
Chapter 6
The Complex Event Processing Paradigm

Gianpaolo Cugola and Alessandro Margara

6.1 Introduction

As mentioned in the previous chapters, pervasive systems require continuous pro-
cessing of information collected from multiple sources deployed in the environment
under analysis. Often, a large portion of such information encodes notifications of
events that occurred within the pervasive system or in the environment where it
operates. In such cases, the goal of the processing step is to detect situations of
interest as soon as they occur by looking at the primitive events that have been
observed.

On the one hand, this requires the ability to define situations of interest
(often called composite events) as patterns of primitive events, joined by specific
relationships. On the other hand, this also demands the capability of effectively
exploiting such definitions to detect composite events at runtime, as soon as they
occur. Complex event processing (CEP) languages and systems have been proposed
by research and industry to satisfy these complementary needs.

The CEP paradigm shares some similarities with the data streaming approach
described in Chap. 5. Nevertheless, several key differences exist. Specifically,
data stream management systems (DSMSs) focus on transforming the incoming
streams of information into new streams, e.g., by joining or aggregating data items.
Conversely, CEP systems interpret incoming information as notifications of events
and focus on detecting relevant patterns among such streaming notifications. This

G. Cugola (�)
Dipartimento di Elettronica, Politecnico di Milano, Informazione e Bioingegneria (DEIB),
Piazza L. da Vinci 32, Milan, Italy
e-mail: gianpaolo.cugola@polimi.it

A. Margara
Faculty of Informatics, Università della Svizzera Italiana, Via Buffi 13, Lugano, Switzerland
e-mail: alessandro.margara@usi.ch

© Springer International Publishing Switzerland 2015
F. Colace et al. (eds.), Data Management in Pervasive Systems, Data-Centric
Systems and Applications, DOI 10.1007/978-3-319-20062-0_6

113

mailto:gianpaolo.cugola@polimi.it
mailto:alessandro.margara@usi.ch

114 G. Cugola and A. Margara

chapter focuses on this specific processing abstraction, describing the key features
and issues that characterize it.

We discuss CEP languages in Sect. 6.2, while Sect. 6.3 focuses on CEP systems.
The need of processing large amounts of event notifications coming from multiple
sources pushed researchers to study how to distribute event processing; we discuss
the issues behind this choice in Sect. 6.4. Finally, Sect. 6.5 discusses the most
advanced topics in CEP, like management of uncertainty and automated learning
of relevant event patterns, and Sect. 6.6 provides some final remarks.

6.2 CEP Languages

This section discusses the main data and processing models for CEP and concretely
exemplifies their usage by referring to the TESLA language [7].

6.2.1 Event Model

Event notifications encode interesting occurrences in the domain of analysis [13,
20]. They are characterized by a time annotation and a payload. The former is
used to define ordering relationships among events, while the latter contains relevant
information about their occurrence. For example, if an event represents the reading
of a vibration from an accelerometer on a painting, then the payload could include
the actual acceleration measured, the location of the sensor, and its battery status.

While data stream management systems (DSMSs) assume homogeneous
streams [10], in which all information items have the same structure, most CEP
systems process heterogeneous streams of input events. Accordingly, most CEP
systems assume event notifications to be annotated with a type, which implicitly
defines a structure for the payload. Referring to the previous example, a system
could define a type Vibration for all the vibration occurrences, prescribing a
payload of four fields, the first one of type double (the acceleration value), the
second and third ones of type string (the identifier of the room and painting),
and the last one of type int (the battery percentage). Several formats have been
proposed to encode the payload of events, ranging from tuples, to key value pairs,
to structured XML documents, and to RDF triples [15].

Even more significantly, several time models have been discussed in the litera-
ture. First of all, the time model specifies the semantics of time annotations. There
are two common semantics [10, 30]: time annotations may be assigned based on the
time indicating when an event enters the CEP system or based on some application
time when events have been generated. In the former case, it is easy to define a
total ordering among events. The latter case presents more difficulties, since the
information items can be received out of order due to unsynchronized application

6 The Complex Event Processing Paradigm 115

clocks at sources, network latency, and non-order-preserving communication chan-
nels.

Furthermore, the time model specifies the encoding of time. Most systems adopt
a single timestamp, which represents a unique point in time in which the event
occurs. Other systems assume that events can have a duration and adopt an interval-
based representation, where two timestamps are used, indicating the lower and upper
bounds of the interval of occurrence. The use of time intervals enables the definition
of a rich set of temporal relations. For example, an interval I1 can follow an interval
I2, start or finish together with I2, and overlap or include I2. An extensive study of
the relations between time intervals is present in the pioneering work of Allen [4].
As discussed in [33], different semantics can be provided to define the temporal
relations between time intervals (e.g., to define the immediate successor of an item),
each of them satisfying different properties (e.g., associativity).

As a concrete example, in the following we will refer to TESLA [7], the language
of the T-Rex CEP system [8]. TESLA encodes the payload of events using attribute-
value pairs. Each TESLA event is characterized by a type which defines the number,
order, names, and types of the attributes that build the notification. Moreover,
TESLA assumes that events occur instantaneously at some points in time and
encode their time of occurrence into a single timestamp. Referring to the example
above, TESLA would encode a vibration reading at time 10 from painting P located
at room R as follows:

Vibration@10(value=4.6, room=’R’, painting=’P’, battery=85)

6.2.2 Processing Model

Although CEP is a relatively new area of research, several CEP systems have been
developed in the last few years, each one proposing a different processing model.
Nevertheless, it is possible to devise some key commonalities among such models.
Indeed, at an abstract level, all systems are based on rules that define composite
events starting from patterns of primitive events observed from the environment
under analysis. Rules do not explicitly provide the processing steps to be performed;
on the contrary, the computation is implicitly specified by the pattern.

