
Chapter 2
Numerical Simulation of ODE Models

In the preceding chapter we had worked out how to establish possibly large ODE
models for systems biological networks. In the present chapter, we deal with their
numerical simulation. For this purpose, we describe various numerical integrators
for initial value problems in necessary detail. In Sect. 2.1, we present basic
concepts to characterize different discretization methods. We start with local versus
global discretization errors, first in theory, then in algorithmic realization. Stability
concepts for discretizations lead to an elementary pragmatic understanding of the
term “stiffness” of ODE systems. In the remaining part of the chapter, different
families of integrators such as Runge-Kutta methods, extrapolation methods, and
multistep methods are characterized. From a practical point of view they are
divided into explicit methods (Sect. 2.2), implicit methods (Sect. 2.3), and linearly
implicit methods (Sect. 2.4), to be discussed in terms of their structural strengths
and weaknesses. Finally, in Sect. 2.5, a roadmap of numerical methods is given
together with two moderate problems that look rather similar, but require different
numerical integrators. Moreover, we present a more elaborate example concerning
the dynamics of tumor cells; therein we show, what kind of algorithmic decisions
may influence the speed of computations.

2.1 Basic Concepts

Throughout this section we consider the numerical integration of in general
nonlinear ODE initial value problems. For ease of writing, we confine our interest
to autonomous problems

y0 D f .y/; y.0/ D y0 ; (2.1)

© Springer International Publishing Switzerland 2015
P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology, Texts
in Computational Science and Engineering 12, DOI 10.1007/978-3-319-20059-0_2

33

34 Basic Concepts

unless explicitly stated otherwise. In Sect. 2.1.1, we explain two concepts of
discretization errors at the simplest possible example, the classical Euler method.
These concepts show up in the control of local discretization errors and their relation
to the actually achieved final error, to be presented in Sect. 2.1.2. As the ODE
systems arising from systems biology are typically large and “stiff”, we derive
stability concepts in Sect. 2.1.3 that help to understand this term. For practical
applications, some rather pragmatic “definition” of stiffness is given in the final
Sect. 2.1.4.

2.1.1 Local Versus Global Discretization Error: Theoretical
Concepts

In this section, we discuss selected elementary discretization schemes in terms of the
timestep or step size � . We begin with the classical scheme discussed by Leonhard
Euler even before the invention of the concept of differential equations.

Classical (Explicit) Euler Method

The first idea of this scheme is to discretize the ODE (2.1) by using the geometric
tangent at the starting point

y1 D y0 C � f .y0/ (2.2)

The second idea is to repeat the first step recursively as (see Fig. 2.1)

ykC1 D yk C � f .yk/; k D 0; 1; 2; : : : : (2.3)

Fig. 2.1 Explicit Euler
method with constant step
size �

0
0

exact solution

explicit Euler method

y
0

y(4 τ)

y
4

τ 2τ 3τ 4τ

Basic Concepts 35

For ease of presentation, we here stick to a uniform discretization with a single
constant step size � in this section. For a non-uniform discretization we should rather
write

ykC1 D yk C �kf .yk/; k D 0; 1; 2; : : : : (2.4)

Local Discretization Error

At the simple Euler discretization scheme we can already explain the general
concepts of local and global discretization errors. After one discretization step, a
deviation y1 � y.�/ between the discrete and the continuous solution arises. In order
to reveal the dependence of this deviation on � , we use (2.1) in integrated form, i.e.

y.�/ D y0 C
Z �

0

f .y.s//ds : (2.5)

Then, together with (2.2), we are able to derive the relation

y1 � y.�/ D � f .y0/ �
Z �

0

f .y.s//ds :

Taylor expansion of the above integrand yields

f .y.s// D f . y.0/„ƒ‚…
y0

/ C s fy.y0/ f .y0/„ ƒ‚ …
Df 0.y0/

CO.s2/ :

Here we have used the convenient notation O.sp/ for terms of order at least p. Upon
inserting this expression into the integral above, the first right-hand term cancels and
we arrive at

y1 � y.�/ D �
Z �

0

Œsf 0.y0/ C O.s2/�ds D ��2

2
f 0.y0/ C

Z �

0

O.s2/ds :

As the integral term on the right-hand side is obviously O.�3/, we end up with a
local discretization error estimate of the type

ky1 � y.�/k � c � �2 ; (2.6)

where c is a constant containing information of the problem at hand (such as f 0.y0/).

36 Basic Concepts

Global Discretization Error

After N time steps according to (2.3) some global discretization error at fixed final
time T D N� will arise. Intuitively we obtain

kyN � y.T/k � C � N�2 D C � T� ; (2.7)

assuming N ! 1 as � ! 0. Obviously, in the transition from local to global error
we lose one order of � .

It should be mentioned that the constants c in (2.6) and C in (2.7) are different.
A rigorous proof of the result (2.7) can be found, e.g., in [16] and further references
therein. As it turns out, such a proof shows that the above constant C is only
bounded, if a Lipschitz condition of the kind

L� � const (2.8)

holds, where L is the Lipschitz constant introduced in (1.31) and const means some
small number, say, not much larger than 1. This is a severe restriction on the step
size � that holds for a large class of discretization methods and will come up at
several occasions throughout this book.

Implicit Euler Method

Once the classical discretization (2.2) had been known, the question arose whether
it might be useful to insert the tangent at the new value y1 by virtue of

y1 D y0 C � f .y1/ : (2.9)

Here the value y1 is only implicitly defined by some in general nonlinear system
of equations. That is why the above scheme is called implicit Euler discretization
and accordingly (2.2) the explicit Euler discretization. Again the scheme is repeated
recursively according to

ykC1 D yk C � f .ykC1/; k D 0; 1; 2; : : : :

Formally speaking, estimates for the local and global discretization error will just
repeat (2.6) and (2.7). The numerical solution of the algebraic equations (dimension
d) per each time step is certainly much more work than the corresponding
explicit Euler recursion. For so-called “stiff” problems, however, this additional
computational amount pays off, see Sect. 2.1.4 below.

Basic Concepts 37

Implicit Trapezoidal and Midpoint Rule

Once the door had been opened to modify the classical Euler method by introducing
the implicit structure, a symmetric right-hand side has been chosen such as

ykC1 D yk C �

2
.f .yk/ C f .ykC1// ; k D 0; 1; 2; : : : ; (2.10)

which is called the implicit trapezoidal rule. Another also symmetric modification
is the implicit midpoint rule

ykC1 D yk C � f

�
1

2
.yk C ykC1/

�
; k D 0; 1; 2; : : : ; (2.11)

We will come back to these elementary discretizations at various occasions.

General Case

The two introduced convergence concepts, even though merely exemplified at rather
simple discretizaton schemes, directly carry over to more general discretization
methods to be presented below in the remaining parts of Chap. 2. For so-called one-
step methods, the local discretization error has the typical structure

ky1 � y.�/k � cp � �pC1 (2.12)

in terms of some order p characteristic of the method, while the global error, again
under some condition of the kind (2.8), satisfies

kyN � y.T/k � Cp � N�pC1 D Cp � T�p : (2.13)

Note that p D 1 holds for the explicit as well as for the implicit Euler discretization,
while p D 2 holds for the implicit trapezoidal rule and the implicit midpoint rule;
this can be directly derived from the symmetry .yk; ykC1; �/ $.ykC1; yk; ��/.
In all cases, a reduction of � implies a reduction of both the local and the global
discretization error bounds.

Throughout the subsequent chapters we will restrict ourselves to the first
discretization step from y0 to y1, but tacitly include the total step from y0 to yN

via the successive recursions from yk to ykC1 for k D 0; 1; : : : :

Step-Size and Order Control

Efficient modern integrators will adapt their performance to problem dependent
information to choose “optimal” step sizes, say �k at step k, part of them also deliver

38 Basic Concepts

locally “optimal” orders pk. Note that not always the rule “the higher the order the
better” holds, since the above constants cp strongly influence the achievable step
sizes. In summary, order and step-size control are linked – see, e.g., the material
worked out in Sects. 2.2–2.4 for each of the discussed numerical integrators.

2.1.2 Local Versus Finally Achieved Accuracy: Algorithmic
Concepts

Throughout this section, let a prescribed fixed integration interval Œ0; T� be subdi-
vided according to

0 D t0 < t1 < : : : < tN D T ;

i.e. by N C 1 integration points, chosen to be non-uniformly distributed for the time
being. The local and global error concepts introduced in Sect. 2.1.1 above turn out
to have their correspondence in the numerical realization. For ease of notation, we
define the local discretization errors as ıyj D y.tj/�yj and require, in terms of some
suitable vector norm k � k, that

kıyjk � TOL ; (2.14)

where TOL is a user prescribed local error tolerance. Such errors can be controlled
by all modern numerical integrators, see Sects. 2.2–2.4 below. At time point tj,
let ıy.tj/ denote the accumulated error. At final time T one thus has the global
discretization error

kıy.T/k D ERR ; (2.15)

wherein the value ERR usually can not be prescribed or controlled by numerical
integrators. That is why it is of interest to study the relation between TOL and ERR
in theoretical terms.

Error Propagation

In order to study the relation between local and global error, we derive a linearized
theory of the error propagation, as illustrated in Fig. 2.2.
At some time step tj ! tjC1, we obtain the linearized relation

ıy.tjC1/
:D ıyjC1 C W.tjC1; tj/ıy.tj/ ; (2.16)

Basic Concepts 39

Fig. 2.2 Linearized local
error propagation, see (2.16)

tt

y

j

j+1j

W(t ,t) y(t)j+1

y(t)jδ

j+1δ

δj

wherein W.�; �/ denotes the Wronskian matrix introduced in Sect. 1.3.2 above (for
the non-autonomous case). By induction, starting with ıy0 D 0 and exploiting
the semigroup property (1.37), here as W.tjC2; tj/ D W.tjC2; tjC1/W.tjC1; tj/, we
arrive at

ıy.T/
:D

NX
jD1

W.T; tj/ ıyj (2.17)

Taking norms, we get

ERR P�
NX

jD1

kW.T; tj/k �
� TOL‚…„ƒ
kıyjk � TOL

NX
jD1

�Œtj; T� (2.18)

in terms of the interval condition numbers �Œ�; �� introduced in (1.43) above. Since
N depends on TOL, there is, in general, no linear relation between ERR and TOL.

Role of Interval Condition Number

Obviously, the key issue above is the structure of the interval condition number. If
we apply the theoretical characterization in terms of the Lipschitz constant L defined
in (1.31) and return, for simplicity, to a uniform grid with tj D j� , we arrive at the
theoretical estimate

�Œtj; T� � exp.L.T � tj// D exp.L.N � j/�/ (2.19)

and thus end up with the estimate

ERR P� TOL � exp.LT/ � 1

exp.L�/ � 1
(2.20)

40 Basic Concepts

Such an estimate will only be reasonable for those ODE problems whose dynamical
behavior can be characterized in terms of the Lipschitz constant; in Sect. 2.1.4
below, we will call such problems “non-stiff”. Suppose, however, we have an ODE
problem where

�Œtj; T� � const ; (2.21)

which means that local errors die out asymptotically and thus dominate global
errors. In mathematical analysis such problems are mostly called “dissipative”,
whereas in numerical analysis they are usually called “stiff”. Insertion of (2.21)
into (2.18) then yields

ERR P� const �N TOL : (2.22)

Total Error

Let the integration order p and the step size � be fixed. Then, from (2.13), we roughly
have the following global discretization error

ERR
:D CpT�p � �p :

Apart from the discretization errors, we will also have to deal with rounding errors.
On a computer with relative precision eps (�10�16 typically today) we roughly
obtain the contribution

ERR
:D �pNeps D �pepsT

�
� 1

�

with a constant �p depending on the discretization method. Note that for � ! 0

the discretization errors decrease, whereas the rounding errors increase, as shown
schematically in Fig. 2.3. For the total error ERRtotal D ERR C ERR there exists a
smallest achievable accuracy ERRmin at �opt.

Summary

In numerical integrators only local accuracies can be controlled by the user
prescribed error tolerance TOL. Global accuracy, say ERR, depends on the interval
condition, say �Œ0; T�, of the problem and can be tested by a few runs with different
parameters TOL.

