the
corresponding loss angle for the Hunt–Crossley contact model, in the other.

7.2.1 Nonlinear Viscoelastic Hunt–Crossley Model of Impact

We now consider the impact of a rigid body of mass m against a deformable obstacle
with the following contact force [52]:

F(x, ẋ) = bkxn ẋ + kxn . (7.49)

Here, n is a real constant, k is a stiffness coefficient, and b is a damping parameter.
According to Newton’s second law, the differential equation of the impact process

has the form
mẍ = −F(x, ẋ), t ∈ [0, tc], (7.50)

where tc is the duration of contact interaction.
The initial conditions for Eq. (7.50) are formulated as follows:

x(0) = 0, ẋ(0) = v0, (7.51)

where v0 is the body velocity before impact.
The contact duration tc is determined as the instant t = tc, when the reaction

force −F(x, ẋ), or the body’s acceleration ẍ , vanishes. It can be proven [32] that if
at the initial time moment, t = 0, the before-collision velocity v0 and the damping
parameter b are positive, then at any subsequent time moment t during the impact
the following inequality holds:

ẋ(t) > −1

b
. (7.52)

Since the penetration x > 0 for t ∈ (0, tc), the contact force (7.49) vanishes as a
consequence of (7.52), when

x(tc) = 0. (7.53)

In otherwords, there is no residual penetration left as a result of the contact interaction
in the Hunt–Crossley impact model (7.49)–(7.51).
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7.2.2 Maximum Displacement

According to (7.49) and (7.50), the governing differential equation is

ẍ + k

m
xn(1 + bẋ) = 0. (7.54)

We can eliminate the time variable from this equation by making use of the
differential relation

ẍ = dv

dt
= dv

dx

dx

dt
= v

dv

dx
.

In this way, Eq. (7.54) is transformed to the form

v
dv

dx
+ k

m
xn(1 + bv) = 0,

which can be integrated by separating variables as follows:

v∫

v0

v dv

1 + bv
= − 1

m
Π(x). (7.55)

Here, Π(x) is the potential energy of elastic deformation, i.e.,

Π(x) = k

x∫

0

ξndξ = kxn+1

n + 1
. (7.56)

Evaluating the integral on the left-hand side of Eq. (7.55), in light of the inequality
(7.52), we arrive at the following first integral [32, 48, 73]:

ln(1 + bv) − bv = ln(1 + bv0) − bv0 + b2

m
Π(x). (7.57)

Let xm denote the maximum displacement of the body during the impact, which
occurs at the instant t = tm , when the velocity vanishes, i.e., ẋ(tm) = 0. So, substi-
tuting the value v = 0 into Eq. (7.57), we obtain

xm =
{

(n + 1)m

kb2
[
bv0 − ln(1 + bv0)

]}1/(n+1)

. (7.58)

We now see that the peak penetration monotonically increases with increasing v0
and decreases with increasing b.
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7.2.3 Coefficient of Restitution

Since displacement x = 0 at the beginning and at the end of the impact (see
Eqs. (7.51)1 and (7.53)), the post-collision velocity v1 is related to the pre-collision
velocity v0 by the equation

ln(1 + bv1) − bv1 = ln(1 + bv0) − bv0, (7.59)

which follows from (7.57) due to the normalization Π(0) = 0 (see formula (7.56)).
We note that v1 < 0.

Following Dyagel and Lapshin [32], we solve Eq. (7.59) for v1 using the Lambert
W -function. Recall [29] that the Lambert function W (z) is defined implicitly as the
function satisfying

W (z)eW (z) = z, (7.60)

or, equivalently, for a given z, the corresponding value W (z) (possibly non-unique)
can be found as the solution of the equation W eW = z. Over the field of real numbers,
the Lambert function has two branches W0(x), x ∈ (−1/e,+∞), and W−1(x),
x ∈ (−1/e, 0), shown in Fig. 7.4. Note that W0(−1/e) = W−1(−1/e) = −1.

Reducing the equation
ln ϕ −ϕ = ξ

to the equation of the type (7.60)

−ϕ e−ϕ = −eξ ,

we arrive at the following formula [32]:

v1 = −1

b

{
1 + W0

(
− 1 + bv0
exp(1 + bv0)

)}
. (7.61)

Fig. 7.4 Branches of the
Lambert function W (x):
W0(x) is the principal real
branch (solid line), W−1(x)

is the second real branch
(dashed line)
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Since the velocity at the end of the impact

v1 = −e∗v0, (7.62)

where e∗ is the coefficient of restitution, formula (7.61) yields

e∗ = 1

bv0

{
1 + W0

(
− 1 + bv0
exp(1 + bv0)

)}
. (7.63)

Here, W0(x) is the principal real branch of the Lambert function.

7.2.4 Interpretation of the Damping Parameter in Terms
of the Coefficient of Restitution

The kinetic energy loss in the impact is

ΔT = mv20
2

− mv21
2

= mv20
2

(1 − e2∗),

where we have taken (7.62) into account.
The experimental data on collisions of balls [39] show that for most linear mate-

rials with an elastic range at low collision velocities v0, the kinetic energy loss is
proportional to the collision velocity cubed, i.e., ΔT ≈ αmv30, while the coefficient
of restitution decreases proportionally to v0, i.e.,

e∗ ≈ 1 − αv0. (7.64)

Here, α is an empirical constant, which can be obtained as a linear fit (see formula
(7.64)) of the experimental data for the coefficient of restitution e∗ regarded as a
function of the collision velocity v0.

In the framework of the Hunt–Crossley model, by the substitution of (7.62) into
Eq. (7.59), we arrive at the following equation for e∗:

ln(1 − e∗bv0) + e∗bv0 − ln(1 + bv0) + bv0 = 0. (7.65)

For relatively small values of the impact velocity (i.e., assuming that bv0 � 1),
we can expand the left-hand side of Eq. (7.65) in a series of ascending powers of a
small dimensionless parameter

β = bv0.

In this way, Eq. (7.65) reduces to the following equation:

β2

2
(1 − e2∗) − β3

3
(1 + e3∗) + β4

4
(1 − e4∗) − · · · = 0.
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We can derive useful formulas by keeping only two terms in the above expansion,
as follows:

β � 3

2

(1 − e2∗)
(1 + e3∗)

. (7.66)

By factoring the right-hand side of (7.66), we obtain the following formula [45]:

b � 3

2v0

(1 − e∗)
(1 − e∗ + e2∗)

. (7.67)

Since for bv0 � 1, the coefficient of restitution is close to 1, and therefore we can
simplify the denominator in formula (7.67) by putting 1− e∗ + e2∗ ≈ 1, we arrive at
the following asymptotic formula [52]:

b � 3

2v0
(1 − e∗). (7.68)

Now, performing the same procedure for (7.66), we derive the following approx-
imate formula [64, 65]:

b � 3

4v0
(1 − e2∗).

Other approximate relations connecting the damping parameter b and the coeffi-
cient of restitution e∗ are discussed in [37, 43, 71, 82, 89] along with the applications
of the Hunt–Crossley model in multibody dynamics simulations. Observe that the
coefficient of restitution in the linear viscoelastic impact models [9, 73] depends on
the impactor mass and does not depend on the impact velocity. An advantage of the
Hunt–Crossley impact model is the lack of dependence of the coefficient of restitu-
tion on the mass of the colliding bodies, and thus it can be regarded as an intrinsic
property of the material [73].

We point out that in [40, 89] it was recommended to evaluate the value of the
damping parameter b from the exact Eq. (7.65), provided the value of e∗ is known
from experimental measurements.

7.2.5 Interpretation of the Damping Parameter in Terms
of the Loss Angle in the Hunt–Crossley Model

Let us consider the variation of theHunt–Crossley contact force (7.49) for a sinusoidal
displacement

x(t) = A sinωt, t ∈ (0, π/ω), (7.69)

with an amplitude A and an angular frequency ω.
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Substituting (7.69) into formula (7.49), we obtain

F(t) = k An sinn ωt (1 + bAω cosωt). (7.70)

Let tM be the time moment when the contact force (7.70) reaches its maximum.
Then, following [11], by analogy with the case of harmonic vibrations, we set

δn(ω) = π

2
− ωtM . (7.71)

Differentiating Eq. (7.70), we derive the equation Ḟ(tM ) = 0, which after the
substitution x = cosωtM can be reduced to the following form:

(n + 1)βx2 + nx − β = 0. (7.72)

Here we have introduced the notation

β = bAω. (7.73)

Further, according to (7.71), we have

cosωtM = sin δn(ω),

and, therefore, Eq. (7.72) yields

sin δn(ω) = 2β√
n2 + 4(n + 1)β2 + n

. (7.74)

Alternatively, from (7.72) it follows that

β = n sin δn(ω)

1 − (n + 1) sin2 δn(ω)
. (7.75)

Finally, taking into account that ẋ(0) = Aω and introducing the notation

v0 = Aω, (7.76)

we can rewrite formula (7.75) as follows:

b = n sin δn(ω)

v0
[
1 − (n + 1) sin2 δn(ω)

] . (7.77)

Note that in writing the above formula, we used relations (7.73) and (7.76).
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The quantity δn(ω) will be called the loss angle for the Hunt–Crossley contact
model. If this quantity is measured experimentally, the damping parameter can be
recovered from (7.77) with (7.76) taken into account.

7.2.6 Equivalent Hunt–Crossley Model for Articular Contact

Based on the viscoelastic constitutive relation (7.26), we strightforwardly determine
two parameters n and k from the three parameters of Eq. (7.49) as follows:

n = 3, (7.78)

k = 2πcF (s)
G ′

0

h3 R1R2, (7.79)

where cF (s) is a dimensionless factor (see formulas (7.19) and (7.20)), which is
close to 1 when the geometrical parameters R1 and R2 do not differ significantly,
h = h1+h2 is the joint thickness of articular cartilage layers, andG ′

0 is the equivalent
instantaneous out-of-plane shear elastic modulus given by (7.25).

A greater difficulty is encountered in determining the damping parameter b. In
a number of papers (see, e.g., a review by Machado et al. [71]), the Hunt–Crossley
model was employed in multibody dynamics simulations with the parameter b
expressed in terms of the coefficient of restitution e∗, which concept is difficult
to interpret in the context of articular contact.

We suggest the following approximate relation, based on Eq. (7.77), regarding
the loss angle as an intrinsic property of both the viscoelastic and the Hunt–Crossley
models:

b = 3 sin δ̃3(ω)

v0
[
1 − 4 sin2 δ̃3(ω)

] . (7.80)

Here, δ̃(ω) is the so-called modified incomplete loss angle introduced by Argatov
et al. [11] for the viscoelastic model (see formula (7.48)).

We recommend replacement of the straightforward formula (7.79) with a new
relation, based on the coincidence of the corresponding modified incomplete storage
moduli. Since

F(tm)

An
= k, tm = π

2ω
,

and taking into account Eqs. (7.44) and (7.45), we obtain k = Mn Rl G̃ ′
n(ω). Alter-

natively, as a result of (7.41), we find

k = 2πcF (s)
G̃ ′

3(ω)

h3 R1R2, (7.81)

where G̃ ′
n(ω) is the modified incomplete storage shear modulus (7.47).
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In the framework of the short-time contact model for thin bonded biphasic poro-
viscoelastic layers (see Sect. 6.3), the corresponding normalized relaxation function
Ψβ(t) is determined by its Laplace transform Ψ̃β(s) = 1/[s2Φ̃β(s)], where Φβ(t) is
given by Eqs. (6.58) and (6.59).

In the framework of the short-time contact model for thin bonded biphasic layers
(see [9, 14]), the corresponding equivalent instantaneous out-of-plane shear elastic
modulus is

G ′
0 = (h1 + h2)

3As(1)
44 As(2)

44

h3
1As(2)

44 + h3
2As(1)

44

, (7.82)

where As(1)
44 and As(2)

44 are the out-of-plane shear elastic moduli of the solid matrices
of the biphasic layers, h1 and h2 are the layer thicknesses.

Further, the equivalent (normalized) relaxation function is given by

Ψβ(t) = exp
(
− t

τ0

)
, (7.83)

where the equivalent relaxation time τ0 is defined by the formula

τ0 = τ
(1)
0 τ

(2)
0

β1τ
(2)
0 + β2τ

(1)
0

with β1 and β2 being given by

β1 = h3
1As(2)

44

h3
1As(2)

44 + h3
2As(1)

44

, β2 = h3
2As(1)

44

h3
1As(2)

44 + h3
2As(1)

44

,

while τ
(1)
0 and τ

(2)
0 are the corresponding relaxation times of the biphasic layers, i.e.,

τ
(1)
0 = h2

1

3As(1)
44 k(1)

1

, τ
(2)
0 = h2

2

3As(2)
44 k(2)

1

.

Here, k(1)
1 and k(1)

1 are the in-plane permeability coefficients of the biphasic layers.
The modified incomplete storage shear modulus (7.46) is given by

G̃ ′
n(ω) = G ′

0ω

π/(2ω)∫

0

Ψβ(s)n cosn−1 ωs sinωs ds,

where G ′
0 and Ψβ(t) are defined by formulas (7.82) and (7.83).

In periodic activities like walking or running, we can put ω = 2π f , where
f is the corresponding frequency. Otherwise, we suggest a simple approximation

http://dx.doi.org/10.1007/978-3-319-20083-5_6
http://dx.doi.org/10.1007/978-3-319-20083-5_6
http://dx.doi.org/10.1007/978-3-319-20083-5_6
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ω = π/(2tm), where tm is a characteristic time period of the loading phase up to the
moment of peak contact approach. As in [37, 43, 71], the parameter v0 in formula
(7.80) is interpreted as the initial contact velocity.

Observe also that formulas (7.80) and (7.81) can be used in developing semi-
analytical surrogate models for articular contact [41, 42], which, for instance, can
also take into account the effect of menisci.
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Chapter 8
Contact of Thin Inhomogeneous
Transversely Isotropic Elastic Layers

Abstract In this chapter we consider contact problems for thin bonded inhomo-
geneous transversely isotropic elastic layers. In particular, in Sects. 8.1 and 8.2, the
deformation problems are studied for the cases of elastic layers with the out-of-
plane and thickness-variable inhomogeneous properties, respectively. In Sect. 8.3, the
axisymmetric frictionless contact problems for thin incompressible inhomogeneous
elastic layers are studied in detail in the framework of the leading-order asymptotic
model. Finally, the deformation problem for a transversely isotropic elastic layer
bonded to a rigid substrate, and coated with a very thin elastic layer made of another
transversely isotropic material is analyzed in Sect. 8.4.

8.1 Deformation of an In-Plane Inhomogeneous Elastic
Layer

In the present section, the leading-order asymptotic models for the local indentation
of compressible and incompressible elastic layers developed in Chaps. 1 and 2 are
generalized for elastic layers with in-plane inhomogeneous material properties.

8.1.1 Deformation Problem Formulation

Recall that the constitutive relationship for a transversely isotropic media based in
the Cartesian coordinates (y1, y2, z), where the Oy1y2 plane coincides with the plane
of elastic symmetry, has the following form [9]:

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.1)
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In this section, we assume that the elastic constants Akl are functions of the
in-plane coordinates y = (y1, y2), so that the layer possesses an in-plane inhomo-
geneity.

By substituting the components of strain

εαβ = 1

2

(∂vα

∂yβ

+ ∂vβ

∂yα

)
, α, β = 1, 2,

ε3α = 1

2

( ∂w

∂yα

+ ∂vα

∂z

)
, ε33 = ∂w

∂z

into Hooke’s law (8.1), we obtain the stress-displacement relations

σ11 = A11
∂v1
∂y1

+ A12
∂v2
∂y2

+ A13
∂w

∂z
, σ23 = A44

( ∂w

∂y2
+ ∂v2

∂z

)
,

σ22 = A12
∂v1
∂y1

+ A11
∂v2
∂y2

+ A13
∂w

∂z
, σ13 = A44

( ∂w

∂y1
+ ∂v1

∂z

)
,

σ33 = A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z
, σ12 = A66

(∂v1
∂y2

+ ∂v2
∂y1

)
,

(8.2)

where A12 = A11 − 2A66 due to the in-plane symmetry properties.
The substitution of the above expressions into the equilibrium equations

∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
= 0, i = 1, 2, 3,

yields the system of Lamé equations

L(∇y)v + ∇y

(
A13

∂w

∂z

)
+ A44∇y

∂w

∂z
+ A44

∂2v
∂z2

= 0, (8.3)

∇y · (A44∇yw) + ∂

∂z
∇y · (A44v) + ∂

∂z
A13∇y · v + A33

∂2w

∂z2
= 0, (8.4)

where ∇y = (∂/∂y1, ∂/∂y2) is the in-plane Hamilton operator, the scalar product is
denoted by a dot, and L(∇y) is a 2 × 2 matrix differential operator such that

Lαα(∇y) = ∂

∂yα

(
A11

∂

∂yα

)
+ ∂

∂y3−α

(
A66

∂

∂y3−α

)
,

Lαβ(∇y) = ∂

∂yα

(
A12

∂

∂yβ

)
+ ∂

∂yβ

(
A66

∂

∂yα

)
, α, β = 1, 2, α �= β.

We consider the deformation of a thin in-plane inhomogeneous elastic layer (with
the elastic constants Akl(y)) of uniform thickness, h, ideally bonded to a rigid
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p(y1,n y2)

y1
h

z

Fig. 8.1 An in-plane inhomogeneous elastic layer of uniform thickness bonded to a rigid substrate
and supporting a distributed normal load

substrate (see Fig. 8.1). At the bottom surface of the layer, z = h, the following
boundary conditions are imposed:

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (8.5)

On the upper surface of the elastic layer, we impose the boundary conditions of
normal loading with no tangential tractions

σ13
∣∣
z=0 = σ23

∣∣
z=0 = 0, σ33

∣∣
z=0 = −p, (8.6)

where the normal load p(y) is a given (sufficiently smooth) function of the in-plane
coordinates y = (y1, y2).

The problem (8.3)–(8.6) generalizes the deformation problem studied in Chaps. 1
and2 for the case of transversely isotropic elastic layerswith in-plane inhomogeneous
properties.

8.1.2 Perturbation Analysis of the Deformation Problem

Assuming that the elastic layer is relatively thin, we require that

h = εh∗, (8.7)

where ε is a small positive parameter, and h∗ is a characteristic length, which is
assumed to be independent of ε.