The set of operators that allowed inside patterns changes from system to system,
but some of them are common: selection of primitive events relevant for processing
based on their payload; combination of multiple events based on their mutual
relations in terms of payload and time; negation, to identify events that must not
occur in order to satisfy the pattern; aggregation of payload data from multiple
primitive events; and production of new (composite) events. In the remainder of
this section, we present these operators in detail using TESLA as the reference
language.

Selection and Combination Rule R1 below selects and combines two primitive
events (Vibration and PeopleNear) to define a composite event Touch

116 G. Cugola and A. Margara

that expresses the potential touch of a given painting. In TESLA the occurrence
of a composite event is always bound to the occurrence of an observed event
(Vibration in our example), which implicitly determines the time at which the
new event is detected. This anchor point, called the terminator of the rule, is coupled
with other events (PeopleNear in our example) through combination operators
(each-within in our example).

Listing 6.1 Rule R1

define Touch(room: string, painting: string)
from Vibration(painting=\$p and value>3.0) and

each PeopleNear(painting=\$p) within 2 min. from -
Vibration

where room=Vibration.room and painting=Vibration.painting

The selection operator restricts valid Vibration events based on their value
attribute (which must be greater than 3.0). The combination operator binds
together Vibration and PeopleNear notifications that (1) refer to the same
painting (through the parameter constraint painting=$p) and (2) occur within 2
min from each other, with PeopleNear preceding Vibration.

Rule R1 adopts the each-within combination operator, which poten-
tially generates multiple, simultaneous composite events for each terminator
(e.g., a Touch event for each PeopleNear event that matches the occurring
Vibration event). TESLA also provides other composition operators, e.g., the
last-within and first-within operators would generate a single Touch
event for every Vibration event, binding it to the last or the first PeopleNear
event that satisfies the prescribed time and content constraints. The where clause
is used to define the values of the attributes for the produced Touch events.

It is worth noticing that different systems provide different trade-offs between
expressiveness and processing efficiency. In particular, some systems define simpler
semantics for combination, e.g., by restricting combination to contiguous events [5].

Negation Rule R2 below exemplifies the use of a negation, demanding a StaffAt
event not to occur in order to distinguish between touches and potential theft.

Listing 6.2 Rule R2

define Theft(room: string, painting: string)
from Vibration(room=\$r and painting=\$p and value>3.0) and

each PeopleNear(painting=\$p) within 5 min. from -
Vibration

and not StaffAt(room=\$r) within 1 min. from Vibration
where room=Vibration.room and painting=Vibration.painting

6 The Complex Event Processing Paradigm 117

Aggregation Rule R3 below exemplifies the use of an aggregation, which com-
putes the average value over all the Vibration events received in the last 5 min
to decide if a potential theft is occurring.

Listing 6.3 Rule R3

define Theft(room: string, painting: string)
from Vibration(room=\$r and painting=\$p and value>3.0) and

v=Avg(Vibration(room=\$r and painting=\$p)
within 5 min. from Vibration).value > 3.0

where room=Vibration.room and painting=Vibration.painting

Hierarchies of Events As a final remark, we notice that several systems, including
TESLA, enable composite events to take part of patterns that define other composite
events. This allows users to build hierarchies of events, where (intermediate)
composite events can be used to define other (higher-level) composite events. By
allowing output events to reenter the system, this feature enables the definition
of recursive rules. Other systems provide a similar expressivity through ad hoc
operators that specify trends or unbounded repetitions of events (e.g., all vibration
events having values that increase over time) [2].

6.3 Processing Algorithms

This section provides an overview of the main data structures and algorithms used
in CEP systems. Due to lack of space, we mainly focus on combination operators,
which constitute the core abstraction offered by CEP systems. The interested reader
can find additional details in [8, 9, 21]. We present and compare two different
approaches, one based on automata and incremental processing (Sect. 6.3.1) and one
based on columns and delayed processing (Sect. 6.3.2). Furthermore, we describe
how the latter approach can be accelerated by exploiting the parallelism offered by
modern hardware architecture (Sect. 6.3.3).

6.3.1 Automata-Based Processing

The main goal of a processing algorithm is to detect patterns of events organized into
temporal sequences and also satisfy additional constraints involving their payload
(e.g., selection and parameter constraints). At a high level, this problem shares
many similarities with the problem of detecting regular expressions into streams
of characters, which is usually solved using automata. Because of this, several

118 G. Cugola and A. Margara

existing systems, both from academia [1, 5, 29] and from industry,1 adopt automata-
based approaches to process events. In the following, we show the main concepts
behind such approaches by describing the AIP (Automata Incremental Processing)
algorithm used by T-Rex [8] to deal with TESLA rules.

When adopting the AIP algorithm, each TESLA rule is translated into an
automaton model, which is composed of one or more sequence models. At the
beginning, each sequence model is instantiated in a sequence instance (or simply
sequence). Upon a new event arrival, three actions may be taken: (1) new sequences
can be created by duplicating existing ones; (2) existing sequences can be moved
from a state to the following one; (3) existing sequences can be deleted, either
because they arrive to an accepting state or because they are unable to proceed any
further.

Creation of Automata As described in Sect. 6.2, each TESLA rule filters event
notifications according to their type and content and uses the *-within oper-
ators to define one or more sequences of events. Let us consider again Rule
R1 to exemplify how automata are created. It defines a sequence in which a
PeopleNear event precedes a Vibration event. Furthermore, it requires the
value of Vibration to be greater than 3.0, and it forces the two events to refer
to the same painting.

Figure 6.1 shows the translation of Rule R1 into an automaton model. AIP creates
one sequence model for each sequence in the rule (only one in the case of Rule R1).
A sequence model is a linear, deterministic, finite state automaton. Each event in the
sequence captured by R1 is mapped to a state in the sequence model, and a transition
between two states s1 and s2 is labeled with the type, content, and timing constraints
that an incoming event has to satisfy to trigger the transition. Additional constraints
(e.g., parameters) are expressed using dashed lines connecting two states.