Basic Concepts 41

Fig. 2.3 Total error as sum
of discretization error ERR
and rounding error ERR. The
limit accuracy ERRmin occurs
at �opt

0
0

ERR
min

τ

ERR

ERR+ERR

ERR

τ
opt

2.1.3 Stability Concepts for Discretizations

In Sect. 1.3.3 above, we had discussed the concept of asymptotic stability of
ODE initial value problems. Here, we now deal with the question of whether the
properties of the continuous problem are inherited to the discretized problems.
In order to understand the subsequent line of argument, the reader may want to
brush up his knowledge of the complex-valued exponential function by looking up
Appendix A.1.

Dahlquist Test Model

For linear autonomous systems we had found out in Sect. 1.3.3 that they boil down
to d simple scalar equations of the kind (1.51). That is why G. Dahlquist [12] had
suggested in 1956 to study the stability properties of discretizations by the test
problem (today named after him)

y0 D �y; y.0/ D 1; � 2 C : (2.23)

The analytical solution of this problem is

y.�/ D exp.��/ D exp.z/ where � � 0; z WD �� 2 C : (2.24)

The trick here is to formulate the stability problem in terms of the complex-valued
exponential function exp.z/, which we discuss in some detail in Appendix A.1.
From the relations (A.2) we may deduce the basic properties:

8̂
<̂
ˆ̂:

j exp.z/j � 1 , <.z/ � 0

j exp.z/j � 1 , <.z/ � 0

j exp.z/j D 1 , <.z/ D 0

(2.25)

42 Basic Concepts

stability
region

Im(z)

Re(z)

stability
region

Im(z)

Re(z)

Fig. 2.4 Complex half-plane as stability region. Left: continuous solution. Right: discrete solution
obtained by the implicit trapezoidal or the implicit midpoint rule

If we define the stability region by

S WD fz 2 C W jy1.z/j � 1g ; (2.26)

we may identify S for the continuous solution with the complex half-plane (see
Fig. 2.4, left)

C� WD fz 2 C W <.z/ � 0g (2.27)

Examples of Stability Regions

For illustration, we apply the four elementary discretization schemes of Sect. 2.1.1
to the Dahlquist model (2.23). For the explicit Euler scheme we obtain

y1 D y0 C � f .y0/ D y0 C ��y0 D 1 C ��;) y1 D 1 C z :

The corresponding stability region is shown in Fig. 2.5, left. In a similar way we get
for the implicit Euler scheme

y1 D y0 C � f .y1/ D y0 C ��y1 D 1 C ��y1;) y1 D 1

1 � z
:

The corresponding stability region is shown in Fig. 2.5, right. Finally, for the implicit
trapezoidal and the implicit midpoint rule, which are equivalent for linear problems,
we get

y1 D y0 C �.f .y1/ C f .y0//=2 D y0 C ��.y1 C y0/=2) y1 D 1 C z=2

1 � z=2
;

The corresponding stability region is shown in Fig. 2.4, right.

Basic Concepts 43

Im(z)

Re(z)−1

Im(z)

Re(z)1

Fig. 2.5 Stability regions. Left: explicit Euler scheme. Right: implicit Euler scheme (“superstabil-
ity”)

From Fig. 2.4, one might think that the discretizations based on the implicit
trapezoidal rule or the implicit midpoint rule are best, since they perfectly inherit
the stability region from the continuous solution. However, the continuous solution
has an additional desirable feature: For z ! 1 one obtains

j exp.z/j �!

8̂
<̂
ˆ̂:

1; if <.z/ > 0

1; if <.z/ D 0

0; if <.z/ < 0

If we compare this limit property for the elementary discretizations, we see that

jy1.z/j �!

8̂
<̂
ˆ̂:

1; for the explicit Euler scheme

1; for implicit trapezoidal or midpoint rule

0; for the implicit Euler scheme

From (A.3) we know that the limit z ! 1 for the complex exponential function
depends on the path taken to approach this point. Such a behavior cannot be
mimicked by polynomials or rational functions, where a unique limit independent
of the path of approach exists. Consequently, we cannot expect to be able to realize
all of the properties of the analytical solution by a single discretization. In view of
this insight, several stability concepts have been introduced to characterize desirable
features of different discretizations.

A-Stability

In view of the fact that C� D S for the continuous solution, this concept is defined
by requiring the weaker property

C� � S

44 Basic Concepts

0 5 10 15 20
0

0.5

1

1.5

time

N
1
 (prey) N

2
 (predator)

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

N
1

N
2

Numerical solution by implicit Euler method. Phase plane plot: shrinking of orbits.

(a) (b)

Fig. 2.6 Example of superstability: Predator-prey model (1.10) as in Fig. 1.2. Qualitatively wrong
solution by implicit Euler method with constant step size � D 0:1. Correct numerical solution see
Fig. 1.2

for discretizations. Looking at the above Figs. 2.4 and 2.5, we directly see that the
explicit Euler scheme is not A-stable, whereas the other three discretizations are.
Note, however, that the implicit Euler scheme has the undesirable feature to supply
decaying solutions even when the continuous solutions increase – associated with
those parts of S that cover part of the positive complex half-plane. This unwanted
property is called superstability and illustrated for the predator-prey model in
Fig. 2.6.

A(˛)-Stability

As it turns out, some discretizations exhibit only “almost” A-stability. In order
to quantify this feature, O. Widlund [62] in 1967 introduced some angle domain
(shown in Fig. 2.7)

C.˛/ WD fz 2 C I j arg.z/j � ˛g

and suggested the weakened concept of A(˛)-stability defined via

C.˛/ � S :

Observe that C.˛/ permits a characterization of the complex value z D �t, which
holds, given �, for all t > 0.

Clearly, since C.�=2/ D C�, it is tacitly understood that the larger ˛, the “more
stable” the method is. Such a statement, however, should be taken with care in view
of the limit feature mentioned above.

Basic Concepts 45

Fig. 2.7 Angle domain C.˛/

for the definition of weakened
stability concepts

Im(z)

Re(z)
α

L-Stability

This stability concept dates back to B.L. Ehle [27] in 1969. It additionally
incorporates the asymptotic behavior of a discretization scheme for z ! 1 by
requiring

C� � S and y1.1/ D 0 : (2.28)

In other words: A discretization method is L-stable, if it is A-stable and vanishes
at z D 1. Looking again back to our four sample discretizations, we observe: The
explicit Euler scheme is not L-stable, since it satisfies neither of the two conditions.
The implicit Euler scheme is L-stable, satisfying both conditions (but exhibits the
unwanted superstability!). The implicit trapezoidal and the implicit midpoint rule
are not L-stable, since jy1.1/j D 1, which violates the second condition above.
Even worse, the discrete values yk oscillate according to

yk ! .�1/k as z ! 1 :

This asymptotic behavior is consistent with the behavior (A.3) of the continuous
solution along the imaginary axis. It already shows up “close to” the imaginary axis
for “large” =z as k ! 1 via the occurrence of “spurious” oscillations, i.e. via
“numerical artifacts” that have may have nothing to do with the actual solution, see
Fig. 2.8. For this reason, these two discretizations should only be applied, if the
problem itself has eigenvalues close to the imaginary axis (and thus the solution
exhibits “real” oscillations). As a rule of thumb, whenever a problem is nonlinear,
then the implicit midpoint rule should be preferred over the implicit trapezoidal rule
– for reasons worked out, e.g., in [16, Section 6.3.2] and references therein.

46 Basic Concepts

Fig. 2.8 Oscillatory behavior
of the discrete values yk

obtained via the implicit
trapezoidal rule with constant
stepsize � D 1 applied to
Dahlquists’s test equation
with � D �10

0 2 4 6 8
−1

−0.5

0

0.5

1

k

exact
ITR

L(˛)-Stability

Just like A(˛)-stability, a stability concept weakening L-stability exists as well,
accordingly called L(˛)-stability and defined via

C.˛/ � S and y1.1/ D 0 :

Again: the larger ˛, the better. Note, however, that the inclusion of the asymptotic
property y1.1/ D 0 makes this concept much more useful in assessing numerical
discretization schemes than mere A(˛)-stability. We will return to this concept
repeatedly.

2.1.4 Stiffness of ODE Problems

The stability analysis of the preceding Sect. 2.1.3 has been based on the simple
Dahlquist test model,

y0 D �y; y.0/ D 1 ;

where � 2 C plays a rather different role depending on whether the sign of <�

is positive or negative. However, if we calculate the Lipschitz constant L defined
in (1.31), which is essential for all proofs of uniqueness of ODE models, we obtain

L D j�j :

Basic Concepts 47

Hereby, the essential sign information is lost. Upon recalling the relation (2.8), we
come up with some step-size restriction of the kind

� P� 1

j�j
Things appear differently when seen through the glass of the pointwise condition
number defined in (1.42): For the Dahlquist model we get

�0.t/ D exp.<�t/ ;

which clearly maintains the necessary information of the sign of <�, as can be seen
in (2.25). Note that the interval condition number defined in (1.43) arises as

�Œ0; t� D
(

�0.t/; if <.�/ > 0

1; if <.�/ � 0

In view of (2.18), we now see that

ERR P� TOL �

8̂
<
:̂

exp<�T �1

exp<�� �1
; if <.�/ > 0

N; if <.�/ � 0

The above factor N may reduce to essentially around 1, if the exponent is “large
negative”, which is the case in strongly dissipative problems, where the global error
is equivalent to the local error. If we turn from the analytic solution of the Dahlquist
model to a discrete solution obtained by some selected discretization scheme, then
any step-size restrictions will show up via the condition z D �� 2 S in terms of
the stability region S. If, in addition, the stability region nicely models the stability
region of the analytic solution, then such a constraint will be reasonable. So we
fall back on the stability concepts of the Sect. 2.1.3. Summarizing, discretization
methods that mimic the stability behavior of the analytic solution of the Dahlquist
model will have a tolerable error propagation, whereas others do not.

Characterization of Stiffness

There are countless numbers of definitions of “stiffness” of ODE problems, see,
e.g., the textbook [16] and references therein. For computational scientists that are
not mathematicians, we offer the following rather pragmatic definition:
For stiff ODE problems, the additional computational amount of solving linear or
nonlinear equations within each (linearly) implicit discretization step pays off, since
the number of discretization steps is significantly reduced.

48 Explicit Numerical Integrators

Note that this “definition” is rather ad hoc and will depend on the required
accuracy and the selected discretization method. Practically speaking, if the nature
of the problem at hand is not clear in advance, one might start with an explicit
discretization; if the problem can be handled with “reasonably looking” compu-
tational step sizes, then we regard it to be non-stiff. If, however, “too strong”
step-size restrictions occur, so that “too many” time steps need to be taken, see
the theoretical restrictions (2.8) or (2.46), then we regard the problem to be stiff.
Note that any arising small step sizes would be appropriate in the transition phase
of an otherwise stiff problem, but awkward in the stationary phase. Upon observing
such an undesirable behavior one will switch to a (linearly) implicit discretization
method.

For a qualitative characterization of a given problem as stiff, one will examine
whether the trajectory asymptotically approaches some equilibrium point or some
stationary smooth solution. In this sense, most of the ODE models arising in systems
biology (including all of the problems mentioned in Sect. 1.2) are stiff and thus
deserve the numerical solution by some (linearly) implicit discretization method.

In order to develop some geometric intuition, we recall Fig. 1.9 above, where
we had illustrated stability versus inherent instability around some more general
stationary solution g.t/. For ease of understanding, let us again characterize these
two cases:

• An asymptotically unstable or “non-stiff” problem (Fig. 1.9, right) should be
attacked by some explicit numerical integrator, which will automatically choose
small step sizes � that are totally in order, since they reflect the dynamics of the
problem.

• An asymptotically stable or “stiff” problem (Fig. 1.9, left) should be attacked
by some (linearly) implicit numerical integrator, which will choose large step
sizes � that reflect the lack of dynamics of the stationary solution g.t/ at the
computational expense of solving nonlinear systems in each discretization step;
if any explicit numerical integrator were chosen in this case, extremely small
step sizes would automatically be selected that would blow up computing times
beyond any tolerable amount.

2.2 Explicit Numerical Integration Methods

In this section, we present three extensions of the explicit Euler method. The first
two ones are one-step methods, i.e. methods that only use information from the
present step to compute approximations for the next step; these include Runge-
Kutta methods in Sect. 2.2.1 (dating back to 1895) and extrapolation methods in
Sect. 2.2.2 (with origins back in 1910). The third one is a multistep method, i.e.
a method that exploits the history of a trajectory to compute the next step. Among
them we restrict our attention to Adams methods (dating back to 1855). Even though
all of these methods seem to be rather old, there are modern adaptive versions that

Explicit Numerical Integrators 49

should definitely be preferred for the numerical simulation of ODE models from
systems biology.