By introducing the so-called “stretched” dimensional normal coordinate

ζ = z

ε
, (8.8)

we transform the Lamé equations (8.3), (8.4) into the following:

1

ε2
A44

∂2v
∂ζ 2 + 1

ε

∂

∂ζ

(∇y(A13w) + A44∇yw
) + L(∇y)v = 0, (8.9)

1

ε2
A33

∂2w

∂ζ 2 + 1

ε

∂

∂ζ

(∇y · (A44v) + A13∇y · v
) + ∇y · (A44∇yw) = 0. (8.10)

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Correspondingly, the boundary conditions (8.6) become

1

ε

∂v
∂ζ

+ ∇yw

∣∣∣∣
ζ=0

= 0, (8.11)

1

ε
A33

∂w

∂ζ
+ A13∇y · v

∣∣∣∣
ζ=0

= −p. (8.12)

As before, we apply the perturbation algorithm [14] to construct an approximate
solution to the system (8.5), (8.9)–(8.12) in the form of asymptotic expansions

v = εv0(y, ζ ) + ε2v1(y, ζ ) + · · · , (8.13)

w = εw0(y, ζ ) + ε2w1(y, ζ ) + · · · , (8.14)

where the successive coefficients of the powers of ε are independent of ε.
Following the standard procedure of the perturbation technique, we derive a set

of equations for the terms of expansions (8.13) and (8.14). In particular, the leading
terms of the asymptotic expansions are determined as solutions of the problems

A44
∂2v0

∂ζ 2 = 0, ζ ∈ (0, h∗),
∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=h∗ = 0; (8.15)

A33
∂2w0

∂ζ 2 = 0, ζ ∈ (0, h∗), A33
∂w0

∂ζ

∣∣∣∣
ζ=0

= −p, w0
∣∣
ζ=h∗ = 0, (8.16)

from here it follows that

v0(y, ζ ) ≡ 0, w0(y, ζ ) = p(y)

A33
(h∗ − ζ ). (8.17)

The next two terms of the asymptotic expansions (8.13) and (8.14) satisfy the
problems

A44
∂2v1

∂ζ 2 = −∇y

(
A13

∂w0

∂ζ

)
− A44∇y

∂w0

∂ζ
, ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇yw0
∣∣
ζ=0, v1

∣∣
ζ=h∗ = 0; (8.18)

A33
∂2w1

∂ζ 2 = − ∂

∂ζ
∇y · (A44v0) − A13

∂

∂ζ
∇y · v0, ζ ∈ (0, h∗),

A33
∂w1

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v0
∣∣
ζ=0, w1

∣∣
ζ=h∗ = 0. (8.19)
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In light of (8.17)1, from (8.19), it immediately follows that

w1(y, ζ ) ≡ 0, (8.20)

while the substitution of (8.17)2 into Eq. (8.18) leads to the problem

A44
∂2v1

∂ζ 2 = ∇y

( A13

A33
p
)

+ A44∇y

( p

A33

)
, ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −h∗∇y

( p

A33

)
, v1

∣∣
ζ=h∗ = 0.

(8.21)

As the elastic constants and the normal load are functions of the in-plane coordi-
nates only, the right-hand side of Eq. (8.21)1 is independent of ζ . Thus, the double
integration of Eq. (8.21)1 with the boundary conditions (8.21)2 and (8.21)3 taken into
account yields

v1(y, ζ ) = − (h2∗ − ζ 2)

2A44
∇y

( A13

A33
p
)

+ (h∗ − ζ )2

2
∇y

( p

A33

)
. (8.22)

The second non-trivial term of the asymptotic expansion satisfies the problem

A33
∂2w2

∂ζ 2 = − ∂

∂ζ

[∇y · (A44v1) − A13∇y · v1
] − ∇y · (

A44∇yw0),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v1
∣∣
ζ=0, w2

∣∣
ζ=h∗ = 0.

In light of (8.17)2 and (8.22), the above equations take the form

A33
∂2w2

∂ζ 2 = −ζΔy

( A13

A33
p
)

− ζ A13∇y ·
(

1

A44
∇y

( A13

A33
p
))

+ (h∗ − ζ )A13Δy

( p

A33

)
, ζ ∈ (0, h∗), (8.23)

∂w2

∂ζ

∣∣∣∣
ζ=0

= h2∗ A13

2A33

[
∇y ·

(
1

A44
∇y

( A13

A33
p
))

− Δy

( p

A33

)]
, w2

∣∣
ζ=h∗ = 0.

Integrating Eq. (8.23)1 and taking into account the boundary condition (8.23)2 at
ζ = 0, we obtain

A33
∂w2

∂ζ
= −ζ 2

2
Δy

( A13

A33
p
)

+ (h2∗ − ζ 2)

2
A13∇y ·

(
1

A44
∇y

( A13

A33
p
))

+
(

h∗ζ − ζ 2

2
− h2∗

2

)
A13Δy

( p

A33

)
, ζ ∈ (0, h∗),
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By integrating the above equation and taking into account the boundary condition
(8.23)3 at ζ = h∗, we arrive at the formula

w2(y, ζ ) = 1

6A33
(h3∗ − ζ 3)Δy

( A13

A33
p
)

− A13

6A33
(h∗ − ζ )2(ζ + 2h∗)∇y ·

(
1

A44
∇y

( A13

A33
p
))

+ A13

6A33
(h∗ − ζ )3Δy

( p

A33

)
, (8.24)

where for brevity we do not show the argument y of the functions p(y), A13(y),
A33(y), and A44(y).

8.1.3 Local Indentation of the In-Plane Inhomogeneous
Layer: Leading-Order Asymptotics for the Compressible
and Incompressible Cases

Recall that the local indentation of an elastic layer is defined as

w0(y) ≡ w(y, 0),

where w(y, 0) is the normal displacement of the layer surface.
In the case of the compressible layer, Eqs. (8.7), (8.8), (8.14), and (8.17)2 yield

w0(y) � h

A33(y)
p(y), (8.25)

so that the deformation response of the elastic layer is analogous to that of a Winkler
elastic foundation with the variable modulus

k(y) = A33(y)

h
. (8.26)

We emphasize that formula (8.26) is valid for a thin bonded compressible transversely
isotropic elastic layer with in-plane inhomogeneous properties.

When the material approaches the incompressible limit, the right-hand side of
(8.26) increases unboundedly and the first term in the asymptotic expansion (8.14)
disappears. Consequently, the ratios A44/A33 and A13/A33 tend to 0 and 1, respec-
tively.

Therefore, in the limit situation, formula (8.24) reduces to

w2(y, ζ ) = −1

6
(h∗ − ζ )2(ζ + 2h∗)∇y ·

( 1

A44
∇y p

)
. (8.27)
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In the case of an incompressible bonded elastic layer, formulas (8.7), (8.8), (8.14),
and (8.27) give

w0(y) � −h3

3
∇y ·

(
1

a44(y)
∇y p(y)

)
, (8.28)

where a44 = A44 is the out-of-plane shear modulus.

8.2 Deformation of an Elastic Layer
with Thickness-Variable Inhomogeneous Properties

In the present section, the leading-order asymptotic models for the local indentation
of thin bonded compressible and incompressible elastic layers developed in Chaps. 1
and 2 are generalized for elastic layers with the so-called thickness-variable inho-
mogeneous material properties.

8.2.1 Deformation Problem Formulation

Let us consider the deformation of a thin transversely isotropic inhomogeneous elas-
tic layer of uniform thickness, h, with variable properties across the layer thickness
(see Fig. 8.2). If the plane of isotropy is parallel to the layer surface, the stress-
displacement relations take the form

σ11 = A11
∂v1
∂y1

+ A12
∂v2
∂y2

+ A13
∂w

∂z
, σ23 = A44

( ∂w

∂y2
+ ∂v2

∂z

)
,

σ22 = A12
∂v1
∂y1

+ A11
∂v2
∂y2

+ A13
∂w

∂z
, σ13 = A44

( ∂w

∂y1
+ ∂v1

∂z

)
,

σ33 = A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z
, σ12 = A66

(∂v1
∂y2

+ ∂v2
∂y1

)
.

(8.29)

Here, u = (u, w) is the displacement vector, v and w are the in-plane and out-of-
plane displacements, respectively, both of which are functions of three-dimensional
Cartesian coordinates (y, z).

p(y1,n y2)

y1
h

z

Fig. 8.2 A thickness-variable inhomogeneous elastic layer of uniform thickness bonded to a rigid
substrate and supporting a distributed normal load

http://dx.doi.org/10.1007/978-3-319-20083-5_1
http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Let us assume that the elastic constants Akl are represented in the form

Akl = αkl

( z

h

)
, (8.30)

or, equivalently, the material properties are expressed as functions of the normal-
ized depth coordinate z/h. Note that according to the terminology introduced in
[11, 12], we consider a transversely isotropic, transversely homogeneous (TITH)
elastic model.

The substitution of the stress-displacement relations (8.29) into the equations of
equilibrium

∂σi1

∂x1
+ ∂σi2

∂x2
+ ∂σi3

∂x3
= 0, i = 1, 2, 3,

yields the Lamé equations

A66Δyv + (A11 − A66)∇y∇y · v + A13
∂

∂z
∇yw

+ ∂

∂z
(A44∇yw) + ∂

∂z

(
A44

∂v
∂z

)
= 0, (8.31)

∂

∂z
(A13∇y · v) + A44

∂

∂z
∇y · v + A44Δyw + ∂

∂z

(
A33

∂w

∂z

)
= 0, (8.32)

where∇y = (∂/∂y1, ∂/∂y2) andΔy = ∇y ·∇y are the in-planeHamilton andLaplace
operators, respectively, and the scalar product is denoted by a dot.

Let us assume that the elastic layer is loaded on the upper surface, z = 0, with a
normal load, p, without tangential tractions, and that it is perfectly attached to a rigid
substrate at the bottom surface, z = h, so that the following boundary conditions
take place:

σ13
∣∣
z=0 = σ23

∣∣
z=0 = 0, σ33

∣∣
z=0 = −p, (8.33)

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (8.34)

As before, we are interested in the case where the applied load p is specified on
the whole upper surface of the layer, and is a sufficiently smooth function of the
in-plane coordinates y = (y1, y2).

8.2.2 Perturbation Analysis of the Deformation Problem

We assume that the elastic layer is relatively thin and we set

h = εh∗, (8.35)
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where ε is a small positive parameter, and h∗ is a characteristic length, which is
assumed to be independent of ε.

Let us also introduce the dimensional stretched normal coordinate

ζ = z

ε
, (8.36)

so that in light of (8.30), (8.35), and (8.36), we obtain

Akl = αkl

( ζ

h∗

)
. (8.37)

The substitution of the coordinate change (8.36) into the Lamé equations (8.31),
(8.4) leads to the system

1

ε2

∂

∂ζ

(
A44

∂v
∂ζ

)
+ 1

ε

(
A13

∂

∂ζ
∇yw + ∂

∂ζ
(A44∇yw)

)

+ A66Δyv + (A11 − A66)∇y∇y · v = 0, (8.38)
1

ε2

∂

∂ζ

(
A33

∂w

∂ζ

)
+ 1

ε

( ∂

∂ζ
(A13∇y · v) + A44

∂

∂ζ
∇y · v)

)

+ A44Δyw = 0. (8.39)

Correspondingly, the boundary conditions (8.33) on the upper surface of the layer
become

1

ε

∂v
∂ζ

+ ∇yw

∣∣∣∣
ζ=0

= 0, (8.40)

1

ε
A33

∂w

∂ζ
+ A13∇y · v

∣∣∣∣
ζ=0

= −p. (8.41)

The boundary conditions (8.34) on the bottom surface then take the form

v
∣∣
ζ=h∗ = 0, w

∣∣
ζ=h∗ = 0. (8.42)

Using the perturbation algorithm [14], we construct an approximate solution to
the system (8.38)–(8.42) in the form of asymptotic expansions

v = εv0(y, ζ ) + ε2v1(y, ζ ) + · · · , (8.43)

w = εw0(y, ζ ) + ε2w1(y, ζ ) + · · · , (8.44)

where the successive coefficients of the powers of ε are assumed to be independent
of the small parameter ε.

The substitution of the asymptotic expansions (8.43) and (8.44) into Eqs. (8.38)–
(8.42) produces a set of differential equations that must be satisfied for arbitrary ε.
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In particular, the leading terms of the asymptotic expansions (8.43) and (8.44) are
determined as solutions of the following two problems:

∂

∂ζ

(
A44

∂v0

∂ζ

)
= 0, ζ ∈ (0, h∗),

∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=h∗ = 0; (8.45)

∂

∂ζ

(
A33

∂w0

∂ζ

)
= 0, ζ ∈ (0, h∗), A33

∂w0

∂ζ

∣∣∣∣
ζ=0

= −p, w0
∣∣
ζ=h∗ = 0. (8.46)

From (8.45), it immediately follows that

v0(y, ζ ) ≡ 0, (8.47)

while the non-trivial boundary-value problem (8.46) has the following solution:

w0(y, ζ ) = p(y)

h∗∫

ζ

dζ ′

A33(ζ ′)
. (8.48)

As a result of (8.47), it can be easily seen that the problem

∂

∂ζ

(
A33

∂w1

∂ζ

)
= − ∂

∂ζ
(A13∇y · v0) − A44

∂

∂ζ
∇y · v0, ζ ∈ (0, h∗),

A33
∂w1

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v0
∣∣
ζ=0, w1

∣∣
ζ=h∗ = 0

is homogeneous, and therefore its solution is trivial:

w1(y, ζ ) ≡ 0. (8.49)

Simultaneously, for the first non-trivial term of the asymptotic expansion (8.43),
we have the problem

∂

∂ζ

(
A44

∂v1

∂ζ

)
= ∂ A13

∂ζ
∇yw0 − ∂

∂ζ

(
(A13 + A44)∇yw0), ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇yw0
∣∣
ζ=0, v1

∣∣
ζ=h∗ = 0.

(8.50)

To solve the above problem, we first rewrite formula (8.48) in the form

w0(y, ζ ) = p(y)W 0(ζ ), (8.51)
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where we have introduced the notation

W 0(ζ ) =
h∗∫

ζ

dζ ′

A33(ζ ′)
. (8.52)

Observe that we employ the notation A33(ζ ) for brevity, and that as a result of
(8.37), Eq. (8.52) can be written as

W 0(ζ ) =
h∗∫

ζ

1

α33(ζ ′/h∗)
dζ ′.

Thus, according to (8.51), the solution of the system (8.50) can be represented in
the form

v1(y, ζ ) = ∇y p(y)V 1(ζ ), (8.53)

where V 1(ζ ) is a scalar function satisfying the problem

d

dζ

(
A44

dV 1

dζ

)
= −A13

dW 0

dζ
− d

dζ

(
A44W

0), ζ ∈ (0, h∗),

dV 1

dζ

∣∣∣∣
ζ=0

= −W 0(0), V 1
∣∣
ζ=h∗ = 0.

(8.54)

Integrating the differential equation (8.54)1, we obtain

dV 1

dζ
= 1

A44(ζ )

ζ∫

0

A13(ζ
′)

A33(ζ ′)
dζ ′ − W 0(ζ ) + C1

A44(ζ )
,

where C1 is an integration constant. In light of the first boundary condition (8.54),
we readily find that C1 = 0.

Upon integration of the above equation, we arrive at the formula

V 1(ζ ) = −
h∗∫

ζ

(
1

A44(ξ)

ξ∫

0

A13(ζ
′)

A33(ζ ′)
dζ ′ − W 0(ξ)

)
dξ,

which after recalling the definition of the function W 0(ζ ) (see Eq. (8.52)) can be
rewritten as
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V 1(ζ ) = −
h∗∫

ζ

1

A44(ξ)

ξ∫

0

A13(ζ
′)

A33(ζ ′)
dζ ′dξ +

h∗∫

ζ

ξ − ζ

A33(ξ)
dξ. (8.55)

We now return to the problem for the second non-trivial term of the asymptotic
expansion (8.44), that is

∂

∂ζ

(
A33

∂w2

∂ζ

)
= − ∂

∂ζ
(A13∇y · v1) − A44

∂

∂ζ
∇y · v1 − A44Δyw0,

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v1
∣∣
ζ=0, w2

∣∣
ζ=h∗ = 0.

(8.56)

According to (8.51) and (8.53), the solution to the problem (8.56) can be repre-
sented in the form

w1(y, ζ ) = Δy p(y)W 2(ζ ), (8.57)

where W 2(ζ ) is a scalar function satisfying the problem

d

dζ

(
A33

dW 2

dζ

)
= − d

dζ
(A13V

1) − A44
dV 1

dζ
− A44W

0, ζ ∈ (0, h∗),

A33
dW 2

dζ

∣∣∣∣
ζ=0

= −A13V
1
∣∣
ζ=0, W 2

∣∣
ζ=h∗ = 0.

(8.58)

By integrating Eq. (8.58)1 with boundary condition (8.58)2 taken into account,
we find

dW 2

dζ
= − A13

A33
V 1 − 1

A33

ζ∫

0

(ζ − ζ ′) A13(ζ
′)

A33(ζ ′)
dζ ′.

A final integration reveals

W 2(ζ ) =
h∗∫

ζ

A13(η)

A33(η)
V 1(η) dη +

h∗∫

ζ

1

A33(ξ)

ξ∫

0

(ξ − ζ ′) A13(ζ
′)

A33(ζ ′)
dζ ′dξ. (8.59)

By collecting formulas (8.57) and (8.59), we can write out a closed-form repre-
sentation for the function w2(y, ζ ).
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8.2.3 Local Indentation of the Inhomogeneous Layer:
Leading-Order Asymptotics for the Compressible
and Incompressible Cases

In the case of the compressible layer, formulas (8.44), (8.51), and (8.52) yield for
the local indentation

w0(y) ≡ w(y, 0)

the following leading-order asymptotic approximation:

w0(y) � εp(y)

h∗∫

0

dζ

A33(ζ )
.

Following (8.30), (8.35)–(8.37), the above formula can be transformed to

w0(y) � p(y)

h∫

0

dz

A33(z)
. (8.60)

In other words, the deformation response of a thin bonded compressible inhomoge-
neous elastic layer resembles that of a Winkler elastic foundation with the modulus

k =
( h∫

0

dz

A33(z)

)−1

. (8.61)

It is clear that in the case of a thin compressible homogeneous elastic layer formula
(8.61) reduces to (1.65).

When the layer material approaches the incompressibility limit, the ratio A44/A33
vanishes,while the ratio A13/A33 tends to 1.At the same time, theWinkler foundation
modulus k defined by (8.61) tends to infinity. Thus, in the case of the incompressible
layer, formula (8.55) results in the following:

V 1(ζ ) = −
h∗∫

ζ

ξ dξ

a44(ξ)
. (8.62)

Here, a44 = A44 is the out-of-plane shear modulus.