Detection Algorithm At the beginning, a single sequence is instantiated from each
sequence model built from existing rules. When a new event e arrives, the algorithm
reacts as follows: (1) it checks whether the type, content, and arrival time of e
satisfy a transition for one of the existing sequences; if not, the event is immediately
discarded. If a sequence Seq in a state s1 can use e to move to its next state s2,
the algorithm (2) creates a copy S’ of Seq, and (3) uses e to move S’ to state s2.
Notice that the original sequence Seq remains in state s1, waiting for further events.
Sequences are deleted when it becomes impossible for them to proceed to the next

Fig. 6.1 Event detection
automata for Rule R1

VP
Vibration, {value>3}, 2

M1
PeopleNear, { }, *

P.painting=V.painting

1Esper, http://esper.codehaus.org

http://esper.codehaus.org

6 The Complex Event Processing Paradigm 119

V

t = 1 P
P1

t = 2.5 P
P1

Seqt = 0 P

Seq1

Seq1

V

V

V

t = 3.5 P
P2Seq2 V

t = 4.5

P
P2

P
P3Seq21 Seq31 V

V2

P1 P2 V2

1 2 2.5 3 3.5 4 4.5

tV1

1.5

P3

t = 4 P
P2Seq2 V P

P3Seq3 V

P
P2Seq2 V P

P3Seq3 V

VV
V2

Fig. 6.2 An example of automata processing

state since the time limits for future transitions have already expired. A sequence in
its initial state is never deleted as it cannot expire.

As an example of how processing of sequences works, consider Rule R1 and the
corresponding model M1. Figure 6.2 shows, step by step, how the set of incoming
events drawn at the upper right corner is processed. At time t=0, a single sequence
Seq of model M1 is present in the system, waiting in its initial state. Since Seq does
not change with the arrival of new events, we omit it in the figure for t>0. At time
t=1, an event P1 of type PeopleNear is received. Since it matches type, content,
and timing constraints for the next transition of Seq, we clone it by creating Seq1,
which advances to state P. At t=2.5, a Vibration event arrives, but its value
is too low to satisfy Rule R1, so it is immediately discarded. At time t=3.5, a
new event P2 enters the system. It generates a new sequence Seq2 (cloning Seq)
and advances it to state P. At the same time, Seq1 is canceled, since the time
limit for its next state transition has expired. At time t=4, event P3 generates a
new sequence Seq3 and advances it to state P. At time t=4.5, an event V2 is
received. As we are considering a each-within operator, we use V2 to advance
every matching sequence in state P. Since V2 satisfies the constraints of both Seq2
and Seq3, it is used to duplicate both of them, generating and advancing two new
sequences, Seq21 and Seq31. Seq21 and Seq31 arrive at the accepting state:
this means that two valid sequences, composed of events P2–V2 and events P3–V2,
have been recognized. This triggers the generation of two composite events. After
that, sequences Seq21 and Seq31 are deleted, while Seq2 and Seq3 remain in
the system, waiting for potential future events of type Vibration.

As a final remark, we observe that our example adopts the each-within
operator. The presence of other composition operators (e.g., last-within) may
enable early deletion of sequences, which optimizes the use of resources.

120 G. Cugola and A. Margara

6.3.2 Columns-Based Processing

While the AIP algorithm processes rules incrementally, as new events enter the
system, an alternative approach consists in collecting events until a terminator is
found. As in the previous case, we present this approach by referring to the CDP
(Column Delayed Processing) algorithm implemented into T-Rex, which organizes
events into columns, one for each event type that appears in the sequence defined by
R, until a terminator is found.

Creation of Columns As an example of how columns are created by the CDP
algorithm, consider again Rule R1. For this rule, CDP creates two columns (see
Fig. 6.3), each labeled with the type of the primitive events it stores and with the
set of constraints on their content. The maximum time interval allowed between the
events of a column and those of the previous one (i.e., the window expressed through
the *-within operator) is modeled using a double arrow. Similarly, additional
constraints coming from parameters are represented as dashed lines. Notice that the
last column reserves space for a single event.

Detection Algorithm When a new event e enters the system, it is processed as
follows. First, CDP checks whether it matches (i.e., satisfies type and payload
constraints of) one or more columns. If this is the case, e is added on top of the
matching columns; otherwise it is immediately discarded. If among the matched
columns there is the terminating one (c`), the processing of the events stored so far
starts. Processing is performed column by column, from the last one to the first one,
creating partial sequences of increasing size at each step. More precisely:

• The timestamp of e is used to find the index i of the first valid element in column
c`�1, by looking at the time window.

• All events in column c`�1 having an index i0 < i are deleted, since they have no
chance to enter the window in the future.

• The operation is repeated for each column, considering the timestamp of the first
event left in column ck to delete old events from column ck�1.

• e is combined with all the events stored in column c`�1 that satisfy timing
constraints, parameters, and selection policies, creating partial sequences of two
events.

Fig. 6.3 Columns for
Rule R1

PeopleNear
{ }

Vibration
{ value > 3 }2

PeopleNear.painting=Vibration.painting

6 The Complex Event Processing Paradigm 121

PeopleNear
{ }

Vibration
{ V > 3 }2

PeopleNear.painting = Vibration.painting

Fig. 6.4 An example of processing using columns

• Each partial sequence is used to select elements from the previous column c`�2.
The algorithm is repeated recursively until the first column is reached, generating
zero, one, or more sequences including one selected event from each column.

• One composite event is generated for each sequence.

To better understand how the algorithm works, consider again Rule R1 and the
situation in Fig. 6.4, where the events stored in each column are represented with
their type, their value for the attribute painting (p), and their timestamp. The
event V(p=’B’)@6.5 was the last to enter the system. Since it is a terminator
for Rule R1, it starts the processing algorithm. Its timestamp is used to permanently
discard elements of the previous column that are too old to satisfy timing constraints.
In particular, we discard all events having a timestamp lower than 4.5 (6.5-2).
This operation is performed recursively in the presence of more than two columns.
The remaining events (i.e., P(p=’B’)@5 and P(p=’A’)@6) are evaluated to
detect valid sequences. The former matches the constraint on the painting
attribute and is used to create the valid sequence shown on the right of Fig. 6.4.
On the contrary, the latter does not match the attribute constraint. Both events are
kept in the leftmost column, waiting for the arrival of further Vibration events.