2.2.1 Runge-Kutta Methods

Already in 1895, C. Runge suggested an improvement over the classical Euler
scheme, which read

y1 D y0 C � f
�

y0 C �

2
f .y0/

�

Careful examination of this scheme reveals an order p D 2, compare defini-
tion (2.12) above, i.e. one order higher than that of the explicit Euler scheme. This
increase of order has been attained by introducing an explicit Euler step with �=2

as step size inside f .�/. In 1901, W. Kutta recognized the general nested structure to
increase the order: He suggested what nowadays is called an s-stage explicit Runge-
Kutta scheme

ki D f

0
@y0 C �

i�1X
jD1

aijkj

1
A ; i D 1; : : : ; s

y1 D y0 C �

sX
iD1

biki

Note the key feature that this scheme is recursive in the unknown directions ki. Any
Runge-Kutta method can be characterized by the coefficients .bi/; .aij/, in matrix
vector notation written as .b;A/, where b is an s-vector and A a lower triangular
.s; s/-matrix with zero diagonal entries – which represents the recursive structure of
the scheme.

Remark 5 When applied to non-autonomous systems with f .t; y/ as right-hand
sides, the above terms are to be replaced by terms of the kind

f

0
@t0 C ci�; y0 C �

i�1X
jD1

aijkj

1
A where ci D

i�1X
jD1

aij : (2.29)

Once he had detected the general structure, W. Kutta also worked out a rather
economic scheme of order p D 4, today named as the classical RK4 scheme:

k1 D f .y0/

k2 D f .y0 C �

2
k1/

50 Explicit Numerical Integrators

k3 D f .y0 C �

2
k2/

k4 D f .y0 C �k3/

y1 D y0 C �

�
1

6
k1 C 1

3
k2 C 1

3
k3 C 1

6
k4

�

Surprisingly, this ancient scheme is today still seen in modern computational
science! However, in the meantime of more than 100 years, much more efficient
higher order RK schemes have been worked out – see below.

Error Estimation and Step-Size Control

In order to simulate an ODE model reliably, the discretization error must be kept
below a prescribed accuracy threshold. As worked out in Sect. 2.1.1, we have to
deal with both local and global discretization errors. An estimation of the global
discretization error, which means the finally achieved accuracy, would require an
unreasonably large computational amount. The local discretization error, however,
can be estimated via the construction of so-called embedded Runge-Kutta methods.
In this approach, two RK methods with common coefficients A, but different
coefficients b and Ob are combined so that the scheme with b has order p, say, while
the one with Ob has order p � 1. After one step from t D 0 to t D � , the discretization
error can be approximated according to

ky1 � y.�/k � k
sX

iD1

�.bi � Obi/kik DW � (2.30)

A number of subtle considerations is necessary to back this device theoretically, see,
e.g., [16, Section 5.3].

If the error of the higher order RK method with coefficients .b;A/ is estimated,
the corresponding embedded RK method is usually written as RK (p-1)p, say RK
(7)8. In this case, formula (2.12) combined with (2.30) above yields

� � ky1 � y.�/k � cp�pC1 : (2.31)

Suppose now we want to identify an “optimal” step size �� such that

�� � ky1 � y.��/k :D cp.��/pC1 � TOL ;

where TOL is a user prescribed local error tolerance. Division of the two relations
then leads to the formula

�� D �
pC1

r
	 � TOL

�
(2.32)

Explicit Numerical Integrators 51

where we have introduced some safety parameter 	 < 1, usually 	 D 0:9, with the
aim to (roughly) ensure that the thus selected step size would then actually lead to

�� � TOL :

If several RK methods of different orders are realized, then the whole device can
be enriched by some order control, details of which we will present in Sect. 2.2.2
below in the context of some subset of RK methods.

Dense Output

If more output data are wanted than are supplied by the step-size control, then the
idea of an additional embedded RK method is again exploited; generalizing (2.31)
one requires that

ky1.
/ � y.
�/k � cNp� NpC1 for
 2 Œ0; 1� : (2.33)

The art is to find formulas that yield an order Np as high as possible. Efficient RK
methods usually include such a device, which also permits an extension to the
numerical treatment of delay differential equations; as an example we mention the
code RETARD due to E. Hairer.

Dormand-Prince Integrators

In recent decades, a whole “RK technology” for the construction of higher order
RK methods has emerged, see, e.g., [16, Section 4.2.2] and references therein to
the original literature. Given stage numbers s, the general principle is to determine
the coefficients .b;A/ such that the discretization errors are of prescribed order
p. This leads to a set of (underdetermined) nonlinear algebraic equations, rapidly
growing with increasing orders, see Table 2.1. Note that the number of conditions
only depends on the order p, not on the number s of stages, which only influences
the number .s2 C 1/=2 of independent coefficients to be determined. To solve these
equations, additional wishes may be fulfilled concerning, e.g., embedding with
more than two combined RK methods, economy of function evaluations as well
as reliability and robustness of step-size control devices.

Table 2.1 Number Np of algebraic equations for coefficients of Runge-Kutta methods
depending on order p

p 1 2 3 4 5 6 7 8 9 10 20

Np 1 2 4 8 17 37 85 200 486 1 205 20 247 374

52 Explicit Numerical Integrators

Starting around 1980, J. R. Dormand and P. J. Prince [26] have developed
a sequence of highly efficient explicit Runge-Kutta methods up to higher order,
putting all theoretical and algorithmic pieces together. Their presently most efficient
codes DOPRI5 and DOP853 have been economized with respect to number of
function evaluations, efficiency of step-size control, dense output etc. The code
DOP853 due to E. Hairer additionally realizes an automatic control of orders
among the embedded orders f8; 5; 3g.

2.2.2 Extrapolation Methods

In this section, we present certain discretization methods that formally are a subset
of explicit Runge-Kutta methods, but are constructed in a rather different way, along
which the cumbersome solution of the many algebraic equations, see Table 2.1, can
be avoided. For a general survey on extrapolation methods for (non-stiff and stiff)
ODE problems we refer to [14].

Basic Procedure

The general idea of extrapolation methods is to run a simple basic discretization
with successively reduced internal step sizes

�1 D �=n1 > �2 D �=n2 > : : : for given 1 � n1 < n2 < : : : 2 F

up to the next time point � . In this way, successively “better” approximations y1.�/

emerge that can be regarded as functions of � and written as y1.� I �1/; y1.� I �2/; : : :.
These approximations serve as nodal values for polynomial interpolation over
the nodes Œ�1; : : : ; ���. The interpolation polynomials p.� j�1; : : : ; ��/ are then
evaluated at � D 0, which lies outside the interpolation interval, hence the name
extrapolation, see Fig. 2.9.

Theoretical basis for such a discretization is the existence of some “polynomial-
like” expansion

y1.� I �/ � y.�/ D g1.�/��1 C g2.�/��2 C g3.�/��3 C : : :

A closer examination of such expansions for a class of discretization methods
reveals that they would not converge, but can be replaced by asymptotic expansions
of the kind

y1.� I �/ � y.�/ D
NX

jD1

gj.�/��j C GNC1.� I �/��NC1 ; (2.34)

Explicit Numerical Integrators 53

Fig. 2.9 Idea of
extrapolation: Evaluation of
the interpolation polynomial
p.� j�1; �2; �3/ at the limit
� D 0

y
1

σ
1

σ
2σ

3

σ

Table 2.2 Aitken-Neville
scheme for extrapolation
methods (here k D 3)

T11y

&
T21y ! T22

& &
T31y ! T32 ! T33

where a remainder term G takes care of the convergence properties. These expan-
sions serve the purpose needed for extrapolation methods. Proofs of their existence
including the boundedness of the remained terms are quite subtle and can be found
in the usual textbooks, see, e.g., [16, Section 4.3] and references therein.

Explicit Euler Discretization

Let us explain the method at the simplest possible example, when the explicit Euler
discretization is selected as the basic discretization. Starting with 0 D y0 the basic
scheme for internal step size �� D �=n� reads

nC1 D n C �� f .n/; n D 0; : : : ; n� � 1; ! y1.� I ��/ D n� : (2.35)

Here the numbers n� are chosen from some subdivision sequence F . For this basic
scheme, the existence of an asymptotic expansion (2.34) with �j D j can be shown.
We thus may extrapolate to the limit � D 0 using the Aitken-Neville algorithm
(e.g.,[17, Section 7.1.2]). Starting with y1.� I �i/ D Ti;1, this scheme reads in our
case

Ti;k D Ti;k�1 C Ti;k�1 � Ti�1;k�1

ni
ni�kC1

� 1
(2.36)

For an illustration see Table 2.2.

54 Explicit Numerical Integrators

For the discretization error after k extrapolation steps one obtains

"ik WD kTi;k � y.�/k :D kg0
k.0/k��i � � � �i�kC1 D �ikkg0

k.0/k� kC1 ; (2.37)

with the constant

�ik D .ni�kC1 � ni/
�1 :

Along these lines, an extrapolation method can be designed. But there exists a
“better” option to be described next.

Remark 6 Formally, this extrapolation method is a special explicit RK method with
stage number

s D
kX

�D1

n� ;

where k is the maximum index in the extrapolation table. Its minimum as achieved
for the harmonic subdivision sequence

FH D f1; 2; 3; 4; : : :g

The present codes actually realize this sequence.

Explicit Midpoint Rule

Already in 1910, C. Richardson had suggested to apply �2-extrapolation by
exploiting the symmetry of the explicit mid-point rule

nC1 D n�1 C 2�� f .n/ ; n D 1; 2; : : : :

Obviously, this recurrence cannot be realized without some value for 1. In other
words: it needs a starting step, a problem that Richardson had not been able to
solve.

It took until 1963 that W. B. Gragg in his thesis [29] was able to prove that a
simple explicit Euler starting step is enough to guarantee the existence of a quadratic
asymptotic expansion (2.34) with �j D 2j. Moreover, he showed that

• there exist two different quadratic asymptotic expansions for n� either even or
odd and

• for an even subdivision sequence one additionally gains one order in � in the
approximation error.

Explicit Numerical Integrators 55

Gragg also suggested the special final step

y1.� I ��/ WD n D 1

4
.n�1 C 2n C nC1/; n D n� even : (2.38)

This final step, which requires the additional evaluation of f .n/, is not really crucial,
but useful for dense output, see below. Again this method is formally an explicit RK
method, so that minimizing the stage number leads one to implement the double
harmonic subdivision sequence (see [13])

n� 2 F2H D f2; 4; 6; 8; : : : : : :g :

Quadratic extrapolation. On this basis, one just needs to modify the Aitken-Neville
algorithm (2.36) in the form

Ti;k D Ti;k�1 C Ti;k�1 � Ti�1;k�1�
ni

ni�kC1

�2 � 1

: (2.39)

Again one gets a triangular extrapolation tableau as shown in Table 2.2. For the
discretization error after k extrapolation steps one here obtains

"ik WD kTi;k � y.�/k :D kg0
k.0/k��2

i � � � �2
i�kC1 D �2

ikkg0
k.0/k�2kC1 ; (2.40)

with the same constant �ik as defined in (2.37).

Order and Step-Size Control

In order to characterize the linear versus quadratic asymptotic expansions, we write
�j D � j with � D 1 for the explicit Euler scheme and � D 2 for the explicit
mid-point rule. On the basis of the error formulas (2.37) and (2.40), the above
formula (2.32) readily suggests “optimal” step sizes for each column index k in
Table 2.2

��
k D � �kC1

s
	 � TOL

�kC1;k
; 	 < 1 : (2.41)

For strong algorithmic reasons one uses the subdiagonal error estimate

�kC1;k WD kTkC1;k � TkC1;kC1k � kTkC1;k � y.�/k

Thus each column is associated with its own step size suggestion. As for the amount
of work, this is essentially only dependent on the row i in the tableau, so that we

56 Explicit Numerical Integrators

may denote it by Ai. In order to measure the work per unit step we define the
computationally available quantities

Wk WD AkC1

�k
� D AkC1

��kC1;k

TOL

� 1
�kC1

:

With this set of values, we may find an “optimal” column index, say q, by requiring
the computable criterion

Wq D min
kD1;:::kmax

Wk (2.42)

Here a “greedy algorithm” argument has been used, see [17]. Once q is determined,
the step size �� D ��

q is taken as the basic step size for the next step. (In passing we
note that the same kind of idea is used to select an “optimal” order within embedded
explicit RK codes like DOP853.)