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Correspondingly, Eq. (8.59) reduces to

W 2(ζ ) =
h∗∫

ζ

V 1(η) dη. (8.63)

The substitution of (8.62) into (8.63) reveals

W 2(0) = ζV 1(ζ )

∣∣∣h∗

0
−

h∗∫

0

ζ
dV 1

dζ
(ζ ) dζ

= −
h∗∫

0

ζ 2

a44(ζ )
dζ. (8.64)

Collecting formulas (8.44), (8.57), (8.64), and taking into account Eqs. (8.35)–
(8.37), we obtain

w0(y) � −Δy p(y)

h∫

0

z2dz

a44(z)
. (8.65)

We emphasize that formula (8.65) is derived for a thin bonded incompressible
transversely isotropic, transversely homogeneous elastic layer.

8.3 Contact of Thin Bonded Incompressible Inhomogeneous
Layers

In this section we briefly consider the axisymmetric frictionless contact problems for
thin inhomogeneous transversely isotropic elastic layers bonded to slightly curved
rigid substrates. The developed leading-order asymptotic models are validated by
comparison with available published results.

8.3.1 Contact Problem Formulation

We consider two thin uniform inhomogeneous elastic layers firmly attached to rigid
substrates. In the undeformed configuration the layers are in contact at a single point,
O , chosen as the center of the Cartesian coordinate system Oy2y2z (see Fig. 3.1).
We write the equations of the layer surfaces in the form z = (−1)nϕn(y) (n = 1, 2),
so that the gap between the contacting surfaces is

http://dx.doi.org/10.1007/978-3-319-20083-5_3
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ϕ(y) = ϕ1(y) + ϕ2(y). (8.66)

Denoting the vertical contact approach of the substrates—as usual—by δ0, we
formulate the linearized unilateral non-penetration condition as follows:

δ0 − (
w(1)
0 (y) + w(2)

0 (y)
) ≤ ϕ(y). (8.67)

Here, w(n)
0 (y) is the local indentation of the nth elastic layer.

Generalizing the results of the previous two sections, we arrive at the approximate
formula for the local indentation of the nth layer

w(n)
0 (y) = −∇y ·

( hn∫

0

z2dz

G ′
n(y, z)

∇y p(y)

)
, (8.68)

where p(y) is the contact pressure density, hn is the thickness of the nth layer, and
G ′

n(y, z) is the out-of-plane shear modulus as it measured from the layer surface.
The contour Γ of the contact area ω is determined from the condition that the

contact pressure is positive inside ω and vanishes at Γ , so that

p(y) > 0, y ∈ ω, p(y) = 0, y ∈ Γ. (8.69)

Moreover, in the case of incompressible layers, we additionally assume a smooth
transition of the pressure density p(y) from the contact region ω to the outside
region y �∈ ω, where p(y) ≡ 0. Thus, in addition to (8.69)2, we impose the following
zero-pressure-gradient boundary condition (see Sect. 2.7.3 and [5, 7, 8]):

∂p

∂n
(y) = 0, y ∈ Γ. (8.70)

Here, ∂/∂n is the normal derivative directed outward from ω.
By substituting the expressions for the local indentations w(1)

0 (y) and w(2)
0 (y)

provided by formula (8.68) into the contact condition (8.67) and taking into account
(8.69)1, we derive the governing differential equation

− ∇y · (
γ (y)∇y p(y)

) = δ0 − ϕ(y), y ∈ ω, (8.71)

where we have introduced the notation

γ (y) =
h1∫

0

z2dz

G ′
1(y, z)

+
h1∫

0

z2dz

G ′
1(y, z)

. (8.72)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Finally, the equilibrium equation for the whole system is

∫∫

ω

p(y) dy = F, (8.73)

where F is the external load compressing the elastic layers.
The boundary-value problem (8.69)–(8.71) will be used to find both the contact

area ω and the contact pressure p(y), while the equilibrium equation (8.73) will
allow determination of the contact approach δ0, provided that the contact force F is
given in advance.

8.3.2 Axisymmetric Unilateral Contact Problem

Introducing the cylindrical coordinate system (r, θ, z), we can write equations of the
undeformed layer surfaces in the form z = (−1)nϕn(r) (n = 1, 2), so that the gap
function (8.66) becomes (see Fig. 8.3)

ϕ(r) = ϕ1(r) + ϕ2(r). (8.74)

For the sake of simplicity, we assume that the gap ϕ(r) is a smooth increasing
function and thus that the contact area ω is a circle of some radius a.

Due to the chain rule of differentiation, we have

∂

∂y1
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
,

∂

∂y2
= sin θ

∂

∂r
+ cos θ

r

∂

∂θ
,

so that the in-plane Hamilton operator is

∇y =
(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
e1 +

(
sin θ

∂

∂r
+ cos θ

r

∂

∂θ

)
e2,

where e1 and e2 are the basis vectors of the Cartesian coordinate system.

Fig. 8.3 Two
inhomogeneous
incompressible elastic layers
bonded to axisymmetric
rigid substrates in the
undeformed configuration

r

z

2

1

2

1

(r)h

h
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For an axisymmetric density p(r), we have

∇y p(r) = cos θ
dp

dr
(r) e1 + sin θ

dp

dr
(r) e2

and correspondingly

∇y · (
γ (r)∇y p(r)

) = d

dr

(
γ (r)

dp

dr
(r)

)
+ 1

r
γ (r)

dp

dr
(r)

= 1

r

d

dr

(
rγ (r)

dp

dr
(r)

)
, (8.75)

while, as a result of (8.72), the function γ (r) is given by

γ (r) =
h1∫

0

z2dz

G ′
1(r, z)

+
h1∫

0

z2dz

G ′
1(r, z)

.

Further, Eq. (8.71) takes the form

− 1

r

d

dr

(
rγ (r)

dp

dr
(r)

)
= δ0 − ϕ(r), r ∈ (0, a), (8.76)

whereas the boundary conditions (8.69)2 and (8.70) become

p(a) = 0,
dp

dr
(a) = 0. (8.77)

Integrating Eq. (8.76), we find

dp

dr
(r) = −δ0

2

r

γ (r)
+ 1

rγ (r)

r∫

0

ϕ(ρ)ρ dρ, (8.78)

where the integration constant vanishes due to the regularity condition for the solution
of the problem (8.76), (8.77) at the center of the contact area r = 0.

By substituting r = a into the above equation and taking into account the boundary
condition (8.77)2, we derive the following equation:

δ0 = 2

a2

r∫

0

ϕ(ρ)ρ dρ. (8.79)
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By integratingEq. (8.78) and employing the boundary condition (8.77)1,weobtain

p(r) = δ0

2

a∫

r

ρ dρ

γ (ρ)
−

a∫

r

1

ργ (ρ)

ρ∫

0

ϕ(ξ)ξ dξdρ. (8.80)

Formula (8.80) presents the contact pressure in terms of the gap function ϕ(r),
given by (8.74), the elastic compliance function γ (r), defined by (8.72), and two
a priori unknown parameters δ0 and a, which are related by Eq. (8.79).

An additional equation for determining the contact approach δ0 and the contact
radius a is provided by the equilibrium equation (8.73). Specifically, the substitution
of (8.80) into Eq. (8.73) yields

F = π

2
δ0

a∫

0

ρ3dρ

γ (ρ)
− π

a∫

0

r

γ (r)

r∫

0

ϕ(ρ)ρ dρdr. (8.81)

In the case of in-plane homogeneous elastic layers, where γ (r) is constant,
formulas (8.80) and (8.81) reduce to the following:

p(r) = δ0

4γ
(a2 − r2) − 1

γ
Θ(a, r), (8.82)

F = π

4γ

a∫

0

ϕ(ρ)(2ρ2 − a2)ρ dρ. (8.83)

Here we have introduced the notation

Θ(a, r) =
a∫

r

ϕ(ρ)ρ ln
a

ρ
dρ −

r∫

0

ϕ(ρ)ρ ln
r

ρ
dρ. (8.84)

Observe that in writing formula (8.83) we have taken into account Eq. (8.79). We
also note that the contact radius is determined as a solution of Eq. (8.79).

8.3.3 Contact Problem for a Thin Bonded Non-homogeneous
Incompressible Elastic Layer with Fixed Contact Area

Let us now consider contact interaction between a thin elastic layer bonded to a rigid
substrate and a punch, under the assumption that the contact area,ω, does not change
if the contact load, F , varies. In this case, the contact condition is
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w0(y) = δ0 − ϕ(y), y ∈ ω, (8.85)

where δ0 andϕ(y) are the punch’s normal displacement and the punch shape function,
and w0(y) is the local indentation of the elastic layer.

For a thin incompressible elastic layer, according to the asymptotic analysis per-
formed in Sects. 8.1 and 8.2, we have

w0(y) = −∇y ·
( h∫

0

z2dz

G ′(y, z)
∇y p(y)

)
, (8.86)

where p(y) is the contact pressure distribution, hn and G ′(y, z) are the elastic layer’s
thickness and out-of-plane shear modulus measured in the z-direction from the layer
surface, respectively.

Substituting (8.86) into Eq. (8.85), we arrive at the equation

− ∇y · (
γ (y)∇y p(y)

) = δ0 − ϕ(y), y ∈ ω, (8.87)

where we have introduced the notation

γ (y) =
h∫

0

z2dz

G ′(y, z)
. (8.88)

The second-order differential equation (8.87) requires some boundary conditions
at the contour Γ of the domain ω. As was shown by Aleksandrov [1] (see also
Sect. 2.7.2) in the axisymmetric contact problem for a thin incompressible isotropic
elastic layer, in order to construct the leading-order inner asymptotic solution for the
contact pressure under a flat-ended punch, the differential equation (8.87) should be
supplemented with the following boundary condition:

p(y) = 0, y ∈ Γ. (8.89)

In the case of a thin bonded homogeneous incompressible elastic layer (when
γ (y) ≡ const), Barber [7] has shown that the problem (8.87), (8.89) is formally
equivalent to the Saint-Venant torsion problem (see, e.g., [19], Chap.10), and hence
the analytical solutions to many contact problems can be written down.

We emphasize that in the case of an elastic layer indented by a rigid punch with
a sharp edge, the contact pressure has a square-root singularity at the contour Γ

(see, e.g., [3, 13, 15]). For a thin elastic layer this effect is taken into account by the
additional asymptotic solution of the boundary-layer type (see, in particular, [1]).

Finally, the punch’s displacement δ0 and the contact force F are related through
the equilibrium equation

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_10
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∫∫

ω

p(y) dy = F. (8.90)

Observe that, from a physical point of view, there exists a constant γ0 such that
the function (8.88) satisfies the condition

γ (y) ≥ γ0, y ∈ ω̄ = ω ∪ Γ.

According to the weak maximum principle (see, e.g., [10]), if the right-hand side
of Eq. (8.87) satisfies the condition

δ0 − ϕ(y) ≥ 0, y ∈ ω, (8.91)

then the minimum of the contact pressure p(y) in ω̄ is achieved on Γ , i.e.,

min
y∈ω̄

p(y) = min
y∈Γ

p(y). (8.92)

Hence, from (8.89) and (8.92), it follows that in the case (8.91), we have throughout
the contact area

p(y) ≥ 0, y ∈ ω. (8.93)

We note that under some assumptions on the domain ω (e.g., for a simply con-
nected domain ω bounded by a smooth contour Γ of class C2), the strict inequality
in (8.91) implies the strict inequality in (8.93). Equivalently, if the local indentation
of a thin incompressible elastic layer is positive over the whole contact area, then the
contact pressure under the punch is positive, which is generally not the case.

8.3.4 Axisymmetric Contact Problem with Fixed Contact Area

We now consider the following linear contact problem (see Fig. 8.4):

− 1

r

d

dr

(
rγ (r)

dp

dr
(r)

)
= δ0 − ϕ(r), r ∈ (0, a), (8.94)

p(a) = 0, (8.95)

2π

a∫

0

p(r)r dr = F. (8.96)
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Fig. 8.4 An inhomogeneous
incompressible elastic layer
bonded to a rigid substrate in
full contact with an
axisymmetric rigid punch

δ0 

z

r

a

F

h

As a result of (8.88), we have

γ (r) =
h∫

0

z2dz

G ′(r, z)
.

The solution to Eqs. (8.94)–(8.96) is given by the formulas (see Sect. 8.3.2):

p(r) = δ0

2

a∫

r

ρ dρ

γ (ρ)
−

a∫

r

1

ργ (ρ)

ρ∫

0

ϕ(ξ)ξ dξdρ, (8.97)

F = π

2
δ0

a∫

0

ρ3dρ

γ (ρ)
− π

a∫

0

r

γ (r)

r∫

0

ϕ(ρ)ρ dρdr. (8.98)

In the case of the in-plane homogeneous elastic layer, where the shear modulus
G ′ does not depend on r and γ (r) is constant, Eqs. (8.97) and (8.98) yield simply

p(r) = δ0

4γ
(a2 − r2) − 1

γ
Θ(a, r), (8.99)

F = π

8γ
δ0a4 − π

2γ

a∫

0

ϕ(ρ)(a2 − ρ2)ρ dρ, (8.100)

where the factor Θ(a, r) is given by formula (8.84).
The obtained solution and, in particular, formula (8.99) agree with the so-called

degenerate asymptotic solution obtained by Aleksandrov [1] in the isotropic and
homogeneous case. The contact problem for an incompressible inhomogeneous
isotropic elastic layer bonded to a rigid substrate, and indented without friction by a
rigid punch, was studied by Malits [16], who, in particular, constructed the leading-
order asymptotic solution in the case of a circular punch of three-dimensional profile,
where formula (8.100) takes the following form:



282 8 Contact of Thin Inhomogeneous Transversely Isotropic Elastic Layers

F = π

8γ
δ0a4 − 1

4γ

2π∫

0

dθ

a∫

0

ϕ(ρ, θ)(a2 − ρ2)ρ dρ.

For the flat-ended punch, when ϕ(r) ≡ 0, Eqs. (8.99) and (8.100) further sim-
plify to

p(r) = δ0

4γ
(a2 − r2), (8.101)

F = π

8γ
δ0a4. (8.102)

In the case of the homogeneous isotropic incompressible elastic layer, we have

γ = h3

3G
, (8.103)

where G is the shear modulus, and formula (8.101) coincides with the solution
obtained by Aleksandrov [1], while Eq. (8.102), apart from notation, coincides with
the corresponding equation obtained by Malits [16].

8.4 Deformation of a Thin Elastic Layer Coated
with an Elastic Membrane

In this sectionweconsider the deformationproblem for a transversely isotropic elastic
layer bonded to a rigid substrate and coated with a very thin elastic layer made of
another transversely isotropic material. The leading-order asymptotic model is based
on the simplifying assumptions that the generalized plane stress conditions apply to
the coating layer, and the flexural stiffness of the coating layer is negligible compared
to its tensile stiffness.

8.4.1 Boundary Conditions for a Coated Elastic Layer

We consider a very thin transversely isotropic elastic coating layer (of uniform thick-
ness ĥ) bonded to an elastic layer (of thickness h) made of another transversely
isotropic material (see Fig. 8.5).

Let the five independent elastic constants of the elastic layer and its coating are
denoted by A11, A12, A13, A33, A44 and Â11, Â12, Â13, Â33, Â44, respectively.

Under the assumption that the two layers are in perfect contact with one another
along their common interface, z = 0, the following boundary conditions of continuity
(interface conditions of perfect bonding) should be satisfied:
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Fig. 8.5 A two-layer elastic
system (coated layer and
coating layer in perfect
bonding) bonded to a rigid
substrate and loaded by a
normal load

2b

p(y1,n y2)

y1

h

z

h

v̂(y, 0) = v(y, 0), ŵ(y, 0) = w(y, 0), (8.104)

σ̂3 j (y, 0) = σ3 j (y, 0), j = 1, 2, 3. (8.105)

Here, (v̂, ŵ) is the displacement vector of the elastic coating layer, and σ̂i j are the
corresponding components of stress.

On the upper surface of the two-layer system, z = −ĥ, we impose the boundary
conditions of normal loading with no tangential tractions

σ̂31(y,−ĥ) = σ32(y,−ĥ) = 0, σ̂33(y,−ĥ) = −p(y), (8.106)

where p(y) is a specified function.
Following Rahman and Newaz [18], we simplify the deformation analysis of the

elastic coating layer based on the following two assumptions: (1) the coating layer is
assumed to be very thin, so that the generalized plane stress conditions apply; (2) the
flexural stiffness of the coating layer in the z-direction is negligible compared to its
tensile stiffness.

In the absence of body forces, the equilibrium equations for an infinitesimal
element of the coating layer are

∂σ̂11

∂y1
+ ∂σ̂12

∂y2
+ ∂σ̂13

∂z
= 0,

∂σ̂21

∂y1
+ ∂σ̂22

∂y2
+ ∂σ̂23

∂z
= 0, (8.107)

∂σ̂31

∂y1
+ ∂σ̂32

∂y2
+ ∂σ̂33

∂z
= 0. (8.108)

The stress-strain relationship for the transversely isotropic elastic coating layer is
given by

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̂11
σ̂22
σ̂33
σ̂23
σ̂13
σ̂12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â11 Â12 Â13 0 0 0
Â12 Â11 Â13 0 0 0
Â13 Â13 Â33 0 0 0
0 0 0 2 Â44 0 0
0 0 0 0 2 Â44 0
0 0 0 0 0 2 Â66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε̂11
ε̂22
ε̂33
ε̂23
ε̂13
ε̂12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8.109)

where 2 Â66 = Â11 − Â12.
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Integrating Eqs. (8.107), (8.108) through the thickness of the coating layer and
taking into account the interface and boundary conditions (8.105) and (8.106), we
find

ĥ

(
∂ ˆ̄σ11
∂y1

+ ∂ ˆ̄σ12
∂y2

)
= −σ13

∣∣
z=0, ĥ

(
∂ ˆ̄σ12
∂y1

+ ∂ ˆ̄σ22
∂y2

)
= −σ23

∣∣
z=0, (8.110)

ĥ

(
∂ ˆ̄σ13
∂y1

+ ∂ ˆ̄σ23
∂y2

)
= −σ33

∣∣
z=0 − p. (8.111)

Here, ˆ̄σi j are the averaged stresses, i.e.,

ˆ̄σi j (y) = 1

ĥ

0∫

−ĥ

σ̂i j (y, z) dz.