6.3.3 Exploiting Parallel Hardware

One of the key benefits of the CDP algorithm consists in the simple layout of its data
structures, which makes it suitable for running on parallel hardware architectures. To
exemplify this feature, we present an implementation of CDP on Compute Unified
Device Architecture (CUDA) graphics processing units (GPUs).

CUDA CUDA is a parallel computing architecture introduced by Nvidia in 2006
to offer a new parallel programming model and instruction set for general-purpose
programming on GPUs. CUDA has been exploited in several domains to speed
up complex computations. However, attaining good performance with CUDA is
challenging, and only some algorithms can be effectively ported to such parallel
architecture. Next, we briefly discuss the main features of CUDA and how they
affect the design of algorithms. While we focus on CUDA, most of the concepts

122 G. Cugola and A. Margara

presented below apply in general to several modern parallel architectures (e.g., Xeon
Phi) and programming API (e.g., OpenMP).

The CUDA programming model assumes that CUDA threads execute on a device
(the GPU), which operates as a coprocessor to a host (the CPU) and has its own
separate memory space. The programmer starts a new computation on the device by
invoking a function, called kernel, which defines a single flow of execution. CUDA
implements a Single Program Multiple Threads paradigm: the kernel is executed
in parallel by a number of threads on different data. Threads can be combined in
(multidimensional) groups. Inside the kernel, each thread is identified by a groupId
and a threadId variable. Conditional statements involving these variables are the
only way for a programmer to differentiate the execution flows of different threads.

There are two main factors to consider while programming in CUDA, which can
severely impact on performance. (1) A modern GPU can run thousands of threads
concurrently, but its hardware is designed for data parallel executions. Because of
this, full efficiency is achieved only if all the threads agree on their execution path.
If threads diverge via a data-dependent conditional branch, CUDA serially executes
each branch path taken. (2) Often, retrieving data from memory constitutes the main
bottleneck for CUDA. To alleviate this issue, it is necessary to design the data
structures in such a way that threads with contiguous threadId access contiguous
memory regions. This enables the hardware to fully exploit the available memory
bandwidth.

Accelerating CDP with CUDA The complexity of AIP’s data structures prevents
the possibility of efficiently implementing it in CUDA. Accordingly, only CDP has
been ported to CUDA.

In CUDA, the GPU memory is pre-allocated by the CPU and this operation has a
non-negligible latency. Because of this, CDP implements each column as a statically
allocated circular buffer. Furthermore, it keeps a copy of each column into the CPU
memory, which allows to perform on the CPU all the operations that do not benefit
from parallelization. In particular, when an event e enters the system and matches
a state s for a rule r, it is added to the column for s in main memory. Then, a copy
of the event to the GPU memory is issued asynchronously, such that the CPU does
not need to wait for the copy to end. If e is a terminator for r, the CPU computes
which events need to be considered for each column, starting from their timestamp
and from the time windows in r. CDP performs this operation on the CPU since it
requires a sequential analysis of the columns (from the last to the first one), and the
computation inside each column can be efficiently performed by a standard CPU
through a binary search. At the end of this phase, the CPU invokes the GPU to
process the relevant events from each column.

When using the each-within operator to process a column c, each partial
sequence generated at the previous step may be combined with more than one event
in c. The algorithm performs the following steps:

• It allocates two arrays of sequences, called seqin and seqout, used to store the
input and output results of each processing step. Sequences are represented as
fixed-size arrays of events, one for each state defined in the rule.

6 The Complex Event Processing Paradigm 123

• It allocates an integer index and sets it to 0.
• At the first step, seqin contains a single sequence with only the last position

occupied (by the received terminator).
• When processing a column c, a different thread t is executed for each event e in

c and for each sequence seq in seqin.
• t checks if e can be combined with seq, i.e., if it matches timing and parameter

constraints of seq.
• If all constraints are satisfied, t uses a special CUDA operation to atomically read

and increase the value of index. The read value k identifies the first free position
in the seqout array: the thread adds e to seq in position c and stores the result in
position k of seqout.

• When all threads have finished, the CPU copies the value of index into the main
memory and reads it.

• If the value of index is greater than 0, it proceeds to the next column by resetting
the value of index to 0 and swapping the pointers of seqin and seqout into the GPU
memory.

• The algorithm continues until index becomes 0 or all the columns have been
processed. In the first case, no valid sequence has been detected, while in the
second case, all valid sequences are stored in seqout and can be copied back to
the CPU memory.

To better understand how the CDP algorithm works, consider the example in
Fig. 6.5. It shows the processing of a rule R defining a sequence of three primitive
events. Two columns have already been processed resulting in six partial sequences
of two events each, while the last column c to be processed is shown in the figure.
Since there are six sequences stored in seqin and seven events in c, the computation
requires 42 threads. Figure 6.5 shows one of them, thread T, which is in charge of
processing the event E3 and the partial sequence S3. Now suppose that E3 satisfies
all the constraints of Rule R and thus can be combined with S3. T copies E3 into
the first position of S3; then, it reads the value of index (i.e., 3) and increases it.
Since this operation is atomic, T is the only thread that can read 3 from index, thus

Fig. 6.5 CDP algorithm on
CUDA (each-within operator)

S0seqin

3Index

seqout

S1 S2 S3 S4 S5

S0 S1 S2

Eb Ea E0

E1

E2

E3

E4

E5

E6

c

T

0

1

2

3

4

5

6

124 G. Cugola and A. Margara

avoiding memory clashes when it writes a copy of S3 into the position of index 3 in
seqout.

In this implementation, threads with contiguous identifiers are used to process
contiguous positions in a column: this increases the performance of memory access,
since the hardware can combine operations issued by different threads.