In addition to this order and step-size selection, the whole approximation table
Tik is exploited to monitor any unwanted deviation from an expected convergence
pattern, details are left to [14]. This abundance of information makes extrapolation
methods extremely robust in real life applications.

Dense Output

In general, extrapolation integrators adaptively select rather large step sizes due
to their efficient order and step-size control. If more output data are wanted, then
an extra tool is necessary. In connection with the explicit Euler or midpoint rule,
it is easy to add a Hermite interpolation tool, see [17, Section 7.1.2]. This cubic
interpolation is based on the information y0; f .y0/ and y1; f .y1/. The discrete values
y1 are anyway available at the end of each �-step; in order to get some accurate
value f .y1/, one will evaluate f after the extrapolation for y1; this does not increase
the overall computational amount, since this value can be stored to be used as
starting value for the next step. An efficient higher order technique for dense output
in explicit extrapolation methods has been work out by E. Hairer and A. Ostermann
in [32]; for the explicit midpoint rule, this technique requires a change of the
subdivision sequence away fromF2H, which is why we here do not pursue it. For the
purpose of systems biology, we are only interested to get a cheap way of evaluating
data at prescribed dense output points – an aim that can be achieved to sufficient
accuracy already with the cubic Hermite interpolation, given the adaptive step-size
and order control.

Note, however, that along this line backward dense output information is
available only after each �-step; consequently, such a tool is not sufficient to extend
the extrapolation method in the direction of delay differential equations, since there
the interpolation values are necessary during the discretization.

Explicit Numerical Integrators 57

Explicit Extrapolation Codes

An extrapolation code EULEX based on the explicit Euler scheme as basic
discretization has been exemplified in [14]; this code essentially served as a model
to explain the idea of an extrapolation method. Based on the explicit mid-point rule,
two implementations are quite popular, DIFEX1 due to [14], which includes the
above explained dense output option, and ODEX due to [34]; the two codes differ
only slightly in secondary details of the above order and step-size control and are
similarly efficient, both of them typically twice as fast as EULEX.

2.2.3 Adams Methods

In the two previous Sects. 2.2.1 and 2.2.2 we had presented one-step methods, i.e.
methods that only use information from t0 D 0 to compute an approximation y1 at
the next time step t1 D � . Already in 1855, J. C. Adams had the idea to exploit more
of the “history” of the trajectory.

General Scheme

Adams directly started from the integral form (2.5), which we repeat for conve-
nience as

y.�/ � y0 D
Z �

tD0

f .y.t// dt :

The idea is to replace the integrand f by a polynomial gk interpolating the k C 1

“previous” values

f .y1/; f .y0/; f .y�1/; : : : ; f .y�kC1/ :

This interpolation polynomial is unique and so we may write

f .y.t// ! gk.t/ D
kX

jD0

Lj.t/f .yj�kC1/

where the Lj denote the Lagrange polynomials that depend on the interpolation
nodes only, see, e.g., [17, Section 7.1]. Insertion of this expression yields a
discretization scheme of the kind

y1 � y0 D � .ˇkf .y1/ C ˇk�1f .y0/ C ˇk�2f .y�1/ C : : : C ˇ0f .yk�1// (2.43)

58 Explicit Numerical Integrators

where the coefficients ˇk; : : : ; ˇ0 are uniquely determined by

ˇj D 1

�

Z �

tD0

Lj.t/ dt D
Z 1

D0

Lj.
�/ d
 (2.44)

If ˇk D 0, the scheme is explicit, in which case the polynomial gk is of order k.

Remark 7 For readers with theoretical interest we briefly want to mention that
the above Adams method is not just an arbitrary candidate out of a large class of
possible multistep methods, but has an outstanding stability property. This stability
corresponds to the numerical solution of the trivial non-stiff ODE model y0 D 0,
obviously the special case of the Dahlquist test model for � D 0; it assures that the
obtained numerical solution dominates any possibly occurring “parasitic” numerical
artifacts. For more details see, e.g., [16, Section 7.3.1]. This goes with the fact that
Adams methods are only useful for non-stiff problems.

Discretization Error Estimate

Of course, to start such a scheme requires suitable starting values. Under certain
(unrealistic) assumptions on such starting values, a rough examination of these
schemes yields the discretization errors

y1 � y.�/ D O.�p/; p D
(

k; if ˇk D 0

k C 1; if ˇk ¤ 0
(2.45)

To start a scheme of order Np � 2, one must implement a start-up procedure

p D 1; 2; : : : ; Np � 1 :

The initial step is always an explicit Euler step. For the start-up procedure, the above
error behavior (2.45) changes from step to step, i.e. the order of discretization error
increases from step to step until it reaches the order level strived for.

PECE Methods

For ˇk ¤ 0 the scheme (2.43) is implicit and the order p is k C 1, i.e. one gains
one order in comparison with the explicit version. However, one now has to solve
a nonlinear system for the unknown y1. Originally, Adams had suggested to use
Newton’s method, while Moulton later suggested to use a fixed point iteration.
Today one realizes a variant named PECE method. In this approach, one starts with
the associated explicit Adams method to obtain some predictor yP

1 . This value is
then inserted into formula (2.43), wherein the value f .yP

1 / is evaluated (E) to supply
a corrector value yC

1 , which, in turn, requires the evaluation (E) of f .yC
1 /. This is the

Explicit Numerical Integrators 59

first step of a fixed point iteration, which would converge under some condition of
the kind

L� � const : (2.46)

This condition directly reminds one of the Lipschitz condition (2.8), which indicates
that this extension of the explicit Adams method, too, can only be expected to be
useful for non-stiff ODE problems.

For historical reasons, the explicit Adams methods are also called Adams-
Bashforth methods (dating back to 1883), whereas the implicit Adams methods
including the PECE methods are often named as Adams-Moulton methods.1

Order and Step-Size Control

The adaptive control of order and step size within any multistep method is much
more difficult than in the one-step case. We do not want to go too much into details
here, but refer interested readers to the textbook [16, Section 7.4]. For a potential
user of Adams methods, only a few general remarks seem to be appropriate:

• The coefficients ˇ0; : : : ; ˇk introduced in (2.43) can be calculated off-line, if
a uniform grid with constant step size � is realized, see (2.44). If, however,
some step-size control is realized, then this leads to a non-uniform grid, which,
in turn, changes the Lagrange polynomials Lj in every new integration step;
as a consequence, the coefficients need to be recomputed in the course of the
numerical computation whenever the grid changes. For this reason, the Lagrange
representation is replaced by some so-called Nordsieck implementation, which
allows an easier handling of varying grids.

• If one wants to vary the order, then an alternative implementation based on
Newton’s divided differences is preferred.

• Due to the fact that order and step-size control require different implementations,
Adams methods gain most of their efficiency on uniform grids and with constant
order, i.e. when the ODE to be solved exhibits some quite regular dynamics.
For the same reason, they are less reliable and robust in the efficient numerical
solution of problems with rapidly changing dynamics.

Adams Codes

A rather efficient modern adaptive PECE code is DEABM (abbreviating Adams-
Bashforth-Moulton) due to L. F. Shampine and H. A. Watts from 1979 or LSODE

1Moulton published his method not earlier than 1926, since it was regarded as a “military secret”
during World War I.

60 Implicit Numerical Integrators

(E stands for explicit) due to A. C. Hindmarsh [36] from 1980. All of these
implementations have a natural way of realizing a “dense output” option, since they
are based on interpolation.

2.3 Implicit Numerical Integration Methods

In this section, we present two types of efficient numerical stiff integrators, which
are extensions of the implicit Euler method. Their implicit structure requires the
numerical solution of nonlinear equations in each discretization step; this is realized
via Newton-type methods, which require a linear equation solve in each iteration
until convergence. It should be explicitly mentioned that solving these nonlinear
equations by some fixed point iteration would not be appropriate, since this would
assume some condition like (2.46), in contradiction to the intended treatment of stiff
equations. First, in Sect. 2.3.1, we discuss collocation methods, the most efficient
stiff integrators of implicit one-step or Runge-Kutta type. Next, in Sect. 2.3.2, we
elaborate the backward differentiation method (in short: BDF method), the optimal
candidate among multistep methods for stiff problems.

2.3.1 Collocation Methods

In Sect. 2.2.1, the general structure of explicit Runge-Kutta schemes has been
shown. In 1963, J. C. Butcher [10] extended these schemes in an interesting way.

Implicit Runge-Kutta Schemes

According to Butcher, an s-stage implicit Runge-Kutta scheme is denoted by

ki D f

0
@y0 C �

sX
jD1

aijkj

1
A ; i D 1; : : : ; s

y1 D y0 C �

sX
iD1

biki

In general, such a scheme is no longer recursive in the unknown directions ki, but
requires the solution of a system of s � d nonlinear equations for k1; : : : ; ks. Any
thus defined Runge-Kutta method can again be characterized by coefficients .b;A/,
where b is an s-vector, but nowA is a full .s; s/-matrix. In order to establish a general
RK method of order p, one has to solve Np algebraic equations (see Table 2.1) for
the s2 C s coefficients, which gives a lot more degrees of freedom than in the merely

Implicit Numerical Integrators 61

explicit RK case. The extension to the non-autonomous case with f .t; y/ again uses

ci D
sX

jD1

aij; i D 1; : : : ; s ; (2.47)

see (2.29) in Remark 5 for explicit RK methods.

L-Stability Conditions

For the class of general RK methods, there exists a simple necessary condition for
L-stability (recall (2.28) above), which we briefly want to derive here. Insertion of
the Dahlquist test model y0 D �y; y.0/ D 1 into the above RK formulas yields (in
matrix-vector notation and with eT D .1; : : : ; 1/)

y1.z/ D 1 C zbT.I � zA/�1e D 1 C bT.
1

z
I � A/�1e :

Obviously, if the matrix A can be assumed to be nonsingular, then one ends up with
the result

y1.1/ D 1 � bTA�1e : (2.48)

This formula has an interesting consequence. Assume the vector b is equivalent to
any row (say j) of the matrix A, i.e. bT D eT

j A, then one gets

y1.1/ D 1 � eT
j AA�1e D 1 � eT

j e D 0 : (2.49)

In other words: If the vector b is equivalent to any row of the nonsingular matrix A
and the corresponding implicit RK method is A-stable, then it is L-stable. We will
make use of this property below.

Collocation Approach

Rather than constructing implicit RK methods via solving the many algebraic
equations for the coefficients, one may construct a subset of such methods, called
collocation methods, by some direct approach. Therein the continuous solution y.t/
is approximated by some polynomial function u.t/ with

u.0/ D y0; u.�/ D y1

62 Implicit Numerical Integrators

that satisfies the following collocation conditions:

u0.ci�/ D f .u.ci�//; i D 1; : : : ; s : (2.50)

The prescribed (normalized) collocation nodes

0 � c1 < : : : < cs � 1

characterize the method. Assuming such a polynomial exists, we may introduce a
Lagrange basis fL1; : : : ; Lsg with respect to the nodes ci. If we identify

ki D u0.ci�/; i D 1; : : : ; s ;

we may write the polynomial derivative as

u0.
�/ D
sX

jD1

kjLj.
/ : (2.51)

Upon integrating this relation, we obtain

u.ci�/ D y0 C �

Z ci

D0

u0.
�/d
 D y0 C �

sX
jD1

aijkj ;

where we have defined

aij D
Z ci

D0

Lj.
/d
; i; j D 1; : : : ; s : (2.52)

Insertion of these definitions into the collocation conditions (2.50) verifies that
collocation methods are in fact special implicit RK methods. Moreover, we obtain

y1 D y0 C �

Z 1

D0

u0.
�/d
 D y0 C �

sX
jD1

bjkj ;

where we have defined

bj D
Z 1

D0

Lj.
/d
; j D 1; : : : ; s : (2.53)

Thus we have all pieces of an implicit RK method together: With the choice of the
(normalized) collocation nodes c1; : : : ; cs we can define the Lagrange polynomials
L1; : : : ; Ls and thus via (2.52) and (2.53) the coefficients .b;A/.