Under the simplifying assumptions made above, we have

ˆ̄σ13 = ˆ̄σ23 = ˆ̄σ33 = 0. (8.112)

Hence, Eq. (8.111) immediately implies that

σ33
∣∣
z=0 = −p. (8.113)

Moreover, in light of (8.112), the averaged strain ˆ̄ε33 must satisfy the equation

Â13 ˆ̄ε11 + Â13 ˆ̄ε22 + Â33 ˆ̄ε33 = 0,

and, therefore, the in-plane averaged stress-strain relationship takes the form

⎛
⎝

ˆ̄σ11
ˆ̄σ22
ˆ̄σ12

⎞
⎠ =

⎡
⎢⎣

ˆ̄A11
ˆ̄A12 0

ˆ̄A12
ˆ̄A11 0

0 0 2 ˆ̄A66

⎤
⎥⎦

⎛
⎝

ˆ̄ε11
ˆ̄ε22
ˆ̄ε12

⎞
⎠ , (8.114)

where we have introduced the notation

ˆ̄A11 = Â11 − Â2
13

Â33
, ˆ̄A12 = Â12 − Â2

13

Â33
, 2 ˆ̄A66 = ˆ̄A11 − ˆ̄A12. (8.115)

On the other hand, in light of the interface conditions (8.104), we have

ˆ̄ε11 = ε11
∣∣
z=0,

ˆ̄ε22 = ε22
∣∣
z=0,

ˆ̄ε12 = ε12
∣∣
z=0, (8.116)
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where ε11, ε22, and ε12 are the in-plane strains in the coated elastic layer z ∈ (0, h).
Taking Eqs. (8.114) and (8.116) into account, we transform the boundary condi-

tions (8.110) into the following:

−1

ĥ
σ31

∣∣
z=0 = ∂

∂y1

(
ˆ̄A11

∂v1
∂y1

+ ˆ̄A12
∂v2
∂y2

)
+ ˆ̄A66

∂

∂y2

(
∂v1
∂y2

+ ∂v2
∂y1

)
,

−1

ĥ
σ32

∣∣
z=0 = ˆ̄A66

∂

∂y1

(
∂v1
∂y2

+ ∂v2
∂y1

)
+ ∂

∂y2

(
ˆ̄A12

∂v1
∂y1

+ ˆ̄A11
∂v2
∂y2

)
.

The above boundary conditions can be rewritten in the matrix form as

σ31e1 + σ32e2
∣∣
z=0 = −L̂(∇y)v

∣∣
z=0, (8.117)

where L̂(∇y) is a 2 × 2 matrix differential operator such that

L̂αα(∇y) = ĥ ˆ̄A11
∂2

∂y2α
+ ĥ ˆ̄A66

∂2

∂y23−α

L̂αβ(∇y) = ĥ
( ˆ̄A12 + ˆ̄A66

) ∂2

∂yα∂yβ

, α, β = 1, 2, α �= β.

(8.118)

Thus, the deformation problem for an elastic layer coated with a very thin flexible
elastic layer is reduced to that for the elastic layer without coating, but subjected to
a different set of boundary conditions (8.113) and (8.117) on the surface z = 0.

Observe that in the axisymmetric case, as a result of (8.116), we have

ˆ̄σrr = ˆ̄A11εrr + ˆ̄A12εθθ , ˆ̄σθθ = ˆ̄A12εrr + ˆ̄A11εθθ , ˆ̄σrθ = 0,

where

εrr = ∂vr

∂r
, εθθ = vr

r
,

and Eqs. (8.110) should be replaced with the following:

ĥ

r

(
∂(r ˆ̄σrr )

∂r
− ˆ̄σθθ

)
= −σzr

∣∣
z=0.

Correspondingly, the boundary condition (8.117) takes the following form:

σzr
∣∣
z=0 = −ĥ ˆ̄A11

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2

)
. (8.119)

We note here that the axisymmetric boundary condition (8.119) was previously
derived in a number of papers [2, 6, 17, 18].
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8.4.2 Deformation Problem Formulation

We now consider a relatively thin transversely isotropic elastic layer of uniform
thickness, h, coated with an infinitesimally thin elastic membrane and bonded to a
rigid substrate (see Fig. 8.6), so that

v
∣∣
z=h = 0, w

∣∣
z=h = 0. (8.120)

In the absence of body forces, the vector (v, w) of displacements in the elastic
layer satisfies the Lamé system

A66Δyv + (A11 − A66)∇y∇y · v + A44
∂2v
∂z2

+ (A13 + A44)
∂

∂z
∇yw = 0,

A44Δyw + A33
∂2w

∂z2
+ (A13 + A44)

∂

∂z
∇y · v = 0.

(8.121)

Assuming that the coated layer is supporting a normal load and denoting the load
density by p, we require that

σ33
∣∣
z=0 = −p. (8.122)

Based on the analysis performed in Sect. 8.4.1, the influence of the elastic mem-
brane is represented by the boundary condition

σ31e1 + σ32e2
∣∣
z=0 = −L̂(∇y)v

∣∣
z=0, (8.123)

where L̂(∇y) is the matrix differential operator defined by formulas (8.118).
Taking into account the stress-strain relationship

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Fig. 8.6 A coated elastic
layer of uniform thickness
bonded to a rigid substrate
and loaded by a normal load

2b

p(y1,n y2)

h
y1

z
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we rewrite Eqs. (8.122), (8.123) as follows:

A13
∂v1
∂y1

+ A13
∂v2
∂y2

+ A33
∂w

∂z

∣∣∣∣
z=0

= −p, (8.124)

A44

(
∇yw + ∂v

∂z

)∣∣∣
z=0

= −L̂(∇y)v
∣∣
z=0. (8.125)

Equations (8.120), (8.121), (8.124), and (8.125) comprise the deformation prob-
lem for the coated transversely isotropic elastic layer.

Here, following Argatov and Mishuris [4], we construct a leading-order asymp-
totic solution to the deformation problem (8.120)–(8.125).

8.4.3 Asymptotic Analysis of the Deformation Problem

Let h∗ be a characteristic length of the external load distribution. Denoting by ε a
small positive parameter, we require that

h = εh∗ (8.126)

and introduce the stretched dimensionless normal coordinate

ζ = z

εh∗
.

In addition, we non-dimensionalize the in-plane coordinates by the formulas

ηi = yi

h∗
, i = 1, 2, η = (η1, η2),

so that
∂

∂z
= 1

εh∗
∂

∂ζ
, ∇y = 1

h∗
∇η.

Moreover, we assume that the tensile stiffness of the coating layer is relatively

high, i.e., ˆ̄A11 >> A11, and so on. Continuing, we consider the situation when

L̂(∇y) = ε−1L̂∗(∇y), (8.127)

so that, in particular, the ratio A11/
ˆ̄A11 is of the order of ε.

Following the perturbation algorithm [14], the solution to the deformationproblem
(8.120), (8.121), (8.124), (8.125) is represented as follows:

v = ε2v1(η, ζ ) + · · · , (8.128)



288 8 Contact of Thin Inhomogeneous Transversely Isotropic Elastic Layers

w = εw0(η, ζ ) + ε3w2(η, ζ ) + · · · . (8.129)

For the sake of brevity, we include here only the non-vanishing terms (for details see
Sect. 1.2).

It can be shown that the leading-order term in (8.129) is given by

w0(η, ζ ) = h∗ p

A33
(1 − ζ ), (8.130)

whereas the first non-trivial term of the expansion (8.128) satisfies the problem

A44
∂2v1

∂ζ 2 = −(A13 + A44)∇η

∂w0

∂ζ
, ζ ∈ (0, 1),

A44
∂v1

∂ζ
+ 1

h∗
L̂∗(∇η)v1

∣∣∣∣
ζ=0

= −A44∇ηw0
∣∣
ζ=0, v1

∣∣
ζ=1 = 0.

Substituting the expansion (8.130) for w0 into the above equations, we obtain

A44
∂2v1

∂ζ 2 = A13 + A44

A33
h∗∇η p, ζ ∈ (0, 1),

A44
∂v1

∂ζ
+ 1

h∗
L̂∗(∇η)v1

∣∣∣∣
ζ=0

= − A44

A33
h∗∇η p, v1

∣∣
ζ=1 = 0.

(8.131)

The solution to the boundary-value problem (8.131) is represented in the form

v1 = − A13 + A44

2A33A44
ζ(1 − ζ )h∗∇η p + (1 − ζ )V1(η), (8.132)

where V1(η) satisfies the equation

1

h∗
L̂∗(∇η)V1 − A44V1 = A13 − A44

2A33
h∗∇η p (8.133)

on the entire plane ζ = 0.
For the second non-trivial term of the expansion (8.129), we derive the problem

A33
∂2w2

∂ζ 2 = −(A13 + A44)∇η · ∂v1

∂ζ
− A44Δηw0, ζ ∈ (0, 1),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇η · v1
∣∣
ζ=0, w2

∣∣
ζ=1 = 0.

http://dx.doi.org/10.1007/978-3-319-20083-5_1
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Substituting the expressions (8.130) and (8.132) for w0 and v1, respectively, into
the above equations, we arrive at the problem

∂2w2

∂ζ 2 = − [
(A13 + A44)

2(2ζ − 1) + 2A2
44(1 − ζ )

] h∗Δη p

2A2
33A44

+ A13 + A44

A33
∇η · V1, ζ ∈ (0, 1), (8.134)

∂w2

∂ζ

∣∣∣∣
ζ=0

= − A13

A33
∇η · V1, w2

∣∣
ζ=1 = 0. (8.135)

Integrating Eq. (8.134) twice with respect to ζ and taking into account the bound-
ary condition (8.135)2, we obtain

w2 = − [
(A13 + A44)

2(2ζ 3 − 3ζ 2 + 1
) + 2A2

44(1 − ζ )3
] h∗Δη p

12A2
33A44

+ A13 + A44

2A33
(1 − ζ )2∇η · V1(η) + C2(η)(1 − ζ ), (8.136)

where C2(η) is an arbitrary function.
The substitution of (8.136) into the boundary condition (8.135)1 yields

C2 = A44

2A2
33

h∗Δη p − A44

A33
∇η · V1,

and thus, in light of this relation, formula (8.136) implies

w2
∣∣
ζ=0 = −[

(A13 + A44)
2 − 4A2

44

] h∗Δη p

12A2
33A44

+ A13 − A44

2A33
∇η · V1, (8.137)

where V1 is the solution of Eq. (8.133).

8.4.4 Local Indentation of the Coated Elastic Layer:
Leading-Order Asymptotics for the Compressible
and Incompressible Cases

In the case of the compressible layer, Eqs. (8.129) and (8.130) yield

w0(y) � h

A33
p(y), (8.138)
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so that the deformation response of the coated elastic layer is analogous to that of
a Winkler elastic foundation with the foundation modulus k = A33/h. In other
words, the deformation of the elastic coating does not contribute substantially to the
deformation of a thin compressible layer.

When the material approaches the incompressible limit, the right-hand side of
(8.138) decreases to zero and the first term in the asymptotic expansion (8.129)
disappears. Hence, the ratios A13/A33 and A44/A33 tend to 1 and 0, respectively.

Therefore, in the limit situation formula (8.137) reduces to

w2
∣∣
ζ=0 = − h∗

12a44
Δη p(η) + 1

2
∇η · V1(η), (8.139)

where a44 = A44 is the out-of-plane shear modulus of the elastic layer, and V1(η)

satisfies the equation

1

h∗
L̂∗(∇η)V1(η) − a44V1(η) = h∗

2
∇η p(η), η ∈ R

2. (8.140)

Thus, in the case of the incompressible bonded elastic layer, formulas (8.127)–
(8.129), (8.139), and (8.140) produce

w0(y) � − h3

12a44
Δy p(y) + h

2
∇y · v0(y), (8.141)

where the vector v0(y) satisfies the equation

hL̂(∇y)v0(y) − a44v0(y) = h2

2
∇y p(y), y ∈ R

2. (8.142)

Here, L̂(∇y) is the matrix differential operator defined by formulas (8.118).
Observe that, as a consequence of (8.132), the vector-function v0(y) can be inter-

preted as the tangential displacement of the surface point (y, 0) of the elastic layer.
Finally, let us consider two opposite limit situations. First, when the coating is

absent and L̂(∇y) ≡ 0, Eq. (8.142) implies

v0(y) = − h2

2a44
∇y p(y).

The substitution of this expression into formula (8.141) leads to

w0(y) � − h3

3a44
Δy p(y), (8.143)

which agrees completely with the asymptotic model developed in Sect. 2.7.1.

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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Second, in the case of a very stiff coating we have v0(y) ≡ 0, and formula (8.141)
reduces to

w0(y) � − h3

12a44
Δy p(y). (8.144)

In other words, comparing (8.143) and (8.144), we conclude that the inextensible
membrane coating attached to the surface of a thin bonded incompressible elastic
layer reduces the out-of-plane shear compliance of the layer by a factor of four.
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Chapter 9
Sensitivity Analysis of Articular Contact
Mechanics

Abstract Asymptoticmodels of articular contact developed in the previous chapters
assume, in particular, that the cartilage layers are of uniform thickness and are bonded
to rigid substrates shaped like elliptic paraboloids. In this final chapter, treating the
term “sensitivity” in a broad sense, we study the effects of deviation of the substrate’s
shape from the elliptic (Sect. 9.1) and of nonuniform thicknesses of the contacting
incompressible layers (Sect. 9.2). It is shown that these effects inmultibody dynamics
simulations can be minimized if the geometric parameters in question (in particular,
the layer thicknesses) are determined in a specificway tominimize the corresponding
error in the force-displacement relationship.

9.1 Non-elliptical Contact of Thin Incompressible
Viscoelastic Layers: Perturbation Solution

In this section, a more general three-dimensional unilateral contact problem for thin
incompressible transversely isotropic viscoelastic layers bonded to rigid substrates,
whose shapes are close to those of elliptic paraboloids, is considered and approxi-
mately solved by the perturbation technique.

9.1.1 Formulation of the Contact Problem

Consider the frictionless unilateral contact between two thin linear incompressible
transversely isotropic viscoelastic layers firmly attached to rigid substrates. Introduc-
ing the Cartesian coordinate system (y1, y2, z), we write the equations of the layer
surfaces (n = 1, 2) in the form z = (−1)nϕ

(n)
ε (y), where y = (y1, y2). In the unde-

formed state, the two layer/substrate systems occupy convex domains z ≤ −ϕ
(1)
ε (y)

and z ≥ ϕ
(2)
ε (y) in contact with the plane z = 0 at a single point chosen as the

coordinate origin. Let us assume that

ϕ(n)
ε (y) = ϕ

(n)
0 (y) + εφn(y), (9.1)

© Springer International Publishing Switzerland 2015
I. Argatov and G. Mishuris, Contact Mechanics of Articular Cartilage Layers,
Advanced Structured Materials 50, DOI 10.1007/978-3-319-20083-5_9
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where ϕ
(n)
0 (y) is an elliptic paraboloid, ε is a small positive dimensionless parameter,

and the function εφn(y) describes a small deviation of the nth substrate surface from
the paraboloid shape (n = 1, 2).

We denote the normal approach of the substrates by δε(t). The linearized unilateral
contact condition that the surface points of the viscoelastic layers do not penetrate
one into another can then be written as follows:

δε(t) − w(1)
0 (t, y) − w(2)

0 (t, y) ≤ ϕ(1)
ε (y) + ϕ(2)

ε (y). (9.2)

Here, w(n)
0 (t, y) is the local indentation (i.e., the normal displacement of the surface

points) of the nth layer (n = 1, 2).
According to the perturbation analysis performed in Sect. 2.5 (see, in particular,

formula (2.152)), the leading-order asymptotic solution for the local indentation of
an incompressible viscoelastic layer of thickness hn is given by

w(n)
0 (t, y) = −h3

n

3

t∫

0−
J ′(n)(t − τ)Δy

∂pε

∂τ
(τ, y) dτ. (9.3)

Here, J ′(n)(t) is the out-of-plane shear creep compliance of the nth layer (n = 1, 2),
pε(t, y) is the contact pressure, and Δy = ∂2/∂y21 + ∂2/∂y22 is the Laplace operator.

The equality in relation (9.2) determines the contact region ωε(t). In other words,
the following equation holds within the contact area

w(1)
0 (t, y) + w(2)

0 (t, y) = δε(t) − ϕε(y), y ∈ ωε(t), (9.4)

where we have introduced the notation ϕε(y) = ϕ
(1)
ε (y) + ϕ

(2)
ε (y).

According to (9.1), we have

ϕε(y) = ϕ0(y) + εφ(y), (9.5)

where ϕ0(y) = ϕ
(1)
0 (y) + ϕ

(2)
0 (y) and φ(y) = φ1(y) + φ2(y). The function εφ(y)

will be called the gap function variation.
Without any loss of generality we may assume that

ϕ0(y) = y21
2R1

+ y22
2R2

, (9.6)

where the parameters R1 and R2 are positive and can be related to the coefficients
of the paraboloids ϕ

(1)
0 (y) and ϕ

(2)
0 (y) by known formulas (see Sect. 2.1.1).

Substituting the expressions for displacements w(1)
0 (t, y) and w(2)

0 (t, y) given by
formula (9.3) into Eq. (9.4), we obtain the contact condition in the following form:

http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_2
http://dx.doi.org/10.1007/978-3-319-20083-5_2
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−
2∑

n=1

h3
n

3

t∫

0−
J ′(n)(t − τ)Δy

∂pε

∂τ
(τ, y) dτ = δε(t) − ϕε(y)H (t). (9.7)

Here, we assume that y ∈ ωε(t), and H (t) is Heaviside’s function introduced in a
standard way, namely H (t) = 0 for t < 0 and H (t) = 1 for t ≥ 0.

Let G ′(n)
0 = 1/J ′(n)(0+) be the instantaneous out-of-plane shear elastic modulus

of the nth layer. Then, the normalized creep function Φ ′(n)(t) is introduced by

J ′(n)(t) = 1

G ′(n)
0

Φ ′(n)(t). (9.8)

Let us rewrite Eq. (9.7) in the form corresponding to one layer by introducing
the compound creep function, Φβ(t), and the equivalent instantaneous shear elastic
modulus, G ′

0, as follows:

Φβ(t) = β1Φ
′(1)(t) + β2Φ

′(2)(t), (9.9)

G ′
0 = (h1 + h2)

3G ′(1)
0 G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, (9.10)

β1 = h3
1G ′(2)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

, β2 = h3
2G ′(1)

0

h3
1G ′(2)

0 + h3
2G ′(1)

0

. (9.11)

Moreover, let us introduce an auxiliary notation

m = 3G ′
0

h3 , (9.12)

where h = h1 + h2 is the joint thickness. Recall that formula (9.10) determines the
equivalent modulus in such a way that β1 + β2 = 1 and thus, Φβ(0) = 1.