6.3.4 Performance Analysis

This section provides an overview of the performance of the algorithms described
above. All the results discussed below have been collected using a 2.8 GHz AMD
Phenom II PC, with 6 cores and 8 GB of DDR3 RAM, running 64 bit Linux.

Figure 6.6 compares the performance of the CPU implementation of AIP and
CDP. We deploy 1000 rules in the system, all of them defining a sequence composed
of a variable number of events. Each incoming event is relevant for exactly 1 % of
the deployed rules; each rule (and each state inside a rule) has the same probability
to select incoming events. We consider an average window size of 15 s between two
consecutive events in a sequence.

First, Fig. 6.6 highlights the efficiency of both the AIP and the CDP algorithms.
We consider two scenarios: the first adopts the each-within operator to define
sequences (Fig. 6.6a), while the second adopts the last-within operator
(Fig. 6.6b). In both cases, the considered algorithms can easily process events in
sub-millisecond time. Second, as expected, managing the each-within operator
is more expensive—more primitive events need to be combined and more composite
events are generated—and results in higher processing times for both algorithms.
Third, Fig. 6.6 shows that a traditional approach based on automata is less efficient
than the CDP algorithm.

As a second step, we performed an additional experiment to test the benefits of
adopting massively parallel hardware. In this experiment, we deploy a single rule r
defining a sequence of length 3. We repeat the measurement with different sizes of
windows, which is probably the parameter that affects a GPU implementation the
most. Larger window sizes increase the average number of events to be considered

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2 States 3 States 4 States 5 StatesA
vg

 P
ro

ce
ss

in
g

T
im

e
(m

ic
ro

se
c)

Number of States

AIP
CDP

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

2 3 4 5A
vg

 P
ro

ce
ss

in
g

T
im

e
(m

ic
ro

se
c)

Number of States

AIP
CDP

(b)

Fig. 6.6 Comparison of automata-based and column-based algorithms. (a) Each-within. (b) Last-
within

6 The Complex Event Processing Paradigm 125

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100

P
ro

ce
ss

in
g

T
im

e
(m

s)

Size of Windows (thousands)

AIP Each-Within
CDP CPU Each-Within
CDP GPU Each-Within

AIP Last-Within
CDP CPU Last-Within
CDP GPU Last-Within

Fig. 6.7 Analysis of the benefits of parallel hardware

at each state. While the CPU processes those events sequentially, the GPU uses
different threads running in parallel. Furthermore, using the GPU involves an
(almost constant) overhead to transfer input data from the CPU to the GPU memory
and to activate a CUDA kernel. This makes the usage of the GPU convenient only
if a significant number of events to be processed is present at each state.

Figure 6.7 emphasizes this behavior: on one hand, the cost of the algorithms
running on the CPU grows with the size of windows. On the other hand, the cost
of the CDP algorithm running on the GPU is initially constant at 0.017 ms (it is
dominated by the fixed overhead of CUDA), and it starts growing only when the
number of available threads is not enough to compute events entirely in parallel.
This growth is faster with the each-within operator, which uses more threads
and produces more composite events to be transferred back to the main memory.
In our test, the smallest size of windows that determines an advantage in using the
GPU is 4000. With a sequence of three states, this results in considering 1333 events
in each state, on average. This result isolates one of the most significant dimensions
for deciding the hardware architecture to adopt. If an application involves rules that
need to process a small number of events for each state, then the CPU represents
a better choice. Otherwise, the advantages of parallel processing favor the use of a
GPU.

6.4 Protocols for Distributed Event Detection

In the previous sections, we assumed that primitive events were delivered to
a single node responsible for detecting composite events and delivering them
to the interested recipients. However, several application domains may involve
components dispersed over a wide geographical area. This is certainly the case for
many pervasive systems. In these settings, centralizing the processing in a single

126 G. Cugola and A. Margara

node is not ideal, since it prevents from exploiting the locality of information:
even if a (small) group of nodes holds all the information required to detect a
composite event, it still needs to rely on the centralized processing server and
cannot operate autonomously. This increases the time for detecting composite events
and the amount of data exchanged through the network, which, in turn, negatively
impacts the lifetime of battery-powered devices. Finally, a centralized solution may
hamper scalability when the processing resources of the processing node are not
sufficient.

6.4.1 Distribution Strategies

To overcome the limitations described above, some systems proposed distribution
strategies to enable a decentralized processing of rules. A distribution strategy
involves (1) an algorithm to decide how the processing load is partitioned among
different processing nodes and (2) a communication protocol that defines how the
nodes interact and communicate with each other to produce the required results.

The first algorithm solves the operator placement problem: it searches for the
best mapping of the operators defined in rules on the set of available nodes.
Depending on the application, the operator placement may pursue different goals,
e.g., reducing the latency to detect and notify composite events or minimizing the
usage of network resources. Given the complexity of this problem, several works
addressed it using approximated algorithms and heuristics [19]. They usually rely
on a centralized decider, which collects information about the status of the nodes and
locally computes a suitable deployment of operators. Only a few solutions consid-
ered decentralized algorithms [25]. Finally, most operator placement algorithms are
studied for cluster infrastructures, in which all processing nodes are colocated and
well connected [17, 34]: in this setting, the operator placement problem essentially
translates into a load balancing problem.

Besides operator placement, a distribution strategy also requires a commu-
nication protocol to govern the interaction among processing nodes, specifying
how rules are deployed and how primitive and composite events are forwarded.
These issues are rarely considered by existing CEP systems: even when distributed
processing is allowed, the communication among nodes requires manual configura-
tion [3].

In the remainder of this section, we briefly introduce some concrete examples of
distribution strategies for the T-Rex system [11].