Implicit Numerical Integrators 63

Discretization Error

The discrepancy between the ODE solution and the collocation polynomial is given
by

y.�/ � u.�/ D
Z 1

D0

f .y.
�//d
 �
sX

jD1

bjf .u.cj�// D O.�pC1/ : (2.54)

Obviously, this represents some quadrature error (see, e.g., [17, Section 9.2]) of
consistency order p.

In order to determine the maximally possible consistency order p, we arrive at
the Gauss-Legendre quadrature, see, e.g., [17, Section 9.3]. In this algorithm, the
collocation nodes are just the zeros of the Legendre polynomial Ps.
/;
 2 Œ0; 1�,
which satisfy

0 < c1 < : : : < cs < 1 :

The corresponding Gauss collocation method exhibits the following properties:

• Consistency order p D 2s (maximum possible order).
• A-stability with S D C�.
• Asymptotic behavior jy1.1/j D 1 .

This class of methods has further intriguing properties, which are discussed in [16,
Section 6.3.4], but usually do not play a role in applications within systems biology.
Here we would prefer an L-stable discretization method. That is why, in view
of (2.49), a quadrature rule with cs D 1 is selected, also named Radau quadrature.
The remaining coefficients c1; : : : ; cs�1 are then the zeros of the Jacobi polynomial
P.0;1/

s�1 .
/ so that

0 < c1 < : : : < cs�1 < 1 :

Under this sufficient assumption, the coefficient matrix A can be shown to be
nonsingular (proof skipped here).

The thus constructed Radau collocation method is characterized by the following
properties:

• consistency order p D 2s � 1,
• A-stability C� � S,
• asymptotic stability y1.1/ D 0.

Hence, this collocation method is L-stable, as desired.

64 Implicit Numerical Integrators

Radau Collocation Codes

A highly efficient code, named RADAU5, has been implemented by E. Hairer, see
[33], and can be downloaded from his homepage. This code, obviously realizing the
case s D 3; p D 5, uses a Newton-like iteration to solve the arising sd nonlinear
equations. In each of these iterations, the direct solution of the linear equations
is speeded up by factor of 5 exploiting the special structure of the arising matrix.
Since the method is of collocation type, there exists a natural interpolation u.
�/

for all values
 2 Œ0; 1�, which is the basis for a “dense output” option; in turn, this
opens the door to a possible application to delay or retarded differential equations,
see (1.5). The corresponding code RADAR5 due to N. Guglielmi and E. Hairer, see
[31], is a direct extension of RADAU5 for this class of problems.

2.3.2 BDF Method

In this multistep approach, we start from the differential equation in its original form
at time point t1 D � , i.e.

y0.�/ D f .y.�// (2.55)

and replace the unknown solution y by a polynomial gk interpolating the k C 1

“previous” values

y1; y0; y�1; : : : ; y�kC1

on the uniform grid t1; t0; t�1; : : : ; t�kC1 with stepsize � . This polynomial is uniquely
defined so that we may write

y.t/ ! gk.t/ D
kX

jD0

Lj.t/yj�kC1

where the Lj denote the Lagrange polynomials that depend on the interpolation
nodes only, see, e.g., [17, Section 7.1]. Insertion of the expression

g0
k.�/ D

kX
jD0

L0
j.�/yj�kC1 D 1

�

kX
jD0

L0
j.0/yj�kC1

into (2.55) yields the discretization scheme

˛ky1 C : : : C ˛0y�kC1 D � f .y1/ (2.56)

Implicit Numerical Integrators 65

in terms of uniquely defined coefficients ˛j D L0
j.0/. This special implicit multistep

method has been suggested for stiff integration by C. W. Gear [28] in 1971. The
relation (2.56) may be interpreted as an interpolation formula for numerical differ-
entiation based on backward values, which gave the name backward differentiation
formula, briefly: BDF.

In each step of a k-order BDF method, a system of only d nonlinear equations
for y1 has to be solved; note that the dimension of the system is independent of the
order k. For k D 1 the implicit Euler method arises. The nonlinear systems must
be solved by some Newton-like method, since any fixed point iteration would not
be appropriate for stiff ODE problems. Consequently, several linear systems of the
kind (ignoring the specific argument by merely writing .�/)

�
˛kId � � fy.�/

�
�y D � f .�/ :

must be solved until convergence of the Newton-like iteration.

Stability Properties

Upon inserting the usual Dahlquist test model (2.23), the discretization (2.56) yields

y1.z/ D �˛k�1y0 C : : : C ˛0y�kC1

˛k � z
:

For z ! 1 we thus obtain

y1.1/ D 0

which clearly looks like an extension of one of the conditions for L-stability of one-
step methods. Of course, we would need A-stability in addition. However, stability
analysis of multistep discretizations is much more subtle than for one-step methods;
for the purpose of this book we do not dwell on the details. Important in our context
is the so-called second Dahlquist barrier (see, e.g., [16, Section 7.2.2]): It states that
multistep methods with order k > 2 cannot be A-stable, which rules out L-stability
for k > 2. As the coefficients are determined, we must be content with L(˛)-stability
as it comes out, see Table 2.3. Not shown in the table is that the method is not even
consistent for k > 6.

Due to the drastic deterioration of L(˛)-stability for increasing order, oscillatory
phenomena should be computed with order k � 2. There are well-known test
examples with oscillatory behavior where BDF methods of higher order slow down

Table 2.3 L(˛)-stability of
BDF methods. Observe the
second Dahlquist barrier

k 1 2 3 4 5 6

˛ 90ı 90ı �86ı �73ı �52ı �18ı

66 Linearly Implicit Numerical Integrators

significantly or even produce wrong results, see [14]. Recall that k D 1 alone is not
a really good idea, since the implicit Euler method is known to exhibit the unwanted
“superstability”.

Order and Step-Size Control

As for the Adams scheme, the BDF scheme, too, requires suitable starting values.
Under certain (unrealistic) assumptions on such starting values, a rough examination
supplies the discretization error

y1 � y.�/ D O.� kC1/; (2.57)

To start a scheme of order k, one must implement a start-up procedure

k D 1; 2; : : : ; k � 6 :

The starting step is always an implicit Euler step. With such a procedure, the above
discretization error bound changes from step to step.

Just as in the Adams case, algorithmic difficulties in the adaptive selection of
order and step sizes arise. The derivatives of the Lagrangian polynomials change
whenever the local step sizes change, leading to some non-equidistant grid. This
leads to the dilemma of implementation as either a Nordsieck variant or a divided
difference variant. By and large, the method gains its best efficiency when run with
constant step size and fixed order, which makes it a bit less robust than one-step stiff
integrators.

BDF Codes

Among the most popular and efficient BDF codes are: the code LSODI (I
stands for implicit) due to A. C. Hindmarsh [36]; the code LSODA (A stands for
automatic switching) which automatically switches between the (implicit) BDF and
the (explicit) Adams method; VODE due to [8], a variable step size/variable order
BDF code, or the most recent code DASSL due to L. Petzold [51]. Due to their
structure based on interpolation, a natural “dense output” option is usually available.

2.4 Linearly Implicit One-Step Methods

This section is devoted to efficient numerical stiff integrators that, in contrast to the
methods of the previous Sect. 2.3, merely require the numerical solution of a low
fixed number of linear equations per discretization step.

Linearly Implicit Numerical Integrators 67

General Idea

The key issue in numerical stiff integration is the correct treatment of asymptotic
stability of a given ODE model by step sizes that reflect the smoothness of the
“slow” part of the solution, not that of the “fast” transition part of the solution, in
cases where this is of less interest. In order to tackle this issue, one may subtract a
linear homogeneous term on both sides of the ODE thus obtaining

y0 � Jy„ƒ‚…
implicit

D f .y/ � Jy„ ƒ‚ …
explicit

DW f .y/; y.0/ D y0 : (2.58)

For stability reasons, the matrix J herein is either the Jacobian J D fy.y0/ or some
approximation of it. The idea is to discretize the linear part on the left side implicitly
(hence the name), but the “deflated” right-hand side f .y/ explicitly. Clearly, such
discretization schemes are computationally easier to realize than the fully implicit
schemes from the preceding Sect. 2.3.

2.4.1 Rosenbrock-Wanner Methods

In 1963, H. H. Rosenbrock suggested a linearly implicit extension of explicit RK
methods, which was later modified and improved by G. Wanner [33]. That is why
such schemes today are called Rosenbrock-Wanner (ROW) schemes:

�
I � �ˇii J

�
ki D �

2
4 i�1X

jD1

.ˇij � ˛ij/ Jkj C f

�
y0 C �

i�1X
jD1

aijkj

�3
5 (2.59)

The fact that the first right-hand sum above ends at index i � 1 indicates that the
system is block-triangular, while the second sum is anyway explicit. If the ˇii are all
different, then a sequence of s linear systems with .d; d/-matrices I � �ˇiiJ must be
solved numerically. To simplify the linear algebra, very early the choice

ˇii D ˇ; i D 1; : : : ; s

has been suggested, which implies that only one matrix I � �ˇJ needs to be
decomposed throughout all stages.

In the above ROW methods, the identification J D fy.y0/ is strictly assumed.
As in general RK methods, the coefficients .˛ij/; .ˇij/ must be determined such
that NROW

p D NRK
p algebraic equations corresponding to order p must be satisfied,

see Table 2.4. If, however, the Jacobian J is replaced by an arbitrary Jacobian
approximation matrix W, then one speaks of W-methods. As a consequence, a larger
number NW

p of algebraic equations needs to be satisfied, see again Table 2.4.

68 Linearly Implicit Numerical Integrators

Table 2.4 Number of
algebraic conditions to be
satisfied by coefficients
.˛ij/; .ˇij/ of ROW- versus
W-methods

p 1 2 3 4 5 6 7

NROW
p 1 2 4 8 17 37 85

NW
p 1 3 8 21 58 166 498

ROW Codes

As in Runge-Kutta methods, a whole “ROW-technology” has evolved over the years
that led to a large number of implementations. In most cases, ROW methods of
low order have been developed, for reasons clear from Table 2.4. Construction
principles were, of course, the desirable L-stability and economy of evaluations
as well as matrix decompositions and forward/backward substitutions. Among the
most efficient codes of this kind are certainly

• ROS3PL with p D 3 and s D 4 due to J. Lang and D. Teleaga [43], an L-stable
ROW-method, which is robust against Jacobian perturbations (even though not a
full W-method),

• RODAS with p D 4 and s D 6 due to E. Hairer and G. Wanner [33]

All these codes are adaptive, which here means they possess an automatic step-size
control, but keep the order fixed. A “dense output” option can be naturally realized
within the embedding of the ROW methods.

2.4.2 Extrapolation Methods

As in the non-stiff case, the construction of a subset of linearly implicit Runge-Kutta
methods can be directly realized via extrapolation, thus avoiding the cumbersome
solution of the many algebraic equations for the coefficients. In such methods, one
merely has to apply some well chosen basic discretization scheme of lowest order
that is suitable for stiff integration. Higher orders are then obtained via the Aitken-
Neville algorithm. Order and step-size control is realized just as in the explicit
extrapolation methods. For ODE problems in systems biology, two kinds of schemes
are useful.

Linearly Implicit Euler Discretization

Starting from the basic idea in (2.58), one discretizes the linear part on the left by
the implicit Euler scheme, which leads to (for n D 0; 1; : : : and internal step size �)

nC1 D .I � � J/�1
�
n C � f .yn/

� D n C � .I � � J/�1f .yn/ : (2.60)

Linearly Implicit Numerical Integrators 69

Table 2.5 Linearly implicit
Euler scheme with extrapo-
lation when subdivision FH

is chosen. L(˛)-stability of
subdiagonal elements TkC1;k

in the extrapolation tableau

k 1 2 3 � � � 7

˛ 90ı 90ı �89:77ı

Note that this is formally some W-method, since the matrix J is not required to be the
exact Jacobian fy.yn/, but will usually be selected as some Jacobian approximation
J � fy.y0/. In passing we note that for J D 0 we obtain the extrapolation method
based on the explicit Euler scheme. This basic scheme is run repeatedly with
successively smaller internal step sizes (compare Sect. 2.2.2 above)

�k D �=nk; nk 2 FH D f1; 2; 3; 4; : : :g :

This implies that nk linear systems need to be solved requiring the decomposition
of .d; d/-matrices I � �kJ and the corresponding number of forward/backward
substitutions.

From theory, one knows that this discretization permits an asymptotic �-
expansion, see [16, Section 6.4.2]. This is the theoretical basis for some �-
extrapolation, see Table 2.2 for the corresponding triangular Aitken-Neville scheme
to compute elements Tik.