Thus, taking into account (9.8)–(9.12), we rewrite Eq. (9.7) as

t∫

0−
Φβ(t − τ)Δy

∂pε

∂τ
(τ, y) dτ = m

(
ϕε(y)H (t) − δε(t)

)
. (9.13)

Equation (9.13) will be used to find the contact pressure density pε(t, y). The
contour Γε(t) of the contact area ωε(t) is determined from the condition that the
contact pressure is positive and vanishes at the contour of the contact area:

pε(t, y) > 0, y ∈ ωε(t), (9.14)

pε(t, y) = 0, y ∈ Γε(t). (9.15)
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In the case of the contact problem for an incompressible layer (see, in particular,
Sect. 2.7.3), we additionally assume a smooth transition of the surface normal stresses
from the contact region y ∈ ωε(t) to the outside region y �∈ ωε(t). Hence, we impose
the following zero-pressure-gradient boundary condition [9, 10, 13, 17]:

∂pε

∂n
(t, y) = 0, y ∈ Γε(t). (9.16)

Here, ∂/∂n is the normal derivative directed outward from ωε(t).
We assume that the density pε(t, y) is defined on the entire plane such that

pε(t, y) = 0, y �∈ ωε(t). (9.17)

From the physical point of view, the contact pressure between the smooth surfaces
should satisfy the regularity condition, i.e., in the case (9.5), the function pε(t, y) is
assumed to be analytical in the domain ωε(t).

The equilibrium equation for the whole system is

∫∫

ωε(t)

pε(t, y) dy = F(t), (9.18)

where F(t) denotes the external load, which is assumed to be known a priori.
For non-decreasing loads, when d F(t)/dt ≥ 0, the contact zone should increase.

Thus, we assume that the following monotonicity condition holds:

ωε(t1) ⊂ ωε(t2), t1 ≤ t2. (9.19)

Following Argatov and Mishuris [8], we construct an asymptotic solution for the
three-dimensional contact problem formulated by Eq. (9.13), under the monotonic-
ity condition (9.19). We will first consider the problem in its general formulation
transforming it to a set of equations more suitable for further analysis.

9.1.2 Equation for the Contact Approach

Integrating Eq. (9.13) over the contact domain ωε(t), we find

∫∫

ωε(t)

t∫

0−
Φβ(t − τ)Δy

∂pε

∂τ
(τ, y) dτdy = m

∫∫

ωε(t)

(
ϕε(y)H (t) − δε(t)

)
dy. (9.20)

In light of (9.17) and (9.19), we have ωε(τ) ⊂ ωε(t) for τ ∈ (0, t), as well as
pε(τ, y) ≡ 0 for y �∈ ωε(τ). Therefore, the integral on the left-hand side of (9.20),

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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which is denoted by I (t), can be transformed into

I (t) =
∫∫

ωε(t)

t∫

0−
Φβ(t − τ)Δy

∂pε

∂τ
(τ, y) dτdy

=
t∫

0−
Φβ(t − τ)

∫∫

ωε(t)

Δy
∂pε

∂τ
(τ, y) dydτ

=
t∫

0−
Φβ(t − τ)

∂

∂τ

∫∫

ωε(t)

Δy pε(τ, y) dydτ. (9.21)

We note that, as a consequence of (9.15)–(9.17), the density pε(t, y) is a smooth
function of the variables y1 and y2 on the entire plane.

Further, by employing the second Green’s formula

∫∫

ω

(
u(y)Δv(y) − v(y)Δu(y)

)
dy =

∫

Γ

(
u(y)

∂v

∂n
(y) − v(y)

∂u

∂n
(y)

)
ds, (9.22)

where ds is the element of the arc length, we obtain
∫∫

ωε(t)

Δy pε(τ, y) dy =
∫

Γε(t)

∂pε

∂n
(τ, y) ds. (9.23)

In light of the boundary condition (9.16) and the monotonicity condition (9.19), the
right-hand side of Eq. (9.23) vanishes for t > 0 and, therefore, Eq. (9.20) reduces to

∫∫

ωε(t)

(
ϕε(y)H (t) − δε(t)

)
dy = 0.

From here it immediately follows that

δε(t) = H (t)

Aε(t)

∫∫

ωε(t)

ϕε(y) dy, (9.24)

where Aε(t) is the area of ωε(t) given by the integral

Aε(t) =
∫∫

ωε(t)

dy. (9.25)

Equation (9.24) connects the unknown contact approach δε(t) with some integral
characteristics of the contact domain ωε(t).
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9.1.3 Equation for the Integral Characteristics
the Contact Area

Substituting the functions u(y) = pε(τ, y) and v(y) = (y21 + y22 )/4 into Green’s
formula (9.22) for the domain ωε(t), assuming that τ < t , and taking into account
the boundary conditions (9.15), (9.16) and the monotonicity condition (9.19), we
obtain the relation

1

4

∫∫

ωε(t)

|y|2Δpε(τ, y) dy =
∫∫

ωε(τ)

pε(τ, y) dy. (9.26)

Using formula (9.26), we can evaluate the contact load (9.18). Indeed, by mul-
tiplying both sides of (9.13) by (y21 + y22 )/4 and integrating the obtained equation
over the contact domain ωε(t), we obtain

t∫

0−
Φβ(t −τ)

∂

∂τ

∫∫

ωε(τ)

pε(τ, y) dydτ = m

4

∫∫

ωε(t)

|y|2(H (t)ϕε(y)−δε(t)
)

dy. (9.27)

Taking into account the notation (9.18) for the contact force, we rewrite (9.27) as

t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ = m

4
H (t)

∫∫

ωε(t)

|y|2ϕε(y) dy − δε(t)
m

4

∫∫

ωε(t)

|y|2dy, (9.28)

where the dot denotes the differentiation with respect to time, i.e., Ḟ(t) = d F(t)/dt .
Then, excluding the quantity δε(t) from (9.28) by means of Eq. (9.24), we arrive

at the following equation:

t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ = m

4
H (t)

∫∫

ωε(t)

(
|y|2 − Iε(t)

Aε(t)

)
ϕε(y) dy. (9.29)

Here, Iε(t) is the polar moment of inertia of ωε(t) given by the integral

Iε(t) =
∫∫

ωε(t)

|y|2dy. (9.30)

Equation (9.29) connects the known contact force F(t) with some integral char-
acteristics of the unknown contact area ωε(t).
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9.1.4 Equation for the Contact Pressure

Let us rewrite Eq. (9.13) in the form

Δy Pε(t, y) = m
(
ϕε(y) − δε(t)

)
, y ∈ ωε(t), (9.31)

where we have introduced the notation

Pε(t, y) =
t∫

0−
Φβ(t − τ)

∂pε

∂τ
(τ, y) dτ. (9.32)

By denoting the integral operator on the right-hand side of the previous equation
byK , we have

K y(τ ) =
t∫

0−
Φβ(t − τ)ẏ(τ ) dτ, (9.33)

so that formula (9.32) can be represented as

Pε(t, y) = K pε(τ, y). (9.34)

The inverse operator toK denoted byK −1 is defined by the formula

K −1Y (τ ) =
t∫

0−
Ψβ(t − τ)Ẏ (τ ) dτ, (9.35)

where Ψβ(t) is the compound relaxation function defined by its Laplace transform

Ψ̃β(s) = 1

s2Φ̃β(s)
. (9.36)

Note that since
Φ̃β(s) = β1Φ̃

′(1)(s) + β2Φ̃
′(2)(s),

and

Φ̃ ′(n)(s) = 1

s2Ψ̃ ′(n)(s)
,

where Ψ̃ ′(n)(s) is the Laplace transform of the relaxation function in out-of-plane
shear for the nth layer, formula (9.36) can be reduced to the following:

Ψ̃β(s) = Ψ̃ ′(1)(s)Ψ̃ ′(2)(s)
β1Ψ̃ ′(2)(s) + β2Ψ̃ ′(1)(s)

. (9.37)
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Recall also that the coefficients β1 and β2 are introduced by formulas (9.11) in such
a way that Ψβ(0) = 1.

As a result of the boundary conditions (9.15) and (9.16), the function Pε(t, y)

must satisfy the following boundary conditions:

Pε(t, y) = 0, y ∈ Γε(t), (9.38)

∂ Pε

∂n
(t, y) = 0, y ∈ Γε(t). (9.39)

Thus, in the case of monotonically increasing contact area ωε(t), the problem
(9.31), (9.38), (9.39) allows us to determine the domain ωε(t) based on the positivity
condition for the contact pressure (9.14). Then, from Eq. (9.24) we can determine the
contact approach δε(t). Finally, by applying the inverse operator (9.35), we obtain a
complete solution to the problem.

9.1.5 Limiting Case Problem: Elliptical Contact Area

We now consider the problem for the limiting case ε = 0, when the function ϕ0(y)

represents an elliptic paraboloid. In a special case of the integral operator K , the
solution to this problem has previously been presented in [6]. Here we adopt it in
the necessary form for the further asymptotic analysis, in order to construct a more
general solution to the problem with the slightly perturbed boundary of an arbitrary
shape.

In this case the right-hand side of (9.31) takes the form m
(
ϕ0(y) − δ0(t)

)
. This

suggests that we assume the domain ω0(t) to be elliptical and so we set

P0(t, y) = Q0(t)

(
1 − y21

a(t)2
− y22

b(t)2

)2

. (9.40)

In other words, the contourΓ0(t) is an ellipse with the semi-axises a(t) and b(t). It
is simple to verify that the function P0(t, y) satisfies the boundary conditions (9.38)
and (9.39) exactly.

Substituting (9.40) into Eq. (9.31), we obtain after some algebra the following
system of algebraic equations:

δ0(t) = 4Q0(t)

m

(
1

a(t)2
+ 1

b(t)2

)
, (9.41)

1

R1
= 8Q0(t)

ma(t)2

(
3

a(t)2
+ 1

b(t)2

)
,

1

R2
= 8Q0(t)

mb(t)2

(
1

a(t)2
+ 3

b(t)2

)
. (9.42)
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The form of the ellipse Γ0(t) can be characterized by its aspect ratio s defined as

s = b(t)

a(t)
, (9.43)

and from (9.42), it immediately follows that s is constant with time and is determined
as a positive root of the equation

R2

R1
= s2(3s2 + 1)

3 + s2
. (9.44)

In turn, Eq. (9.44) can be reduced to a quadratic equation for s2, so that

s2 =
√(

R1 − R2

6R1

)2

+ R2

R1
− (R1 − R2)

6R1
. (9.45)

Recall that, along with Eqs. (9.41) and (9.42), we have Eqs. (9.24) and (9.29),
which connect the contact approach δε(t) and the known contact force F(t) with
some integral characteristics of the contact domain ωε(t).

By taking into account (9.45), we transform Eq. (9.24) into

δ0(t) = 1

8

(
1

R1
+ s2

R2

)
a(t)2. (9.46)

Then, by excluding the quantity δ0(t) from Eqs. (9.41) and (9.46), we obtain

Q0(t) = m

32

s2

(s2 + 1)

(
1

R1
+ s2

R2

)
a(t)4. (9.47)

By application of the same method, Eq. (9.29) becomes

K F(τ ) = πm

384

(
3s − s3

R1
+ 3s5 − s3

R2

)
a(t)6. (9.48)

This allows us to determine the major semi-axis a(t) of the contact area ω0(t) as
a function of time t in the form

a(t) =
[

πm

384

(
3s − s3

R1
+ 3s5 − s3

R2

)]−1/6(
K F(τ )

)1/6
. (9.49)

As a consequence of (9.49), formulas (9.46) and (9.47) determine the quantities
δ0(t) and Q0(t), respectively.

We now turn to evaluating the contact pressure in the case of elliptical contact. In
light of (9.33) and (9.40), we obtain the following operator equation for the contact
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pressure density p0(t, y):

K p0(τ, y) = Q0(t)

(
1 − y21

a(t)2
− y22

b(t)2

)2

, y ∈ ω0(t). (9.50)

By inverting Eq. (9.50) with the help of (9.35), we obtain

p0(t, y) = K −1
{

Q0(τ )

(
1− y21

a(τ )2
− y22

b(τ )2

)2

H

(
1− y21

a(τ )2
− y22

b(τ )2

)}
, (9.51)

where the Heaviside factor indicates the contact domain ω0(τ ).
Following the notation (9.35), Eq. (9.51) can be transformed into

p0(t, y) =
t∫

0−
Ψβ(t − τ)Q0(τ )

(
1 − y21

a(τ )2
− y22

b(τ )2

)2

+
dτ. (9.52)

Here the positive part function (x)+ = (x + |x |)/2 is used as an indicator of the
current contact area ω0(τ ).

9.1.6 Slightly Perturbed Elliptical Contact Area

We now consider the gap function ϕε(y), given in a general form (9.5) with small
ε > 0. The solution corresponding to the limiting case ε = 0 was defined above and
is denoted by p0(t, y) and δ0(t), where the contact domain ω0(t) is bounded by an
ellipse Γ0(t). Then, the function P0(t, y) = K p0(τ, y) satisfies the problem

Δy p0(t, y) = m
(
ϕ0(y) − δ0(t)

)
, y ∈ ω0(t), (9.53)

p0(t, y) = 0,
∂p0
∂n

(t, y) = 0, y ∈ Γ0(t). (9.54)

Recall also that in accordance with (9.24), the contact approach δ0(t) is given by

δ0(t) = 1

A0(t)

∫∫

ω0(t)

ϕ0(y) dy, (9.55)

where A0(t) is the area of ω0(t). Moreover, in light of (9.29), we have

K F(τ ) = m

4

∫∫

ω0(t)

B0(t, y)ϕ0(y) dy, (9.56)
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where, with I0(t) being the polar moment of inertia of ω0(t),

B0(t, y) = |y|2 − I0(t)

A0(t)
. (9.57)

We represent the solution to the perturbed auxiliary contact problem (9.31), (9.38),
(9.39) as

Pε(t, y) = P0(t, y) + εP1(t, y) + O(ε2), (9.58)

δε(t) = δ0(t) + εδ1(t) + O(ε2), (9.59)

and recall that the contact load F(t) is assumed to be specified, while the contact
approach δε(t) is unknown a priori.

By substituting (9.58) and (9.59) into Eq. (9.31), we arrive at the equation

Δy P1(t, y) = m
(
ϕ(y) − δ1(t)

)
, y ∈ ω0(t). (9.60)

Let us assume that the unknown boundary Γε(t) of the contact area ωε(t) (see
Fig. 9.1) is described by the equation

n = hε(t, σ ), s ∈ Γ0(t). (9.61)

Here, σ is the arc length along Γ0(t), and n is the distance (taking the sign into
account) measured along the outward (with respect to the domain ω0(t)) normal to
the curve Γ0(t). The function hε(t, σ ) describes the variation of the contact area and
should be determined by considering the boundary conditions for Eq. (9.60).

In light of (9.58) and (9.59), we set

hε(t, σ ) = εh(t, σ ), (9.62)

where the function h(t, σ ) is assumed to be independent of ε.
Applying the perturbation technique (see, for example, [20]), we have

Pε

∣∣
Γ

= Pε

∣∣
Γ0

+ hε

∂ Pε

∂n

∣∣∣
Γ0

+ O(ε2). (9.63)

Fig. 9.1 Schematic
representation of the contact
domain ωε(t) with the
boundary Γε(t), and the limit
domain ω0(t) with the
boundary Γ0(t)

ω 0(t) 

ωε(t) 

y1 

Γε(t)

Γ0(t)

y2 

hε(σ,t)
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Let nε be the unit outward normal vector to the curve Γε(t). Then, the following
formula holds:

nε =
(
1 − κ(t, σ )hε(t, σ )

)
n0 − h′

ε(t, σ )t0√(
1 − κ(t, σ )hε(t, σ )

)2 + h′
ε(t, σ )2

. (9.64)

Here, t0 and n0 are the unit tangential and outward normal vectors to the curve Γ0(t),
κ(t, σ ) is the curvature of Γ0(t), and the prime denotes the derivative with respect
to the arc length σ .

Taking into account formula (9.64), we obtain

∂pε

∂n

∣∣∣
Γ

= ∂pε

∂n

∣∣∣
Γ0

− h′
ε

∂pε

∂σ

∣∣∣
Γ0

+ O(ε2), (9.65)

and by substituting the expansion (9.58) into Eqs. (9.63), (9.65) and taking into
account the boundary conditions (9.54) for the function P0(t, y), we derive the fol-
lowing boundary conditions at the unperturbed contact boundary:

P1(t, y) = 0, y ∈ Γ0(t), (9.66)

∂ P1

∂n
(t, y) = −h(t, σ )

∂2P0

∂n2 (t, y), y ∈ Γ0(t). (9.67)

Here, in accordance with Eq. (9.53), we have

∂2P0

∂n2 (t, y) = m
(
ϕ0(y) − δ0(t)

)
, y ∈ Γ0(t). (9.68)

Note that the right-hand side of (9.68) is strictly positive. This can be verified by
employing the explicit formula obtained in Sect. 9.1.5, or proved by using the max-
imum principle for harmonic functions.

Finally, Eqs. (9.24) and (9.29) yield

A0(t)δ1(t) =
∫∫

ω0(t)

φ(y) dy +
∫

Γ0(t)

ϕ0(y)h(t, σ ) dσy − A1(t)δ0(t), (9.69)

from which it follows that, for B0(t, y) defined by (9.56),

0 =
∫∫

ω0(t)

B0(t, y)φ(y) dy − δ0(t)

(
I1(t) − I0(t)

A0(t)
A1(t)

)

+
∫

Γ0(t)

B0(t, y)ϕ0(y)h(t, σ ) dσy . (9.70)
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Here, A1(t) and I1(t) are the first-order perturbation coefficients of Aε(t) and Iε(t),
respectively, given by

A1(t) =
∫

Γ0(t)

h(t, σ ) dσy, (9.71)

I1(t) =
∫

Γ0(t)

|y|2h(t, σ ) dσy . (9.72)

Equations (9.60), (9.66), (9.67), (9.69) and (9.70) constitute the first-order pertur-
bation problem. By employing the relations (9.68) and (9.71), it is not hard to check
that Eq. (9.69) coincides with the solvability condition (see, for instance, (9.23)) of
the boundary-value problem (9.60), (9.66), (9.67).