6.4.2 A Concrete Example: Distribution Strategies for T-Rex

To illustrate possible distribution strategies for T-Rex, we consider a set of pro-
cessing nodes P connected with each other in a physical network. To simplify the
routing, our deployment strategies organize nodes into one or more processing trees

6 The Complex Event Processing Paradigm 127

on top of the physical network. More precisely, they use a processing tree to collect
primitive events from sources (the leaves) and to filter and (partially) process them
as they move toward the root of the tree, where the composite events are generated.
This enables incremental evaluation of rules at intermediate nodes, reducing the
amount of information flowing along the tree and the processing load at the root
node. The same tree adopted for detecting a composite event ce is also used to
distribute ce to the interested clients. Since we want to minimize latency, we build
Shortest Path Trees using the link delay as a cost metric.

Single Tree vs. Multiple Trees We consider two classes of deployment strategies.
The first one organizes all nodes into a single processing tree. One node ` is elected
as the network leader and all events move from the sources to ` going up along the
tree rooted at ` (T`), while they get incrementally evaluated according to the rules
deployed in the system. When they reach `, the processing is complete, and the
corresponding composite events are generated and delivered to the sinks along T`.

The second class of strategies builds one tree for each client interested in a
composite event (for each sink). Primitive events flow from the sources along
multiple trees. In particular, if a sink s is interested in a composite event ce,
all primitive events that contribute to ce move from their sources up along Ts.
Processing is performed incrementally on each tree. When a composite event
reaches the root of a processing tree, there is no need to further distribute it, since
the root of the tree coincides with the interested client. This approach removes the
need for spreading composite events once they have been detected at the cost of
duplicating primitive events that must be forwarded over multiple trees.

Partitioning TESLA Rules To enable incremental evaluation on a processing tree
T, rules are recursively partitioned into partial rules moving from the root to the
leaves of T. The goal is to push the processing of events as close as possible to the
sources where events are generated. To do so, nodes first declare the type of events
they will produce (e.g., an accelerometer will produce only Vibration events).
This knowledge is used for partitioning: the parts of a rule responsible for detecting
a certain event e are deployed as close as possible to the nodes that produce e.

Next, we offer an overview of the partitioning algorithm. The interested reader
can refer to [6, 11] for further details. Let us consider Rule R4 and the processing
tree T1 (Fig. 6.8), rooted at 1 and containing three sources: 3 produces events of
types A and B; 4 produces events of types C and E; 5 produces events of type D.
This information is available to node 2. Similarly, node 1 knows that it can receive
events of types A, B, C, D, and E from node 2.

Listing 6.4 Rule R4

define CompEvent()
from A() and last B() within 5 min. from A

and last C() within 5 min. from B
and last D() within 5 min. from C
and last E() within 5 min. from D

128 G. Cugola and A. Margara

Fig. 6.8 Rule deployment:
an example

1 2

3

4

5

A, B

C, E

D

Partitioning is performed as follows: 1 observes that 2 receives all the information
necessary to correctly evaluate the rule. Accordingly, it entirely delegates the
processing of R4 (including the generation of composite events) to 2. 2 observes
that none of its children has enough information to process Rule R4. Accordingly, 2
remains responsible for producing composite events while it delegates only parts of
the processing to 3, 4, and 5 in the form of partial rules.

As mentioned, partial rules are used to filter primitive events as close as possible
to sources. A node p responsible for a partial rule r0 forwards a set of primitive
events to its parent in the processing tree only when this satisfies the pattern in r0.
Let us consider node 3: its clients are the only sources of eventsA and B. To correctly
process Rule R4, node 2 does not need to receive all events of types A and B but only
events A that are preceded by an event B in the previous 5 min; moreover, only the
last B event before each A is relevant (Rule R4 uses the last-within operator).
Accordingly, 2 creates the following partial rule for 3:

A() and last B() within 5 min. from A

Similarly, 2 does not need to receive all C events but only those preceded by an
event of type E. Accordingly, it creates and sends the following partial rule to 4:

C() and each E() within 10 min. from C

Notice that C and E are not contiguous elements in the sequence defined by Rule
R4, but they are separated by event D. Because of this, the partial rule considers a
window that sums the one between C and D and the one between D and E. Similarly,
the local knowledge of node 4 is not sufficient to evaluate the single selection
constraint on E; for this reason, the partial rule adopts the each-within operator,
capturing all notifications of E followed by a C event within 10 min. Finally, node 5
receives a partial rule that simply asks for all events of type D.

The partitioning algorithm described above is applied recursively: partial rules
are split into other partial rules until all sources have been reached.

Forwarding of Events Once detected, a primitive event p is forwarded along the
relevant trees, i.e., those associated to rules that involve p (a decision taken by
looking at the type of p). In some cases, this push-based forwarding strategy can
be complemented by a pull-based forwarding strategy that tries to limit network
traffic by pulling events of a certain type only when other events they are related
to have been detected. As an example, considering Rule R1 described in Sect. 6.2,

6 The Complex Event Processing Paradigm 129

it may be better to avoid forwarding PeopleNear events until a (less frequent)
Vibration event is detected (for further details, see [11]).

6.4.3 Performance Analysis

In the following, we report some measurements conducted in a simulated environ-
ment to show the benefits of distributed processing on reducing the network traffic
and the delay for delivering events. In particular, we consider three different strate-
gies: ST performs distributed processing on a single tree; MT performs distributed
processing on multiple trees; Centr exploits a single processor, which receives
primitive events, processes them, and delivers composite events to interested sinks.

Tests are performed in a scenario that includes 20 nodes, each one connected with
five others, on average. Sources produce 120 different types of primitive events with
a generation rate between 1000 s and ten notifications per second, with exponential
distribution. We deploy 100 TESLA rules, each one including a sequence of three
events with time windows of 1 min, on the average. Each rule produces a different
composite event, and a set of sinks connected with each processor is interested in
ten of them, on average.

Figure 6.9a shows the delay for delivering events. First, we observe that MT
strategies provide much lower delays with respect to ST strategies. Indeed, MT
strategies do not need to deliver composite events after detection, thus eliminating
the delay introduced in this phase. ST strategies perform similarly to a centralized
scenario: both need to deliver composite event notifications after detection.