Stability properties. Insertion of the Dahlquist test model (2.23) confirms that all
elements Tik (with i � k) of the extrapolation tableau satisfy the necessary condition
(let z D �� and J D �)

Tik.z/ � 1

zi�kC1
! 0 for z ! 1 :

This is one of the necessary conditions for L-stability. In Table 2.5, we arrange the
L(˛)-results for the subdiagonal elements in the extrapolation tableau, which are
actually chosen for error as well as order and step-size control.

Dense output. As usual for adaptive extrapolation integrators, this one also selects
rather large step sizes due to its efficient order and step-size control. A cubic Hermite
interpolation tool has been constructed in [19] based on the information y0; f .y0/

and y1; f .y1/. In the DAE case, good approximations for f .y1/ are obtained via �-
extrapolation based on the values .n � n�1/=� for n 2 FH. An efficient higher
order technique has been worked out by E. Hairer and A. Ostermann [32].

70 Linearly Implicit Numerical Integrators

Linearly Implicit Midpoint Rule

As in the non-stiff case, we would prefer to construct some basic discretization
scheme that permits �2-extrapolation. This has been achieved by G. Bader and
P. Deuflhard [3]. As a symmetric extension of the explicit mid-point rule, they
introduced the linearly implicit midpoint rule according to

.I � � J/nC1 � .I C � J/n�1 D 2� f .yn/ (2.61)

to be started by a linearly implicit Euler step. Instead of an extension of the
Gragg final step (2.38), they introduced a different symmetric final step, which also
requires an additional evaluation of f .n� /,

y1.� I ��/ WD On� D 1

2
.n�C1

C n��1 /; n� even : (2.62)

The reason for this final step will be explained below in the context of stability.
Stability properties. Insertion of the Dahlquist test model (2.23) yields

• for the odd indices

2mC1 D 1

1 � z

�
1 C z

1 � z

�m�1

! .�1/m

z
! 0 ; (2.63)

• for the even indices

2m D
�

1 C z

1 � z

�m

! .�1/m ! 0 ; (2.64)

• and for Bader’s symmetric final step

O2m D 1

2
.2mC1 C 2m�1/ ! .�1/m�1

z2
! 0 ;

which can be seen to perform some asymptotic smoothing.

In order to have the same asymptotic sign pattern for all smoothing steps, one
arrives at the sequence F˛ shown below. Clearly, with these specifications, the
asymptotic result

Tik.z/ � �1

z2
! 0 for z ! 1

is obtained, i.e. one has a uniform asymptotic pattern throughout the whole
extrapolation table. We are thus only left to study the L(˛)-stability pattern, which
is given in Table 2.6.

Linearly Implicit Numerical Integrators 71

Table 2.6 Linearly implicit mid-point rule with
extrapolation when subdivision sequence F˛ is cho-
sen. L(˛)-stability of subdiagonal elements TkC1;k

in the extrapolation table

k 1 2 3 4 5 6

p 1 3 5 7 9 11

˛ 90ı 90ı �88ı �86ı �87ı �87ı

Obviously, the stability properties including the final step are very satisfactory.
However, from the detailed study of the intermediate discretization steps we learned
that the asymptotic behavior (2.63) for the odd indices is satisfactory, while the
behavior (2.64) for the even indices is unsatisfactory. As a consequence, this
extrapolation method is recommendable mainly for “moderately stiff” problems,
which, however, represent the typical problems in systems biology.

Quadratic extrapolation. For a scheme as specified, the existence of an asymp-
totic �2-expansion has been shown in [3]; it gives rise to a �2-extrapolation for even
subdivision sequences. Additional conditions come from the above stability analysis
that lead to the sequence

�k D �=nk; nk 2 F˛ D f2; 6; 10; 14; 22; 34; 50g :

The index ˛ comes from the empirically introduced property nkC1=nk � ˛ WD 1:4.
These data enter into a triangular Aitken-Neville scheme with Tik for i � k as shown
in Table 2.2. Needless to say that, of course, an adaptive version is implemented,
see (2.41) for the step size control and (2.42) for the order control, the latter
requiring some subtle decision about what should be inserted as computational work
per discretization step.

Dense output. As in the other extrapolation integrators, a cubic Hermite inter-
polation polynomial can be constructed based on the information y0; f .y0/ and
y1; f .y1/. The idea is the same as for the explicit midpoint rule: at the end of each �-
step one evaluates f .y1/, which then can be recycled as f .y0/ in the next integration
step so that no additional function evaluation is needed (apart from the very last
step). Again we mention that the accuracy of this Hermite interpolation formula
in combination with the order and step-size control is enough for the purpose of
systems biology.

Linearly Implicit Extrapolation Codes

The adaptive extrapolation code EULSIM has been designed on the basis of the
linearly implicit Euler scheme (originally called Semi- IMplicit Euler scheme,
hence the name). The more elaborate extrapolation code LIMEX due to [19, 23]
is an extension that also applies to quasilinear differential-algebraic equations. For
“moderately stiff” ODE problems, which in systems biology are the most frequent

72 Roadmap for Numerical Integrators

case, the code METAN1 [3], based on the linearly implicit midpoint rule, typically
supersedes LIMEX. For an illustration, see Sect. 2.5.2. In both codes, dense output
options are available based on cubic Hermite interpolation. The code METAN1 also
found its way into the book on “Numerical Recipes” [52], p. 735.

2.5 Choice of Numerical Integrator

A code may fail; but it must not lie.
(Beresford N. Parlett)

In the sections above, a number of different methods including efficient codes have
been discussed to necessary detail. The present section is devoted to questions that
a user may have when deciding which of these codes to apply for his problem at
hand. In Sect. 2.5.1, we arrange methods and associated codes (written as CODES)
again; for download addresses see the final chapter Software at the end of the book.
In Sect. 2.5.2, we illustrate the choice of integrator at two moderate size examples
from systems biology, which look rather similar in terms of the differential equation
model, but behave differently in terms of the numerics. Finally, in Sect. 2.5.3, we
present a quite challenging large scale problem dealing with the so-called Warburg
effect of tumor cells.

2.5.1 A General Roadmap for Numerical Integrators

One-Step Methods

In the sections above we have discussed explicit one-step methods for non-stiff ODE
problems such as

• explicit Runge-Kutta methods in Sect. 2.2.1 (DOPRI5 , DOP853), and
• extrapolation methods in Sect. 2.2.2 (DIFEX1, ODEX) ,

as well as (linearly) implicit methods for stiff problems such as

• Radau collocation methods in Sect. 2.3.1 (RADAU5, RADAR5),
• Rosenbrock-Wanner methods in Sect. 2.4.1 (ROS3PL, RODAS), and
• extrapolation methods in Sect. 2.4.2 (LIMEX, METAN1).

All of these codes select a “locally optimal” step size on the basis of local
discretization error estimates, extrapolation methods also a “locally optimal” order,
codes like DOP853 an optimal order among the three orders 8,5,3. In parallel with
the dynamics of the ODE system, non-uniform grids are obtained with problem
dependent output points, typically much less than with uniform grids. If more
than the automatically computed output data are wanted, which is often called the
“dense” output option, then extra tools for interpolation are appropriate to avoid

Roadmap for Numerical Integrators 73

wasting computing time due to “too many” output points; such extra tools are
easily available in embedded RK methods as well as in collocation methods, while
extrapolation methods require an additional (computationally cheap) device based
on Hermite interpolation. Compared to multistep methods, implementations of these
methods exhibit only a small amount of overhead beyond f -evaluations. Generally
speaking, these methods are particularly efficient in ODE problems with strongly
varying dynamics, a feature that is especially true for extrapolation methods and
DOP853, since they additionally choose some “locally optimal” order.

Multistep Methods

From the class of multistep methods we have discussed

• (explicit) Adams methods for non-stiff ODE problems in Sect. 2.2.3 (LSODE,
DEABM),

• (implicit) BDF methods for stiff problems in Sect. 2.3.2 (LSODI, VODE, and
DASSL), and

• a multistep code that automatically switches between Adams and BDF method
(LSODA).

All of these codes realize some control of order and step size, but in a much
more restricted sense than in one-step methods. Efficient implementations for a
change of order are different from those for a change of step sizes. Generally
speaking, multistep methods gain their efficiency with quasi-uniform grids, a
property prohibitive for problems with strongly varying dynamics, but in favor of
smoothly varying dynamics; this goes with the intuition that a smooth dynamics
can gain efficiency from exploiting the “history” of the trajectory. For smooth
dynamics, the number of evaluations of the right-hand side f may be considerably
less compared to one-step methods. For the BDF method, an order restriction k � 2

is recommended when applied to oscillatory problems, which do occur in systems
biological networks. By their common construction principle via interpolation, both
Adams and BDF methods naturally generate “dense” output, see Sect. 2.2.1. In
comparison with one-step methods, they usually require much more computational
overhead which often outweighs the possibly lower number of f -evaluations.

Non-stiff Versus Stiff Integration

The question of whether a given ODE problem should be regarded as stiff or non-
stiff, stands at the beginning of each systems biological simulation. For a non-stiff
problem, an explicit method will do, which only requires evaluations of the right-
hand sides f and thus is faster per integration step than an implicit method. For a
stiff problem, implicit or a linearly implicit methods may pay off, which additionally
require the numerical solution of linear equations involving the Jacobian of the right-
hand side, but over significantly less integration points. For really stiff problems, an

74 Roadmap for Numerical Integrators

explicit method would suffer from severe step-size restrictions that would blow up
the overall computing time.
Qualitative insight. As for the practical classification “stiff/non-stiff” in a given
ODE problem, quite often some qualitative insight is helpful before starting
the simulation: stiff problems are typically characterized by the fact that they
asymptotically approach some steady state point. Then, generally speaking, an
implicit or linearly implicit method should be applied. However, even for such
problems, an explicit method might be preferable, if one is only interested in the
“transition” phase.
Rule of thumb. As for the theoretical distinction between stiff and non-stiff ODEs,
we have elaborated quite a bit on this question, but finally recommended a rather
pragmatic approach: ODE problems, wherein the extra computational amount
required for the arising nonlinear (or linear) equations pays off, are regarded as
stiff. Consequently, whenever a stiff/non-stiff characterization of an ODE problem
is unclear, the following rule of thumb is advised: start with an explicit method,
say DOPRI5, and only switch to an implicit or linearly implicit method, say
METAN1, if the explicit method seems to suffer from step-size restrictions that
seem “uninterpretable” in view of the underlying model.

For an illustration of stiff versus non-stiff ODE problems, the following example
may serve.

Example 8 (Gene expression) Let a gene expression be described by the scheme

gene
k1

GGGGGA mRNA
d1

GGGGGGA ;;

;
k2 � [mRNA]

GGGGGGGGGGGGGGGGA protein
d2

GGGGGGA ;;

wherein k1 is the constitutive transcription rate, k2 the translation rate, d1 the mRNA
degradation rate, and d2 the protein degradation rate. We assume that this gene
expression is unregulated, i.e. the gene is always on, which can be modelled by
setting its concentration g D Œgene� 	 1. Let m D ŒmRNA� the concentration of
mRNA and p D Œprotein� the concentration of the protein. Thus one arrives at the
ODE initial value problem

m0 D k1 � d1m; m.0/ D 1; p0 D k2m � d2p; p.0/ D 0 :

Let the kinetic parameters be selected as k1 D 2; d1 D 1; k2 D 1; d2 D 0:01.
The steady state point is m� D k1=d1; p� D .k1k2/=.d1d2/. The numerical solution
is shown in Fig. 2.10. As can be observed, mRNA reaches its steady state much
faster than the protein. This implies that the problem can be regarded as stiff.
In Fig. 2.11, the step sizes chosen by a non-stiff integrator (here: DOPRI5) are
compared with those chosen by a stiff integrator (here: LIMEX).

Roadmap for Numerical Integrators 75

0 5 10
1

1.2

1.4

1.6

1.8

2

t

m
(t

)

0 100 200 300 400 500
0

50

100

150

200

t

p(
t)

mRNA dynamics protein dynamics

(a) (b)

Fig. 2.10 Numerical solution for Example 8. Note the different time-scales in the two plots: The
mRNA concentrations changes much more rapidly than the protein concentration

0 100 200 300 400 500
10

−4

10
−2

10
0

10
2

10
4

t

τ

Step sizes chosen by non-stiff integrator.