9.1.7 Determination of the Contour of the Contact Area

First, let us express the solution to Eq. (9.60) in the form

P1(t, y) = m
(
P [0]
1 (t, y) + P [1]

1 (t, y)
)
, (9.73)

where we have introduced the notation

P [0]
1 (t, y) = Y [0]

φ (y) − δ1(t)Y
[0]
1 (y), (9.74)

Y [0]
φ (y) = 1

2π

∫∫

ω0(t)

φ(y) ln |y − y| dy, Y [0]
1 (y) = 1

2π

∫∫

ω0(t)

ln |y − y| dy. (9.75)

Substituting the form (9.73) into Eqs. (9.60), (9.66) and (9.67), we obtain the
following boundary value problem for the function P [1]

1 (t, y):

Δy P [1]
1 (t, y) = 0, y ∈ ω0(t), (9.76)

P [1]
1 (t, y) = −Y [0]

φ (y) + δ1(t)Y
[0]
1 (y), y ∈ Γ0(t), (9.77)

∂ P [1]
1

∂n
(t, y) = −h(t, σ )

(
ϕ0(y) − δ0(t)

)

− ∂Y [0]
φ

∂n
(t, y) + δ1(t)

∂Y [0]
1

∂n
(t, y), y ∈ Γ0(t). (9.78)

Here we have used relations (9.68) and (9.74).
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Let us denote the first term on the right-hand side of (9.78) by −ĥ(t, σ ), so that

h(t, σ ) = ĥ(t, σ )

ϕ0(y) − δ0(t)
, y ∈ Γ0(t). (9.79)

As a result of (9.71), (9.72) and (9.79), Eqs. (9.69), (9.70) and (9.78) respectively
take the forms

δ1(t) = 1

A0(t)

∫∫

ω0(t)

φ(y) dy + 1

A0(t)

∫

Γ0(t)

ĥ(t, σ ) dσy, (9.80)

0 =
∫∫

ω0(t)

B0(t, y)φ(y) dy +
∫

Γ0(t)

B0(t, y)ĥ(t, σ ) dσy . (9.81)

∂ P [1]
1

∂n
(t, y) = −ĥ(t, σ ) − ∂Y [0]

φ

∂n
(t, y) + δ1(t)

∂Y [0]
1

∂n
(t, y), y ∈ Γ0(t). (9.82)

Second, to proceed further with the computation of the contour of the contact
area, we now define the Steklov—Poincaré (Dirichlet-to-Neumann) operator S :
H1/2(Γ0(t)) → H−1/2(Γ0(t)) by

(
Sg

)
(y) = ∂w

∂n
(y), y ∈ Γ0(t), (9.83)

where w(y) is the unique solution of the Dirichlet problem

Δyw(y) = 0, y ∈ ω0(t); w(y) = g(y), y ∈ Γ0(t). (9.84)

The operator S for a circular domain is well known, and we will use the above
form later in Sect. 9.1.9. To the authors’ best knowledge there is no closed form
representation for S in the case of an elliptic domain. However, the finite element
Steklov—Poincaré operator can be computed by standard FEM packages (see for
details [15]). In [8], an alternative approach for constructing the operator numerically
in terms of conformal mappings was presented.

In terms of the Steklov—Poincaré operator, Eqs. (9.77) and (9.82) yield

ĥ(t, σ ) = (
SY [0]

φ

)
(y) − ∂Y [0]

φ

∂n
(t, y)

− δ1(t)

((
SY [0]

1

)
(y) − ∂Y [0]

1

∂n
(t, y)

)
, y ∈ Γ0(t). (9.85)

Note that the substitution of (9.85) into (9.80) results in an identity, which we
check by verifying the following properties:
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∫

Γ0(t)

(
Sg

)
(y) dσy = 0, ∀g ∈ H1/2(Γ0(t)),

∫∫

ω0(t)

φ(y) dy =
∫

Γ0(t)

∂Y [0]
φ

∂n
(t, y) dσy, ∀ϕ ∈ L2(ω0(t)).

Now, excluding the variable δ1(t) from (9.85) by means of (9.80), we obtain

ĥ(t, σ ) = −
(

1

A0(t)

∫∫

ω0(t)

φ(y) dy + Ĥ0(t)

)((
SY [0]

1

)
(y) − ∂Y [0]

1

∂n
(t, y)

)

+ (
SY [0]

φ

)
(y) − ∂Y [0]

φ

∂n
(t, y), y ∈ Γ0(t), (9.86)

where Ĥ0(t) is the relative weighted increment of the contact area defined as

Ĥ0(t) = 1

A0(t)

∫

Γ0(t)

ĥ(t, σ ) dσ. (9.87)

At this point, the function ĥ(t, σ ) is determined by Eq. (9.86) with an accuracy
up to its integral characteristics Ĥ0(t).

By substitution of the expression (9.86) into Eq. (9.81), we arrive at the following
simple equation to determine Ĥ0(t):

Ξ
[0]
1 (t)Ĥ0(t) = Ξ

[0]
φ (t) +

∫∫

ω0(t)

(
B0(t, y) − Ξ

[0]
1 (t)

A0(t)

)
φ(y) dy. (9.88)

Here, both functions Ξ
[0]
1 (t) nd Ξ

[0]
φ (t) are determined by the formula

Ξ
[0]
φ;1(t) =

∫

Γ0(t)

B0(t, y)

((
SY [0]

φ;1
)
(y) − ∂Y [0]

φ;1
∂n

(t, y)

)
dy. (9.89)

It is clear that the solvability of Eq. (9.86) depends crucially on the property of
having fixed sign for Ξ

[0]
1 (t). In [8], it was proven that Ξ [0]

1 (t) < 0.

Thus, determining the function Ĥ0(t) by dividing both sides of (9.88) by Ξ
[0]
1 (t)

and substituting the obtained result into Eq. (9.86), we find ĥ(t, σ ) and, as a con-
sequence of (9.79), uniquely determine the function h(t, σ ), which describes the
variation of the contact domain ω0(t).
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9.1.8 Asymptotics of the Contact Pressure

In accordance with (9.34), the contact pressure is given by

pε(t, y) = K −1(Pε(y, τ )Iωε(τ)(y)
)
, (9.90)

where the integral operator K −1 is defined by formula (9.35), and Iωε(t)(y) is the
indicator function of the domain ωε(t) defined by

Iωε(t)(y) =
{
1, y ∈ ωε(t),

0, y �∈ ωε(t).

In the interior of the contact areaωε(t), Eqs. (9.58) and (9.90) yield the asymptotic
representation

pε(t, y) = p0(t, y) + εp1(t, y) + O(ε2), (9.91)

where
pi (t, y) = K −1(Pi (t, y)Iω0(t)(y)

)
, i = 0, 1. (9.92)

In the boundary-layer region near the contourΓε(t), the so-called outer asymptotic
representation (9.91) does notwork, and the so-called inner asymptotic representation
should be constructed. Here we employ the terminology from the method of matched
asymptotic expansions [20].

The inner asymptotic representation

pε(t, y) = ε2K −1P(τ, s, ν) + O(ε3) (9.93)

will be constructed by making use of the stretched coordinate

ν = ε−1n. (9.94)

In light of (9.73)–(9.75), the function P1(t, y) will be determined completely
as soon as we know the function P [1]

1 (t, y) which satisfies the following Dirichlet
problem (see (9.76) and (9.77)):

ΔP [1]
1 (t, y) = 0, y ∈ ω0(t); P [1]

1 (t, y) = g[0]
φ (t, y), y ∈ Γ0(t).

Here we have introduced the following notation (see Eqs. (9.80), (9.87) and (9.88)):

g[0]
φ (t, y) = −Y [0]

φ (y) + δ1(t)Y
[0]
1 (y), (9.95)

and as a consequence of said relations, we have

δ1(t) = Ξ
[0]
φ (t)

Ξ
[0]
1 (t)

+ 1

Ξ
[0]
1 (t)

∫∫

ω0(t)

B0(t, y)φ(y) dy. (9.96)
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Near the boundary of the domain ω0(t), we may use the Taylor expansions

P0(t, y) = m

2

[
ϕ0(y0(σ )) − δ0(t)

]
n2 + O(n3), (9.97)

P1(t, y) = m

2

[
φ(y0(σ )) − δ1(t)

]
n2 − mĥ(t, σ )n + O(n3), (9.98)

where y0(σ ) is the point of the curve Γ0(t) with the natural coordinate σ .
Applying the perturbation method developed by Nazarov [18], we construct the

auxiliary function of the inner asymptotic representation (9.93) in the form

P(t, σ, ν) = m

2

[
ϕ0(y0(σ )) − δ0(t)

]
(ν − h(t, σ ))2. (9.99)

The function (9.99) exactly satisfies the relations (9.15),while the boundary condition
(9.16) is satisfied asymptotically. We note that the normals n0 and nε to the contours
Γ0(t) and Γε(t) are, generally speaking, different (see formula (9.64)).

Finally, taking account of the relations (9.79), (9.94), (9.97)–(9.99), it is not hard
to verify verify that the matching asymptotic condition for the outer (9.91) and inner
(9.93) asymptotic representations is fulfilled.

9.1.9 Slightly Perturbed Circular Contact Area

Let us assume that a circular domain can be taken as a zero approximation in the
form (9.5), where the function ϕ(y) defining the perturbed boundary is given by the
polynomials

ϕ0(y) = 1

2R
(y21 + y22 ), φ(y) =

N∑
n=0

n∑
j=0

cnj y j
1 yn− j

2 , (9.100)

where cnj are given dimensional coefficients.
In this case, the limit (ε = 0) auxiliary contact problem (9.31), (9.38), (9.39) has

the following solution:

P0(t, y) = Q0(t)

(
1 − y21 + y22

a0(t)2

)2

.

Correspondingly, Eqs. (9.46), (9.47) and (9.49) take the form

δ0(t) = a0(t)2

4R
, Q0(t) = m

32

a0(t)4

R
, (9.101)



310 9 Sensitivity Analysis of Articular Contact Mechanics

a0(t) =
( mπ

96R

)−1/6
( t∫

0−
Φβ(t − τ)Ḟ(τ ) dτ

)1/6

. (9.102)

The first-oder perturbation problem (9.60), (9.66), (9.67), (9.69) and (9.70) now
can be written as follows:

Δy P1(t, y) = m

( N∑
n=0

n∑
j=0

cnj y j
1 yn− j

2 − δ1(t)

)
, y ∈ ω0(t), (9.103)

P1(t, y) = 0, y ∈ Γ0(t), (9.104)

∂ P1

∂n
(t, y) = −mh(t, σ )

a0(t)2

4R
, y ∈ Γ0(t), (9.105)

πa0(t)
2δ1(t) =

N∑
n=0

a0(t)n+2

n + 2

n∑
j=0

cnj Knj + a0(t)3

4R
H0(t), (9.106)

0 = a0(t)5

8R
H0(t) +

N∑
n=0

na0(t)n+4

2(n + 2)(n + 4)

n∑
j=0

cnj Knj . (9.107)

Here, ω0(t) and Γ0(t) are the disc and the circle of the radius a0(t), Knj = 0 for odd
n and j , while Knj = 2B

(
(n + 1− j)/2, ( j + 1)/2

)
for even values of n and j , and

B(ζ, ξ) is the Beta function defined by

B(ζ, ξ) =
1∫

0

tζ−1(1 − t)ξ−1dt.

Moreover, H0(t) is an integral characteristics of the contour variation h(t, σ )

which can be described by the contour variation in polar coordinates as

H0(t) =
2π∫

0

h(θ, t) dθ.

From (9.106) and (9.107), it immediately follows that

H0(t) = −
N∑

n=0

4Ra0(t)n−1

(n + 2)(n + 4)

n∑
j=0

cnj Knj ,
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δ1(t) =
N∑

n=0

(n + 3)a0(t)n

π(n + 2)(n + 4)

n∑
j=0

cnj Knj . (9.108)

Using Green’s function G (t, y, y′) of the Dirichlet problem for the domain ω0(t),
we express the solution to the Dirichlet problem (9.103), (9.104) in the form

P1(t, y) = m
∫∫

ω0(t)

φ(y′)G (t, y, y′) dy′ − m

4
δ1(t)(|y|2 − a0(t)

2). (9.109)

Recall that for a circular domain ω0(t) of radius a0(t), Green’s function is

G (t, y, y′) = 1

2π
ln

a0(t)|y′||y − y′|∣∣ |y′|y − a0(t)2x′∣∣ ,

whereas, in polar coordinates, we have

G (t, y, y′) = 1

4π
ln

a0(t)2
(
r2 + r ′2 − 2r ′r cos(θ − θ ′)

)
a0(t)4 + r ′2r2 − 2r ′ra0(t)2 cos(θ − θ ′)

.

Calculating the normal derivative of the function (9.109), we obtain

∂ P1

∂n
(t, y) = m

∫∫

ω0(t)

φ(y′)∂G
∂n

(t, y, y′) dy′ − m

2
δ1(t)|y|, (9.110)

where

∂

∂n
G (t, y, y′) = 1

2π

a0(t)2 − r ′2

a0(t)
(
a0(t)2 + r ′2 − 2r ′a0(t) cos(θ − θ ′)

) .

By substitution of the expression (9.110) into the boundary condition (9.105) and
taking into account (9.108), we obtain the function h(t, θ) describing variation of
the contact domain in the following form:

h(t, θ) = 2R

πa0(t)

N∑
n=0

(n + 3)a0(t)n

(n + 2)(n + 4)

n∑
j=0

cnj Knj

− 2R

πa0(t)3

2π∫

0

dθ ′
a0(t)∫

0

( N∑
n=0

r ′n
n∑

j=0

cnj cos
j θ ′ sinn− j θ ′

)

× a0(t)2 − r ′2

a0(t)2 + r ′2 − 2r ′a0(t) cos(θ − θ ′)
r ′ dr ′. (9.111)
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Note that the integral with respect to θ ′ on the right-hand side of (9.111) can be
evaluated with the help of the following relation (see, e.g., [14]):

π∫

0

cos nxdx

1 − 2ρ cos x + ρ2 = πρn

1 − ρ2 , ρ2 < 1.

It was shown [8] that formula (9.111) asymptotically coincides with the exact
solution for the ellipse presented in Sect. 9.1.5 in the case of small eccentricity.

9.2 Contact of Two Bonded Thin Transversely Isotropic
Elastic Layers with Variable Thicknesses

In this section, a three-dimensional unilateral contact problem for a thin transversely
isotropic elastic layerwith variable thickness bonded to a rigid substrate is considered.
Two cases are studied sequentially: (a) the layermaterial is compressible; (b) the layer
material is incompressible. It is well known that the asymptotic solution for a thin
isotropic elastic layer undergoes a dramatic change in the limit as Poisson’s ratio ν

tends to 0.5, so that the formulas obtained in the case (a) are not applicable when
the layer material approaches the incompressible limit. After developing a refined
asymptotic model for the deformation of one elastic layer of variable thickness,
we apply sensitivity analysis to determine how “sensitive” the mathematical model
for contact interactions of two thin uniform layers of thicknesses h1 and h2 is to
variations in the layer thicknesses. We will consider the term “sensitivity” in a broad
sense by allowing variable layer thicknesses H1(y) and H2(y), whereas the original
model deals with the scalar parameters h1 and h2.

9.2.1 Unperturbed Asymptotic Model

As a rule, analytical models of articular contact assume rigid bones and represent
cartilage as a thin elastic layer of constant thickness resisting deformation like a
Winkler foundation consisting of a series of discrete springs with constant length and
stiffness [12]. However, a subject-specific approach to articular contact mechanics
requires developing patient-specific models for accurate predictions. A sensitivity
analysis of finite element models of hip cartilage mechanics with respect to varying
degrees of simplified geometry was performed in [2].

Based on the asymptotic analysis of the frictionless contact problem for a thin
elastic layer bonded to a rigid substrate in the thin-layer limit (see Chap.2), the
following asymptotic model for contact interaction of two thin incompressible trans-
versely isotropic layers was established:

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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−
(

h3
1

3G ′
1

+ h3
2

3G ′
2

)
Δy p(y) = δ0 − ϕ(y), y ∈ ω, (9.112)

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ. (9.113)

Here, p(y) is the contact pressure density, hn and G ′
n are the thickness and out-

of-plane shear modulus of the nth layer material, respectively, n = 1, 2, Δy =
∂2/∂y21 + ∂2/∂y22 is the Laplace differential operator, δ0 is the vertical approach of
the rigid substrates to which the layers are bonded, ϕ(y) is the initial gap function
defined as the distance between the layer surfaces in the vertical direction, ω is the
contact area, and Γ is the contour of ω, ∂/∂n is the normal derivative.

In the isotropic case, the asymptotic model (9.112), (9.113) was developed in
[4, 10]. It was shown [6, 9, 11] that this model describes the instantaneous response
of thin biphasic layers to dynamic and impact loading. In [7], the isotropic elastic
model (9.112), (9.113) was generalized for a general viscoelastic case.

With respect to articular contact, a case of special interest is when the subchondral
bones are approximated by elliptic paraboloids, so that the gap function is given by

ϕ(y) = y21
2R1

+ y22
2R2

(9.114)

with positive curvature radii R1 and R2.
In the case (9.114), the exact solution to the problem (9.112), (9.113) has the

following form [6, 10]:

p(y) = p0

(
1 − y21

a2
1

− y22
a2
2

)2

. (9.115)

Integration of the contact pressure distribution (9.115) over the elliptical contact
area ω with the semi-axes a1 and a2 results in the following force-displacement
relationship [4]:

F = 2π

3
cF (s)m R1R2δ

3
0 . (9.116)

Here, cF (s) is a dimensionless factor depending on the aspect ratio s = a2/a1 (see
Sect. 4.5.6), and the coefficient m is given by

m = 3

(
h3
1

G ′
1

+ h3
2

G ′
2

)−1

. (9.117)

The asymptotic model (9.112)–(9.114) assumes that the cartilage layers have
constant thicknesses, whereas it is well known [1] that articular cartilage has a vari-
able thickness and that the surface of subchondral bone deviates from the ellip-
soid shape [19]. A sensitivity analysis of the model (9.112), (9.113) with respect

http://dx.doi.org/10.1007/978-3-319-20083-5_4
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to small perturbations of the gap function (9.114) was performed in [8]. In partic-
ular, it has been shown [4] that the influence of the gap function variation on the
force-displacement relationship will be negligible if the effective geometrical char-
acteristics R1 and R2 are determined by a least square method.

The two-dimensional contact problem for a thin isotropic elastic strip of variable
thickness was solved by Vorovich and Peninin [21] using an asymptotic method,
under the assumption that the Poisson’s ratio of the strip material is not very close to
0.5. A three-dimensional unilateral contact problem for a thin isotropic elastic layer
of variable thickness bonded to a rigid substrate was studied in [5]. Here, the results
obtained in [5] are generalized for the transversely isotropic case.

9.2.2 Contact Problem for a Thin Transversely Isotropic
Elastic Layer with Variable Thickness

We consider (see Fig. 9.2) a homogeneous, isotropic, linearly elastic layer with a
planar contact interface, x3 = 0, and a variable thickness, H(x1, x2), firmly attached
to an uneven rigid surface

x3 = H(x1, x2). (9.118)

In the absence of body forces, the equilibrium equations and the strain-displace-
ment relations governing small deformations of the elastic layer are

∂σ1 j

∂x1
+ ∂σ2 j

∂x2
+ ∂σ3 j

∂x3
= 0, j = 1, 2, 3, (9.119)

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1, 2, 3, (9.120)

where σi j is the Cauchy stress tensor, εi j is the infinitesimal strain tensor, and u j is
the displacement component along the x j -axis. Here the Cartesian coordinate system
(y1, y2, z) will be used such that y1 = x1, y2 = x2, and z = x3.