Network traffic is significantly higher in the Centr strategy (Fig. 6.9b). This
means that distributed processing effectively enables the filtering of a large number
of primitive events close to their sources. If we compare the two distributed
strategies, we observe that MT generates more traffic than ST. While the former
does not require the forwarding of composite events after detection, it demands for
the forwarding of primitive events along multiple trees.

 0
 5

 10
 15
 20
 25
 30

Centr ST MT

(a)

 0
 2
 4
 6
 8

 10
 12

Centr ST MT

(b)

Fig. 6.9 A comparison of distribution strategies for T-Rex. (a) Average delay (ms). (b) Average
traffic (KB/s)

130 G. Cugola and A. Margara

6.5 Advanced Topics

This section introduces some advanced topics in the CEP domain that are currently
investigated in research. It focuses on three topics relevant for pervasive systems:
management of uncertainty, automated generation of CEP rules, and integration
with programming languages.

Management of Uncertainty CEP technologies are used to model and capture
phenomena of interest. In this context, the accuracy in modeling the domain of
analysis is fundamental for a successful adoption of CEP. At the same time, human
ability to define and capture a phenomenon is often affected by some form of
uncertainty, which, if ignored, may lead to incomplete, inaccurate, or even incorrect
decisions concerning the phenomenon itself.

A successful management of uncertainty in CEP involves three main steps: iden-
tification of the sources of uncertainty, modeling of uncertainty, and propagation of
uncertainty across the systems, from primitive to composite events.

The identification step requires an analysis of the environment and of the
specific phenomena to capture. In general, we can identify two main sources of
uncertainty [12]: uncertainty in the input data and uncertainty in the CEP rules.
The former refers to the presence of incomplete, incorrect, or imprecise information
observed from the external environment. This is extremely relevant for pervasive
systems. For example, in the case of input data coming from sensors, the value
measured and propagated may be imprecise (because of the limited accuracy in
the sensor) or incomplete (because of communication or battery-related issues).
The latter refers to the imprecision of the rules in correctly formulating the causal
relations between the primitive and the composite events. This may derive from a
limited knowledge of the environment under analysis but also from the impossibility
to observe all the aspects that may influence the occurrence of a phenomenon.

The modeling step aims at providing a sound mathematical foundation to repre-
sent uncertainty, let the CEP engine be aware of it, and manipulate it consistently.
For example, probability theory can be used to model measurement errors, allowing
the CEP engine to process uncertain values and combine them with other ones.

Finally, an uncertainty-aware CEP system should propagate the uncertainty by
producing results that are annotated with uncertainty information consistent with
the identified sources of uncertainty and the models adopted to represent them.

The recent literature presents several proposals for capturing uncertainty in
CEP [12, 18, 27, 31, 32]. Most of these solutions rely on an explicit encoding and
representation of uncertainty inside data items. For instance, [12] adopts random
variables to represent received information, thus making it possible to encode
measurement errors in sensor applications.

There are various metrics for evaluating a model for uncertainty, including
expressiveness, precision, computational cost, and simplicity. While end consumers
may be interested in receiving precise indications about the level of certainty
associated to the results, this should not negatively impact the compactness and
readability of information or the level of performance of the CEP system.

6 The Complex Event Processing Paradigm 131

Automated Generation of Rules Our discussion of uncertainty highlights key
issues of current CEP systems: while research and development efforts were mainly
directed toward processing efficiency, a widespread adoption of CEP technologies
depends on the capability to correctly and precisely model the phenomena under
analysis. As our discussion in Sect. 6.2 shows, this task can be extremely difficult
and involve several different aspects, including identification of the relevant prim-
itive events, filtering of their content, and identification of their mutual relation in
terms of content and time ordering.

To overcome this problem, researchers are currently focusing on defining
techniques to support users in rule definition. In particular, some preliminary results
have been achieved in the area of learning CEP rules from the available historical
information about the environment under analysis [23]. These techniques adopt
automated algorithms that analyze past occurrences of the phenomena of interest
and suggest CEP rules for detecting them.

Language Integration As discussed so far, CEP represents a mainstream tech-
nology for promoting the interaction of components in complex software systems,
typical in many scenarios of pervasive systems. In this context, CEP becomes a
key component for programming the overall behavior of the software architecture.
Because of this, some research efforts targeted the integration of event processing
within programming languages and frameworks.

In this context, we can distinguish two main areas of investigation. On the one
hand, some languages have been defined that provide primitives to send and receive
events. In these proposals, events become first-class objects of the language and are
fully integrated, e.g., with the type system. Furthermore, some CEP operators for
event composition and pattern detection are offered as language construct. Examples
of this approach are EventJava [14], Ptolemy [26], and EScala [16].

On the other hand, some systems are built on top of event processing to
define a novel programming paradigm known as reactive programming. In reactive
programming, developers can define reactive variables through an expression that
involves other (reactive or imperative) variables. Whenever one variable changes,
all dependent variables get automatically updated. While notifications of changes
are implemented as events, they are not exposed to programmers, who only observe
their effect (i.e., changes to the values of reactive variables). Examples of reactive
systems are REScala [28], Flapjax [24], and DREAM [22].

6.6 Conclusions

This chapter provided an overview of CEP technology, considering both the
operators it offers to applications and some key algorithms and implementation
mechanisms used to achieve high-performance processing and scalability.

In the domain of pervasive systems, CEP represents an ideal solution to guide the
interactions of a plethora of distributed components. Indeed, CEP enables domain

132 G. Cugola and A. Margara

experts to focus on the modeling of the application domain and to entirely delegate
to the CEP system the task of observing and responding to the stimuli of the
application environment according to such modeling.