0 100 200 300 400 500
10

−4

10
−2

10
0

10
2

10
4

t

τ

Step sizes chosen by stiff integrator.

(a) (b)

Fig. 2.11 Example 8. Automatic step-size selection by two different integrators. Common local
error tolerance TOLD 10�6 . Left: Non-stiff integrator DOPRI5. “Unreasonable” step-size
restriction with many ups and downs in the steady state phase. Right: Stiff integrator LIMEX.
No step-size restriction in the steady state phase

Remark 8 For quite a while research has focused on the construction of methods
that automatically classify stiff versus non-stiff problems, switching between
explicit and implicit codes during the computation. An example of this type is the
quite popular multistep code LSODA that automatically switches between stiff
(BDF) and non-stiff (Adams) methods. There is, however, a principal difficulty:
The distinction is easy in an implicit method (here: BDF), since there Jacobian
information is available; but then, in a non-stiff problem, the bulk of the compu-
tational amount has already been spent so that not too much computing time can be
saved. The distinction is difficult in an explicit method (here: Adams), since there
the necessary information on the Jacobian matrix is missing.

76 Roadmap for Numerical Integrators

Computational Speed

Suppose the decision between non-stiff or stiff integrator has been made. Then the
choice among explicit or implicit integrators, respectively, must be made. The task
to find the “fastest” code for the problem at hand is not as easy as one might expect.
In published comparisons of computing times for different codes, the multistep
community quite often only gives the number of f -evaluations excluding overhead,
while the one-step community tends to present only total computing times, which
often depend on the selected computer.

Non-stiff integrators. For this class of methods, the total computing time (CPU
time) originates from the number Nf of f -evaluations (at a cost of Cf each) and the
overhead ˝ D !method � d, usually proportional to the dimension d of the ODE
system with a method dependent proportionality factor !method. Thus we arrive at

CPU D Cf � Nf C ˝ D Cf � Nf C !method � d :

As explained above, multistep (ms) and one-step (os) methods may be characterized
by the relations

Nms
f � Nos

f ; !os
 !ms :

Obviously, the distinguishing quantity will be

� D Cf =d ;

which can be interpreted as “evaluation time per component of the right-hand side
f ”. From it, we may derive the following rule of thumb:

• Whenever � is “not too large”, then some explicit Runge-Kutta or extrapolation
method should be chosen; in systems biology, this seems to be the most
frequently occurring case, since each component typically couples only with few
other components.

• If � is “large”, then one should prefer an Adams method.

If the expected dynamics is “strongly varying”, then a one-step method should be
taken anyway. Compared to the optimized explicit Runge-Kutta codes DOPRI5 and
DOP853, the two extrapolation codes DIFEX1 or ODEX typically are regarded
as slightly slower in standard non-stiff ODE problems, but slightly more robust in
challenging real life problems.

Stiff integrators. For implicit and linearly implicit integrators there is no such
simple complexity theory as in the non-stiff case. Here we have to additionally
count the number of matrix decompositions and of forward/backward substitutions.
This confuses the picture quite a bit. What remains valid is that the BDF method
as a multistep method also requires a much larger overhead than the one-step
competitors. Moreover, the linearly implicit one-step methods (Rosenbrock-Wanner
or extrapolation method) are much simpler than their implicit counterparts, which

Roadmap for Numerical Integrators 77

particularly pays off for large ODE systems, when the arising linear systems may
even be solved iteratively.

Accuracy

Recall from Sects. 2.1.1 and 2.1.2 that a user of a numerical integrator can only
prescribe a local error tolerance TOL, typically split into RTOL, a relative error
tolerance, and ATOL, an absolute error tolerance. Note that RTOL relies on an
efficient scaling (see the associated item below). The achieved global accuracy ERR
then depends on the condition of the problem. In real life problems, the condition
number is usually computationally unavailable. Hence, a user should develop some
“feeling” about the necessary error tolerance. As for the choice of the integrator,
the achieved accuracy will mostly be better, if less integration points are needed – a
feature that usually speaks for extrapolation methods.

Computational Parameter Sensitivity Analysis

In the class of problems envisioned here, the additional numerical integration of
the sensitivity equations will usually come up. From Sect. 1.3.2, we recall that the
sensitivity yp with respect to some parameter p (dropping the index) is described by
the equations

y0
p D fy.y.t/; p/yp C fp; yp.0/ D 0 :

As already mentioned in Remark 4, these equations must be solved simultaneously
with the original model equations y0 D f .y/ to obtain the argument inside fy.�/; fp.�/.
The most convenient way to realize the above variational equation is to generate the
exact formulas for fy and fp from some chemical compiler simultaneously with the
generation of the right hand side f (see Sect. 1.2.3).

If some stiff integrator is employed, then the Jacobian fy and the decomposition
of the matrix I �ˇ� fy.y0/ can be also included in the integration of the state variable
ODEs. Within any linearly implicit one-step method, the same idea as in (2.58)
works again in the form

y0
p � Jyp„ ƒ‚ …
implicit

D .fy.y; p/ � J/yp C fp„ ƒ‚ …
explicit

yp.0/ D 0 : (2.65)

An efficient implementation of this idea within the code LIMEX has been suggested
and worked out by M. Schlegel et al. [55], which pays off especially in large
ODE networks. For BDF methods, which require the iterative solution of nonlinear
equations, an especially adapted technique has been worked out by T. Maly and L.
Petzold [44].

78 Roadmap for Numerical Integrators

Discontinuity Treatment

In some applications, the right-hand sides f contain discontinuities at certain points.
In systems biology, such a situation typically occurs when different models are used
to describe different processes before or after some characteristic event (day-night,
say). If one ignores such points by just “overriding” them with a numerical inte-
grator, then usually the accuracy after these points will be poor. This phenomenon
occurs less marked, if the employed integrator is equipped with an automatic order
control that allows for sudden local drops of order (as in extrapolation methods).
In principle, however, this kind of difficulty should be tackled differently: The
integration should be terminated at these points and restarted thereafter; in this way,
the accuracy can be preserved. Note that this procedure is a structural disadvantage
for any multistep method, which requires a restart from order k D 1 up to the
locally optimal order after the discontinuity point. For this reason, certain one-step
procedures have been designed to realize some “quick start-up”.

Example 9 For the purpose of illustration, we consider an artificial example
constructed by R.D. Russell and L.F. Shampine [54]:

y00 D y � ty0 C tet � jtj.6 � 12t C 2t2 � 3t3/;

y.�1/ D e�1 � 2; y0.�1/ D e�1 C 7:

Here a discontinuity of y000 occurs at t D 0, known in advance. The unique solution
is

y.t/ D
(

et C t3 � t4; t � 0

et � t3 C t4; t � 0
:

After the point t D 0, accuracy will be reduced, if a numerical integrator without
order control is used, see Fig. 2.12. On the contrary, stop and restart of the
integration at t D 0 preserves the accuracy also beyond t D 0.

Dense Output

Such an option treats the case that more output points are wanted than automatically
delivered by the step-size (and possibly order) control. This situation may well occur
in systems biological modelling, there mainly for print-out. In addition, as worked
out in the next Chap. 3, this option may also be important for parameter identifica-
tion, when measurements are “too dense” compared with the step sizes selected by
the adaptive integrators. Suppose one stopped the integrator at each of these points,
then “too much” computational effort would be wasted. In particular, integrators
with adaptive order control would find the lowest possible orders as optimal, if the
distance between two neighboring points were “too small”. A dense output option

Roadmap for Numerical Integrators 79

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

t

τ k

Stepsizes in DOPRI5 without restart.

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

t

τ k

Stepsizes in DOPRI5 with restart.

−1 −0.5 0 0.5 1
10

−15

10
−10

10
−5

t

|y
k−

y(
t k)|

Error with DOPRI5 without restart.

−1 −0.5 0 0.5 1
10

−15

10
−10

10
−5

t

|y
k−

y(
t k)|

Error with DOPRI5 with restart.

(a) (b)

(c) (d)

Fig. 2.12 Example 9. Left: A discontinuity of y000 at t D 0 causes step size reduction and accuracy
loss. Right: Stop and restart of the integration at t D 0 preserves the accuracy also beyond t D 0

will usually leave the step-size control untouched and apply some interpolation
formula for the points in between the automatically selected points. Such an option
is easily implemented in multistep methods, Adams (Sect. 2.2.3) as well as BDF
(Sect. 2.3.2) methods, since they are both constructed via interpolation formulas. In
explicit RK methods, this option is conveniently realized via embedding techniques
(Sect. 2.2.1). In the implicit Radau methods, there is anyway a natural representation
of the whole trajectory via collocation. Extrapolation methods need to implement
an extra device based on cubic Hermite interpolation; higher order dense output
formulas have been worked out by E. Hairer and A. Ostermann [32].

Delay Differential Equations

As already mentioned in (1.5) in the introduction, the standard ODE system is
sometimes replaced by a delay system. In biological systems, the retardation or

80 Roadmap for Numerical Integrators

delay time � > 0 typically depends nonlinearly on the solution y, so that instead
of (1.5) one should better write

y0 D f .y.t/; y.t � �.y.t//// ; y.t/ D �.t/ for Œ��; 0�

with a given initial function �. Numerical integrators with a dense output option
also permit the treatment of delay or retarded differential equations (DDEs),
see (1.5). Among the explicit RK methods, we mention the code RETARD due to
E. Hairer, among the implicit RK methods the code RADAR5 due to N. Guglielmi
and E. Hairer [31]. In MATLAB, the solver dde23 due to L. F. Shampine [56] is
provided for DDEs with constant delays, a case rare in systems biology; this code
tracks discontinuities and integrates numerically by the explicit Runge-Kutta (2,3)
pair and an interpolant implemented within MATLAB’s ode23.

Reliability

A numerical integrator is said to be “reliable”, if the delivered solutions are
“accurate enough” compared with the condition of the problem at hand. For a basic
understanding of this issue recall Sects. 2.1.1 and 2.1.2 where the relation of local
and global accuracy has been discussed in some detail. From this discussion we
know that local discretization errors need to be estimated; these estimates then enter
into some adaptive control of step sizes (and possibly also orders). The finally
achieved accuracy additionally depends on the structure of the underlying ODE
system and the number of integration points. In this respect, one-step methods, in
particular extrapolation methods, have a natural advantage, since they require less
integration points than multistep methods.

Robustness

In the world of mathematical ODE modelling, this is the most important property:
a numerical integrator should solve a large class of given problems (no matter
how difficult) without much ado. Apart from the many details discussed above,
robustness typically requires additional heuristic strategies (e.g., avoid division by
zero, find a reasonable starting step size) and a careful implementation of software.

Scaling

Robustness typically requires a subtle application of scaling techniques within
the code, an intricate issue that we have not touched upon in this book. Apart
from any external scaling of variables prescribed by the user, robust codes often
realize some internal scaling. Such a device is necessary to assure that any relative
versus absolute error criterion works. Moreover, quite often “small” elements of the

Roadmap for Numerical Integrators 81

numerical sensitivity matrices are set to zero – a device only reasonable when the
term “small” is defined, which, in turn, is only reasonable, if scaled quantities are
treated.

2.5.2 Different Numerical Behavior in Two Similar Problems

In this section, we present two problems from systems biology that, at first glance,
look similar from the point of view of mathematical modelling. Both of them are
of moderate size. They may serve as typical examples for how to deal with larger
problems.

Human Menstrual Cycle Problem GYNCYCLE

This model, published in detail in [53], has already been presented above as
Example 1. In Fig. 1.6, the compartments of the model have been illustrated. In
Fig. 1.7, part of the corresponding chemical model has been presented in the usual
form of a reaction diagram. Thus one arrives at a mathematical model with d D 33

ODEs and 114 parameters, from which 63 degrees of freedom could be identified
by methods described in the subsequent Chap. 3.

Bovine Estrous Cycle Problem BOVCYCLE

This model has been inspired by the above human menstrual cycle model. In fact,
the endocrine mechanisms that regulate the bovine estrous cycle are rather similar
to those of the human menstrual cycle. A first version has been published in [7]. Our
subsequently presented computations refer to the more recent version [58], where
further details can be found. As for the selected compartments for the physiological
description, Fig. 1.6 can again serve as defining the terms. A subdiagram of the
chemical model is given in Fig. 2.13, to be compared with the more elaborate
human model in Fig. 1.7. Finally, a mathematical model with d D 15 ODEs and
60 parameters comes up.