Moreover, a transversely isotropic elastic body is characterized by the following
stress-strain relationships:

Fig. 9.2 Elastic layer with a
variable thickness

h

x3 z=

x1 y1=

H(y)
~~
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⎛
⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A12 A11 A13 0 0 0
A13 A13 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A44 0
0 0 0 0 0 2A66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
ε23
ε13
ε12

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9.121)

Recall that 2A66 = A11−A12,while A11, A12, A13, A33, and A44 are five independent
elastic constants.

We assume that the elastic layer is indented by a smooth rigid punch in the form
of an elliptic paraboloid

z = −ϕ(y1, y2),

where

ϕ(y) = y21
2R1

+ y22
2R2

. (9.122)

Under the assumption of frictionless contact, we have

σ31(y, 0) = 0, σ32(y, 0) = 0, y = (y1, y2) ∈ R
2. (9.123)

Denoting by δ0 the indenter’s displacement, we formulate the boundary condition
on the contact interface as

u3(y, 0) ≥ δ0 − ϕ(y), σ33(y, 0) ≤ 0,(
u3(y, 0) − δ0 + ϕ(y)

)
σ33(y, 0) = 0, y ∈ R

2,
(9.124)

while on the rigid substrate surface defined by Eq. (9.118) we have

u j (y, H(y)) = 0, y ∈ R
2 ( j = 1, 2, 3). (9.125)

Assuming that the layer is relatively thin in comparison to the characteristic dimen-
sions of ω, we introduce a small dimensionless parameter ε and require that

δ0 = εδ∗
0 , R1 = ε−1R∗

1 , R2 = ε−1R∗
2 , (9.126)

H(y) = εh∗(1 + εψ∗(y)), (9.127)

where δ∗
0 , R∗

1 , and R∗
2 are assumed to be comparable with h∗. Without loss of gen-

erality we can assume that |ψ∗(y)| ≤ h∗ for any y ∈ R
2.

The problem is to calculate the contact pressure distribution

p(x1, x2) = −σ33(x1, x2, 0), (x1, x2) ∈ ω, (9.128)
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and the contact force required to indent the punch into the elastic layer

F =
∫∫

ω

p(y) dy. (9.129)

We introduce the notation

h = εh∗, H̃(y) = ε2 H̃∗(y), (9.130)

where
H̃∗(y) = h∗ψ∗(y). (9.131)

Hence, the following relation is evident:

H(y) = h + H̃(y), (9.132)

where h is an average thickness, and H̃(y) is a small variation such that H̃(y) � h.
We note that as a consequence of (9.128), the unilateral contact condition (9.124)

can be rewritten as follows:

p(y) ≥ 0, y ∈ R
2,

p(y) > 0 ⇒ u3(y, 0) = δ0 − ϕ(y),

p(y) = 0 ⇒ u3(y, 0) ≥ δ0 − ϕ(y).

We pose the following frictionless unilateral contact problem: for a given value
of the punch displacement δ0, find the contact pressure p(y) such that the Signorini
boundary condition (9.124) is satisfied both inside the contact area ω and outside
(that is p(y) = 0 for y ∈ R

2 \ ω̄).

9.2.3 Perturbation Solution

First, we introduce the so-called stretched coordinate

ζ = ε−1z. (9.133)

Substituting (9.121) and (9.120) into Eqs. (9.119) and taking into account the
variable transformation (9.133), we arrive at the following Lamé system for the
displacement vector u = (v, w):

ε−2A44
∂2v
∂ζ 2+ ε−1(A13 + A44)∇y

∂w

∂ζ

+A66Δyv + (A11 − A66)∇y∇y · v = 0, (9.134)
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ε−2A33
∂2w

∂ζ 2 + ε−1(A13 + A44)∇y · ∂v
∂ζ

+ A44Δyw = 0. (9.135)

Here,∇y = (∂/∂y1, ∂/∂y2) is the Hamilton differential operator, and the dot denotes
the scalar product, so that ∇y · ∇y = Δy is the Laplace operator.

Correspondingly, the boundary condition (9.123) takes the form

ε−1 ∂v
∂ζ

+ ∇yw

∣∣∣∣
ζ=0

= 0. (9.136)

In light of (9.124) and (9.126), we have

w(y, 0) = ε(δ∗
0 − ϕ∗(y)), y ∈ ω, (9.137)

where we have introduced the notation (see Eqs. (9.122) and (9.126))

ϕ∗(y) = y21
2R∗

1
+ y22

2R∗
2
. (9.138)

Furthermore, by stretching the normal coordinate, Eq. (9.128) is reduced to

− p(y) = ε−1A33
∂w

∂ζ
+ A13∇y · v

∣∣∣∣
ζ=0

, y ∈ ω. (9.139)

The boundary conditions (9.125) on the substrate surface (see Eqs. (9.118) and
(9.127))

ζ = h∗(1 + εψ∗(y)) (9.140)

take the following form:

v
(
y, h∗ + εh∗ψ∗(y)

) = 0, w
(
y, h∗ + εh∗ψ∗(y)

) = 0. (9.141)

Observe that among Eqs. (9.134)–(9.137), (9.139) and (9.141), there are only two
inhomogeneous equations, namely (9.137) and (9.139). The form of (9.137) suggests
the asymptotic expansion

w(y, ζ ) = εw0(y, ζ ) + ε2w1(y, ζ ) + · · · . (9.142)

In light of (9.139) and (9.142), we suggest that p(y) = O(1) as ε → 0. Taking
into account the homogeneous conditions (9.136), (9.141), we set

v(y, ζ ) = εv0(y, ζ ) + ε2v1(y, ζ ) + · · · . (9.143)
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We emphasize that the asymptotic ansatz (9.142), (9.143) is valid only inside the
contact region ω. In other words, a plane boundary layer should be constructed near
the edge of the contact area. We refer to [3, 13] for more details.

9.2.4 Derivation of Asymptotic Expansions

Substituting (9.142) and (9.143) into Eqs. (9.134) and (9.135), we obtain

ε−2A44
∂2v0

∂ζ 2 + ε−1
(

(A13 + A44)∇y
∂w0

∂ζ
+ A44

∂2v1

∂ζ 2

)

+ ε0
{

A66Δyv0 + (A11 + A66)∇y∇y · v0

+ (A13 + A44)∇y
∂w1

∂ζ
+ A44

∂2v2

∂ζ 2

}
+ · · · = 0, (9.144)

ε−2A33
∂2w0

∂ζ 2 + ε−1
(

A33
∂2w1

∂ζ 2 + (A13 + A44)∇y · ∂v0

∂ζ

)
+ ε0

{
A33

∂2w2

∂ζ 2

+ (A13 + A44)∇y · ∂v1

∂ζ
+ A44Δyw0

}
+ · · · = 0. (9.145)

Further, by substituting (9.142) and (9.143) into the boundary conditions (9.136)
and (9.139) at the contact region, we find

ε−1 ∂v0

∂ζ
+ ε0

(
∇yw0 + ∂v1

∂ζ

)
+ ε

(
∇yw1 + ∂v2

∂ζ

)
+ · · ·

∣∣∣∣
ζ=0

= 0, (9.146)

A33
∂w0

∂ζ
+ ε

(
A13∇y · v0 + A33

∂w1

∂ζ

)

+ ε2
(

A13∇y · v1 + A33
∂w2

∂ζ

)
+ · · ·

∣∣∣∣
ζ=0

= −p(y). (9.147)

The substitution of (9.142), (9.143) into Eqs. (9.141) then yields

v0 + ε

(
v1 + H̃∗

∂v0

∂ζ

)
+ ε2

(
v2 + H̃∗

∂v1

∂ζ
+ H̃2∗

2

∂2v0

∂ζ 2

)
+ · · ·

∣∣∣∣
ζ=h∗

= 0, (9.148)
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w0+ε

(
w1+ H̃∗

∂w0

∂ζ

)
+ε2

(
w2+ H̃∗

∂w1

∂ζ
+ H̃2∗

2

∂2w0

∂ζ 2

)
+· · ·

∣∣∣∣
ζ=h∗

= 0, (9.149)

where we have used notation (9.131).
Thus, on the basis of Eqs. (9.144)–(9.149), we have arrived at a recurrence system

of boundary-value problems for the functions vk and wk (k = 0, 1, . . .). Let us
construct the first several terms of the asymptotic series (9.142) and (9.143).

9.2.5 Asymptotic Solution for a Thin Compressible Layer

According to (9.144)–(9.149), the first-order problem takes the form

∂2w0

∂ζ 2 = 0, ζ ∈ (0, h∗), A33
∂w0

∂ζ

∣∣∣∣
ζ=0

= −p(y), w0
∣∣
ζ=h∗ = 0; (9.150)

∂2v0

∂ζ 2 = 0, ζ ∈ (0, h∗),
∂v0

∂ζ

∣∣∣∣
ζ=0

= 0, v0
∣∣
ζ=h∗ = 0. (9.151)

From (9.150) and (9.151), it immediately follows that

w0(y, ζ ) = p(y)

A33
(h∗ − ζ ), (9.152)

v0(y, ζ ) ≡ 0. (9.153)

As a consequence of (9.153), the second-order problem, derived from (9.144)–
(9.149) is

∂2w1

∂ζ 2 = 0, ζ ∈ (0, h∗),

∂w1

∂ζ

∣∣∣∣
ζ=0

= 0, w1
∣∣
ζ=h∗ = −H̃∗(y)

∂w0

∂ζ

∣∣∣∣
ζ=h∗

; (9.154)

A44
∂2v1

∂ζ 2 = −(A13 + A44)∇y
∂w0

∂ζ
, ζ ∈ (0, h∗),

∂v1

∂ζ

∣∣∣∣
ζ=0

= −∇yw0
∣∣
ζ=0, v1

∣∣
ζ=h∗ = 0. (9.155)
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It is readily seen that the solution of the problem (9.154) is given by

w1(y, ζ ) = p(y)

A33
H̃∗(y). (9.156)

On the other hand, the solution of the problem (9.155) is

v1(y, ζ ) = Ψ (ζ )∇y p(y), (9.157)

where we have introduced the notation

Ψ (ζ ) = (A13 + A44)

2A33A44
(h∗ − ζ )2 − h∗ A13

A33A44
(h∗ − ζ ). (9.158)

Collecting Eqs. (9.142), (9.152) and (9.156), we arrive at the two-term asymptotic
approximation for the normal displacement

w(y, ζ ) � ε
p(y)

A33
(h∗ − ζ ) + ε2

p(y)

A33
H̃∗(y). (9.159)

By taking into account the scaling relations (9.130), we rewrite (9.159) in the form

u3(y, z) � p(y)

A33

(
h + H̃(y) − z

)
. (9.160)

By substituting the expression (9.160) into the contact condition

u3(y, 0) = δ0 − ϕ(y), y ∈ ω, (9.161)

we derive the following equation for the contact pressure density:

h + H̃(y)

A33
p(y) = δ0 − ϕ(y), y ∈ ω. (9.162)

In light of the condition p(y) > 0 for y ∈ ω, we obtain

p(y) = A33

h + H̃(y)

(
δ0 − ϕ(y)

)
+, (9.163)

where (x)+ = max{x, 0} is the positive-part function.
Invoking the notation (9.132) for the variable thickness of the elastic layer, we

rewrite formula (9.163) as

p(y) = A33

H(y)

(
δ0 − ϕ(y)

)
+. (9.164)
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Formula (9.164) shows that a thin compressible elastic layer deforms like a
Winkler foundation with the variable foundation modulus

k(y) = A33

H(y)
. (9.165)

Let us recall that the elastic parameter A33 is related to Young’s moduli, E and
E ′, and Poisson’s ratios, ν and ν′, by the formulas

A33 = E ′(1 − ν)

1 − ν − 2E

E ′ ν′2
, (9.166)

Finally, according to [16] (see also Sect. 2.4), the denominator of (9.166) would
approach zero if the layer material became more incompressible. It is readily seen
from (9.165) that k(y) → ∞ in the incompressibility limit, implying that the case
of an incompressible elastic layer requires special consideration.

9.2.6 Asymptotic Solution for a Thin Incompressible Layer

Let us continue the process of constructing terms of the asymptotic expansions
(9.142) and (9.143). In light of (9.156), Eqs. (9.144)–(9.149) yield the following
third-order problem:

A33
∂2w2

∂ζ 2 = −(A13 + A44)∇y · ∂v1

∂ζ
− A44Δyw0, ζ ∈ (0, h∗),

A33
∂w2

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v1
∣∣
ζ=0, w2

∣∣
ζ=h∗ = 0; (9.167)

∂2v2

∂ζ 2 = 0, ζ ∈ (0, h∗),

∂v2

∂ζ

∣∣∣∣
ζ=0

= −∇yw1
∣∣
ζ=0, v2

∣∣
ζ=h∗ = −H̃∗(y)

∂v1

∂ζ

∣∣∣∣
ζ=h∗

. (9.168)

Substituting (9.152) and (9.157) into Eqs. (9.167), we derive the problem

∂2w2

∂ζ 2 = A13Δy p(y)

A2
33A44

[
(A13 + 2A44)(h∗ − ζ ) − (A13 + A44)h∗

]
, ζ ∈ (0, h∗),

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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∂w2

∂ζ

∣∣∣∣
ζ=0

= − A13(A44 − A13)h2∗
2A2

33A44
Δy p(y), w2

∣∣
ζ=h∗ = 0. (9.169)

It can be verified that the solution to (9.169) condenses into the form

w2(y, ζ ) = A13Δy p(y)

A2
33

{
A13 + 2A44

6A44
(h∗ − ζ )3

− (A13 + A44)h∗
2A44

(h∗ − ζ )2 + h2∗
2

(h∗ − ζ )

}
. (9.170)

Further, in light of (9.156) and (9.157), the problem (9.168) takes the form

∂2v2

∂ζ 2 = 0, ζ ∈ (0, h∗),

∂v2

∂ζ

∣∣∣∣
ζ=0

= −∇y(pH̃∗)
A33

, v2
∣∣
ζ=h∗ = − A13h∗

A33A44
H̃∗∇y p, (9.171)

where we have omitted the arguments of functions p(y) and H̃∗(y) for clarity.
It can be easily verified that the solution to (9.171) has the form

v2(y, ζ ) = h∗ − ζ

A33
∇y(pH̃∗) − A13h∗

A33A44
H̃∗∇y p. (9.172)

We emphasize that in contrast to the two-term approximation (9.159), the third
term (9.170) does not vanish at the contact interface in the limit as ν → 0.5. Indeed,
formula (9.170) yields

w2(y, 0) = −h3∗ A13(A13 − A44)

3A2
33A44

Δy p(y). (9.173)

In the incompressibility limit, we have

A13(A13 − A44)

A2
33A44

→ 1

a44
, (9.174)

where a44 = A44 = G ′ is the out-of-plane shear modulus.
In order to construct a correction for the leading asymptotic term (9.170), we

consider the following problem:

A33
∂2w3

∂ζ 2 = −(A13 + A44)∇y · ∂v2

∂ζ
− A44Δyw1, ζ ∈ (0, h∗),
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A33
∂w3

∂ζ

∣∣∣∣
ζ=0

= −A13∇y · v2
∣∣
ζ=0, w3

∣∣
ζ=h∗ = −H̃∗(y)

∂w2

∂ζ

∣∣∣∣
ζ=h∗

. (9.175)

By substituting (9.156), (9.170) and (9.172) into Eqs. (9.175), we find

∂2w3

∂ζ 2 = A13

A2
33

Δy(pH̃∗), ζ ∈ (0, h∗), (9.176)

∂w3

∂ζ

∣∣∣∣
ζ=0

= A13h∗
A2
33A44

(
A13∇y · (H̃∗∇y p) − A44Δy(pH̃∗)

)
, (9.177)

w3
∣∣
ζ=h∗ = A13h2∗

2A2
33

H̃∗Δy p. (9.178)

Integrating Eq. (9.176), we obtain

w3(y, 0) = A13

2A2
33

Δy(pH̃∗)ζ 2 + C1(y)ζ + C0(y), (9.179)

where the integration functions C1(y) and C0(y) are determined by the boundary
conditions (9.177) and (9.178). It can be checked that

C1(y) = A13h∗
A2
33A44

(
A13∇y · (H̃∗∇y p) − A44Δy(pH̃∗)

)
, (9.180)

C0(y) = A13h2∗
2A2

33

[H̃∗Δy p + Δy(pH̃∗)] − A2
13h2∗

A2
33A44

∇y · (H̃∗∇y p). (9.181)

From (9.179), it immediately follows that

w3(y, 0) = C0(y), (9.182)

and it can be shown that in the incompressibility limit (when A13/A33 → 1 and
A44/A33 → 0), we arrive at the following result:

C0(y) = − h2∗
a44

∇y · (H̃∗∇y p). (9.183)

Thus, collecting Eqs. (9.142), (9.173), (9.182) and (9.183), we obtain the follow-
ing two-term asymptotic approximation for the normal displacement at the contact
interface in the case of the incompressible elastic layer:

w(y, 0) � −ε3
h3∗
3a44

Δy p(y) − ε4
h2∗
a44

∇y · (H̃∗(y)∇y p(y)). (9.184)
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Recalling the scaling relations (9.130) and the notation a44 = G ′, we rewrite (9.184)
in the form

u3(y, 0) � − h3

3G ′ Δy p(y) − h2

G ′ ∇y · (H̃(y)∇y p(y)). (9.185)

Now, substituting the expression (9.185) into the contact condition (9.161), we
arrive at a partial differential equation in the domain ω with respect to the func-
tion p(y). According to the asymptotic analysis [13] (see also Sect. 2.7.3), at the
contour Γ of ω, we impose the following boundary conditions:

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ. (9.186)

Here, ∂/∂n is the normal derivative. We underline that the location of the contour Γ

must be determined as part of the solution. For analytical evaluation of the contourΓ ,
a perturbation-based method was developed in [8].