References

1. Adi, A., Etzion, O.: Amit - the situation manager. VLDB J. 13(2), 177–203 (2004)
2. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event

streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ‘08, pp. 147–160. ACM, New York (2008)

3. Ali, M.: An introduction to microsoft sql server streaminsight. In: Proceedings of the
1st International Conference and Exhibition on Computing for Geospatial Research and
Application, COM.Geo ‘10, pp. 66:1–66:1. ACM, New York (2010)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843
(1983)

5. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte, M.,
White, W.: Cayuga: a high-performance event processing engine. In: Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, SIGMOD ‘07, pp. 1100–
1102. ACM, New York (2007)

6. Cugola, G., Margara, A.: Raced: an adaptive middleware for complex event detection. In:
Proceedings of the 8th International Workshop on Adaptive and Reflective MIddleware, ARM
‘09, pp. 5:1–5:6. ACM, New York (2009)

7. Cugola, G., Margara, A.: Tesla: a formally defined event specification language. In:
Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems,
DEBS ‘10, pp. 50–61. ACM, New York (2010)

8. Cugola, G., Margara, A.: Complex event processing with t-rex. J. Syst. Softw. 85(8), 1709–
1728 (2012)

9. Cugola, G., Margara, A.: Low latency complex event processing on parallel hardware. J.
Parallel Distrib. Comput. 72(2), 205–218 (2012)

10. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event
processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

11. Cugola, G., Margara, A.: Deployment strategies for distributed complex event processing.
Computing 95(2), 129–156 (2013)

12. Cugola, G., Margara, A., Matteucci, M., Tamburrelli, G.: Introducing uncertainty in complex
event processing: model, implementation, and validation. Computing 97(2), 103–144 (2015)

13. Etzion, O., Niblett, P.: Event Processing in Action, 1st edn. Manning Publications Co.,
Greenwich (2010)

14. Eugster, P., Jayaram, K.: Eventjava: an extension of java for event correlation. In:
Drossopoulou, S. (ed.) ECOOP 2009 – Object-Oriented Programming. Lecture Notes in
Computer Science, vol. 5653, pp. 570–594. Springer, Berlin/Heidelberg (2009)

15. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/sub-
scribe. ACM Comput. Surv. 35, 114–131 (2003)

16. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: Escala: modular event-driven object
interactions in scala. In: Proceedings of the Tenth International Conference on Aspect-Oriented
Software Development, AOSD ‘11, pp. 227–240. ACM, New York (2011)

17. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.L., Andrade, H., Gedik, B.:
Cola: optimizing stream processing applications via graph partitioning. In: Middleware ‘09,
pp. 1–20. Springer, New York (2009)

6 The Complex Event Processing Paradigm 133

18. Kuka, C., Nicklas, D.: Quality matters: supporting quality-aware pervasive applications by
probabilistic data stream management. In: Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, DEBS ‘14, pp. 1–12. ACM, New York
(2014)

19. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale data stream
systems. IEEE Internet Comput. 12(6), 50–60 (2008)

20. Luckham, D.: The power of events: an introduction to complex event processing in distributed
enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule Representa-
tion, Interchange and Reasoning on the Web. Lecture Notes in Computer Science, vol. 5321,
pp. 3–3. Springer, Berlin/Heidelberg (2008)

21. Margara, A.: Combining expressiveness and efficiency in a complex event processing middle-
ware. Ph.D. thesis, Politecnico di Milano (2012)

22. Margara, A., Salvaneschi, G.: We have a dream: distributed reactive programming with
consistency guarantees. In: Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems, DEBS ‘14, pp. 142–153. ACM, New York (2014)

23. Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated rule generation
for complex event processing. In: Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems, DEBS ‘14, pp. 47–58. ACM, New York (2014)

24. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield, A.,
Krishnamurthi, S.: Flapjax: a programming language for ajax applications. In: Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ‘09, pp. 1–20. ACM, New York (2009)

25. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.: Network-
aware operator placement for stream-processing systems. In: Proceedings of the 22nd
International Conference on Data Engineering, ICDE ‘06, p. 49. IEEE Computer Society,
Washington (2006)

26. Rajan, H., Leavens, G.: Ptolemy: a language with quantified, typed events. In: Vitek, J. (ed.)
ECOOP 2008 – Object-Oriented Programming. Lecture Notes in Computer Science, vol. 5142,
pp. 155–179. Springer, Berlin/Heidelberg (2008)

27. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated probabilistic
streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ‘08, pp. 715–728. ACM, New York (2008)

28. Salvaneschi, G., Hintz, G., Mezini, M.: Rescala: bridging between object-oriented and
functional style in reactive applications. In: Proceedings of the 13th International Conference
on Aspect-Oriented Software Development, AOSD, vol. 14 (2014)

29. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event processing with
query rewriting. In: Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems, DEBS ‘09, pp. 4:1–4:12. ACM, New York (2009)

30. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In: Proceedings
of the 23rd ACM Symposium on Principles of Database Systems, pp. 263–274. ACM,
New York (2004)

31. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Complex event processing over uncertain data.
In: Proceedings of the Second International Conference on Distributed Event-Based Systems,
DEBS ‘08, pp. 253–264. ACM, New York (2008)

32. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Efficient processing of uncertain events in
rule-based systems. IEEE Trans. Knowl. Data Eng. 24(1), 45–58 (2012)

33. White, W., Riedewald, M., Gehrke, J., Demers, A.: What is “next” in event processing? In:
PODS, pp. 263–272. ACM, New York (2007)

34. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L., Fleischer, L.:
Soda: an optimizing scheduler for large-scale stream-based distributed computer systems. In:
Middleware ‘08, pp. 306–325. Springer, New York (2008)

	6 The Complex Event Processing Paradigm
	6.1 Introduction
	6.2 CEP Languages
	6.2.1 Event Model
	6.2.2 Processing Model

	6.3 Processing Algorithms
	6.3.1 Automata-Based Processing
	6.3.2 Columns-Based Processing
	6.3.3 Exploiting Parallel Hardware
	6.3.4 Performance Analysis

	6.4 Protocols for Distributed Event Detection
	6.4.1 Distribution Strategies
	6.4.2 A Concrete Example: Distribution Strategies for T-Rex
	6.4.3 Performance Analysis

	6.5 Advanced Topics
	6.6 Conclusions
	References