Comparative Performance of Numerical Integrators

In Figs. 2.14 and 2.15, we show the comparative performance of several numerical
integrators. The documented local error tolerances TOL, see (2.14), range within
10�3; : : : ; 10�6, which is a reasonable range for typical problems from systems
biology. As for the performance, we study both the comparative CPU times required
on a Fujitsu Siemens Lifebook E8210 and the achieved global accuracies ERR,
see (2.15). The CPU time is a reasonable performance measure, whenever both

82 Roadmap for Numerical Integrators

LH Pituitary

FSH Pituitary

LH Blood

FSH Blood

Follicles

*

*

GnRH PituitaryGnRH Hypothalamus

Corpus Luteum

Oxytocin Enzymes

α FOI2FGP

Estradiol

Progesterone

Inhibin

Fig. 2.13 Flowchart of a model for the bovine estrous cycle. dashed lines: transitions, elimination,
or chemical reactions, solid lines with filled arrows: stimulatory effects (Hill functions hC), solid
lines with unfilled arrows: inhibitory mechanisms (Hill functions h�)

non-stiff and stiff integrators are compared. As for the norm used to define ERR,
we selected the scaled root mean square error, i.e.

ERR D

1

d

dX
iD1

.yi.T/ � yi;ref.T//2

yi;scal.T/

!1=2

; (2.66)

wherein yref is the (highly accurate) computational result obtained with the extrapo-
lation code LIMEX for TOL = 10�12 and yscal is the scaling vector obtained during
the computation.

Small test set of integrators. First, in order come to a fast decision about
which numerical integrator to use, we test on a small subset of integrators that
includes both stiff and non-stiff ones. On the basis of what has been presented in
this chapter, let us select the non-stiff Runge-Kutta integrator DOPRI5, the stiff
extrapolation integrator METAN1, and the mixed multistep code LSODA with
automatic switching between a non-stiff Adams method and a stiff BDF method.
The comparative results are presented in Fig. 2.15. From these numbers, we may
gain the following insight:

• Problem BOVCYCLE is non-stiff, as can be seen from the small amount of
computing time of DOPRI5 versus METAN1.

Roadmap for Numerical Integrators 83

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

CPU time for BOVCYCLE

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

CPU time for GYNCYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

TOL

E
R

R

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

scaled root mean square error for BOV-
CYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

E
R

R

DOPRI5
METAN1
LSODA
LIMEX
SEULEX
RADAU5

TOL

scaled root mean square error for GYN-
CYCLE

(a) (b)

(c) (d)

Fig. 2.14 Performance of six numerical integrators in two similar problems, to be compared with
Fig. 2.15. Left: Bovine estrous cycle problem BOVCYCLE. Right: Human menstrual cycle problem
GYNCYCLE. Top: CPU time. Bottom: Achieved global accuracy

• Vice versa, problem GYNCYCLE is stiff, just compare the higher CPU of
DOPRI5 versus METAN1.

• In the non-stiff problem, the accuracies of all three integrators are nearly the
same.

• In the stiff problem, the accuracies spread by a factor of roughly 10, with the
non-stiff integrator DOPRI5 surprisingly best, which yields to the insight that
this problem is only mildly stiff.

The number of steps selected by the automatic step-size controls (not presented in
detail here) is

• for BOVCYCLE: between 103 with LSODA, DOPRI5 and 102 with METAN1,
• for GYNCYCLE: between 104 with DOPRI5 and again 102 with METAN1.

In summary, Fig. 2.15 leads to the suggestion of using DOPRI5 in the non-stiff
problem BOVCYCLE, but LSODA or METAN1 in the stiff problem GYNCYCLE.

Larger test set of integrators. Sometimes, users want a comparison over a
larger test set of integrators. Therefore, beyond the three integrators DOPRI5,

84 Roadmap for Numerical Integrators

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5 METAN1 LSODA

CPU time for BOVCYCLE

10
−6

10
−5

10
−4

10
−3

10
−3

10
−2

10
−1

10
0

TOL

C
P

U
 ti

m
e

[s
]

DOPRI5 METAN1 LSODA

CPU time for GYNCYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

TOL

E
R

R

DOPRI5 METAN1 LSODA

scaled root mean square error for BOV-
CYCLE

10
−6

10
−5

10
−4

10
−3

10
−6

10
−4

10
−2

10
0

TOL

E
R

R

DOPRI5 METAN1 LSODA

scaled root mean square error for GYN-
CYCLE

(a) (b)

(c) (d)

Fig. 2.15 Comparative performance of three numerical integrators in two similar problems. Left:
Bovine estrous cycle problem BOVCYCLE. Right: Human menstrual cycle problem GYNCYCLE.
Top: CPU time. Bottom: Achieved global accuracy

METAN1, LSODA above, we additionally include the three stiff integrators
LIMEX, SEULEX, RADAU5. The comparative results are given in Fig. 2.14. From
this larger data set, we conclude that the characterization “stiff versus non-stiff”
remains the same. Moreover, the data about the computing times and achieved
accuracies also remain essentially the same.

Remark 9 If, beyond the mere trajectory simulation, sensitivity analysis is wanted,
then the linearly implicit extrapolation codes LIMEX, METAN1 have a structural
advantage that also pays off as a gain in CPU time.

2.5.3 Example: Warburg Effect in Tumor Cells

This rather complex systems biological network has been worked out by M. König,
H.-G. Holzhütter, and N. Berndt [42] from Charité, Berlin. We here partially follow
their presentation. However, we focus on details of their numerical modeling, which
is the topic of this monograph. Readers interested in more biological details are

Roadmap for Numerical Integrators 85

Fig. 2.16 Schematic representation of cellular-scale model for energy metabolism (Courtesy M.
König)

referred to the original paper. The so-called Warburg effect means that solid tumor
cells, as opposed to normal cells, exhibit an extraordinarily high demand for glucose
even under aerobic conditions (i.e. in the presence of oxygen) with a substantial
part of glucose being converted into lactate. In their work, the authors address the
problem of whether zonation of the energy metabolism within a non-vascular tumor
could serve as a means to influence its growth capacity.

Two-Scale Modeling

The authors of [42] developed an elaborate model for inter- as well as intra-
cellular energy metabolism. Each cell is modeled via three compartments, the
mitochondrion, the cytosol, and the extracellular space. Within these compartments,
a kinetic model for 78 intracellular metabolites is realized. Figure 2.16 gives
an impression of the complex metabolism within a single tumor cell. The most
important processes are the tricarboxylic acid (TCA) cycle and the two central
ATP delivering pathways, i.e. the glycolytic (GLY) pathway and the oxidative
phosphorylation (OXP) pathway.

86 Roadmap for Numerical Integrators

Fig. 2.17 Schematic representation of tissue-scale model of tumor metabolism. Note that Fig. 2.16
is a zoom into Fig. 2.17 (Courtesy M. König)

The coupling between tumor cells and with their tissue environment is again
schematically described by a compartment model, see Fig. 2.17. The tumor as a
whole is supplied with nutrients and oxygen via the nearest blood vessel (on the
left of the figure). Exchangeable metabolites between the cells and the extracellular
space are glucose, lactate and oxygen, which are assumed to diffuse between
adjacent spatial layers – represented by double arrows in Fig. 2.17. In order to
model the continuous diffusion process within the discrete compartment setting, a
second-order finite difference approximation is used to replace the one-dimensional
diffusion equation (which would be a partial differential equation).

Numerical Simulation

The total model above was specified to contain a fixed number of 25 cells, 5
extracellular compartments per cell, 78 intracellular metabolites per cell, and 3
extracellular metabolites. These model equations have been carefully programmed
by hand to yield a system of 2328 ODEs. The project required repeated simulation
runs within a parameter study that involved external oxygen and glucose availability
or different metabolic strategies of energy production. This study required about
1000 simulation runs of the 2328 ODEs. Hence, computing time really matters here.

After first experiences of the authors with non-stiff integration, it quickly became
clear that the ODE system is stiff (mainly due to the equations for the respiratory
chain). First simulations with a stiff ODE code provided within a well-known
commercial package could only be performed for up to 5 cells, which already
required several minutes per run (to be multiplied by a factor of 1000 in the
parameter study!). Simulations for the large systems just failed due to excess of
storage requirement. The computational bottleneck turned out to be the solution
of the large linear systems at each time step. In order to cope with this difficulty,
the equations in the ODE system were reordered resulting in a banded structure
of the Jacobian matrix: Metabolites and compartments related to individual cells
were arranged within one block, as opposed to the original implementation that
distributed elements over the whole system matrix. As a consequence, a numerical

Roadmap for Numerical Integrators 87

band solver could be applied to solve the linear equations. Upon combining the
two FORTRAN codes LIMEX for stiff integration (see Sect. 2.4.2) and MUMPS,
a direct parallel sparse solver (due to [1, 2], here in band mode), the ODE system
could be integrated within around 10 sec. This brought the whole parameter study
within a tolerable region of computing time.

After the work reported in [42], the authors further developed their model so
that today the ODE system is about three times larger than the one in the original
publication and heavily relies on parameter studies. In order to further speed
up computations, the present even larger system is integrated with the package
RoadRunner, a .NET library for carrying out numerical simulations directly from
given SBML models. RoadRunner uses the (implicit) BDF integrator CVODE
[37, 38] (written in C) for differential equation solving and event handling. With
this change, the simulation times of the larger ODE system could be reduced to
about 3 sec. per run. Moreover, a modified scientific analysis now requires about
10.000 runs per parameter study.

If, however, sensitivity studies should be included, then the linearly implicit
extrapolation codes like LIMEX or METAN1 (see Sect. 2.4.2) would again enter
the game.

	2 Numerical Simulation of ODE Models
	2.1 Basic Concepts
	2.1.1 Local Versus Global Discretization Error: Theoretical Concepts
	Classical (Explicit) Euler Method
	Local Discretization Error
	Global Discretization Error
	Implicit Euler Method
	Implicit Trapezoidal and Midpoint Rule
	General Case
	Step-Size and Order Control

	2.1.2 Local Versus Finally Achieved Accuracy: Algorithmic Concepts
	Error Propagation
	Role of Interval Condition Number
	Total Error
	Summary

	2.1.3 Stability Concepts for Discretizations
	Dahlquist Test Model
	Examples of Stability Regions
	A-Stability
	A(α)-Stability
	L-Stability
	L(α)-Stability

	2.1.4 Stiffness of ODE Problems
	Characterization of Stiffness

	2.2 Explicit Numerical Integration Methods
	2.2.1 Runge-Kutta Methods
	Error Estimation and Step-Size Control
	Dense Output
	Dormand-Prince Integrators

	2.2.2 Extrapolation Methods
	Basic Procedure
	Explicit Euler Discretization
	Explicit Midpoint Rule
	Order and Step-Size Control
	Dense Output
	Explicit Extrapolation Codes

	2.2.3 Adams Methods
	General Scheme
	Discretization Error Estimate
	PECE Methods
	Order and Step-Size Control
	Adams Codes

	2.3 Implicit Numerical Integration Methods
	2.3.1 Collocation Methods
	Implicit Runge-Kutta Schemes
	L-Stability Conditions
	Collocation Approach
	Discretization Error
	Radau Collocation Codes

	2.3.2 BDF Method
	Stability Properties
	Order and Step-Size Control
	BDF Codes

	2.4 Linearly Implicit One-Step Methods
	General Idea
	2.4.1 Rosenbrock-Wanner Methods
	ROW Codes

	2.4.2 Extrapolation Methods
	Linearly Implicit Euler Discretization
	Linearly Implicit Midpoint Rule
	Linearly Implicit Extrapolation Codes

	2.5 Choice of Numerical Integrator
	2.5.1 A General Roadmap for Numerical Integrators
	One-Step Methods
	Multistep Methods
	Non-stiff Versus Stiff Integration
	Computational Speed
	Accuracy
	Computational Parameter Sensitivity Analysis
	Discontinuity Treatment
	Dense Output
	Delay Differential Equations
	Reliability
	Robustness
	Scaling

	2.5.2 Different Numerical Behavior in Two Similar Problems
	Human Menstrual Cycle Problem GynCycle
	Bovine Estrous Cycle Problem BovCycle
	Comparative Performance of Numerical Integrators

	2.5.3 Example: Warburg Effect in Tumor Cells
	Two-Scale Modeling
	Numerical Simulation