9.2.7 Perturbation of the Contact Pressure
in the Compressible Case

Collecting Eqs. (9.142), (9.152), (9.156), (9.170) and (9.179), we obtain

w(y, 0) � ε
h∗
A33

p(y) + ε2
H̃∗(y)

A33
p(y) − ε3

h3∗ A13(A13 − A44)

3A2
33A44

Δy p(y)

+ ε4
{

h2∗ A13

2A2
33

[
H̃∗(y)Δy p(y) + Δy

(
p(y)H̃∗(y)

)]

− h2∗ A2
13

A2
33A44

∇y · (H̃∗(y)∇y p(y)
)}

. (9.187)

By substitution of the asymptotic expansion (9.187) into the contact condition
(9.137) and using the notation (9.131), we arrive at the equation

p(y) + εψ∗(y)p(y) − ε2
h3∗ A13(A13 − A44)

3A33A44
Δy p(y)

+ ε3
A13h2∗

2A33A44

{
A44

[
ψ∗(y)Δy p(y) + Δy

(
p(y)ψ∗(y)

)]

− 2A13∇y · (ψ∗(y)∇y p(y)
)} = A33

h∗
f ∗(y), (9.188)

where we have introduced the shorthand notation

f ∗(y) = δ∗
0 − ϕ∗(y). (9.189)

http://dx.doi.org/10.1007/978-3-319-20083-5_2
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It should be noted that Eq. (9.188) is applied in the case of compressible materials
when its right-hand side makes sense.

By employing a perturbation method, the third-order asymptotic solution to
Eq. (9.188) is expressed in the form

p(y) � A33

h∗
(
σ0(y) + εσ1(y) + ε2σ2(y) + ε3σ3(y)

)
. (9.190)

Upon substitution of (9.195) into (9.188), we straightforwardly obtain

σ0 = f ∗, σ1 = −ψ∗ f ∗, σ2 = ψ2∗ f ∗ + h2∗ A13(A13 − A44)

3A33A44
Δy f ∗, (9.191)

σ3 = −ψ3∗ f ∗ − h2∗ A13(A13 − A44)

3A33A44

(
ψ∗Δy f ∗ + Δy(ψ∗ f ∗)

)

− h2∗ A13

2A33A44

{
A44

[
ψ∗Δy f ∗ + Δy( f ∗ψ∗)

] − 2A13∇y · (ψ∗∇y f ∗)
}
, (9.192)

where, for the sake of brevity, the argument y is omitted.
Further, by making use of the differential identities

∇ · (ψ∇ f ) = ∇ψ · ∇ f + ψΔ f,

Δ( f ψ) = ψΔ f + f Δψ + 2∇ f · ∇ψ,

we simplify formula (9.192) as follows:

σ3 = −ψ3∗ f ∗ − h2∗ A13(2A13 + A44)

6A33A44
f ∗Δyψ∗

+ h2∗ A13(A13 − A44)

3A33A44

(∇y f ∗ · ∇yψ∗ + ψ∗Δy f ∗). (9.193)

Observe also that formula (9.181) can be transformed to

C0(y) = −h2∗ A13(A13 − A44)

A2
33A44

[∇y H̃∗ ·∇y p + H̃∗Δy p
]+ h2∗ A13

2A2
33

pΔy H̃∗, (9.194)

where the expression in the brackets in (9.194) is equal to ∇y · (H̃∗∇y p).
In the isotropic case, Eqs. (9.190)–(9.193) reduce to the following [5]:

p(y) � 2μ + λ

h∗
(
σ0(y) + εσ1(y) + ε2σ2(y) + ε3σ3(y)

)
, (9.195)
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σ0 = f ∗, σ1 = −ψ∗ f ∗, σ2 = ψ2∗ f ∗ + h2∗λ(λ − μ)

3μ(2μ + λ)
Δy f ∗, (9.196)

σ3 = −ψ3∗ f ∗ − h2∗λ(2λ + μ)

6μ(2μ + λ)
f ∗Δyψ∗

+ h2∗λ(λ − μ)

3μ(2μ + λ)

(∇y f ∗ · ∇yψ∗ + ψ∗Δy f ∗). (9.197)

It can be easily checked that the four-term asymptotic expansion (9.195), with the
coefficients given by (9.196) and (9.197) in the 2D case, recovers the corresponding
solution obtained in [21], where the next asymptotic term for the contact pressure in
(9.195) was given explicitly.

9.2.8 Application to Sensitivity Analysis of the Contact
Interaction Between Two Thin Incompressible Layers

According to (9.185) and (9.186), the refined asymptoticmodel for contact interaction
of thin incompressible layers bonded to rigid substrates takes the form

− m−1Δy p(y) −
2∑

n=1

h2
n

G ′
n
∇y · (H̃n(y)∇y p(y)) = δ0 − ϕ(y), y ∈ ω̃, (9.198)

p(y) = 0,
∂p

∂n
(y) = 0, y ∈ Γ̃ , (9.199)

where Γ̃ is the contour of the contact region ω̃, and m is given in (9.117).
Let us define

p(y) = p̄(y) + p̃(y), (9.200)

where p̄(y) is the solution to the original asymptotic model (9.112), (9.113), and
p̃(y) represents a perturbation due to the variability of the layer thickness.

Then, under the assumption that the thickness variation functions H̃1(y) and H̃2(y)

introduce a small variation into the elliptical contact region ω corresponding to the
density p̄(y), we derive from (9.198)–(9.200) the following limit problem for the
variation of the contact pressure density:

− m−1Δy p̃(y) =
2∑

n=1

h2
n

G ′
n
∇y · (H̃n(y)∇y p̄(y)), y ∈ ω, (9.201)

p̃(y) = 0, y ∈ Γ. (9.202)
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Here, Γ is the contour corresponding to the contact pressure (9.115).
Moreover, the thickness variation functions H̃1(y) and H̃2(y) will not greatly

influence the resulting force-displacement relationship, if

∫∫

ω

p̃(y) dy = 0. (9.203)

In this case, the contact force P is related to the displacement δ0 by the same relation
as that derived in framework of the original asymptotic model (9.112), (9.113).

Let us derive the conditions for H̃1(y) and H̃2(y) under which the equality (9.203)
holds true. With this aim we consider an auxiliary problem

ΔyΘ(y) = 1, y ∈ ω, Θ(y) = 0, y ∈ Γ (9.204)

with the solution

Θ(y) = − a2
1a2

2

2(a2
1 + a2

2)
θ(y),

where

θ(y) = 1 − y21
a2
1

− y22
a2
2

. (9.205)

As a result of (9.204), we rewrite Eq. (9.203) as

∫∫

ω

p̃(y)ΔyΘ(y) dy = 0. (9.206)

Applying the secondGreen’s formula and taking into accountEqs. (9.201), (9.202)
and (9.204), we reduce Eq. (9.206) to

∫∫

ω

θ(y)

2∑
n=1

h2
n

G ′
n
∇y · (H̃n(y)∇y p̄(y)) dy = 0. (9.207)

After rewriting Eq. (9.207) in the form

∫∫

ω

θ(y)

2∑
k=1

∂

∂yk

(
∂ p̄

∂yk
(y)

2∑
n=1

h2
n

G ′
n

H̃n(y)

)
dy = 0
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and integrating by parts with (9.205) taken into account, we find

−
∫∫

ω

2∑
k=1

2yk

a2
k

∂ p̄

∂yk
(y)

2∑
n=1

h2
n

G ′
n

H̃n(y) dy

+
∫

Γ

θ(y)

2∑
k=1

cos(n, yk)
∂ p̄

∂yk
(y)

2∑
n=1

h2
n

G ′
n

H̃n(y) dsy = 0. (9.208)

It is clear that the line integral in (9.208) vanishes due to the boundary condition
(9.205). Hence, taking into account the exact expression (9.115) for p̄(y), we finally
transform Eq. (9.208) into

2∑
n=1

h2
n

G ′
n

∫∫

ω

H̃n(y)ρ(y) dy = 0, (9.209)

where we have introduced the notation

ρ(y) =
(

sy21
a2
1

+ y22
sa2

2

)(
1 − y21

a2
1

− y22
a2
2

)
. (9.210)

Based on the derived Eq. (9.209), we suggest the following optimization criterion
for determining the average thicknesses h1 and h2:

min
hn

∫∫

ω∗

(Hn(y) − hn)
2ρ∗(y) dy. (9.211)

Here, ω∗ is a characteristic elliptic domain with semi-axes a∗
1 and a∗

2 . In particular,
in the capacity of ω∗ we can take the average elliptic contact area for a class of
admissible contact loadings, while ρ∗(y) is given by

ρ∗(y) =
(

s∗y21
a∗
1
2 + y22

s∗a∗
2
2

)(
1 − y21

a∗
1
2 − y22

a∗
2
2

)
, (9.212)

where s∗ = a∗
2/a∗

1 is the aspect ratio of ω∗.
It is clear that the necessary optimality condition for (9.211) has the form

∫∫

ω∗

(Hn(y) − hn)ρ∗(y) dy = 0, (9.213)
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from which it follows that

hn = 1

R∗

∫∫

ω∗

Hn(y)ρ∗(y) dy, (9.214)

where

R∗ =
∫∫

ω∗

ρ∗(y) dy = π

12

(
a∗2
1 + a∗2

2

)
.

It remains to show that Eq. (9.209) follows from (9.213) if ω∗ coincides with ω.
Indeed, as a consequence of (9.132), Eq. (9.213) is equivalent to the following:

∫∫

ω∗

H̃n(y)ρ∗(y) dy = 0, n = 1, 2. (9.215)

By adding the two equations above, multiplied by h2
n/G ′

n , n = 1, 2, respectively, we
arrive at Eq. (9.209).

It is interesting to observe that Eq. (9.214) indicates that, in order to obtain the
optimal average thickness hn , the corresponding variable thickness Hn(y) has been
averaged with the weight function ρ∗(y) given by (9.212).

To conclude, we note that in the case of compressible layers, the optimal value of
the average thickness hn coincides with the simple average of Hn(y).
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Biphasic stress relaxation

in confined compression, 162
in torsion, 196
in unconfined compression, 179

Boltzmann’s superposition principle, 99
Boundary-layer integral equation, 35

special solutions, 39, 56
Boundary-layer solution, 37
Bulk modulus, 42, 44

C
Characteristic length, 3, 4, 10, 51, 213
Coefficient of restitution, 249
Complex elastic compliance, 101
Complex elastic modulus, 101, 198
Compressible, 6, 15, 103, 213
Compression test

displacement-controlled, 104, 169
load-controlled, 104, 169

Confined compression, 104, 158, 190
Contact

articular, 229, 239, 240, 243, 293
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tibio-femoral, 229, 236
axisymmetric, 73, 96, 107, 122, 130, 144
elasto-plastic, 244
elliptical, 231, 238
frictionless, 1, 8
incompressible, 130
instantaneous, 111
non-elliptical, 293
quasi-static, 107
refined, 15, 73, 85, 130
unilateral, 1, 8, 15, 22, 77, 85, 108, 130

axisymmetric, 276
with fixed contact area, 278

axisymmetric, 280
Contact approach, 22, 76, 85, 224, 238, 301

instantaneous, 112
Contact area, 9, 16, 87, 91

aspect ratio, 71, 141, 224, 237
average, 328
circular, 75, 108, 224

slightly perturbed, 309
elliptical, 13, 33, 71, 86, 138, 140, 224,
300, 313
aspect ratio, 301
semi-axes, 12, 13, 71, 140, 237, 300
slightly perturbed, 302

indicator, 302
instantaneous, 111, 118, 121, 143, 225
integral characteristics, 95, 298
major semi-axis, 142, 224, 301

instantaneous, 143, 226
monotonically decreasing, 119
monotonically increasing, 112, 122, 133,
300

polar moment of inertia, 298
variation, 33, 94, 303

Contact condition, 8
linearized, 10, 23, 85
nonlinear, 23
refined, 9, 10, 23

Contact force, 9, 301
instantaneous, 111, 112, 226

Contact interface, 8, 24
Contact points, 23

potential, 234
Contact pressure, 9, 14, 16, 79, 116, 121,

127, 142, 225, 301
maximum, 13, 71, 87, 237
minimum, 280

Contact radius, 77, 134
instantaneous, 111

Coordinates
body-fixed, 234

in-plane, 2
local, 34, 94, 235
normal, 208
space-fixed, 234
stretched, 4, 10, 308

Correspondence principle, 102, 103
Creep compliance

in shear, 106
out-of-plane, 196, 218, 223, 238

Creep function, 100
aggregate, 111
compound, 111, 123, 238
in out-of-plane shear

normalized, 131
normalized, 109

Creep test
in confined compression, 158
in unconfined compression, 169

D
Darcy’s law, 152
Diffusion coefficient, 151
Dirac’s delta function, 29

two-dimensional, 29
Dirichlet problem, 306, 311
Displacement-force relation, 83
Displacements

normal, 2, 6, 23, 210
tangential, 2, 6, 9, 23, 210

Dynamic response function, 103

E
Effect

of energy dissipation, 232, 244
of matrix viscoelasticity, 192
of menisci, 255
of tangential displacements, 17, 24, 73,
81, 85, 87, 133

Elastic modulus
characteristic, 243
equilibrium, 189
instantaneous, 189

characteristic, 244
Engineering elastic constants, 2
Equilibrium equation, 9, 70, 108, 222, 296
Equilibrium response, 213
Error function, 39
Exponential integral, 196
Exponential integral function, 189
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F
Factorization, 55
Femur, 234
Filter velocity, 152
Fluid

interstitial, 149
inviscid, 149
viscous, 150

Fluid load support, 166
Fluid phase, 149
Fluid pressure, 150, 211
Force-displacement relationship, 13, 72, 91,

114, 146, 238, 239
for compressible layers, 244
for incompressible layers, 243, 313
Hertzian, 244

Fourier equation, 161
Fourier transformation, 24
Fung model, 195, 219

Reduced creep function, 197, 220
Reduced relaxation function, 188, 219

G
Gap function, 20, 242, 313

effective geometrical characteristics,
241, 243

local geometrical characteristics, 243
parabolic, 21, 71, 138, 222, 236

axisymmetric, 115, 126, 129
variation, 294, 314

Gel diffusion time, 177, 181
Geometric mean, 72
Governing integral equation, 26
Green’s formula

first, 93
second, 92, 297

Green’s function, 311

H
Hamilton operator, 3

in-plane, 204
Harmonic mean, 72
Heaviside function, 104
Hooke’s law, 2, 102
Hunt–Crossley model, 244, 247

coefficient of restitution, 251
damping parameter, 244, 251
equivalent for articular contact, 253
loss angle, 253
stiffness parameter, 244

Hydraulic resistivity, 150

I
Impact, 247

contact duration, 247
kinetic energy loss, 250
maximum displacement, 248
potential energy of elastic deformation,
248

Impermeable, 153
Incompressibility condition, 42, 156
Incompressibility limit, 43
Incompressible, 7, 17, 38, 106, 145
Incompressible limit, 46
Instantaneous response, 155, 232
Interface

free-draining porous, 159
impermeable, 166
thin elastic, 5

Interface boundary conditions
for biphasic layers, 154
of perfect bonding, 282

Isotropic case, 7, 11, 12, 15, 17, 38, 44, 63,
175, 230

J
Johnson’s hypothesis, 14
Joint thickness, 111, 231
Jump across the interface, 154

K
Kernel function, 25

for a bonded isotropic elastic layer, 25
for a bonded transversely isotropic elas-
tic layer, 25

Koiter’s conditions, 37
Kolosov’s constant, 25

L
Lamé constants, 103
Lamé equations, 3
Lambert W -function, 249

principal real branch, 250
Lankarani–Nikravesh model, 244
Laplace operator, 3

axisymmetric, 123
in-plane, 204

Laplace transform, 102
Layer

biphasic, 154
poroviscoelastic, 214, 221

bonded, 3
elastic coated, 282
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elastic coating, 282
elastic compressible, 14
elastic incompressible, 51
inhomogeneous

in-plane, 262
thickness-variable, 267

porous fluid-saturated, 153
thin, 4
viscoelastic incompressible, 293
with variable thickness, 312, 314

Loading
cyclic compressive, 167
harmonic, 103, 198
monotonic, 224
sinusoidal, 245
stepwise, 117, 121, 143, 144, 226
unit-step, 106

Local indentation, 13, 24, 85, 103, 211
of coated elastic layer, 289

Loss angle
modified incomplete, 246, 253

Loss modulus, 198

M
Material

anisotropic viscoelastic, 99
biphasic, 151
biphasic poroviscoelastic, 190
equivalent incompressible, 156
time-dependent, 99
transversely isotropic elastic, 1

incompressible, 41
isotropically compressible, 44

Maxwell model, 145
relaxation time, 145

Monotonicity condition, 133, 296
Multibody dynamics simulations, 229, 253

P
Pasternak foundation, 14

constants, 15
model, 15

Permeability, 150
Permeability coefficient, 151

axial, 153, 161
transverse, 153, 171, 223

Perturbation algorithm, 5, 7
Poisson’s ratio, 1, 7, 25, 41, 183
Poroelastic, 149
Porosity, 149
Positive part function, 12, 111, 320

Positiveness condition, 9, 24
Pseudo-penetration, 234, 235
Punch, 8, 23

circular, 281
flat-ended, 279
impermeable, 153
parabolic, 8, 13, 16, 85, 315

axisymmetric, 130
shape function, 8

Punch displacement, 133

R
Ramp displacement, 159
Ramp loading

multiple-step, 167
Regularity condition, 76, 124, 277, 296
Relative fluid flux, 152, 212

transverse, 159
Relaxation function, 99

compound, 114, 128, 239
equivalent, 254
in out-of-plane shear

normalized, 132
normalized, 109, 128

generalized, 225
Relaxation modulus

aggregate, 190
in shear, 106

out-of-plane, 218
Relaxation spectrum, 188, 219
Relaxation time

equivalent, 254
in confined compression, 162
in unconfined compression, 181

Retardation time
in confined compression, 164
in unconfined compression, 182

S
Seepage velocity, 152
Sensitivity analysis, 293, 326
Shear elastic modulus, 1, 42

in-plane, 44
instantaneous, 123, 131

equivalent, 123, 223, 239
out-of-plane, 46

instantaneous, 223, 238
Short-time asymptotics, 205, 213
Signorini boundary condition, 8, 316
Skeleton, 149
Solid phase, 149
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Steklov—Poincaré operator, 306
Stieltjes integral, 188
Storage modulus, 198
Storage shear modulus, 246

modified incomplete, 246, 253
Stress relaxation test

in confined compression, 159
in unconfined compression, 169

Stresses
effective, 151, 212
fluid phase, 150
total, 151

Subchondral bone, 231
Substrate

rigid, 3
impermeable, 153

Surface-fitting method, 239

T
Thin-layer approximation, 1, 27
Tibia, 234
Time-to-contact, 143
Torsion, 194

Twist, 194

U
Unconfined compression, 169, 192

W
Weak compressibility, 45, 50
Wiener–Hopf equation, 54
Wiener–Hopf method, 51
Winkler foundation, 14

model, 14, 15, 230
modulus, 14, 230

variable, 266, 321

Y
Young’s modulus, 1, 7, 25, 41

Z
Zero-pressure-gradient condition, 66, 70
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